
- AUTOSAR Confidential -

Layered Software Architecture

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 2

Document Information

Document Title Layered Software Architecture
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 053

Document Classification Auxiliary

Document Version 2.4.0

Document Status Final

Part of Release 3.2

Revision 3

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 4

Document Change History
Date Version Changed by Change Description

28.02.2014 2.4.0 AUTOSAR
Release
Management

• Editorial changes

02.04.2012 2.3.0 AUTOSAR
Administration

• Moved error handling into new chapter „integration and runtime aspects“

• Clarified generated DEM symbolic names according ecuc_sws_2108

• Removed blocks for Time- and Synchronization Services

• Added BSW Mode Manager

• Retrofitting of CDD concept

• Added a new chapter for Partial Networking concept

• Fixed typos

Document Information

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 5

Document Change History
Date Version Changed by Change Description

18.03.2011 2.2.2 AUTOSAR
Administration

• Legal disclaimer revised

23.06.2008 2.2.1 AUTOSAR
Administration

• Legal disclaimer revised

15.11.2007 2.2.0 AUTOSAR
Administration

• Updates based on new wakeup/startup concepts

• Detailed explanation for post-build time configuration

• "Slimming" of LIN stack description

• ICC2 figure

• Document meta information extended

• Small layout adaptations made

06.02.2007 2.1.0 AUTOSAR
Administration

• ICC clustering added.

• Document contents harmonized

• Legal disclaimer revised

• Release Notes added

• “Advice for users” revised

• “Revision Information” added

21.03.2006 2.0.0 AUTOSAR
Administration

Rework Of:

• Error Handling

• Scheduling Mechanisms

More updates according to architectural decisions in R2.0

31.05.2005 1.0.1 AUTOSAR
Administration

Correct version released

09.05.2005 1.0.0 AUTOSAR
Administration

Initial release

Document Information

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 6

Disclaimer

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for the purpose of information only. AUTOSAR
and the companies that have contributed to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types of Intellectual Property Rights. The
commercial exploitation of the material contained in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form or by any means, for informational
purposes only.

For any other purpose, no part of the specification may be utilized or reproduced, in any form or by any means, without
permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only. They have neither been developed, nor
tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary reference models, "use cases", and/or references
to exemplary technical solutions, devices, processes or software).

Any such exemplary items are contained in the Specification Documents for illustration purposes only, and they themselves are
not part of the AUTOSAR Standard. Neither their presence in such Specification Documents, nor any later documentation of
AUTOSAR conformance of products actually implementing such exemplary items, imply that intellectual property rights covering
such exemplary items are licensed under the same rules as applicable to the AUTOSAR Standard.

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 7

ID: 00 – Overview

Overview

Part 1 – Introduction, Scope and Limitations

Part 2 – Overview of Software Layers

Part 3 – Contents of Software Layers

Part 4 – Interfaces

4.1 General Rules

4.2 Interaction of Layers – Example “Memory”

4.3 Interaction of Layers – Example “Communication”

4.4 Interaction of Layers – Example “ECU State Manager”

Part 5 – Configuration

Part 6 – Scheduling

Part 7 – Implementation Conformance Classes

Part 8 – Integration and Runtime aspects

8.1 Error Handling and Reporting Concept

8.2 Partial Networking

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 8

ID: 01 – Layered Software Architecture

Part 1 – Introduction, Scope and Limitations

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 9

Part 1 – Introduction, Scope and Limitations
ID: 01-01

Purpose of this document

The Layered Software Architecture maps the identified modules of the Basic Software Module List to software layers and shows

their relationship.

This document does not contain requirements. It is a document summarizing architectural decisions and discussions of AUTOSAR.

The examples given are not meant to be complete in all respects.

This document focuses on static views of a conceptual layered software architecture. This document does not specify a structural

software architecture with detailed static and dynamic interface descriptions. This is included in the specifications of the basic

software modules.

The functionality and requirements of the Basic Software modules are specified in the module specific requirement and specification

documents.

Inputs and requirements

This document has been generated based on following documents:
 Basic Software Module List

 Specification of Virtual Functional Bus

 Several views of automotive ECU software architectures

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 10

Part 1 – Introduction, Scope and Limitations
ID: 01-02

In Scope:

Automotive ECUs having the following properties:
 Strong interaction with hardware (sensors and actuators)

 Connection to vehicle network via CAN, LIN or FlexRay

 Microcontrollers from 16 to 32 bit with limited resources of Flash and RAM (compared with Enterprise Solutions)

 Real Time Operating System

 Program execution from internal or external flash memory

Not in scope:

High end embedded applications like HMI Head Unit with High end Operating Systems like WinCE, VxWorks, QNX

containing

 Middleware concepts like OSGI, CORBA

 Graphics library

 Java Virtual Machine

 E-Mail client

 Communication systems like Bluetooth, USB, Ethernet

 Communication protocols like TCP/IP

 Flash file system

 Dynamic linking and loading of software

 Multi processor support in terms of dynamic load balancing

Extensibility:

 This SW Architecture is a generic approach. Modules can be added or existing ones can be extended in functionality, but their

configuration has to be considered in the automatic Basic SW configuration process!

 Complex drivers can easily be added

 Further Layers cannot be added

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 11

ID: 02 – Layered Software Architecture

Part 2 – Overview of Software Layers

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 12

Part 2 – Overview of Software Layers
ID: 02-01 Simplified Component View

ECU-Hardware

AUTOSAR Runtime Environment (RTE)

Actuator
Software

Component

AUTOSAR
Interface

Application
Software

Component

Sensor
Software

Component

Application
Software

Component

..............

AUTOSAR
Software

Basic Software

Standardized
Interface

AUTOSAR
Interface

AUTOSAR
Interface

AUTOSAR
Interface

Microcontroller
Abstraction

AUTOSAR
Software

Component

Standard
Software

Standardized
AUTOSAR
Interface

Services

Standardized
Interface

ECU
Abstraction

AUTOSAR
Interface

Standardized
Interface

Complex
Device
Drivers

AUTOSAR
Interface

API 2
VFB & RTE
relevant

Standardized
Interface

Communication

Standardized
Interface

Standardized
Interface

Operating
System

API 1
RTE
relevant

API 0

S
ta

n
d

a
rd

iz
e

d

In
te

fa
c

e

API 3 Private
Interfaces inside
Basic Software

possible

Interface

Note: This figure is incomplete with respect to the possible interactions between the layers. Please refer to slide ID 04-003 for additional details.

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 13

Part 2 – Overview of Software Layers
ID: 02-02 Layered View: Coarse

Complex

Drivers

Microcontroller

Microcontroller Abstraction Layer

 Services Layer

Application Layer

AUTOSAR Runtime Environment (RTE)

ECU Abstraction Layer

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 14

Part 2 – Overview of Software Layers
ID: 02-03 Layered View: Detailed

Complex

Drivers

Microcontroller

AUTOSAR Runtime Environment (RTE)

Microcontroller Drivers Memory Drivers I/O Drivers

I/O Hardware Abstraction

Memory Hardware

Abstraction

Memory Services System Services

Onboard Device

Abstraction

Communication Drivers

Communication

Hardware Abstraction

Communication Services

Application Layer

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 15

Part 2 – Overview of Software Layers
ID: 02-04 Introduction to Basic Software Layers (1)

Co

mpl

ex

Driv

ers

Microcontroller

Microcontroller Abstraction Layer

Application Layer

RTE

ECU Abstraction Layer

The Microcontroller Abstraction Layer is the lowest software layer of the Basic Software.

It contains internal drivers, which are software modules with direct access to the µC internal peripherals and memory mapped µC

external devices.

Task:

Make higher software layers independent of µC

Properties:

Implementation: µC dependent

Upper Interface: standardizable and µC independent

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 16

Part 2 – Overview of Software Layers
ID: 02-05 Introduction to Basic Software Layers (2)

The ECU Abstraction Layer interfaces the drivers of the Microcontroller Abstraction Layer. It also contains drivers for external

devices.

It offers an API for access to peripherals and devices regardless of their location (µC internal/external) and their connection to the µC

(port pins, type of interface)

Task:

Make higher software layers independent of ECU hardware layout

Properties:

Implementation: µC independent, ECU hardware dependent

Upper Interface: µC and ECU hardware independent, dependent on signal type

Co

mpl

ex

Driv

ers

Microcontroller

Microcontroller Abstraction Layer

Application Layer

RTE

ECU Abstraction Layer ECU Abstraction Layer

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 17

Part 2 – Overview of Software Layers
ID: 02-06 Introduction to Basic Software Layers (3)

The Services Layer is the highest layer of the Basic Software which also applies for its relevance for the application software: while

access to I/O signals is covered by the ECU Abstraction Layer, the Services Layer offers
 Operating system functionality

 Vehicle network communication and management services

 Memory services (NVRAM management)

 Diagnostic Services (including UDS communication, error memory and fault treatment)

 ECU state management, mode management

Task:

Provide basic services for application and basic software modules.

Properties:

Implementation: partly µC, ECU hardware and application specific

Upper Interface: µC and ECU hardware independent

Co

mpl

ex

Driv

ers

Microcontroller

Microcontroller Abstraction Layer

Application Layer

RTE

ECU Abstraction Layer

Services Layer

ECU Abstraction Layer

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 18

Part 2 – Overview of Software Layers
ID: 02-07 Introduction to Basic Software Layers (4)

The RTE is a layer providing communication services to the application software (AUTOSAR Software Components and/or

AUTOSAR Sensor/Actuator components).

Above the RTE the software architecture style changes from “layered“ to “component style“. The AUTOSAR Software Components

communicate with other components (inter and/or intra ECU) and/or services via the RTE.

Task:

Make AUTOSAR Software Components independent from the mapping to a specific ECU

Properties:

Implementation: ECU and application specific (generated individually for each ECU)

Upper Interface: completely ECU independent

Co

mpl

ex

Driv

ers

Microcontroller

Microcontroller Abstraction Layer

Application Layer

AUTOSAR Runtime Environment (RTE)

ECU Abstraction Layer

Services Layer

ECU Abstraction Layer

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 19

Part 2 – Overview of Software Layers
ID: 02-08 Introduction to Basic Software Layers (5)

The Basic Software can be subdivided into the following types of services:

 Input/Output (I/O)

 Standardized access to sensors, actuators and ECU onboard peripherals

 Memory

 Standardized access to internal/external memory (non volatile memory)

 Communication

 Standardized access to: vehicle network systems, ECU onboard communication systems and ECU internal SW

 System

 Provision of standardisable (operating system, timers, error memory) and ECU specific (ECU state management,

 watchdog manager) services and library functions

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 20

Driver

A driver contains the functionality to control and access an internal or an external device.

