
  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

Document Title AUTOSAR BSW & RTE Con-
formance Test Specification, 
Part 3: Creation & Validation 

Document Owner AUTOSAR  
Document Responsibility AUTOSAR  
Document Identification No 283 
Document Classification Auxiliary 
  
Document Version 1.0.2 
Document Status Final 
Part of Release 3.2 
Revision 1 
 
 

Document Change History 
Date Version Changed by Change Description 

27.04.2011 1.0.2 AUTOSAR  
Administration 

Legal disclaimer revised 
 

23.06.2008 1.0.1 AUTOSAR  
Administration 

Legal disclaimer revised 
 

14.11.2007 1.0.0 AUTOSAR  
Administration 

Initial Release 

 

1 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

 
 
Disclaimer 
 
This specification and the material contained in it, as released by AUTOSAR is for 
the purpose of information only. AUTOSAR and the companies that have contributed 
to it shall not be liable for any use of the specification. 
 
The material contained in this specification is protected by copyright and other types 
of Intellectual Property Rights. The commercial exploitation of the material contained 
in this specification requires a license to such Intellectual Property Rights.  
 
This specification may be utilized or reproduced without any modification, in any form 
or by any means, for informational purposes only.  
For any other purpose, no part of the specification may be utilized or reproduced, in 
any form or by any means, without permission in writing from the publisher.  
 
The AUTOSAR specifications have been developed for automotive applications only. 
They have neither been developed, nor tested for non-automotive applications. 
 
The word AUTOSAR and the AUTOSAR logo are registered trademarks. 
 
 
 
Advice for users  
 
AUTOSAR Specification Documents may contain exemplary items (exemplary refer-
ence models, "use cases", and/or references to exemplary technical solutions, de-
vices, processes or software).  
 
Any such exemplary items are contained in the Specification Documents for illustra-
tion purposes only, and they themselves are not part of the AUTOSAR Standard. 
Neither their presence in such Specification Documents, nor any later documentation 
of AUTOSAR conformance of products actually implementing such exemplary items, 
imply that intellectual property rights covering such exemplary items are licensed un-
der the same rules as applicable to the AUTOSAR Standard. 

 

2 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

Table of Contents 
 
1 Document Overview ............................................................................................ 6 

1.1 Focus and Scope ......................................................................................... 6 
1.2 How to use the Document ............................................................................ 6 
1.3 Abbreviations ............................................................................................... 6 
1.4 Bibliography ................................................................................................. 7 

2 Realization of the CTSpec Creation Process ...................................................... 9 
3 SWS Analysis Phase: Refinement & Categorization ......................................... 10 

3.1 Collect Test Input Baseline......................................................................... 10 
3.2 Preparation for Analysis ............................................................................. 10 
3.3 Analyze Specification Items ....................................................................... 11 
3.4 Categorize Specification Items................................................................... 12 

3.4.1 No Requirement .................................................................................. 16 
3.4.2 Redundant........................................................................................... 16 
3.4.3 Informal Requirement.......................................................................... 16 
3.4.4 Configuration Parameter Definition ..................................................... 16 
3.4.5 Configuration Parameter Implementation............................................ 17 
3.4.6 Requirement on Configuration ............................................................ 17 
3.4.7 Detection of Wrong Configurations ..................................................... 17 
3.4.8 Development Error Detection .............................................................. 18 
3.4.9 Header Files for Internal Use .............................................................. 18 
3.4.10 Internal Source Code / Internal Header File ........................................ 19 
3.4.11 Header Files Provided for External Use .............................................. 19 
3.4.12 Provided Signature / Required Signature............................................ 19 
3.4.13 Module Behavior Requirement............................................................ 19 
3.4.14 Module Reentrancy Requirement........................................................ 20 
3.4.15 Execution in Interrupt Context Requirement........................................ 20 
3.4.16 Requirement on Other Module ............................................................ 20 
3.4.17 Direct Hardware Access...................................................................... 20 
3.4.18 Vendor-Specific Extensions ................................................................ 21 
3.4.19 Pending on Bug................................................................................... 21 

3.5 Associate Test Method with Test Category ................................................ 21 
3.6 Review SWS Analysis Phase Results ........................................................ 22 
3.7 Delivery of the Refined SWS Document..................................................... 22 

4 The Main Phases of Conformance Test Case Creation .................................... 23 
4.1 “Non-TTCN-3” Test Cases ......................................................................... 23 
4.2 TTCN-3 Test Cases ................................................................................... 24 

5 Design Phase .................................................................................................... 26 
5.1 Test Case Identification.............................................................................. 26 

5.1.1 Definition of a unique Test Case Identifier .......................................... 26 
5.1.2 Definition of the Test Purpose............................................................. 26 
5.1.3 Definition of the Test Steps ................................................................. 27 
5.1.4 Definition of Additional Conditions....................................................... 27 

5.2 Design of the CTSpec ................................................................................ 27 
5.2.1 Test Case Architecture........................................................................ 28 

5.3 Decomposition Principle for Test Functions ............................................... 29 
5.4 Specification of Configuration Sets............................................................. 29 

5.4.1 Input to the Generation Process for Configuration Sets ...................... 30 

3 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

5.4.2 Strategy............................................................................................... 30 
5.4.3 Generation Process ............................................................................ 30 
5.4.4 Example of Configuration Set Creation ............................................... 33 
5.4.5 Interdependence between Test Parameters ....................................... 34 
5.4.6 Output of the Configuration Generation Process................................. 36 

5.5 Prepare Specification of Test Cases .......................................................... 36 
6 Implementation Phase....................................................................................... 38 

6.1 Implementation of the BSW Module Simulation ......................................... 38 
6.2 Implementation of the TTCN-3 Test Cases ................................................ 39 
6.3 CTSpec File Structure ................................................................................ 39 

7 Validation Phase ............................................................................................... 40 
7.1 Test Case Validation using a Simulation of the BSW Module .................... 40 

7.1.1 Motivation............................................................................................ 40 
7.1.2 Validation Setup .................................................................................. 41 
7.1.3 Error Tracing during Validation............................................................ 41 

7.2 The Validation Workshop ........................................................................... 42 
7.2.1 Preparation for the Validation Workshop............................................. 42 
7.2.2 Conducting the Validation Workshop .................................................. 42 

7.3 Result of the Validation Workshop ............................................................. 42 
7.4 “Validation against Misbehavior” ................................................................ 42 

8 Pseudo-Code for Test Step Descriptions .......................................................... 44 
8.1.1 Objective ............................................................................................. 44 
8.1.2 General Conventions .......................................................................... 44 
8.1.3 Keyword Descriptions ......................................................................... 45 
8.1.4 Handling Pointers and Addresses ....................................................... 46 
8.1.5 Limitations........................................................................................... 46 

9 Further Details: Test Case Design .................................................................... 47 
9.1 Design Elements for TTCN-3 Test Cases .................................................. 47 

9.1.1 Test Components................................................................................ 47 
9.1.2 Ports.................................................................................................... 48 
9.1.3 Interfaces ............................................................................................ 48 

9.2 Modeling with UML..................................................................................... 48 
10 Further Details: Test Case Specification / Implementation ................................ 53 

10.1 Configuration Mechanism........................................................................... 53 
10.1.1 Data types of Test Parameters............................................................ 53 
10.1.2 Format of Test Parameters ................................................................. 53 

10.2 Control Part ................................................................................................ 54 
10.3 Data Type Mapping .................................................................................... 54 

10.3.1 Guideline............................................................................................. 54 
10.3.2 Mapping Rules .................................................................................... 55 

10.4 Handling Open Implementations ................................................................ 57 
10.5 Pointer Handling......................................................................................... 57 
10.6 Error Condition Handling ............................................................................ 60 

11 Further Details: Illustration of System Dynamics ............................................... 61 
11.1 Defining the Main Function’s Calling Mode ................................................ 61 
11.2 Initialization of the BSW Module under test................................................ 61 
11.3 Allocation of Memory Blocks used by the Test Case.................................. 61 
11.4 Interaction with Target Memory Blocks ...................................................... 62 
11.5 Invocation of API Functions........................................................................ 62 

4 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

11.6 Callbacks towards the BSW Module .......................................................... 63 
11.7 Error reported to DET................................................................................. 64 
11.8 Error reported to DEM................................................................................ 64 

12 TTCN-3 Coding Style ........................................................................................ 65 
12.1 Documentation ........................................................................................... 65 
12.2 Document Tagging ..................................................................................... 65 
12.3 Naming Conventions .................................................................................. 66 
12.4 Restricted TTCN-3 Features ...................................................................... 67 
12.5 Value Ranges............................................................................................. 67 
12.6 Implementation Rules................................................................................. 67 

  

5 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

1 Document Overview  

This document describes the methodology to create and execute AUTOSAR BSW 
Conformance Test Specifications (CTSpecs). It describes how to realize the CTSpec 
creation process and details potential tool support. 
This document mainly specifies how to apply the TTCN-3 test methodology to testing 
the conformance of AUTOSAR BSW module implementations. This includes defining 
the architecture of the CTSpecs and specifying the relevant execution environment 
components. 
The document is therefore structured into the following parts: 

1. Introduction (this chapter) 
2. Realization of the CTSpec creation process (Chapters  2 to  8) 
3. Further details on the methodology (Chapters  9 to 12) 

1.1 Focus and Scope 

This document provides a detailed foundation for creating CTSpecs. It focuses more 
on the details of the work activities and less on the overall creation process. An over-
view of the CTSpec creation process and the description of the roles involved and 
their interactions is given in  [3]. 

1.2 How to use the Document 

This document presupposes a basic understanding of the CTSpec creation process, 
the roles involved and the associated terminology. These are all described in  [3]. 
 [4] is a supplement to this document that discusses issues related to executing 
CTSpecs after they have been created. 
 [5] defines a complete template for a BSW module conformance test.  

1.3 Abbreviations 

Abbreviation Description 

API Application Program Interface 

BSW Basic Software 

CC Conformance Class 

CD Coder/Decoder (TTCN-3 – see Part 4) 

CH Component Handling (TTCN-3 – see Part 4) 

CTA Conformance Test Agency 

CTSpec Conformance Test Specification 

CTS Conformance Test Suite 

ECU Electronic Control Unit 

ICC Implementation Cluster Conformance Class 

6 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

Description Abbreviation 

ICS Implementation Conformance Statement 

IP Intellectual Property 

PA Platform Adapter (TTCN-3 – see Part 4) 

PS Product Supplier 

RM Requirements Management 

RTE Run Time Environment 

SA System Adapter (TTCN-3 – see Part 4) 

SUT System Under Test 

SW-C Software Component 

SWS Software Specification 

TE TTCN-3 Executable (TTCN-3 – see Part 4) 

TM Test Manager (TTCN-3 – see Part 4) 

TRI TTCN-3 Runtime Interface (TTCN-3 – see Part 4)

TTCN-3 Testing and Test Control Notation, version 3 

1.4 Bibliography  

[1] TTCN-3 specifications 
http://www.ttcn-3.org/Specifications.htm  

 
[2] AUTOSAR BSW & RTE Conformance Test Specification Part 1: Background  
AUTOSAR_CTSpec_Background.pdf 
 
[3] AUTOSAR BSW & RTE Conformance Test Specification Part 2: Process 
Overview,  
AUTOSAR_CTSpec_Process_Overview.pdf 
 
[4] AUTOSAR BSW & RTE Conformance Test Specification Part 4: Execution 
Constraints 
AUTOSAR_CTSpec_Execution_Constraint.pdf 
 
[5] Template for AUTOSAR Conformance Test Specification Documents 
AUTOSAR_CTSpec_Template.pdf 
 
[6] Specification of Platform Types 
AUTOSAR_SWS_PlatformTypes.pdf 
 
[7] Specification of Development Error Tracer 
AUTOSAR_SWS_DET.pdf 

 
[8] AUTOSAR ECU Configuration Parameters 

7 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation 
- AUTOSAR Confidential - 

http://www.ttcn-3.org/Specifications.htm


  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

AUTOSAR_EcucParamDef.xml 
 
 
[9] Specification of ECU Configuration 
AUTOSAR_ECU_Configuration.pdf 
 
 
[10] AUTOSAR Specification of C Implementation Rules 
AUTOSAR_SWS_C_ImplementationRules.pdf 
 
[11] Colin Willcock, Thomas Deiß, Stephan Tobies, Stephan Schulz, Stefan Keil 
and Frederico Endler, “An Introduction to TTCN-3”, John Wiley and Sons Ltd., May 
2005, ISBN: 0470012232 

8 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

2 Realization of the CTSpec Creation Process 

Roles perform the activities in the CTSpec creation process. Different divisions of 
work can thus be realized when different persons and/or organizations adopt these 
roles. Furthermore tools are used to automate the generation of some work artifacts. 
 [3] gives an overview of the CTSpec creation process. It focuses on defining the ac-
tivities and the know-how requirements for the corresponding roles: 

 Test Designer 
 Test Implementer 
 Test Validation Implementer 
 Test Assessor 

This document specifies how the process should be put into practice. It describes the 
process activities in more detail to enable their realization. From an activities point of 
view, four work phases can be identified in the CTSpec creation process: 
 

Analysis and refinement of the SWS document Analysis Phase 
Test case identification and design of the CTSpec Design Phase 
Implementation of the test cases and the module simu-
lation 

Implementation Phase 

Validation of test cases Validation Phase 

Validation 
Phase 

Implementation 
Phase 

Design 
Phase 

Implementation 
of module 
simulation 

 
Test case 
validation 

Test case 
implementation 

 
Design of 
CTSpec 

 
Test case 

identification 
 

Refinement 
of the SWS 

Analysis 
Phase 

 

Figure 1 - Phases and activities of the CTSpec creation process 

 
These phases are discussed in the following chapters. 

9 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

3 SWS Analysis Phase: Refinement & Categorization 

In the Analysis Phase, the Test Designer refines the SWS to be conformance tested. 
This refinement mainly consists of requirements engineering activities on the SWS 
document. A requirements management (RM) tool shall be used in order to automate 
change and version management, traceability among and between requirements and 
test cases and for working concurrently on and exchanging work results. 
The objective of the analysis activities, as described in the following sections, is to 
produce a refined SWS document that is ready for test case identification. 

3.1 Collect Test Input Baseline 

First, all relevant documents and their right versions have to be identified. This in-
cludes at least the following documents: 

 the SWS of the module itself, 
 the SWSs of all “neighboring” modules that contain requirements that must be 

satisfied by the module, 
 the deviation sheet for the module, 
 the “ECU Configuration Parameters”  [7] document 

The baseline must be documented with the names of the documents, their versions 
and dates. 
For example, the baseline for the NvM in the CTSpec Creation Pilot was: 
 

Specification of NVRAMManager 2.0.0 28.04.2006 

AUTOSAR BSW Deviations Validator 2 107 02.08.2006 

Specification of ECU Configuration Parameters 0.08 11.06.2006 

Specification of Module Memory Abstraction Interface 1.0.0 23.03.2006 

Specification of Module EEPROM Abstraction 1.0.0 23.03.2006 

Specification of Flash EEPROM Emulation 1.0.0 23.03.2006 

Specification of CRC Routines 2.0.0 28.04.2006 

3.2 Preparation for Analysis 

In this step, all specification items in the baseline documents must be linked or cop-
ied into the RM tool1. At least the following attributes must be assigned to the module 
requirements: 

                                            
1 The exact procedure depends on the RM tool being used. For example, DOORS requires copying 
the requirements into the DOORS repository. 

10 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

                                           

For referring to the refined SWS requirement. ID given by the RM tool 

For referring to the associated original SWS requirement.Original requirements 
ID from the SWS 

The configuration parameter related to the refined SWS 
requirement (if applicable). This attribute is later used in 
configuration analysis and for creating configuration sets.

Related configuration 
parameter 

The category assigned to the refined SWS requirement. 
Test cases are later identified based on these categories 
(as defined in Chapter  3.4). 

