
General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

1 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Document Title General Requirements on
Basic Software Modules

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 043

Document Classification Standard

Document Version 2.5.1

Document Status Final

Part of Release 3.2

Revision 3

Document Change History
Date Version Changed by Change Description

28.02.2014 2.5.1 AUTOSAR
Release
Management

 Editorial changes

29.05.2012 2.5.0 AUTOSAR
Administration

 [BSW00467] added

 [BSW00409] The defined variable in the
use case received a “Dem_” prefix

 [BSW00437] re-written

 [BSW00374] modified

07.04.2011 2.4.0 AUTOSAR
Administration

 Regulation of callout prototypes
generation

 Legal disclaimer revised

13.09.2010 2.3.0

AUTOSAR
Administration

 [BSW00414] adapted for clarification
regarding the configuration parameter of
the Init functions in case of pre-compile
variants

 [BSW00406]: Relax module initialization
checks for MainFunctions (no DET error)

 [BSW00408] Relaxing the requirement to
allow different configuration names

23.06.2008 2.2.1 AUTOSAR
Administration

 Legal disclaimer revised

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

2 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Document Change History
Date Version Changed by Change Description

10.12.2007 2.2.0 AUTOSAR
Administration

 [BSW00439] Declaration of interrupt
handlers and ISRs

 [BSW00440] Function prototype for
callback functions of AUTOSAR Services

 [BSW00441] Enumeration literals and
#define naming convention

 Changes done for Interrupt Handling,
Configuration Parameter Naming
Convention and AUTOSAR Services

 Document meta information extended

 Small layout adaptations made

26.01.2007 2.1.0 AUTOSAR
Administration

 Interface for BSW Modules to DEM and
Debouncing for DEM

 Changes in Configuration Requirements

 Module Headerfile Structure

 Naming separation of different instances
of BSW drivers

 Legal disclaimer revised

 “Advice for users” revised

 “Revision Information” added

23.05.2006 2.0.0 AUTOSAR
Administration

Second release

23.06.2005 1.0.0 AUTOSAR
Administration

Initial release

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

3 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).

Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary
items are licensed under the same rules as applicable to the AUTOSAR Standard.

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

4 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

 Table of Contents

1 Scope of this document ... 7

1.1 Constraints ... 7

2 How to read this document .. 8

2.1 Conventions used... 8
2.2 Requirements structure .. 9
2.3 Mapping to AUTOSAR releases ... 9

3 Acronym and abbrevations .. 10

4 General Requirements on Basic Software ... 11

4.1 Functional Requirements ... 11
4.1.1 Configuration ... 11

4.1.1.1 [BSW00344] Reference to link--time configuration 11

4.1.1.2 [BSW00404] Reference to post build time configuration 11
4.1.1.3 [BSW00405] Reference to multiple configuration sets 12
4.1.1.4 [BSW00345] Pre--compile--time configuration 12
4.1.1.5 [BSW159] Tool--based configuration ... 13

4.1.1.6 [BSW167] Static configuration checking .. 13
4.1.1.7 [BSW171] Configurability of optional functionality 14

4.1.1.8 [BSW170] Data for reconfiguration of AUTOSAR SW--Components14
4.1.1.9 [BSW00380] Separate C--Files for configuration parameters 15

4.1.1.10 [BSW00419] Separate C--Files for pre--compile time configuration
parameters ... 15

4.1.1.11 [BSW00381] Separate configuration header file for pre--compile
time parameters ... 16
4.1.1.12 [BSW00412] Separate H--File for configuration parameters 16

4.1.1.13 [BSW00383] List dependencies of configuration files 16
4.1.1.14 [BSW00384] List dependencies to other modules 17

4.1.1.15 [BSW00387] Specify the configuration class of callback function 17
4.1.1.16 [BSW00388] Introduce containers ... 17

4.1.1.17 [BSW00389] Containers shall have names 18

4.1.1.18 [BSW00390] Parameter content shall be unique within the module
 18
4.1.1.19 [BSW00391] Parameter shall have unique names 18
4.1.1.20 [BSW00392] Parameters shall have a type.................................. 19
4.1.1.21 [BSW00393] Parameters shall have a range 19
4.1.1.22 [BSW00394] Specify the scope of the parameters 20

4.1.1.23 [BSW00395] List the required parameters (per parameter) 20
4.1.1.24 [BSW00396] Configuration classes .. 20
4.1.1.25 [BSW00397] Pre--compile--time parameters 21
4.1.1.26 [BSW00398] Link--time parameters ... 21
4.1.1.27 [BSW00399] Loadable Post--build time parameters 21

4.1.1.28 [BSW00400] Selectable Post--build time parameters 22

4.1.1.29 [BSW00438] Post Build Configuration Data Structure 22

4.1.1.30 [BSW00402] Published information ... 23
4.1.2 Wake--Up .. 23

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

5 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

4.1.2.1 [BSW00375] Notification of wake--up reason 23

4.1.3 Initialization ... 24
4.1.3.1 [BSW101] Initialization interface .. 24
4.1.3.2 [BSW00416] Sequence of Initialization .. 24
4.1.3.3 [BSW00406] Check module initialization ... 24
4.1.3.4 [BSW00467] Calling of init / deinit ... 25

4.1.3.5 [BSW00437] NoInit--Area in RAM ... 26
4.1.4 Normal Operation .. 26

4.1.4.1 [BSW168] Diagnostic Interface of SW components 26
4.1.4.2 [BSW00407] Function to read out published parameters 27
4.1.4.3 [BSW00423] Usage of SW--C template to describe BSW modules
with AUTOSAR Interfaces ... 27
4.1.4.4 [BSW00424] BSW main processing function task allocation 28

4.1.4.5 [BSW00425] Trigger conditions for schedulable objects 28
4.1.4.6 [BSW00426] Exclusive areas in BSW modules 29
4.1.4.7 [BSW00427] ISR description for BSW modules 29
4.1.4.8 [BSW00428] Execution order dependencies of main processing
functions .. 29
4.1.4.9 [BSW00429] Restricted BSW OS functionality access 30

4.1.4.10 [BSW00431] The BSW Scheduler module implements task bodies
 31
4.1.4.11 [BSW00432] Modules should have separate main processing
functions for read/receive and write/transmit data path 31

4.1.4.12 [BSW00433] Calling of main processing functions 32
4.1.4.13 [BSW00434] The Schedule Module shall provide an API for
exclusive areas .. 32

4.1.5 Shutdown Operation ... 33
4.1.5.1 [BSW00336] Shutdown interface ... 33

4.1.6 Fault Operation and Error Detection ... 33

4.1.6.1 [BSW00337] Classification of errors .. 33
4.1.6.2 [BSW00338] Detection and Reporting of development errors 34

4.1.6.3 [BSW00369] Do not return development error codes via API 34
4.1.6.4 [BSW00339] Reporting of production relevant error status 35
4.1.6.5 [BSW00422] Pre--de--bouncing of production relevant error status 35

4.1.6.6 [BSW00417] Reporting of Error Events by Non--Basic Software 36

4.1.6.7 [BSW00323] API parameter checking ... 36
4.1.6.8 [BSW004] Version check ... 37
4.1.6.9 [BSW00409] Header files for production code error IDs 37

4.1.6.10 [BSW00385] List possible error notifications 38
4.1.6.11 [BSW00386] Configuration for detecting an error 39

4.2 Non--functional Requirements .. 40
4.2.1 Software Architecture Requirements ... 40

4.2.1.1 [BSW161] Microcontroller abstraction ... 40

4.2.1.2 [BSW162] ECU layout abstraction ... 40
4.2.1.3 [BSW005] No hard coded horizontal interfaces within MCAL 40
4.2.1.4 [BSW00415] User dependent include files 41

4.2.2 Software Integration Requirements ... 41

4.2.2.1 [BSW164] Implementation of interrupt service routines 41
4.2.2.2 [BSW00325] Runtime of interrupt service routines 42

4.2.2.3 [BSW00326] Transition from ISRs to OS tasks 42

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

6 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

4.2.2.4 [BSW00342] Usage of source code and object code 43

4.2.2.5 [BSW00343] Specification and configuration of time 43
4.2.2.6 [BSW160] Human--readable configuration data 43

4.2.3 Software Module Design Requirements .. 44
4.2.3.1 Software quality ... 44
4.2.3.2 Naming conventions .. 44

4.2.3.3 Module file structure .. 53
4.2.3.4 Standard header files .. 56
4.2.3.5 Module Design ... 58
4.2.3.6 Types and keywords .. 60
4.2.3.7 Global data .. 65

4.2.3.8 Interface and API ... 66
4.2.4 Software Documentation Requirements .. 70

4.2.4.1 [BSW009] Module User Documentation .. 70
4.2.4.2 [BSW00401] Documentation of multiple instances of configuration
parameters ... 71
4.2.4.3 [BSW172] Compatibility and documentation of scheduling strategy 72

4.2.4.4 [BSW010] Memory resource documentation 72
4.2.4.5 [BSW00333] Documentation of callback function context 73

4.2.4.6 [BSW00374] Module vendor identification 73
4.2.4.7 [BSW00379] Module identification ... 74
4.2.4.8 [BSW003] Version identification .. 74

4.2.4.9 [BSW00318] Format of module version numbers 74

4.2.4.10 [BSW00321] Enumeration of module version numbers 75
4.2.4.11 [BSW00341] Microcontroller compatibility documentation 76
4.2.4.12 [BSW00334] Provision of XML file ... 76

5 References .. 78

5.1 Deliverables of AUTOSAR ... 78
5.2 Related standards and norms .. 78

5.2.1 OSEK .. 78
5.2.2 HIS .. 78

5.2.3 MISRA ... 78

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

7 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

1 Scope of this document

The goal of AUTOSAR WP1.1.2 and this document is to define a common set of
basic requirements that apply to all SW modules of the AUTOSAR Basic Software.
These requirements shall be adopted and refined by the work packages responsible
for the specification of Basic SW modules (WP4.2.2.1.x).

The functional requirements defined in this document shall be referenced in each
Software Specification (SWS) document of the AUTOSAR Basic Software.

1.1 Constraints

First scope for specification of requirements on Basic Software Modules are systems
which are not safety relevant. For this reason safety requirements are assigned to
medium priority.

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

8 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

2 How to read this document

Each requirement has its unique identifier starting with the prefix “BSW” (for “Basic
Software”). For any review annotations, remarks or questions, please refer to this
unique ID rather than chapter or page numbers!

2.1 Conventions used

In requirements, the following specific semantics shall be used (based on the Internet
Engineering Task Force IETF).

The key words "MUST", "MUST NOT", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "MAY", and "OPTIONAL" in this document are to be interpreted as:

 SHALL: This word means that the definition is an absolute requirement of the
specification.

 SHALL NOT: This phrase means that the definition is an absolute prohibition
of the specification.

 MUST: This word means that the definition is an absolute requirement of the
specification due to legal issues.

 MUST NOT: This phrase means that the definition is an absolute prohibition of
the specification due to legal constraints.

 SHOULD: This word, or the adjective "RECOMMENDED", mean that there
may exist valid reasons in particular circumstances to ignore a particular item,
but the full implications must be understood and carefully weighed before
choosing a different course.

 SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED" mean
that there may exist valid reasons in particular circumstances when the
particular behavior is acceptable or even useful, but the full implications
should be understood and the case carefully weighed before implementing
any behavior described with this label.

 MAY: This word, or the adjective „OPTIONAL“, means that an item is truly
optional. One vendor may choose to include the item because a particular
marketplace requires it or because the vendor feels that it enhances the
product while another vendor may omit the same item. An implementation,
which does not include a particular option, MUST be prepared to interoperate
with another implementation, which does include the option, though perhaps
with reduced functionality. In the same vein an implementation, which does
include a particular option, MUST be prepared to interoperate with another
implementation, which does not include the option (except, of course, for the
feature the option provides.)

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

9 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

2.2 Requirements structure

Each module specific chapter contains a short functional description of the Basic
Software Module. Requirements of the same kind within each chapter are grouped
under the following headlines (where applicable):

Functional Requirements:
- Configuration (which elements of the module need to be configurable)
- Initialization
- Normal Operation
- Shutdown Operation
- Fault Operation
- …

Non--Functional Requirements:
- Timing Requirements
- Resource Usage
- Usability
- Output for other WPs (e.g. Description Templates, Tooling,...)
- ...

2.3 Mapping to AUTOSAR releases

For each requirement defined in the document “General Requirements on Basic
Software Modules”, there shall be a reference to the AUTOSAR release(s) for which
the requirement is valid. This is achieved by the row “AUTOSAR release” in the
requirement description table.

This Requirements Specification contains general requirements that are valid for all
SW modules that are part of the AUTOSAR Basic Software.

The obligatory part of the requirements is stated in the description of each
requirement.

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

10 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

3 Acronym and abbrevations

Acronym: Description:

Interrupt frame An interrupt frame is the code which is generated by the compiler or the assembler
code for prefix and postfix of interrupt routines. This code is Microcontroller specific

ISR Interrupt Service Routine. Also used as a macro to declare in C a cat2 interrupt
service routine.

Abbreviation: Description:

Cat2 Category 2. Cat2 ISRs are supported by the OS and can make OS calls.

Cat1 Category 1. Cat1 interrupts are not supported by the OS and are only allowed to
make a very small selection of OS calls to enable and disable all interrupts.

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

11 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

4 General Requirements on Basic Software

The requirements on Basic Software cover the following domains:

 Body

 Powertrain

 Chassis

 Safety (assumption: covered, because hardware and system infrastructure are
similar to the domains above)

The ECU application experience is taken from the following concrete applications:

 Sunroof and power window ECU

 Diesel engine ECU

 ESP ECU

 BMW, DC and VW standard software packages (‘Standard Core’, ‘Standard
Software Platform‘, ‘Standard Software Core’) including OSEK OS,
communication modules, bootloader, basic diagnostic functions for the
domains listed above

 Infotainment control ECU

4.1 Functional Requirements

4.1.1 Configuration

4.1.1.1 [BSW00344] Reference to link--time configuration

Initiator: BMW

Date: 07.12.2006

AUTOSAR Release: 1.0 and higher

Short Description: Reference to link time configuration

Type: Changed

Importance: High

Description: All modules of the AUTOSAR Basic Software that operate on link--time
configurable data at runtime shall use a read only reference (pointer) to an
external configuration instance.

Rationale: Allow configurable functionality of modules that are deployed as object code.
Usually those modules are drivers.

Use Case: --

Dependencies: [BSW00342] Usage of source code and object code
[ECUC0048] Link--time configuration (see [ECU_CONF_SRS])

Conflicts: --

Supporting Material: --

4.1.1.2 [BSW00404] Reference to post build time configuration

Initiator: BMW

Date: 07.12.2006

AUTOSAR Release: 1.0 and higher

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

12 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Short Description: Reference to post build time configuration

Type: Changed

Importance: High

Description: Modules of the AUTOSAR Basic Software that operate on one post build
time configurable data entity shall use a read only reference (pointer) to an
external configuration instance. (violation of this requirement must be
reasoned)

Rationale: As long as there is only one set of configuration data (i.e. we have no
multiple configuration sets) the references can be resolved as constant
pointers. The indirections shall be kept as simple as possible

Use Case: type declaration of the Config Type
typedef struct ComM_ConfigType_Tag {

...

} ComM_ConfigType; (in ComM_Cfg.h)

as a forward declaration use:
typedef struct ComM_ConfigType_Tag ComM_ConfigType;

extern void ComM(ComM_ConfigType * ComMConfigPtr); (in

ComM.h)

Dependencies: [BSW00342] Usage of source code and object code
[ECUC0048] Link--time configuration (see [ECU_CONF_SRS])

Conflicts: --

Supporting Material: --

4.1.1.3 [BSW00405] Reference to multiple configuration sets

Initiator: BMW / CAS

Date: 26.10.2006

AUTOSAR Release: 2.0 and higher

Short Description: Reference to multiple configuration sets

Type: Changed

Importance: High

Description: Modules of the AUTOSAR Basic Software that operate on more than one
post build time configurable data entity shall use a reference (pointer) to an
external configuration instance.

Rationale: Application of the same software to different cars.

Use Case: --

Dependencies: [BSW00342] Usage of source code and object code
[ECUC0048] Link--time configuration (see [ECU_CONF_SRS])

Conflicts: --

Supporting Material: --

4.1.1.4 [BSW00345] Pre--compile--time configuration

Initiator: BMW

Date: 23.07.2004

AUTOSAR Release: 1.0 and higher

Short Description: Pre--compile--time configuration

Type: Changed to add “*.c” file

Importance: High

Description: All modules of the AUTOSAR Basic Software, operating on Pre--compile--
time configuration data (not to be modified after compile time), shall group
and export the configuration data to configuration files.

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

13 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Module specific configuration header file naming convention:
<Module name>_Cfg.h and possibly
<Module name>_Cfg.c

Rationale: Static configuration is decoupled from implementation. Separation of
configuration dependent data at compile time furthermore enhances
flexibility, readability and reduces version management as no source code is
affected.

Use Case: In Tp_Cfg.h:
#define TP_USE_NORMAL_ADDRESSING KTPOFF

#define TP_USE_NORMAL_FIXED_ADDRESSING KTPOFF

#define TP_USE_EXTENDED_ADDRESSING KTPON

...

in Tp.c:
…
#include "Tp_Cfg.h"

…

#if (TP_USE_NORMAL_ADDRESSING == KTPOFF)

 … do something

#endif

Dependencies: [BSW158] Separation of configuration from implementation
[ECUC0047] Pre--compile--time configuration (see [ECU_CONF_SRS])

Conflicts: --

Supporting Material: --

4.1.1.5 [BSW159] Tool--based configuration

Initiator: BMW

Date: 10.02.2004

AUTOSAR Release: 1.0 and higher

Short Description: Tool--based configuration.

