
 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

1 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

Document Title Applying ASCET to AUTOSAR
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 227
Document Classification Auxiliary

Document Version 1.0.4
Document Status Final
Part of Release 3.2
Revision 1

Document Change History
Date Version Changed by Change Description
23.11.2011 1.0.4 AUTOSAR

Administration
Legal disclaimer revised

23.06.2008 1.0.3 AUTOSAR
Administration

Legal disclaimer revised

31.10.2007 1.0.2 AUTOSAR
Administration

 Document meta information extended
 Small layout adaptations made

24.01.2007 1.0.1 AUTOSAR
Administration

 “Advice for users” revised
 “Revision Information” added
 Legal disclaimer revised

04.12.2006 1.0.0 AUTOSAR
Administration

Initial release

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

2 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary refer-
ence models, "use cases", and/or references to exemplary technical solutions, de-
vices, processes or software).

Any such exemplary items are contained in the Specification Documents for illustra-
tion purposes only, and they themselves are not part of the AUTOSAR Standard.
Neither their presence in such Specification Documents, nor any later documentation
of AUTOSAR conformance of products actually implementing such exemplary items,
imply that intellectual property rights covering such exemplary items are licensed un-
der the same rules as applicable to the AUTOSAR Standard.

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

3 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

Table of Contents

1 Preliminary Remarks ... 5

2 Introduction to AUTOSAR concepts .. 6

3 ASCET Use-Cases for AUTOSAR .. 10

3.1 Integration Tool Use-Case ... 11
3.2 Additional Programmer Use-Case ... 12

4 Migration of Legacy ASCET Projects to AUTOSAR Software Components...... 14

4.1 Methodology .. 14
4.2 Implementation of the ASCET message concept. ... 14
4.3 Scenario for ASCET Projects and Modules ... 15
4.4 Scenario for ASCET Classes... 16

5 ASCET & AUTOSAR Overview... 18

5.1 Major ASCET Concepts for AUTOSAR ... 18
5.2 Clustering... 20

6 Creating ASCET Projects in Dedicated AUTOSAR Style 22

6.1 Example System.. 22
6.2 Atomic Software Component Types .. 22
6.2.1 DataTypes .. 24
6.2.2 PrimitiveTypeWithSemantics .. 26
6.2.3 Summary of “DataType”entities .. 28
6.2.4 Interfaces.. 28
6.2.5 PortPrototypes .. 31

6.2.5.1 SenderReceiverInteface.. 31
6.2.5.2 ClientServerInterface .. 31

6.2.6 AtomicSoftwareComponentType Entities ... 32
6.2.7 Internal Behavior... 32

6.2.7.1 SingleInstanceTypes with an arbitrary number of (R- and P-)
PortPrototypes realizing SenderReceiverInterfaces with one
DataElementPrototype .. 33
6.2.7.2 MultipleInstanceTypes with an arbitrary number of (R- and P-)
PortPrototypes realizing SenderReceiverInterfaces with one
DataElementPrototype .. 35
6.2.7.3 MultipleInstanceType with one PPortPortotype realizing a
ClientServerInterface with OperationPrototypes having one OUT
ArgumentPrototype.. 39

6.3 Creating SoftwareComponentPrototype Entities in ASCET 41
6.3.1 Wrapper Runnables.. 41
6.3.2 Port-Type-Converters ... 43

7 The ECU Composition... 46

8 Summary ... 50

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

4 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

9 References .. 51

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

5 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

1 Preliminary Remarks

This document is split into two parts. The first part (chapters 2, 3 and 4) addresses
ASCET users who wants to migrate existing ASCET projects to AUTOSAR platforms.
To describe the basic principles, the wording is chosen in line with the virtual func-
tional bus description which, however, blurs the terms of the software component
template. Especially, the type/prototype concept is blurred.
The second part (chapters 5, 6, and 7) describes how ASCET can be used to built
AUTOSAR software components from scratch. It is shown how ASCET concepts can
be combined to produce flexible and efficient AUTOSAR systems. Here the wording
is strict in the AUTOSAR software component template sense.
This document is not a roadmap of features for ASCET products. It just shows how
ASCET concepts can be used in an AUTOSAR software component modeling con-
text.

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

6 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

2 Introduction to AUTOSAR concepts

The basic idea of AUTOSAR is to decouple the control-engineering functionality (rep-
resented by so-called application software components) from the basic software (rep-
resented by standardized but configurable basic software modules). This idea has
two major implications.

1. The control-engineering functionality is developed independently from an un-
derlying ECU or even an E/E-Architecture. The ensemble of application soft-
ware components constitute the Virtual Functional Bus description. Mapping of
application software components to ECUs is done at later stages in the de-
sign.

2. An AUTOSAR ECU will run a lot of standardized basic software modules sur-
plus a runtime environment RTE. Mapped application software components
use this RTE to communicate with other application software components via
this RTE where it does not matter whether the other application software com-
ponent is located on the same ECU or on another ECU in the vehicle network.
In the first case, RTE will route the data to be exchanged using the ECUs
memory while in the latter case the, AUTOSAR COM stack will be invoked.

The AUTOSAR idea is depicted in Figure 1 where the VFB with its application soft-
ware components and their connectors is shown on the top, the mapping process
using the ECU and network description in the middle while ECU oriented view is
shown in the bottom. The leftmost ECU shows a more detailed view of the mapped
application software components, the RTE and other basic software modules like the
AUTOSAR COM stack. This detailed view is also known as ECU-software architec-
ture and is neither to be mismatched with an application software component archi-
tecture or an Electric/Electronic- (E/E) Architecture.

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

Figure 1: The AUTOSAR Idea

The virtual functional bus describes the outer-view of an atomic-software-component.
Besides this outer-view, there is also an inner-view. This inner-view is called internal
behavior and describes how the component’s implementation interacts with its own
ports. Furthermore, this view is mandatory to understand how the component should
be scheduled on an ECU. The internal behavior is composed of so-called runnable
entities, or runnables for short. These runnables are sequences of instructions that
can be started by the run-time-environment (RTE). A “runnable entity” runs in the
context of a "task". The task provides the common resources to the “runnable enti-
ties” such as a context and stack-space. Typically the operating-system scheduler
has the responsibility to decide during run-time when which “task” can run on the
CPU (or multiple CPUs) of the ECU.
The internal behaviour with its runnables is associated to an software component,
which interact with other software-components just by ports. To perform their tasks,
the runnables have to read the data from ports and write data to ports. The interac-
tion mechanisms are listed below:

 The runnable can interact with ports by simply reading or writing variables (this
is called DataReadAccess, resp. DataWriteAccess)

 The RTE can start certain runnables when new data arrives on a port or a cer-
tain time has elapsed

7 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

8 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

 The runnables might want to explicitly send data, receive data or invoke Op-
erations

"DataAccess" means that the runnable entity does not need to invoke operations on
the RTE but is rather given the locations where it can read and/or write the
information.
This pattern implies:

1. it is the responsibility of the RTE to make sure that the information needed by
the runnable entity is present and available while the runnable entity is running

2. the communication mechanism between the RTE and the runnable entity can
be made very efficient.

