
Software Component Template
V3.3.0

R3.1 Rev 5

Document Title Software Component Template
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 062

Document Classification Standard

Document Version 3.3.0

Document Status Final

Part of Release 3.1

Revision 5

Document Change History
Date Version Changed by Description

2010-09-02 3.3.0 AUTOSAR
Administration

• Fixed usage of Categories in
XML examples
• Signal invalidation mechanism

becomes optional

2010-01-26 3.2.0 AUTOSAR
Administration

• Allow for communication
attributes in CompositionTypes
• Allow for providing initial values

for calibration parameters

2008-07-02 3.1.0 AUTOSAR
Administration

• Improved support for on-board
diagnostics
• Small layout adaptations made

1 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

2007-11-13 3.0.0 AUTOSAR
Administration

• Improved support for
measurement and calibration
• Improved semantics of

delegation ports
• Introduction of abstract memory

classes
• Document meta information

extended
• Small layout adaptations made

2007-01-31 2.1.0 AUTOSAR
Administration

• Harmonization of the document
with other specifications (e.g.
RTE)
• Introduction of a new concept to

support calibration and
measurement - harmonized with
RTE
• Description of needs of the

Software Component Template
toward AUTOSAR services and
of the interaction of the Software
Component Template and
services (on XML level)
• Legal disclaimer revised
• Release notes added
• ”‘Advice for users”’ added
• ”‘Revision information”’ added

2006-05-18 2.0.0 AUTOSAR
Administration Second

2005-05-09 1.0.0 AUTOSAR
Administration Initial release

2 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for the
purpose of information only. AUTOSAR and the companies that have contributed to it
shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types of
Intellectual Property Rights. The commercial exploitation of the material contained in
this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only. For any other purpose, no part of
the specification may be utilized or reproduced, in any form or by any means, without
permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary refer-
ence models, ”use cases”, and/or references to exemplary technical solutions, devices,
processes or software).

Any such exemplary items are contained in the Specification Documents for illustration
purposes only, and they themselves are not part of the AUTOSAR Standard. Nei-
ther their presence in such Specification Documents, nor any later documentation of
AUTOSAR conformance of products actually implementing such exemplary items, im-
ply that intellectual property rights covering such exemplary items are licensed under
the same rules as applicable to the AUTOSAR Standard.

3 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Table of Contents

1 Introduction 10

1.1 Overview . 10
1.2 Methodology for Defining Formal Template 10
1.3 Scope . 13
1.4 Organization of the Meta-Model . 14
1.5 Structure of the Template . 16

1.5.1 Description of software-components on VFB level 16
1.5.2 Description of software-components on RTE level 17
1.5.3 Descriptions of software-components on implementation level . . 17

1.6 Document Conventions . 17

2 Overview: Software Components, Ports, and Interfaces 18

2.1 Introduction . 18
2.2 Software Component . 18
2.3 Composition . 23
2.4 Port Interface . 28

3 Details: Software Components, Ports, and Interfaces 30

3.1 Introduction . 30
3.2 Sender Receiver Communication . 30

3.2.1 Data Element Prototype . 31
3.2.2 Mode Declaration Group Prototype 33

3.3 Client Server Communication . 34
3.3.1 Client Server Interface . 34
3.3.2 Error Handling in client/server communication 37

3.4 Compatibility . 39
3.4.1 Compatibility of Data Types . 40

3.4.1.1 PrimitiveType . 40
3.4.1.2 CompositeType . 40

3.4.2 Compatibility of Semantics . 40
3.4.3 Compatibility of Data Element Prototypes 41
3.4.4 Compatibility of Mode Declaration Groups 41
3.4.5 Compatibility of Sender Receiver Interfaces 42

3.4.5.1 Connection of required and provided Port via Assem-
blyConnectorPrototype 42

3.4.5.2 Connection of inner and outer Port via DelegationCon-
nectorPrototype . 42

3.4.6 Compatibility of Argument Prototypes 43
3.4.7 Compatibility of Application Errors 43
3.4.8 Compatibility of Operation Prototypes 43
3.4.9 Compatibility of Client Server Interfaces 44

3.4.9.1 Connection of required and provided Port via Assem-
blyConnectorPrototype 44

4 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

3.4.9.2 Connection of inner and outer Port via DelegationCon-
nectorPrototype . 44

3.4.10 Entire delegation of a provided Port Prototype 45
3.4.11 Split and merge of Data Element Prototypes 45

3.5 Port Annotation . 47
3.5.1 Introduction . 47
3.5.2 SenderReceiverAnnotation . 48
3.5.3 Annotation for the I/O Hardware Abstraction Layer 52
3.5.4 Calibration Port Annotation . 55
3.5.5 Delegated Port Annotations . 55
3.5.6 General Annotation . 56

3.6 Communication of Runnables . 58
3.6.1 Communication Attributes . 58

3.6.1.1 Communication Specification of an R-Port 60
3.6.1.2 Communication Specification of Data Filters 64
3.6.1.3 Communication Specification of a P-Port 70

3.6.2 Runnables and Sender Receiver Communication 73
3.6.2.1 Terminology . 73
3.6.2.2 Data Access . 74
3.6.2.3 Explicit Sending and Receiving 76
3.6.2.4 DataSendCompletedEvent 79
3.6.2.5 DataReceivedEvent . 80
3.6.2.6 DataReceiveErrorEvent 81

3.6.3 Runnables and Client Server Communication 83
3.6.3.1 Invoking an Operation 83
3.6.3.2 Providing an Implementation of an Operation 86

4 Data Types and Data Semantics 88

4.1 Introduction . 88
4.2 About Meta-Model Data Types . 89
4.3 Usage of Data Types in the Meta-Model 91
4.4 Data Type Details . 92

4.4.1 Range . 93
4.4.2 Primitive Data Types . 93

4.4.2.1 Boolean Type . 94
4.4.2.2 Opaque Type . 94
4.4.2.3 Integer Type . 94
4.4.2.4 Real Type . 95
4.4.2.5 Char Type . 96
4.4.2.6 String Type . 97
4.4.2.7 About enumerations . 97