Type: New

Importance: High

Description: All modules of the AUTOSAR Basic Software shall support a tool based
configuration.

Rationale: Integration into AUTOSAR methodology

Use Case: The NVRAM manager can be automatically configured depending on the NV
parameters and their corresponding attributes of the software components.

Dependencies: --

Conflicts: --

Supporting Material: --

4.1.1.6 [BSW167] Static configuration checking

Initiator: BMW

Date: 24.11.2005

AUTOSAR Release: 1.0 and higher

Short Description: Static configuration checking

Type: Changed

Importance: High

Description: All AUTOSAR Basic Software Modules shall provide configuration rules and
constraints to enable plausibility checks of configuration during ECU

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

14 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

configuration time where possible.

Rationale: Runtime efficiency:
Checks can be made by a configuration tool or the preprocessor instead
during runtime.

Safety:
Detect wrong or missing configurations as early as possible

Use Case: --

Dependencies: Requirements for configuration toolchain.
[BSW00334] Provision of XML file

Conflicts: --

Supporting Material: --

4.1.1.7 [BSW171] Configurability of optional functionality

Initiator: BOSCH

Date: 29.02.2004

AUTOSAR Release: 1.0 and higher

Short Description: Configure optional functionality in a way to minimize resource consumption

Type: Changed (18.03.2005)

Importance: High

Description: Optional functionality of a Basic--SW component that is not required in the
ECU shall be configurable at pre--compile--time (on/off).

Rationale: Optional functionalities of Basic SW components which are disabled by static
configuration shall not consume resources (RAM, ROM, runtime).

Implementation example: in C language, preprocessing directives can be
used.

Ensure optimal resource consumption. There are many requirements
marked with high importance but not all are used in each ECU thus resource
overhead must be avoided.

Use Case: 1. The development error detection is a statically configurable optional
function that can be enabled and disabled.

2. The EEPROM write cycle reduction is a statically configurable optional
function that can be enabled and disabled.

Dependencies: --

Conflicts: --

Supporting Material: --

4.1.1.8 [BSW170] Data for reconfiguration of AUTOSAR SW--Components

Initiator: BOSCH

Date: 24.11.2005

AUTOSAR Release: 1.0 and higher

Short Description: The AUTOSAR SW Components shall provide information about their
dependency from faults, signal qualities, driver demands, ...

Type: Changed

Importance: High

Description: AUTOSAR SW--Components may depend on the system fault state or
configuration demand of OEM or driver. These reconfiguration dependencies
must be provided during ECU configuration time. This information must be
used for cross checks and functional evaluation at ECU configuration time
and for correct shut down/activation behavior at runtime.

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

15 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Rationale: Resolve the interdependencies between AUTOSAR SW--Components.

Use Case: A fault of the steering angle sensor will lead to reduced function of the
related AUTOSAR SW--Components.

Example:
- faults (CAN bus off, sensor defective, calibration data checksum error)
- signal quality (lambda sensor not yet in operating temperature range)
- driver demands (disable ESP)
- ...

Dependencies: --

Conflicts: --

Supporting Material: --

4.1.1.9 [BSW00380] Separate C--Files for configuration parameters

Initiator: WP1.1.2

Date: 30.06.2005

AUTOSAR Release: 2.0 and higher

Short Description: Separate C--Files for configuration parameters

Type: New

Importance: High

Description: Configuration parameters being stored in memory shall be placed into
separate c--files (effected parameters are those from link--time configuration
as well as those from post--build time configuration).

Rationale: Enable the use of different object files.

Use Case: --

Dependencies: [BSW00381] Separate configuration header file for pre--compile time
parameters
[BSW00346] Basic set of module files

Conflicts: --

Supporting Material: Layered Software Architecture ([DOC_LAYERED_ARCH])

4.1.1.10 [BSW00419] Separate C--Files for pre--compile time configuration

parameters

Initiator: WP1.1.2

Date: 07.12.2006

AUTOSAR Release: 2.0 and higher

Short Description: Separate C--Files for pre--compile time configuration parameters

Type: Changed

Importance: Medium

Description: If a pre--compile time configuration parameter is implemented as “const“ it

should be placed into a separate c--file.

Rationale: Enabling of object code integration.
Separation of configuration from implementation.

Use Case: --

Dependencies: [BSW00380] Separate C--Files for configuration parameters

Conflicts: --

Supporting Material: Layered Software Architecture ([DOC_LAYERED_ARCH])

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

16 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

4.1.1.11 [BSW00381] Separate configuration header file for pre--compile
time parameters

Initiator: WP1.1.2

Date: 21.10.2005

AUTOSAR Release: 2.0 and higher

Short Description: Separate configuration header file for pre--compile time parameters

Type: Changed (Telcon)

Importance: High

Description: The pre--compile time parameters shall be placed into a separate
configuration header file.

Rationale: Keep the configuration data separate.

Use Case: --

Dependencies: [BSW00345] Pre--compile--time configuration

Conflicts: --

Supporting Material: --

4.1.1.12 [BSW00412] Separate H--File for configuration parameters

Initiator: WP1.1.2

Date: 26.10.2006

AUTOSAR Release: 2.0 and higher

Short Description: Separate H--File for configuration parameters

Type: New

Importance: High

Description: References to c--configuration parameters (link time and post--build time)
shall be placed into a separate h--file. The h--file shall be the same as pre--
compile time parameters.

Rationale: Put the references to c--configuration parameters in the same header file as
pre--compile time parameters to enable access to the configuration data.

Use Case: --

Dependencies: [BSW00381] Separate configuration header file for pre--compile time
parameters
[BSW00345] Pre--compile--time configuration
[BSW00346] Basic set of module files

Conflicts: --

Supporting Material: --

4.1.1.13 [BSW00383] List dependencies of configuration files

Initiator: WP1.1.2

Date: 08.12.2005

AUTOSAR Release: 2.0 and higher

Short Description: List dependencies of configuration files

Type: Changed

Importance: High

Description: The Basic Software Module specifications shall specify which other
configuration files from other modules they use at least in the description.

Rationale: Resolve compatibility issues

Use Case: --

Dependencies: [BSW00384] List dependencies to other modules

Conflicts: --

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

17 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Supporting Material: --

4.1.1.14 [BSW00384] List dependencies to other modules

Initiator: WP1.1.2

Date: 08.12.2005

AUTOSAR Release: 2.0 and higher

Short Description: List dependencies to other modules

Type: Changed

Importance: High

Description: The Basic Software Module specifications shall specify at least in the
description which other modules (in which versions) they require.

Rationale: Resolve compatibility issues

Use Case: --

Dependencies: [BSW00383] List dependencies of configuration files

Conflicts: --

Supporting Material: --

4.1.1.15 [BSW00387] Specify the configuration class of callback function

Initiator: WP1.1.2

Date: 08.12.2005

AUTOSAR Release: 2.0 and higher

Short Description: Specify the configuration class of callback function

Type: Changed

Importance: High

Description: The Basic Software Module specifications shall specify how the callback
function is to be implemented. (Pre--compile macro, pointer at link time,
array of pointers at post--build time and pointer at post--build time)

Rationale: v

Use Case: If a pre--compile time callback function (macro) shall be changed to a post
build time multiple configuration--set callback function (pointer to a function).
The implementation will change significantly.

Dependencies: --

Conflicts: --

Supporting Material: See Glossary ([GLOSSARY]) and ECU Configuration (WP4.1.1.2)
([ECU_CONF_SRS])

4.1.1.16 [BSW00388] Introduce containers

Initiator: WP1.1.2

Date: 30.06.2005

AUTOSAR Release: 2.0 and higher

Short Description: Introduce containers

Type: New

Importance: High

Description: Containers are used to group configuration parameters that are defined for
the same object. Containers are to be defined whenever

1. Several configuration parameters logically belong together.
2. Configuration must be repeated with different parameter values for

several entities of same type (e.g. the NVRAM manager has some

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

18 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

parameters that are defined once for the whole module, which are
collected in one container, and a set of parameters that are defined
once per memory block, which are collected in another container.
This second container is included in the first container and will be
instantiated once for each memory block)

3. Containers may contain parameters of different configuration
classes. This will not map to the software implementation!

Rationale: Cluster the configuration parameters in order to ease the readability of code.

Use Case: Header configuration file with sections for each container

Dependencies: [BSW00389] Containers shall have names

Conflicts: --

Supporting Material: See Glossary and ECU Configuration (WP4.1.1.2)

4.1.1.17 [BSW00389] Containers shall have names

Initiator: WP1.1.2

Date: 30.06.2005

AUTOSAR Release: 2.0 and higher

Short Description: Containers shall have names

Type: New

Importance: High

Description: Containers shall have names – these names will map to section headers in
the configuration header--files or configuration c--files containing the
parameters

Rationale: Enable referencing to the .XML document.

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: See Glossary ([GLOSSARY]) and ECU Configuration (WP4.1.1.2)
([ECU_CONF_SRS])

4.1.1.18 [BSW00390] Parameter content shall be unique within the module

Initiator: WP1.1.2

Date: 30.06.2005

AUTOSAR Release: 2.0 and higher

Short Description: Parameter content shall be unique within the module

Type: New

Importance: High

Description: The same intention, logical contents or semantic shall be placed in one
parameter only (There must not be several parameters with the same
intention, logical contents or semantic)

Rationale: Avoid multitude identical definitions. Ease the maintenance

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: --

4.1.1.19 [BSW00391] Parameter shall have unique names

Initiator: WP1.1.2

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

19 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Date: 30.06.2005

AUTOSAR Release: 2.0 and higher

Short Description: Parameter shall have unique names

Type: New

Importance: High

Description: A parameters name must be unique per module. If the parameter is exported
it must be unique to all modules using this parameter

Rationale: Avoid mismatch in scope of parameter.

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: --

4.1.1.20 [BSW00392] Parameters shall have a type

Initiator: WP1.1.2

Date: 08.12.2005

AUTOSAR Release: 2.0 and higher

Short Description: Parameters shall have a type

Type: Changed

Importance: High

Description: Each Parameter shall have a type. Types shall be based on primitive or,
complex types defined within AUTOSAR specifications. I.e. they may be
combined to structures, arrays etc.
Parameters based on a “define” are not required to have an explicit cast to
their type, they shall have an appropriate C suffix (“U” if of unsigned integer
type, “L” if of integer long type and “F” if of single precision floating type).

Rationale: --

Use Case: E.g. the type is used to generate the configuration data for post--build time
configuration.
Example:

 Type: #define MyExample (815U)

 Type: uint16

Dependencies: --

Conflicts: --

Supporting Material: --

4.1.1.21 [BSW00393] Parameters shall have a range

Initiator: WP1.1.2

Date: 08.12.2005

AUTOSAR Release: 2.0 and higher

Short Description: Parameters shall have a range

Type: Changed

Importance: High

Description: Each parameter shall have a list of valid values or the minimum as well as
maximum values shall be specified.

Rationale: --

Use Case: E.g. the range is used to enable the consistency check by a tool.
Example:

 Range STD_ON, STD_OFF

 Range 1..15

Dependencies: --

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

20 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Conflicts: --

Supporting Material: --

4.1.1.22 [BSW00394] Specify the scope of the parameters

Initiator: WP1.1.2

Date: 30.06.2005

AUTOSAR Release: 2.0 and higher

Short Description: Specify the scope of the parameters

Type: New

Importance: High

Description: A parameter may only be applicable for the module it is defined in. In this
case, the parameter is marked as “local”. Alternatively, the parameter may
be shared with other modules (i.e. exported). In that case, the scope shall list
the names of the other modules sharing this parameter. Each parameter
shall only be defined once in one module. All other modules sharing the
parameter must not define the parameter again. Instead, the parameter is to
be imported. This is applicable for c--code as well as for .XML configuration.

Rationale: --

Use Case: Importing and exporting could be achieved in different ways: external
reference, redefinition in the other module.

Dependencies: --

Conflicts: --

Supporting Material: [BSW00391] Parameter shall have unique names

4.1.1.23 [BSW00395] List the required parameters (per parameter)

Initiator: WP1.1.2

Date: 08.12.2005

AUTOSAR Release: 2.0 and higher

Short Description: List the required parameters (per parameter)

Type: Changed

Importance: High

Description: The Basic Software Module specifications must list configuration parameters
of this or other modules this parameter relies on. A dependency is for
example: the value of another parameter influences or invalidates the setting
of this parameter.

Rationale: --

Use Case: Specified parameter “Bit timing register” requires other parameters e.g.,
“input clock frequency” which is defined in another module.

Dependencies: --

Conflicts: --

Supporting Material: --

4.1.1.24 [BSW00396] Configuration classes

Initiator: WP1.1.2

Date: 08.12.2005

AUTOSAR Release: 2.0 and higher

Short Description: Configuration classes

Type: Changed

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

21 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Importance: High

Description: There are three main configuration classes. The Basic Software Module
specifications must specify the classes to be supported (per parameter). The
classes are:
-- pre-- compile time configuration
-- link time configuration
-- post build time configuration (could be either loadable or multiple)

Rationale: Enable optimizing towards different goals of configuration.

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: --

4.1.1.25 [BSW00397] Pre--compile--time parameters

Initiator: WP1.1.2

Date: 30.06.2005

AUTOSAR Release: 2.0 and higher

Short Description: Pre--compile--time parameters

Type: New

Importance: High

Description: The configuration parameters in pre--compile time are fixed before
compilation starts. The configuration of the SW element is done at source
code level.

Rationale: Ease generation of efficient code.

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: [BSW00345] Pre--compile--time configuration

4.1.1.26 [BSW00398] Link--time parameters

Initiator: WP1.1.2

Date: 30.06.2005

AUTOSAR Release: 2.0 and higher

Short Description: Link--time parameters

Type: New

Importance: High

Description: The link--time configuration is achieved on object code basis in the stage
after compiling and before linking (locating).

Rationale: Concept of configuration to support modules delivered as object code.

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: [BSW00344] Reference to link--time configuration

4.1.1.27 [BSW00399] Loadable Post--build time parameters

Initiator: WP1.1.2

Date: 30.06.2005

AUTOSAR Release: 2.0 and higher

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

22 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Short Description: Loadable Post--build time parameters

Type: New

Importance: High

Description: Parameter--sets are located in a separate segment and can be loaded after
the code. (see definition of post--build time configuration in the AUTOSAR
glossary). This means as well the memory layout of ext. conf. parameters
must be known.
This set of parameters may be optimized in a way (configuration is always
located at the same address) that the pointer indirection is avoided.

Rationale: --

Use Case: Loadable CAN configuration or communication matrix.

Dependencies: --

Conflicts: --

Supporting Material: --

4.1.1.28 [BSW00400] Selectable Post--build time parameters

Initiator: WP1.1.2

Date: 26.10.2006

AUTOSAR Release: 2.0 and higher

Short Description: Selectable Post--build time parameters

Type: Changed

Importance: High

Description: Parameter will be selected from multiple sets of parameters after code has
been loaded and started. During module startup (initialization) one of several
configurations is selected. This configuration is typically a data structure that
contains the relevant parameter values (see definition of post--build time
configuration in the AUTOSAR glossary).

Rationale: --

Use Case: Reuse of ECUs.

Dependencies: --

Conflicts: --

Supporting Material: --

4.1.1.29 [BSW00438] Post Build Configuration Data Structure

Initiator: WP1.1.2

Date: 25.09.2007

AUTOSAR Release: 2.1 and higher

Short Description: Post Build Configuration Data Structure.

Type: Changed

Importance: High

Description: Configuration data shall be defined in a structure. This structure shall be
pointed to by configuration pointers.

Only EcuM contains pointers to the data structures containing the
post-build.

If there is at least one module with the configuration class “post build
selectable” then the EcuM shall determine which pointer to the configuration
parameters is required to be passed to the init functions.

If there are no modules in the configuration class “post build selectable” but

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

23 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

one or more modules are in the “post build” class then a fixed pointer shall
be passed to the init functions by EcuM.

Rationale: Allow configurable functionality of modules that are deployed as object code.
Usually those modules are drivers.

Use Case: Initialization concept for ComM or CanIf.

Dependencies: --

Conflicts: --

Supporting Material: --

4.1.1.30 [BSW00402] Published information

Initiator: WP1.1.2

Date: 30.06.2005

AUTOSAR Release: 2.0 and higher

Short Description: Published information

Type: New

Importance: High

Description: This published information shall be included in each module:
VENDOR_ID, MODULE_ID, AR_MAJOR_VERSION,

AR_MINOR_VERSION, AR_PATCH_VERSION, SW_MAJOR_VERSION,

SW_MINOR_VERSION, SW_PATCH_VERSION.

Rationale: The published information contains data defined by the implementer of the
SW module that doesn’t change when the module is adapted (i.e.
configured) to the actual HW/SW environment it is used in. It thus contains
version and manufacturer information to ease the integration of different
BSW modules.

Use Case: --

Dependencies: [BSW004] Version check
[BSW00407] Function to read out published parameters
[BSW00318] Format of module version numbers

Conflicts: --

Supporting Material: --

4.1.2 Wake--Up

4.1.2.1 [BSW00375] Notification of wake--up reason

Initiator: WP4.2.2.1.12

Date: 24.11.2005

AUTOSAR Release: 1.0 and higher

Short Description: Notification of wake--up reason

Type: New

Importance: High

Description: All Basic Software Modules that implement wake--up interrupts shall report
the wake--up reason to the ECU State Manager via the IO Hardware
Abstraction within the wake--up interrupt.

Within this notification the ECU State Manager shall store the passed wake--
up ID for later evaluation.