Internal devices are located inside the microcontroller. Examples for internal devices are

 Internal EEPROM

 Internal CAN controller

 Internal ADC

A driver for an internal device is called internal driver and is located in the Microcontroller Abstraction Layer.

External devices are located on the ECU hardware outside the microcontroller. Examples for external devices are

 External EEPROM

 External watchdog

 External flash

A driver for an external device is called external driver and is located in the ECU Abstraction Layer. It accesses the external device via

drivers of the Microcontroller Abstraction Layer.

Example: a driver for an external EEPROM with SPI interface accesses the external EEPROM via the SPIHandlerDriver.

Exception:

The drivers for memory mapped external devices (e.g. external flash memory) may access the microcontroller directly. Those external

drivers are located in the Microcontroller Abstraction Layer because they are microcontroller dependent.

Part 2 – Overview of Software Layers
ID: 02-09 Introduction to Basic Software Module Types (1)

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 21

Interface

An Interface contains the functionality to abstract the hardware realization of a specific device for upper layers. It provides a generic

API to access a specific type of device independent on the number of existing devices of that type and independent on the hardware

realization of the different devices.

The interface does not change the content of the data.

In general, interfaces are located in the ECU Abstraction Layer.

Example: an interface for a CAN communication system provides a generic API to access CAN communication networks independent

on the number of CAN Controllers within an ECU and independent of the hardware realization (on chip, off chip).

Handler

A handler is a specific interface which controls the concurrent, multiple and asynchronous access of one or multiple clients to one or

more drivers. I.e. it performs buffering, queuing, arbitration, multiplexing.

The handler does not change the content of the data.

Handler functionality is often incorporated in the driver or interface (e.g. SPIHandlerDriver, ADC Driver).

Part 2 – Overview of Software Layers
ID: 02-10 Introduction to Basic Software Module Types (2)

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 22

Part 2 – Overview of Software Layers
ID: 02-11 Introduction to Basic Software Module Types (3)

Manager

A manager offers specific services for multiple clients. It is needed in all cases where pure handler functionality is not enough for
accessing and using drivers.

Besides handler functionality, a manager can evaluate and change or adapt the content of the data.

In general, managers are located in the Services Layer

Example: The NVRAM manager manages the concurrent access to internal and/or external memory devices like flash and
EEPROM memory. It also performs management of RAM mirrors, redundant, distributed and reliable data storage, data
checking, provision of default values etc. For details refer to the AUTOSAR requirements documents.

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 23

ID: 03 – Layered Software Architecture

Part 3 – Contents of Software Layers

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 24

Microcontroller

A
D

C

D
IO

C
C

U

I/O Drivers

P
O

R
T

 D
ri
v
e
r

A
D

C
 D

ri
v
e
r

D
IO

 D
ri
v
e
r

P
W

M
 D

ri
v
e
r

IC
U

 D
ri
v
e
r

P
W

M

Part 3 – Contents of Software Layers
ID: 03-01 Scope: Microcontroller Abstraction Layer

L
IN

 o
r

S
C

I

C
A

N

S
P

I

E
E

P
R

O
M

F
L

A
S

H

W
D

T

G
P

T

Microcontroller Drivers Communication Drivers Memory Drivers

R
A

M
 T

e
s
t

C
A

N
 D

ri
v
e
r

in
te

rn
a
l
E

E
P

R
O

M
 D

ri
v
e
r

in
te

rn
a
l
F

la
s
h
 D

ri
v
e
r

W
a
tc

h
d
o
g
 D

ri
v
e
r

L
IN

 D
ri
v
e
r

M
C

U
 D

ri
v
e
r

F
le

x
R

a
y
 D

ri
v
e
r

C
o
re

 T
e

s
t

G
P

T
 D

ri
v
e
r

S
P

IH
a
n
d
le

rD
ri
v
e
r

The µC Abstraction Layer consists of the following module groups:

 Communication Drivers

Drivers for ECU onboard (e.g. SPI) and vehicle communication (e.g. CAN). OSI-Layer: Part of Data Link Layer

 I/O Drivers

Drivers for analog and digital I/O (e.g. ADC, PWM, DIO)

 Memory Drivers

Drivers for on-chip memory devices (e.g. internal Flash, internal EEPROM) and memory mapped external memory devices (e.g.

external Flash)

 Microcontroller Drivers

Drivers for internal peripherals (e.g. Watchdog, General Purpose Timer)

Functions with direct µC access (e.g. Core test)

Software

module

internal

peripheral

device

Group of

Software

modules of

similar type

M
C

U

P
o
w

e
r

&

C
lo

c
k
 U

n
it

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 25

Part 3 – Contents of Software Layers
ID: 03-02 Scope: Complex Drivers

A Complex Driver is a module which implements non-standardized functionality within the basic software stack.

An example is to implement complex sensor evaluation and actuator control with direct access to the µC using specific interrupts

and/or complex µC peripherals (like PCP, TPU), e.g.

 Injection control

 Electric valve control

 Incremental position detection

Task:

Fulfill the special functional and timing requirements for handling complex

sensors and actuators

Properties:

Implementation: highly µC, ECU and application dependent

Upper Interface: specified and implemented according to AUTOSAR (AUTOSAR interface)

Complex Drivers

E
le

c
tr

ic
 V

a
lv

e
 C

o
n
tr

o
l

In
je

c
ti
o

n
 C

o
n
tr

o
l

In
c
re

m
e
n
ta

l
P

o
s
it
io

n
 D

e
te

c
ti
o

n

C
o
m

p
le

x
 D

e
v
ic

e
 D

ri
v
e
r

X
Y

µC

e
.g

.
C

C
U

e
.g

.
P

C
P

e
.g

.
T

P
U

Example:

Microcontroller (µC)

Micro-controller

Drivers
Memory Drivers

C
o
m

p
le

x
 D

ri
v
e
rs

Communi-

cation Drivers

I/O

Drivers

Application Layer

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 26

Part 3 – Contents of Software Layers
ID: 03-04 Scope: Communication Hardware Abstraction

The Communication Hardware Abstraction is a group of modules which abstracts from the location of communication controllers

and the ECU hardware layout. For all communication systems a specific Communication Hardware Abstraction is required (e.g. for

LIN, CAN, FlexRay).

Example: An ECU has a microcontroller with 2 internal CAN channels and an additional on-board ASIC with 4 CAN controllers. The

CAN-ASIC is connected to the microcontroller via SPI.

The communication drivers are accessed via bus specific interfaces (e.g. CAN Interface).

Task:

Provide equal mechanisms to access a bus channel regardless of it‘s location

 (on-chip / on-board)

Properties:

Implementation: µC independent, ECU hardware dependent and external device

dependent

Upper Interface: bus dependent, µC and ECU hardware independent

Communication Hardware Abstraction

CAN Interface

Driver for ext.

CAN ASIC

Example:

µC

C
A

N

S
P

I

Communication Drivers

C
A

N
 D

ri
v
e
r

S
P

IH
a
n
d
le

r

D
ri
v
e
r

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-controller

Drivers
Memory Drivers

Communi-

cation Drivers

COM HW

Abstraction

I/O

Drivers

I/O HW

Abstraction

I/O Drivers

D
IO

 D
ri
v
e
r

D
IO

CAN

Trans-

ceiver

Driver

Application Layer

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 27

Part 3 – Contents of Software Layers
ID: 03-16 Scope: SPIHandlerDriver

The SPIHandlerDriver allows concurrent access of several clients to one or more SPI busses.

To abstract all features of a SPI microcontroller pins dedicated to Chip Select, those shall directly be handled by the SPIHandlerDriver.

That means those pins shall not be available in DIO Driver.

Example:

Memory Hardware

Abstraction

I/O Hardware Abstraction

 µC SPI

Communication Drivers

SPIHandlerDriver

Driver for ext.

I/O ASIC

Driver for ext.

ADC ASIC

Onboard Device

Abstraction

External

Watchdog Driver

External

EEPROM

Driver

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 28

Part 3 – Contents of Software Layers
ID: 03-03 Scope: I/O Hardware Abstraction

The I/O Hardware Abstraction is a group of modules which abstracts from the location of peripheral I/O devices (on-chip or on-

board) and the ECU hardware layout (e.g. µC pin connections and signal level inversions). The I/O Hardware Abstraction does not

abstract from the sensors/actuators!

The different I/O devices are accessed via an I/O signal interface.

Task:

Represent I/O signals as they are connected to the ECU hardware (e.g. current, voltage, frequency).

Hide ECU hardware and layout properties from higher software layers.

Properties:

Implementation: µC independent, ECU hardware dependent

Upper Interface: µC and ECU hardware independent, dependent on signal type

 specified and implemented according to AUTOSAR

 (AUTOSAR interface)

COM Drivers

I/O Hardware Abstraction

I/O Signal Interface

Driver for ext.

I/O ASIC

Example:

µC

I/O Drivers

D
IO

 D
ri
v
e
r

S
P

IH
a
n
d
le

r

D
ri
v
e
r

S
P

I

D
IO

Driver for ext.

ADC ASIC

A
D

C
 D

ri
v
e
r

A
D

C

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-controller

Drivers
Memory Drivers

Communi-

cation Drivers

I/O

Drivers

I/O HW

Abstraction

Application Layer

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 29

Part 3 – Contents of Software Layers
ID: 03-05 Scope: Memory Hardware Abstraction

The Memory Hardware Abstraction is a group of modules which abstracts from the location of peripheral memory devices (on-chip

or on-board) and the ECU hardware layout.

Example: on-chip EEPROM and external EEPROM devices should be accessible via an equal mechanism.

The memory drivers are accessed via memory specific abstraction/emulation modules (e.g. EEPROM Abstraction).

By emulating an EEPROM abstraction on top of Flash hardware units a common access via Memory Abstraction Interface to both

types of hardware is enabled.

Task:

Provide equal mechanisms to access internal (on-chip) and external (on-board)

memory devices and type of memory hardware (EEPROM, Flash).