This simple interaction pattern is appropriate for runnable entities that are simple but
deterministic in behavior. A runnable can request DataReadAccess to a DataElement
available on an RPort of the component or DataWriteAccess to a DataElement pro-
vided over a PPort of the component.
The presence of a DataReadAccess means that the runnable needs access to the
value of the specified DataElement during the entire time that the runnable runs. The
runnable will not modify the contents of the data but only read the information. The
runnable expects that the contents of this data does NOT change during the execu-
tion of the runnable. The presence of a DataWriteAccess means that the runnable
will potentially modify the specified DataElement. The runnable has free access to
the data-element while it is running. The runnable has the responsibility to make sure
that the data-element is in a consistent state when the runnable returns. The
DataElement will only be sent after the runnable terminates. Note that this mecha-
nism makes the most sense for the case that the Sender/Receiver communication
mechanism is used for data-transfer. The semantics are not clear in case the
Sender/Receiver communication is used to transfer "events". The RTE software
specification defines the API in the C- programming-language constructs that are
used to realize this data-access pattern.
At a first glance, the internal behavior concept of AUTOSAR is quite similar to AS-
CET. Runnables match with processes in that they are allocated to tasks, and that a
runnables have data-access points to data-elements on ports which is similar to
reading from a receive-message and writing to a send-message in a sequence-call of
a process. Furthermore, a module groups processes just like the internal behavior
the runnables.
From the virtual functional bus view, the differences predominate. Data-Elements can
be grouped in interfaces in AUTOSAR while messages a merely scalar entities.
Then, within an ASCET project, messages are matched by name, i.e. data on a
send-message will only appear at a receive-message when it has the same name,
while AUTOSAR requires an explicit connection between ports.

Table 1 gives a first overview of how AUTOSAR concepts are realized by ASCET
concepts. This table is refined later on an proper software-component-template terms
are used.

AUTOSAR Concept AUTOSAR

Description

ASCET Concept

DataElement Data in SenderRe-
ceiver Interface

Message

SenderReceiver Interface Clusters signals Implicitly given

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

PPort Access Point in com-
ponent where data is
provided

Send-Message at
SendReceive Interface

RPort Access Point in c
ponent where data is
required

om- Receive Message at
SenderReceiver Interface

Runnable Behavioral Code Process

Atomic Software C
nent

ompo- Tentative Instance of
an atomic software
component.

Module

Table 1: First-Glance matching of AUTOSAR and ASCET concepts

9 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

10 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

3 ASCET Use-Cases for AUTOSAR

ASCET does not directly distinguish between application software components and
basic software modules, but in the use-cases integration tool and additional pro-
grammer. In both use-cases, the ASCET project is the mean to generate code.
An ASCET project clusters a number of modules, which communicate via messages.
Within a project, messages have to have a unique name. They are exported by one
module (e.g. as send-message) and imported by another module (e.g. as receive-
message). Control-engineering functionality is modeled using so-called processes,
which are associated to modules. Processes access the messages of the module. An
ASCET project also provides the means to group processes into tasks and assign
trigger conditions to the task, e.g. cyclic or interrupt driven activation.
The ASCET programming model is given by the ERCOSEK operating system. There-
fore, the process task association can be used to generate the code of a whole ECU
out of an ASCET project. Of course, this requires that all basic software modules are
described in ASCET using e.g. C-Code modules. This use-case of ASCET is known
as integration tool.
However, the ASCET project can be used differently. In this case, a project will be
composed of one or several modules and no task allocation of processes is done. If
one now applies code-generation to that project, C-Code will be generated for the
processes of the modules as well as all messages. This code can then be integrated
in an arbitrary ECU-configuration tool. Allocation of messages to memory as well as
the allocation of processes to tasks has to be done in that ECU-configuration tool on
C-Code level.
All send-messages of a module in a project which have no corresponding receive-
message (in the same or in other modules of the project), will become visible to the
project outside as well as all receive-messages which have no send-message within
the project. Thus, the list of all non-matched messages establishes the interface of a
project with other software components on an ECU.

Figure 2: Different ASCET Use-Cases to represent a VFB

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

11 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

As shown in Figure 2, the integration tool and the additional programmer use-case of
ASCET can be used to model application software components on the virtual func-
tional bus level.

3.1 Integration Tool Use-Case

In the integration tool use-case, loosely spoken, the ASCET project holds the part of
the virtual functional bus which is mapped to a dedicated ECU. An ASCET module
represents a software-component, ports are represented by messages and the con-
nectors are realized by compatible ASCET messages have identical names and
data-types. Using this approach,

• Software components in the project are mapped to one ECU
• Assembly connectors can be generated identifying corresponding mes-

sages within an ASCET project (a send-message corresponds to a re-
ceive-message when they have the same name). All identified connec-
tions will be represented as connectors in a composition. The resulting
composition is then embedded in an ECU composition which is the pre-
requisite to generate RTE-code.

• The runnable-task mapping can be done in the OS-configurator
•

Virtual Functional Bus

A
U

T
O

S
A

R
S

W
-C

1

A
U

T
O

S
A

R
S

W
-C

2

A
U

T
O

S
A

R
S

W
-C

3

A
U

T
O

S
A

R
S

W
-C

n

...

SW-C
Descriptions

SW-C
Descriptions

SW-C
Descriptions

SW-C
Descriptions

ASCET Project

Virtual Functional Bus

A
U

T
O

S
A

R
S

W
-C

1

A
U

T
O

S
A

R
S

W
-C

2

A
U

T
O

S
A

R
S

W
-C

3

A
U

T
O

S
A

R
S

W
-C

n

...

SW-C
Descriptions

SW-C
Descriptions

SW-C
Descriptions

SW-C
Descriptions

Virtual Functional Bus

A
U

T
O

S
A

R
S

W
-C

1

A
U

T
O

S
A

R
S

W
-C

2

A
U

T
O

S
A

R
S

W
-C

3

A
U

T
O

S
A

R
S

W
-C

n

...

SW-C
Descriptions

SW-C
Descriptions

SW-C
Descriptions

SW-C
Descriptions

Virtual Functional Bus

A
U

T
O

S
A

R
S

W
-C

1

A
U

T
O

S
A

R
S

W
-C

2

A
U

T
O

S
A

R
S

W
-C

3

A
U

T
O

S
A

R
S

W
-C

n

...

SW-C
Descriptions

SW-C
Descriptions

SW-C
Descriptions

SW-C
Descriptions

ASCET Project

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

Figure 3: VFB representation in ASCET as full-programmer

This approach limits the AUTOSAR basic idea to one ECU. As written above, this
use-case implies, that a module is seen as a representation of a software component
and the module’s messages represent the software components ports (Figure 3)
Processes of modules represent runnables and are allocated to task (Figure 4).
This approach will result in relatively small software-components which are well un-
derstood by the function-developer but tend to expose too many details to the system
integrator.

Figure 4: Using the OS-Editor of an ASCET project in the Full-Programmer Use-Case

3.2 Additional Programmer Use-Case

An alternative approach is to use ASCET in the additional programmer use-case. As
described above, one module is clustered in one project and the project is treated as
ONE atomic software component. This approach is conceptually shown in Figure 5.
Messages become ports of the atomic software component. The ports are connected
explicitly in an AUTOSAR authoring tool. The connections are shown as dashed lines
in the upper part of Figure 5. All subsequent steps like system- and ECU-
configuration will afterwards be done in dedicated AUTOSAR configuration tools.
ECU-configuration includes RTE-generation.
From an ASCET perspective, this means that different ASCET projects can be con-
nected to a virtual functional bus. As a result, two limitations of the integration tool
use-case can be overcome:

1. It is possible to design atomic software components independently of ECUs.

12 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

13 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

2. Connecting of messages with different names is possible
But there are still some limitations:

1. The atomic software component can only instantiated once.
2. Limited support of client-server communication

How these limitations will affect the design of AUTOSAR systems has to be identi-
fied, e.g. in the migration of legacy projects.

Virtual Functional Bus

A
U

T
O

S
A

R
S

W
-C

1

A
U

T
O

S
A

R
S

W
-C

2

A
U

T
O

S
A

R
S

W
-C

3

A
U

T
O

S
A

R
S

W
-C

n

...

SW-C
Descriptions

SW-C
Descriptions

SW-C
Descriptions

SW-C
Descriptions

Virtual Functional Bus

A
U

T
O

S
A

R
S

W
-C

1

A
U

T
O

S
A

R
S

W
-C

2

A
U

T
O

S
A

R
S

W
-C

3

A
U

T
O

S
A

R
S

W
-C

n

...