Rationale: Allow ECU State Manager to decide which start--up sequence is chosen
based on the wake--up reason.

Use Case: A body ECU can wake--up from 3 different wake--up sources. Depending on
the wake--up reason, the ECU

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

24 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

 blinks the door lock indication LEDs

 performs a full start--up

 evaluates the received key ID and decides to start--up and unlock
or goto sleep again

Dependencies: --

Conflicts: --

Supporting Material: --

4.1.3 Initialization

4.1.3.1 [BSW101] Initialization interface

Initiator: DC

Date: 27.10.2005

AUTOSAR Release: 1.0 and higher

Short Description: Initialization interface.

Type: Changed (split up into two parts, shutdown interface moved to [BSW00336])

Importance: High

Description: If a Basic Software Module needs to initialize variables and hardware
resources, this should be done in a separate initialization function. This

function shall be named <Module name>_Init().

Rationale: Interface to ECU state manager

Use Case: --

Dependencies: [BSW00358] Return type of init() functions
[BSW00414] Parameter of init function
Exception: [BSW00406] Check module initialization

Conflicts: --

Supporting Material: --

4.1.3.2 [BSW00416] Sequence of Initialization

Initiator: Error Handling

Date: 08.02.2006

AUTOSAR Release: 2.0 and higher

Short Description: Sequence of Initialization

Type: New

Importance: High

Description: The sequence of modules to be initialized shall be configurable.
An exception to this is the initialization of the Com stack, which should be
standardized. (standardized initialization of the Com Manager)

Rationale: To enable the handling of dependencies of Basic SW--modules with the
respect to environment, implementation and proprietary functionality the
startup sequence needs to be adaptable.

Use Case: Startup of the DET dependent on the proprietary functionality it fulfills.

Dependencies: --

Conflicts: --

Supporting Material: --

4.1.3.3 [BSW00406] Check module initialization

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

25 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Initiator: DC

Date: 29.07.2010

AUTOSAR Release: 2.0 and higher

Short Description: Check module initialization

Type: New

Importance: High

Description: A static status variable denoting if a BSW module is initialized shall be
initialized with value 0 before any APIs of the BSW module is called.
The initialization function of the BSW modules shall set the static status
variable to a value not equal to 0.

If the detection of development errors is enabled, module APIs shall check if
the module is initialized (i.e. if the static initialization status variable of the
module is not equal to 0).
If the module is not initialized and the detection of development errors is
enabled, then:

a) The module’s API shall report an error to the DET.
b) The module's API function shall return an error status when it has a

return type or return without further processing when it has no return
type.

A module initialization check shall not be performed for:

i) Init functions, Reason: The initialization of the static variable is done in
the Init Functions, hence no checks shall be performed

ii) GetVersionInfo functions, Reason: It shall be possible to call the
GetVersionInfo API at any time, even without module initialization.

iii) Main functions, Reason: If a Main function of a un-initialized module is
called from the BSW Scheduler, then it shall return immediately
without performing any functionality and without raising any errors.

Rationale: API calls to not initialized BSW modules may result in undesired and non
defined behaviour.
API calls to not initialized BSW modules should report a “Module not
initialized” error to the Development Error Tracer (DET) if the detection of
development errors is switched on. The status variable is needed to check
the status.

Main Function processing of an un-initialized Module may result in undesired
and non defined behaviour, but the Basic Software Scheduler may have to
call them before the modules’ initializations.

Use Case: The call “Can_Write()” to the Can driver causes a call
Det_ReportError (ModuleId, ApiId, ErrorId);

in case the Can driver is not initialized. In this case the return value of the

“Can_Write()” function will be “E_NOT_OK”.

Dependencies: Exception from [BSW101] Initialization interface
Exception from [BSW00407] Function to read out published parameters
[BSW00338] Detection and Reporting of development errors
[BSW00369] Do not return development error codes via API

Conflicts: --

Supporting Material: --

4.1.3.4 [BSW00467] Calling of init / deinit

ID: SRS_BSW_00467

Initiator: Initialization

Date: 13.03.2012

AUTOSAR Release: 3.2 and higher

Short Description: Calling of Initialization

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

26 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Type: New

Importance: High

Description: The init / deinit services shall only be called by BswM or EcuM

Rationale: The module does not need to protect itself against untimely calls.

Use Case:

Dependencies: [SRS_BSW_00101]

Conflicts: --

Supporting Material: --

Contributes to: --

4.1.3.5 [BSW00437] NoInit--Area in RAM

Initiator: SVDO

Date: 21.11.2006

AUTOSAR Release: 2.1 and higher

Short Description: NoInit--Area in RAM

Type: New

Importance: High

Description: Memory mapping shall provide the possibility to define RAM segments which
are not to be initialized during startup (NoInit--Area).
This shall be achieved by using/modifying linker and C startup routines.

Rationale: There should be an area in the RAM, which will not be affected by a reset
(clearing all memory). This area is used as storage for persistent data which
are needed during normal operation (and that will not be stored in
EEPROM).

Use Case: Reset information is stored in RAM and has to be evaluated after reset.

Dependencies: Hardware has to support this feature (which is not always the case).

Conflicts: --

Supporting Material: --

4.1.4 Normal Operation

4.1.4.1 [BSW168] Diagnostic Interface of SW components

Initiator: BOSCH

Date: 06.05.2004

AUTOSAR Release: 1.0 and higher

Short Description: Diagnostic interface of SW components for external test

Type: Changed after review in DC

Importance: Medium

Description: If a SW component above or below RTE has the requirement to be tested by
external devices e.g. in the garage, the required function shall be accessed
via a common API from diagnostics services in Basic--SW (function, data
interface).

Rationale: Ensure less difference in handling and kind of API

Use Case: Tester in the garage requires calibration of a certain SW--component e.g.
steering angle sensor monitoring in the ESP. The interface must remain to
be ready for moving this SW--component.
This interface can also be used by XCP.

Dependencies: --

Conflicts: --

Supporting Material: --

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

27 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

4.1.4.2 [BSW00407] Function to read out published parameters

Initiator: DC

Date: 15.09.2005

AUTOSAR Release: 2.0 and higher

Short Description: Function to read out published parameters

Type: Changed, to harmonize with SWS Template

Importance: High

Description: Each BSW module shall provide a function to read out the version

information of a dedicated module implementation.

Naming convention which shall be applied:
void <Module name>_GetVersionInfo(Std_VersionInfoType

*versioninfo);

This API shall be pre--compile time configurable (see BSW00411).

The version number consists of three parts:

 Two bytes for the vendor ID

 One byte for the module ID

 Three bytes version number. The numbering shall be vendor
specific; it consists of:
The major, the minor and the patch version number of the module.

 The AUTOSAR specification version number shall not be included.

It shall be possible to call this function at any time (e.g. before the init

function is called).

Rationale: If problems are detected within an ECU during lifetime this enables the
garage to check the version of the modules.
The AUTOSAR specification version number is checked during compile time
(see requirement BSW004) and therefore not required in this API.

Use Case: With this API the garage can read out version information which is
implemented in a dedicated (erroneous) ECU to enable the decision whether
a software update might be sufficient, or not.

Dependencies: [BSW00318] Format of module version numbers
[BSW00374] Module vendor identification
[BSW00411] Get version info keyword
Exception to [BSW00406] Check module

Conflicts: --

Supporting Material: --

4.1.4.3 [BSW00423] Usage of SW--C template to describe BSW modules with

AUTOSAR Interfaces

Initiator: WP1.1.2

Date: 10.11.2005

AUTOSAR Release: 2.0 and higher

Short Description: Usage of SW--C template to describe BSW modules with AUTOSAR
Interfaces

Type: New

Importance: High

Description: BSW modules with AUTOSAR interfaces shall be describable with the
means of the SW--C Template. The BSW description template shall
therefore inherit the concepts of the SW--C Template for those BSW
modules.

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

28 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Rationale: AUTOSAR Services are located in the BSW, but have to interact with
AUTOSAR SW--Cs (above the RTE) via ports. Therefore the RTE generator
shall be able to read the input and shall be able to generate proper RTE.

Use Case: (1) SW--Cs use the service(s) related to the NvM_Read C--API of the NvM
(2) SW--Cs use services of the EcuM in order to request or release the run
mode

Dependencies: Scheduling objects “Runnable Entity” and “MainFunctions” are implemented
by different entities, i.e. RTE or (BSW) Schedule Module.
Passing interrupts between BSW modules via the RTE is still to be checked

Conflicts: --

Supporting Material: --

4.1.4.4 [BSW00424] BSW main processing function task allocation

Initiator: WP1.1.2

Date: 26.10.2006

AUTOSAR Release: 2.0 and higher

Short Description: BSW main processing function task allocation

Type: Changed

Importance: High

Description: BSW module main processing functions are not allowed to enter a wait state
because the function must be able to be allocated to a basic task.
(see extended and basic task according to AUTOSAR OS classification).

Rationale: Typically, basic tasks are more efficient then extended tasks.
Enables schedule ability analysis and predictability.

Use Case: Enabling schedule ability analysis of the ECU.

Dependencies: --

Conflicts: --

Supporting Material: --

4.1.4.5 [BSW00425] Trigger conditions for schedulable objects

Initiator: WP1.1.2

Date: 17.10.2005

AUTOSAR Release: 2.0 and higher

Short Description: Trigger conditions for schedulable objects

Type: New

Importance: High

Description: The BSW module description template shall provide means to model the
following trigger conditions of schedulable objects:

 Cyclic timings (fixed and selectable during runtime)

 Sporadic events

Rationale: The model of the timing behavior of a BSW module can serve for the
purpose of
(1) documentation
(2) integration  supports the design of the schedule module.

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: --

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

29 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

4.1.4.6 [BSW00426] Exclusive areas in BSW modules

Initiator: WP1.1.2

Date: 08.12.2005

AUTOSAR Release: 2.0 and higher

Short Description: Exclusive areas in BSW modules

Type: Changed

Importance: High

Description: Exclusive areas shall be defined and documented in the BSW module
description template.
The exclusive areas shall be defined with a name and the accessing main
functions, API services, callback functions and ISR functions.

Exclusive areas shall only protect module internal data.

Rationale: To allow priority determination for preventing simultaneous access to shared
resources.

Use Case: Stop interrupt handler from corrupting a data buffer in COM due to
simultaneous access via the RTE.

Dependencies: [BSW00434] The Schedule Module shall provide an API for exclusive areas

Conflicts: --

Supporting Material: --

4.1.4.7 [BSW00427] ISR description for BSW modules

Initiator: WP1.1.2

Date: 09.11.2005

AUTOSAR Release: 2.0 and higher

Short Description: ISR description for BSW modules

Type: New

Importance: High

Description: ISR functions shall be defined and documented in the BSW module
description template.
The ISR functions shall be defined with a name and the category according
to the AUTOSAR OS.

Rationale: Determination of locking scheme for a particular exclusive area.

Use Case: Stop interrupt handler from corrupting a data buffer in COM due to
simultaneous access via the RTE.

Dependencies: --

Conflicts: --

4.1.4.8 [BSW00428] Execution order dependencies of main processing

functions

Initiator: WP1.1.2

Date: 09.11.2005

AUTOSAR Release: 2.0 and higher

Short Description: Execution order dependencies of main processing functions

Type: New

Importance: High

Description: A BSW module shall state if its main processing function(s) has to be
executed in a specific order or sequence with respect to other BSW main
processing function(s).

Rationale: Improved integration of BSW modules.

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

30 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Use Case: Improved efficiency in the COM stack by ensuring receive and transmit call
sequence.

Dependencies: --

Conflicts: --

4.1.4.9 [BSW00429] Restricted BSW OS functionality access

Initiator: WP1.1.2

Date: 13.07.2005

AUTOSAR Release: 2.0 and higher

Short Description: Restricted BSW OS functionality access

Type: New

Importance: High

Description: BSW modules are only allowed to use OS objects and/or related OS
services according to the following table:

Rationale: Simplification of the OS integration of BSW modules.

Use Case: Integration of different BSW modules in one ECU.

Dependencies: --

Conflicts: --

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

31 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Supporting Material: --

4.1.4.10 [BSW00431] The BSW Scheduler module implements task bodies

Initiator: WP1.1.2

Date: 13.07.2005

AUTOSAR Release: 2.0 and higher

Short Description: The BSW Scheduler module implements task bodies

Type: New

Importance: High

Description: The BSW scheduler module shall be the only module which implements task
bodies in order to call main processing functions. The BSW scheduler
module will only be implemented by the (ECU) system integrator.

Rationale: (1) The single BSW modules do not know about ECU wide dependencies
and scheduling implications. Only at system integration time timing
dependencies and the proper scheduling strategy is known.
(2) The integrator of the BSW shall have proper means to guarantee a valid
schedule. Indirect and non-transparent timing dependencies between BSW
modules shall be prohibited.
(3) Eases the integration task.
(4) Allow for non-pre-emptive as well as for pre-emptive scheduling
strategies.
(5) Reduction of resources (e.g., minimize the number of used tasks).

Use Case: Example:

TASK(BSW_Scheduler_10ms) {

 ...

 Eep_MainFunction_1();

 Nm_MainFunction_1();

 ...

}

TASK(BSW_Scheduler_Communications) {

 ...

 CanIf_MainFunction_Receive();

 Com_MainFunction_Receive();

 Com_MainFunction_Transmit();

 CanIf_MainFunction_Transmit();

 ...

}

Dependencies: --

Conflicts: --

Supporting Material: [BSW00373], TIM00431

4.1.4.11 [BSW00432] Modules should have separate main processing

functions for read/receive and write/transmit data path

Initiator: WP1.1.2

Date: 17.10.2005

AUTOSAR Release: 2.0 and higher

Short Description: Modules should have separate main processing functions for read/receive
and write/transmit data path.

Type: New

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

32 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Importance: Medium

Description: Modules which propagate data up (read, receive) or down (write, transmit)
through the different layers of the BSW should have separate main
processing functions for the read/receive and write/transmit data path.

Rationale: Enables efficient scheduling of the main processing functions in a more
specific order to reduce execution time and latency.

Use Case: TASK(BSW_Scheduler_Communications) {

 ...

 CanIf_MainFunction_Receive();

 Com_MainFunction_Receive();

 Com_MainFunction_Transmit();

 CanIf_MainFunction_Transmit();

 ...

}

Dependencies: [BSW00373] Main processing function naming convention

Conflicts: --

Supporting Material: --

4.1.4.12 [BSW00433] Calling of main processing functions

Initiator: WP1.1.2

Date: 13.07.2005

AUTOSAR Release: 2.0 and higher

Short Description: Calling of main processing functions

Type: New

Importance: High

Description: Main processing functions are only allowed to be called from task bodies
provided by the BSW Scheduler.

Rationale: Indirect and non-transparent timing dependencies between BSW modules
shall be prohibited.

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: --

4.1.4.13 [BSW00434] The Schedule Module shall provide an API for

exclusive areas

Initiator: WP1.1.2

Date: 20.10.2005

AUTOSAR Release: 2.0 and higher

Short Description: The Schedule Module shall provide an API for exclusive areas

Type: New

Importance: High

Description: The Schedule Module shall provide a (generic) API to enter or exit exclusive
areas. The Schedule Module shall implement the proper data consistency
strategy.

This API shall be used by the BSW modules to implement exclusive areas.

Rationale: (1) Decouple module implementation from applying data consistency
mechanisms
(2) Enable to choose the proper ECU--wide data consistency mechanism (by

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

33 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

the BSW/ECU/System integrator)

Use Case: To be added after definition of the API.

Dependencies: --

Conflicts: --

Supporting Material: --

4.1.5 Shutdown Operation

4.1.5.1 [BSW00336] Shutdown interface

Initiator: DC

Date: 17.06.2004

AUTOSAR Release: 1.0 and higher

Short Description: Shutdown interface.

Type: Changed

Importance: High

Description: If a Basic SW module needs to shutdown functionality (e.g. release
hardware resources), this shall be done in a separate API function.

Rationale: Interface to ECU state manager

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: --

4.1.6 Fault Operation and Error Detection

4.1.6.1 [BSW00337] Classification of errors

Initiator: WP1.1.2

Date: 17.06.2004

AUTOSAR Release: 1.0 and higher

Short Description: Classification of errors.

Type: New

Importance: High

Description: All AUTOSAR Basic Software Modules shall distinguish between the
following two types of errors:

 errors that can/shall only occur during development and where
detection and/or reporting can be statically configured (on/off)

 errors that are expected to occur also in production code
For switching the configuration the Standard Types STD_ON and STD_OFF
shall be used.

Rationale: Extended error detection for debugging, basic error detection for
deployment.

Use Case: The EEPROM driver provides internal checking of API parameters which is
only activated for the first software integration test (‘development build’) and
disabled afterwards (‘deployment build’).

Dependencies: [BSW00350] Development error detection keyword

Conflicts: --

Supporting Material: --

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

34 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

4.1.6.2 [BSW00338] Detection and Reporting of development errors

Initiator: WP1.1.2

Date: 17.09.2004

AUTOSAR Release: 1.0 and higher

Short Description: Detection and Reporting of development errors

Type: Changed (only one preprocessor switch)

Importance: High

Description: All AUTOSAR Basic Software Modules shall report detected development
errors to the Development Error Tracer (DET).
The detection and reporting shall be statically configurable (ON/OFF) per
module with one single preprocessor switch.
For switching the configuration the Standard Types STD_ON and STD_OFF
shall be used..

Rationale: Ease of debugging for development

Use Case: For the first SW integration, the extended error detection and reporting is
enabled for all modules.
Detected errors like

 EEPROM address access out of valid range

 Sending on non--existent CAN channel

 API service called without former module initialization
are reported to the Development Error Tracer. The calls to the API function
of the DET are counted and logged for later evaluation.
After successful software integration, the reporting is disabled.