4.4.3 Composite Data Types . 98
4.4.3.1 ArrayType . 98
4.4.3.2 RecordType . 99

4.4.4 Constant . 100
4.5 Datatypes with Semantics . 104

5 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

4.5.1 Computation Methods . 107
4.5.1.1 Example for Enumeration 115
4.5.1.2 Example for linear conversion 116

4.5.2 Physical Units . 117
4.5.3 Base Type . 119

5 Internal Behavior 124

5.1 Introduction . 124
5.2 Runnable Entity . 125

5.2.1 Concurrency and Reentrancy of a RunnableEntity that cannot be
Invoked Concurrently . 129

5.2.2 Concurrency and Reentrancy of a RunnableEntity that can be
Invoked Concurrently . 131

5.2.3 Additional Remarks and Clarifications 132
5.2.3.1 Reentrancy and Multiple Instantiation 132
5.2.3.2 Reentrancy and ”Library Functions” 132

5.2.4 Timed Activation of Runnable Entities 133
5.3 RTEEvent . 134

5.3.1 Defining an Event . 137
5.3.2 Defining how to Respond to an Event 137

5.4 Communication among Runnable Entities 139
5.4.1 Background: the Issues . 139

5.4.1.1 Mutual Exclusion with Semaphores 140
5.4.1.2 Interrupt Disabling . 140
5.4.1.3 Priority Ceiling . 140
5.4.1.4 Implicit Communication by Means of Variable Copies . 140

5.4.2 Description possibility 1: Exclusive Area 142
5.4.2.1 Entire Runnable Runs in the Exclusive Area 143
5.4.2.2 Runnable would Dynamically Enter and Leave the Ex-

clusive Area . 144
5.4.3 Description possibility 2: Inter-Runnable Variable 144

5.5 Port API Options . 146
5.5.1 Enable to TakeAddress . 147
5.5.2 Indirect API Generation . 147
5.5.3 Port Defined Argument Value . 147

5.6 PerInstanceMemory . 149
5.7 Service Needs . 150

5.7.1 Overview . 150
5.7.2 Service Needs for the NVRAM Service 154
5.7.3 Service Needs for the Watchdog Service 158
5.7.4 Service Needs for the ComM Service 159
5.7.5 Service Needs for the EcuM Service 161
5.7.6 Service Needs for the DEM Service 163
5.7.7 Service Needs for the FIM Service 167
5.7.8 Service Needs for the DCM Service 168

6 Implementation 173

6 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

7 Mode Management 175

7.1 Declaration of Modes . 175
7.2 Communication of Modes . 177
7.3 Modes and Events . 178
7.4 Initialization / Finalization . 181
7.5 Summary Meta-Model Excerpt Related to Modes 183

8 Measurement and Calibration 184

8.1 Basic Approach . 184
8.2 Properties of Data Definitions . 184
8.3 Measurement . 189
8.4 Characteristic Values . 192
8.5 Representing CalprmElementPrototypes based on Categories 195
8.6 Using Calibration Parameters . 197

8.6.1 Sharing Calibration Parameters within Compositions 198
8.6.2 Sharing Calibration Parameters between ”SoftwareComponent-

Prototypes” of the Same ”ComponentType” 201
8.6.3 Providing Instance Individual Characteristic Data 201
8.6.4 Setting an ”SwAxis” Input Value 202

8.7 Behavioral Access . 211
8.8 Addressing Methods . 213
8.9 Record Layouts . 214
8.10 Record Layouts and Data Types . 220

9 ECU Abstraction and Complex Drivers 227

9.1 Introduction . 227
9.2 High Level Hardware and Software Architecture 227
9.3 Interfaces and APIs . 230

9.3.1 ECU Abstraction and its AUTOSAR Interfaces 230
9.4 Shipment of Sensors/Actuators . 231
9.5 I/O Hardware Abstraction . 233
9.6 Complex Driver . 234

10 Services 236

10.1 Overview: Generation of Service-related Model Elements 236
10.2 Service Related Model Elements in the Software Component Template 239

10.2.1 ECU Software Composition . 239
10.2.2 Service Component Type . 241
10.2.3 Service Connector Prototype . 243

7 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Bibliography

[1] AUTOSAR RTE Software Specification
AUTOSAR SWS RTE.pdf

[2] Requirements on Basic Software: Layered Software Architecture
AUTOSAR LayeredSoftwareArchitecture.pdf

[3] Specification of the Virtual Functional Bus
AUTOSAR Spec of VFB.pdf

[4] Methodology
AUTOSAR Methodology.pdf

[5] Specification of Interoperability of Authoring Tools
AUTOSAR InteroperabilityAuthoringTools.pdf

[6] Template UML Profile and Modeling Guide
AUTOSAR TemplateModelingGuide.pdf

[7] Model Persistence Rules for XML
AUTOSAR ModelPersistenceRulesXML.pdf

[8] Specification of the BSW Module Description Template
AUTOSAR BSWMDTemplate.pdf

[9] Design Specification for the ECU Resource Template
AUTOSAR ResourceTemplateECU.pdf

[10] System Template
AUTOSAR SystemTemplate.pdf

[11] AUTOSAR Template Modeling Patterns
AUTOSAR TemplateModelingPatterns.pdf

[12] Specification of Graphical Notation
AUTOSAR GraphicalNotation.pdf

[13] Specification of IO Hardware Abstraction
AUTOSAR SRS IOHW Abstraction.pdf

[14] Specification of Communication
AUTOSAR SWS COM.pdf

[15] Specification of Module Operating System
AUTOSAR SWS OS.pdf

[16] Specification of ECU Configuration Parameters
AUTOSAR ECU ConfigationParameters.pdf

[17] Specification of NVRAM Manager
AUTOSAR SWS NVRAMManager.pdf

8 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

[18] Specification of Module Watchdog Manager
AUTOSAR SWS WatchdogManager.pdf

[19] Specification of Communication Manager
AUTOSAR SWS ComManager.pdf

[20] Specification of ECU State Manager
AUTOSAR SWS ECU StateManager.pdf

[21] Specification of Module DEM
AUTOSAR SWS DEM.pdf

[22] Specification of Module FIM
AUTOSAR SWS FIM.pdf

[23] Specification of Module DCM
AUTOSAR SWS DCM.pdf

[24] Glossary
AUTOSAR Glossary.pdf

9 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

1 Introduction

1.1 Overview

This document contains the specification of the AUTOSAR Software-Component
Template. Actually, it has been created as a supplement to the formal definition of
the Software-Component Template by means of the AUTOSAR meta-model. In
other words, this document in addition to the formal specification provides introductory
description and rationale for the part of the AUTOSAR meta-model relevant for the
definition of software-components.