SW-C
Descriptions

SW-C
Descriptions

SW-C
Descriptions

SW-C
Descriptions

Virtual Functional Bus

A
U

T
O

S
A

R
S

W
-C

1

A
U

T
O

S
A

R
S

W
-C

2

A
U

T
O

S
A

R
S

W
-C

3

A
U

T
O

S
A

R
S

W
-C

n

...

SW-C
Descriptions

SW-C
Descriptions

SW-C
Descriptions

SW-C
Descriptions

Virtual Functional Bus

A
U

T
O

S
A

R
S

W
-C

1

A
U

T
O

S
A

R
S

W
-C

2

A
U

T
O

S
A

R
S

W
-C

3

A
U

T
O

S
A

R
S

W
-C

n

...

SW-C
Descriptions

SW-C
Descriptions

SW-C
Descriptions

SW-C
Descriptions

Figure 5: VFB-Representation in ASCET as Additional Programmer

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

14 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

4 Migration of Legacy ASCET Projects to AUTOSAR S
ware Components.

oft-

4.1 Methodology

To transform existing ASCET projects to AUTOSAR it is proposed to use the addi-
tional programmer use-case. The ASCET project is considered as one atomic soft-
ware component with internal behavior. The result of an AUTOSAR component gen-
eration step are the XML-descriptions for the atomic-software-component type, the
internal behavior and the implementation. Furthermore, header- and C-Code files,
realizing the implementation, will be generated by the ASCET production code-
generator ASCET-SE.

cd ASCET-StyleGuide-LegacyProjects

Generate AUTOSAR
Component

.XML.XML

Atomic Software
Component

Type Description

.c.c

Runnables

.h.h

Runnables

.XML.XML

InternalBehav ior

.XML.XML

Implementation

ASCET Legacy
Project

Figure 6: Legacy ASCET Project Methodology

4.2 Implementation of the ASCET message concept.

ASCET modeling elements like messages and instances of classes have a scope.
This scope is either local, imported or exported. Since messages are used for com-
munication purposes, their scope is either imported or exported w.r.t a certain mod-
ule or project. All messages are defined (“owned”) in a certain module by setting its
scope to export. Other modules in a project who want to have access to these mes-
sage declare a message with the same name but set its scope to import. Since in
embedded software development sender-receiver communication is used to realize
1:n communication relationships, it is wise to set the scope of a send-message to
export and the scope a receive message to import. This is exactly the default scope
of the ASCET messages. In a production-code generator (ASCET-SE) in ANSI-C

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

15 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

option exported messages are defined in module context as variable and hence will
later allocate static RAM in an ECU. Wherever necessary, to ensure thread-safeness
w.r.t. the task-schedule, a variable duplicate will be allocated either in static RAM or
dynamic RAM , i.e. the stack.

4.3 Scenario for ASCET Projects and Modules

As written above, an ASCET project can be used to represent an atomic software
component in AUTOSAR. Existing ASCET projects can thus easily be represented as
single instance atomic software components if all C-Code classes and modules hav-
ing direct hardware-access are removed.
All modules and instances of classes used in the project will become part of the in-
ternal behavior in the atomic software component. However, the signals to be ex-
changed with other software-components have to be specified. To achieve data-
exchange on project level, one can use project global messages. Since in ASCET-
SE exported variables are defined on module-level, it is wise to have dedicated mod-
ule(s) for send- and receive-messages which are intended to be exported beyond
project borders1. An “input-module” provides all receive-messages with scope export
while an “output-module” will provide all send-messages also with scope export.
These dedicated modules will be added to the already existing (or ordinary) modules
in the project. If in one of the ordinary modules, an exported send-message shall be
sent via an AUTOSAR port beyond project borders, this particular send-message has
to be set to imported while in the output-module a send-message with the same
name but scope exported will be created. The case of an input-message is more
straight-forward, because the scope of the receive-message is already set to import,
and only an exported receive-message has to be created in the “input-module”, i.e.
the receiving module itself need not to be touched. Messages which are not intended
to be used beyond project borders, i.e. not being part of an interface, are matched by
name within the project and hence are not visible to the outside. Using this approach,
matching the messages of the input- and output modules with the messages in the
original modules by name creates something similar to delegation connectors.
All receive-messages of the output-module will become PPorts and all send-
messages of the input module will become RPort prototypes, both realizing a
sender/receiver interface with one data-element.
Figure 7 shows this approach for a simple ABS system. The original modules are

 Brake_Slip_Control_wc,
 Brake_Deceleration_Control_wc, and
 ControlCoordinator_wc.

The modules with the receive-port-icon, here WheelSpeeds and VehicleSpeed, are
the input-modules. The module with the send-port-icon, here ValveRequest, is the
output-module. The messages

 ControlCoordinator_PressureRequest_FL
 ControlCoordinator_PressureRequest_FR
 ControlCoordinator_PressureRequest_RL
 ControlCoordinator_PressureRequest_RR

are set to scope import in the ControlCoordinator_wc module. The corresponding
export messages are now defined in the ValveRequest output-module.

1 To simulate port-grouping, one might use an input-module for every port of an software component
using sender-receiver communication.

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

16 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

Figure 7: ASCET Project with dedicated Input- and Output Modules

The messages, while being accessed in a process, assume an implicit behavior. The
messages of the input-module will obtain “stable” messages by using implicit
data_read_access and implicit data_write_access resulting in a RTE_IRead macro
for receive-messages and a RTE_IWrite macro for send-messages. Using ASCET-
SE in ANSI-C modus (without optimizations), a process will always use a local vari-
able to realize implicit behavior. A non-optimized AUTOSAR version of ASCET-SE
will use this local variable to put the return value of RTE_IRead in, while RTE_IWrite
will take the value from the local variable which holds the result of all calculations at
the end of the process.
If explicit data_read_access and data_write_access or data_send_points and
data_receive_points are used, the structure of the ASCET project might be changed.

4.4 Scenario for ASCET Classes

On the one hand, an ASCET class implements a software component where services
are provided as methods on one PPort. On the other hand, methods of an ASCET
class can be seen as runnable which is started by a client-call from another software

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

17 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

component2. If a class shall be migrated to AUTOSAR, it has to be wrapped by a
module. The methods of the class can be mapped to processes. For each argument
in the method a receive message has to be created while for each return value a
send message has to be created. This approach in shown in Figure 8. The module
Brake_Slip_Control_wc clusters four instances of the class SlipControl.

Fig -

ure 8: Wrapping four instances of the SlipControl Class in the Brake_Slip_Control_wc Mod
ule

The resulting module has then to be wrapped in a project as written in the previous
section. As a result, the wrapped module treats the class as single instance atomic
software component with sender/receive interface. Since sender/receiver interfaces
in ports are realized by ASCET messages, the same kind of code generation using
RTE_IRead and RTE_IWrite will be applied as written in section 4.3.

2 thus reacting to an OperationInvokedEvent

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

18 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

5 ASCET & AUTOSAR Overview

5.1 Major ASCET Concepts for AUTOSAR

ASCET uses an object based real-time paradigm to construct embedded automotive
control software. The main building block are classes for the functional design and
modules for the real-time design. To constitute an ECU, modules are aggregated in
projects.
A class aggregates methods having arguments and return values. Classes provide
an internal state by means of variables and can aggregate instances of other
classes. Referencing other classes is possible but might lead to real-time runtime
problems and is this not considered in the AUTOSAR modeling guide. Inheritance is
not supported. There are two flavors of classes, “simple” classes and finite state ma-
chine classes.
For embedded real-time modeling, there are modules which provide messages as
means to transfer data between modules. Modules use instances of classes. Mod-
ules themselves cannot be instantiated multiple times! Modules provide so-called
processes which read and write to messages and call methods of a class.
Projects provide an OS-configuration editor where tasks can be defined. The proc-
esses are allocated to tasks. The messages of the modules are connected by name-
matching on the ECU-global project level. ASCET models are transferred to execu-
table code by applying code-generation to projects which will generate the code for
the modules and classes.
The execution paradigm of ASCET project is: A task calls a process. The process
reads from receive-messages and calls the methods of the class-instances by pass-
ing message data to arguments. Then, the processes call other messages of the in-
stances receiving return values which will then be written to send-messages. Then
the next process in the task is called. Data integrity is ensured by copying mecha-
nisms of ASCET messages. Below, the icons of the major elements are shown.