Dependencies: [BSW00337] Classification of errors
[BSW00350] Naming convention of development error detection keyword

Conflicts: --

Supporting Material: --

4.1.6.3 [BSW00369] Do not return development error codes via API

Initiator: BMW

Date: 26.10.2005

AUTOSAR Release: 1.0 and higher

Short Description: Do not return development error codes via API

Type: Changed

Importance: High

Description: All AUTOSAR Basic Software Modules shall not return specific development
error codes via the API In case of a detected development error the error
shall only be reported to the DET. If the API-- function which detected the

error has a return type it shall return E_NOT_OK.

Rationale: The production version of a module shall have a limited number of return
values.

Use Case: Example 1:

API service with standard return values (E_OK/E_NOT_OK):

If a development error is detected within this API call, the API returns

E_NOT_OK.

Dependencies: [BSW00337] Classification of errors
[BSW00327] Error values naming convention
[BSW00357] Standard API return type

Conflicts: --

Supporting Material: --

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

35 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

4.1.6.4 [BSW00339] Reporting of production relevant error status

Initiator: WP1.1.2

Date: 08.12.2006

AUTOSAR Release: 1.0 and higher

Short Description: Reporting of production relevant error status

Type: Changed

Importance: High

Description: All AUTOSAR Basic Software Modules shall report error states that are
relevant for diagnostics and/or application to the DEM (Diagnostic Event
Manager).

For reporting an error state the following BSW specific interface of DEM shall
be called
void Dem_ReportErrorStatus(

 Dem_EventIdType EventId,

 Dem_EventStatusType EventStatus

)

If an error event occurred EventStatus shall be equal to:

‘DEM_EVENT_STATUS_FAILED’.

If no error event occurred EventStatus shall be equal to:

‘DEM_EVENT_STATUS_PASSED’.

State information could be reported either by the change of state or when
checked (event or cyclic) depending upon the configuration of the error
event. Checks are not required to be cyclically or in a fixed frequency.

Rationale: Central configuration and handling of error events instead of spreading the
handling all over the Basic Software.

Use Case: Error events like

 NVRAM data block checksum error

 EEPROM cell write failure

 SPI device failure
are reported to the DEM.

Dependencies: [BSW00337] Classification of errors
[BSW00327] Error values naming convention
[BSW00386] Configuration for detecting an error

Conflicts: --

Supporting Material: --

4.1.6.5 [BSW00422] Pre--de--bouncing of production relevant error status

Initiator: WP1.1.2

Date: 08.12.2006

AUTOSAR Release: 2.0 and higher

Short Description: Pre--de--bouncing of production relevant error status

Type: Changed

Importance: High

Description: Pre--de--bouncing of error status information reported via

Dem_ReportErrorStatus is done within the DEM.

Pre--de--bouncing is handled inside the Diagnostic Event Manager using
AUTOSAR predefined generic signal de--bouncing libraries.
The Diagnostic Event Manager shall define the interface to the libraries. By
defining the interface it is possible for the user to implement further
extensions for more complex pre--de--bouncing algorithms.

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

36 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Rationale: Central configuration and handling of error events instead of spreading the
handling all over the Basic Software.

Use Case: This is only one of several possible use cases (error detected and notified):

The timer function shall be provided (in this example) in the pre--de--
bouncing library of the Diagnostic Event Manager.

Dependencies: [BSW00339] Reporting of production relevant error status

Conflicts: --

Supporting Material: --

4.1.6.6 [BSW00417] Reporting of Error Events by Non--Basic Software

Initiator: Error Handling

Date: 11.10.2005

AUTOSAR Release: 2.0 and higher

Short Description: Reporting of Error Events by Non--Basic Software

Type: New

Importance: High

Description: Software which is not part of the Basic Software (e.g. Application SW--C)
shall report error events only after the DEM is fully operational.

Rationale: It is only possible to store errors in error memory after the DEM is fully
operational. To simplify error handling within DEM (and to gain efficiency)
this requirement is needed.

Use Case: Reporting of non plausible sensor values.

Dependencies: --

Conflicts: --

Supporting Material: --

4.1.6.7 [BSW00323] API parameter checking

Initiator: WP1.1.2

Date: 16.06.2004

AUTOSAR Release: 1.0 and higher

Short Description: API parameter checking.

Type: New

Importance: High

Description: All AUTOSAR Basic Software Modules shall check passed API parameters
for validity.
This checking shall be statically configurable (on/off, via the global
configuration switch for development error detection, see BSW00350) for
those errors that only can occur during development.
For switching the configuration the Standard Types STD_ON and STD_OFF

Dem
Main Function

0 20 40 60 80 100

Dem
ReportError

BSW Module
A

Error Event

Dem
LibraryTimer

.

Starts
Timer

Error Event treated as
“Real“ Error

t

P: DEM_PASSED
F: DEM_FAILED

P P F F F

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

37 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

shall be used.

Rationale: Ease of debugging for development, efficient code for deployment.

Use Case: The EEPROM driver provides internal checking of API parameters which is
only activated for the first software integration test (‘development build’) and
disabled afterwards (‘deployment build’).

Dependencies: [BSW00338] Detection and Reporting of development errors
[BSW00350] Development error detection keyword
[BSW00327] Error values naming convention

Conflicts: --

Supporting Material: --

4.1.6.8 [BSW004] Version check

Initiator: BMW

Date: 21.11.2006

AUTOSAR Release: 1.0 and higher

Short Description: Version check

Type: Changed

Importance: High

Description: All Basic SW Modules shall perform a preprocessor check of the versions of
all included files.
The integration of incompatible files shall be avoided.
The version numbers of all modules shall be listed in the Basic Software
Description Template. During configuration a tool shall check whether the
version numbers of all integrated modules belong to the same AUTOSAR
minor release (same baseline). If not an error shall be reported.
For the module internal c and h files:

 <MODULENAME>_SW_MAJOR_VERSION

 <MODULENAME>_SW_MINOR_VERSION

 <MODULENAME>_AR_MAJOR_VERSION

 <MODULENAME>_AR_MINOR_VERSION

 <MODULENAME>_AR_PATCH_VERSION
shall be identical.

Rationale: Compatibility enforcement, error avoidance, ease of integration

Use Case: For the update of Basic Software Modules, version conflicts shall be
detected.
Example:

 For included files from other modules, the AUTOSAR-- MAJOR and
MINOR Version shall be verified. I.e. Can.c includes Dem.h: Only
MAJOR and MINOR shall be verified.

 For included files from the same module all the version numbers
shall be verified.

Dependencies: [BSW003] Version identification
[BSW00318] Format of module version numbers
[BSW00402] Published information

Conflicts: --

Supporting Material: The term AUTOSAR baseline is defined in [ARReleaseManagement].

4.1.6.9 [BSW00409] Header files for production code error IDs

Initiator: WP1.1.2

Date: 15.09.2005

AUTOSAR Release: 2.0 and higher

Short Description: Header files for production code error IDs

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

38 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Type: New

Importance: High

Description: All production--code--error--ID symbols shall be defined in the file Dem.h or
any other DEM header file which shall be included by Dem.h.
Each Basic SW Module shall include the file Dem.h to retrieve the
production--code--error--ID symbols and their values.

Rationale: The error codes shall be defined in a central file, to simplify the include
structure of the DEM.

Use Case: Example for source code integration (for Eep):
Dem.h specifies the production code error ID:
#define Dem_EEP_E_COM_FAILURE ((Dem_EventIDType) 14)

Eep.c:
#include “Dem.h”

..

Dem_ReportErrorStatus(Dem_EEP_E_COM_FAILURE, DEM_FAILED

);

Example for object code integration (for Eep):
Dem.h specifies the production code error ID:
#define Dem_EEP_E_COM_FAILURE (14U)

Eep_PBcfg.c, which needs to be compiled and linked with the object code
delivery:
#include “Dem.h”

#include “Eep_cfg.h”

..

const Dem_EventIDType Eep_E_Com_Failure =

(Dem_EventIDType) Dem_EEP_E_COM_FAILURE;

..

Eep_cfg.h, which needs to be compiled and linked with the object code
delivery:
extern const Dem_EventIDType Eep_E_Com_Failure;

Eep.c, which is delivered as object file:
#include “Dem.h”

#include “Eep_cfg.h”

..

Dem_ReportErrorStatus(Eep_E_Com_Failure, DEM_FAILED);

Dependencies: --

Conflicts: --

Supporting Material: --

4.1.6.10 [BSW00385] List possible error notifications

Initiator: WP1.1.2

Date: 16.11.2005

AUTOSAR Release: 2.0 and higher

Short Description: List possible error notifications

Type: Changed

Importance: High

Description: The BSW shall specify a list which production code errors and development
errors may occur.

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

39 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

This list must be mapped into the code (i.e. the respective function calls to
the error notifications must be in the code).

Rationale: Support the configuration of the DET, DEM, FIM.

Use Case: --

Dependencies: [BSW00338] Detection and Reporting of development errors
[BSW00339] Reporting of production relevant error status

Conflicts: --

Supporting Material: --

4.1.6.11 [BSW00386] Configuration for detecting an error

Initiator: WP1.1.2

Date: 21.10.2005

AUTOSAR Release: 2.0 and higher

Short Description: Configuration for detecting an error

Type: Changed (Telcon)

Importance: High

Description: The BSW shall specify the configuration for detecting an error. This
configuration shall describe criteria and limits how the error is detected and
possibly reset. This is applicable for production code errors as well as for
development errors.

Rationale: --

Use Case: a) configuration of debounce counters (counting up/down), configuration of
limits of these debounce counters etc.,
b) specify the library function which is to be used to debounce.
c) specify whether the Diagnostic modules may request to delete errors. If
so, specify how and when errors may be reset

Dependencies: --

Conflicts: --

Supporting Material: --

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

40 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

4.2 Non--functional Requirements

4.2.1 Software Architecture Requirements

4.2.1.1 [BSW161] Microcontroller abstraction

Initiator: BMW

Date: 10.02.2004

AUTOSAR Release: 1.0 and higher

Short Description: Microcontroller abstraction

Type: New

Importance: High

Description: The AUTOSAR Basic Software shall provide a microcontroller abstraction
layer which provides a standardized interface to higher software layers.

Rationale: Portability and reusability.
Encapsulate implementation details of a specific microcontroller from higher
software layers.

Use Case: Exchange microcontroller ST10 with STAR12 without affecting higher
software layers interfacing with the microcontroller abstraction layer.

Dependencies: --

Conflicts: --

Supporting Material: [DOC_LAYERED_ARCH]

4.2.1.2 [BSW162] ECU layout abstraction

Initiator: BMW

Date: 10.02.2004

AUTOSAR Release: 1.0 and higher

Short Description: ECU layout abstraction

Type: Changed after review in VCC (06.05.2004)

Importance: High

Description: The AUTOSAR Basic Software shall provide a hardware abstraction layer
which provides a stable interface to higher software layers which is
independent from the ECU hardware layout.

Rationale: Keep the impact of changes in the ECU hardware layout as small as
possible.
Portability and reusability of modules of higher software layers.
Flexibility for changes in the ECU hardware layout.

Use Case:  Change the hardware layout of the ECU (e.g. PortA.5  PortD.7)
without affecting software layers interfacing with the hardware
abstraction layer.

 Use the NVRAM manager with an internal and/or external EEPROM.

 Provide uniform access to analog signals using the on--chip ADC or an
external ADC ASIC.

Dependencies: --

Conflicts: --

Supporting Material: [DOC_LAYERED_ARCH]

4.2.1.3 [BSW005] No hard coded horizontal interfaces within MCAL

Initiator: BMW

Date: 05.08.2004

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

41 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

AUTOSAR Release: 1.0 and higher

Short Description: No hard coded horizontal interfaces within MCAL

Type: Changed (because of SPAL objection)

Importance: High

Description: Modules of the µC Abstraction Layer (MCAL) may not have hard coded
horizontal interfaces.
Necessary interactions (e.g. GPT triggered ADC conversion) shall be
implemented by using statically configurable notifications (callbacks).

Rationale: Avoidance of strong coupling, ease of integration, better structure

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: --

4.2.1.4 [BSW00415] User dependent include files

Initiator: WP1.1.2

Date: 08.11.2005

AUTOSAR Release: 2.0 and higher

Short Description: User dependent include files

Type: New

Importance: Low

Description: Interfaces which are provided exclusively for one module should be
separated into a dedicated header file.

The format of the file name shall be: <ModuleName>_<User>.h

Comment:
Common definitions for different interfaces (e.g. types) shall be defined in a
common header file (e.g. <Module Name>.h).

Rationale: Encapsulate an interface between modules in an include file

Use Case: Example: CanIf_Pdur.h, CanIf_NM.h

Dependencies: [BSW00346] Basic set of module files.

Conflicts: --

Supporting Material: < Module name > shall be derived from WP1.1.2 “List of Basic Software
Modules”, [DOC_MOD_LIST] (2…8 characters). <User> shall be the user
module from the same list.

4.2.2 Software Integration Requirements

4.2.2.1 [BSW164] Implementation of interrupt service routines

Initiator: BMW

Date: 10.02.2004

AUTOSAR Release: 1.0 and higher

Short Description: Implementation of interrupt service routines

Type: New

Importance: High

Description: Only the Operating System, complex drivers and modules of the
microcontroller abstraction layer are allowed to implement interrupt service
routines.

Rationale: Portability and reusability.
The implementation of interrupt service routines is highly microcontroller

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

42 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

dependent.

Use Case: Exchange microcontroller ST10 with STAR12 without affecting higher
software layers.

Dependencies: --

Conflicts: --

Supporting Material: --

4.2.2.2 [BSW00325] Runtime of interrupt service routines

Initiator: CAS

Date: 18.03.2005

AUTOSAR Release: 1.0 and higher

Short Description: Runtime of interrupt service routines

Type: Changed

Importance: High

Description: The runtime of interrupt service routines and functions that are running in
interrupt context should be kept short.

Where an interrupt service routine is likely to take a long time, an operating
system task should be used instead.

Rationale: Real time behavior, avoid blocking of the whole system.

Use Case: An ISR calls a callback which is calling other callbacks.

Dependencies: [BSW00333] Documentation of callback function context

Conflicts: --

Supporting Material: --

4.2.2.3 [BSW00326] Transition from ISRs to OS tasks

Initiator: WP1.1.2

Date: 25.09.2007

AUTOSAR Release: 1.0 and higher

Short Description: Transition from ISRs to OS tasks

Type: Changed

Importance: High

Description: If a transition from an interrupt service routine to an operating system task is
needed, it shall take place at the lowest level possible of the Basic Software.

In the case of CAT2 ISRs this shall be at the latest in the RTE.

In the case of CAT1 ISRs this shall be at the latest in the Interface layer.

This means: no interrupts on application level.

Rationale: Real time behavior, avoid blocking of the whole system.

Use Case: Negative example:
An interrupt in a CAN driver calls nested functions up to the application layer.
Up there, nobody knows that he is running in interrupt context.

Dependencies: [BSW00344] Configuration at Runtime
[BSW00439] Declaration of interrupt handlers and ISRs

Conflicts: --

Supporting Material: --

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

43 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

4.2.2.4 [BSW00342] Usage of source code and object code

Initiator: WP1.1.2

Date: 24.11.2005

AUTOSAR Release: 1.0 and higher

Short Description: Usage of source code and object code

Type: Changed

Importance: High

Description: It shall be possible to create an AUTOSAR ECU out of modules provided as
source code and modules provided as object code, even mixed.

Rationale: Allow both:
 IP protection and guaranteed test coverage : object code

 High efficiency and configurability at ECU configuration time (by
integrator) : source code

Use Case: Some simple drivers could be provided as object code. More complex and
configurable modules could be provided as source code or even generated
code.

Dependencies: [BSW00344] Configuration at Runtime

Conflicts: --

Supporting Material: --

4.2.2.5 [BSW00343] Specification and configuration of time

Initiator: WP1.1.2

Date: 01.07.2004

AUTOSAR Release: 1.0 and higher

Short Description: Specification and configuration of time

Type: New

Importance: High

Description: The unit of time for specification and configuration of Basic SW modules
shall be a physical time unit, not ticks.

Rationale: The duration of a "tick" varies from system to system.

Use Case: The software specification defines the unit (e.g. µs, s), for software
configuration these units are used.

Dependencies: --

Conflicts: --

Supporting Material: --

4.2.2.6 [BSW160] Human--readable configuration data

Initiator: Volvo

Date: 01.03.2004

AUTOSAR Release: 1.0 and higher

Short Description: Configuration files of AUTOSAR Basic SW module shall be readable for
human beings

Type: New

Importance: High

Description: Files holding configuration data for AUTOSAR Basic SW modules shall have
a format that is readable and understandable by human beings.

Rationale: Plausibility checking, comparison of different versions of configuration data.

Use Case: XML is readable.

Dependencies: --

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

44 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Conflicts: --

Supporting Material: --

4.2.3 Software Module Design Requirements

4.2.3.1 Software quality

4.2.3.1.1 [BSW007] HIS MISRA C

Initiator: BMW

Date: 27.10.2005

AUTOSAR Release: 1.0 and higher

Short Description: All Basic SW Modules written in C language shall conform to the MISRA C
2004 Standard.

Type: Changed

Importance: High

Description: MISRA C describes programming rules for the C programming language and
a process to implement and follow these rules.

Only in technically reasonable, exceptional cases MISRA violations are
permissible. Such violations against MISRA rules shall be clearly identified
and documented within comments in the C source code (including rationale
why MISRA rule is violated).