Category 

The ID(s) of the test case(s) that test the requirement. 
This attribute realizes the traceability between refined 
SWS requirements and test cases. 

References to test 
cases that cover the 
requirement 

Additional information or comments that may arise. Analysis comment 

 
While the values of the first and second attributes can be defined during preparation, 
the values of the remaining attributes are defined in subsequent analysis activities. 
The following general guidelines must be followed during this preparation activity: 

 Keep the overall order of the SWS requirements in the RM tool the same as 
the order of the items in the SWS specification. 

 All labeled SWS items must appear. 
 Ensure that there is an entry for each configuration parameter in the module 

(typically from chapter 10.2). Document the name of the configuration parame-
ter and add its description. Enter the SWS-Req-ID when it is available. 

 Ensure that there is an entry for the signature of each function provided or re-
quired by the module. 

 Ensure that the general properties of each API-call as defined in the SWS 
(e.g. reentrancy, synchronous/asynchronous) are entered in the table. 

3.3 Analyze Specification Items 

The actual analysis must be performed by personnel familiar with the BSW module’s 
design and functionality. 
The following guidelines must be followed during the analysis work: 

 If a specification item is not atomic2  (i.e. it contains several atomic require-
ments), divide it into its component atomic items and use extensions (e.g. “a”, 
“b”, …) in the reference to the original SWS ID3. 

 Ensure that a SWS item’s contents can be interpreted independently of its 
context.  If necessary, add context information to the item. 

 
2 In general, an “atomic requirement” refers to a single functionality of the BSW module. 
3 For example: 

NVM091a NvM_Init shall be invoked by the ECU state manager exclusively. 

NVM091b The NvM_Init request shall not contain the initialization of the configured NVRAM blocks. 

 

11 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

 Prepend the API’s name to all items (original SWS and newly created) pertain-
ing to a specific API. 

 Ensure that there are sufficient entries to describe the pre- and post-conditions 
of each function provided or required by the module.  If necessary, add entries 
even if they do not have an ID in the SWS. 

 Add any other information from the SWS document that is relevant to confor-
mance testing, even if it does not have an explicit ID. 

All information from the “neighboring” SWSs that is also relevant to conformance test-
ing the module must also be included following similar guidelines. Typically, the en-
tries from the neighboring SWSs can be limited to: 

 Pre-conditions on functions used by the module under consideration. 
 Post-conditions on functions provided by the module under consideration. 

The “ECU Configuration Parameters” document contains a formal model of all the 
module’s configuration parameters. As the configuration files, which are an important 
input for the conformance tests, are based on this model, the model has priority over 
the information in the “Configuration and Configuration Parameters” chapter of the 
SWS document. 
During the activities described so far, it must be continuously ensured that the re-
quirements are complete, understandable, logically correct and free from contradic-
tions. If possible, the misunderstandings, errors, inconsistencies and missing infor-
mation that emerge in the original SWS document must be raised (through “Bugzilla”) 
as bug reports for the owner of the original SWS document. 
The specification items must be modified based on the resolution of the bug reports,: 

 When an item is changed, make a note under “analysis comment”. 
 When an item becomes obsolete, mark the requirements text appropriately 

(e.g. by crossing it out) and make a note under “analysis comment”. Do not 
simply delete the item as it will then not be known whether this item has been 
overlooked or deleted. 

 When additional configuration items are added, make a note under “analysis 
comment”. 

Finally, add relevant deviation sheet entries according to the following guidelines: 
 When the deviation item changes an SWS item, integrate the deviation item in 

the existing SWS item (i.e. add the deviation number and change the descrip-
tion so that it reflects the contents of the deviation sheet). 

 When the deviation is an addition or a more complex modification, add an ad-
ditional line to the SWS analysis sheet at a logical place (next to the affected 
SWS-item or configuration parameter). 

The activities up to now have produced a well structured and ordered SWS docu-
ment that contains all specification information related to the BSW module. Incorpo-
rating an RM tool has prepared the refined SWS document well for use in the remain-
ing phases of the CTSpec creation process. 

3.4 Categorize Specification Items 

In general, the refined SWS document contains many specification items that are in 
fact not relevant for conformance testing. Each specification item must therefore be 
categorized to establish whether and how it is relevant to conformance testing. The 
analysts must understand the schema well and apply it accurately. 

12 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

13 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation 
- AUTOSAR Confidential - 

The following information can be derived directly from a specification item’s category: 
 Relevant for conformance testing? 

o Yes / No / Pending on bug 
 How to test 

o TTCN-3 test case / Manual inspection / … 
The following table describes the specification item categories that AUTOSAR has 
identified so far, their relevance to conformance testing and the appropriate test ap-
proach:



  AUTOSAR BSW & RTE Conformance Test Specification, Part 3: Creation & 
Validation 

 V1.0.2 
R3.2 Rev 1 

Description 
(SI = specification item) 

Relevance 
to CT 

How to test Category 

No Requirement The SI is no requirement at all. It has been included for informa-
tional purposes 

no (irrelevant) 

Redundant The SI is already covered by one or several other SIs. no (irrelevant) 

Informal Requirement The SI contains an informal description on the module. This de-
scription usually contains non-functional requirements. 

yes Manual inspection 

Definition of Configuration  
Parameter 

The SI is a definition of a configuration parameter. yes Consider in con-
figuration sets 

Implementation of Configu-
ration Parameter 

The SI defines how the configuration parameter is to be realized 
(e.g. by #define).  

yes Manual inspection 

Requirement on Configura-
tion 

The SI contains either general definitions on the configuration 
values or direct constraints on permitted configuration values. 

yes Consider in con-
figuration sets 

Detection of Wrong Con-
figurations 

The SI contains demands on how to detect wrong configurations 
or which configurations are wrong 

no (irrelevant) 

The SI defines behavior directly related to the Development Error 
Tracer (DET) 

no4 TTCN-3 test case Development Error 

Header Files for Internal 
Use 

The SI contains definitions of header files that are used by the 
module only 

no (irrelevant) 

Inside Source Code The SI contains structural definitions of the source code that are 
not related to functionality. 

no (irrelevant) 

Inside Header File The SI contains structural definitions of the header file not re-
lated to functionality. 

no (irrelevant) 

                                            
4 Development Error tracing is not relevant to conformance testing, but the SIs must be tested in the test suites.  See section  3.4.8 for details. 

14 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance Test Specification, Part 3: Creation & 
Validation 

 V1.0.2 
R3.2 Rev 1 

15 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation 
- AUTOSAR Confidential - 

Category 
Description 

(SI = specification item) 
Relevance 

to CT 
How to test 

Provided Header Files for 
External Use 

The SI contains definitions of header files that are to be included 
by other modules. 

yes Check header file 

Provided Signature The SI is a definition of a function that is provided to other mod-
ules as API 

yes Compile-build 
process 

Required Signature The SI contains demands on functions provided externally. yes Compile-build 
process 

Requirement on Module 
Behavior  

The SI defines module behavior and functionality. yes TTCN-3 test case 

Requirement on Re-
entrance of Module 

The SI defines behavior and functionality of the module related 
to reentrancy. 

no (irrelevant) 

Requirement on Execution 
in Interrupt Context 

The SI defines behavior and functionality of the module related 
to execution in interrupt context. 

no (irrelevant) 

Requirement on Other 
Module 

The SI is not a requirement on the “module under specification” 
but a requirement on another module. 

no (irrelevant) 

Direct Hardware Access The SI defines behavior and functionality that involves direct ac-
cess to hardware devices. 

no (irrelevant) 

Vendor-Specific Extensions The SI is a definition on possible extensions to be done by the 
vendor. 

no (irrelevant) 

Pending on Bug The SI has been identified as unclear and clarification has been 
requested. After clarification, the proper category will be defined 
for the SI. 

undefined undefined 

Table 1 - Overview of the categories for specification items1 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

  

The following sections explain selected specification item categories in more detail. 

3.4.1 No Requirement 

Some items are not requirements because they are too general and/or too weak. 
Example: The following is formulated too weakly (“reasonably short”): 
 

Depending on implementation, callback routines provided and/or invoked by this 
module may be called on interrupt level. The module providing those routines 
therefore has to make sure that their runtime is reasonably short. 

NVM156 

3.4.2 Redundant 

Some items are relevant to conformance testing, but are already covered by other 
items.  The “internal analysis comment” must contain precise information about which 
items cover the redundant item. 
Example: The following is redundant with respect to other SWS items: 
 

For each asynchronous request a notification of the caller after completion of the 
job shall be a configurable option.  

NVM007a 

3.4.3 Informal Requirement 

The specification item is either a general definition of terms or conditions (e.g. operat-
ing conditions) or it describes basic functionality on a very high level. In both cases, 
the item cannot be directly related to functional behavior that is testable with test 
cases because it is not specific enough and too “informal”. 
The specification item is thus not directly relevant to conformance but must usually 
be considered when interpreting other items. 
Example: The following must be considered when defining conformance test cases: 
 

The Memory Abstraction Interface and the underlying Flash EEPROM Emulation 
and EEPROM Abstraction Layer provide the NVRAM manager with a virtual 
linear 32bit address space. These logical 32bit addresses are composed of a 16bit 
logical block number and a 16bit block address offset. […] 

NVM051 

3.4.4 Configuration Parameter Definition 

The specification item defines the meaning and/or use of a configuration parameter. 
A correct understanding of configuration parameters and a correct selection of their 
values is important to the configuration generation process (see Chapter  5.2). There-
fore, these specification items are relevant to conformance testing. The correct use of 
configuration parameters cannot, in general, be verified by automated test cases 
since expert knowledge of their context is required.  
Example: The following must be considered when specifying configurations for con-
formance tests: 

16 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

  

NVM_DATASET_SELECTION_BITS: 

Defines the number of least significant bits which shall be used to address a certain 
dataset of a NVRAM block within the interface to the memory hardware abstrac-
tion. 

NVM029 

3.4.5 Configuration Parameter Implementation 

The specification item is related to implementation aspects of the configuration pa-
rameters. For example, Chapter 10 of an SWS specifies a configuration parameter 
as “#define”.  
While it is important that a specific value of a parameter (as specified in the configu-
ration XML-files) leads to correct module behavior (as observed during dynamic test-
ing), the implementation of a configuration parameter or, in other words, the time at 
which a module can be configured (compile time, link time, post-build/run-time), can 
be specified in the SWS and influences the build and deploy process. 
When the SWS specifies that a module should be configurable without recompiling 
(post-build configuration) but the parameter is implemented as a compile-time pa-
rameter, the implementation deviates from the specification. This violates the specifi-
cation even when the behavior of the test object is not violated. 
Example: The following is relevant to conformance testing: 
 

The block identifier shall be configured with the configuration tool and shall not 
be modified by the NVRAM manager. 

NVM124 

3.4.6 Requirement on Configuration 

The specification item is a requirement for a correct configuration but not on the 
module itself. All conformance tests must respect the requirements on the configura-
tion (i.e. only correct configurations are considered during conformance testing). 
For example: The following is not relevant to conformance testing: 
 

To ensure that the DEM is fully operational at an early point of time, i.e. its NV 
data is restored to RAM, DEM related NVRAM blocks should be configured to 
have a low ID to be processed first within NvM_ReadAll. 

NVM159d 

 
Consequently, the conformance testing does not include establishing whether con-
figuration tools are intelligent enough to catch erroneous configurations. 
For example: The following is not relevant to conformance testing: 
 

All pre-compile time configuration parameters shall be checked statically (at least 
during compile time) for correctness.  

MemIf005a 

3.4.7 Detection of Wrong Configurations 

Specification items of this category define the validity of configuration parameter val-
ues. They contain constraints on allowed configuration parameter values resulting 
from, for example, dependencies on other configuration parameters. 
17 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation

- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

  

This type of specification item is not relevant to conformance testing since it is al-
ready the responsibility of the specific BSW module’s configuration tool to verify the 
correctness of configuration parameter values. 
Example: The following is not relevant to conformance testing: 
 

NvM.c shall check if the correct version of NvM.h is included. This shall be done 
by a preprocessor check of the version number NVM_SW_MAJOR_VERSION. 

NVM089 

3.4.8 Development Error Detection 

These specification items define functionality related to Development Error Detection. 
Since errors detected and reported to the Development Error Tracer (DET) module 
are only in development code, this functionality is, strictly speaking, not relevant to 
conformance testing production BSW modules. The conformance test suites will test 
for anticipated DET errors, however (see below). 
Example: The following is not relevant to conformance testing: 
 

NVM188 
If the NVM_DEV_ERROR_DETECT switch is enabled, API parameter checking 
is enabled. The detailed description of the detected errors can be found in chap-
ter… 

Note: Error tracing is not needed to test production BSW modules, but it is needed 
when debugging conformance tests, however. Unanticipated DET error messages 
are useful indicators of problems in the tests.  
During the validation phase, the conformance tests will be run with [Module-
Name]_DEV_ERROR_DETECT==ON. During actual conformance testing, they will 
be run with the parameter set to OFF. The test cases for specification items related 
to Development Error Detection will therefore test for all anticipated (documented in 
the SWS) development error messages but make those tests conditional on [Modu-
leName]_DEV_ERROR_DETECT being set to ON. 

3.4.9 Header Files for Internal Use 

These specification items define header files to be provided and their inclusion struc-
ture. “Internal header files” are only used within the BSW module and not by other 
modules. The specification items are therefore not relevant to conformance testing as 
the header files do not affect the BSW module’s interaction with its environment. 
Example: The following is not relevant to conformance testing: 
 

NvM_Cfg.h shall include NvM_Types.h. 

NvM_Types.h shall include Std_Types.h. 

NvM.h shall include NvM_Cfg.h. 

NVM077 

18 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

  

3.4.10 Internal Source Code / Internal Header File 

These items specify requirements on the contents of source code (*.c) or header (*.h) 
files. The requirements can vary from the inclusion of certain header files to high-
level specifications of internal functionality or data structures. 
Adherence to such requirements can only be verified through inspection of the re-
spective source code or header file but not by examining the executable BSW mod-
ule. Therefore, such specification items are not in scope of conformance testing. 
Example: The following is not relevant to conformance testing: 
 

The NVRAM manager shall only contain that code that is needed to handle the 
configured block types. 

NVM150 

3.4.11 Header Files Provided for External Use 

These specification items define the contents of header files required other BSW 
modules or SW components and specify how they will be provided. 
Since the header files are used to exchange information and definitions between 
module generation processes, they influence the interaction of these BSW modules 
or SW components and are thus relevant to conformance testing. However, the cor-
rectness of the header files can only be verified by inspecting them and not by exam-
ining the executable BSW module. 
Example: The following is relevant to conformance testing: 
 

The NVRAM manager shall provide: An API interface NvM.h providing the func-
tion prototypes to access the underlying NVRAM functions. 

NVM076b 

3.4.12 Provided Signature / Required Signature 

These specification items define function signatures (i.e. function name, return data 
type, parameter names and parameter data types) that are provided or required by 
the BSW module. 
The correct implementation of these function signatures is of course crucial for con-
formance and is already checked while compiling and linking the BSW module for 
test into the dynamic test environment. These specification items are therefore rele-
vant to conformance testing but are not tested by conformance test cases. 
Example: The following is relevant to conformance testing: 
 

NVM044 void NvM_SetDataIndex(NvM_BlockIdType BlockId, uint8 DataIndex) 

3.4.13 Module Behavior Requirement 

This is the most important group of specification items. They define the functionality 
that interacts with the environment through the API and / or other kinds of interfaces 
(such as RAM blocks used for data exchange, hardware interfaces). 
Specification items of this type are naturally relevant to conformance testing and are 
well suited to functional (black-box) testing with TTCN-3 conformance test cases. 
19 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation

- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

  

Note that Section 3.8.2 of the Conformance Test Specification Background document 
 [2] defines the types of bugs that are not relevant to AUTOSAR conformance.  If a 
specification item defines behavior that falls into an excluded bug category, it will not 
be tested.  All other forms of module behavior specifically defined in an SWS shall be 
tested by a test case. 
Example: The following must be tested by a test case: 
 

NvM_ReadBlock: On successful enqueuing a request, the request result of the 
corresponding NVRAM block shall be set to NVM_REQ_PENDING. 