Nevertheless, the core part of the specification is directly based on the content of the
AUTOSAR meta-model. Therefore, this document contains a summary of the main
concepts of the AUTOSAR meta-model, see chapters 1.2 and 1.4.

In this context, the term software-component refers to a formally described piece of
software existing above the AUTOSAR RTE [1]. In other words, this document empha-
sizes on application software as opposed to standard basic software modules existing
in an AUTOSAR ECU [2].

Please note that the general ideas behind the semantics of application software-
components have been described in the specification of the Virtual Functional
Bus [3]. The latter, however, represents conceptual work that strongly influences but
does not totally govern the formal definition of software-components.

Note further that this document does not provide any ”best practice” recommendations
of software-component modeling nor does it require or enforce a certain methodol-
ogy. Note however, that the methodology aspect is covered by the specification of the
AUTOSAR methodology [4].

Although it is beyond any doubt reasonable to use a suitable AUTOSAR Authoring Tool
for dealing with AUTOSAR software-components, this specification does not make any
assumptions nor does it give recommendations regarding the tooling. Please refer
to [5] for more details about AUTOSAR Authoring Tools are supposed to work and
interact.

1.2 Methodology for Defining Formal Template

Figure 1.1 illustrates the overall methodology used to define formal templates. As ex-
plained in [6], it is important to separate a precise and concise model of the information
that needs to be captured from the concrete XML-Schemas or other technology that is
used to define the actual templates.

10 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Model M2
Templates

Schema
Generator

«XML-Schema»
Data Exchange Format

«XML-File»
SWC Description

«Text Document»
Requirments on Software Component

Template

«Text Document»
Software Component Template

«Text Document»
AUTOSAR Template Modeling Patterns

«Text Document»
Template UML Profile and Modeling

Guide

«Text Document»
Model Persistence Rules for XML

«implements»

«isGovernedBy»

«specifiesSerialization»

«generates»

instanceOf

Figure 1.1: Methodology to define templates in AUTOSAR

The following documents describe the various aspects of the methodology:

1. The document called Software Component Template (i.e. this document)
describes the information that can be captured in the description of software-
component, independently from the mapping of this model on XML-technology.
This document is based upon the AUTOSAR meta-model and contains an elabo-
rate description of the semantics (the precise meaning) of all the information that
can be captured within the relevant parts of this meta-model.

2. The Template UML Profile and Modeling Guide [6] describes the basic concepts
that should be used when creating content of the meta-model.

3. The document called Model Persistence Rules for XML [7] describes how XML is
used and how the meta-model designed in the ”Software Component Template”
should be translated by the ”Schema Generator” (MDS) into XML-Schema (XSD)
”Data Exchange Format”.
This ”formalization strategy” is supposed to be used for all data that is formally
described in the meta-model. In particular this document is worth to read in
order to understand the mapping of the meta-model and the XML based Software
component template.

11 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

4. The ”AUTOSAR Template Modeling Patterns” are represented as predefined
Classes in the meta-model which are incorporated in the generated schema. Ex-
amples for such patterns are the ”common attributes” which are added to each
generated class even if not explicitly inherited in the meta-model.

5. The concrete ”Template” is an XML schema automatically generated out of the
meta-model described in the Software Component Template using the ap-
proach and the patterns defined in the ”Model Persistence Rules for XML”. This
schema is typically used as input to AUTOSAR tools.
The M1-level [6] software component descriptions are XML files that can be val-
idated against the XML schema. In other words, the XML files are instances of
the schema defining the XML representation of the template. Note that the con-
crete XML Schema file might also cover aspects of the meta model that are not
relevant for the description of software-components.

In Figure 1.2 the relationship between the AUTOSAR templates and their associated
template specification documents is illustrated.

12 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

This Enterprise Architect repository

Template Specifications

M2 Metamodel

MSR

+ MSR

+ ContentModel

+ Msrsw

+ ArchitecturalView

+ DataDictionary

+ DynamicView

+ ConfigurationOnM1

+ Documentation

+ Collection

+ CalibrationData

+ CalibrationSystem

+ Cpu

+ AsamHdo

+ AdminProjectData

+ GeneralMDS

+ MsrTrCap

(from M2)

AUTOSAR Templates

+ GenericStructure

+ ECUResourceTemplate

+ SWComponentTemplate

+ SystemTemplate

+ ECUCParameterDefTemplate

+ ECUCDescriptionTemplate

+ BswModuleTemplate

(from M2)

Methodology

+ WorkProducts

+ Tools

+ ViewsAndActivities

+ Connection of BMTs

(from M2)

AUTOSAR Descriptions

+ ECUCParameterDefinitions

(from M1)

Methodology
Specification :.pdf

Software Component
Template

Specification :.pdf

ECU Resource
Template

Specification :.pdf

System Template
Specification :.pdf

ECU Configuration
Template

Specification :.pdf

BSW Module
Description

Template
Specification :.pdf

Common Modeling
Patterns

Specification :.pdf

ECU Configuration
Parameter

Description :.pdf

ECU Configuration
Parameter

Description :.xml

XML Schema :.xml

«generated» «partly generated»

«partly generated»

«partly generated»

«partly generated»

«partly generated»

«partly generated»

«partly generated»

«partly generated»

Figure 1.2: Structure and Dependencies of AUTOSAR Templates

1.3 Scope

As already mentioned in chapter 1.1, the Scope of this document is the description of
AUTOSAR software-components. This work covers the following three aspects:

• A general description of ComponentTypes using PortPrototypes and Port-
Interfaces, i.e. this document defines the ComponentType as an entity which
can be described through PortPrototypes which provide or require PortIn-
terfaces.