The comment shall be placed right above the line of code which causes the
violation and have the following syntax:

/* MISRA RULE XX VIOLATION: This the reason why the

MISRA rule could not be followed in this special case*/

Rationale: Portability, maintainability, error avoidance, safety

Use Case: Software for safety relevant systems

Dependencies: --

Conflicts: --

Supporting Material: --

4.2.3.2 Naming conventions

4.2.3.2.1 [BSW00300] Module naming convention

Initiator: BMW

Date: 11.05.2004

AUTOSAR Release: 1.0 and higher

Short Description: Module naming convention

Type: New

Importance: High

Description: All AUTOSAR Basic Software Modules shall be identified by an
unambiguous name. The module name is always part of related files.

Convention for module related files:

- <Module name>_*.*
- Spelling of module name: First letter of each word upper case,

consecutive letters lower case
- Module name: 2..8 letters, derived from WP1.1.2 SW Module List
- Wildcard replacement according to module related file set (either

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

45 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

basic and recommended)

Rationale: The module name serves as an identifier and classification mechanism in
order to group module related files.

Use Case: Example: Eep.c, Eep.h, Eep_Cfg.h

Dependencies: --

Conflicts: --

Supporting Material: WP1.1.2 SW Module List (module short names)

1

4.2.3.2.2 [BSW00413] Accessing instances of BSW modules

Initiator: WP1.1.2

Date: 08.12.2005

AUTOSAR Release: 2.0 and higher

Short Description: Accessing instances of BSW modules

Type: Changed

Importance: Medium

Description: If instances of BSW modules are characterized by:
- same vendor and
- same functionality and
- same hardware device
they shall be accessed index based.

Rationale: --

Use Case: Example:
MyFunction(uint8 MyIdx, MyType MyParameters, ...);

Or optimised for sourcecode delivery:
 #define MyInstance(index, p) Function##index (p)

Dependencies: [BSW00347] Naming separation of drivers

Conflicts: --

Supporting Material: --

4.2.3.2.3 [BSW00347] Naming separation of different instances of BSW drivers

Initiator: WP1.1.2

Date: 26.10.2006

AUTOSAR Release: 1.0 and higher

Short Description: Naming separation of different instances of BSW drivers

Type: Changed

Importance: High

Description: Driver modules shall be named according to the following rules (only for
implementation, not for the software specification):

 First the module name has to be listed:
<Module short name>

 After that the vendor Id defined in the AUTOSAR vendor list has to be
given
<Vendor Id>

 At last a vendor specific name follows
<Vendor specific name>

 All parts shall be separated by underscores “_”

 This naming extension applies to the following externally visible
elements of the module:

o File names
o API names
o Published parameters

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

46 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Rationale: Avoidance of name clashes

Use Case: Examples:

 EEPROM (LD): Eep_21_LDExtEepDriver.c

o API: Eep_21_LDExtInit()

 Published parameters: EEP_21_LDEXT_SW_MAJOR_VERSION

Dependencies: --

Conflicts: --

Supporting Material: [DOC_MOD_LIST] List of Basic Software Modules (module short names)

4.2.3.2.4 [BSW00441] Enumeration literals and #define naming convention

Initiator: WPII-1.1.1

Date: 26.10.2007

AUTOSAR Release: 3.0 and higher

Short Description: Enumeration literals and #define naming convention

Type: New

Importance: High

Description: All AUTOSAR Basic Software Modules shall label enumeration literals and
#defines according to the following scheme:

 Composition: <Module short name>_<Specific name>

 <Module short name> shall be written in UPPERCASE

 <Specific name> shall be written in UPPERCASE

 <Module short name> and <Specific name> shall be separated by
underscore

 If <Specific name> consists of several words, they shall be
separated by underscore

The # defines E_OK and E_NOT_OK are exceptions to this.
See [BSW00348] Standard type header.

Rationale: Enhance readability and unique classification of enumeration literals and
#defines identifiers.

Use Case: Example #define:
#define EEP_PARAM_CONFIG

#define EEP_SIZE

Example enumeration literals:

typedef enum

{

 EEP_DRA_CONFIG,

 EEP_ARE,

 EEP_EV

} Eep_NotificationType;

Dependencies: [BSW00331] Separation of error and status values
[BSW00327] Error values naming convention
[BSW00335] Status values naming convention

Conflicts: --

Supporting Material: --

4.2.3.2.5 [BSW00305] Data types naming convention

Initiator: BMW

Date: 26.10.2007

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

47 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

AUTOSAR Release: 1.0 and higher

Short Description: Data types naming convention

Type: Changed

Importance: High

Description: All AUTOSAR Basic Software Modules shall label data types according to
the following scheme:

 Composition of type: <Module name>_<Type name>Type

 Only one underscore between module name and type name

 If < Type name > consists of several words, they shall be written in
UpperCamelCase

Note:
Basic AUTOSAR types ([BSW00304]) need not support the scheme defined
here.

Rationale: Enhance readability and unique classification of data type identifiers.

Use Case: Examples:

 Eep_LengthType

 Dio_SignalType

 Nm_StateType

Dependencies: --

Conflicts: --

Supporting Material: BMW Standard Core Programming Guidelines

4.2.3.2.6 [BSW00307] Global variables naming convention

Initiator: WP1.1.2

Date: 19.05.2004

AUTOSAR Release: 1.0 and higher

Short Description: Global variables naming convention

Type: New

Importance: High

Description:  All AUTOSAR Basic Software Modules shall label global variables
according to the following scheme:

 Composition of name: <Module name>_<Variable name>

 Only one underscore between module name and variable name

 Spelling of name: First letter of each word upper case, consecutive
letters lower case

Rationale: Enhance readability and unique classification of global variables.

Use Case: Examples:

 Can_MessageBuffer[CAN_BUFFER_LENGTH]

 Nm_RingData[NM_RINGDATA_LENGTH]

Dependencies: --

Conflicts: --

Supporting Material: --

4.2.3.2.7 [BSW00310] API naming convention

Initiator: WP1.1.2

Date: 16.11.2005

AUTOSAR Release: 1.0 and higher

Short Description: API naming convention

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

48 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Type: Changed (Use Case adapted)

Importance: High

Description: All AUTOSAR Basic Software Modules shall implement an API based on the
following naming rules:

- Composition of API: <Module name>_ServiceName()
- Module name: 2..8 letters, derived from WP1.1.2 SW Module List
- Only one underscore between module name and service name
- Spelling of API: First letter of each word upper case, consecutive

letters lower case

Rationale: Avoidance of name clashes, uniform AUTOSAR API;
The API shows to which module it belongs

Use Case:  Can_TransmitFrame()

 Nm_RequestBusCommunication()

 Adc_Init()

 Eep_Write()

 Nvm_GetState()

Dependencies: --

Conflicts: --

Supporting Material: WP1.1.2 SW Module List (module short names)

4.2.3.2.8 [BSW00373] Main processing function naming convention

Initiator: WP4.2.2.1.12

Date: 15.09.2005

AUTOSAR Release: 1.0 and higher

Short Description: Main processing function naming convention

Type: Changed, according to change request of FlexRay WP.

Importance: Medium

Description: The main processing function of each AUTOSAR Basic Software Module
shall be named according to the following rule:

<Module name>_MainFunction_<module specific extension> ()

Module specific extension shall be used to distinguish between multiple main
processing functions of one module (e.g. Cluster index, Rx /Tx …). If only
one main processing function exists in one module no module specific
extension is required.

Main processing functions shall have no parameters and no return value.

Main processing functions shall not be re--entrant.

Rationale: Many modules have one or more functions that have to be called cyclically
(e.g. within an OS Task) and that do the main work of the module. These
shall have unique names.

Use Case: Main processing function of EEPROM driver:
void Eep_MainFunction(void)

Main processing functions of FlexRay driver:
void Fr_MainFunction_TxClst1(void)

void Fr_MainFunction_TxClst2(void)

void Fr_MainFunction_RxClst1(void)

void Fr_MainFunction_RxClst2(void)

Dependencies: [BSW00376] Return type and parameters of main functions

Conflicts: --

Supporting Material: <Module name> shall be derived from WP1.1.2 “List of Basic Software
Modules”, [DOC_MOD_LIST] (2…8 charactersWP1.1.2 SW Module List

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

49 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

(module short names))

4.2.3.2.9 [BSW00327] Error values naming convention

Initiator: WP4.2.2.1.12

Date: 07.05.2004

AUTOSAR Release: 1.0 and higher

Short Description: Error values naming convention

Type: New

Importance: High

Description: All AUTOSAR Basic Software Modules shall apply the following naming
rules for all error values:

- Error values shall have only CAPITAL LETTERS
- Naming convention: <MODULENAME>_E_<ERRORNAME>
- If <ERRORNAME> consists of several words, they shall be

separated by underscores

Rationale: Avoidance of name clashes, uniform AUTOSAR error values;
The error shows to which module it belongs.

Use Case: The EEPROM driver has the following error values:

 EEP_E_BUSY

 EEP_E_PARAM_ADDRESS

 EEP_E_PARAM_LENGTH

 EEP_E_WRITE_FAILED

Dependencies: [BSW00331] Separation of error and status values
[BSW00369] Do not return development error codes via API

Conflicts: --

Supporting Material: < MODULENAME > shall be derived from WP1.1.2 “List of Basic Software
Modules”, [DOC_MOD_LIST] (2…8 characters)

4.2.3.2.10 [BSW00335] Status values naming convention

Initiator: WP4.2.2.1.12

Date: 07.05.2004

AUTOSAR Release: 1.0 and higher

Short Description: Status values naming convention

Type: New

Importance: High

Description: All AUTOSAR Basic Software Modules shall apply the following naming
rules for status values that are visible outside of the module:

- Status values shall have only CAPITAL LETTERS
- Naming convention: <MODULENAME>_<STATUSNAME>
- If <STATUSNAME> consists of several words, they shall be

separated by underscores

Rationale: Avoidance of name clashes, uniform AUTOSAR status values;
The status value shows to which module it belongs.

Use Case: The Eeprom driver has the following status values:

 EEP_UNINIT

 EEP_IDLE

 EEP_BUSY

Dependencies: [BSW00331] Separation of error and status values

Conflicts: --

Supporting Material: < MODULENAME > shall be derived from WP1.1.2 “List of Basic Software
Modules”, [DOC_MOD_LIST] (2…8 characters)

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

50 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

4.2.3.2.11 [BSW00350] Development error detection keyword

Initiator: BMW

Date: 16.09.2005

AUTOSAR Release: 1.0 and higher

Short Description: Development error detection keyword

Type: Changed, to match SWS template

Importance: High

Description: All AUTOSAR Basic Software Modules shall apply the following naming rule
for enabling/disabling the detection and reporting of development errors:

<MODULENAME>_DEV_ERROR_DETECT

Rationale: Provide module wide debug instrumentation facilities. Each defined keyword
has to be properly documented.

Use Case: Example:

In Eep_Cfg.h:
#define EEP_DEV_ERROR_DETECT STD_ON /* detection module

wide enabled */

…

In source Eep.c:
#include "Eep_Cfg.h"

…

#if (EEP_DEV_ERROR_DETECT == STD_ON)

 ..

 .. development errors to be detected

 ..

#endif /* EEP_DEV_ERROR_DETECT */

Dependencies: [BSW00337] Classification of errors
[BSW00338] Detection and Reporting of development errors
[BSW00345] Configuration at Compile time

Conflicts: --

Supporting Material: < MODULENAME > shall be derived from WP1.1.2 “List of Basic Software
Modules”, [DOC_MOD_LIST] (2…8 characters)

4.2.3.2.12 [BSW00408] Configuration parameter naming convention

Initiator: WP1.1.2

Date: 26.05.2010

AUTOSAR Release: 3.1 and higher

Short Description: Configuration parameter naming convention

Type: Changed

Importance: Medium

Description: All AUTOSAR Basic Software Modules configuration parameters shall be
named according to the following naming rules:

- Naming convention: <ModuleShortName><ParameterName>

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

51 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

< ModuleShortName > is the prefix derived from
AUTOSAR_WP1.1.2_BasicSoftwareModules.xls.

< ParameterName > may consist of several words which may or may not be
separated by underscore.

The configuration parameter name can either be in UpperCamelCase or
Uppercase

Rationale: Avoidance of name clashes, uniform AUTOSAR configuration naming.

Use Case: Example: CanIfTxConfirmation

 PDUR_E_INIT_FAILED

Dependencies: --

Conflicts: --

Supporting Material: < ModuleShortName > shall be derived from WP1.1.2 “List of Basic Software
Modules”, [DOC_MOD_LIST] (2…8 characters)

4.2.3.2.13 [BSW00410] Compiler switches shall have defined values

Initiator: WP1.1.2

Date: 15.09.2005

AUTOSAR Release: 2.0 and higher

Short Description: Compiler switches shall have defined values

Type: New

Importance: High

Description: Compiler switches shall be compared with defined values. Simple checks if a
compiler switch is defined shall not be used.
In general “STD_ON” and “STD_OFF” shall be used to switch functionality
on or off. These symbols and their values are defined in Std_Types.h

Rationale: C--Language allows asking for defined symbols. This shall be avoided.

Use Case: Example:

Do :
#if (EEP_DEV_ERROR_DETECT == STD_ON)

..

Don’t:
#ifdef EEP_DEV_ERROR_DETECT

..

Dependencies: --

Conflicts: --

Supporting Material: --

4.2.3.2.14 [BSW00411] Get version info keyword

Initiator: WP1.1.2

Date: 16.09.2005

AUTOSAR Release: 2.0 and higher

Short Description: Get version info keyword

Type: New

Importance: High

Description: All AUTOSAR Basic Software Modules shall apply the following naming rule
for enabling/disabling the existence of the API.
<Module name>_GetVersionInfo(…) (see BSW00407):

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

52 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

<MODULENAME>_VERSION_INFO_API

Rationale: Enable/Disable the reading out of version information

Use Case: Example:

In Eep_Cfg.h:
#define EEP_VERSION_INFO_API STD_ON /*API enabled */

…

Dependencies: [BSW00407] Function to read out published parameters

Conflicts: --

Supporting Material: < MODULENAME > shall be derived from WP1.1.2 “List of Basic Software
Modules”, [DOC_MOD_LIST] (2…8 characters)

4.2.3.2.15 [BSW00463] Callout function prototype generation

Initiator: WP1.1.1

Date: 20.12.2010

AUTOSAR Release: 3.2.1 and higher

Short Description: Naming convention of callout prototypes

Type: New

Importance: High

Description: Each callout function shall be mapped to its own memory
section and memory class. These memory classes will then be mapped to
the actually implemented memory classes at integration time.

The following naming convention shall be used:

--- Start section definition: ---

#define MSN_START_SEC_CBN_CODE

--- Stop section definition: ---

#define MSN_STOP_SEC_CBN_CODE

--- Function prototype definition: ---

FUNC(void, MSN_CBN_CODE) MSN_Cbn (void);

Where:
 MSN: Module Short Name as officially defined in AUTOSAR (see
supporting material).

 CBN: Call Back Name, which shall have the same spelling of the
Callback name including module reference but using only capital letters.

 Cbn: Callback name using the conventional Camel Case notation for
API names.

Rationale: The memory segment used for a callout is not known to the
module developer. The integrator needs the freedom to map callouts
independently from the module's design.

Use Case: In order to ensure uniqueness, it is recommended to
use the function´s name to derive the name of the memory section and the
name of the memory class.

For example:

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

53 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

#define COM_START_SEC_COM_SOMECALLOUT_CODE
#include “MemMap.h”
FUNC(void, COM_SOMECALLOUT_CODE) Com_SomeCallout(void);
#define COM_STOP_SEC_COM_SOMECALLOUT_CODE
#include “MemMap.h”

Dependencies: --

Conflicts: --

Supporting Material: “List of Basic Software Modules”, UID [150]

4.2.3.3 Module file structure

4.2.3.3.1 [BSW00346] Basic set of module files

Initiator: BMW

Date: 08.12.2006

AUTOSAR Release: 1.0 and higher

Short Description: Basic set of module files

Type: Changed.

Importance: High

Description: All AUTOSAR Basic Software Modules shall provide at least the following
files:

1. Module header file: <Module name>.h
2. Module callback header file: <Module name>_Cbk.h

if callbacks are provided to other modules
3. Module source file: <Module name>.c
4. Module configuration file

if pre--compile const are used: <Module name>_Cfg.c
5. Module configuration file: <Module name>_Cfg.h

for pre--compile defines configuration.
6. Module configuration parameters: <Module name>_Lcfg.c

if link time configuration parameters are used
7. Module configuration parameters: <Module name>_PBcfg.c

if post build time configuration parameters are used.
If a module is present several times in one ECU BSW00347 shall be applied
for the files as well.

Rationale: Source code and configuration are strictly separated. User defined
configurations will not imply the change of the original source code.

Use Case: Eep.c, Eep.h:
Code not to be modified by user.
Eep_Cfg.h:
Pre--compile time configuration parameters (e.g. preprocessor switches)

Dependencies: [BSW158] Separation of configuration from implementation
[BSW00345] Configuration at Compile time
[BSW00347] Naming separation of different instances of BSW drivers
[BSW00370] Separation of callback interface from API
[BSW00314] Separation of interrupt frames and service routines
[BSW00412] Separate H--File for configuration parameters
[BSW00419] Separate C--Files for pre--compile time configuration
parameters

Conflicts: --

Supporting Material: < Module name > shall be derived from WP1.1.2 “List of Basic Software
Modules”, [DOC_MOD_LIST] (2…8 characters)

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

54 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

4.2.3.3.2 [BSW158] Separation of configuration from implementation

Initiator: BMW

Date: 16.09.2005

AUTOSAR Release: 1.0 and higher

Short Description: Separation of configuration from implementation.