NVM185 

3.4.14 Module Reentrancy Requirement  

These specification items define whether an API function is “re-entrant” or not. The 
current consensus is that they are not relevant to conformance testing. 
Example: The following is not relevant to conformance testing: 
 

NVM045 NvM_SetDataIndex must be reentrant. 

3.4.15 Execution in Interrupt Context Requirement 

This kind of specification item defines whether an API function must have properties 
that allow its execution when called by an interrupt service routine. The current con-
sensus is that they are not relevant to conformance testing. 
Example: The following is not relevant to conformance testing: 
 

NvM_JobEndNotification: This routine might be called on interrupt level, depend-
ing on the calling function. 

NVM060 

3.4.16 Requirement on Other Module 

Some specification items actually pose requirements on BSW modules that interface 
with the module under test. These specification items contain, for example, require-
ments on how certain API functions shall be used by other modules. 
This group of specification items is not relevant for the creation of the CTSpec. 
Example: The following is not relevant to conformance testing: 
 

NVM077g Only NvM.h shall be included by the upper layer. 

3.4.17 Direct Hardware Access 

SWS items that relate to interaction with hardware components are especially impor-
tant. Such SWS items can often only be tested with individually designed hardware 
interfaces and thus require more effort to test than SWS items that relate to pure 
software functionality. 
Whether these specifications items are relevant to conformance testing must be de-
cided individually. 
20 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation

- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

  

Example: The following is not relevant to conformance testing: 
 

In normal EEPROM mode, the EEPROM driver shall access the external 
EEPROM by usage of SPI channels that are configured for normal access to the 
SPI EEPROM. 

EEP052 

3.4.18 Vendor-Specific Extensions 

The SWS documents leave some room for vendor-specific extensions and definitions 
such as error codes. This category consists of SWS items that define how this room 
is to be used. 
Since the CTSpec can only test standardized functionality, vendor-specific exten-
sions are naturally out of scope of conformance tests. 
Example: The following is not relevant to conformance testing: 
 

Values for production code Event Ids are assigned externally by the configuration 
of the Dem. They are published in the file Dem_IntErrId.h and included via 
Dem.h. 

NVM186 

3.4.19 Pending on Bug 

The category of these SWS items cannot be determined until a bug entry in AUTO-
SAR’s Bugzilla system has been clarified. They are therefore categorized temporarily 
as “Pending on Bug”. After the open issue has been clarified, the category must be 
changed according to the result. 

3.5  Associate Test Method with Test Category 

The “How to test” column in Table 2 indicates how to test specification items for con-
formance. The second column details the different ways of ensuring conformance: 
 

 How to test Explanation 

The SUT must be verified manually since no automation is possi-
ble. This means: 

1. manually deducing the object to be considered (as part of 
the SUT) from the specification item 

2. manually deducing the criteria to be verified from the specifi-
cation item 

3. verifying whether the deduced criteria are fulfilled by the ob-
ject under consideration 

Manual in-
spection 

Consider in 
configuration 
sets 

The specification item has to be considered when the configuration 
sets for CTSpec execution are being defined and/or generated. In 
particular, the meaning of and interdependencies between configu-
ration parameters have to be taken into account. 

21 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

  

 How to test Explanation 

Adherence to the specification item is verified by checking for the 
presence of the specified contents in the affected header file (as 
part of the SUT). This can be done manually or can be automated. 

Check header 
file 

Adherence to the specification item is verified by mechanisms in 
the (already automated) compile-build process. Typically, violations 
result in errors which are reported by the tools used (e.g. compile 
error if API function is defined incorrectly). 

Compile-build 
process 

A test case implemented in TTCN-3 can be defined to verify adher-
ence to the specification item. 

TTCN-3 test 
case 

Table 2: Conformance Test Methods 

3.6 Review SWS Analysis Phase Results 

A person other than the person who did the analysis must review the analysis result. 
The review criteria can be derived directly from the analysis guidelines given in the 
previous sections. 
The refined SWS document produced in the analysis phase must state the names of 
both the analyst and the reviewer. 

3.7 Delivery of the Refined SWS Document 

The refined SWS document package must contain the modified specification text, the 
analysis results/comments and the categorization of all specification items. 

22 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

  

4 The Main Phases of Conformance Test Case Creation 

The main phases take the analysis phase output, the corrected SWS document and 
the categorized specification items and create the conformance test cases. 
Depending on the category of the refined SWS items, the corresponding test cases 
are specified either in TTCN-3 (for automated execution) or by other means. 

4.1 “Non-TTCN-3” Test Cases 

The “non-TTCN-3” test cases are not applied to the executable module, but to other 
parts of the BSW module configuration / build process (e.g. source and header files). 
There are many checks to be performed in the “Non-TTCN3” test cases and a ge-
neric automation methodology cannot be defined. However, some generic test meth-
ods have been identified in Table 3. These tests must be performed manually.  
 

Conformance Object Test Method 

Existence of file (.c/.h files) Check whether file is provided 

Include statements in .c/.h files Check whether the file contains the statement  

Definitions in .c/.h files Check whether definitions are made in file 

Check implementation properties according to test 
criteria 

Implementation in .c files 

Configuration data properties  Check properties according to test criteria 

Check configuration tool output for success / error 
reports 

Configuration process 

Check of compile / build tool output for success / 
error reports 

Compile / build process 

Table 3 - Generic test methods for non-TTCN-3 test cases 

Due to their informal character, the “non-TTCN-3” test cases can be created in one 
step directly from the SWS item as depicted in Figure 2. The “non-TTCN-3” test 
cases shall produce a table in a format based on the template defined in the CTSpec 
template  [3]. Additionally, the validation of these test cases is limited to manual re-
views. 

23 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

  

creates
Non-TTCN-3
Test Cases 
(informally 

defined) 

Test 
Designer 

Process flow 

Work flow 

 
Refined 

SWS 
Document 

Review 
Activities 

Test 
Assessor 

BSW Module 
Experts 

 

Figure 2 - Overview of the creation process for "non-TTCN-3" test cases 

4.2 TTCN-3 Test Cases 

TTCN-3 conformance test cases test the dynamic behavior of the BSW modules. The 
majority of functional requirements relevant to conformance relate to this behavior. 
These test cases execute against a fully configured BSW module executable and use 
the API specified in the BSW module’s SWS. 
The TTCN-3 test cases are created in three phases: design, implementation and 
validation. Figure 3 shows an overview of the different roles involved, their activities, 
the tools and the work artifacts. These phases produce the TTCN-3 test cases to-
gether with the sets of configuration and test parameters in both AUTOSAR XML and 
TTCN-3 formats. 
 
 

24 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

  

C Header File TTCN-3 API 
Module 

Process flow 

 
 
 

Figure 3 – Roles, deliverables and tools in the design, implementation and validation phases 

The following chapters describe in detail the steps to be carried out within the three 
phases. 

creates 

modifies / 
extends 

creates

creates 

creates 

creates 

Data types 
Constants 
Signatures 

TTCN-3 Config 
Modules 

 
Data types 
Parameters 

TTCN-3
Test Cases Test

Description 
 

Test Case 
Logic 

Test 
Implementer 

 
Converter Data types 

Constants 
API functions 

Test Validation 
Workshop 

Selection of 
Configuration 

and Test 
Parameter 

Values 

Combiner 

Work flow 

Parameter 
Combination 

Rules 

Test 
Designer 

AUTOSAR XML
 

ECU 
Configuration 
Description Configured 

Test Cases 

Test Infra-
structure 

Test Designer,
Test Imple-

menter, Test 
Assessor Test Valida-

tion Imple-
menter 

Test
Validation 

Implementer

Refined SWS 
Document 

Configured 
BSW Module 
Simulation 

BSW Module
Simulation 

creates

25 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

  

5 Design Phase 

The Design Phase consists of the following two activities: 
1. Identification of test cases 
2. Design of the CTSpec 

The “test case identification” activity has three main objectives: 
 Identify the test cases based on the testable specification items 
 Define the test steps based on the identified test cases 
 Specify the rules for generating configuration sets 

The objectives for the “CTSpec Design” activity are: 
 Specify the TTCN-3 architecture for the test cases (test components, port etc.) 
 Specify the behavior of test components that simulate neighboring modules 
 Provide definitions (test functions, function signatures, data types etc.) for im-

plementing the test cases 
Note that these two activities – although described separately – cannot usually be 
performed sequentially. As the sub-activities are interdependent, (e.g., the test cases 
influence the test case architecture, test case architecture influences the test steps) 
these two activities are mostly performed in parallel. 

5.1 Test Case Identification 

The test cases and test steps must be defined based on the refined and atomized 
specification items. This involves four steps: 

1. Definition of a unique test case identifier 
2. Definition of the test purposes (i.e. test case objectives) 
3. Definition of the logical test steps (i.e. test cases’ behavior) 
4. Definition of additional conditions for the test case (i.e. test cases’ constraints) 

5.1.1 Definition of a unique Test Case Identifier 

Conformance test cases must be unambiguously identifiable. A unique test case 
number must therefore be defined whenever a new test case is created. This number 
shall be preceded by [ModuleName]_TC to associate the test case with a specific 
BSW module. The test case numbers must not be in sequence as there is always the 
possibility that certain test cases will be removed from the CTSpec. 

Example: 
NvM_TC020:  Test case number 20 for the NvM module. 

5.1.2 Definition of the Test Purpose 

The test purpose contains the well-defined objective of the test cases. It is a short 
description of what the test case verifies or ensures. Note that the test purpose is not 
identical to the specification item as the specification item describes what the BSW 
module does and the test purpose describes what the test case does. 
Test purposes often use phrases as for example 

26 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

  

Verify / Ensure / Check that ... 
... on reception / in the event / under the condition of ... 
... does / does not ... 

Example: 
“Ensure that NvM_MainFunction() when called before NvM_Init() returns 
without changing the NvM module’s state and without interacting with 
other modules.” 

The test purposes must be defined “atomically” enough to permit easy separation 
and handling of the test cases. 

5.1.3 Definition of the Test Steps 

Refer to Chapter 3 in the Conformance Test Specification Background document  [2] 
for guidance on the nature and extent of AUTOSAR testing. Section 3.8.1 defines 
which types of bugs should be tested. Note additionally that insofar as a specification 
item was not rejected completely in the SWS analysis phase, Section 3.8.2 defines 
which types of module behavior should not be tested. Section 3.6 defines which test 
methods are allowed and which are excluded in AUTOSAR conformance testing. 
Although it is possible to define the test steps directly in the test execution language 
(TTCN-3), the work has been divided into test step definition and test step implemen-
tation. This allows the Test Designer to quickly define the test steps without having to 
account for structural completeness, formal correctness and error conditions. 
However, the logic of the test steps must be defined precisely enough to be imple-
mentable in TTCN-3. This is accomplished with a pseudo code notation incorporating 
keywords and logical expressions based on the C programming language. Refer to 
Chapter  8 for a description of this notation. 
The CTSpec design, which specifies the TTCN-3 test components, their interfaces 
and the functional decomposition of the test functions, must be followed when defin-
ing the test steps. Refer to Chapter  5.2 for detailed information on CTSpec design. 

5.1.4 Definition of Additional Conditions 

Conditions that are relevant to test case execution must be added to the test case 
bodies to complete the definitions: 
 

Conditions that must be fulfilled before the test case is executed 
(e.g. “module is not initialized when testing an init function like 
NvM_Init”). 

Pre-conditions 

States in which the test case can leave the BSW module both in 
production and in during validation (e.g. development error condi-
tions, see Section  3.4.8) 

Post-conditions 

5.2 Design of the CTSpec 

The overall CTSpec design must be specified before the test steps for each test pur-
pose can be defined,. 
The CTSpec design consists of the following: 

27 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

  

Contains the structural information about the TTCN-3 
test components being used and their interfaces (i.e. 
function signatures) to each other and to the BSW 
module under test. 

Test case architecture 

For some BSW modules which require complex test 
cases, the principle for the functional decomposition of 
the test functions needs to be described. 

Decomposition principle 
for test functions 

The rules to generate valid configuration sets which are 
suitable for conformance testing must be defined. 

Specification of rules for 
generating configuration 
sets 

5.2.1 Test Case Architecture 

The test case architecture defines the TTCN-3 test components, their ports and the 
function signatures for communicating internally and with the module under test. UML 
component and class diagrams are a straightforward means to define this architec-
ture. 
Example: 

ARBSWModule

Nv M

crc nvmCbmemIfappCb nvmIfdet nvDem

MemIfTCmemIf

nvmCb

memIfTest

CRCTC

crcIf

crcTest

Nv MTestCasescrcTest memIfTest nvmIfappCbTest detTest demTest

TA

ApplicationCallbackTC

appCbTest

appCb

DETTC

det

detTest

DEMTC

dem

demTest

TargetAdapter TA

«interface»

TA_Functions

+ TA_CopyMemBlock(PtrType, PtrType) : void
+ TA_DisableCyclicMainFunction() : void
+ TA_EnableCyclicMainFunction() : void
+ TA_GetNextRamBlockPtr(int) : PtrType
+ TA_MemBlocksEqual(PtrType, PtrType, int) : boolean
+ TA_ReadMemBlock(PtrType, int) : octetstring
+ TA_ReadVersionInfo(PtrType) : VersionInfoType
+ TA_WriteMemBlock(PtrType, octetstring) : void

«realize»

 

Figure 4: UML Test Case Architecture for the NvM 

28 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

  

                                           

Refer to Chapter  9 for further details on the design of the CTSpec architecture. 

5.3 Decomposition Principle for Test Functions 

BSW modules with complex functionality usually require conformance test cases with 
complex, recurring test steps. To reduce redundancy, recurring test steps shall be 
defined as test functions (also called “base functions” on TTCN-3 level, see Chapter 
 6.3) that can be called by the test cases. 
In order to make the concept of defining these test functions comprehensible, the 
CTSpec design for complex BSW modules must include either 

 a description of the approach to defining the test functions or 
 definitions of typical test functions from which the approach can be deduced. 

This information enables the Test Implementer to correctly implement the TTCN-3 
base functions based on the test functions, to correctly use the base functions in the 
test cases and to maintain consistency among the base functions. 

5.4 Specification of Configuration Sets 

AUTOSAR BSW modules can be configured by parameters to a very high degree. 
Configuration parameters not only define quantifiable attributes of the module (e.g. 
queue size, address, bit size, id number), more importantly, they sometimes define 
the qualitative behavior of the module. 
Defining suitable configuration sets is therefore as fundamental to conformance test-
ing as defining the right test cases and test steps. They are used to generate BSW 
modules which are configured correctly for test execution. The module can then be 
tested by a CTSpec that has also been configured with the same configuration set. 
The CTSpec cannot define all AUTOSAR configuration parameters generically in ad-
vance, however. Some configuration parameters are constrained by the ICS5 speci-
fied by the vendor of the BSW module. Therefore, the configuration sets used for 
CTSpec execution must be generated individually for each ICS. 
In addition to the configuration parameters defined by AUTOSAR, the CTSpecs use 
test-specific parameters to define different test execution behavior variants. This con-
cept is an efficient way to test different behavioral conditions without increasing the 
number of test cases. 
AUTOSAR configuration parameters and test-specific parameters are defined in two 
steps: 

1. During CTSpec creation, the rules for the configuration generation are defined 
with as many concrete values as possible. 

2. After provision of the ICS, the rules are refined so that the final configuration 
sets can be generated. 

The following sections describe the strategy and process for generating (in two 
steps) a number of configuration sets which result in good “configuration coverage” 
while remaining reasonable. 