13 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

• A description of CompositionTypes, which are sub-systems consisting out of
connected instances of software-components, i.e. software-components may be
defined in the form of hierarchical subsystems, which in turn consist of software-
components again. The description of such hierarchical structures is in scope of
this document.

• A description of AtomicSoftwareComponentType which is implemented as a
piece of software that can be mapped to an AUTOSAR ECU.
An AtomicSoftwareComponentType therefore shows up in the ECU Software
Architecture depicted in Figure 1.3. In this figure, the green (vertically striped)
and blue (diagonally striped) borders show the aspects that are described by the
Software-Component Template.

Figure 1.3: Scope of this document in the ECU SW Architecture [2]

Aspects of AUTOSAR Basic Software not relevant for the RTE are out of scope; these
are covered by the Basic Software Module Description Template [8].

1.4 Organization of the Meta-Model

Figure 1.4 sketches the overall structure of the meta-model, which formally defines
the vocabulary required to describe AUTOSAR software-components. As the dia-
gram points out, other template specifications (e.g. ECU Resource Template [9]

14 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

and System Template [10]) also use the same modeling approach in order to define
an overall consistent model of AUTOSAR software description.

The dashed arrows in the diagram describe dependencies in terms of import-
relationships between the packages within the meta-model. For example, the package
SWComponentTemplate imports meta-classes defined in the packages Generic-
Structure [11] and ECUResourceTemplate [9].

Please note that this specification document will only discuss meta-model elements
defined in the package SWComponentTemplate.

SWComponentTemplate ECUResourceTemplate

SystemTemplate

ECUCDescriptionTemplate

BswModuleTemplate

ECUCParameterDefTemplate

GenericStructure

All other top-level
packages aggregate
meta-classes from
"Generic Structure"

CommonStructure

Figure 1.4: Structure of the meta-model

For clarification, please note that the package GenericStructure contains some
fundamental infrastructure meta-classes and common patterns that are described
in [11]. As these are used by all other template specification the dependency asso-
ciations are not depicted in the diagram for the sake of clarity.

15 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

1.5 Structure of the Template

AUTOSAR software components are described on three distinctive levels, as shown in
Figure 1.5.

SwcInternalBehav ior

AtomicSwComponentType

Virtual Functional Bus (VFB) level

Run-Time-Environment (RTE) level

Implementation level

SwcImplementation

«atpVariation,atpSplitable»

+internalBehavior 0..1

*

+behavior 1

Figure 1.5: The description of a software component is done on three levels

1.5.1 Description of software-components on VFB level

The highest (most abstract) description level is the Virtual Functional Bus [3].
In this document ComponentTypes are described with the means of DataTypes,
PortInterfaces, PortPrototypes, and connections between them. At this level,
the fundamental communication properties of components and their communication
relationships among each other are expressed.

16 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

In the diagram depicted in Figure 1.5, this aspect is expressed by means of the de-
scription of AtomicSoftwareComponentType1.

1.5.2 Description of software-components on RTE level

The middle level allows for behavior description of a given AtomicSoftware-
ComponentType. This so-called InternalBehavior is expressed according to
AUTOSAR RTE concepts, e.g. RTEEvents and in terms of schedulable units, so-
called RunnableEntities.

For instance, for an OperationPrototype defined in the scope of a
ClientServerInterface on the VFB, the behavior specifies which RunnableEn-
tity is activated as a consequence of the invocation of the specific OperationPro-
totype. As sketched by Figure 1.5, there may be multiple InternalBehaviors
referencing a given AtomicSoftwareComponentType.

1.5.3 Descriptions of software-components on implementation level

The lowest (most concrete) level of description specifies the implementation (i.e. in
terms of the AUTOSAR meta-model: the Implementation) of a given Internal-
Behavior description. More precisely, the RunnableEntities of such a behavior
are mapped to code (source code or object code).

There may be different Implementations that reference a specific InternalBe-
havior description, e.g. in different programming languages, or with differently opti-
mized code.

Please note that Implementation has been described in previous versions of this
document. In response to the evolution of the AUTOSAR concept the description of the
Implementation aspect has been moved to the ”GenericStructure” (see Figure 1.4)
because it is also used for creating the Basic Software Module Description
Template [8].

1.6 Document Conventions

Technical terms are typeset in monospaced font, e.g. PortPrototype.

1To avoid clutter and require additional up-front information about the meta model, compositions have
not been added to the diagram.

17 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

2 Overview: Software Components, Ports, and
Interfaces

2.1 Introduction

The detailed introduction of all aspects of the software component template in one
move is considered too complex. This chapter therefore provides an overview of the
main conceptual aspects of software components, ports and interfaces. The overview
will then be broken down into further details in chapter 3.

One of the goals of the AUTOSAR concept is the support of re-usability on the level of
application software. In other words: it should be possible to re-use existing artifacts to
create further model elements instead of being forced to create every single modeling
detail from scratch. One of the consequences of this approach is the application of the
so-called type-prototype pattern [6].

Among other things, this concept allows for creating hierarchical structures of software-
components with arbitrary complexity. However, the creation of hierarchical structures
itself does not have an impact on the run-time behavior of the overall system. The
actual behavior is completely defined within the individual software-components.

This conclusion is backed by the understanding that software-components are devel-
oped against the so-called Virtual Functional Bus (VFB), an abstract communication
channel without direct dependency on ECUs and communication buses. The VFB does
not provide any means for expressing a hierarchy of software-components.

Of course, the usage of the VFB has further consequences on the design of software-
components, which must not directly call the operating system or the communication
hardware. As a result, software-components can be deployed to actual ECUs at a
rather late stage in the development process.

In order to make the description more precise, the following text preferably uses accu-
rate meta-model terms instead of the rather vague terminology of ”composition” and
”software-component”.

2.2 Software Component

Application software within AUTOSAR is organized in self-contained units called Atom-
icSoftwareComponentTypes. Such AtomicSoftwareComponentTypes encap-
sulate the implementation of their functionality and behavior and merely expose well-
defined connection points, called PortPrototypes, to the outside world.

18 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Figure 2.1: Graphical representation of software-components in AUTOSAR

The graphical appearance of AUTOSAR software-components according to [12] is de-
picted in Figure 2.1.

Class 〈〈atpType〉〉 ComponentType (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Class
Desc. Base class for AUTOSAR software components.