Type: Changed to harmonize with BSW00346

Importance: High

Description: All modules of the AUTOSAR Basic Software shall strictly separate
configuration from implementation.

Rationale: Easy and clear configuration.

Use Case: The file Adc_Cfg.h contains the pre--compile time configurable parameters
to set the properties of the module Adc.
Post build configuration parameters are stored in the file Adc_PBcfg.c

Dependencies: [BSW00345] Configuration at Compile time
[BSW00346] Basic set of module files

Conflicts: --

Supporting Material: --

4.2.3.3.3 [BSW00314] Separation of interrupt frames and service routines

Initiator: BMW

Date: 07.05.2004

AUTOSAR Release: 1.0 and higher

Short Description: Separation of interrupt frames and service routines

Type: New

Importance: High

Description: All internal driver modules shall separate the interrupt frame definition from
the service routine in the following way:

 <Module name>_Irq.c: implementation of interrupt frame

 <Module name>.c: implementation of service routine called from
interrupt frame

Rationale: Flexibility using different compilers and/or different OS integrations

Use Case: The interrupt could be realized as ISR frame of the operating system or
implemented directly without changing the driver code.

The service routine can be called directly during module test without the
need of causing an interrupt.

Dependencies: --

Conflicts: --

Supporting Material: < Module name > shall be derived from WP1.1.2 “List of Basic Software
Modules”, [DOC_MOD_LIST] (2…8 characters)

4.2.3.3.4 [BSW00370] Separation of callback interface from API

Initiator: BMW

Date: 12.05.2004

AUTOSAR Release: 1.0 and higher

Short Description: Separation of callback interface from API

Type: New

Importance: High

Description: All AUTOSAR Basic Software Modules shall group and out--source callback
declarations in a separate header file.

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

55 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Callback header file naming convention: <Module name>_Cbk.h

Rationale: Separate and decouple callback declaration from explicitly exported
functions. Limit access and prevent misuse of unintentionally exposed API.
Promote better maintainability of callback declaration, implementation and
configuration.

Use Case: Example: NVRAM—Manager
callback declaration file NvM_Cbk.h:
…
void NvM_NotifyJobOk (void);

void NvM_NotifyJobError (void);

…

Dependencies: --

Conflicts: --

Supporting Material: < Module name > shall be derived from WP1.1.2 “List of Basic Software
Modules”, [DOC_MOD_LIST] (2…8 characters)

4.2.3.3.5 [BSW00435] Module Header File Structure for the Basic Software

Scheduler

Initiator: WP1.1.2

Date: 21.11.2006

AUTOSAR Release: 2.1 and higher

Short Description: Module Header File Structure for the Basic Software Scheduler

Type: New

Importance: High

Description: Each AUTOSAR Basic Software Module implementation <ModulePrefix>.c
shall include its respective header file SchM_<ModulePrefix>.h

Rationale: The include file structures of the BSW modules shall contain the respective
header file SchM_<ModulePrefix>.h in order to access the module specific
functionality provided by the BSW Scheduler.

Use Case: --
Dependencies: --

Conflicts: --

Supporting Material: < ModulePrefix > shall be derived from WP1.1.2 “List of Basic Software
Modules”, [DOC_MOD_LIST] (2…8 characters)
[DOC_BSWSCHED_SWS] Specification of BSW Scheduler

4.2.3.3.6 [BSW00436] Module Header File Structure for the Basic Software

Memory Mapping

Initiator: WP1.1.2

Date: 21.11.2006

AUTOSAR Release: 2.1 and higher

Short Description: Module Header File Structure for the Memory Mapping

Type: New

Importance: High

Description: Each AUTOSAR Basic Software Module implementation <ModulePrefix>*.c
shall include the header file MemMap.h.

Rationale: The include file structures of the BSW modules shall contain the header file
MemMap.h in order to access the module specific functionality provided by
the BSW Memory Mapping.

Use Case: --

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

56 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Dependencies: --

Conflicts: --

Supporting Material: < ModulePrefix > shall be derived from WP1.1.2 “List of Basic Software
Modules”, [DOC_MOD_LIST] (2…8 characters)
[DOC_MEMMAP_SWS] Specification of Memory Mapping

4.2.3.4 Standard header files

4.2.3.4.1 [BSW00348] Standard type header

Initiator: BMW

Date: 23.07.2004

AUTOSAR Release: 1.0 and higher

Short Description: Standard type header

Type: Changed (OSEK OS compliance added because of naming conflict with
E_OK)

Importance: High

Description: All AUTOSAR standard types and constants shall be placed and organized
in a standard type header file.

Standard type header file naming convention: Std_Types.h

This standard type header file shall

 include the Platform specific type header (Platform_Types.h)

 include the compiler specific language extension header
(Compiler.h)

 define the type Std_ReturnType

 define values for E_OK and E_NOT_OK

Rationale: Provide uniform framework wide access to standard types to be used by all
modules.

Use Case: Each module that uses AUTOSAR integer data types and/or the standard
return type shall include the file Std_Types.h.

Dependencies: [BSW00357] Standard API return type
[BSW00353] Platform specific type header

Conflicts: --

Supporting Material: Important note for implementation of this header file:
Because E_OK is already defined within OSEK OS, E_OK has to be
checked for being already defined:
/* for OSEK compliance this typedef has been added */

#ifndef STATUSTYPEDEFINED

#define STATUSTYPEDEFINED

typedef unsigned char StatusType;

#define E_OK 0U

#endif

4.2.3.4.2 [BSW00353] Platform specific type header

Initiator: BMW

Date: 27.07.2004

AUTOSAR Release: 1.0 and higher

Short Description: Platform specific type header

Type: New

Importance: High

Description: All integer type definitions of target and compiler specific scope shall be
placed and organized in a single type header.

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

57 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Name of platform types header file: Platform_Types.h

Rationale: Separate compiler and µC--specific integer types from standard types.

Use Case: Changing the microcontroller and/or compiler shall only affect a limited
number of files.

In Platform_Types.h:
…

/**

**

** TARGET : Tricore 1796

**

** Compiler : Tasking

**

***/

typedef signed char sint8; /* --128 .. +127

*/

typedef unsigned char uint8; /* 0 .. 255 */

typedef signed short sint16; /* --32768 .. +32767

*/

typedef unsigned short uint16; /* 0 .. 65535 */

...

Dependencies: [BSW00304] AUTOSAR integer data types
[BSW00348] Standard type header

Conflicts: --

Supporting Material: --

4.2.3.4.3 [BSW00361] Compiler specific language extension header

Initiator: BMW

Date: 23.07.2004

AUTOSAR Release: 1.0 and higher

Short Description: Compiler specific language extensions

Type: New

Importance: High

Description: All mappings of not standardized keywords of compiler specific scope shall
be placed and organized in a compiler specific type and keyword header.

Name of compiler specific type/keyword header file: Compiler.h

Rationale: Provision of a compiler specific header containing proprietary pre--processor
directives as well as wrapper macros for all specialized language extensions.

Use Case: Different compilers can require extended keywords to be placed in different
places. e.g.:

Compiler 1:
 void __far__ function();

Compiler 2:
 __far__ void function();

It is not possible to accommodate the different implementations with inline
macros, so a function--like macro style is adopted instead. This macro
wraps the return type of the function and therefore permits additions to
made, such as __far__, either before or after the return type.

Example:

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

58 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Compiler 1:
 #define FAR(x) x __far__

Compiler 2:
 #define FAR(x) __far__ x

 FAR(void) function();

can expand to the examples given above.

Note: although these examples collide with the MISRA

Rule 19.4, they are a reasonable solution and this

exception is acceptable.

Dependencies: [BSW00306] Avoid direct use of compiler and platform specific keywords
[BSW00348] Standard type header

Conflicts: --

Supporting Material: --

4.2.3.5 Module Design

4.2.3.5.1 [BSW00301] Limit imported information

Initiator: BMW

Date: 13.05.2004

AUTOSAR Release: 1.0 and higher

Short Description: Limit imported information

Type: New

Importance: High

Description: All AUTOSAR Basic Software Modules shall only import the necessary
information (i.e. header files) that is required to fulfill the modules functional
requirements.

Rationale: Promote defensive module layout. Modules shall not import functionality that
could be misused.
Shorten compile times.

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: --

4.2.3.5.2 [BSW00302] Limit exported information

Initiator: BMW

Date: 11.05.2004

AUTOSAR Release: 1.0 and higher

Short Description: Limit exported information

Type: New

Importance: High

Description: All AUTOSAR Basic Software Modules shall export only that kind of
information in their correspondent header--files explicitly needed by other
modules.

Rationale: Prevent other modules accessing functionality and data that is ‘none of their
business’.

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

59 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Use Case: The NVRAM Manager shall not know all processor registers because
someone has included the processor register file in another header file used
by the NVRAM manager.

Dependencies: --

Conflicts: --

Supporting Material: --

4.2.3.5.3 [BSW00328] Avoid duplication of code

Initiator: WP4.2.2.1.12

Date: 01.06.2004

AUTOSAR Release: 1.0 and higher

Short Description: Avoid duplication of code

Type: Changed

Importance: Medium

Description: All AUTOSAR Basic Software Modules should avoid the duplication of code.

Rationale: Avoid bugs during maintenance

Use Case: A module contains 4 code segments which are equal. During maintenance of
the module 3 of them have been updated, 1 has been forgotten  BUG.

Dependencies: --

Conflicts: --

Supporting Material: --

4.2.3.5.4 [BSW00312] Shared code shall be re-entrant

Initiator: BMW

Date: 12.05.2004

AUTOSAR Release: 1.0 and higher

Short Description: Shared code shall be re-entrant

Type: New

Importance: High

Description: All AUTOSAR Basic Software Modules implementing shared code shall
ensure re-entrancy if code is exposed to pre-emptive environments.

Rationale: Shared code eases functional composition, reusability, code size reduction
and maintainability. As a drawback, shared code must be implemented re-
entrant if it is used in pre-emptive environments.

Use Case: A subroutine or function is re-entrant if a single copy of the routine can be
called from several task contexts simultaneously without conflict. Use the
following re-entrancy techniques:

- Avoid use of static and/or global variables
- Guard static and/or global variables using blocking mechanisms
- Use dynamic stack variables

Dependencies: --

Conflicts: --

Supporting Material: --

4.2.3.5.5 [BSW006] Platform independency

Initiator: BMW

Date: 16.06.2004

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

60 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

AUTOSAR Release: 1.0 and higher

Short Description: The source code of software modules above the µC Abstraction Layer
(MCAL) shall not be processor and compiler dependent.

Type: Changed: the source code is meant, not the object code. This has been
unclear.

Importance: High

Description: Those software modules have to be developed once and shall be compilable
for all processor platforms without any changes. Any necessary processor or
compiler specific instructions (e.g. memory locators, pragmas, use of atomic
bit manipulations etc.) have to be exported to macros and include files.

Rationale: Minimize number of variants and development effort

Use Case: NVRAM Manager, Network Management, …

Dependencies: --

Conflicts: --

Supporting Material: --

4.2.3.5.6 [BSW00439] Declaration of interrupt handlers and ISRs

Initiator: WP1.1.1

Date: 25.09.2007

AUTOSAR Release: 3.0 and higher

Short Description: Declaration of interrupt handlers and ISRs

Type: New

Importance: High

Description: A MCAL BSW module that handles interrupts shall be delivered partially or
completely as source code so that it can be compiled either to use CAT1 or
CAT2 interrupts.

Rationale: --

Use Case: In the case where the entire driver is delivered as source this isn’t a problem.

In the case where the MCAL BSW module is delivered as object code, the
interrupt handler could be written as a pair of small stubs (a cat1 stub and a
cat2 stub) that are delivered as source, compiled as necessary, and simply
call the main handler.

Dependencies: [BSW00326] Transition from ISRs to OS tasks

Conflicts: --

Supporting Material: --

4.2.3.6 Types and keywords

4.2.3.6.1 [BSW00357] Standard API return type [

Initiator: BMW

Date: 26.10.2006

AUTOSAR Release: 1.0 and higher

Short Description: Standard API return type

Type: Changed

Importance: Medium

Description: For success/failure of an API call the following standard return type defined
in Std_Types.h can be used:

typedef uint8 Std_ReturnType

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

61 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

This type has the following values:
 E_OK: 0

 E_NOT_OK: 1

The values E_OK and E_NOT_OK are #defines.

The Std_ReturnType shall normally be used with value E_OK or

E_NOT_OK. If those return values are not sufficient user specific values can

be defined by using the 6 least specific bits.

Layout of the Std_ReturnType shall be as stated in the RTE specification.
Two Bits are reserved and defined by the RTE specification.

Rationale: Enforces usage of already defined types instead of attempting to override
existing ones.

Use Case: #include "Std_Types.h"

Std_ReturnType Eep_Read

(

 Eep_AddressType EepromAddress,

 const Eep_DataType *DataBufferPtr,

 Eep_LengthType Length

)

Return value is E_OK if the service has been accepted.

Return value is E_NOT_OK, if a development error has been detected.

Dependencies: [BSW00348] Standard type header
[BSW00355] Do not redefine AUTOSAR integer data types
[BSW00377] Module specific API return types
[BSW00359] Return type of callback functions
[DOC_STDTYPE_SWS] Specification of Standard Types

Conflicts: --

Supporting Material: --

4.2.3.6.2 [BSW00377] Module specific API return types

Initiator: WP1.1.2

Date: 16.11.2005

AUTOSAR Release: 1.0 and higher

Short Description: Module specific API return types

Type: Changed (Typing Error in description)

Importance: High

Description: If a Basic Software Module needs module specific return types, it shall use
one of the following possibilities:

1. Use uint8 as return value, take the standard E_OK value from

Std_Types.h and define additional return values using #define.

2. Define a module specific return value with typedef enum. Within

this enum, E_OK cannot be used (because E_OK is already #defined

in Std_Types.h and OSEK OS)

Rationale: Example for possibility 1:
uint8 Can_Write(…)

return values: E_OK (0), CAN_E_BUSY (1), CAN_E_FAILED (2)

E_OK is taken from Std_Types.h, CAN_E_BUSY and CAN_E_FAILED are

#defines in can.h.

Note: no strong type checking possible because return type is uint8 and

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

62 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

values are only #defines. E_OK can be used.

Example for possibility 2:
Can_ReturnType Can_Write(…)

Return values: CAN_OK, CAN_E_BUSY, CAN_E_FAILED

Can_ReturnType is an enumeration type in can.h:
typedef enum

{

 CAN_OK = 0,

 CAN_E_BUSY,

 CAN_E_FAILED

} Can_ReturnType;

Note: strong type checking possible because only the values of the

enumeration may be assigned to variables of type Can_ReturnType. E_OK

cannot be used here!

Use Case: #include "Std_Types.h"

Std_ReturnType Eep_Read

(

 Eep_AddressType EepromAddress,

 const Eep_DataType *DataBufferPtr,

 Eep_LengthType Length

)

Return value is E_OK if the service has been accepted.

Return value is E_NOT_OK, if a development error has been detected.

Dependencies: [BSW00357] Standard API return type

Conflicts: --

Supporting Material: --

4.2.3.6.3 [BSW00304] AUTOSAR integer data types

Initiator: BMW

Date: 07.05.2004

AUTOSAR Release: 1.0 and higher

Short Description: AUTOSAR integer data types

Type: New

Importance: High

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

63 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Description: All AUTOSAR Basic Software Modules shall use the following data types
instead of native C data types:

1. Fixed size guaranteed
Data type -- Representation

uint8: 8 bit

uint16: 16 bit

uint32: 32 bit

sint8: 7 bit + 1 bit sign

sint16: 15 bit + 1 bit sign

sint32: 31 bit + 1 bit sign

2. Minimum size guaranteed, best type is chosen for specific platform (only
allowed for module internal use, not for API parameters)
Data type -- Representation

uint8_least: At least 8 bit

uint16_least: At least 16 bit

uint32_least: At least 32 bit

sint8_least: At least 7 bit + 1 bit sign

sint16_least: At least 15 bit + 1 bit sign

sint32_least: At least 31 bit + 1 bit sign

Above integer types shall be placed in the central AUTOSAR type header
(Platform_Types.h) which is defined individually for each supported platform.

Rationale: MISRA--C compliance.

The usage of native C--data types (char, int, short, long) is

forbidden as size and sign are not unambiguously defined and therefore are
platform specific. Portability, reusability

Use Case: The ‘_least’ data types can be chosen if optimal performance is required
(e.g. for loop counters).

uint8_least … uint32_least could all be 32 bit on a 32 bit platform.

Dependencies: [BSW00353] Platform specific type header

Conflicts: --

Supporting Material: [BSW007] HIS MISRA C

4.2.3.6.4 [BSW00355] Do not redefine AUTOSAR integer data types

Initiator: BMW

Date: 05.08.2004

AUTOSAR Release: 1.0 and higher

Short Description: Do not redefine AUTOSAR integer data types

Type: Changed during WP1.1.2 review

Importance: High

Description: All AUTOSAR Basic Software Modules shall NOT define own types on top of
the AUTOSAR integer data types if this is not necessary and the data width
is known at specification time.

Rationale: Improve readability of source code.
Avoid a flood of different cryptic types.

Use Case: Example 1:

The parameter DeviceIndex is known during specification time (8 bit):

DO NOT:
typedef uint8 DeviceIndexType

...
static DeviceIndexType DeviceIndex

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

64 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

PLEASE DO:
static uint8 DeviceIndex

Example 2:

The parameter DeviceAddress is platform dependent (could by 16..32 bit).