 Class Icon
 Finite-State-Machine Class Icon
 Module Icon
 Project Icon

The table below shows how the major design elements map to AUTOSAR concepts:

AUTOSAR Concept AUTOSAR Descrip-
tion

ASCET Concept

DataType Type of a D
type

ataProto- User-Defined Type, Built-
In Type

DataElementPrototype DataPrototype in
SenderReceiver I
face

nter-
Implicitely realized by
message

OperationPrototype Methods in C
Server Interface

lient- Method of a class

ArgumentPrototype OUT DataPrototype in O
erationPrototype

p- Return value of a method

ArgumentPrototype IN DataPrototype in O
erationPrototype

p- Argument of a method

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

SenderReceiver Interface Clusters signals Implicitly given

ClientServer Interface Provides or Requires
Method calls

Method (of a class)

PPort-Prototype Access Point in c
ponent where data or
services are pro

om-

vided
li-

Send-Message at
SendReceive Interface,

Implicitly given at C
ent/Server Interface

RPortPrototype Access Point in c
ponent where data or
services are req

om-

uired

Receive Message at
SenderReceiver Interface,
MethodCall in Wrapper-
Module of Proxy-Module

Runnable Behavioral Code Process in S
ceiver Interface, Method in
Client/Server Interface

enderRe-

InterRunnableVariable Reentrant buffer for
communication b
tween different run
nables of one com
nent (proto-) type.

e-
-
po-

SendReceiveMessage

Atomic Software C
nent Type

ompo- Least software part to
be mapped on an ECU

Class (Multiple Instance),
Module, Project (Single
Instance)

(Atomic) Component P
totype

ro- Tentative Instance of
an atomic software
component.

Wrapped Instance of Class
in Module.

Table 2: Matching of ASCET and AUTOSAR Concepts

Whereas ASCET employs an object based real-time modeling paradigm, AUTOSAR
employs a different object based real-time paradigm. The overlapping concepts can
be used to generate AUTOSAR software component types, the internal behavior and
the implementation. While in AUTOSAR the association is done quite late in the
methodology, ASCET will generate all three descriptions with correct links. Depend-
ing on the chosen granularity of an ASCET model, atomic software components in-
cluding referenced internal behavior and implementation can be sensibly generated
from classes, modules and projects as shown in Figure 9. However, all of the ele-
ments realize different subsets of the software component template. A combination
the elements realize a bigger subset. This combination is called clustering and ex-
plained below.

19 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

20 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

cd ASCET-StyleGuide-All

Generate AUTOSAR
Component

.XML.XML

Atomic Software
Component

Type Description

.h.h

Runnable

.c.c

Runnable

.XML.XML

Implementation

.XML.XML

InternalBehav ior

Instantiate in Module

Cluster-Modules-in-Project

Figure 9: Generating Component Types, Internal Behavior, and Implementation Files

5.2 Clustering

The ASCET concepts Project, Module, and Class can be used in several ways to
compose executable systems. As written above, after more or less modifications, all
projects can be transferred to atomic software components. However, the AUTOSAR
concepts like interface and component types, data-, port- and component prototypes
as well as compositions and runnables can be used directly in ASCET. Depending on
a clustering step, atomic software components can be tailored to match with the in-
terfaces given by the OEM. This tailoring (or clustering) has the following advantages
over compositions:

 All multiple instantiations are resolved in the cluster, thus the RTE can be con-
figured much leaner.

 The number of component- and connector prototypes is reduced significantly
for the system-integrator, thus contributing to the complexity management.

 Clear distinction between function developer and system integrator. Espe-
cially, the type/prototype concept which has implementation advantages on an
ECU can be hidden from the system-integrator.

 For the function-developer, prototype naming is likely to be more straightfor-
ward, i.e. prototype names like SeatheatControlObject can be directly be
named to SeatheatControlDriver and SeatheatControlPassenger within a clus-
ter.

However, this approach requires a strict use of the ASCET class concept. Projects,
modules and messages become a mere composition feature. It leverages the advan-
tages of both the additional programmer- and the integration tool use-case of AS-
CET.

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

21 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

cd ASCET-Clustered-Components

Cluster-Modules-in-
Project

Instantiate in Module

Generate AUTOSAR
Component

.XML.XML

Atomic Software
Component

Type Description

.XML.XML

Implementation

.XML.XML

InternalBehav ior

.h.h

Runnable

.c.c

Runnable

Figure 10: Clustering Approach to create efficient atomic software components

Figure 10 shows the clustering approach in SPEM notation. The ASCET-model
workproducts are represented by using the ASCET icons.

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

22 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

6 Creating ASCET Projects in Dedicated AUTOSAR Style

The software-component-template version 2.01 is used as reference.

6.1 Example System

A simple seat heating function is used to show the concepts. The seat heating func-
tion is symmetrical for driver and passenger. A switch with the stages Off, Stage1,
and Stage2 determines the user-request. A controller will arbitrate the user-request
with the actual clamp status, the vehicle-voltage and the availability of the seat heat-
ing equipment. The seat heating equipment is driven by a PWM-Signal of the
IoHwAbstraction-Layer and evaluates the diagnostics status. The actual stage of the
seat heating function is indicated by two individual LED.

6.2 Atomic Software Component Types

In AUTOSAR, application software is organized in independent units which hide their
internal behavior and communicate with other software components through ports
realizing interfaces. Loosely spoken these entities are the software components. A
closer look on the software component template, reveals that are no software com-
ponents but ComponentType entities and ComponentPrototype entities. Compo-
nentPrototype entities describe the use of ComponentType entities in certain roles
and will become instances on the running ECU. But this type/prototype concept is
also used to construct an AtomicSoftwareComponentType entity, which is a special
version of a ComponentType. An AtomicSoftwareComponentType is made up of a
whole number of nested prototypes. Nesting means that a DataElementPrototype in
a SenderReceiver Interface has a DataType and can be used in more than one Port-
Prototype of an AtomicSoftwareComponentType. On virtual functional bus level but
also on one ECU there might be several ComponentPrototype entities of the same
AtomicSoftwareComponentType. Another specialization of the ComponentType is
the CompositionType which aggregates other ComponentPrototype entities which
can be of all ComponentType entities, e.g. AtomicSoftwareComponentType or Com-
positionType.

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

23 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

cd Components

ARElement

«atpT ype»
ComponentType

AtomicSoftw areComponentType «atpT ype»
CompositionType

Identi fiable

«atpPrototype»
ComponentPrototype

SensorActuatorSoftw areComponentType

«atpT ype»
CalprmComponentType

+component 1..*

*«isOfType»

+type

1

Figure 11: ComponentType Entities

The AUTOSAR VFB-Level is made up of a composition of ComponentPrototype enti-
ties. The InternalBehavior can be assigned to AtomicSoftwareComponentType enti-
ties. It is composed of several RunnableEntities. The AUTOSAR RTE-Level is made
up of set of runnables per ECU which are associated to AtomicSoftwareComponent-
Type entities mapped to that ECU. Last but not least, the runnables are implemented
either by source- or object-code.

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

InternalBehav ior

Implementation

AtomicSoftwareComponentType
Virtual Functional Bus (VFB) level

Run-Time-Environment (RTE) level

Implementation level

*

+component 1

*

+behavior 1

Figure 12: Referencing Relationship between Implmentation, Internal Behavior and an Atomic
Software Component Type

This document focuses on the development and generation of AtomicSoftwareCom-
ponentType entities on virtual functional bus (VFB), run-time environment (RTE), and
implementation level. ASCET can thus be used as authoring- and behavioral model-
ing tool for a subset of AtomicSoftwareComponentType entities.