 
5 The details of this concept have not been finalized at the time of writing. The ICS concept is outlined 
in the Background Document  [2] 
29 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation

- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

  

Good configuration coverage ensures that the most important and critical “working 
conditions” of the BSW module are tested by the CTSpec. This ultimately leads to 
good test coverage of the module’s functionality. 

5.4.1 Input to the Generation Process for Configuration Sets 

Both the SWS document and the “AUTOSAR ECU Configuration Parameters” docu-
ment  [7] define a BSW module’s configuration parameters. In case they are inconsis-
tent, the ECU Configuration Parameters document shall take precedence. 
Most AUTOSAR configuration parameters are relevant to conformance testing and 
one or more values must be defined to obtain “the right test data”. AUTOSAR con-
figuration parameters can be further categorized as module-specific configuration 
parameters (one value per BSW module) or “entity”-specific configuration parameters 
when the module handles several individually configured “entities” (e.g. memory 
blocks with different types and properties for the NVRAM Manager). 
As already mentioned above, the CTSpecs may define their own test-specific pa-
rameters to specify test variants within the test cases. These test-specific parameters 
are defined in the design phase of the CTSpec creation process  [3] and are only 
used to configure the CTSpecs, i.e. they do not affect the BSW modules under test. 

5.4.2 Strategy 

For most BSW modules, the number of relevant configuration parameters is high 
enough to make manually defining appropriate configuration sets highly tedious, er-
ror-prone and thus practically hopeless. 
Hence, automation and tool support is required to efficiently identify and combine the 
relevant configuration parameter values and to write the resulting configuration sets 
in the XML format defined by AUTOSAR. 
Defining combinations of test input data is an inherent problem in the domain of func-
tional testing which has been widely addressed by researchers. There are several 
appropriate methods (e.g. classification tree method) and quite a number of tools 
(e.g. CTE). A best-practice method which AUTOSAR deems adequate for confor-
mance testing BSW modules is defining “equivalence classes” and combining the 
resulting configuration values in “pair-wise combination”. 
This is a general approach to comprehensibly defining “equivalence classes” (i.e. the 
set of “representative” configuration parameter values) and a set of pair-wise combi-
nations with an effective trade-off between configuration coverage and the total num-
ber of configuration sets. The application of these methods to AUTOSAR confor-
mance testing is described in Chapters  5.4.3.3 and  5.4.3.4. 

5.4.3 Generation Process 

Figure 5 presents an overview of the configuration set generation process consisting 
of four steps with several activities.  The steps performed during CTSpec creation 
are: 

 “Analysis” 
 “Clustering and Formalization” 

30 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

  

 parts of “Value Selection and Refinement” 
The remaining “Value Selection and Refinement” activities are performed when the 
ICS is provisioned and finally the “Combination and Generation” can be done. 

Combination 
and  
Generation 

Value 
Selection and 
Refinement 

Clustering 
and  
Formalization

Analysis 

Analysis of 
AUTOSAR  

configuration  
parameters 

Identification of 
test parameter 

clusters 

Formalization of 
requirements and 

constraints 

Definition of  
values for test  

parameters 

Combination of 
test parameters 
and export to 

XML and TTCN-3 

Identification of 
additional  

test-specific  
parameters 

Identification of 
requirements and 

constraints on 
the parameters 

Refinement of 
requirements and 

constraints 

CTSpec application CTSpec creation 

ICS 

 

Figure 5 - Overview on the generation process for configuration sets 

The following sections describe the steps and activities required to create configura-
tion sets using the approach outlined in the previous sections. 

5.4.3.1 Step 1: Analysis 

The analysis step is part of the first two phases (“Analysis Phase” and “Design 
Phase”) of the CTSpec creation process described in  [3]. In this step, the AUTOSAR 
configuration parameters required by the BSW module are analyzed from the con-
formance testing point of view. 
This step determines whether a configuration parameter value can and should be 
defined during the CTSpec creation process or whether the value depends on execu-
tion, hardware or other external conditions. In the latter case, the value can only be 
determined after the external conditions (e.g. hardware devices for test execution) 
have been defined and is therefore out of the scope of the CTSpec creation process 

31 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

  

                                           

Test specific test parameters that are identified during test case design are defined 
and combined with the AUTOSAR configuration parameters6. This results in a collec-
tion of test parameters. 
Requirements and constraints on the test parameters can then be identified either 
directly or from insights gained from the SWS document. These requirements and 
constraints must also be documented. 
The remaining work steps treat both the AUTOSAR configuration parameters and 
test specific parameters in the same way and the same automatable combination 
algorithms can be applied to both types of parameters. 

5.4.3.2 Step 2: Clustering and Formalization 

Some test parameters are inherently interdependent and cannot be treated sepa-
rately when determining test combinations. This happens, for example, when a set of 
parameters all relate to a specific functionality (e.g. job queuing and prioritization). 
In this step, the strongly interdependent parameters are identified and are put into 
clusters. The clustered test parameters are regarded thereafter as “a whole”. 
In addition to the clustering activity, the requirements and constraints on the test pa-
rameters are formalized into expressions that can be processed automatically. 

5.4.3.3 Step 3: Value Selection and Refinement 

The value selection and refinement step determines the values for both non-
clustered and clustered test parameters and refines the requirements and constraints 
on the test parameters. As depicted in Figure 5, this step is subdivided into activities 
performed during CTSpec creation and those that must be done after provision of the 
ICS. i.e. when the CTSpec is to be executed7. 
Creating equivalence classes can be helpful in finding concrete, representative val-
ues for the test parameters. In general, the following guidelines should be applied. 
 

All possible values are selected except those which are irrelevant 
a-priori (e.g. not in focus of conformance testing) or otherwise ir-
relevant to conformance testing. These exclusions must be docu-
mented clearly. 

Boolean or 
Enumeration 
test parame-
ters 

If possible, equivalence classes for the test parameter should be 
defined and reasonable values picked from these classes. 
If equivalence classes cannot be identified, then usually the lowest 
value, the highest value (if reasonable) and at least one intermedi-
ate value are selected. 

Integer test 
parameters 

 
The value combinations of clustered test parameters are defined manually according 
to the inherent constraints. Each combination is then regarded as a “cluster value”. 

 
6 In this document, the terminology “AUTOSAR configuration parameters” refers to those parameters 
for which values can and should be defined during the CTSpec creation process. 
7 The details of this division of activities before and after provision of the ICS must be further specified 
after the ICS concept has been finalized. 
32 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation

- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

  

After the ICS has been provisioned and checked for validity, previously generated 
configuration parameter values for must be checked or regenerated according to the 
constraints stated in the ICS.  Further ICS requirements and constraints on the test 
parameters must be added as formal expressions. 

5.4.3.4 Step 4: Combination and Generation 

After the ICS has been taken into account, the configuration sets are generated from 
the relevant refined test parameters definitions, clusters, selected values and formal-
ized constraints. All pair-wise combinations of test parameters and clusters are gen-
erated using the selected values. 
A TTCN-3 file and an ECU Configuration file in XML are then generated from the 
configuration sets. 
Generally, generating the combinations cannot be done manually and must be auto-
mated with a custom tool. 

5.4.4 Example of Configuration Set Creation 

This section presents a possible realization approach to generating configuration sets 
based on the steps described in the previous sections. It uses a spreadsheet (e.g. 
Microsoft Excel) and a custom tool, Combiner, that has been developed by Carmeq. 
The spreadsheet (also referred to as “combination table”) should be filled out during 
the “Analysis”, “Clustering and Formalization” and “Value Selection and Refinement” 
steps. In the last step, “Combination and Generation”, the custom tool takes the com-
bination table, evaluates the constraints, applies the pair-wise combination algorithm 
and writes out the generated configuration sets. 

5.4.4.1  “Analysis”, “Clustering” and “Value Selection and Refinement” 

Figure 6 shows a combination table with module-specific configuration parameters 
and their selected values for an NVRAM Manager module. 
 

[MODULE_PARAMETERS]
{NVM_JOB_PRIORITIZATION, 
NVM_SIZE_IMMEDIATE_JOB_QUEUE, 
NVM_SIZE_STANDARD_JOB_QUEUE} {FALSE,0,1} {FALSE,0,10} {FALSE,0,255} {TRUE,1,10} {TRUE,5,10} {TRUE,255,10}

NVM_MULTI_BLOCK_CALLBACK
TestStubMultibl

ockCallback NULL
NVM_DYNAMIC_CONFIGURATION TRUE FALSE
NVM_MAX_NUM_OF_WRITE_RETRIES 0 2 7
NVM_CRC_NUM_OF_BYTES 1 5 65535
NVM_DRV_MODE_SWITCH TRUE FALSE
NVM_DATASET_SELECTION_BITS 1 3 8
NVM_SET_RAM_BLOCK_STATUS_API TRUE FALSE
NVM_POLLING_MODE TRUE FALSE
NVM_DEV_ERROR_DETECT TRUE

NVM_API_CONFIG_CLASS
NvmApiConfigC

lass3
NVM_COMPILED_CONFIG_ID 0x1234
NVM_VERSION_INFO_API TRUE
TCConfigIdBehavior MATCH FAIL MISMATCH

Selected Values

 

Figure 6 - Example: Combination table for module-specific configuration parameters of NvM 

33 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

  

The first column contains the test parameters (or clusters). The identifiers of AUTO-
SAR configuration parameters consist of capital letters and underscores (e.g. 
NVM_JOB_PRIORITIZATION). The identifiers of test-specific configuration parame-
ters are denoted by a “camel-case” notation (e.g. TCConfigIdBehavior). 
The “Selected Values” columns contain the test parameter (or cluster) values. Clus-
tered test parameters and clustered values are enclosed by curly brackets. 
The second column in the combination table of Figure 6 provides for the formalized 
constraints. No interdependencies or constraints have been identified for the module-
specific parameters in this example. This topic is discussed in the following sections. 

5.4.5 Interdependence between Test Parameters 

One way of dealing with interdependent test parameters is clustering. The cluster 
parameter values must be selected manually while respecting the given constraints 
and interdependencies. 
Some BSW modules have an additional level of interdependence between test pa-
rameters that cannot be resolved by clustering, however. 

5.4.5.1 Module-specific Parameters and “Entity”-specific Parameters 

In general, two groups of BSW module test parameters can be distinguished: 
 

These are defined once for a BSW module instance. Module-specific 
test parameters 

Some BSW modules have a number of “entities” (e.g. memory 
blocks) which must be configured individually and a specific set 
of configuration parameters must be provided for each of these 
“entities”. 

“Entity”-specific 
test parameters 

 
Generating the pair-wise combinations for “entity”-specific test parameters results in 
a set of differently configured “entities”. These “entities” are collected into the same 
configuration set. In this way, a test case can then iterate through the “entities” and 
apply the tests on those “entities” that are appropriately configured. 

5.4.5.2 Example of Interdependence  

The NVRAM Manager (NvM) has both “module-specific” and “block-specific” test pa-
rameters. The module-specific parameters are unique per NvM module. There are 
block-specific parameters for each NvM block controlled by the NvM module. 
Example for module-specific parameter: 
 
NVM_DATASET_SELECTION_BITS Defines the number of least significant bits used 

to address a certain dataset of a NVRAM block 
within the memory hardware abstraction inter-
face. 

 
Example for block specific parameter: 
34 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation

- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

  

NVM_NV_BLOCK_NUM Defines the number of NVRAM blocks in a contiguous area 
according to the block management type. 

 
The number of bits used to address the dataset NVRAM blocks is defined by 
NVM_DATASET_SELECTION_BITS. However, NVM_NV_BLOCK_NUM is applied to 
dataset NVRAM blocks and specifies how many NVRAM blocks are available in total. 
Obviously, there is an interdependence between NVM_DATASET_SELECTION_BITS 
and NVM_NV_BLOCK_NUM: 

 When, for example, NVM_DATASET_SELECTION_BITS is set to 4, only 24 = 
16 dataset NVRAM blocks can be addressed. 

 Thus, in this case, it would not be correct to define NVM_NV_BLOCK_NUM to be 
greater than 16. 

5.4.5.3 Solution Approach to Interdependence 

The logic behind the interdependence between module specific and “entity specific” 
parameters (e.g. for memory blocks) is extensive. A generic solution to handle this 
interdependence in configuration set generation is thus required. 
It is assumed that certain combinations of module-specific parameters imply certain 
groups of “entities”. When defining and combining these “entity” groups’ configuration 
parameters, dependencies on module-specific parameters must be respected. 
A generic solution based on algebra and evaluation of the interdependence between 
configuration parameters has been developed for creating the configuration sets: 

 The constraints that describe the interdependence between module specific 
and entity specific test parameters are formulated as algebraic expressions. 

 When creating the pair-wise combinations for the “entity specific” test parame-
ters, only those entity specific parameter values are used that satisfy the given 
constraints. 

Example 
Values selected for pair-wise combination: 

NVM_DATASET_SELECTION_BITS = { 2, 4, 8 } 
NVM_NV_BLOCK_NUM = { 3, 6, 10, 32, 50 } 

The constraint between these two configuration parameters is formulated as: 
NVM_NV_BLOCK_NUM <= 2^NVM_DATASET_SELECTION_BITS 

Applying this constraint results in the following: 
 When 2 is selected for NVM_DATASET_SELECTION_BITS , only 3 is used for 

NVM_NV_BLOCK_NUM in pair-wise combination. 
 When 4 is selected for NVM_DATASET_SELECTION_BITS , then the values 

{ 3, 6, 10 } are used for NVM_NV_BLOCK_NUM in pair-wise combination. 
 When 8 is selected for NVM_DATASET_SELECTION_BITS , then all values { 3, 

6, 10, 32, 50 } are used for NVM_NV_BLOCK_NUM in pair-wise combination. 

5.4.5.4 Exclusions 

In addition to the interdependence between module-specific parameters and “entity- 
specific” parameters, there is interdependence with test parameters. 
Example: 

35 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

36 of 68 Document ID 283: AUTOSAR_CTSpec_Creation_Validation 
- AUTOSAR Confidential - 

                                           

NVM_BLOCK_USE_CRC == FALSE and NVM_CALC_RAM_BLOCK_CRC == TRUE are 
mutually exclusive8. 
The exclusion relations between certain combinations of test parameters values must 
also be defined and taken into account when generating the pair-wise combinations. 
The exclusion relations must be expressed as pairs using arbitrary combinations of 
equalities and inequalities.  
For example: 
NVM_BLOCK_CRC_TYPE == NVM_CRC16 and NVM_NV_BLOCK_LENGTH <= 3 
NVM_BLOCK_CRC_TYPE == NVM_CRC32 and NVM_NV_BLOCK_LENGTH <= 5 

5.4.5.5 Example of a Combination Table after Formalization of Constraints 

 
Figure 7 shows the block-specific configuration parameters part of the combination 
table from Figure 6. The second column now contains the formalized constraints be-
tween module-specific and block-specific parameters. The exclusion constraints have 
been added in rows. 

5.4.6 Output of the Configuration Generation Process 

The configuration generation process produces a number of configuration sets in 
both TTCN-3 and AUTOSAR XML format. 
The TTCN-3 format for configuration data is described in Chapter  10.1.2. 
The AUTOSAR XML format for configuration data is defined in  [7] and  [9] 

5.5 Prepare Specification of Test Cases 

As preparation for the test case specification (i.e. implementation) phase, the TTCN-
3 API module (containing the BSW module’s data type definitions and API functions) 
and the TTCN-3 Config module (containing the test parameters) must be created. 
These two TTCN-3 modules are created automatically by two tools (see Figure 3): 
 
Converter This tool converts a C header file containing the BSW module’s API 

functions and data types into the appropriate TTCN-3 syntax. 
Combiner This tool combines the definitions and rules in the “configuration combi-

nation table” (see Chapter  5.4.3) and produces configuration sets in both 
AUTOSAR XML and TTCN-3 formats. 