It is required for runtime efficiency, that the best type is chosen for a specific
platform:
On 16 bit platforms:
typedef uint16 DeviceAddressType

On 32 bit platforms:
typedef uint32 DeviceAddressType

Dependencies: [BSW00304] AUTOSAR integer data types

Conflicts: --

Supporting Material: --

4.2.3.6.5 [BSW00378] AUTOSAR boolean type

Initiator: WP1.1.2

Date: 10.02.2005

AUTOSAR Release: 1.0 and higher

Short Description: AUTOSAR boolean type

Type: New (finally …)

Importance: Low

Description: For simple logical values and checks and for API return values the following
AUTOSAR boolean type defined in Platform_Types.h can be used:

boolean

This type has the following values:
 FALSE: 0

 TRUE: 1

The only allowed operations are: assignment, return, test for equality with
TRUE or FALSE.

Rationale: Repeating requests of several WPs to define a boolean data type.

Use Case: API return value. Example:
In file Eep.h:
#include "Std_Types.h" /* this automatically includes

Platform_Types.h */

boolean Eep_Busy(void) {…}

In calling module:
if (Eep_Busy() == FALSE) {…}

Dependencies: --

Conflicts: --

Supporting Material: Please refer to the AUTOSAR C Programming Guidelines for further
restrictions of usage of this type.
Compiler vendors that provide a boolean data type that cannot be disabled
have to change their compiler (i.e. make it ANSI C compliant).

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

65 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

4.2.3.6.6 [BSW00306] Avoid direct use of compiler and platform specific
keywords [

Initiator: BMW

Date: 14.05.2004

AUTOSAR Release: 1.0 and higher

Short Description: Avoid direct use of compiler and platform specific keywords

Type: Changed (poor BMW macros replaced by LiveDevices’ powerful macros)

Importance: High

Description: All AUTOSAR Basic Software Modules shall not use compiler or platform
specific keywords directly.

Rationale: Direct use of not standardized keywords like "_near", "_far", "_pascal" in

the frameworks source code will create compiler and platform dependencies
that must strictly be avoided. If no precautions were made, portability and
reusability of influenced code is deteriorated and effective release
management is costly and hard to maintain.

Use Case: If specific keywords are needed, they shall be redefined (mapped) as
follows:

Compiler.h:
#define FAR(X) __far__ (X);

Usage of macro within source code:
FAR(void) function();

Note: MISRA compliance considerations as in BSW00361

also apply here.

Dependencies: [BSW00361] Compiler specific language extension header

Conflicts: --

Supporting Material: --

4.2.3.7 Global data

4.2.3.7.1 [BSW00308] Definition of global data

Initiator: BMW

Date: 12.05.2004

AUTOSAR Release: 1.0 and higher

Short Description: Definition of global data

Type: Changed

Importance: High

Description: AUTOSAR Basic Software Modules shall not define global data in their
header files.
If global variables have to be used, the definition shall take place in the C
file.

Rationale: Avoid multiple definition and uncontrolled spreading of global data, limit
visibility of global variables.

Use Case: --

Dependencies: --

Conflicts: --

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

66 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Supporting Material: --

4.2.3.7.2 [BSW00309] Global data with read--only constraint

Initiator: BMW

Date: 12.05.2004

AUTOSAR Release: 1.0 and higher

Short Description: Global data with read--only constraint

Type: New

Importance: High

Description: All AUTOSAR Basic Software Modules shall indicate all global data with
read--only purposes by explicitly assigning the const keyword.

Rationale: In principle, all global data shall be avoided due to extra blocking efforts
when used in pre-emptive runtime environments. Unforeseen effects are to
occur if no precautions were made. If data is intended to serve as constant
data, global exposure is permitted only if data is explicitly declared read--
only using the const modifier keyword.

Use Case: const uint8 MaxPayload = 0x18;

Dependencies: --

Conflicts: --

Supporting Material: --

4.2.3.8 Interface and API

4.2.3.8.1 [BSW00371] Do not pass function pointers via API

Initiator: WP1.1.2

Date: 05.08.2004

AUTOSAR Release: 1.0 and higher

Short Description: Do not pass function pointers via API

Type: New

Importance: High

Description: The passing of function pointers as API parameter is forbidden for all
AUTOSAR Basic Software Modules.

Rationale:  HIS MISRA C

 Protected Operating System compatibility

 Callbacks shall be defined statically at compile time, not during
runtime

Use Case: No, forbidden!!!

Dependencies: [BSW007] HIS MISRA C

Conflicts: --

Supporting Material: --

4.2.3.8.2 [BSW00358] Return type of init() functions

Initiator: BMW

Date: 24.07.2004

AUTOSAR Release: 1.0 and higher

Short Description: Return type of init() functions

Type: New

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

67 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Importance: High

Description: The return type of init() functions implemented by AUTOSAR Basic

Software Modules shall be void.

Rationale: Errors in initialization data shall be detected during configuration time (e.g.
by configuration tool).

Use Case: --

Dependencies: [BSW101] Initialization interface

Conflicts: --

Supporting Material: --

4.2.3.8.3 [BSW00414] Parameter of init function

Initiator: WP1.1.2

Date: 07.12.2006

AUTOSAR Release: 2.0 and higher

Short Description: Parameter of init function

Type: Changed

Importance: High

Description: The init function may have parameters.

If post build time configuration is required, the pointer to the configuration
shall be passed.

If post build time configuration is required (with and without instances) the
naming convention for the configuration pointer type shall be:
<Module name>_ConfigType.

If a module provides different variants where only some are supporting post
build time, multiple (selectable) configuration parameter sets, all variants
shall have a pointer as parameter. In this case the pre-compile variant shall
get a NULL as parameter, what shall be tested in case of enabled
Development Error Tracer (DET).

If instances of the module have to be addressed, the index and the
according pointer to the configuration shall be passed.

If a lower module includes a configuration pointer then the module that calls
the init function for the lower module shall also have a configuration
pointer.This implies that every module that is not a leaf module needs a
pointer. In the case of leaf modules, if the module has a post build variant
then the init function shall have a pointer.

Rationale: --

Use Case: Example:
void NvM_Init (void)

Or in case of multiple (selectable) configurable configuration parameter sets:
void Eep_Init (const Eep_ConfigType *ConfigPtr)

Or in case of an instance index:
void Fr_Init (uint8 Fr_CtrlIdx, const Fr_ConfigType

*ConfigPtr)

Dependencies: [BSW101] Initialization interface,
[BSW00358] Return type of init() functions
[BSW00400] Selectable Post--build time parameters

Conflicts: --

Supporting Material: --

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

68 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

4.2.3.8.4 [BSW00376] Return type and parameters of main processing functions

Initiator: WP1.1.2

Date: 17.09.2004

AUTOSAR Release: 1.0 and higher

Short Description: Return type and parameters of main processing functions

Type: New

Importance: High

Description: The return type of main processing functions implemented by AUTOSAR
Basic Software Modules shall be void.

These functions shall have no parameters.

Rationale: Many modules have a function that has to be called cyclically (e.g. within an
OS Task) and that does the main work of the module. Those functions shall
have no parameters and no return value.

Use Case: void Eep_MainFunction(void)

Dependencies: [BSW00373] Main processing function naming convention

Conflicts: --

Supporting Material: --

4.2.3.8.5 [BSW00359] Return type of callback functions

Initiator: BMW

Date: 30.11.2004

AUTOSAR Release: 1.0 and higher

Short Description: Return type of callback functions

Type: Changed

Importance: Medium

Description: All AUTOSAR Basic Software Modules callback functions shall avoid return
types other than void if possible.

Callback functions routed to Software Components (SWCs) via the RTE
must be typed by Std_ReturnType, not void. In this case the caller can
assume, that always E_OK is returned.

Rationale: Callbacks shall be used for notifications. Callbacks should never fail.

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: --

4.2.3.8.6 [BSW00360] Parameters of callback functions

Initiator: BMW

Date: 24.07.2004

AUTOSAR Release: 1.0 and higher

Short Description: Parameters of callback functions

Type: New

Importance: High

Description: AUTOSAR Basic Software Modules callback functions are allowed to have
parameters.

Rationale: Enhance flexibility and scope of callback functionality.

Use Case: If callback functions do serve as simple triggers, no parameter is necessary
to be passed.

If additional data is to be passed to the caller within the callback scope, it

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

69 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

shall be possible to forward the contents of that data using a parameter.

Dependencies: --

Conflicts: --

Supporting Material: --

4.2.3.8.7 [BSW00440] Function prototype for callback functions of AUTOSAR

Services

Initiator: WPII-1.1.1

Date: 25.09.2007

AUTOSAR Release: 3.0 and higher

Short Description: Function prototype for callback functions of AUTOSAR Services

Type: New

Importance: High

Description: The function prototype for the callback functions of the AUTOSAR Services
which are routed via RTE shall be implemented according the following
rules:
StdReturnType Rte_Call_<p>_<o>(<parameters>)

Rationale: The callback function has to be to be compatible to Rte_Call_<p>_<o>
API of the RTE to enable a type safe configuration and implementation of
AUTOSAR Services and IO Hardware Abstraction. Instance pointers are in
Basic Software not allowed.

Use Case: --

Dependencies: [BSW00359] Return type of callback functions

Conflicts: --

Supporting Material: --

4.2.3.8.8 [BSW00329] Avoidance of generic interfaces

Initiator: WP4.2.2.1.12

Date: 01.06.2004

AUTOSAR Release: 1.0 and higher

Short Description: Avoidance of generic interfaces

Type: New

Importance: High

Description: All Basic Software Modules shall not use generic interfaces. A ‘generic
interface’ is an interface without a defined scope and content.

Rationale: Avoidance of backdoors for incompatible extensions and hidden features.
Increase readability.

Use Case: Do not use IoctlSync/Async() function as defined in HIS specification.

Behind this interface there can be anything.

Dependencies: --

Conflicts: --

Supporting Material: --

4.2.3.8.9 [BSW00330] Usage of macros / inline functions instead of functions

Initiator: CAS

Date: 08.12.2004

AUTOSAR Release: 1.0 and higher

Short Description: Usage of macros / inline functions instead of functions

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

70 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Type: Changed

Importance: Low

Description: It shall be allowed to use macros instead of functions where source code is
used and runtime is critical.
It shall be allowed to use inline functions for the same purpose. Inline
functions have the advantage (compared to macros) that the compiler can
do type checking of function parameters and return values.

Rationale: Improve runtime behavior.

Use Case: --

Dependencies: Macros as well as inline functions are only possible when source code is
delivered.

Conflicts: --

Supporting Material: MISRA--C
Attention has to be paid within re-entrant systems.

4.2.3.8.10 [BSW00331] Separation of error and status values

Initiator: WP4.2.2.1.12

Date: 09.06.2004

AUTOSAR Release: 1.0 and higher

Short Description: Separation of error and status values

Type: Changed (Use Case adapted to current EEPROM specification)

Importance: High

Description: All Basic Software Modules shall strictly separate error and status
information. This requirement applies to return values and also to internal
variables.

Rationale: Common API specification of AUTOSAR Basic Software Modules.

Use Case: Example (EEPROM driver):
A module status is e.g. the state of a state machine and can be read by a

separate Eep_GetStatus() function:

 EEP_UNIT

 EEP_IDLE

 EEP_BUSY
Error values are reported to the Debug Error Tracer (if enabled):

 EEP_E_BUSY

 EEP_E_PARAM_ADDRESS

 EEP_E_PARAM_LENGTH

If the EEPROM driver is idle (EEP_IDLE) and is called with wrong

parameters, the error is reported to the Debug Error Tracer, but the module

status stays EEP_IDLE!!

Dependencies: --

Conflicts: --

Supporting Material: [BSW00327] Error values naming convention
[BSW00335] Status values naming convention

4.2.4 Software Documentation Requirements

4.2.4.1 [BSW009] Module User Documentation

Initiator: BMW

Date: 10.12.2003

AUTOSAR Release: 1.0 and higher

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

71 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Short Description: All Basic SW Modules shall be documented according to a common
standard.

Type: New

Importance: High

Description: The module documentation shall contain at least the following items:.

 Cover sheet with title, version number, date, author, document status,
document name

 Change history with version number, date, author, change description,
document status

 Table of contents (navigable)

 Functional overview

 Source file list and description

 Module requirements

 Used resources (interrupts, µC peripherals etc.)

 Integration description (OS, interface to other modules etc.)

 Configuration description with parameter, description, unit, valid range,
default value, relation to other parameters

The module documentation shall also contain examples for

 the correct usage of the API

 the configuration of the module

Rationale: User acceptance, maintainability, usability

Use Case: Standard Core

Dependencies: [BSW010] Resource and runtime documentation
[BSW00333] Documentation of callback function context
AUTOSAR software description

Conflicts: --

Supporting Material: --

4.2.4.2 [BSW00401] Documentation of multiple instances of configuration

parameters

Initiator: WP1.1.2

Date: 09.11.2005

AUTOSAR Release: 2.0 and higher

Short Description: Documentation of multiple instances of configuration parameters

Type: New

Importance: High

Description: “Multiplicity” defines how many times an entity (in this case configuration
parameter) is instanciated.
The multiplicity of each configuration parameter has to be documented.
It shall be documented what determines the number of entries (e.g. “one per
frame”).

Rationale: Overall (throughout the complete Basic Software) harmonization of
configuration parameter naming.

Use Case: Id of a PDU is multiple time present dependent on the number of PDUs to be
sent/received.

Dependencies: --

Conflicts: --

Supporting Material: --

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

72 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

4.2.4.3 [BSW172] Compatibility and documentation of scheduling strategy

Initiator: BOSCH

Date: 29.02.2004

AUTOSAR Release: 1.0 and higher

Short Description: Compatibility and documentation of scheduling strategy

Type: Changed after WP1.1.2 review (01.07.2004)

Importance: High

Description: The scheduling strategy that is built inside the Basic Software Modules shall
be compatible with the strategy used in the system.

To achieve this, the following items shall be documented:

 polling / event driven

 cooperative / pre--emptive

 for each cyclic function:

 invocation rate (either fixed value or allowed range)

 acceptable jitter

 execution order (dependencies to other modules)

 synchronous / asynchronous processing

 minimum and maximum function runtime (WCET)

 maximum interrupt rate

Rationale: Today scheduling mechanisms differ between ECUs. A Basic Software
Module provides several entry points to be accessed by the other Basic
Software Modules/surrounding system. E.g. a function can react directly on
event or by a scheduled polling. The differences may result in difference in
real--time requirements, system load, latency etc.!

Use Case: On the one hand it is possible to avoid any direct function call between BSW
modules by using only scheduling and data interface – more deterministic.
On the other hand it is possible that beside the scheduling additional
functional interfaces exists to control BSW modules – less deterministic.
The integrating SW--system and its SW--architecture might restrict direct
function calls between SW--components. Thus not any SW--component will
fit in this SW--system.

Dependencies: --

Conflicts: --

Supporting Material: --

4.2.4.4 [BSW010] Memory resource documentation

Initiator: BMW

Date: 10.12.2003

AUTOSAR Release: 1.0 and higher

Short Description: The memory consumption of all Basic SW Modules shall be documented for
a defined configuration for all supported platforms.

Type: New

Importance: High

Description: For software integration the following data shall be available for each
supported platform:
-- RAM/ROM consumption

Rationale: Due to stability of documentation, this information is provided in a separate
document for each supported platform. If a further platform is added, the
module documentation remains unchanged.

Use Case: Microcontroller selection, software integration, configuration of operating
system

Dependencies: --

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

73 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Conflicts: --

Supporting Material: --

4.2.4.5 [BSW00333] Documentation of callback function context

Initiator: WP4.2.2.1.12

Date: 09.06.2004

AUTOSAR Release: 1.0 and higher

Short Description: Documentation of callback function context

Type: New

Importance: High

Description: For each callback function it shall be specified if it is called from interrupt
context or not.

Rationale: User awareness. The code inside a callback function called from an ISR has
to be kept short.

Use Case: Some notification function is called from an ISR of the CAN driver. The user
filling this callback function has to know that the function is running in
interrupt context!

Dependencies: --

Conflicts: --

Supporting Material: --

4.2.4.6 [BSW00374] Module vendor identification

Initiator: WP4.2.2.1.12

Date: 08.02.2006

AUTOSAR Release: 1.0 and higher

Short Description: Module vendor identification

Type: New

Importance: Medium

Description: All Basic Software Modules shall provide a readable module vendor
identification (according to HIS) in their published parameters.

Naming convention:
<MODULENAME>_VENDOR_ID

The vendor ID shall be represented in uint16 (16 bit).

The format of the vendor identification shall be only:
#define <MODULENAME>_VENDOR_ID 0x0000u
without any cast to allow a verification in pre-processor.

Rationale: Allow identification of module vendor

Use Case: EEP_VENDOR_ID

Dependencies: --

Conflicts: --

Supporting Material:  < MODULENAME > shall be derived from WP1.1.2 “List of Basic
Software Modules”, [DOC_MOD_LIST] (2…8 characters)

 HIS Software Supplier Identifications [STD_HIS_SUPPLIER_IDS]

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

74 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

4.2.4.7 [BSW00379] Module identification

Initiator: WP1.1.2

Date: 10.02.2005

AUTOSAR Release: 1.0 and higher

Short Description: All software modules shall provide a module identifier in the header file and
in the module XML description file.

Type: New

Importance: High

Description: All software modules shall provide a module ID both in the header file and in
the module XML description file.
The value shall be taken from the Basic Software Module List.

Naming convention:
<MODULENAME>_MODULE_ID

The module ID shall be represented in uint8 (8 bit).

Rationale: Required for error reporting to Development Error Tracer (DET).