6.2.1 DataTypes

ASCET provides built-in and user-defined data-types. Built-in data-types are
 cont (Continuous) ,
 sint (Signed Integer),
 uint (Unsigned Integer), and
 log (Logical).

Another Built-in data-type in ASCET are arrays and matrices, but these types cannot
be used to type messages. User-defined types are

 enumerations
and classes. Of the user-defined types, only enumerations can be used to type mes-
sages. User-defined types have an explicit name and are maintained in the ASCET
repository.

24 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

25 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

Enumeration types are handled differently from the above ASCET approach but also
differently from AUTOSAR. The enumerators are assigned to unsigned integer val-
ues in a dedicated editor. Below there are examples of user-defined data-types. They
are exclusively enumerations. The built-in data-types are explained in the context of
atomic software components.

Figure 13: Clamp Data-Type

Figure 14: DiagnosticsClass

Figure 15: SeatHeatStages

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

26 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

Enumeration types are handled differently from the above ASCET approach but also
differently from AUTOSAR. The enumerators are assigned to unsigned integer val-
ues in a dedicated editor. Below there are examples of user-defined data-types. They
are exclusively enumerations. The built-in data-types are explained in the context of
atomic software components.

Figure 16: Clamp Data-Type

Figure 17: DiagnosticsClass

Figure 18: SeatHeatStages

6.2.2 PrimitiveTypeWithSemantics

PrimitveTypeWithSemantics entities: For fixpoint-arithmetics, AUTOSAR allows to
assign CompuMethod enties to integer values. CompuMethod enties determine how
an integer value has to be interpreted. In case of internal-to-phys an integer value
determines a number of CompuScale entities with an upper and a lower limit as well
as a scale. The inverse way, i.e. specifying the physical values and then derive the
internal values, can also be used in AUTOSAR. Simple CompuMethod entities can
be defined in ASCET by using implementations. Applying an implementation formula
to the built-in datatype cont results in a different interface type. Thus, the interface of

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

27 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

an implemented atomic software component changes too. Take for example the ve-
hicle voltage. If a message is of type Cont, an SenderReceiverInterface of type Put-
Cont will be used. Now, an implementation formula with name VehicleVoltage8Bit will
be used which maps the range of the Cont data-type to an 8-bit integer ranging from
0 to 31,875 Volt in 256 steps of 0.125 Volt.

Table 3: Mapping of Software-Component-Template Types to RTE-Base-Types

However, this physical range is not considered by the RTE. In the vehicle voltage
example, the model-type cont will result in an INTEGER-Type with lower limit 0 and
upper limit 255. Using Table 3, the resulting RTE type will be uint8. To ensure that
only semantically compatible interfaces are connected, the implementation of a built-
in ASCET datatype will be reflected in the DataType definition of a S
Interface.

enderReceiver-

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

28 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

6.2.3 Summary of “DataType”entities

To summarize, only the scalar built-in datatypes like Cont, Udisc, Sdisc, Log and
user-defined enumeration types can be transferred via messages and can thus be
used as DataPrototype entities. If these messages are implemented using an imple-
mentation formula, the implementation name will be reflected in the DataPrototype
entity. Complex built-in ASCET data-types like arrays and matrices and user-defined
types like classes cannot be transmitted over messages and thus not be used to type
DateElementPrototype entities.

6.2.4 Interfaces

AUTOSAR distinguishes between sender-receiver and client-server communication.
To achieve this, ComponentType entities employ PortPrototype entities which are
typed by an InterfaceType. PortPrototype entities are either provided (PPortProto-
type) or required (RPortPrototype).

 SenderReceiverInterface: It is derived from PortInterface and has several
DataElementPrototype entities. DataElementPrototype entities are DataType
entities which can either be of primitive type or complex type. A SoftwareCom-
ponentType with an RPortPrototype being typed by a SenderReceiverInter-
face can be connected as a ComponentPrototype to an PPortPrototype (of an
other ComponentPrototype) being typed by a compatible SenderReceiver-
Interface. A SenderReceiverInterface is compatible if the interface of a the
RPort has a smaller or equal number of DataElementPrototypes than the inter-
face in the PPort. However, this rules holds only for assembly connectors and
not for delegation connectors.

 ClientServerInterface: It is derived from PortInterface and aggregates a num-
ber of OperationPrototype entities. OperationPrototype entities aggregate
several ArgumentPrototype entities being typed by DataType entites. Argu-
mentPrototype entities have either an IN, an INOUT or an OUT direction.

The software component template defines several DataType entities. These
DataType entities type DataProtoType entities which are used for communication
between software components and not for modeling the behavior of control algo-
rithms. Of particular interest in ASCET are the IntegerType, the BooleanType, the
RealType, and the OpaqueType. CompositType entities like the ArrayType and the
RecordType have no equivalence in ASCET for communication, but can be used for
behavioral modeling of RunnableEntities internally. Last but not least, AUTOSAR
takes over from MSR-SW the concept the PrimtiveTypeWithSemantic. This concept
plays an important role in behavioral modeling with ASCET.

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

29 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

cd Datatypes complete

ARElement

«atpType»
Datatype

constraints
{def : values : Set(OclAny)}

«atpType»
PrimitiveType

ArrayType

+ maxNumberOfElements: Int

constraints
{numberOfElements > 0}

IntegerType

constraints
{def: values = valuesInRange.intersect(Integer)}

RealType

+ al lowNaN: Boolean
+ encoding: Enumeration{Single,Double}

constraints
{def : al lReals : Set(Real) = defined by encoding}
{def : values = valuesInRange.intersect(allReals)}

RecordType

CharType

+ encoding: String

constraints
{T BD: naming convention for "encoding"!}

CompositeType

BooleanType

constraints
{def : values = {TRUE, FALSE}}

StringType

+ encoding: String
+ maxNumberOfChars: Int

constraints
{maxLength > 0}

OpaqueType

+ numberOfBi ts: Int

constraints
{numberOfBi ts>0}

Range

constraints
{lowerLim it < upperLimi t}
{def : valuesInRange : Set(Float)}

Identi fiable

«atpPrototype»
DataPrototype

RecordElement

ValueByFormula

«atpM ixedString»
Limit

+element

1..* {ordered}

+upperLimi t 1

+elementT ype 1

0..*«isOfT ype»

+type

1

+lowerLim i t 1

Figure 19: Overview of AUTOSAR Datatypes for application software components

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

30 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

cd InterfacesOv erv iew

ARElement

«atpT ype»
PortInterface

+ isService: Boolean

SenderReceiv erInterface ClientServ erInterface

DataElementPrototype

+ isQueued: Boolean

Identi fiable

OperationPrototype

ArgumentPrototype

+ direction: DirectionKind

ARElement

«atpT ype»
Datatype

Identi fiable

«atpPrototype»
DataPrototype

Identi fiable

ModeDeclarationGroupPrototype

«enumeration»
DirectionKind

+ in:
+ out:
+ inout:

0..*

«isOfType»

+type 1

+operation 1..*

+interface 1

+argument * {ordered}

1

+modeGroup 0..*

+interface 1

+dataElement 0..*

+interface 1

Figure 20: PortInterface entities

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

31 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

The AUTOSAR name of a sender/receiver interface given by concatenating the word
Put with the name of the DataType entity of the DataElementPrototype entity. For the
built-in datatypes, there are the following SenderReceiverInterface entity-names de-
fined:

 PutCont
 PutUdisc
 PutSdisc
 PutLog

In the case of a user-defined type, one might obtain
 PutClamp
 PutSeatHeatStages
 PutOnOff
 PutDefectNotDefect

In case of an implemented built-in datatype, the SenderReceiverInterface entity-
name is given by the concatenation of Put with the implementationtype followed by
the implementation formula name. In the above example with the vehicle voltage,
one will obtain:

 Putuint8VehicleVoltage8bit
This naming convention ensures that the CompuMethod is reflected in the interface
name. Since on virtual functional bus level, only PortPrototype entities with the same
Interface can be connected, this convention ensures semantic compatibility.