Properties:

Implementation: µC independent, external device dependent

Upper Interface: µC, ECU hardware and memory device independent

COM Drivers

Memory Hardware Abstraction

Example:

µC

Memory Drivers

E
E

P
R

O
M

D
ri
v
e
r

S
P

IH
a
n
d
le

r

D
ri
v
e
r

S
P

I

E
E

P
R

O
M

 C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-controller

Drivers
Memory Drivers

Memory HW

Abstraction

Communi-

cation Drivers

COM HW

Abstraction

I/O

Drivers

I/O HW

Abstraction

Application Layer

F
la

s
h

In
te

rn
a
l

F
la

s
h

D

ri
v
e
r

E
x
te

rn
a
l

F
la

s
h

D
ri
v
e
r

Memory Abstraction Interface

External

EEPROM Driver

EEPROM Abstraction
Flash

EEPROM

Emulation

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 30

Part 3 – Contents of Software Layers
ID: 03-06 Scope: Onboard Device Abstraction

The Onboard Device Abstraction contains drivers for ECU onboard devices which cannot be seen as sensors or actuators like

internal or external watchdogs. Those drivers access the ECU onboard devices via the µC Abstraction Layer.

Task:

Abstract from ECU specific onboard devices.

Properties:

Implementation: µC independent, external device dependent

Upper Interface: µC independent, partly ECU hardware dependent

COM Drivers

Onboard Device Abstraction

Example:

µC

I/O Drivers

S
P

IH
a
n
d
le

r

D
ri
v
e
r

S
P

I

in
te

rn
a
l

w
a
tc

h
d
o
g

d
ri
v
e
r

W
d
g

External

Watchdog Driver

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-controller

Drivers
Memory Drivers

Memory HW

Abstraction
Onboard Dev.

Abstraction

Communi-

cation Drivers

COM HW

Abstraction

I/O

Drivers

I/O HW

Abstraction

Application Layer

Watchdog Interface

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 31

Part 3 – Contents of Software Layers
ID: 03-07 Scope: Communication Services – General

The Communication Services are a group of modules for vehicle network communication (CAN, LIN and FlexRay). They are

interfacing with the communication drivers via the communication hardware abstraction.

Task:

1. Provide a uniform interface to the vehicle network for communication.

2. Provide uniform services for network management

3. Provide uniform interface to the vehicle network for diagnostic communication

4. Hide protocol and message properties from the application.

Properties:

Implementation: µC and ECU HW independent, partly dependent on bus type

Upper Interface: µC, ECU hardware and bus type independent

The communication services will be detailed for each relevant vehicle network system on the following pages.

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-controller

Drivers
Memory Drivers

Memory HW

Abstraction
Onboard Dev.

Abstraction

Communi-

cation Drivers

Communi-

cation

Services

COM HW

Abstraction

I/O

Drivers

I/O HW

Abstraction

Application Layer

Communication Services

<Bus specific>

Transport Protocol

PDU Router

DCM

Diagnostic

Com.

Manager

AUTOSAR

COM

<Bus

specific>

 NM IPDU

Multiplexer

Color code: Bus specific modules are marked gray.

Generic NM

Interface

<Bus

specific>

 State

Manager

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 32

I/O Drivers

The CAN Communication Services are a group of modules for vehicle network

communication with the communication system CAN.

Task:

 Provide a uniform interface to the CAN network. Hide protocol and message

properties from the application.

Properties:

 Implementation: µC and ECU HW independent, partly dependent on CAN.

 AUTOSAR COM, Generic NM Interface and Diagnostic Communication Manager

are the same for all vehicle network systems and exist as one instance per ECU.

Generic NM Interface contains only a dispatcher. No further functionality is

included. In case of gateway ECUs it is replaced by the NM GW which in addition

provides the functionality to synchronize multiple different networks (of the same

or different types) to synchronously wake them up or shut them down.

 CAN Generic NM is specific for CAN networks and will be instantiated per CAN

vehicle network system. CAN Generic NM interface with CAN via underlying

network adapter (CAN NM).

 The communication system specific Can State Manager handles the

communication system dependent Start-up and Shutdown features. Furthermore

it controls the different options of COM to send PDUs and to monitor signal

timeouts.

 A signal gateway is part of AUTOSAR COM to route signals.

 PDU based Gateway is part of PDU router.

 IPDU multiplexing provides the possibility to add information to enable the

multiplexing of I-PDUs (different contents but same IDs).

 Upper Interface: µC, ECU hardware and network type independent (goal)

 For refinement of GW architecture please refer to slide 04-050.

Communication Services

Part 3 – Contents of Software Layers
ID: 03-08 Scope: Communication Stack – CAN

Communication Drivers

Communication Hardware Abstraction

CAN Driver

Driver for ext.

CAN ASIC

SPIHandler

Driver

CAN Transport

Protocol

PDU Router

DCM

Diagnostic

Com.

Manager

AUTOSAR

COM

CAN NM

 µC SPI CAN

External

CAN Controller

CAN Interface

IPDU

multi-

plexer

CAN Transceiver

Driver

DIO Driver

Generic NM

Interface

CAN

State

Manager

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 33

Communication Hardware Abstraction

Communication Drivers

 µC

The LIN Communication Services are a group of modules for vehicle network communication

with the communication system LIN.

Task:

 Provide a uniform interface to the LIN network. Hide protocol and message properties from

the application.

Properties:

The LIN Communication Services contain:

 A LIN 2.0 compliant communication stack with

 Schedule table manager for transmitting LIN frames and to handle requests to switch to

other schedule tables.

 Transport protocol, used for diagnostics

 A WakeUp and Sleep Interface

 An underlying LIN Driver:

• implementing the LIN protocol and adaptation the specific hardware

• Supporting both simple UART and complex frame based LIN hardware

Note: Integration of LIN into AUTOSAR:

 The scheduler manager and its interfaces are used to decide the point of time to send a

LIN frame.

 Lin Interface controls the WakeUp/Sleep API and allows the slaves to keep the bus awake

(decentralized approach).

 The PDU router accesses the LIN Interface on PDU-Level, not on signal level.

 The communication system specific LIN State Manager handles the communication

dependent Start-up and Shutdown features. Furthermore it controls the communication

mode requests from the Communication Manager. The LIN state manager also controls

the I-PDU groups by interfacing COM.

When sending a LIN frame, the LIN Interface requests the data for the frame (I-PDU) from

the PDU Router at the point in time when it requires the data (i.e. after sending the LIN

frame header).

SCI

LIN Driver

Part 3 – Contents of Software Layers
ID: 03-15 Scope: Communication Stack – LIN

Communication Services

PDU Router

DCM

Diagnostic

Com.

Manager

AUTOSAR

COM

LIN State

Manager

LIN Interface

(„LIN Master Communication Stack“)

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 34

I/O Drivers

Communication Services

Part 3 – Contents of Software Layers
ID: 03-09 Scope: Communication Stack – FlexRay

Communication Hardware Abstraction

 Communication Drivers

FlexRay

NM

FlexRay

Transport

Protocol

PDU Router

The FlexRay Communication Services are a group of modules for vehicle

network communication with the communication system FlexRay.

Task:

 Provide a uniform interface to the FlexRay network. Hide protocol and

message properties from the application.

Properties:

 Implementation: µC and ECU HW independent, partly dependent on

FlexRay.

 AUTOSAR COM, Generic NM Interface and Diagnostic Communication

Manager are the same for all vehicle network systems and exist as one

instance per ECU.

Generic NM Interface contains only a dispatcher. No further

functionality is included. In case of gateway ECUs, it is replaced by the

NM GW which in addition provides the functionality to synchronize

multiple different networks (of the same or different types) to

synchronously wake them up or shut them down.

 FlexRay NM is specific for FlexRay networks and will be instantiated

per FlexRay vehicle network system.

 The communication system specific FlexRay State Manager handles

the communication system dependent Start-up and Shutdown features.

Furthermore it controls the different options of COM to send PDUs and

to monitor signal timeouts.

 A signal Gateway is part of AUTOSAR COM to route signals.

 PDU based Gateway is part of PDU Router.

 IPDU multiplexing provides the possibility to add information to enable

the multiplexing of I-PDUs (different contents but same IDs).

DCM

Diagnostic

Com.

Manager

AUTOSAR

COM

FlexRay Interface

IPDU

multi-

plexer

Host µC Internal FlexRay Controller

Data lines

Control/status lines

External

FlexRay Controller

(e.g. MFR 4200)

External

FlexRay Transceiver

(e.g. TJA 1080)

Driver for internal FlexRay Controller

Driver for external

FlexRay Controller

Driver for FlexRay

Transceiver

SPIHandlerDriver DIO Driver

Generic

NM

Interface

FlexRay

State

Manager

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 35

Part 3 – Contents of Software Layers
ID: 03-10 Scope: Communication Services – LIN Slave

LIN Slave Application

 Communication Drivers

LIN Communication

Stack

LIN Slaves usually are „intelligent“ actuators and slaves that are seen as black boxes. As they provide very little hardware capabilities

and resources it is not intended to shift AUTOSAR SW Components on LIN Slaves.

LIN Slave ECUs can be integrated into the AUTOSAR VFB using their Node Capability Descriptions. They are seen as non-

AUTOSAR ECUs. Please reference to the VFB specification.

That means: LIN Slaves can be connected as complete ECUs. But they are not forced to use the AUTOSAR SW Architecture.

Perhaps they can use some standard AUTOSAR modules (like EEPROM, DIO).

Reason: LIN slaves usually have very limited memory resources or are ASICs with „hard-coded“ logic.

µC SCI

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 36

Part 3 – Contents of Software Layers
ID: 03-12 Scope: Memory Services

The Memory Services consist of one module, the NVRAM Manager. It is responsible for the management of non volatile data

(read/write from different memory drivers). The application expects a RAM mirror as data interface for fast read access.

Task: Provide non volatile data to the application in a uniform way. Abstract from memory locations and properties. Provide

mechanisms for non volatile data management like saving, loading, checksum protection and verification, reliable storage etc.

Properties:

Implementation: µC and ECU hardware independent, highly configurable

Upper Interface: µC and ECU hardware independent

 specified and implemented according to AUTOSAR

 (AUTOSAR interface)

Example:

Memory Services

NVRAM Manager
C

o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-controller

Drivers
Memory Drivers

Memory HW

Abstraction
Onboard Dev.

Abstraction

Memory

Services

Communi-

cation Drivers

Communi-

cation Services

COM HW

Abstraction

I/O

Drivers

I/O HW

Abstraction

Application Layer

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 37

Part 3 – Contents of Software Layers
ID: 03-13 Scope: System Services

The System Services are a group of modules and functions which can be used by modules of all layers. Examples are Real Time

Operating System (which includes timer services), Error Manager.

Some of these services are µC dependent (like OS), partly ECU hardware and application dependent (like ECU State Manager) or

hardware and µC independent.

Task:

Provide basic services for application and

basic software modules.

Properties:

Implementation: partly µC, ECU hardware and

 application specific

Upper Interface: µC and ECU hardware independent

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-controller

Drivers
Memory Drivers

Memory HW

Abstraction
Onboard Dev.