 

 
8 When CRC is disabled generally, it cannot be enabled for a specific block. 



  AUTOSAR BSW & RTE Conformance Test Specification, Part 3: Creation & Validation 
 V1.0.2 

R3.2 Rev 1 
[BLOCK_PARAMETERS] Constraint
NVM_BLOCK_USE_CRC TRUE FALSE
NVM_CALC_RAM_BLOCK_CRC TRUE FALSE
NVM_BLOCK_CRC_TYPE NVM_CRC16 NVM_CRC32
NVM_BLOCK_WRITE_PROT TRUE FALSE
{NVM_BLOCK_MANAGEMENT_TYPE, 
NVM_NV_BLOCK_NUM, 
NVM_ROM_BLOCK_NUM}

NVM_NV_BLOCK_NUM <= 
2**NVM_DATASET_SELECTI
ON_BITS {NATIVE,1,0} {NATIVE,1,1} {REDUNDANT,2,0} {REDUNDANT,2,1} {DATASET,1,0} {DATASET,10,0} {DATASET,1,10} {DATASET,10,0} {DATASET,10,10}

NVM_WRITE_BLOCK_ONCE TRUE FALSE

NVM_RESISTANT_TO_CHANGED_SW

(NVM_RESISTANT_TO_CHA
NGED_SW eq TRUE) || 
(NVM_DYNAMIC_CONFIGUR
ATION eq TRUE) TRUE FALSE

NVM_BLOCK_JOB_PRIORITY 0 1 2 255
NVM_NV_BLOCK_LENGTH 1 5 8 100
NVM_RAM_BLOCK_DATA_ADDRESS RamAddress<N> NULL
NVM_ROM_BLOCK_DATA_ADDRESS RomAddress<N> NULL

NVM_INIT_BLOCK_CALLBACK
TestStubInitBlockC

allback<N> NULL

NVM_SINGLE_BLOCK_CALLBACK
TestStubSingleBloc

kCallback<N> NULL
NVM_SELECT_BLOCK_FOR_READALL TRUE FALSE

TCInitialRamBlockState
VALID_INVALIDCR

C VALID_VALIDCRC INVALID

TCMemIfBehavior
DO_NOT_ACCEPT

_JOB FAIL_JOB
CONTENTS_INVAL

ID WRONG_CRC SUCCESS

TCMemIfBehaviorRedundantBlock
DO_NOT_ACCEPT

_JOB FAIL_JOB
CONTENTS_INVAL

ID WRONG_CRC SUCCESS

[EXCLUSION]
NVM_BLOCK_USE_CRC FALSE
NVM_CALC_RAM_BLOCK_CRC TRUE 

[EXCLUSION]
NVM_SELECT_BLOCK_FOR_READALL TRUE
NVM_BLOCK_MANAGEMENT_TYPE DATASET

[EXCLUSION]
NVM_SELECT_BLOCK_FOR_READALL TRUE
NVM_RAM_BLOCK_DATA_ADDRESS NULL

[EXCLUSION]
NVM_SELECT_BLOCK_FOR_READALL TRUE
NVM_RESISTANT_TO_CHANGED_SW FALSE

[EXCLUSION]
NVM_ROM_BLOCK_DATA_ADDRESS NULL
NVM_ROM_BLOCK_NUM 1

[EXCLUSION]
NVM_ROM_BLOCK_DATA_ADDRESS NULL
NVM_ROM_BLOCK_NUM 10

Selected Values

 

Figure 7 - Example: Combination table for block-specific NvM configuration parameters 

37 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

6 Implementation Phase 

Two sets of products are developed in the implementation phase: 
 The TTCN-3 test cases 
 The BSW module simulation 

While the BSW module simulation is based solely on the refined SWS document, the 
implementation of the TTCN-3 test cases has the following inputs: 

 TTCN-3 API module containing function signatures and data type definitions 
for the BSW module’s API 

 TTCN-3 Config module containing parameters for the test object (AUTOSAR 
configuration parameters) and the test cases (test-specific parameters 

 UML model specifying the CTSpec architecture 
 Test steps for each test case in pseudo code notation 

6.1 Implementation of the BSW Module Simulation 

The BSW module simulation simulates the module’s correct visible behavior. It is not 
necessarily efficient and makes certain assumptions to reduce implementation effort. 
 “Visible behavior” is the module’s behavior at its interfaces. SWS requirements re-
lated to “internal mechanisms” that, for example, were stated for performance rea-
sons, can be ignored as long as the module’s behavior at its interfaces is unaffected.  
Since the BSW module simulation does not run on an embedded system, the follow-
ing simplifications can be applied: 
 

Embedded systems usually treat memory as static and the 
(maximum) memory size for data structures must be defined 
during coding. Dynamic memory management offers the pro-
grammer additional possibilities as memory can be allocated 
and released as needed at runtime. 

Dynamic memory 
management 

Ensuring reentrancy (when required) is a major difficulty in im-
plementing embedded systems. The simulation uses a simpli-
fied model (i.e. sequential function execution). Reentrancy and 
race conditions for shared resources thus become “non-issues”. 

Simplified execu-
tion model 

Embedded systems must handle their resources (i.e. CPU and 
memory) economically and complex data structures, possibly 
based on dynamic memory management, are often prohibited. 
The simulation can use them, however. 

Complex data 
structures 

Function libraries that implement commonly used functionality 
(e.g. queues) can be used. This can also involve “language ex-
tensions” implemented in libraries such as System-C. 

Advanced func-
tion libraries 

Advanced design methodologies, such as object orientation, 
and their supporting tools (CASE) can be used. 

Advanced design 
methodologies 

To summarize: the simulations can be implemented efficiently by applying state-of-
the-art methods. In general, embedded system constraints need not be considered. 

38 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

6.2 Implementation of the TTCN-3 Test Cases 

The test cases are TTCN-3 files that, along with the appropriate TTCN-3 configura-
tion file, can be executed against a SUT. If the test designer and the test implementer 
are the same person, the TTCN-3 test cases are implemented directly from the test 
purpose. If not, the test cases are derived from the pseudo-code test step definitions.  
The TTCN-3 source code structure should be the same for all CTSpecs to simplify 
handling and maintenance. The basic structure is specified in the following section. 
Refer to Chapter  10 for further TTCN-3 related CTSpec implementation details. 

6.3 CTSpec File Structure 

The test cases are structured into various TTCN-3 files. Common definitions & func-
tions (e.g. standard types, DET and DEM interfaces) are put in files with fixed names: 
 
std_types.ttcn3 Specifies AUTOSAR standard types and other common types. 

det_dem.ttcn3 Specifies the Development Error Tracer (DET) and Diagnostic 
Event Manager (DEM) interfaces that the test cases provide 
the SUT for error reporting. 

 
The BSW module specific files have the module’s official abbreviation (e.g. NvM for 
NVRAM Manager) as prefix and a suffix indicating the file type. The following files 
make up the conformance test cases (* indicates the module’s prefix): 
 
*_test_suite.ttcn3 Contains generic test parameters (e.g. test case 

timeouts) and a control part to select/deselect 
test cases for execution. 

*_test_cases.ttcn3 Specifies all conformance test cases belonging 
to the BSW module. Each test case can poten-
tially call the base functions 

*_base_functions.ttcn3 Contains the CTSpec’s base functions that en-
capsulate shared test steps. 

*_test_architecture.ttcn3 Specifies the test components, the SUT’s inter-
faces and their interactions. Furthermore, it pro-
vides generic functions for preparing and finaliz-
ing test cases and handling failure behavior. 

*_api.ttcn3 Specifies the “abstract test system interface”, i.e. 
the interface between the test case and the SUT. 
Test cases use this interface to stimulate and 
observe the SUT. 

*_test_parameters.ttcn3 Contains AUTOSAR and test-specific configura-
tion parameter values. 

*_test_suite.ttcn3 is the main CTSpec file. It imports the required TTCN-3 
modules from other files. They, in turn, may also import further modules. 

39 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

7 Validation Phase 

The following human errors could be expected when implementing the CTSpecs: 
 Typos and syntactical errors 
 “Qualitative” errors: 

o Logic errors in the sequence of test stimulus and observation 
o Logic errors in algebraic operations (e.g. comparisons to deduce test 

verdict) 
o Logic errors in the use of control structures 
o Wrong API calls and callbacks 
o Wrong constants or variables (e.g. for configuration values) 
o Structural errors in implementing the CTSpec architecture 

 “Quantitative” errors: 
o Wrong parameters values in API calls 
o Wrong configuration parameter values 
o Wrong values in algebraic operations 

The validation phase therefore has the following three main objectives: 
1. Verify that the CTSpec complies to the TTCN-3 coding style defined in Chap-

ter  12 and to the file structure described in Chapter  6.3. 
2. Verify that the implemented test cases comply to the test steps as described in 

Chapter  5.1.3. 
3. Verify the overall correctness of all CTSpec creation process activities by exe-

cuting the CTSpec against a simulation of the BSW module. 
The following verify and validate the CTSpecs with respect to these objectives: 

1.  “Shallow” code review to verify that the implemented TTCN-3 test cases ad-
here to the TTCN-3 coding guidelines and to the specified file structure. 

2. Compiling and linking with the TTCN-3 API and Config modules to ensure 
formal correctness and executability. 

3. “Deep” code review to verify that the TTCN-3 test cases correctly implement 
the test steps.  

4. Execution of the conformance test cases against the BSW module simulation 
to validate whether they correctly report “pass” and “fail”. 

The first three activities are straightforward but the fourth needs further explanation. 

7.1 Test Case Validation using a Simulation of the BSW Module 

This section describes the concept of validating conformance test cases by executing 
them against a simulation of the BSW module under test in more detail. 

7.1.1 Motivation 

Validating test cases with simulation has the following advantages: 
 The simulation focuses on the BSW module’s functionality as a whole and not 

on individual requirements. This avoids code duplication and thus reduces im-
plementation effort compared to preparing test cases for the CTSpec. 

40 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

 The simulation is implemented in a high-level programming language on a 
standard PC. This reduces the overall implementation effort compared to im-
plementing on an embedded system. 

 The personnel familiar with the BSW module’s specification can use their pre-
ferred high-level programming language (e.g. Java, C++). This accelerates 
implementation of the simulation and results in fewer errors 

 Code coverage in the simulation can be analyzed during execution of the con-
formance test cases. The functionalities within the BSW module that have not 
been covered by the conformance test cases can thus be identified. 

7.1.2 Validation Setup 

Figure 8 shows the setup for validating the conformance test cases against a BSW 
module simulation. The Test System is realized according to  [4]. However the SUT is 
replaced by a “SUT Substitute” composed of 

 the BSW module simulation  
 the validation target adapter 

Test Execution 

Test Adapter 

Conformance Test Cases

…TC1 TC2 TC3 

BSW Module  
Simulation 

Validation 
Target Adapter 

SUT Substitute Test System 
 

Figure 8 - Validation Setup 

7.1.3 Error Tracing during Validation 

The module simulations used to validate the test cases shall all implement DET de-
velopment error detection mechanisms as specified in  [7]. This ensures consistent 
interfaces among the simulations and should ease their integration, if necessary. 

41 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

7.2 The Validation Workshop 

A “validation workshop” shall be held to validate the test cases by executing the 
CTSpec against the BSW module simulation. The following should attend: 

 the Test Assessor 
 the Test Designer 
 the Test Implementer 
 the Test Validation (Simulation) Implementer 

Involving knowledgeable representatives from test case, simulation and test infra-
structure development ensures that problems can be quickly identified and solved. 

7.2.1 Preparation for the Validation Workshop 

Before the workshop is held, the Test Assessor must develop the test infrastructure 
(i.e. test adapters, test tools on Test-PC, communication network etc.) and set it up.  
The Test Assessor must also make end-to-end communication tests using the API of 
the BSW module under test. These tests verify that communication events are cor-
rectly transferred between the test cases and the target adapter. 

7.2.2 Conducting the Validation Workshop 

The target test adapter (implemented by the Test Assessor) is first integrated with the 
BSW module simulation (implemented by the Test Validation Implementer). After 
that, the test cases can be compiled and validation can start with simple test cases. 
The subsequent activities depend on the problems and errors found during test case 
execution. The workshop participants must work together to identify the causes of 
problems and to define the right approaches to solving them. 
The issues identified and the solutions must be documented for traceability. 

7.3 Result of the Validation Workshop 

The validation workshop finally results in: 
 an improved version of the BSW module simulation, 
 an improved version of the TTCN-3 test cases, 
 an issue list composed of generic issues and test case-specific issues. 

All issue list items must be resolved (by involving the SWS authors, if necessary) be-
fore the CTSpec can be regarded as “validated”. 

7.4  “Validation against Misbehavior” 

The validation activities, especially the validation workshop, focus on eliminating er-
rors in both the module simulation and the test cases. The simulation’s objective is to 
emulate correct module behavior and verify that the test cases correctly report “pass” 
This approach does not validate that the test cases correctly report “fail” when exe-
cuted against a non-conformant implementation, however. 

42 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

In theory, “validation against misbehavior” is far more complex than “validation 
against correct behavior” because the number of conceivable faults is much higher 
than the number of correct results for any given module implementation. 
Therefore, the confidence in the CTSpec gained through “validation against misbe-
havior” is inherently limited by the number of faults injected into the simulation. 
“Validation against misbehavior” must be carried out after the CTSpec has been vali-
dated against correct behavior since confidence in the correctness of the simulation 
must be gained before errors are purposely injected into the simulation. 
The steps to “validate against misbehavior” are as follows: 

1. For each test case, identify possible BSW module implementation errors that 
should result in a “fail” verdict. These errors must be linked to the test cases to 
maintain traceability. 

2. Implement these errors in the BSW module simulation. It must be possible to 
switch each error on or off individually. 

3. Execute the CTSpec several times against the BSW module simulation with 
implemented errors. For each run, switch a different error on. 

4. Verify that for each CTSpec execution, only those test cases report “fail” that 
are associated with the error that were switched on during execution. 

Some tasks must be carried out manually (e.g. error identification and implementa-
tion) and some tasks that can be automated (e.g. execution with different errors acti-
vated, verification of failed test cases). 

traceability links 

identifies
 

 

identifies

TTCN-3 
Test Cases 

Test 
Designer 

Process flow 

Work flow 

Test 
Assessor 

Typical 
Implementa-
tion Errors 

Configured 
Test Cases 

BSW Module 
Simulation 
with Errors 

Test 
Infrastructure 

Validation against 
Misbehavior 

 
Refined 

SWS  
Document 

 

Figure 9 - Work and process flow for "validation against misbehavior" 

The Test Designer must define the extent of “validating against misbehavior” (i.e. the 
number of errors injected into the simulation) based on the impacts of false positives 
on the quality of the test case implementation. There is no general “rule of thumb”. 

43 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

8 Pseudo-Code for Test Step Descriptions 

Test steps can be described in a semi-formal notation, a pseudo code, as an inter-
mediate step before coding in TTCN-3. This chapter describes the semantics of this 
pseudo-code. 

8.1.1 Objective 

The Test Description document contains the results of the SWS analysis, test case 
descriptions and configuration parameter definitions and combinations. The test case 
descriptions are the basis for implementing the conformance test cases in TTCN-3 
and must therefore comprise all information necessary for test case implementation. 
Test step descriptions are used as a means of communication between the test case 
designer and the test case implementer. This is necessary when two different per-
sons or organizations design and implement the test cases. Otherwise the test cases 
would be written in TTCN-3 directly. The “logical flow” of the test case must be speci-
fied in sufficient detail to support this “arms-length” communication. 
Message sequence charts are commonly used for this purpose. However, the cir-
cumstances of BSW module APIs are generally already clear from the definition, i.e., 
the function name’s prefix indicates the caller and the callee and the BSW module’s 
location in the overall AUTOSAR architecture (e.g. NvM_ReadBlock() indicates an 
API provided by the NVRAM Manager to be called by an Application SW-C). 
The pseudo-code notation is used in the Test Description documents to efficiently 
describe logical test steps involving stimulating the BSW module under test and ob-
serving its reactions. This notation is described in the following sections. 
Note that the pseudo-code is a means to document test steps and their logic quickly 
and efficiently. It is not intended to be complete in every aspect or to be executable. 