6.2.5 PortPrototypes

6.2.5.1 SenderReceiverInteface

In a sender-receiver Communication, ASCET does not distinguish between
DataElementPrototypes and PortPrototypes and hence not between Interfacetype
and DataType. In ASCET, a send-message represents a PPortPrototype with a ge-
neric InterfaceType having exactly one DataElementPrototype of AUTOSAR type
IntegerType (which can be sint, unit, or (user-defined) enumeration in ASCET), Boo-
leanType (log in ASCET) or of RealType with enumeration double (Cont in ASCET).
Send-messages in ASCET represent PPortPrototype entities with SenderReceiver-
Interface entities and Receive-messages RPortPrototype entities with SenderRe-
ceiverInterface entities respectively! If a message is typed by a built-in data-type, this
means that the interface-name is given by concatenating Put with the type-name of
the user-defined data-type of the DataElementPrototype name as seen in the
AUTOSAR repository. The PortPrototype name of an AtomicSoftwareComponent-
Type is thus given by the ASCET message name.

6.2.5.2 ClientServerInterface

A ClientServerInterface entity is realized in ASCET as an aggregation of methods. As
special case of an OperationPrototype entity in AUTOSAR, an ASCET method will
have just one OUT-ArgumentPrototype entity per method. ASCET methods my have
an arbitrary number of arguments, which represent IN-ArgumentPrototype entities in
OperationPrototype entities of ClientServerInterface entities. Arguments can be of

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

32 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

user-defined type enumeration and built-in data-types. INOUT-ArgumentPrototype
entities are not supported by ASCET methods.
A (non finite state machine) class represents a (single) PPortPrototype entity realiz-
ing a ClientServerInterface entity in ASCET. The PPortPrototype entity name is given
implicitly by concatenating PPort to the name of the ASCET class.

6.2.6 AtomicSoftwareComponentType Entities

In AUTOSAR an AtomicSoftwareComponentType has one to many PortPrototype
entities in P- and R-Direction which are typed by either SenderReceiverInterface- or
ClientServerInterface-entities. An arbitrary number of ComponentPrototype entities
can be derived from an AtomicSoftwareComponentType.
ASCET supports sensibly three flavors of an AtomicSoftwareComponentType:

1. SingleInstanceType entities with an arbitrary number of (R- and P-) PortProto-
type enties realizing SenderReceiverInterfaces with one DataElementProto-
type

2. MultipleInstanceType entities with an arbitrary number of (R- and P-) PortPro-
totype entities realizing SenderReceiverInterfaces with one DataElementPro-
totype.

3. MultipleInstanceType entities with one PPortPortotype realizing a Client-
ServerInterface with OperationPrototype entities having one OUT Argument-
Prototype.

6.2.7 Internal Behavior

While AUTOSAR distinguishes between an AtomicSoftwareComponentType and the
InternalBehavior, ASCET has an integrated approach describing both the Atomic-
SoftwareComponentType and the InternalBehavior by realizing the instance-ref of
DataPrototype access of the runnables. This means that the XML file entries corre-
sponding to the meta-model elements as shown in Figure 21 and Figure 22 are gen-
erated from the ASCET project-, class-, and module-description.

cd InternalBehav ior Ov erv iew

ARElement

InternalBehav ior

Identi fiable

RunnableEntity

Identi fiable

RTEEvent

Identi fiable

Exclusiv eArea

ComponentType

AtomicSoftw areComponentType

ARElement

Implementation

RunnableExecutionConstraint Identi fiable

PerInstanceMemory

*

+component 1

+exclusiveArea *+event *+runnable 1..*

+behavior

*

+behavior

1

+perInstanceMemory *+executionConstraint *

Figure 21: InternalBehavior and RunnableEntities

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

cd RTEEv ent kinds

Identi fiable

RTEEvent

AsynchronousServ erCallReturnsEv ent

ServerCal lPoint

AsynchronousServ erCallPoint

DataSendCompletedEv ent

Identi fiable

DataSendPoint

DataReceiv edEv ent OperationInv okedEv ent TimingEv ent

+ period: Float

ModeSw itchEv ent

+ activation: ModeActivationKind

Identi fiable

OperationPrototype

Identi fiable

ModeDeclaration

DataPrototype

DataElementPrototype

DataReceiv eErrorEv ent

+event *

«instanceRef»

+data 1

+event 0..1

«instanceRef»

+data 1

+event 1

«instanceRef»

+operation 1

+event 0..1

+eventSource 1

+event 1

+eventSource 1

0..*

«instanceRef»

+mode 1

Figure 22: RTE-Events of RunnableEntities

6.2.7.1 SingleInstanceTypes with an arbitrary number of (R- and P-) PortProto-
types realizing SenderReceiverInterfaces with one DataElementProto-
type

cd ASCET-StyleGuide-Single-Module

Generate AUTOSAR
Component

.XML.XML

Atomic Software
Component

Type Description

.h.h

Runnables

.c.c

Runnables

Figure 23: ASCET Module as Single Instance AtomicSoftwareComponentType

ASCET Modules provide processes, which will be translated to void-void-C-functions,
and messages. Messages are interrupt-save inter-process-communication means. In
case of a tentative interruption of process by a process of a task with higher priority,
the messages will be translated in a double-buffered variables. Messages can only
carry scalar data-types (Built-In and User-Defined, see above). Modules can only
instantiated once.

33 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

34 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

Messages of a module correspond to the PortPrototype entities of an AtomicSoft-
wareComponent. SendMessages are PPortPrototype entities realizing a “SenderRe-
ceiverInterface”, ReceiveMessages are RPortPrototype entities realizing a Sender-
ReceiverInterface. For the SenderReceiverInterface entities the constraints defined in
section 6.2.4 apply.

Figure 24: Interface of a Single Instance Component with S/R-Interfaces

The InternalBehavior entity will have the same name as the module name. Proc-
esses are realizing RunnableEntity elements with implicit data access semantics.
Every time a process reads from a receive-message, it realizes a DataReadAccess.
The same holds for a DataWriteAccess which is established every time a process
writes to a send-message. While the implicit data access is finally implemented in the
RTE, the ASCET code-generation ensures that the messages are correctly mapped
to RTE_IRead and RTE_IWrite calls at the appropriate points in the generated code.
However, ASCET processes do not determine their RTEEvent. This is part of the
ECU configuration in ASCET and can be used only in the full-programmer use-case.
Therefore, adding an RTEEvent to a RunnableEntity has to be done in a dedicated
separate authoring tool or ECU-configuration tool with this ability. However, only
those RTE events can be added which sensibly support the implicit data-access se-
mantics. Therefore, it is recommended to use the TimingEvent.

Figure 25: Internal Behavior of a Single Instance Component

Using the methodology as depicted in Figure 23, the send-messages will be trans-
lated to RTE_IWrite calls while the receive messages will be translated to
RTE_IRead calls. The original message properties w.r.t. interrupt safeness will be
used in the clustering use-case.

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

35 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

Figure 26: Graphical View of Internal Behavior

6.2.7.2 MultipleInstanceTypes with an arbitrary number of (R- and P-) PortPro-
totypes realizing SenderReceiverInterfaces with one DataElementProto-
type

cd ASCET-StyleGuide-Single-FSM-Class

.XML.XML

Atomic Software
Component

Type Description

.h.h

Runnables

.c.c

Runnables

Generate AUTOSAR
Component

A finite-state-machine-class has dedicated input- and output-ports. These ports have
the same features and restriction w.r.t. types like messages. A finite-state-machine
class is based on the class concept in ASCET can be instantiated several times.