Abstraction

Memory

Services
System Services

Communi-

cation Drivers

Communi-

cation Services

COM HW

Abstraction

I/O

Drivers

I/O HW

Abstraction

Application Layer

System Services

B
S

W
 S

c
h
e
d
u
le

r

F
IM

F
u

n
c
ti
o

n
 I

n
h
ib

it
io

n

M
a
n
a
g
e
r

Example:

W
a
tc

h
d
o
g
 M

a
n
a
g
e
r

D
e
v
e
lo

p
m

e
n
t

E
rr

o
r

T
ra

c
e
r

D
E

M

D
ia

g
n
o
s
ti
c
 E

v
e
n
t

M
a
n
a
g
e
r

C
o
m

m
u
n
ic

a
ti
o

n

M
a
n
a
g
e
r

A
U

T
O

S
A

R
 O

S

B
S

W
 M

o
d
e
 M

a
n
a
g
e
r

E
C

U
 S

ta
te

 M
a
n
a
g
e
r

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 38

Part 3 – Contents of Software Layers
ID: 03-14 Scope: Sensor/Actuator AUTOSAR Software Components

The Sensor/Actuator AUTOSAR Software Component is a specific type of AUTOSAR Software Component for sensor evaluation

and actuator control. Though not belonging to the AUTOSAR Basic Software, it is described here due to its strong relationship to local

signals. It has been decided to locate the Sensor/Actuator SW Components above the RTE for integration reasons (standardized

interface implementation and interface description). Because of their strong interaction with raw local signals, relocatability is restricted.

Tasks and interfaces are similar to that of a Complex Driver. Examples of tasks of a Sensor/Actuator Component are switch

debouncing, battery voltage monitoring, DC motor control, lamp control etc.

Task:

Abstract from the specific physical properties of sensors

and actuators.

Properties:

Implementation: µC and ECU HW independent,

sensor and actuator dependent

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Memory HW

Abstraction

RTE

Communi-

cation Drivers

Communi-

cation Services

COM HW

Abstraction

I/O

Drivers

I/O HW

Abstraction

Micro-controller

Drivers

Onboard Dev.

Abstraction

System Services

Application Layer

Memory Drivers

Memory

Services

Application Layer

Actuator
Software

Component

Sensor
Software

Component

Example:

RTE

Basic Software

Interfaces to (e.g.)

• I/O HW Abstraction (access to I/O signals)

• Memory Services (access to calibration data)

• System Services (access to Error Manager)

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 39

ID: 04-001 – Layered Software Architecture

Part 4 – Interfaces

4.1 General Rules

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 40

Part 4 – Interfaces
ID: 04-004 Type of Interfaces in AUTOSAR

AUTOSAR Interface

An "AUTOSAR Interface" defines the information exchanged between software
components and/or BSW modules. This description is independent of a specific
programming language, ECU or network technology. AUTOSAR Interfaces are
used in defining the ports of software-components and/or BSW modules. Through
these ports software-components and/or BSW modules can communicate with
each other (send or receive information or invoke services). AUTOSAR makes it
possible to implement this communication between Software-Components and/or
BSW modules either locally or via a network.

Standardized AUTOSAR Interface

A "Standardized AUTOSAR Interface" is an "AUTOSAR Interface" whose syntax
and semantics are standardized in AUTOSAR. The "Standardized AUTOSAR
Interfaces" are typically used to define AUTOSAR Services, which are standardized
services provided by the AUTOSAR Basic Software to the application Software-
Components.

Standardized Interface

A "Standardized Interface" is an API which is standardized within AUTOSAR
without using the "AUTOSAR Interface" technique. These "Standardized
Interfaces" are typically defined for a specific programming language (like "C").
Because of this, "standardized interfaces" are typically used between software-
modules which are always on the same ECU. When software modules
communicate through a "standardized interface", it is NOT possible any more to
route the communication between the software-modules through a network.

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 41

Part 4.1 – Interfaces: General Rules
ID: 04-002 General Interfacing Rules

Horizontal Interfaces

• Services Layer: horizontal interfaces are allowed

Example: Error Manager saves fault data using the

NVRAM manager

• ECU Abstraction Layer: horizontal interfaces are allowed

• A complex driver may use selected other BSW modules

• µC Abstraction Layer: horizontal interfaces are not

allowed. Exception: configurable notifications are allowed

due to performance reasons.

Microcontroller (µC)

Vertical Interfaces

• One Layer may access all interfaces of the SW layer below

• Bypassing of one software layer should be avoided

• Bypassing of two or more software layers is not allowed

• Bypassing of the µC Abstraction Layer is not allowed

• A module may access a lower layer module of another

layer group (e.g. SPI for external hardware)

AUTOSAR

SW Comp

1

AUTOSAR

SW Comp

3

AUTOSAR

SW Comp

4

AUTOSAR

SW Comp

5

All layers may interact with system services.

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 42

Part 4.1 – Interfaces: General Rules
ID: 04-003 Layer Interaction Matrix

This matrix shows the possible interactions between AUTOSAR Basic Software layers

 “is allowed to use”
 ”is not allowed to use”

“restricted use (callback only)”

The matrix is read row-wise:
Example: “I/O Drivers are allowed

to use System Services and
Hardware, but no other layers”.

(gray background indicates “non-Basic Software” layers)

uses

S
y
s
te

m
 S

e
rv

ic
e

s

M
e
m

o
ry

 S
e
rv

ic
e
s

C
o

m
m

u
n
ic

a
ti
o
n
 S

e
rv

ic
e

s

C
o

m
p
le

x
 D

ri
v
e
rs

I/
O

 H
a
rd

w
a
re

 A
b
s
tr

a
c
ti
o
n

O
n
b
o

a
rd

 D
e
v
ic

e
 A

b
s
tr

a
c
ti
o
n

M
e
m

o
ry

 H
a
rd

w
a
re

 A
b
s
tr

a
c
ti
o
n

C
o

m
m

u
n
ic

a
ti
o
n
 H

a
rd

w
a

re
 A

b
s
tr

a
c
ti
o
n

M
ic

ro
c
o
n
tr

o
lle

r
D

ri
v
e
rs

M
e
m

o
ry

 D
ri
v
e
rs

C
o

m
m

u
n
ic

a
ti
o
n
 D

ri
v
e

rs

I/
O

 D
ri
v
e
rs

AUTOSAR SW Components / RTE            

System Services            

Memory Services            

Communication Services            

Complex Drivers            

I/O Hardware Abstraction            

Onboard Device Abstraction            

Memory Hardware Abstraction            

Communication Hardware Abstraction            

Microcontroller Drivers            

Memory Drivers            

Communication Drivers            

I/O Drivers            

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Part 4.1 – Interfaces: General Rules
ID: 04-005 Interfacing with Complex Drivers (1)

Complex Drivers may need to interface to other modules
in the layered software architecture, or modules in
the layered software architecture may need to interface
to a Complex Driver. If this is the case,
the following rules apply:

1. Interfacing from modules of the layered software architecture to Complex Drivers

This is only allowed if the Complex Driver offers an interface which can be generically configured by the
accessing AUTOSAR module.

A typical example is the PDU Router: a Complex Driver may implement the interface module of a new bus
system. This is already taken care of within the configuration of the PDU Router.

2. Interfacing from a Complex Driver to modules of the layered software architecture

Again, this is only allowed if the respective modules of the layered software architecture offer the interfaces,
and are prepared to be accessed by a Complex Driver. Usually this means that

 The respective interfaces are defined to be re-entrant.

 If call back routines are used, the names are configurable

 No upper module exists which does a management of states of the module (parallel access would change
states without being noticed by the upper module)

Page 43

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Part 4.1 – Interfaces: General Rules
ID: 04-006 Interfacing with Complex Drivers (2)

In general, it is possible to access the following modules:

 The PDU Router as exclusive bus and protocol independent access point to the communication stack

 The CAN/FlexRay specific interface modules as exclusive bus specific access point to the communication
stack

 The NM Interface module as exclusive access point to the network management stack

 The Communication Manager (only from upper layer) and the Basic Software Mode Manager
as exclusive access points to state management

Still, for each module it is necessary to check if the respective function is marked as being re-entrant. For
example, ‘init’ functions are usually not re-entrant and should only be called by the ECU State Manager.

Page 44

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 45

ID: 04-020 – Layered Software Architecture

Part 4 – Interfaces

4.2 Interaction of Layers – Example “Memory”

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 46

Part 4.2 – Interfaces: Interaction of Layers – Example “Memory”
ID: 04-021 Introduction

The following pages explain using the example „memory“:

 How do the software layers interact?

 How do the software interfaces look like?

 What is inside the ECU Abstraction Layer?

 How can abstraction layers be implemented efficiently?

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 47

Memory Hardware Abstraction

Memory Abstraction Interface

Part 4.2 – Interfaces: Interaction of Layers – Example “Memory”
ID: 04-022 Example and First Look

COM Drivers

µC

SPIHandlerDriver

SPI

External

EEPROM Driver

Memory Services

NVRAM

Manager

External

EEPROM

External

Watchdog

Onboard Device

Abstraction

SPI SPI CS CS

External

Watchdog Driver

System Services

Watchdog

Manager

Wdg_Trigger()

Spi_ReadIB()

Spi_WriteIB()

MemIf_Read()

MemIf_Write()

This example shows how the NVRAM Manager and the Watchdog

Manager interact with drivers on an assumed hardware

configuration:

The ECU hardware includes an external EEPROM and an external

watchdog connected to the microcontroller via the same SPI.

The SPIHandlerDriver controls the concurrent access to the SPI

hardware and has to give the watchdog access a higher priority than

the EEPROM access.

The microcontroller includes also an internal flash which is used in

parallel to the external EEPROM. The EEPROM Abstraction and the

Flash EEPROM Emulation have an API that is semantically

identical.

The Memory Abstraction Interface can be realized in the following

ways:

 routing during runtime based on device index (int/ext)

 routing during runtime based on the block index (e.g. > 0x01FF =

external EEPROM)

 routing during configuration time via ROM tables with function

pointers inside the NVRAM Manager (in this case the Memory

Abstraction Interface only exists „virtually“)

EEPROM

Abstraction

Memory Drivers

Internal

Flash Driver

Flash

Fls_Read()

Fls_Write()

Flash EEPROM

Emulation

Fee_Read()

Fee_Write()

Watchdog Interface

WdgIf_Trigger()

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 48

Part 4.2 – Interfaces: Interaction of Layers – Example “Memory”
ID: 04-023 Closer Look at Memory Hardware Abstraction

Architecture Description

The NVRAM Manager accesses drivers via the Memory Abstraction

Interface. It addresses different memory devices using a device

index.