Base
Class(es) ARElement

Attribute Datatype Mul. Link Type Description
port PortProto-

type * aggregation The ports through which this component can
communicate.

Table 2.1: ComponentType

AtomicSoftwareComponentTypes (and also the more general ComponentTypes
may only interact by means of their PortPrototypes). Hidden dependencies that are
not expressed by means of PortPrototypes are not allowed. Therefore, software-
components are in theory exchangeable as long as they implement the same function-
ality and provide the same public communication interface to the remaining system.

As mentioned before, the term AtomicSoftwareComponentType is a specific form
of the general concept of the ComponentType. The latter contributes the concept for
interaction, mainly in form of PortPrototypes.

Class 〈〈atpType〉〉 AtomicSoftwareComponentType (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Class
Desc.

An atomic software component is atomic in the sense that it cannot be further
decomposed and distributed across multiple ECUs.

19 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Base
Class(es) ComponentType

Attribute Datatype Mul. Link Type Description

Table 2.2: AtomicSoftwareComponentType

There are several specialized ComponentTypes to describe specific software-
components used in the different parts of the AUTOSAR Layered Architecture [2].
Further details are mentioned in chapter 9 and 10.

ARElement

«atpType»
ComponentType

AtomicSoftwareComponentType «atpType»
CompositionType

Identifiable

«atpPrototype»
ComponentPrototype

SensorActuatorSoftwareComponentType

«atpType»
CalprmComponentType

«atpType»
ServiceComponentType

ApplicationSoftwareComponentType

EcuAbstractionComponentType

ComplexDeviceDriverComponentType

+component 1..*

*«isOfType»

+type

1

Figure 2.2: Overview of Component Types

The ApplicationSoftwareComponentType is a specific class of AtomicSoft-
wareComponentType for representing hardware-independent application software.

Class 〈〈atpType〉〉 ApplicationSoftwareComponentType
Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Class
Desc.

The ApplicationSoftwareComponentType is used to represent the application
software.

Base
Class(es) AtomicSoftwareComponentType

Attribute Datatype Mul. Link Type Description

20 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Table 2.3: ApplicationSoftwareComponentType

More specifically, the PortPrototypes of a ComponentType can be used for at-
taching ConnectorPrototypes that establish an actual connection between Com-
ponentPrototypes (see chapter 2.3).

Class 〈〈atpPrototype〉〉 PortPrototype (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Class
Desc. Base class for the ports of an AUTOSAR software component.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description
calibration
PortAnno-
tation

Calibration
PortAnno-
tation

* aggregation Annotations on this CalibrationPort.

delegated
PortAnno-
tation

Delegated
PortAnno-
tation

0..1 aggregation

ioHwAb-
straction
Server
Annotation

IoHwAb-
straction
Server
Annotation

* aggregation

sender
Receiver
Annotation

Sender
Receiver
Annotation

* aggregation Collection of annotations of this ports
sender/receiver communication.

Table 2.4: PortPrototype

Please note that PortPrototypes actually needs an additional model artifact, the
PortInterface for fully describing the details of the PortPrototype. The concept
of the PortInterface as another means for establishing a high degree of re-usability
is described in chapter 2.4.

As depicted in Figure 2.3, ports are either require- or provide-ports. A require-port (in
technical terms: RPortPrototype) requires certain services or data, while a provide-
port (or PPortPrototype) on the other hand provides those services or data. Two
ComponentPrototypes are eventually connected by hooking up a PPortProto-
type of one ComponentPrototype to a compatible RPortPrototype of the other
ComponentPrototypes.

Class 〈〈atpPrototype〉〉 RPortPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Class
Desc. Component port requiring a certain port interface.

21 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Base
Class(es) PortPrototype

Attribute Datatype Mul. Link Type Description
required
ComSpec RPortCom

Spec * aggregation Required communication attributes, one for
each interface element.

required
Interface PortInter-

face 1 reference to
type

The interface that this port requires, i.e. the
port depends on another port providing the
specified interface.

Table 2.5: RPortPrototype

Class 〈〈atpPrototype〉〉 PPortPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Class
Desc. Component port providing a certain port interface.

Base
Class(es) PortPrototype

Attribute Datatype Mul. Link Type Description
provided
ComSpec PPortCom

Spec * aggregation Provided communication attributes per
interface element (data element or operation).

provided
Interface PortInter-

face 1 reference to
type The interface that this port provides.

Table 2.6: PPortPrototype

ARElement

«atpType»
ComponentType

Identi fiable

«atpPrototype»
PortPrototype

«atpPrototype»
RPortPrototype

«atpPrototype»
PPortPrototype

ARElement

«atpType»
PortInterface

+ isService: Boolean

+rPort

*

«isOfType»

+requiredInterface

1

+pPort

*

«isOfType»

+providedInterface

1

+port

0..*

+component

Figure 2.3: Components and Ports

22 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

2.3 Composition

The purpose of an AUTOSAR CompositionType is to allow the encapsulation of
specific functionality by aggregating existing software-components. Since a Compo-
sitionType is also a ComponentType, it again may be aggregated in further Com-
positionTypes. This recursive relation is formally expressed in Figure 2.4.

It is important to understand that while compositions allow for (sub-) system abstrac-
tion, they are solely an architectural element for the implementation of model scalabil-
ity. They simply group existing software-components and thereby take away complexity
when viewing or designing logical system architecture.

ARElement

«atpType»
ComponentType

«atpType»
CompositionType

Identifiable

«atpPrototype»
ComponentPrototype

+component 1..*

*«isOfType»

+type

1

Figure 2.4: The recursive relation of software-components and compositions

Therefore, the definition of CompositionTypes has no effect on how software-
components interact with the Virtual Functional Bus (VFB). CompositionTypes do
not add any new functionality to what is already provided by the software-components
they aggregate. As the main consequence, CompositionTypes do not have any
binary footprint in the ECU software.

In terms of the AUTOSAR meta-model, a composition of software-components realized
by the meta-class CompositionType aggregates ComponentPrototypes which in
turn are typed by a ComponentType. Please note that a CompositionType is also
a ComponentType.

Class 〈〈atpType〉〉 CompositionType
Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

23 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Class
Desc.