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

36 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

The internal behavior is given by so-called trigger functions, or triggers for short,
which can be best compared to AUTOSAR runnables because they are realized by
void functions with instance handle. Conceptually, these trigger functions evaluate
the transition conditions of an automaton depending on the current state, perform
transitions if applicable (including actions),and execute exit-, state-, and entry-
statement. Since a trigger function is intended to execute a finite-state-machine,
there should only be one trigger-function per finite-state-machine class.
To support transitions, conditions and actions can be modeled as internal methods of
the finite-state-machine3 and are not visible from the outside.
In the seat heating functionality example a finite-state-machine takes over the central
control of the heating equipment of one seat. The input-ports are Clamp (of user-
defined enumeration Clamp), SeatHeatSwitch (of user-defined enumeration
ShSwitch), Voltage (of built-in type Sdisc), and ShDefect (of user-defined enumera-
tion DefectNotDefect). Output-ports are LEDStage1 and LEDStage2, both of user-
defined enumeration OnOff (and thus showing the ASCET realization of the PortPro-
totype concept of AUTOSAR), and SeatHeater, also being of user-defined enumera-
tion ShSwitch (and showing the DataType employment concept in P- and RPortPro-
totypes of an AtomicSoftwareComponentType). The finite-state-machine ports are
shown in Figure 27.

Figure 27: Interfaces of the AtomicSoftwareComponentType SeatHeatCtrlType

x-3 From the ASCET point of view, a trigger function in a finite-state-machine class can be seen as e

ternal method.

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

37 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

Trigger functions can have arguments. In this case, an operation-invoked event will
be generated.
The InternalBehavior of the seat-heating system is modeled using one trigger func-
tion of name CyclicRunnable and is shown in Figure 28. In this example, the Da-
taReadAccess (as well as DataWriteAccess) is implemented in the local methods of
the finite-state-machine class which are evaluated in the trigger function realizing the
RunnableEntity.
However, the access to the finite-state-machine ports can also directly done in the
actions and conditions of the transitions of the automaton.
As with processes, no RTEEvent will be attached to the trigger function. This has to
be done in an AUTOSAR authoring tool where the TimingEvent is the natural
RTEEvent for trigger functions without arguments.

Figure 28: Trigger Function as Cyclic Runnable Using Sender-Receiver Semantics

Figure 29: Graphical "Implementation" of the Trigger Function CyclicRunnable
Figure 29 shows how the CyclicRunnable triggers the transition by invoking internal
condition and action methods. DataRead- and DataWriteAccess of the condition
methods is shown in Figure 30 and Figure 31 respectively.

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

38 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

Figure 30: DataReadAccess of Condition Methods

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

Figure 31: DataWriteAccess of Action Methods

6.2.7.3 MultipleInstanceType with one PPortPortotype realizing a
ClientServerInterface with OperationPrototypes having one OUT
ArgumentPrototype.

cd ASCET-StyleGuide-Single-C/S-Class

.h.h

Runnables

Generate AUTOSAR
Component

.c.c

Runnables

.XML.XML

Atomic Software
Component

Type Description

39 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

40 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

As written in the PortPrototype section 6.2.5, using of ClientServerInterface enitites is
supported by ASCET with a lot of limitations by using classes. Like their counterparts
finite-state-machine-classes, “generic” classes can be instantiated multiple times on
an ECU, thus having multiple “prototypes” in an AUTOSAR virtual functional bus de-
scription. The interface of a class is given one exclusive PPortPrototype realizing a
ClientServerInterface whose OperationPrototype entities can have an arbitrary num-
ber of IN ArgumentPrototypes and at most one OUT ArgumentPrototype which is
realized as method return value.
This means that the name of the exclusive PPortPrototype name is given implicitly by
concatenating PPort to the name of the ASCET class. Figure 32 shows that the Ar-
gumentPrototpye entities of the OperationPrototype entities, as depicted in Figure 33,
are typed either by used-defined enumeration (e.g. ShSwitch) or built-in types (e.g.
duty-cycle).
In the seat heating function example, the SoftwareComponentType SeatHeater is an
ActuatorSoftwareComponentType providing the translation between atomic software
components and the ECU abstraction layer. In particular, it realizes the translation
between AUTOSAR types and SignalClasses. The duty-cycle is determined by the
chosen stage of the seat heat controller and indicated by the actual value of the
enumeration ShSwitch.

Figure 32: Interface of the SeatHeater ComponentType

Figure 33: OperationPrototypes of the SeatHeat ComponentType
Figure 33 shows the OperationPrototypes of the ClientServerInterface. These Opera-
tionPrototypes become RunnableEntity elements of the internal behavior with an Op-
erationInvokedEvent attached to them.

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

41 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

Figu po-re 34: Graphical Implementation of the ClientServerInterface of the SeatHeater Com
nentType

6.3 Creating SoftwareComponentPrototype Entities in ASCET

6.3.1 Wrapper Runnables

Prototypes of AtomicSoftwareComponent entities are realized in ASCET by modules.
Besides the single instance case described in section 6.2.7.1, where a module can
also be seen as component-type to have an associated internal behavior, modules
can be seen as “wrapper” for ComponentType entities with the ASCET limitations as
described in section 6.2.7.2 and 6.2.7.3.

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

42 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

cd ASCET-StyleGuide-Component-Prototype

Instantiate in Module

.XML.XML

Atomic Software
Component

Type Description
Generate AUTOSAR

Component

.h.h

Runnables

.c.c

Runnables

ASCET employs a type/prototype concept as being explained in chapter 6.8.2 (Multi-
ple Instantiation) in the software component template specification [8]. The Run-
nableEntity of the InternalBehavior referencing an AtomicSoftwareComponentType
(and requiring an instance handle to identify the appropriate ComponentPrototype) is
embedded in a RunnableEntity for a single instance ComponentPrototype. This sin-
gle-instance-runnable provides wrapper code which uses the appropriate instance
handle when calling the RunnableEntity of the InternalBehavior referencing the Atom-
icSoftwareComponentType. This principle is shown in Figure 35.

Shared among Instances

Software Component Implementation

Instantiation

Shared data Individual data Runnable X

Instance A

Shared data Individual dataRunnable X

Instance B

Individual data

Wrapper Code of
Runnable X

Wrapper Code of
Runnable X

Code
Implementation
void X_Impl (struct comp * const self) void XA (void) void XB (void)

M1 Level

M0 Level

RTE Level

Figure 35: Wrapper Runnables

Furthermore, this wrapper-code transfers (in case of SenderReceiverInterfaces) the
DataElementPrototype entities from an instance individual port, i.e. a RPortPrototype
of a single instance software component, to the RPortPortotype of the
ComponentPrototype. In ASCET the shared code and the in instance-individual data
has to be modeled explicitly as ASCET class. On top of that a module has to be
created for each software component prototype. The processes which are “void-void-
functions” will call the methods of class instances with a handle to the individual data.

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

Figure 36: Driver ComponentPrototype of the SeatHeatCtrl Component Type

Figure 37: Wrapper Runnable of Driver SeatHeatCtrl Prototype

Figure 38: Graphical Wrapper Code of the Driver SeatHeatCtrl ComponentPrototype
Figure 36 shows the wrapper module DriverSeatHeatCtrlPrototype with instance indi-
vidual PortPrototype entities, i.e. the send- and receive-messages, as well as the
ComponentPrototype DriverPrototype of SeatHeatCtrlType. Since the wrapper mod-
ule is also a single-instance ComponentType in the sense of chapter 6.2.7.1, the
wrapper runnable as shown in Figure 37 provides the InternalBehavior.
Figure 38 shows the (graphical) wrapper code of the wrapper runnable realizing the
instance-handle administration and the transfer of the instance individual “port-data”
to the PortPrototypes of the ComponentPrototype in providing- and requiring direc-
tion.