Interface Description

The Memory Abstraction Interface could have the following interface

(e.g. for the write function):

Std_ReturnType MemIf_Write

(

 uint8 DeviceIndex,

 uint16 BlockNumber,

 uint8 *DataBufferPtr

)

The EEPROM Abstraction as well as the Flash EEPROM Emulation

could have the following interface (e.g. for the write function):

Std_ReturnType Ea_Write

(

 uint16 BlockNumber,

 uint8 *DataBufferPtr

)

Memory Hardware Abstraction

Memory Abstraction Interface

Flash

EEPROM Emulation
EEPROM Abstaction

Memory Services

NVRAM

Manager

MemIf_Write(

 DeviceIndex,

 BlockNumber,

 DataBufferPtr)

Fee_Write(

 BlockNumber,

 DataBufferPtr)

Ea_Write(

 BlockNumber,

 DataBufferPtr)

Nvm_Write(BlockIndex)

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 49

Part 4.2 – Interfaces: Interaction of Layers – Example “Memory”
ID: 04-024 Implementation of Memory Abstraction Interface (1)

Situation 1: only one NV device type used

This is the usual use case. In this situation, the Memory Abstraction could be implemented as a simple macro which neglects the

DeviceIndex parameter. The following example shows the write function only:

File MemIf.h:
#include “Ea.h“ /* for providing access to the EEPROM Abstraction */

...

#define MemIf_Write(DeviceIndex, BlockNumber, DataBufferPtr) \

 Ea_Write(BlockNumber, DataBufferPtr)

File MemIf.c:

Does not exist

Result:

No additional code at runtime, the NVRAM Manager virtually accesses the EEPROM Abstraction or the Flash Emulation directly.

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 50

Part 4.2 – Interfaces: Interaction of Layers – Example “Memory”
ID: 04-025 Implementation of Memory Abstraction Interface (2)

Situation 2: two or more different types of NV devices used

In this case the DeviceIndex has to be used for selecting the correct NV device. The implementation can also be very efficient by

using an array of pointers to function. The following example shows the write function only:

File MemIf.h:

extern const WriteFctPtrType WriteFctPtr[2];

#define MemIf_Write(DeviceIndex, BlockNumber, DataBufferPtr) \

 WriteFctPtr[DeviceIndex](BlockNumber, DataBufferPtr)

File MemIf.c:
#include “Ea.h“ /* for getting the API function addresses */

#include “Fee.h“ /* for getting the API function addresses */

#include “MemIf.h“ /* for getting the WriteFctPtrType */

const WriteFctPtrType WriteFctPtr[2] = {Ea_Write, Fee_Write};

Result:

The same code and runtime is needed as if the function pointer tables would be inside the NVRAM Manager.
The Memory Abstraction Interface causes no overhead.

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 51

Part 4.2 – Interfaces: Interaction of Layers – Example “Memory”
ID: 04-026 Conclusion

Conclusions:

 Abstraction Layers can be implemented very efficiently

 Abstraction Layers can be scaled

 The Memory Abstraction Interface eases the access of the NVRAM Manager to one or more EEPROM and Flash devices

 The architectural targets and requirements are fulfilled

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 52

ID: 04-040 – Layered Software Architecture

Part 4 – Interfaces

4.3 Interaction of Layers – Example “Communication”

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 53

Layer N-1

Layer N+1

TP

Explanation of terms:

 SDU

 SDU is the abbreviation of “Service Data Unit”. It is the data

passed by an upper layer, with the request to transmit the data. It

is as well the data which is extracted after reception by the lower

layer and passed to the upper layer.

 A SDU is part of a PDU.

 PCI

 PCI is the abbreviation of “Protocol Control Information”. This

Information is needed to pass a SDU from one instance of a

specific protocol layer to another instance. E.g. it contains source

and target information.

 The PCI is added by a protocol layer on the transmission side and

is removed again on the receiving side.

 PDU

 PDU is the abbreviation of “Protocol Data Unit”. The PDU contains

SDU and PCI.

 On the transmission side the PDU is passed from the upper layer

to the lower layer, which interprets this PDU as its SDU.

Part 4.3 – Interfaces: Interaction of Layers – Example “Communication”
ID: 04-051 PDU Flow through the Layered Architecture

Layer N

data structure PDU

data structure SDU PCI

LayerN_Tx(*PDU);

void LayerN_Tx(*SDU);

LayerN+1_Tx(*PDU);

void LayerN+1_Tx(*SDU);

CAN IF

data structure SDU PCI

data structure PCI PDU

data structure PCI

data structure SDU PCI

data structure PCI PDU

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 54

Part 4.3 – Interfaces: Interaction of Layers – Example “Communication”
ID: 04-052 SDU and PDU Naming Conventions

Naming of PDUs and SDUs respects the following rules:

For PDU:

 <bus prefix> <layer prefix> - PDU

For SDU

 <bus prefix> <layer prefix> - SDU

The bus prefix and layer prefix are described in the following table:

Examples:

 I-PDU or I-SDU

 CAN FF N-PDU or FR CF N-SDU

 LIN L-PDU or FR L-SDU

ISO Layer Layer
Prefix

AUTOSAR
Modules

PDU
Name

CAN prefix LIN prefix FlexRay prefix

Layer 6:

Presentation

(Interaction)

I COM, DCM I-PDU N/A

I PDU router,
PDU multiplexer

I-PDU N/A

Layer 3:

Network Layer

N TP Layer N-PDU CAN SF

CAN FF

CAN CF

CAN FC

LIN SF

LIN FF

LIN CF

LIN FC

FR SF

FR FF

FR CF

FR FC

Layer 2:

Data Link Layer

L Driver, Interface L-PDU CAN LIN FR

SF: Single Frame

FF: First Frame

CF: Consecutive Frame

FC: Flow Control

For details on the frame types,

please refer to the AUTOSAR

Transport Protocol specifications for

CAN, LIN and FlexRay.

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 55

Part 4.3 – Interfaces: Interaction of Layers – Example “Communication”
ID: 04-050 Generic Gateway and COM Layer Structure

Routing Components

 PDU Router

 Provides routing of PDUs between
different abstract communication
controllers and upper layers

 Scale of the Router is ECU specific
(down to no size if e.g. only one
communication controller exists)

 Provides TP routing on-the-fly. Transfer
of TP data is started before full TP data
is buffered.

 COM

 Provides routing of individual signals or
groups of signals between different I-
PDUs.

 NM Gateway

 Synchronization of Network States of
different communication channels
connected to an ECU via the network
managements handled by the NM
Gateway

 Communication State Managers

 Start and Shutdown the hardware units
of the communication systems via the
interfaces.

 Control PDU groups

AUTOSAR

COM

Communication HW Abstraction

FlexRay Interface CAN Interface
LIN Interface

(incl. LIN TP)

PDU Router

RTE

N-PDU

Communication

Manager Signals

Communication Drivers

FlexRay Driver CAN Driver LIN Low Level Driver

FlexRay TP

I-PDU

DCM

Diagnostic

Communication

Manager

I-PDU1

CAN TP

I-PDU1

Í-PDU

I-PDU

I-PDU

N-PDU

L-PDU L-PDU L-PDU

IPDU

multi-

plexer

I-PDU

1 The Interface between PduR and Tp differs significantly compared to the interface between PduR and the Ifs.

In case of TP involvement a handshake mechanism is implemented allowing the transmission of I-Pdus > Frame size.

Note: This image is not complete with respect to all internal communication paths.

NM

Coordinator

Generic

NM interface

FlexRay

State

Manager

NM

Module

CAN State

Manager
LIN State

Manager

NM

Module
NM

Module

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 56

ID: 04-070 – Layered Software Architecture

Part 4 – Interfaces

4.4 Interaction of Layers –

Example “ECU State Manager”

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 57

Part 4.4 – Interfaces: Interaction of Layers – Example “ECU State Manager”
ID: 04-071 Interaction with ECU State Manager

ECU Abstraction Layer

RTE

Microcontroller Abstraction Layer

 Service Layer (except communication stack)

B
S

W
 S

c
h
e
d
u
le

r

E
C

U
 S

ta
te

 M
a
n
a
g
e
r

Watchdog Manager

Communication Manager

C
a
ll

m
a
in

 f
u
n
c
ti
o
n
s

a
n
d
 a

c
c
e
s
s

re
s
tr

ic
te

d
 a

re
a
s

NVRAM Manager
Job End Notification

initializes

initializes

initializes

Communication Services Post build selectable Configuration tables

1

2

DEM

ComM

WdgM

…

DEM

DET

R
e
p
o
rt

 E
rr

o
r

Report Error

S
to

re
 E

rr
o
rs

initializes

Request/release

RUN

This figure does not show all interactions between all modules. It is a discussion base only.

3

DEM

ComM

WdgM

…

DEM

ComM

WdgM

…

CAN State Manager

FlexRay State Manager

LIN State Manager
initializes

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 58

ID: 05 – Layered Software Architecture

Part 5 – Configuration

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 59

Part 5 – Configuration
ID: 05-000 Overview

The AUTOSAR Basic Software supports the following configuration classes:

1. Pre compile time

 Preprocessor instructions

 Code generation (selection or synthetization)

2. Link time

 Constant data outside the module; the data can be configured after the module has been compiled

3. Post build time

 Loadable constant data outside the module. Very similar to [2], but the data is located in a specific memory segment that
allows reloading (e.g. reflashing in ECU production line)

 Single or multiple configuration sets can be provided. In case that multiple configuration sets are provided, the actually
used configuration set is to be specified at runtime.

In many cases, the configuration parameters of one module will be of different configuration classes.

Example: a module providing post build time configuration parameters will still have some parameters that are pre compile time

configurable.

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 60

Part 5 – Configuration
ID: 05-001 Pre Compile Time

Use cases

Pre compile time configuration would be chosen for

 Enabling/disabling optional functionality
This allows to exclude parts of the source code that are not needed

 Optimization of performance and code size
Using #defines results in most cases in more efficient code than access to constants or even access to constants via
pointers.
Generated code avoids code and runtime overhead.