A CompositionType aggregates ComponentPrototypes (that in turn are typed by
ComponentTypes) as well as ConnectorPrototypes for primarily connecting
ComponentPrototypes among each others and towards the surface of the
CompositionType. By this means hierarchical structures of software-components can
be created.

Base
Class(es) ComponentType

Attribute Datatype Mul. Link Type Description
component Component

Prototype 1..* aggregation The instantiated components that are part of
this composition.

connector Connector
Prototype * aggregation

ConnectorPrototypes have the principal ability
to establish a connection among
PortPrototypes. They can have many roles in
the context of a CompositionType. Details are
refined by subclasses.

Table 2.7: CompositionType

Class 〈〈atpPrototype〉〉 ComponentPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::Composition
Class
Desc. Role of a software component within a composition.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description
type Component

Type 1 reference to
type Type of the instance.

Table 2.8: ComponentPrototype

24 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

ARElement

«atpType»
ComponentType

Identifiable

«atpPrototype»
PortPrototype

«atpType»
CompositionType

Identifiable

ConnectorPrototype

Identifiable

«atpPrototype»
ComponentPrototype

+port

0..*

+component

+component

1..*

+connector

*

+composition

Figure 2.5: Composition and the meta-classes aggregated

Therefore, a ComponentPrototype implements the usage of a ComponentType in
a specific role. In general, arbitrary numbers of ComponentPrototypes that refer
to specific ComponentTypes can be created. Note that CompositionType also ag-
gregates the abstract meta-class ConnectorPrototype for connection the Compo-
nentPrototypes contained among each others (see Figure 2.5).

Example: a ComponentPrototype ”LeftDoorControl” fulfills the role of implementing
the ComponentType ”DoorControl” for the left door of a vehicle while the Component-
Prototype ”RightDoorControl” fulfills the role of the ComponentType ”DoorControl”
for the right door.

Note that being a CompositionType, a CompositionType also exposes PortPro-
totypes to the outside world. However, the PortPrototypes are only delegated
and do not play the same role as PortPrototypes attached to AtomicSoftware-
ComponentTypes. Being a PortPrototype attached to a CompositionType has
the following implications:

• The delegation has to follow the rules defined in chapter 3.4.

• By creating PortPrototypes on the surface of a specific CompositionType
it is explicitly decided whether or not the contents of an ”inner” port contained in
the CompositionType is exposed to the outside world.

25 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Please note that the semantics of the delegation of PortPrototypes are similar
to encapsulation mechanisms like public and private members in object-oriented pro-
gramming languages.

CompositionTypes contain three kinds of ConnectorPrototypes:

• AssemblyConnectorPrototypes to interconnect PortPrototypes of Com-
ponentPrototypes that are part of the CompositionType as well as

• DelegationConnectorPrototypes to connect from ”inner” PortProto-
types to delegated ”outer” PortPrototypes.

In the case that the outer PortPrototypes is referenced by multiple Delega-
tionConnectorPrototypes the semantic is the multiplication of the Assem-
blyConnectorPrototypes referencing the outer PortPrototypes.

• ServiceConnectorPrototype is exclusively used for in the context of ECU
configuration phase, and must not be used within CompositionTypes of soft-
ware applications. Please find more details in chapter 10.

Class 〈〈atpObject〉〉 ConnectorPrototype (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Composition
Class
Desc.

The base class for connectors between ports. Connectors have to be identifiable to
allow references from the system constraint template.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description

Table 2.9: ConnectorPrototype

Class 〈〈atpStructureElement〉〉 AssemblyConnectorPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::Composition
Class
Desc.

AssemblyConnectorPrototypes are exclusively used to connect
ComponentPrototypes in the context of a CompositionType.

Base
Class(es) ConnectorPrototype

Attribute Datatype Mul. Link Type Description
provider PPort

Prototype 1 instanceRef Instance of providing port.

requester RPort
Prototype 1 instanceRef Instance of requiring port.

Table 2.10: AssemblyConnectorPrototype

Class 〈〈atpStructureElement〉〉 DelegationConnectorPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Class
Desc.

A delegation connector delegates one inner PortPrototype (a port of a component
that is used inside the composition) to a outer PortPrototype of compatible type that
belongs directly to the composition (a port that is owned by the composition).

Base
Class(es) ConnectorPrototype

Attribute Datatype Mul. Link Type Description

26 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

innerPort PortProto-
type 1 instanceRef

Connects these ports. The role (inner, outer)
of those ports is derived from the context (port
of composition or port of inner component).

outerPort PortProto-
type 1 reference The port that is located on the outside of the

CompositionType

Table 2.11: DelegationConnectorPrototype

Class 〈〈atpStructureElement〉〉 ServiceConnectorPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Class
Desc.

A ServiceConnectorPrototype connects a PortPrototype owned by an
ComponentPrototype
with the service PortPrototype owned by the ServiceComponentPrototype. A
ServiceConnectorPrototype is only added to the model in ECU Configuration phase
for the specific purpose of configuring services within an EcuSwComposition.

Base
Class(es) ConnectorPrototype

Attribute Datatype Mul. Link Type Description
application
Port PortProto-

type 1 instanceRef Service port to be connected on application
component side

service
Port PortProto-

type 1 instanceRef Service port to be connected on service
component side

Table 2.12: ServiceConnectorPrototype

Identifiable

ConnectorPrototype

«atpStructureElement»
AssemblyConnectorPrototype

«atpStructureElement»
DelegationConnectorPrototype

Identifiable

«atpPrototype»
PortPrototype

«atpPrototype»
RPortPrototype

«atpPrototype»
PPortPrototype

«atpStructureElement»
ServiceConnectorPrototype

0..*

«instanceRef»

+requester 1

0..*

«instanceRef»

+provider 1
«instanceRef»

+applicationPort

1

«instanceRef»

+servicePort

1

0..*

«instanceRef»

+innerPort 1

0..*

+outerPort 1

Figure 2.6: Connectors

27 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

One implication of the concept of CompositionType is that the application software
of an entire vehicle eventually is represented by one CompositionType. This so-
called top-level composition has a special role in the context of the AUTOSAR System
Template [10]. However, please note note that a top-level composition might have (un-
connected) PortPrototypes in order to allow for reuse as part of another system.