8.1.2 General Conventions 

The notation combines elements from structured programming languages with the 
ease of informal descriptions. However, being informal, it is often not precise enough 
and a basic technical background is needed to understand it correctly. Additional ex-
planatory documents (e.g. a UML model) or workshops must be provided to ensure 
this basic understanding on the receiver side (i.e. the TTCN-3 implementers). 
The following general conventions are defined for this notation: 

 Test steps are defined on individual lines terminated by semi-colons. 
Example: EXPECT NvM_JobEndNotification(); 

 Configuration parameters are used directly with their names in capital letters. 
Example: IF (NVM_POLLING_MODE == TRUE) { ... } 

 Variables must not be declared if their meaning and data type is clear from the 
context (e.g. loop counter variables, variables containing return values, etc.). 
Example: FOR n = 0 to NVM_NV_BLOCK_NUM { ... } 

 Sub-functions should be defined for test steps that recur in Test Descriptions. 
 Functions other than BSW API functions (e.g. sub-functions defined in Test 

Descriptions, target adapter functions) can be invoked by just writing down the 

44 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

                                           

function name and possible parameters in parentheses (or “()” for no parame-
ters)9. This is possible since these function invocations return immediately. 

8.1.3 Keyword Descriptions 

In general, each test step line begins with a keyword written in capital letters. The 
following sections give the meaning of the keywords that have been defined so far. 

8.1.3.1 CALL 

As opposed to invoking sub-functions or target adapter functions, BSW module API 
function always invoked with the CALL keyword. They must be CALLed since they 
are potentially asynchronous (i.e. do not return immediately). The API function name 
to be invoked together with its parameters must be included after the CALL keyword. 

Example: CALL NvM_ReadBlock(BlockId, DataBufPtr); 
Since all API functions are defined in TTCN-3 as “blocking” functions, they always 
result in a return event. This return event has to be EXPECTed in subsequent test 
steps to account for the asynchronous execution behavior. 

8.1.3.2 EXPECT 

The EXPECT keyword indicates that the test case is expecting an event coming from 
the SUT. Basically, there are two kind of possible events: 

 Incoming function invocation. 
Example: EXPECT NvM_JobEndNotification(); 

 Incoming return from a previous function call. In this case, the extension 
“return of” must be used. 
Example: EXPECT return of NvM_ReadBlock(); 

8.1.3.3 REPLY 

For incoming function calls from the SUT, the test case must indicate the (possibly 
simulated) function completion together with an optional return value to the SUT. This 
is done using the REPLY keyword extended by “on”, the replied function’s name and 
optionally the return value preceded by a  “with return value of”. 

Example: 
REPLY on Ea_GetJobResult() with return value of MEMIF_JOB_OK; 

8.1.3.4 CHECK 

The CHECK keyword indicates checks that are relevant to the test verdict . The de-
scription of what is to be checked can be informal and/or an algebraic expression. If 
the check passes, the test verdict is set to “passed”. Otherwise, it is set to “failed”. 

Example: CHECK that rv is 0; 
 

9 This is identical to the C syntax for function calls. 
45 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 

- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

                                           

 or CHECK(rv == 0); 

8.1.3.5 Structural Elements 

Common structural programming elements such as 
IF ... 
FOR ... TO 
WHILE ... DO 
REPEAT ... UNTIL 

can be used with conditions expressed informally and/or using algebraic expressions. 
Using structural programming elements similar to C is recommended. 

8.1.4 Handling Pointers and Addresses 

Pointers and addresses that are provided to API functions under test are handled 
transparently10 within the test cases. In other words, the test case must provide real 
existing addresses to the API function that it calls. The target adapter offers functions 
to the test case that provide real existing addresses (e.g. for a free memory block to 
be used temporarily). 
Test steps involving pointer handling and interactions with the target memory (see 
 [4]) are part of the test case description and must either be stated explicitly (i.e. writ-
ing down these steps) or implicitly (i.e. providing a general description from which the 
implementer can derive the required steps). 
Refer to Chapter  10.5 for more information on the memory handling concept. 

8.1.5 Limitations 

There is currently one type of test step that cannot be described directly with pseudo-
code: 
Irrelevance in the order and/or number of observations 
Some test cases must specify that events observable at the SUT (e.g. incoming call-
backs from the SUT) are expected to occur at arbitrary times and in arbitrary order 
(or, arbitrary to a certain degree). Although these kinds of test cases can be imple-
mented in TTCN-3 without problem, the pseudo-code described here cannot express 
them directly. Additional informal descriptions (e.g. comments in the pseudo-code) 
must be added to make the correct way of implementing clear to the test case im-
plementer. 

 
10 This means, the pointer variables used within TTCN-3 in association with the BSW module’s API 
functions contain the actual address values used on the target system running the BSW module. 
46 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 

- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

                                           

9 Further Details: Test Case Design 

This chapter contains further information and recommendations on designing and 
implementing the conformance test cases. 

9.1 Design Elements for TTCN-3 Test Cases 

Conformance testing complex BSW modules efficiently and with good coverage re-
quires an appropriate test case design. The following sections describe the different 
design elements which must be considered for TTCN-3 test cases. 

9.1.1 Test Components 

Within TTCN-3 test cases, test components execute the test steps. Since several test 
components can be created within a test case, test steps can be executed in parallel. 
BSW conformance testing uses this parallelism, e.g. for error reception through the 
DET and DEM interfaces. 
Defining roles for test components makes the test cases more understandable and 
easier to re-use. There are three roles for test components: 

 Test Case Controller (TCCO) 
 Test Case Client (TCCL) 
 Test Case Stub (TCST) 

The following sections define these test component roles. 

9.1.1.1 Test Case Controller (TCCO) 

The purpose of the TCCO is to control the execution of the test case. The TCCO 
creates further test components (i.e. the TCCL and any optional TCSTs) and stops 
them to end the test case gracefully. After the test case completes, the TCCO col-
lects the (local) test verdicts from the other test components and summarizes them in 
the final test verdict11. 
The TCCO is the entry point to TTCN-3 test cases. Thus, it is implemented on the 
MTC (Main Test Component, see  [1]). Note that the TCCO does not communicate 
with the SUT directly. 

9.1.1.2 Test Case Client (TCCL) 

TCCLs actually implement a test case’s purpose. That is, they send stimuli to the 
SUT and wait for responses from the SUT. They then validate the responses and 
finally calculate the (local) test verdict (pass, fail or inconclusive). Thus only TCCLs 
execute test steps involving interaction with the SUT. 

 
11 The rule for summarizing the test verdicts is defined in the TTCN-3 standard. Basically, the final test 
verdict can only be “pass” when all (local) test verdicts are “pass” as well. 
47 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 

- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

TCCLs communicate with the SUT through defined SUT Adapter ports using proce-
dure-based communication methods. They are implemented on a PTC (Parallel Test 
Component, see  [1]) and are created and controlled by the TCCO. 

9.1.1.3 Test Case Stub (TCST) 

A TCST is needed if the SUT requires some external functionality. The TCST pro-
vides this functionality to the degree necessary to run the test case successfully. 
Thus, the TCST is in general a limited simulation of an external BSW module. 
Typically, the TCST provides services to the SUT by waiting for incoming SUT re-
quests and providing appropriate responses. The TCST makes its own (local) test 
verdict based on the interactions with the SUT and the test purpose. 
Test functions implemented by a TCST are, for example: 

 Error handling according to the Development Error Tracer (DET) 
 Event handling according to the Diagnostic Event Manager (DEM) 
 CRC calculation 

The TCCL is implemented on a PTC (Parallel Test Component, see  [1]) and created 
and controlled by the TCCO, as required by the test purpose. 

9.1.2 Ports 

Ports must be defined for each test component so that the test component can inter-
act with other test components or with the SUT. 
In TTCN-3, ports can be defined as message, procedure or mixed ports (i.e. 
message and procedure at the same time). In general, AUTOSAR BSW module 
conformance testing only uses procedure ports. 
Details and examples of defining ports can be found in  [1]. 

9.1.3 Interfaces 

Procedure ports convey test components’ function calls and their parameters. The 
group of function calls that can be transmitted over a port is referred to as an inter-
face or Application Programming Interface (API) in the case of a standardized inter-
face. 
The signatures of function calls that can be transmitted over ports must be defined 
resulting in interface definitions for conformance test cases. These signatures are 
either translated directly from the API definitions in the AUTOSAR SWS documents, 
or, in case of function calls among test components or towards the target adapter 
(see also  [4] for target adapter functions), are specified in the CTSpec itself  

9.2 Modeling with UML 

The TTCN-3 test case design elements described in the previous sections can be 
represented very well with UML component diagrams. Therefore, the CTSpec design 
specification must use UML component and class diagrams. The CTSpec design 
should provide at least the following to improve understandability: 

48 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

 
This view (Figure 10) shall contain all possible test component 
interactions with the BSW module under test (SUT) used in the 
test cases. It shall depict all test component and SUT ports and 
their interconnections. The interface definitions associated with 
these ports can be omitted. The structural information contained in 
this view is helpful when implementing the framework of the 
CTSpec design in TTCN-3 

Generic Test 
Architecture 
View 

This view (Figure 11) specifies all ports and their interface defini-
tions from the Test Case Client point of view (i.e. the test compo-
nent that executes the main test steps, see Chapter  9.1.1.2). , 
This view gives an overview on all possible interaction methods 
available for the main test steps of a test case. This is helpful 
when implementing the test steps. 

Test Case Cli-
ent View 

The test parameters view contains all relevant test parameter in-
formation required during TTCN-3 implementation. This view 
(Figure 12) presents all AUTOSAR configuration and test specific 
parameters relevant to the CTSpec. Module-specific and entity-
specific parameters shall be defined separately as attributes of 
“parameter classes” which have appropriate TTCN-3 data type 
names. Enumeration types shall be defined as an “enumeration 
class”.  

Test Parame-
ters View 

49 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

ARBSWModule

Nv M

crc nvmCbmemIfappCb nvmIfdet nvDem

MemIfTCmemIf

nvmCb

memIfTest

CRCTC

crcIf

crcTest

Nv MTestCasescrcTest memIfTest nvmIfappCbTest detTest demTest

TA

ApplicationCallbackTC

appCbTest

appCb

DETTC

det

detTest

DEMTC

dem

demTest

TargetAdapter TA

«interface»

TA_Functions

+ TA_CopyMemBlock(PtrType, PtrType) : void
+ TA_DisableCyclicMainFunction() : void
+ TA_EnableCyclicMainFunction() : void
+ TA_GetNextRamBlockPtr(int) : PtrType
+ TA_MemBlocksEqual(PtrType, PtrType, int) : boolean
+ TA_ReadMemBlock(PtrType, int) : octetstring
+ TA_ReadVersionInfo(PtrType) : VersionInfoType
+ TA_WriteMemBlock(PtrType, octetstring) : void

«realize»

 

Figure 10 - Example: Generic Test Architecture View on the CTSpec for the NVRAM Manager 

50 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

Nv MTestCases

appCbTest crcTest demTestdetTest memIfTest nvmIf

«interface»

AppCbTestInterface

+ ArmCallback() : void
+ ArmedCount() : int
+ DisarmCallback() : void
+ GetUseCount() : int
+ InitCalled() : boolean
+ Reset() : void

«interface»

CRCTestInterface

+ GetUseCount() : void
+ InvalidateCRC() : void
+ ValidateCRC() : void
+ VerifyCRC() : boolean

«interface»

MemIfTestInterface

+ CompareContents() : boolean
+ FinishJob() : void
+ GetCancelCount() : int
+ GetErasedImmediately() : boolean
+ GetIsInvalid() : boolean
+ GetMode() : MemIf_TestModeType
+ GetUseCount() : int
+ GetWriteCount() : int
+ Reset() : void
+ SetExpectMode() : void
+ SetExpectOrdering() : void

«interface»

DEMTestInterface

+ GetEventStatus() : EventStatusType
+ GetUseCount() : int
+ Reset() : void

«interface»

DETTestInterface

+ ConfirmError() : boolean
+ GetUseCount() : int
+ Reset() : void

«interface»

NvMInterface

+ NvM_CancelWriteAll() : void
+ NvM_EraseNvBlock() : Std_ReturnType
+ NvM_GetDataIndex() : void
+ NvM_GetErrorStatus() : void
+ NvM_GetVersionInfo() : void
+ NvM_Init() : void
+ NvM_InvalidateNvBlock() : Std_ReturnType
+ NvM_MainFunction() : void
+ NvM_ReadAll() : void
+ NvM_ReadBlock() : Std_ReturnType
+ NvM_RestoreBlockDefaults() : Std_ReturnType
+ NvM_SetBlockProtection() : void
+ NvM_SetDataIndex() : void
+ NvM_SetRamBlockStatus() : void
+ NvM_WriteAll() : void
+ NvM_WriteBlock() : Std_ReturnType

 

Figure 11 - Example: Test Case Client View on the NVRAM Manager CTSpec architecture 

51 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

Nv M_PerBlockParameters

+ NVM_BLOCK_CRC_TYPE:  CrcTypeEnum
+ NVM_BLOCK_JOB_PRIORITY:  uint8
+ NVM_BLOCK_MANAGEMENT_TYPE:  BlockManagementTypeEnum
+ NVM_BLOCK_USE_CRC:  boolean
+ NVM_BLOCK_WRITE_PROT:  boolean
+ NVM_CALC_RAM_BLOCK_CRC:  boolean
+ NVM_INIT_BLOCK_CALLBACK:  FuncName
+ NVM_NV_BLOCK_BASE_NUMBER:  uint16
+ NVM_NV_BLOCK_LENGTH:  uint16
+ NVM_NV_BLOCK_NUM:  uint8
+ NVM_NVRAM_BLOCK_IDENTIFIER:  int
+ NVM_RAM_BLOCK_DATA_ADDRESS:  uint8*
+ NVM_RESISTANT_TO_CHANGED_SW:  boolean
+ NVM_ROM_BLOCK_DATA_ADDRESS:  uint8*
+ NVM_ROM_BLOCK_NUM:  uint8
+ NVM_SELECT_BLOCK_FOR_READALL:  boolean
+ NVM_SINGLE_BLOCK_CALLBACK:  FuncName
+ NVM_WRITE_BLOCK_ONCE:  boolean
+ TCInitialRamBlockState:  InitialRamBlockStateEnum
+ TCMemIfBehavior:  MemIfBehaviorEnum
+ TCMemIfBehaviorRedundantBlock:  MemIfBehaviorEnum

«enumeration»
MemIfTC::

MemIfBehav iorEnum

enum
+ DO_NOT_ACCEPT_JOB:  
+ FAIL_JOB:  
+ CONTENTS_INVALID:  
+ WRONG_CRC:  
+ SUCCESS:  

Nv M_ModuleParameters

+ NVM_COMPILED_CONFIG_ID:  uint16
+ NVM_CRC_NUM_OF_BYTES:  uint16
+ NVM_DATASET_SELECTION_BITS:  uint8(0..8)
+ NVM_DEV_ERROR_DETECT:  boolean
+ NVM_DRV_MODE_SWITCH:  boolean
+ NVM_DYNAMIC_CONFIGURATION:  boolean
+ NVM_JOB_PRIORITIZATION:  boolean
+ NVM_MAX_NUM_OF_WRITE_RETRIES:  uint8(0..7)
+ NVM_MULTI_BLOCK_CALLBACK:  FuncName
+ NVM_POLLING_MODE:  boolean
+ NVM_SET_RAM_BLOCK_STATUS_API:  boolean
+ NVM_SIZE_IMMEDIATE_JOB_QUEUE:  uint8
+ NVM_SIZE_STANDARD_JOB_QUEUE:  uint8
+ NVM_TOTAL_NUM_OF_NVRAM_BLOCKS:  uint16
+ NVM_VERSION_INFO_API:  boolean
+ TCConfigIdBehavior:  ConfigIdBehaviorEnum

«enumeration»
BlockManagementTypeEnum

enum
+ NVM_BLOCK_NATIVE:  
+ NVM_BLOCK_REDUNDANT:  
+ NVM_BLOCK_DATASET:  

«enumeration»
InitialRamBlockStateEnum

enum
+ VALID_INVALIDCRC:  
+ VALID_VALIDCRC:  
+ INVALID:  

«enumeration»
ConfigIdBehav iorEnum

enum
+ MATCH:  
+ FAIL:  
+ MISMATCH:  

«enumeration»
CrcTypeEnum

enum
+ NVM_CRC16:  
+ NVM_CRC32:  

 

Figure 12 - Example: Test Parameter View on the CTSpec architecture for the NVRAM Manager 

52 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

10 Further Details: Test Case Specification / Implementa-
tion 

10.1 Configuration Mechanism 

It is essential to BSW conformance testing that parameters (both AUTOSAR configu-
ration parameters and test specific parameters) can be evaluated within test cases. 
Since providing values for TTCN-3 module parameters is not standardized and has 
therefore been implemented differently by various TTCN-3 tools, the configuration 
mechanism used for BSW conformance testing defines the configuration parameter 
values directly as TTCN-3 code inside a parameter module. This parameter module 
is imported by the test case definitions. 
The *_test_parameter.ttcn3 TTCN-3 file contains the values of all configura-
tion and test specific parameters contained in the conformance test cases. In gen-
eral, this file is created by a tool. 