Restrictions

 The module must be available as source code

 The configuration is static. To change the configuration, the module has to be recompiled

Required implementation

Pre compile time configuration shall be done via the module‘s two configuration files (*_Cfg.h, *_Cfg.c) and/or by code generation:
• *_Cfg.h stores e.g. macros and/or #defines

• *_Cfg.c stores e.g. constants

Nm.c

Nm_Cfg.h

includes

Nm_Cfg.c

uses

(optional)

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 61

Part 5 – Configuration
ID: 05-004 Pre Compile Time

Example 1: Enabling/disabling functionality

File Spi_Cfg.h:
#define SPI_DEV_ERROR_DETECT ON

File Spi_Cfg.c:
const uint8 myconstant = 1;

File Spi.c (available as source code):
#include “Spi_Cfg.h“ /* for importing the configuration parameters */

external const uint8 myconstant;

#if (SPI_DEV_ERROR_DETECT == ON)

Det_ReportError(Spi_ModuleId, 0, 3, SPI_E_PARAM_LENGTH); /* only one instance available */

#endif

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 62

Part 5 – Configuration
ID: 05-002 Pre Compile Time

Example 2: Event IDs reported to the DEM

XML configuration file of the NVRAM Manager:
Specifies that it needs the event symbol NVM_E_REQ_FAILED for production error reporting.

File Dem_Cfg.h (generated by DEM configuration tool):
typedef uint8 Dem_EventIdType; /* total number of events = 46 => uint8 sufficient */

#define Dem_FLS_E_ERASE_FAILED 1U

#define Dem_FLS_E_WRITE_FAILED 2U

#define Dem_FLS_E_READ_FAILED 3U

#define Dem_FLS_E_UNEXPECTED_FLASH_ID 4U

#define Dem_NVM_E_REQ_FAILED 5U

#define Dem_CANSM_E_BUSOFF_NETWORK_5 6U

...

File Dem.h:
#include "Dem_Cfg.h" /* for providing access to event symbols */

File NvM.c (available as source code):
#include "Dem.h" /* for reporting production errors */

Dem_ReportErrorStatus(Dem_NVM_E_REQ_FAILED, DEM_EVENT_STATUS_PASSED);

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 63

Part 5 – Configuration
ID: 05-003 Link Time

Use cases

Link time configuration would be chosen for

 Configuration of modules that are only available as object code
(e.g. IP protection or warranty reasons)

 Selection of configuration set after compilation but before linking.

Required implementation

1. One configuration set, no runtime selection

Configuration data shall be captured in external constants. These external constants are located in a separate file. The

module has direct access to these external constants.

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 64

Part 5 – Configuration
ID: 05-005 Link Time

Example 1: Event IDs reported to the DEM by a module (CAN Interface) that is available as object code only

XML configuration file of the CAN Interface:
Specifies that it needs the event symbol CANIF_E_INVALID_DLC for production error reporting.

File Dem_Cfg.h (generated by DEM configuration tool):
typedef uint16 Dem_EventIdType; /* total number of events = 380 => uint16 required */

#define Dem_FLS_E_UNEXPECTED_FLASH_ID 1U

#define Dem_NVM_E_REQ_FAILED 2U

#define Dem_CAN_E_TIMEOUT 3U

#define Dem_CANIF_E_INVALID_DLC 4U

...

File CanIf_Lcfg.c:
#include "Dem_Cfg.h" /* for providing access to event symbols */

const Dem_EventIdType CanIf_InvalidDlc = Dem_CANIF_E_INVALID_DLC;

File CanIf.c (available as object code):
#include "Dem.h" /* for reporting production errors */

Dem_ReportErrorStatus(CanIf_InvalidDlc, DEM_EVENT_STATUS_FAILED);

Note: the complete include file structure with all forward declarations is not shown here to keep the example simple.

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 65

Part 5 – Configuration
ID: 05-006 Link Time

Example 1: Event IDs reported to the DEM by a module (CAN Interface) that is available as object code only

Problem
Dem_EventIdType is also generated depending of the total number of event IDs on this ECU. In this example it is represented as

uint16. The Can Interface uses this type, but is only available as object code.

Solution
In the contract phase of the ECU development, a bunch of variable types (including Dem_EventIdType) have to be fixed and

distributed for each ECU. The object code suppliers have to use those types for their compilation and deliver the object code using

the correct types.

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 66

Part 5 – Configuration
ID: 05-007 Post Build Time

Use cases

Post build time configuration would be chosen for

 Configuration of data where only the structure is defined but the contents not known during ECU build time

 Configuration of data that is likely to change or has to be adapted after ECU build time
(e.g. end of line, during test & calibration)

 Reusability of ECUs across different product lines (same code, different configuration data)

Restrictions

 Implementation requires dereferencing which has impact on performance, code and data size

Required implementation

1. One configuration set, no runtime selection (loadable)

Configuration data shall be captured in external constant structs. These external structs are located in a separate memory

segment that can be individually reloaded.

2. 1..n configuration sets, runtime selection possible (selectable)

Configuration data shall be captured within external constant structs. These configuration structures are located in one

separate file. The module gets a pointer to one of those structs at initialization time. The struct can be selected at each

initialization.

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 67

Part 5 – Configuration
ID: 05-010 Post Build Time

Example 1 (Post Build Time loadable)

If the configuration data is fix in memory size and position, the module has direct access to these external structs.

PduR.c

PduR_PBcfg.c

Linker Compiler PduR.o

PduR_PBcfg.o

Direct access

(via reference as given by

the pointer parameter of

PduR’s initialization function)
Linker Compiler

Linker control file

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 68

Part 5 – Configuration
ID: 05-008 Post Build Time

Required implementation 2: Configuration of CAN Driver that is available as object code only; multiple configuration sets

can be selected during initialization time.

File Can_PBcfg.c:
#include “Can.h” /* for getting Can_ConfigType */

const Can_ConfigType MySimpleCanConfig [2] =

{

 {

 Can_BitTiming = 0xDF,

 Can_AcceptanceMask1 = 0xFFFFFFFF,

 Can_AcceptanceMask2 = 0xFFFFFFFF,

 Can_AcceptanceMask3 = 0x00034DFF,

 Can_AcceptanceMask4 = 0x00FF0000

},

{

 …

 }

};

File EcuM.c:
#include “Can.h“ /* for initializing the CAN Driver */

Can_Init(&MySimpleCanConfig[0]);

File Can.c (available as object code):
#include “Can.h“ /* for getting Can_ConfigType */

void Can_Init(Can_ConfigType* Config)

{

 /* write the init data to the CAN HW */

};

Linker

Compiler

Binary file

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 69

Part 5 – Configuration
ID: 05-009 Variants

Different use cases require different kinds of configurability:

Example use cases:
 Reprogrammable PDU routing tables in gateway (post build time configurable PDU Router required)

 Statically configured PDU routing with no overhead (Pre-Compile time configuration of PDU Router required)

To allow the implementation of such different use cases in each BSW module for each module, up to 3 variants can be specified:

 A variant is a dedicated assignment of the configuration parameters of a module to configuration classes

 Within a variant a configuration parameter can be assigned to only ONE configuration class

 Within a variant a configuration class for different configuration parameters can be different (e.g. Pre-Compile for development error
detection and post-build for reprogrammable PDU routing tables

 It is possible and intended that specific configuration parameters are assigned to the same configuration class for all variants (e.g.
development error detection is in general pre-compile time configurable).

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 70

Part 5 – Configuration
ID: 05-011 Memory Layout Example: Postbuild Loadable (PBL)

0x4710 &the_real_xx_configuration

0x4710 lower = 2

0x4712 upper =7

0x4714 more_data

…

0x4720 &the_real_yy_configuration

0x4720 Xx_data1=0815

0x4722 Yy_data2=4711

0x4724 more_data

…

0x8000 &index (=0x8000)

0x8000 &xx_configuration = 0x4710

0x8002 &yy_configuration = 0x4720

0x8004 &zz_configuration = 0x4730

…

Description where to find what is an overall agreement:

1. EcuM needs to know all addresses including index

2. The modules (xx, yy, zz) need to know their own

start address: in this case: 0x4710, 0x4720 …

3. The start addresses might be dynamic i.e. changes

with new configuration

4. When initializing a module (e.g. xx, yy, zz), EcuM

passes the base address of the configuration data

(e.g. 0x4710, 0x4720, 0x4730) to the module to

allow for variable sizes of the configuration data.

The modules data is agreed locally (in the module) only

1. The module (‘xx’, ‘yy’) knows its own start address

(to enable the implementer to allocate data section)

2. Only the module (‘xx’, ‘yy’) knows the internals of

its own configuration

EcuM defines the index:

Xx defines the modules configuration data:

Yy defines the modules configuration data:

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 71

Part 5 – Configuration
ID: 05-012 Memory Layout Example: Postbuild Multiple Selectable (PBM)

0x8000 &index[] (=0x8000)

0x8000 &xx_configuration = 0x4710

0x8002 &yy_configuration = 0x4720

0x8004 &zz_configuration = 0x4730

…

0x8008 &xx_configuration = 0x5000

0x800a &yy_configuration = 0x5400

0x800c &zz_configuration = 0x5200

…

0x8010 &xx_configuration = …

0x8012 &yy_configuration = …

0x8014 &zz_configuration = …

…

FL

FR

RL

As before, the description where to find what is an overall agreement

1. The index contains more than one description (FL, FR,..) in an array

(here the size of an array element is agreed to be 8)

2. There is an agreed variable containing the position of one description

selector = CheckPinCombination()

3. Instead of passing the pointer directly there is one indirection:

(struct EcuM_ConfigType *) &index[selector];

4. Everything else works as in PBL

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 72

ID: 06 – Layered Software Architecture

Part 6 – Scheduling

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 73

 BSW Scheduling shall

 Assure correct timing behavior of the BSW, i.e., correct interaction of all BSW modules with respect to time

 Be used to apply data consistency mechanisms

 Single BSW modules do not know about

 ECU wide timing dependencies

 Scheduling implications

 Most efficient way to implement data consistency

 Centralize the BSW schedule in the BSW Scheduler implemented by the ECU/BSW integrator

 Eases the integration task

 Enables applying different scheduling strategies to schedulable objects

 Preemptive, non-preemptive, ...

 Enables applying different data consistency mechanisms

 Enables reducing resources (e.g., minimize the number of tasks)

 Restrict the usage of OS functionality

 Only the Schedule Module shall use OS objects or OS services
(exceptions: EcuM and services: GetCounterValue and GetElapsedCounterValue of OS)

 Rationale:

 Scheduling of the BSW shall be transparent to the system (integrator)

 Enables reducing the usage of OS resources (Tasks, Resources,...)