2.4 Port Interface

A PortPrototype mainly contributes the functionality of being a connection point to
the AUTOSAR concept. The details, i.e. what kind of information is actually transported
between two PortPrototypes is defined by the PortInterface.

PortInterfaces (see Figure 2.7) are used to support a design-by-contract work flow,
i.e. they provide means to formally verify structural and dynamic compatibility between
software-components. In other words: PortInterfaces represent a pivotal point in
the AUTOSAR concept.

Please note that a PortInterface creates a name space for the information con-
tained. This allows for defining the details of a specific PortInterface without hav-
ing to care for possible side-effects on other PortInterfaces. Again, this property
of the AUTSOAR concept directly supports re-usability.

Within the AUTOSAR concept, different flavors of PortInterfaces are defined:

• SenderReceiverInterface,

• ClientServerInterface, and the

• CalprmInterface.

Please find more details about the specialization of the PortInterface concept in
chapter 3.3 and 3.2.

Class 〈〈atpType〉〉 PortInterface (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Class
Desc.

Abstract base class for an interface that is either provided or required by a port of a
software component.

Base
Class(es) ARElement

Attribute Datatype Mul. Link Type Description

isService Boolean 1 aggregation

This flag is set, if the PortInterface is to be
used for communication between an
ApplicationSoftwareComponentType and a
ServiceComponentType (namely an
AUTOSAR Service, ECU abstraction or
Complex Driver) located on the same ECU.
Otherwise the flag is not set.

Table 2.13: PortInterface

28 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

From an abstract point of view, a PortInterface acts as a type for a PortProto-
type. This means in particular that several PortPrototypes can be typed by the
same PortInterface. Of course, this aspect facilitates the creation of valid connec-
tions between software-components dramatically. By using a specific PortInter-
face for typing particular PortPrototypes the latter are eligible for being connected
to each other by definition.

«atpType»
SenderReceiverInterface

«atpType»
ClientServerInterface

DataPrototype

«atpPrototype»
DataElementPrototype

+ isQueued: Boolean

Identi fiable

«atpStructureElement»
OperationPrototype

DataPrototype

ArgumentPrototype

+ direction: DirectionKind

Identifiable

«atpPrototype»
ModeDeclarationGroupPrototype

«enumeration»
DirectionKind

 in
 out
 inout

«atpType»
CalprmInterface

DataPrototype

CalprmElementPrototype

ARElement

«atpType»
PortInterface

+ isService: Boolean

+calprmElement 0..* +operation 1..*

+interface 1

+argument * {ordered}

1

+dataElement 0..*

+interface 1

+modeGroup0..*

+interface 1

Figure 2.7: PortInterfaces in the AUTOSAR meta-model

However, the creation of a valid connection does not need to be based on the usage of
identical PortInterfaces. It is also possible to use different, but compatible Port-
Interfaces. The details about compatibility of PortInterfaces are described in
chapter 3.4.

Please note that PortInterfaces also play an important role in the context of defin-
ing so-called AUTOSAR services. Please find more details about this aspect in chap-
ter 10.

29 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

3 Details: Software Components, Ports, and
Interfaces

3.1 Introduction

The specification of the Virtual Functional Bus (VFB) [3] explains the main commu-
nication paradigms for communication among software-components: client/server for
operation-based communication, and sender/receiver for data-based communication.
The nature of the two communication paradigms is quite different, and so are the at-
tributes for SenderReceiverInterfaces and ClientServerInterfaces.

PortInterfaces are limited to the description of the static structure of the exchanged
information; the dynamic attributes (please refer to chapter 3.6.1) relevant for commu-
nication are attached to PortPrototypes.

3.2 Sender Receiver Communication

SenderReceiverInterfaces allow for the specification of the typically asyn-
chronous communication pattern where a sender provides data that is required by
one or more receivers. While the actual communication takes place via the respec-
tive PortPrototypes, a SenderReceiverInterface allows for formally describ-
ing what kind of information is sent and received.

Class 〈〈atpType〉〉 SenderReceiverInterface
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Class
Desc.

A sender/receiver interface declares a number of data elements to be sent and
received.

Base
Class(es) PortInterface

Attribute Datatype Mul. Link Type Description
dataEle-
ment

DataEl-
ement
Prototype

* aggregation The dataelements of this sender/receiver
interface.

mode
Group

ModeDec-
laration
Group
Prototype

* aggregation Modes which may be communicated via this
interface.

Table 3.1: SenderReceiverInterface

A SenderReceiverInterface focuses on the description of information items
represented by DataElementPrototypes and ModeDeclarationGroupProto-
types.

30 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

3.2.1 Data Element Prototype

A DataElementPrototype represents an atomic1 piece of information transmitted
among PortPrototypes typed by a SenderReceiverInterface. Any DataEle-
mentPrototype has a specific data type, i.e. technically speaking it is a DataPro-
totype (see Figure 3.1).

Class 〈〈atpPrototype〉〉 DataElementPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Class
Desc.

A data element of a sender-receiver interface, supporting signal like communication
patterns.

Base
Class(es) DataPrototype

Attribute Datatype Mul. Link Type Description

isQueued Boolean 1 aggregation

Qualifies whether the content of the data
element is queued. If it is queued, then the
data element has ”event” semantics, i.e. data
elements are stored in a queue and all data
elements are processed in ”first in first out”
order.
If it is not queued, then the ”last is best”
semantics applies. Please note: Depending
on the read access cycle to the data element
some values might not be processed by the
receiver.

Table 3.2: DataElementPrototype

Class 〈〈atpPrototype〉〉 DataPrototype (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Class
Desc. Base class for prototypical roles of a datatype.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description

1Note that the term ”atomic” does not have any implication on the implementation on a concrete
computing platform

31 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

swDataDef
Props SwData

DefProps 0..1 aggregation

This element describes all of the
distinguishing characteristics of a data object
(variable or parameter). <swDataDefProps>
is used in every case, where characteristics of
data objects must be given.

It is inevitable that not all of the inputs are
useful all of the time. Hence, the process
definition or the DCI has the task of
implementing limitations.