6.3.2 Port-Type-Converters

As explained in section 6.2.7.3, ASCET supports the specification of AtomicSoft-
wareComponentType entities having one implicit PPortPrototype realizing a Client-
ServerInterface. If such a ComponentType is used in ASCET as ComponentProto-

43 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

44 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

type, an ASCET wrapper module has to be constructed. The wrapper-code then real-
izes also the port-type-converter concept as specified in the AUTOSAR Virtual Func-
tional Bus Description [1] and shown in Figure 39. DataElementProtype entities in a
SenderReceiverInterface of a RPortPrototype are transferred to an IN ArgumentPro-
totype of an OperationPrototype in a ClientServerInterface. An OUT ArgumentProto-
type will be transferred to a DataElementPrototype in a SenderReceiverInterface of a
PPortPrototype.

Client

AUTOSAR
SW

component
y

S
e

rv
ic

e
1AUTOSAR

SW
component

x

service initiation

service result

1 2
6

34
5

Figure 39: Port-Type Converter Sender-Receiver Client

As shown in Figure 40, Port-Type-Converters can also be specified in one direction
only.

AUTOSAR
SW

component
x

AUTOSAR
SW

component
y

Figure 40: Port-Type Converter Sender Client
In the seat-heating function example, the port-type-converter concept in conjunction
with a wrapper module has been used for the SeatHeater (Actuator)
SoftwareComponent. There are messages for the DriverShDefect of user-defined
enumeration DefectNotDefect, the DriverShStages of user-defined enumeration
ShSwitch, as well as DriverShDiagnosticsGet for the user-defined enumeration
DiagnosticsClass. The other messages are needed to define the PWM-
communication with IoHwAbstractionLayer

Figure 41: Wrapper Module for Driver SeatHeater ActuatorSoftwareComponentPrototype

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

Figure 42: Wrapper Runnable implementing a Port-TypeConverter

The semantics are similar to the example with the ComponentPrototype
DriverPrototype of the ComponentType DriverSeatHeatCtrl. However, the actual
values of the send-messages, realizing the DataElementPrototype in a
SenderReceiverInterface of the RPortPrototype (with the same name as the
DataElementPrototype) are copied to the ArgumentPrototype of the
OperationPrototype of the ComponentPrototype DriverSeatHeater. The wrapper
runnable has to ensure that all DataElementPrototype entities are given
“synchronously” to the ArgumentPrototype entities. However, from the runnable point
of view, the client-server call has sender-receiver semantics with additional
ynchronization. s

Figure 43: Graphical Implemention of Wrapper Code realizing the PortType Conversion

45 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

46 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

7 The ECU Composition

An ASCET project can be seen as an EcuSwComposition (see Figure 44) in the inte-
gration tool use-case. All wrapper modules constitute the EcuTopLevelComposition-
Prototype. From the ASCET point of view, it does not matter whether the wrapper
module for the IoHardwareAbstractionLayer is part of the EcuTopLevelComposition-
Prototype ore the ServiceComponentPrototype. Dedicated ServiceConnectorProto-
type entities can be generated from the message name matching.

ARElement

EcuSwComposition

AtomicSoftwareComponentType

Components::
Serv iceComponentType

Identifiable

«atpPrototype»
Serv iceComponentPrototype

Identifiable

«atpPrototype»
EcuTopLevelCompositionPrototype

ComponentType

«atpType»
Composition::

CompositionType

ConnectorPrototype

Composition::
Serv iceConnectorPrototype

«isOfType»

+softwareComposition 1

«isOfType»

+serviceComponent 1

+component *+ecuTopLevelComposition 1 +connector *

Figure 44:The ECU Software Composition

Applying the integration tool use-case to the seat-heating-system results in a system
as shown in Figure 45 and lists all atomic software component types as classes, the
prototypes as wrapped modules and a project as EcuSwComposition. Furthermore,
the I/O hardware abstraction layer is put under services, though it is not an AUTO-
SAR service literally.

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

Figure 45: ASCET model elements realizing the Seat heating Functionality

The Composition of the seat heating function is shown in Figure 47. This view shows
all AtomicSoftwareComponentPrototype entities. This composition can be trans-
formed into an ECU-composition allowing the ECU-Configuration of the RTE. For
example, the RTEEvent entities of the processes are given by the period of the task.
The allocation of the wrapper-runnables to tasks can also be seen here. Since the
wrapper-runnables of the ComponentPrototype entities hide the instance handles of
the RunnableEntity elements, they do not need any further arguments. However, for
each ComponentPrototype, a wrapper-runnable has to be assigned to the task. The
wrapper-runnable name can be used to derive the SoftwareComponentInstanceRef
of the RunnableEntityMapping container as described in the ECU-C-
ParameterDefinitions document.

47 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

48 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

Figure 46: Allocation of Wrapper-Runnables to Tasks

Using ASCET as authoring tool, an RTEEvent of a RunnableEntity can only be de-
termined if runnables are mapped to an OS task. In the EcuSwComposition shown in
Figure 47 consists of the ECUTopLevelCompositionPrototype which is the Composi-
tionType aggregating all ComponentPrototypes. The IoHwAbstraction is wrapped as
ServiceComponentPrototype, where the get- and set functions of the I/O hardware
abstraction layer is wrapped by a runnable, which means that the application soft-
ware components use sender-receiver communication

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

49 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

Figure 47: The ECU Composition of the Seat heating Function

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

50 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

8 Summary

ASCET can be used in AUTOSAR for the use-cases integration tool and additional
programmer. ASCET supports the type/prototype concepts by means of wrapper-
runnables and port-type-converts. In the integration tool use-case, the ASCET project
serves as EcuTopLevelCompositionPrototype whereas in the additional programmer
use-case, the ASCET project represents a single-instance prototype of an Atomic-
SoftwareComponent, clustering all other ComponentPrototypes.
In additional programmer use-case, port-prototypes are represented by dedicated
input- and output modules.

 Applying ASCET to AUTOSAR
 V1.0.4

R3.2 Rev 1

51 of 51 Document ID 227: AUTOSAR_ASCET_Styleguide
- AUTOSAR Confidential -

9 References

[1] Specification of the Virtual Functional Bus
AUTOSAR_Spec_of_VFB.pdf

[2] Specification of the RTE

AUTOSAR_SWS_RTE.pdf

[3] Specification of Interaction with Behavioral Models

AUTOSAR_InteractionBehavioralModels.pdf

[4] Metamodel

AUTOSAR_Metamodel.eap

[5] Glossary

AUTOSAR_Glossary.pdf

[6] Requirements on Interoperability of Authoring Tools

AUTOSAR_RS_InteroperabilityAuthoringTools.pdf

[7] Methodology

AUTOSAR_Methodology.pdf

[8] Software Component Template

AUTOSAR_SoftwareComponentTemplate.pdf

[9] Specification of System Template

AUTOSAR_SystemTemplate.pdf

[10] Specification of Feature Definition of Authoring Tools

AUTOSAR_FeatureDefinition.pdf

[11] Specification of Graphical Notation

AUTOSAR_GraphicalNotification.pdf

[12] Specification of the Runtime Environment

AUTOSAR_SWS_RTE.pdf

[13] Specification of the I/O Hardware Abstraction Layer

AUTOSAR_SWS_IOHWAbstraction.pdf

[14] Specification of the ECU Configuration
AUTOSAR_ECU_Configuration.pdf

	1 Preliminary Remarks
	2 Introduction to AUTOSAR concepts
	3 ASCET Use-Cases for AUTOSAR
	3.1 Integration Tool Use-Case
	3.2 Additional Programmer Use-Case

	4 Migration of Legacy ASCET Projects to AUTOSAR Software Components.
	4.1 Methodology
	4.2 Implementation of the ASCET message concept.
	4.3 Scenario for ASCET Projects and Modules
	4.4 Scenario for ASCET Classes

	5 ASCET & AUTOSAR Overview
	5.1 Major ASCET Concepts for AUTOSAR
	5.2 Clustering

	6 Creating ASCET Projects in Dedicated AUTOSAR Style
	6.1 Example System
	6.2 Atomic Software Component Types
	6.2.3 Summary of “DataType”entities
	6.2.4 Interfaces

	6.3 Creating SoftwareComponentPrototype Entities in ASCET

	7 The ECU Composition
	8 Summary
	9 References