 Enables re-using modules in different environments

Part 6 – Scheduling
ID: 06-001 Basic Scheduling Concepts of the BSW

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 74

BSW Events

 RecurringEvent

 SporadicEvent

Yyy_MainFunction_Aaa

RTE

Microcontroller

Xxx_Isr_Yyy

Zzz_MainFunction_Aaa

Triggers

 Main functions

 Can be triggered in all layers by

 RecurringEvents

 SporadicEvents

Part 6 – Scheduling
ID: 06-003 Scheduling Objects and Triggers

BSW Scheduling objects

 Main functions

 n per module

 located in all layers

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 75

Logical Architecture (Model)

 Ideal concurrency

 Unrestricted resources

 Only real data dependencies

 Scheduling objects

 Trigger

 BSW events

 Sequences of scheduling objects

 ...

Technical Architecture (Implementation)

 Restricted concurrency

 Restricted resources

 Real data dependencies

 Dependencies given by restrictions

 OS objects

 Tasks

 ISRs

 Alarms

 Resources

 OS services

 Sequences of scheduling objects within tasks

 Sequences of tasks

 ...

 Mapping of scheduling objects to OS Tasks

 Specification of sequences of scheduling objects within tasks

 Specification of task sequences

 Specification of a scheduling strategy

 ...

Transformation

Part 6 – Scheduling
ID: 06-004 Transformation Process (1)

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 76

Logical Architecture (Model) Technical Architecture (Schedule Module SchM)

Task1 {

 ...
}

Yyy_MainFunction_Aaa();

Xxx_MainFunction_Aaa();

Zzz_MainFunction_Bbb();

 Mapping of scheduling objects to OS Tasks

 Specification of sequences of scheduling objects within tasks

Yyy_MainFunction_Aaa();

Xxx_MainFunction_Aaa();

Zzz_MainFunction_Bbb();

Transformation

Part 6 – Scheduling
ID: 06-006 Transformation Process – Example 1

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 77

Logical Architecture (Model) Technical Architecture (Schedule Module SchM)

Task2 {
 ...

 ...
}

Xxx_MainFunction_Bbb();

Task3 {
 ...

 ...
}

Yyy_MainFunction_Bbb();

 Mapping of scheduling objects to OS Tasks

Xxx_MainFunction_Bbb();

Transformation

Yyy_MainFunction_Bbb();

Part 6 – Scheduling
ID: 06-007 Transformation Process – Example 2

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 78

 Access to resources by different and concurrent entities of the implemented technical architecture
(e.g., main functions and/or other functions of the same module out of different task contexts)

Xxx_Module

Yyy_Module

Xxx_MainFunction();

Yyy_MainFunction();

resource

Yyy_ AccessResource();

Logical Architecture (Model) Technical Architecture (Schedule Module SchM)

?

 Data consistency strategy to be used

 Sequence

 Interrupt blocking

 Cooperative Behavior

 Semaphores (OSEK Resources)

 Copies of ...

 ...

Transformation

Part 6 – Scheduling
ID: 06-008 Data Consistency – Motivation

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 79

Xxx_MainFunction();

Yyy_MainFunction();

resource

Yyy_ AccessResource();

Xxx_Module

Logical Architecture (Model) /

 Data consistency is ensured by

 Interrupt blocking

Transformation

Task2

Task1

Technical Architecture (Schedule Module SchM)
#define SchM_Enter_<mod>(XYZ) DisableAllInterrupts

#define SchM_Exit_<mod>(XYZ) EnableAllInterrupts

Implementation of Schedule Module SchM

Yyy_AccessResource() {

 ...

 SchM_Enter_xxx_(XYZ)

 <access_to_shared_resource>

 SchM_Exit_xxx(XYZ)

 ...

}

Yyy_MainFunction() {

 ...

 SchM_Enter_yyy_(XYZ)

 <access_to_shared_resource>

 SchM_Exit_yyy(XYZ)

 ...

}

Part 6 – Scheduling
ID: 06-009 Data Consistency – Example 1 – “Critical Sections” Approach

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 80

Xxx_MainFunction();

Yyy_MainFunction();

resource

Yyy_ AccessResource();

Xxx_Module

Logical Architecture (Model) /

 Data consistency is ensured by

 Sequence

Transformation

Task2

Task1

Technical Architecture (Schedule Module SchM)
#define SchM_Enter_<mod>(XYZ) /* nothing required */

#define SchM_Exit_<mod>(XYZ) /* nothing required */

Implementation of Schedule Module SchM

Yyy_AccessResource() {

 ...

 SchM_Enter_xxx_(XYZ)

 <access_to_shared_resource>

 SchM_Exit_xxx(XYZ)

 ...

}

Yyy_MainFunction() {

 ...

 SchM_Enter_yyy_(XYZ)

 <access_to_shared_resource>

 SchM_Exit_yyy(XYZ)

 ...

}

Part 6 – Scheduling
ID: 06-009 Data Consistency – Example 2 – “Critical Sections” Approach

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 81

ID: 07 – Layered Software Architecture

Part 7 – Implementation Conformance Classes

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 82

Part 7 – Implementation Conformance Classes
ID: 07-001 ICC3

Complex

Drivers

Microcontroller

AUTOSAR Runtime Environment (RTE)

Microcontroller Drivers Memory Drivers I/O Drivers

I/O Hardware Abstraction

Memory Hardware

Abstraction

Memory Services System Services

Onboard Device

Abstraction

Communication Drivers

Communication

Hardware Abstraction

Communication Services

Application Layer

P
O

R
T

D
ri
v
e
r

A
D

C
 D

ri
v
e
r

D
IO

 D
ri
v
e
r

P
W

M

D
ri
v
e
r

IC
U

 D
ri
v
e
r

R
A

M
 T

e
s
t

C
A

N
 D

ri
v
e
r

in
te

rn
a
l

E
E

P
R

O
M

D
ri
v
e
r

in
te

rn
a
l

F
la

s
h

D
ri
v
e
r

W
a
tc

h
d
o
g

D
ri
v
e
r

L
IN

 D
ri
v
e
r

M
C

U
 D

ri
v
e
r

F
le

x
R

a
y

D
ri
v
e
r

C
o
re

 T
e

s
t

G
P

T
 D

ri
v
e
r

S
P

IH
a
n
d
le

r

D
ri
v
e
r

MemIf

EA Fee

I/O Signal Interface

Driver for

ext.

I/O ASIC

Driver for

ext.

ADC ASIC

WdgIf

TP

D
C

M

C
O

M

NM IPDU

NM If

 ext. Drv

xxx Interface

Trcv.

NVRAM Manager

B
S

W
 S

c
h
e
d
u
le

r

F
u

n
c
ti
o

n
 I
n

h
ib

it
io

n

M
a

n
a

g
e

r

W
a

tc
h

d
o

g

M
a

n
a

g
e

r

D
e
v
e

lo
p

m
e

n
t

E
rr

o
r

T
ra

c
e

r

D
ia

g
n

o
s
ti
c
 E

v
e

n
t

M
a

n
a

g
e

r

C
o
m

m
u

n
ic

a
ti
o

n

M
a

n
a

g
e

r

A
U

T
O

S
A

R
 O

S

B
S

W
 M

o
d

e

M
a

n
a

g
e

r

E
C

U
 S

ta
te

M
a

n
a

g
e

r

Not all ICC3 modules shown

PduR

… ICC3 module functional groups

S
M

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 83

Part 7 – Implementation Conformance Classes
ID: 07-002 ICC2

Complex

Drivers

AUTOSAR Runtime Environment (RTE)*

I/O Hardware

Abstraction

Application Layer

CAN

Com

Services

FlexRay LIN
O

S

MOST is currently not included

IPDUM*

Watch-

dog

ECU Hardware

MemIf

EA Fee

P
O

R
T

D
ri
v
e
r

A
D

C

D
ri
v
e
r

D
IO

D
ri
v
e
r

P
W

M

D
ri
v
e
r

IC
U

D
ri
v
e
r

R
A

M
 T

e
s
t

CAN Driver E
E

P
R

O
M

D
ri
v
e
r

F
la

s
h

D
ri
v
e
r

W
a
tc

h
d
o
g

D
ri
v
e
r

LIN Driver

M
C

U

D
ri
v
e
r

FlexRay Driver C
o
re

 T
e

s
t

G
P

T

D
ri
v
e
r

S
P

IH
a
n
d
l

e
rD

ri
v
e
r

COM

WdgM

Memories

NvM

CAN Interface FR Interface LIN Interface

LIN

NM
FR

TP
FR

NM

CAN

 TP

CAN

NM

Diagnostics Mode EcuM

N
M

 I
f

CAN St Mgr FR St Mgr LIN St Mgr

IPDUM

C
o
m

M

C
A

N

T
ra

n
s
c
e
iv

e
r

F
le

x
R

a
y

T
ra

n
s
c
e
iv

e
r

Debug

DET

SchM

SchM

WdgIf

F
IM

D
E

M

D
C

M

PDU Router

… ICC3 module ICC2 clusters

The clustering shown in this document is the one defined by the project so far.

AUTOSAR is currently not restricting the clustering on ICC2 level to dedicated

clusters as many different constraint and optimization criteria might lead to different

ICC2 clusterings. There might be different AUTOSAR ICC2 clusterings against which

compliancy can be stated based on a to be defined approach for ICC2 conformance.

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 84

Part 7 – Implementation Conformance Classes
ID: 07-003 ICC1

Proprietary software

AUTOSAR Runtime Environment (RTE)

Application Layer

ECU Hardware

AUTOSAR conformant bus behavior

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 85

ID: 08 – Layered Software Architecture

Part 8 – Integration and Runtime aspects

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 86

ID: 08-007 – Layered Software Architecture

Part 8 – Integration and Runtime aspects

8.1 Error Handling and Reporting Concept

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 87

Part 8.1 – Error Handling and Reporting Concept
ID: 08-009 Error Classification (1)

Types of errors

Hardware errors / failures

 Root cause: Damage, failure or ‚value out of range‘, detected by software

 Example 1: EEPROM cell is not writable any more

 Example 2: Output voltage of sensor out of specified range

Software errors

 Root cause: Wrong software or system design, because software itself can never fail.

 Example 1: wrong API parameter (EEPROM target address out of range)

 Example 2: Using not initialized data

System errors

 Example 1: CAN receive buffer overflow

 Example 2: time-out for receive messages

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 88

Part 8.1 – Error Handling and Reporting Concept
ID: 08-010 Error Classification (2)

Time of error occurrence according to product life cycle

Development

Those errors shall be detected and fixed during development phase. In most cases, those errors are software errors. The

detection of errors that shall only occur during development can be switched off for production code (by static configuration

namely preprocessor switches).

Production / series

Those errors are hardware errors and software exceptions that cannot be avoided and are also expected to occur in production

code.