10.1.1 Data types of Test Parameters 

The rules for data type mapping described in Chapter  9 apply when converting 
AUTOSAR configuration parameter values into appropriate TTCN-3 definitions. 

10.1.2 Format of Test Parameters 

In general, several configuration sets with different combinations of test parameter 
values are needed for conformance tests. It is therefore crucial that the test parame-
ters be in a form that is easily integrated with the rest of the CTSpec. All test parame-
ters are defined within one TTCN-3 module. The module containing the test case 
specifications can then simply import the test parameter module to access the pa-
rameter values. 
As described in Chapter  5.4.5.1, two kinds of configuration parameters exist for BSW 
modules: module-specific and “entity”-specific configuration parameters. 
Since module-specific parameters exist only once per SUT, they can be defined as 
simple TTCN-3 constants. 
Example: 

const boolean NVM_POLLING_MODE := false; 
There can be several entities in a SUT, however, and entity-specific parameters are 
defined per entity. Furthermore, it must be possible to iterate through these entities in 
order to find an entity with specific test parameter values. 
Entity-specific parameters can be defined along with module-specific parameters 
within one module with an “accessor” function that returns the test parameters for an 
entity at a certain index.  
Example: 

53 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

function f_NvM_ReturnBlock(in integer BlockSelect) 
runs on NvMPTC return NvMBlockParType 
{ 
  var NvMBlockParType CfgElement;  
 
  select(BlockSelect) 
  { 
    case(0) 
      { 
        CfgElement.NVM_WRITE_BLOCK_ONCE := true; 
        CfgElement.NVM_BLOCK_MANAGEMENT_TYPE := e_REDUNDANT; 
  : 
      } 
    case(1) 
      { 
        CfgElement.NVM_WRITE_BLOCK_ONCE := false; 
        CfgElement.NVM_BLOCK_MANAGEMENT_TYPE := e_DATASET; 
  : 
      } 
    case(2) 
      : 
  } 
  return CfgElement; 
} 

10.2 Control Part 

The control part executes all test cases belonging to a CTSpec and thus specifies the 
test case sequence. The test case itself evaluates whether a test case is actually 
valid for the currently active configuration set. Examples of control part code can be 
found in Part 1 “TTCN-3 Core Language” of  [1]. 

10.3 Data Type Mapping 

In  [6], AUTOSAR has defined basic data types to be used within BSW module source 
code. These are then further mapped to C data types in order to account for particu-
lar target system properties (e.g. CPU type) and to optimize execution time. 
Since conformance tests are independent of the target platform, only the basic 
AUTOSAR data types must be converted to TTCN-3 data types. The System and 
Platform Adapters must convert the TTCN-3 data types to the specific target platform 
data types (see  [4]). 
In addition to the mapping of basic AUTOSAR data types, the mapping of enumera-
tion data types and data type compositions has to be defined. 
C pointers are handled differently, however. All C pointer data types are mapped to 
the generic TTCN-3 PtrType data type. Refer to Section  10.5 for details. 

10.3.1 Guideline 

Generally the AUTOSAR BSW module data types should be mapped as directly as 
possible to the TTCN-3 data types used in the CTSpecs. The TTCN-3 data type defi-
nitions should also use the equivalent AUTOSAR data type names. 

54 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

Applying this guideline to basic AUTOSAR data types (e.g. uint8) is generally 
straightforward as one mapping rule is usually obviously the most direct one. 
Complex and composed C data types (e.g. enumerations, struct data types) can 
sometimes be mapped to TTCN-3 data types in different ways. Here, a specific map-
ping must be defined. 

10.3.2 Mapping Rules 

10.3.2.1 Basic AUTOSAR Data Types 

Table 4 maps the basic AUTOSAR data types (taken from  [6]) to TTCN-3 data types: 
 

AUTOSAR 
data type 

Corresponding TTCN-3 data type definition 

boolean boolean (basic TTCN-3 data type) 

uint8 type integer uint8 (0..255) 

uint16 type integer uint16 (0..65535) 

uint32 type integer uint32 (0.. 4294967295) 

sint8 type integer sint8 (-128..127) 

sint16 type integer sint16 (-32768..32767) 

sint32 type integer sint32 (-2147483648..2147483647) 

uint8_least not relevant 

uint16_least not relevant 

uint32_least not relevant 

sint8_least not relevant 

sint16_least not relevant 

sint32_least not relevant 

float32 type float float32 (-3.4E38 .. 3.4E38) 

float64 type float float64 
(-1.7976931348623157E308..1.7976931348623157E308) 

Table 4: Mapping between AUTOSAR data types and TTCN-3 data types 

Note that the optimized AUTOSAR integer data types (*_least) must not be used in 
BSW module APIs (see SWS item PLATFORM032 in  [6]). Therefore, they are not 
relevant to conformance test cases. 
Mapping the basic AUTOSAR data types to TTCN-3 data types in this way makes it 
possible to use the same names for these data types in both the C source code and 
the TTCN-3 test cases. 

55 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

                                           

10.3.2.2 Indefinite AUTOSAR Data Types 

Some AUTOSAR data types are indefinite due to unresolved dependencies, e.g. 
hardware dependencies: Eep_AddressType of type “uint8 …uint32”. Three ap-
proaches are possible: 
 

1. Map the indefinite AUTOSAR data type to the most comprehensive data 
type possible (in the example above, map to uint32). 
Adopting this approach shifts the issue of converting the comprehensive data 
type (e.g. uint32) to the currently valid data type (e.g. uint16) to the TTCN-3 
Coder/Decoder (see  [4]). The Coder/Decoder must be altered to the valid data 
type and this approach shall therefore be avoided. 

2. If possible, map the indefinite AUTOSAR data type to a compatible 
TTCN-3 data type that leaves room for the indefiniteness (in the example 
above, map to octetstring of length (1, 2, 4). 
This approach is quite elegant since the different AUTOSAR data types can 
be mapped to one “flexible” TTCN-3 data type. The different AUTOSAR data 
types must be “compatible” with the “flexible” TTCN-3 data type (i.e. there is 
an unambiguous mapping) so that the Coder/Decoder can convert between 
the AUTOSAR data types and the TTCN-3 data type. 
However, the “flexible” TTCN-3 data type may not be “compatible” in all as-
pects. For example, the TTCN-3 “octetstring data type of length (1, 2, 4)” used 
to map the AUTOSAR “uint8, uint16, uint32” data types cannot be used for 
arithmetic calculations directly. In this case, type conversion routines must be 
implemented before doing arithmetic operations. 

3. Leave a placeholder for the mapping (e.g. “type integer 
indefinite_integer”). Later when the concrete data type for the in-
definite AUTOSAR data type is known, replace the placeholder by the 
matching TTCN-3 data type according to Chapter  10.3.2.1. 
This approach requires changing the CTSpec and shall thus be avoided if 
possible. However, when the second approach is not possible, only this ap-
proach remains.  

The approach should be chosen based on the recommendations given above. 

10.3.2.3 AUTOSAR Enumeration Data Types 

AUTOSAR enumeration values are either implemented directly as C enumerations 
(“enum”) or defined as constants (“#define”). In both cases, an integer value 
(unique within the enumeration type) is associated with the enumeration value. The 
integer value associated with the enumeration type in a SWS document is either 
stated explicitly or given by the enumeration sequence (counting starts at zero). 
Due to this strong association between AUTOSAR enumeration value and integer 
value, AUTOSAR enumeration values are mapped to TTCN-3 integer constants 
which are grouped according to the AUTOSAR enumeration type12. 

 
12 TTCN-3 offers an „enumerated“ type of its own. However, it is not clear from the current TTCN-3 
specifications (V3.1.1.) how the TTCN-3 Coder/Decoder handles the enumerated type and how the 
associated pre-defined integer values are to be taken into account by the Coder/Decoder. Therefore, 
the solution described here has been used. 
56 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 

- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

                                           

Example: 
AUTOSAR enumeration definition: 

MemIf_StatusType: 
    Type:  Enum 
    Range: MEMIF_UNINIT 
     MEMIF_IDLE 
     MEMIF_BUSY 
     MEMIF_BUSY_INTERNAL 

Equivalent TTCN-3 definition: 
group g_MemIf_StatusType 
{ 
    const EMemIf_StatusType e_MEMIF_UNINIT := 0; 
    const EMemIf_StatusType e_MEMIF_IDLE := 1; 
    const EMemIf_StatusType e_MEMIF_BUSY := 2; 
    const EMemIf_StatusType e_MEMIF_BUSY_INTERNAL := 3; 
} 

10.4 Handling Open Implementations 

Extensive analysis of four BSW Software Specification documents13 during the 
CTSpec pilot project has shown that SWS requirements often leave the implementa-
tion of certain functionality open within certain limits. 
From a conformance testing viewpoint, granting this degree of implementation free-
dom often dictates that the functionality be tested indirectly. , For example, the strat-
egy (in terms of step size etc.) for realizing the multi-step CRC calculation in the 
NVRAM Manager is left to the implementer. This means that the classic black-box 
test approach – stimulation, observation, evaluation – with single events is not appli-
cable. Multiple events (e.g. multiple partial CRC calculations) must be observed in-
stead and their conformance with certain conditions (e.g. partial CRC calculations 
cover the whole memory block) must be evaluated. This shall be realized by Test 
Case Stubs in the test cases, i.e. independent test components that provide services 
to the Test Case Clients which execute the main test steps. 

10.5 Pointer Handling 

AUTOSAR BSW module APIs use pointers heavily to realize “out” or “inout” pa-
rameters i.e. the parameter passes data back (e.g. GetVersionInfo API calls). 
This is a “pass by reference” mechanism, as the parameters actually contain the ad-
dresses of the data. Basically there are two ways to handle this functionality in TTCN. 

1. Abstract from pointers 
TTCN-3 supports the notion of "out" and "inout" parameters natively. There-
fore, it does not require pointer mechanisms as in C to pass parameter data 
from the called function to the calling function. The "abstract from pointers" 
approach therefore defines the type of "out" or "inout" data directly within the 
TTCN-3 function signatures. In other words, a "pass-by-value" semantic is 
used in TTCN-3 functions that represent BSW module APIs. 

2. Transparent pointer handling 

 
13 NVRAM Manager, Memory Abstraction Interface, EEPROM Abstraction Interface and EEPROM 
Driver 
57 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 

- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

The alternative approach is to handle pointers transparently in TTCN-3; i.e. 
defining a TTCN-3 user type representing C pointers (a "pointer type"). This 
type is then used in TTCN-3 function signature representing BSW module 
APIs with pointer parameters. Calling these TTCN-3 functions then requires 
providing address values for these "pointer type" parameters. In this case, a 
"pass-by-reference" semantic is applied to the TTCN-3 functions. 

The second approach, “Transparent Pointer Handling”, shall be used for the following 
reasons: 

 Abstracting pointer parameters would require performing memory transactions 
and data type conversions on the SUT Adapter and Platform Adapter level 
with associated functionality in the Target Adapter. These operations would 
need to be implemented in these adapters making them more dependent on 
the BSW module under test, i.e. a greater part of these adapters would need 
to be implemented specifically for the BSW module under test. 

 Handling pointers transparently in the CTSpecs reduces the System and Plat-
form Adapters’ (including the Target Adapter) dependency on the BSW mod-
ule’s APIs and they can be reused for other BSW modules with less modifica-
tion. This approach puts additional effort in test case implementation, as the 
memory transaction and data type conversion operations involved with pointer 
parameters must be handled in the test cases. However, these operations can 
be defined generically (see  [4]) and encapsulated in base functions (see 
Chapter  6.3). Therefore, the advantage of the System and Platform Adapters 
being more generic outweighs the additional effort in test case implementa-
tion. 

Figure 13 depicts the pointer handling concept used in the TTCN-3 conformance 
testing. Each pointer parameter’s data type is mapped to the TTCN-3 PtrType data 
type. In this way, the pointer type information (e.g. whether it points to an uint8 or 
an uint16) is lost in the TTCN-3 domain. However, the advantage of this generic 
PtrType is its simplicity – no pointer type conversions are required. When a test 
case evaluates data addressed by a pointer (e.g. version information), its structure 
must be known anyways. This also eliminates the need for typed pointers. 

58 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

Test Case Execution 
Environment 

SUT Execution 
Environment 

 

Figure 13- Overview of the pointer concept in TTCN-3 conformance test cases 

 [4] specifies the memory block operations needed to handle BSW module APIs with 
pointer parameters in detail. The realization of the pointer handling concept depends 
heavily on the memory concept used on the SUT side: 

 For validation, a BSW module simulation is used as SUT. The pointer handling 
concept must be mapped to the simulation’s memory handling concept. 

o For a JAVA simulation, a mapping between the memory addresses (i.e. 
content of TTCN-3 pointer variables) and the JAVA objects that repre-
sent memory blocks has to be implemented in the target adapter. 

o A simulation implemented in C can make use of direct references in the 
TTCN-3 pointer variables, i.e. the TTCN-3 pointer variables contain the 
addresses of the associated memory blocks in the simulation. 

 A C implementation with real memory blocks is usually used for Class A and 
Class B test setups. Here, the TTCN-3 pointer variables refer directly to the 
associated memory blocks on the target system. 

o Configuration set constraints (e.g. “permanent RAM block” addresses in 
the NVRAM Manager configuration sets) may require additional map-
ping schemes between TTCN-3 pointer variables and the real target 
memory block addresses. These additional mapping schemes must 
then be implemented as module-specific target adapter functionality. 

The Test Assessor must pay attention to the mapping between TTCN-3 pointer vari-
ables and the (real or simulated) target memory blocks when integrating the target 
adapter with the BSW module under test. If necessary, the target adapter has to be 
modified to fulfill the requirements of the SUT. 