Use Case: In file Eep.h:
#define EEP_MODULE_ID 90

Dependencies: [BSW00334] Provision of XML file

Conflicts: --

Supporting Material:  < MODULENAME > shall be derived from WP1.1.2 “List of Basic
Software Modules”, [DOC_MOD_LIST] (2…8 characters)

 Basic Software Module List, Column ‘Module ID‘, defines the module
IDs.

4.2.4.8 [BSW003] Version identification

Initiator: BMW

Date: 08.02.2006

AUTOSAR Release: 1.0 and higher

Short Description: Version identification

Type: Changed

Importance: Medium

Description: All software modules shall provide a readable software version number in all
header files. Version number macros can be used for checking and reading
out the software version of a software module during compile time and
runtime. It is preferred to derive this information from the version
management system automatically.

Rationale: Compatibility checking, configuration supervision

Use Case: --

Dependencies: [BSW004] Version check
[BSW00318] Format of module version numbers

Conflicts: --

Supporting Material: --

4.2.4.9 [BSW00318] Format of module version numbers

Initiator: BMW

Date: 16.11.2005

AUTOSAR Release: 1.0 and higher

Short Description: Format of module version numbers

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

75 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Type: Changed to match the SWS template

Importance: High

Description: Each AUTOSAR Basic Software Module file shall provide version numbers
in the header file as defined below:

Naming convention:

 <MODULENAME>_SW_MAJOR_VERSION

 <MODULENAME>_SW_MINOR_VERSION

 <MODULENAME>_SW_PATCH_VERSION

 <MODULENAME>_AR_MAJOR_VERSION

 <MODULENAME>_AR_MINOR_VERSION

 <MODULENAME>_AR_PATCH_VERSION
AR: Major/minor/patch version number of AUTOSAR specification which the
appropriate implementation is based on.
SW: Major/minor/patch version number of the vendor specific
implementation of the module. The numbering shall be vendor specific, but it
shall follow requirement BSW00321.

Each number shall be represented in uint8 (8 bit).

Rationale: Allow version identification and version checking in between software
modules.

Use Case: Example: Adc vendor module version 1.14.9; implemented according to the
AUTOSAR Specification of ADC 2.1.12
#define ADC_SW_MAJOR_VERSION 1

#define ADC_SW_MINOR_VERSION 14

#define ADC_SW_PATCH_VERSION 9

#define ADC_AR_MAJOR_VERSION 2

#define ADC_AR_MINOR_VERSION 1

#define ADC_AR_PATCH_VERSION 12

Dependencies: [BSW00321] Enumeration of module version numbers
[BSW00374] Module vendor identification
[BSW00402] Published information

Conflicts: --

Supporting Material: < MODULENAME > shall be derived from WP1.1.2 “List of Basic Software
Modules”, [DOC_MOD_LIST] (2…8 characters)

4.2.4.10 [BSW00321] Enumeration of module version numbers

Initiator: BMW

Date: 11.05.2004

AUTOSAR Release: 1.0 and higher

Short Description: Enumeration of module version numbers

Type: New

Importance: High

Description: The version numbers of AUTOSAR Basic Software Modules shall be
enumerated according to the following rules:
- Increasing a more significant digit of a version number resets all less

significant digits
- The PATCH_VERSION is incremented if the module is still upwards and

downwards compatible (e.g. bug fixed)
- The MINOR_VERSION is incremented if the module is still downwards

compatible (e.g. new functionality added)
- The MAJOR_VERSION is incremented if the module is not compatible

any more (e.g. existing API changed)

Rationale: Provide unambiguous version identification for each module, provide version
cross check as well as basic version retrieval facilities.

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

76 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

Compatibility is always visible!

Use Case: Example: ADC module with version 1.14.2:
- Versions 1.14.2 and 1.14.9 are exchangeable. 1.14.2 may contain bugs
- Version 1.14.2 can be used instead of 1.12.0, but not vice versa
- Version 1.14.2 cannot be used instead of 1.15.4 or 2.0.0

Dependencies: [BSW00318] Format of module version numbers

Conflicts: --

Supporting Material: --

4.2.4.11 [BSW00341] Microcontroller compatibility documentation

Initiator: WP1.1.2

Date: 01.07.2004

AUTOSAR Release: 1.0 and higher

Short Description: Microcontroller compatibility documentation

Type: New

Importance: High

Description: The module documentation of all microcontroller dependent modules shall
specify the following items:

 Microcontroller vendor

 Microcontroller family

 Microcontroller derivative

 Microcontroller stepping (mask revision)

Rationale: Opportunity to identify uniquely the specific microprocessor, including known
bugs in the silicon so that its compatibility with the software can be
established.

Use Case: Different mask revisions of e.g. TriCore

Dependencies: --

Conflicts: --

Supporting Material: --

4.2.4.12 [BSW00334] Provision of XML file

Initiator: WP1.1.2

Date: 16.06.2004

AUTOSAR Release: 1.0 and higher

Short Description: Provision of XML file

Type: Changed (vendor ID removed from API)

Importance: High

Description: All Basic Software Modules shall provide an XML file that contains the meta
data which is required for the SW configuration and integration process.

Comment:
This meta data will be defined by WP.1.1.2 . As a preliminary hint, this data
describes

 Names of the API services provided by this modules including the
assignment to the AUTOSAR API specification

 Names of API services required by this module

 Error names and their semantics

 Module documentation

 Etc.

Rationale:  Being able to have several drivers of the same type (e.g. 2 different
external flash drivers) on the same ECU without name clash

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

77 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

 Ensure system consistency and correctness

Use Case: <function_provided>

 <name>Eep_Write</name>

 <prototype>Eep_ST16RF42_Write</prototype>

</function_provided>

ST16RF42 is the type of the external EEPROM

Dependencies: --

Conflicts: --

Supporting Material: [ECU_CONF_SWS]

General Requirements on Basic Software Modules
 V2.5.1

R3.2 Rev 3

78 of 78 Document ID 043: AUTOSAR_SRS_General

- AUTOSAR confidential -

5 References

5.1 Deliverables of AUTOSAR

[DOC_LAYERED_ARCH] Layered Software Architecture
AUTOSAR_LayeredSoftwareArchitecture.pdf

[DOC_MOD_LIST] List of Basic Software Modules
AUTOSAR_BasicSoftwareModulespdf

[ECU_CONF_SRS] Requirements on ECU Configuration
AUTOSAR_RS_ECU_Configuration.pdf

[ECU_CONF_SWS] Specification of ECU Configuration
AUTOSAR_ECU_Configuration.pdf

[GLOSSARY] Glossary,
AUTOSAR_Glossary.pdf

[DOC_STDTYPE_SWS] Specification of Standard Types,
AUTOSAR_SWS_StandardTypes.sws

[DOC_MEMMAP_SWS] Specification of Memory Mapping,
AUTOSAR_SWS_MemoryMapping.doc

[DOC_BSWSCHED_SWS] Specification of BSW Scheduler,
AUTOSAR_SWS_BSW_Scheduler.doc

[ARReleaseManagement] Autosar Release Management,

5.2 Related standards and norms

5.2.1 OSEK

[STD_OSEK_OS] OSEK/VDX Operating System Specification
http://www.osek--vdx.org

5.2.2 HIS

[STD_HIS_SUPPLIER_IDS] HIS Software Supplier Identifications
http://www.automotive--his.de/his--ergebnisse.htm

5.2.3 MISRA

[STD_MISRA_C_2004] MISRA C Rules2004
http://www.misra.org.uk/

	1 Scope of this document
	1.1 Constraints

	2 How to read this document
	2.1 Conventions used
	2.2 Requirements structure
	2.3 Mapping to AUTOSAR releases

	3 Acronym and abbrevations
	4 General Requirements on Basic Software
	4.1 Functional Requirements
	4.1.1 Configuration
	4.1.1.1 [BSW00344] Reference to link--time configuration
	4.1.1.2 [BSW00404] Reference to post build time configuration
	4.1.1.3 [BSW00405] Reference to multiple configuration sets
	4.1.1.4 [BSW00345] Pre--compile--time configuration
	4.1.1.5 [BSW159] Tool--based configuration
	4.1.1.6 [BSW167] Static configuration checking
	4.1.1.7 [BSW171] Configurability of optional functionality
	4.1.1.8 [BSW170] Data for reconfiguration of AUTOSAR SW--Components
	4.1.1.9 [BSW00380] Separate C--Files for configuration parameters
	4.1.1.10 [BSW00419] Separate C--Files for pre--compile time configuration parameters
	4.1.1.11 [BSW00381] Separate configuration header file for pre--compile time parameters
	4.1.1.12 [BSW00412] Separate H--File for configuration parameters
	4.1.1.13 [BSW00383] List dependencies of configuration files
	4.1.1.14 [BSW00384] List dependencies to other modules
	4.1.1.15 [BSW00387] Specify the configuration class of callback function
	4.1.1.16 [BSW00388] Introduce containers
	4.1.1.17 [BSW00389] Containers shall have names
	4.1.1.18 [BSW00390] Parameter content shall be unique within the module
	4.1.1.19 [BSW00391] Parameter shall have unique names
	4.1.1.20 [BSW00392] Parameters shall have a type
	4.1.1.21 [BSW00393] Parameters shall have a range
	4.1.1.22 [BSW00394] Specify the scope of the parameters
	4.1.1.23 [BSW00395] List the required parameters (per parameter)
	4.1.1.24 [BSW00396] Configuration classes
	4.1.1.25 [BSW00397] Pre--compile--time parameters
	4.1.1.26 [BSW00398] Link--time parameters
	4.1.1.27 [BSW00399] Loadable Post--build time parameters
	4.1.1.28 [BSW00400] Selectable Post--build time parameters
	4.1.1.29 [BSW00438] Post Build Configuration Data Structure
	4.1.1.30 [BSW00402] Published information

	4.1.2 Wake--Up
	4.1.2.1 [BSW00375] Notification of wake--up reason

	4.1.3 Initialization
	4.1.3.1 [BSW101] Initialization interface
	4.1.3.2 [BSW00416] Sequence of Initialization
	4.1.3.3 [BSW00406] Check module initialization
	4.1.3.4 [BSW00467] Calling of init / deinit
	4.1.3.5 [BSW00437] NoInit--Area in RAM

	4.1.4 Normal Operation
	4.1.4.1 [BSW168] Diagnostic Interface of SW components
	4.1.4.2 [BSW00407] Function to read out published parameters
	4.1.4.3 [BSW00423] Usage of SW--C template to describe BSW modules with AUTOSAR Interfaces
	4.1.4.4 [BSW00424] BSW main processing function task allocation
	4.1.4.5 [BSW00425] Trigger conditions for schedulable objects
	4.1.4.6 [BSW00426] Exclusive areas in BSW modules
	4.1.4.7 [BSW00427] ISR description for BSW modules
	4.1.4.8 [BSW00428] Execution order dependencies of main processing functions
	4.1.4.9 [BSW00429] Restricted BSW OS functionality access
	4.1.4.10 [BSW00431] The BSW Scheduler module implements task bodies
	4.1.4.11 [BSW00432] Modules should have separate main processing functions for read/receive and write/transmit data path
	4.1.4.12 [BSW00433] Calling of main processing functions
	4.1.4.13 [BSW00434] The Schedule Module shall provide an API for exclusive areas

	4.1.5 Shutdown Operation
	4.1.5.1 [BSW00336] Shutdown interface

	4.1.6 Fault Operation and Error Detection
	4.1.6.1 [BSW00337] Classification of errors
	4.1.6.2 [BSW00338] Detection and Reporting of development errors
	4.1.6.3 [BSW00369] Do not return development error codes via API
	4.1.6.4 [BSW00339] Reporting of production relevant error status
	4.1.6.5 [BSW00422] Pre--de--bouncing of production relevant error status
	4.1.6.6 [BSW00417] Reporting of Error Events by Non--Basic Software
	4.1.6.7 [BSW00323] API parameter checking
	4.1.6.8 [BSW004] Version check
	4.1.6.9 [BSW00409] Header files for production code error IDs
	4.1.6.10 [BSW00385] List possible error notifications
	4.1.6.11 [BSW00386] Configuration for detecting an error

	4.2 Non--functional Requirements
	4.2.1 Software Architecture Requirements
	4.2.1.1 [BSW161] Microcontroller abstraction
	4.2.1.2 [BSW162] ECU layout abstraction
	4.2.1.3 [BSW005] No hard coded horizontal interfaces within MCAL
	4.2.1.4 [BSW00415] User dependent include files

	4.2.2 Software Integration Requirements
	4.2.2.1 [BSW164] Implementation of interrupt service routines
	4.2.2.2 [BSW00325] Runtime of interrupt service routines
	4.2.2.3 [BSW00326] Transition from ISRs to OS tasks
	4.2.2.4 [BSW00342] Usage of source code and object code
	4.2.2.5 [BSW00343] Specification and configuration of time
	4.2.2.6 [BSW160] Human--readable configuration data

	4.2.3 Software Module Design Requirements
	4.2.3.1 Software quality
	4.2.3.1.1 [BSW007] HIS MISRA C

	4.2.3.2 Naming conventions
	4.2.3.2.1 [BSW00300] Module naming convention
	4.2.3.2.2 [BSW00413] Accessing instances of BSW modules
	4.2.3.2.3 [BSW00347] Naming separation of different instances of BSW drivers
	4.2.3.2.4 [BSW00441] Enumeration literals and #define naming convention
	4.2.3.2.5 [BSW00305] Data types naming convention
	4.2.3.2.6 [BSW00307] Global variables naming convention
	4.2.3.2.7 [BSW00310] API naming convention
	4.2.3.2.8 [BSW00373] Main processing function naming convention
	4.2.3.2.9 [BSW00327] Error values naming convention
	4.2.3.2.10 [BSW00335] Status values naming convention
	4.2.3.2.11 [BSW00350] Development error detection keyword
	4.2.3.2.12 [BSW00408] Configuration parameter naming convention
	4.2.3.2.13 [BSW00410] Compiler switches shall have defined values
	4.2.3.2.14 [BSW00411] Get version info keyword
	4.2.3.2.15 [BSW00463] Callout function prototype generation

	4.2.3.3 Module file structure
	4.2.3.3.1 [BSW00346] Basic set of module files
	4.2.3.3.2 [BSW158] Separation of configuration from implementation
	4.2.3.3.3 [BSW00314] Separation of interrupt frames and service routines
	4.2.3.3.4 [BSW00370] Separation of callback interface from API
	4.2.3.3.5 [BSW00435] Module Header File Structure for the Basic Software Scheduler
	4.2.3.3.6 [BSW00436] Module Header File Structure for the Basic Software Memory Mapping

	4.2.3.4 Standard header files
	4.2.3.4.1 [BSW00348] Standard type header
	4.2.3.4.2 [BSW00353] Platform specific type header
	4.2.3.4.3 [BSW00361] Compiler specific language extension header

	4.2.3.5 Module Design
	4.2.3.5.1 [BSW00301] Limit imported information
	4.2.3.5.2 [BSW00302] Limit exported information
	4.2.3.5.3 [BSW00328] Avoid duplication of code
	4.2.3.5.4 [BSW00312] Shared code shall be re-entrant
	4.2.3.5.5 [BSW006] Platform independency
	4.2.3.5.6 [BSW00439] Declaration of interrupt handlers and ISRs

	4.2.3.6 Types and keywords
	4.2.3.6.1 [BSW00357] Standard API return type [
	4.2.3.6.2 [BSW00377] Module specific API return types
	4.2.3.6.3 [BSW00304] AUTOSAR integer data types
	4.2.3.6.4 [BSW00355] Do not redefine AUTOSAR integer data types
	4.2.3.6.5 [BSW00378] AUTOSAR boolean type
	4.2.3.6.6 [BSW00306] Avoid direct use of compiler and platform specific keywords [

	4.2.3.7 Global data
	4.2.3.7.1 [BSW00308] Definition of global data
	4.2.3.7.2 [BSW00309] Global data with read--only constraint

	4.2.3.8 Interface and API
	4.2.3.8.1 [BSW00371] Do not pass function pointers via API
	4.2.3.8.2 [BSW00358] Return type of init() functions
	4.2.3.8.3 [BSW00414] Parameter of init function
	4.2.3.8.4 [BSW00376] Return type and parameters of main processing functions
	4.2.3.8.5 [BSW00359] Return type of callback functions
	4.2.3.8.6 [BSW00360] Parameters of callback functions
	4.2.3.8.7 [BSW00440] Function prototype for callback functions of AUTOSAR Services
	4.2.3.8.8 [BSW00329] Avoidance of generic interfaces
	4.2.3.8.9 [BSW00330] Usage of macros / inline functions instead of functions
	4.2.3.8.10 [BSW00331] Separation of error and status values

	4.2.4 Software Documentation Requirements
	4.2.4.1 [BSW009] Module User Documentation
	4.2.4.2 [BSW00401] Documentation of multiple instances of configuration parameters
	4.2.4.3 [BSW172] Compatibility and documentation of scheduling strategy
	4.2.4.4 [BSW010] Memory resource documentation
	4.2.4.5 [BSW00333] Documentation of callback function context
	4.2.4.6 [BSW00374] Module vendor identification
	4.2.4.7 [BSW00379] Module identification
	4.2.4.8 [BSW003] Version identification
	4.2.4.9 [BSW00318] Format of module version numbers
	4.2.4.10 [BSW00321] Enumeration of module version numbers
	4.2.4.11 [BSW00341] Microcontroller compatibility documentation
	4.2.4.12 [BSW00334] Provision of XML file

	5 References
	5.1 Deliverables of AUTOSAR
	5.2 Related standards and norms
	5.2.1 OSEK
	5.2.2 HIS
	5.2.3 MISRA