Influence of error on system

Severity of error (impact on the system)

 No influence

 Functional degradation

 Loss of functionality

Failure mode in terms of time

 Permanent errors

 Transient / sporadic errors

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 89

Part 8.1 – Error Handling and Reporting Concept
ID: 08-011 Error Reporting – Alternatives

Each basic software module distinguishes between two types of errors:

1. Development Errors

The detection and reporting can be statically switched on/off

2. Production relevant errors and exceptions

This detection is ‚hard coded‘ and always active.

There are several alternatives to report an error (detailed on the following slides):

Via API

Inform the caller about success/failure of an operation.

Via statically definable callback function (notification)

Inform the caller about failure of an operation

Via central Error Hook (Development Error Tracer)

For logging and tracing errors during product development. Can be switched off for production code.

Via central Error Function (AUTOSAR Diagnostic Event Manager)

For error reaction and logging in series (production code)

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 90

Part 8.1 – Error Handling and Reporting Concept
ID: 08-013 Error Reporting via API

Error reporting via API

Informs the caller about failure of an operation by returning an error status.

Basic return type

Success: E_OK (value: 0)

Failure: E_NOT_OK (value: 1)

Specific return type

If different errors have to be distinguished for production code, own return types have to be defined. Different errors shall only be used

if the caller can really handle these. Specific development errors shall not be returned via the API. They can be reported to the

Development Error Tracer (see 08-014).

Example: services of EEPROM driver

Success: EEP_E_OK

General failure (service not accepted): EEP_E_NOT_OK

Write Operation to EEPROM was not successful: EEP_E_WRITE_FAILED

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 91

Part 8.1 – Error Handling and Reporting Concept
ID: 08-014 Error Reporting – Introduction

Error reporting via Diagnostic Event Manager (DEM)

For reporting production / series errors.

Those errors have a defined reaction depending on the configuration of this ECU, e.g.:

 Writing to error memory

 Disabling of ECU functions (e.g. via Function Inhibition Manager)

 Notification of SW-Cs

The Diagnostic Event Manager is a standard AUTOSAR module which is always available in production code and whose functionality

is specified within AUTOSAR.

Error reporting via Development Error Tracer (DET)

For reporting development errors.

The Development Error Tracer is mainly intended for tracing and logging errors during development. Within the Development Error

Tracer many mechanisms are possible, e.g.:

 Count errors

 Write error information to ring buffer in RAM

 Send error information via serial interface to external logger

 Infinite Loop, Breakpoint

The Development Error Tracer is just a help for SW development and integration and is not necessarily contained in the production

code. The API is specified within AUTOSAR, but the functionality can be chosen/implemented by the developer according to his

specific needs.

The detection and reporting of development errors to the Development Error Tracer can be statically switched on/off per module

(preprocessor switch or two different object code builds of the module).

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 92

Part 8.1 – Error Handling and Reporting Concept
ID: 08-017 Error Reporting – Diagnostic Event Manager

API

The Diagnostic Event Manager has semantically the following API:
Dem_ReportErrorStatus(EventId, EventStatus)

Problem: the error IDs passed with this API have to be ECU wide defined, have to be statically defined and have to occupy a

compact range of values for efficiency reasons. Reason: The Diagnostic Event Manager uses this ID as index for accessing ROM

arrays.

Error numbering concept: XML based error number generation

Properties:

 Source and object code compatible

 Single name space for all production relevant errors

 Tool support required

 Consecutive error numbers  Error manager can easily access ROM arrays where handling and reaction of errors is defined

Process:

1. Each BSW Module declares all production code relevant error variables it needs as “extern”
2. Each BSW Module stores all error variables that it needs in the ECU configuration description (e.g. NVM_E_REQ_FAILED)

3. The configuration tool of the Diagnostic Event Manager parses the ECU configuration description and generates a single file
with global constant variables that are expected by the SW modules (e.g. const Dem_EventIdType

Dem_NVM_E_REQ_FAILED=7; or #define Dem_NVM_E_REQ_FAILED ((Dem_EventIdType)7)

4. The reaction to the errors is also defined in the Error Manager configuration tool. This configuration is project specific.

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 93

Part 8.1 – Error Handling and Reporting Concept
ID: 08-018 Error Reporting – Development Error Tracer (1)

API

The Development Error Tracer has syntactically the following API:
Det_ReportError(uint16 ModuleId, uint8 InstanceId, uint8 ApiId, uint8 ErrorId)

Error numbering concept
ModuleId (uint16)

The ModuleId contains the AUTOSAR module ID from the Basic Software Module List.

As the range is 16 Bit, future extensions for development error reporting of application SW-C are possible. The Basic SW uses

only the range from 0..255.

InstanceId (uint8)

The Instance ID represents the identifier of an indexed based module starting from 0. If the module is a single instance module it

shall pass 0 as an instance ID.

ApiId (uint8)

The API-IDs are specified within the software specifications of the BSW modules. They can be #defines or constants defined in

the module starting with 0.

ErrorId (uint8)

The Error-IDs are specified within the software specifications of the BSW modules. They can be #defines defined in the module‘s

header file.

If there are more errors detected by a particular software module which are not specified within the AUTOSAR module software

specification, they have to be documented in the module documentation.

All Error-IDs have to be specified in the BSW description.

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Page 94

ID: 08-020 – Layered Software Architecture

Part 8 – Integration and Runtime aspects

8.2 Partial Networking Concept

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Part 8.2 – Partial Networking Concept
Introduction

 The goal of the Partial Networking Concept is to provide mechanisms for power saving, especially while bus
communication is active (e.g. charging or clamp 15 active).

 Partial Networking allows for turning off network communication across multiple ECUs in case their provided
functions are not required under certain conditions. Other ECUs can continue to communicate on the same
bus channel.

 Partial Networking uses NM messages to communicate the request/release information of a partial network
cluster between the participating ECUs.

p
a
g
e
 i
d

:
e
e
p
2
q

Page 95

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Part 8.2 – Partial Networking Concept
Example scenario of a partial network going to sleep

Initial situation:

 ECUs “A” and “B” are members of Partial Network Cluster (PNC) 1.
ECUs “B”, “C” and “D” are members of PNC 2.

 All functions of the ECUs are organized either in PNC 1 or PNC 2.

 Both PNCs are active.

 PNC 2 is only requested by ECU “C”.

 The function requiring PNC 2 on ECU “C” is terminated, therefore
ECU “C” can release PNC 2.

This is what happens:

 ECU “C” stops requesting PNC 2 to be active.

 ECUs “C” and “D” are no longer participating in any PNC and can be
shutdown.

 ECU “B” ceases transmission and reception of all signals associated with
PNC 2.

 ECU “B” still participates in PNC 1. That means it remains awake and
continues to transmit and receive all signals associated with PNC 1.

 ECU “A” is not affected at all. Physical CAN Bus

Partial Network Cluster 1

Partial Network Cluster 2

ECU A

ECU B

ECU C

ECU D

1

2

2

1

p
a
g
e
 i
d

:
e
e
p
3
e

2

Page 96

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Part 8.2 – Partial Networking Concept
Conceptual terms

 Virtual Function Cluster (VFC): groups the communication on port level between SW-components that are
required to realize one or more vehicle functions.

This is the logical view and allows for a reusable bus/ECU independent design.

 VFC-Controller: Special SW-component that decides if the functions of a VFC are required at a given time
and requests or releases communication accordingly.

 Partial Network Cluster (PNC): is a group of system signals necessary to support one or more vehicle
functions that are distributed across multiple ECUs in the vehicle network.

This represents the system view of mapping a group of buses to one ore more VFCs.

p
a
g
e
 i
d

:
e
e
p
3
c

Page 97

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Part 8.2 – Partial Networking Concept
Restrictions

 Partial Networking (PN) is currently supported on CAN and FlexRay buses.

 LIN and CAN slave buses (i.e. CAN buses without network management) can be activated* using PN but no
wake-up or communication of PN information are supported on those buses

 To wake-up a PN ECU, a special transceiver HW is required as specified in ISO 11898-5.

 The standard wake-up without special transceiver HW known from previous AUTOSAR releases is still
supported.

 A VFC can be mapped to any number of PNCs (including zero)

 The concept of PN considers a VFC with only ECU-internal communication by mapping it to the internal
channel type in ComM as there is no bus communication and no physical PNC

 Restrictions on FlexRay

 FlexRay is only supported for requesting and releasing PNCs.

 FlexRay nodes cannot be shut down since there is no HW available which supports PN.

* All nodes connected to the slave buses are always activated. It is not possible only to activate a subset of the
nodes.

p
a
g
e
 i
d

:
e
e
p
3
r

Page 98

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Part 8.2 – Partial Networking Concept
Mapping of Virtual Function Cluster to Partial Network Cluster

Page 99

SW-C

6

SW-C

7

SW-C

4

SW-C

3

SW-C

2

SW-C

5

SW-C

1

SW-Component of VFC1

SW-Component of VFC2

ECU Hardware

RTE

Basic Software

ECU Hardware

RTE

Basic Software

ECU Hardware

RTE

Basic Software

SW-C

2

SW-C

4

SW-C

3

SW-C

5

SW-C

6

SW-C

7

SW-C

1

ECU A ECU B ECU C

SW-Component of VFC3

CAN Bus

VFC1 VFC2 VFC3

PNC1 PNC2

Mapping of

VFC on PNC

PNC1 PNC2

CAN

• Here both Partial Networks

map to one CAN bus.

• One Partial Network can also

span more than one bus.

p
a
g
e
 i
d

:
e
e
p
3
m

PNC1 PNC2

Communication Port
CompositionType

- AUTOSAR Confidential -

Layered Software Architecture

V2.4.0

R3.2 Rev 3

Document ID 053

Application Layer

Communication Hardware Abstraction

System Services

Communication Services

Part 8.2 – Partial Networking Concept
Involved modules – Solution for CAN p

a
g
e
 i
d

:
e
e
p
3
b

SW-C SW-C

CanIf

CanTrcv

 RTE
ComM_User

Request

ComM BswM

NmIf COM

CanNm CanSM PduR

Network

Request Request

ComMode

ComM_UserRequest

PNC states

Trigger Transmit

I-PDU GroupSwitch
PNC request/release

information

Mode

request

• VFC to PNC to channel

translation

• PNC management (request /

release of PNCs)

• Indication of PN states

• Coordination of I-PDU

group switching

• Start / stop I-PDU-groups

• Exchange PNC request / release

information between NM and

ComM via NM user data

• Enable / disable I-PDU-groups

• Filter incoming NM messages

• Collect internal and external PNC requests

• Send out PNC request infocmation in NM user data

• Spontaneous sending of NM messages on PNC

startup

or

Page 100