…….. 
…….. 
…….. 
…….. BSW Module 

Under Test 

TTCN-3 
Test Steps 

Pointer 
Variables 

(PtrType) 

Memory 
Blocks 

Used as 
parameters in 
API functions  

Read/Write 
Operations 

Target Adapter Test Adapter 

Transmission of memory block contents by target adapter functions 

59 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

                                           

10.6 Error Condition Handling 

During test case execution error conditions due to misbehavior or unexpected events 
occur primarily on the SUT side. While the BSW module under test generally reports 
error conditions to the test executable through DEM14 and DET15 API functions, error 
conditions in the target adapter must be reported explicitly to the test executable. 
Since the target adapter mostly contains passive functionality that is triggered by the 
Test PC, TTCN-3 exception mechanisms are sufficient for reporting error conditions. 
The CTSpec shall define possible exceptions for each API and target adapter func-
tion with a common type (e.g. uint8 values for error codes). 

Example: 
signature NvM_Init () 
  exception (TA_ErrorType); 

When it detects an internal error (e.g. out of memory), a target adapter should raise 
an exception with appropriate error code instead of replying to its invoking test ex-
ecutable. The test executable catches the exception, makes a test log entry and sets 
the test case verdict to “inconclusive” or “fail” as appropriate. 

 
14 “Diagnostic Event Manager“, a standardized AUTOSAR BSW module 
15 „Development Error Tracer“, a standardized AUTOSAR BSW module 
60 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 

- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

11 Further Details: Illustration of System Dynamics 

This chapter describes aspects of the TTCN-3 test case architecture, implementation 
and execution based on example test logs. 

11.1 Defining the Main Function’s Calling Mode 

In general, a test case first defines the calling mode for the module’s main function 
(automatically by the target adapter or controlled by the test case, Figure 14). 
 

 

Figure 14 - Specifying the calling mode for the BSW module's main function 

11.2 Initialization of the BSW Module under test 

Most test cases require that BSW module under test be initialized (Figure 15). In 
these test cases, it must be ensured that the module’s initialization function has been 
invoked (usually done in the basic “Init” test case). 

 

Figure 15 - Initialization of the BSW module 

11.3 Allocation of Memory Blocks used by the Test Case 

In case the test case uses memory blocks, it must allocate them using target adapter 
functions (Figure 16). 

61 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

 

Figure 16 - Allocation of a target memory block for use by the test case 

11.4 Interaction with Target Memory Blocks 

After allocating memory blocks on the target, the test case can read from these 
blocks (Figure 17) and write to them (Figure 18). 
 

 

Figure 17 - Read operation on a target memory block 

 

Figure 18 - Write operation on a target memory block 

11.5 Invocation of API Functions 

Test cases interact with the BSW module under test by invoking its API functions. In 
Figure 19, the API function “NvM_GetErrorStatus()” is called and returns an error 
status code in a memory block that has been allocated earlier. After the API function 
returns, the error status code is read out of the memory block. 

62 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

 

Figure 19 - API function invocation and retrieval of the result from the target memory block  

API functions can, in general, be invoked in two directions: 
 From test case to BSW module 
 From BSW module to test case 

The example illustrates both cases. 
In Figure 20, the test case first invokes the main function which results in a number of 
calls to the lower layer API (here: MemIf_GetStatus()) and to the CRC module 
(here: Crc_CalculateCRC32()). These calls are received by the TTCN-3 test 
components in charge of these API functions. The main function returns after these 
activities have finished. 
 

 

Figure 20 - Invocation of the main function with subsequent BSW module activities 

11.6 Callbacks towards the BSW Module 

From the test case execution viewpoint, callbacks are equivalent to API functions. 
They can be invoked in both directions. 
In Figure 21, the test case invokes a callback at the BSW module. 
63 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 

- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

 

Figure 21 - Callback invoked by the test case towards the BSW module 

11.7 Error reported to DET 

During test case execution, the BSW module may detect development errors that 
must be reported to the DET module. As the DET is simulated by the test case, the 
DET error report is received by the TTCN-3 test component in charge of DET. 
In Figure 22, the API function NvM_SetDataIndex() is called on a block for which 
this API function is actually not applicable. This results in a DET error. 

 

Figure 22 - Report of an development error to the DET 

11.8 Error reported to DEM 

The BSW module may also detect errors and other irregularities that must be re-
ported to the DEM module. As the test case also simulates the DEM, the TTCN-3 
test component in charge of DEM receives the DEM error report. 
In Figure 23, a CRC calculation is initiated by the BSW module. The resulting CRC 
value is then compared with a CRC value inside a memory block. In this case, the 
CRC value of the memory block is wrong and a DEM error is reported. 
 

 

Figure 23 - Report of an error condition to the DEM 

64 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

12 TTCN-3 Coding Style 

A common, well defined style guide guarantees a common layout and a consistent 
and understandable structure for all parts of the test specification. This style guide is 
similar to other style guides used during software development. 

12.1 Documentation 

Every TTCN-3 test case shall be complemented by an explicit, natural language, test 
case description. This test case description shall contain a description of: 

 The system under test (SUT) 
 The SUT’s interface: 

o Functions provided by the SUT 
o Valid ranges for the functions’ input values 
o Functions required by the SUT 

 The purpose of the test case 
 Test case preconditions 
 Test case post-conditions 

Every TTCN-3 test case shall contain in-line documentation (comments within TTCN-
3 code) comprising: 

 A description of each implemented function, type, template etc, including: 
o Purpose 
o Input/output parameters and return values (if applicable) 

 An in-line process description to explain the behavior. 

12.2 Document Tagging 

It shall be possible to automatically extract traceability information from the Test Case 
documentation defined above. Table 5 defines a system of tags that shall be used to 
mark the relevant information for later extraction in an appropriate form with a suit-
able tool. 

Delimiters 
Tag 

Start End 
R/O Comment 

Test Case ID { } R The unique ID for this test case. The actual 
form of the ID is left to the discretion of the test 
case specifier. The critical point is that it be 
unique across all test cases and all BSW mod-
ules. 
This tag must always be first in the sequence 

$SWS : $ R The SWS-item that the test case tests. There 
may be more than one. 

Test Purpose   R A short description of the purpose of the test. 

Pre-condition   R A description of the state in which the SUT 
must be put before the test can begin 

65 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

Delimiters 
Tag 

Start 
R/O Comment 

End 

Post-
condition 

  O A description of the state in which the SUT will 
be after successful completion of the test. 

Parameters   O Any parameters (input or output) or return val-
ues that this test case requires. 

Depends on   O A comma-separated list of the test-case IDs of 
other tests upon which this test case depends.  

Required by    A comma-separated list of the test-case IDs of 
the other tests that depend upon this test case. 

Table 5: Documentation Tags 

The following points apply to the information presented in Table 5: 
 The tag text is not case sensitive. 
 Spaces in a tag can be replaced with hyphens (‘-’) or underscores (‘ ’). 
 Not all tags are required, only those noted with an ‘R’ in the ‘R/O’ column in 

Table 5. Those marked with ‘O’ are optional. 
 If no delimiter is specified, the tagged text begins with the first non-white-

space character after the tag, and continues until the next blank line, the next 
end of (multi-line) comment, or the next tag. 

 Where start and end delimiters are specified, the tagged text must reside on 
the same line as the tag. End-of-line ends the tagged text. 

 Tags can appear in any order, with the exception of the Test-case ID, which 
must be first in any set of tags. 

 A warning will be generated for a duplicated tag - the tagged text will be ap-
pended to whatever has been collected already. 

 A warning will be generated for a required tag that is missing. 

12.3 Naming Conventions 

Identifiers shall be categorized using the prefixes specified in Table 6, which is a 
copy of the corresponding table (page 219) in “An Introduction to TTCN-3”  [11] 

TTCN-3 construct Comment Prefix 

(none) Types The type identifiers are written without prefix, in-
stead the first letter is written in upper case. This 
is consistent with type definitions written in 
ASN.1, which can be imported directly to TTCN-3 

a Templates  

alt Altstep The same prefix is used for altsteps independ-
ent of whether they are used as defaults or not. 

c constants  

66 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

Prefix TTCN-3 construct Comment 

e Enumeration elements  

f Functions  

p Parameters  

pt Ports  

tc Test cases  

t Timers  

v variables  

Table 6: Identifier Prefixes 

12.4 Restricted TTCN-3 Features 

The “GOTO” expression cannot be used. 

12.5 Value Ranges 

Every test case description shall contain the valid parameter ranges for the tested 
functions. 

12.6 Implementation Rules 

The TTCN-3 implementation rules are based on the “AUTOSAR C Implementation 
Rules”  [10] as the C-Language is very similar to TTCN-3. However there differences 
which mean that the “C Implementation Rules” must be adapted. 
Each AUTOSAR C implementation rule has its own number. Table 7 details whether 
the rule has been adapted, rejected or accepted for TTCN coding. 

Rule Topic Adaptation Reference 

[PROG 003] File extensions – not applicable – 

[PROG 000] English language valid 

[PROG 008] Declarations per line valid 

[PROG 087] Brackets in expressions valid 

[PROG 023] No space before and after ‘.’ valid 

[PROG 024] No space between operators and operand – not applicable – 

[PROG 025] No space after unary operator – not applicable – 

[PROG 030] Commenting functions valid 

[PROG 086] Commenting violations of MISRA rules valid 

67 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 
- AUTOSAR Confidential - 



  AUTOSAR BSW & RTE Conformance 
Test Specification, Part 3: Creation & Validation 

 V1.0.2 
R3.2 Rev 1 

68 of 68 AUTOSAR_CTSpec_Creation_Validation.doc 
- AUTOSAR Confidential - 

Reference Rule Topic Adaptation 

[PROG 090] Commenting violations of AUTOSAR C Imple-
mentation rules 

– not applicable – 

[PROG 034] Double underscore valid 

[PROG 038] Notation of macros – not applicable – 

[PROG 039] Notation of function-like macros – not applicable – 

[PROG 042] Form of #include statements – not applicable – 

[PROG 044] Protection against multiple inclusion – not applicable – 

[PROG 048] Inclusion of own header file – not applicable – 

[PROG 050] Body inclusion – not applicable – 

[PROG 052] Macros with several statements – not applicable – 

[PROG 055] Declarations of global functions – not applicable – 

[PROG 063] Declarations of global variables – not applicable – 

[PROG 061] No function definition within header file – not applicable – 

[PROG 057] No variable definition within header file – not applicable – 

[PROG 062] Declaration of function parameters valid 

[PROG 056] Declaration and definition of local functions – not applicable – 

[PROG 058] Explicit definition of types valid 

[PROG 071] Multiple Assignments valid 

[PROG 072] Use of ’++’ and ’−−’ – not applicable – 

Table 7: Applicability of AUTOSAR C Implementation Rules 


	1 Document Overview 
	1.1 Focus and Scope
	1.2 How to use the Document
	1.3 Abbreviations
	1.4 Bibliography 

	2 Realization of the CTSpec Creation Process
	3 SWS Analysis Phase: Refinement & Categorization
	3.1 Collect Test Input Baseline
	3.2 Preparation for Analysis
	3.3 Analyze Specification Items
	3.4 Categorize Specification Items
	3.4.1 No Requirement
	3.4.2 Redundant
	3.4.3 Informal Requirement
	3.4.4 Configuration Parameter Definition
	3.4.5 Configuration Parameter Implementation
	3.4.6 Requirement on Configuration
	3.4.7 Detection of Wrong Configurations
	3.4.8 Development Error Detection
	3.4.9 Header Files for Internal Use
	3.4.10 Internal Source Code / Internal Header File
	3.4.11 Header Files Provided for External Use
	3.4.12 Provided Signature / Required Signature
	3.4.13 Module Behavior Requirement
	3.4.14 Module Reentrancy Requirement 
	3.4.15 Execution in Interrupt Context Requirement
	3.4.16 Requirement on Other Module
	3.4.17 Direct Hardware Access
	3.4.18 Vendor-Specific Extensions
	3.4.19 Pending on Bug

	3.5  Associate Test Method with Test Category
	3.6 Review SWS Analysis Phase Results
	3.7 Delivery of the Refined SWS Document

	4 The Main Phases of Conformance Test Case Creation
	4.1 “Non-TTCN-3” Test Cases
	4.2 TTCN-3 Test Cases

	5 Design Phase
	5.1 Test Case Identification
	5.1.1 Definition of a unique Test Case Identifier
	5.1.2 Definition of the Test Purpose
	5.1.3 Definition of the Test Steps
	5.1.4 Definition of Additional Conditions

	5.2 Design of the CTSpec
	5.2.1 Test Case Architecture

	5.3 Decomposition Principle for Test Functions
	5.4 Specification of Configuration Sets
	5.4.1 Input to the Generation Process for Configuration Sets
	5.4.2 Strategy
	5.4.3 Generation Process
	5.4.3.1 Step 1: Analysis
	5.4.3.2 Step 2: Clustering and Formalization
	5.4.3.3 Step 3: Value Selection and Refinement
	5.4.3.4 Step 4: Combination and Generation

	5.4.4 Example of Configuration Set Creation
	5.4.4.1  “Analysis”, “Clustering” and “Value Selection and Refinement”

	5.4.5 Interdependence between Test Parameters
	5.4.5.1 Module-specific Parameters and “Entity”-specific Parameters
	5.4.5.2 Example of Interdependence 
	5.4.5.3 Solution Approach to Interdependence
	5.4.5.4 Exclusions
	5.4.5.5 Example of a Combination Table after Formalization of Constraints

	5.4.6 Output of the Configuration Generation Process

	5.5 Prepare Specification of Test Cases

	6 Implementation Phase
	6.1 Implementation of the BSW Module Simulation
	6.2 Implementation of the TTCN-3 Test Cases
	6.3 CTSpec File Structure

	7 Validation Phase
	7.1 Test Case Validation using a Simulation of the BSW Module
	7.1.1 Motivation
	7.1.2 Validation Setup
	7.1.3 Error Tracing during Validation

	7.2 The Validation Workshop
	7.2.1 Preparation for the Validation Workshop
	7.2.2 Conducting the Validation Workshop

	7.3 Result of the Validation Workshop
	7.4  “Validation against Misbehavior”

	8 Pseudo-Code for Test Step Descriptions
	8.1.1 Objective
	8.1.2 General Conventions
	8.1.3 Keyword Descriptions
	8.1.3.1 CALL
	8.1.3.2 EXPECT
	8.1.3.3 REPLY
	8.1.3.4 CHECK
	8.1.3.5 Structural Elements
	8.1.4 Handling Pointers and Addresses
	8.1.5 Limitations


	9 Further Details: Test Case Design
	9.1 Design Elements for TTCN-3 Test Cases
	9.1.1 Test Components
	9.1.1.1 Test Case Controller (TCCO)
	9.1.1.2 Test Case Client (TCCL)
	9.1.1.3 Test Case Stub (TCST)

	9.1.2 Ports
	9.1.3 Interfaces

	9.2 Modeling with UML

	10 Further Details: Test Case Specification / Implementation
	10.1 Configuration Mechanism
	10.1.1 Data types of Test Parameters
	10.1.2 Format of Test Parameters

	10.2 Control Part
	10.3 Data Type Mapping
	10.3.1 Guideline
	10.3.2 Mapping Rules
	10.3.2.1 Basic AUTOSAR Data Types
	10.3.2.2 Indefinite AUTOSAR Data Types
	10.3.2.3 AUTOSAR Enumeration Data Types


	10.4 Handling Open Implementations
	10.5 Pointer Handling
	10.6 Error Condition Handling

	11 Further Details: Illustration of System Dynamics
	11.1 Defining the Main Function’s Calling Mode
	11.2 Initialization of the BSW Module under test
	11.3 Allocation of Memory Blocks used by the Test Case
	11.4 Interaction with Target Memory Blocks
	11.5 Invocation of API Functions
	11.6 Callbacks towards the BSW Module
	11.7 Error reported to DET
	11.8 Error reported to DEM

	12 TTCN-3 Coding Style
	12.1 Documentation
	12.2 Document Tagging
	12.3 Naming Conventions
	12.4 Restricted TTCN-3 Features
	12.5 Value Ranges
	12.6 Implementation Rules