The <swDataDefProps> describe the
characteristics of all axes:

* The characteristics of the argument axes
(abscissas) are described in
<swCalprmAxisSet> .

* The characteristics of the value axis are
described directly in <swDataDefProps> .

type Datatype 1 reference to
type

Table 3.3: DataPrototype

AUTOSAR

PackageableElement

ARElement

Identifiable

ARPackage

«atpSplitable»

+arPackage
0..*

+element

0..*«atpSplitable»
«atpSplitable»

+arPackage

0..*

Figure 3.1: DataElements of a SenderReceiverInterface

Note that a SenderReceiverInterface provides a name space for the definition
of DataElementPrototypes. In terms of the AUTOSAR meta-model this aspect is
indicated by the inheritance relation to DataPrototype (which in turn inherits from
Identifiable). Please find more information on the creation of name spaces in [6].

32 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

A further implication of this relationship is that a DataElementPrototype can be
typed by a PrimitiveType but also by a CompositeType.

The attribute isQueued indicates the way how a DataElementPrototype must be
processed at the receiver’s side. If set to TRUE the semantics of the attribute is that the
corresponding DataElementPrototype needs to be added to a queue (or in other
words: a FIFO data structure) from which it is later consumed by the actual receiver
software-component.

If the attribute is set to FALSE then last is best semantics applies. Please note that
depending on the read access on the receiver side it might happen that some updates
of the value of a DataElementPrototype with isQueued set to FALSE are actually
missed.

Please note that the definition of DataElementPrototype may possibly come very
close to the reader’s idea of a signal. However, different kinds of signals have a specific
meaning in the AUTOSAR concept, especially in the context of the AUTOSAR System
Template [10].

3.2.2 Mode Declaration Group Prototype

In addition to the mere definition of exchanged information items by means of
DataElementPrototypes, a SenderReceiverInterface may define ModeDec-
larationGroupPrototypes which describe a collection of mode switches that can
be communicated via the specific SenderReceiverInterface.

Class 〈〈atpPrototype〉〉 ModeDeclarationGroupPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Class
Desc.

The ModeDeclarationGroupPrototype specifies the set of Modes
(ModeDeclarationGroup) that is supported by a ComponentType.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description

type ModeDec-
laration
Group

1 reference to
type

The ”collection of ModeDeclarations” (=
ModeDeclarationGroup) supported by a
component

Table 3.4: ModeDeclarationGroupPrototype

33 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

3.3 Client Server Communication

The underlying semantics of a client/server communication is that a client may initiate
the execution of an operation by a server that supports the operation. The server
executes the operation and immediately provides the client with the result (synchronous
operation call) or else the client checks for the completion of the operation by itself
(asynchronous operation call).

3.3.1 Client Server Interface

A ClientServerInterface therefore to some extent is a counterpart to the
SenderReceiverInterface. Instead of defining pieces of information to be trans-
ferred among software-components, a ClientServerInterface defines a collec-
tion of OperationPrototypes.

Class 〈〈atpType〉〉 ClientServerInterface
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Class
Desc.

A client/server interface declares a number of operations that can be invoked on a
server by a client.

Base
Class(es) PortInterface

Attribute Datatype Mul. Link Type Description
operation Operation

Prototype 1..* aggregation

possible
Error Application

Error * aggregation Application errors that are defined as part of
this interface.

Table 3.5: ClientServerInterface

ArgumentPrototype

+ direction: DirectionKind

ARElement

«atpType»
Datatype

«atpType»
ClientServerInterface

Identifiable

«atpPrototype»
DataPrototype

ARElement

«atpType»
PortInterface

+ isService: Boolean

Identifiable

«atpStructureElem...
OperationPrototype

+operation

1..*

+interface 1

0..* «isOfType»

+type

1

+argument

* {ordered}

1

Figure 3.2: Operations of a ClientServerInterface

34 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

As depicted in Figure 3.2, a ClientServerInterface is composed of Opera-
tionPrototypes, i.e. an OperationPrototype cannot be reused in the context of
a different ClientServerInterface

An OperationPrototype consists of 0..* ArgumentPrototypes. The latter may
be

• passed to the operation

• passed to and returned from the operation

• returned from the operation

Class 〈〈atpStructureElement〉〉 OperationPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Class
Desc. An operation declared within the scope of a client/server interface.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description
argument
(ordered)

Argument
Prototype * aggregation

possible
Error Application

Error * reference Possible errors that may by raised by referring
operation.

Table 3.6: OperationPrototype

Class 〈〈atpPrototype〉〉 ArgumentPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Class
Desc.

An argument of an operation, much like a data element, but also carries direction
information and is associated with a particular operation.

Base
Class(es) DataPrototype

Attribute Datatype Mul. Link Type Description
direction Direction

Kind 1 aggregation

Table 3.7: ArgumentPrototype

To cover these cases ArgumentPrototype defines an attribute direction, possible
values are in (pass to operation), out (return from operation), and inout (pass to and
return from operation).

In many common programming languages (like C), an operation is yet another data
type. This makes it for example possible to pass a reference to an operation as an
argument to another operation. This is not allowed in the AUTOSAR concept: it is not
possible to pass a reference to an OperationPrototype as an ArgumentProto-
type in another OperationPrototype.

Essentially all ArgumentPrototypes in an OperationPrototype can be passed
(conceptually) by value (from the client to the server and/or from the server to the client

35 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

depending on the direction of the ArgumentPrototype). Extending the model to
allow this causes a huge additional level of complication within the RTE (as the RTE
now would need to deal with references to remote objects).

When the client invokes an operation, it needs to provide a value for each Argument-
Prototype that is of direction in or inout. This value needs to be of the correct
Datatype. In the case of synchronous operation call, the client expects to receive a
response to the invocation of the operation. As part of the response, it receives a value
(of the correct Datatype) for each ArgumentPrototype that is of direction out or
inout.

Enumeration DirectionKind
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Enum Desc.
Literal Description
out The ArgumentPrototype is passed from the OperationPrototype to the caller.

inout The ArgumentPrototype is passed to the OperationPrototype but also passed back
from the OperationPrototype to the caller.

in The ArgumentPrototype is passed to an OperationPrototype

Each OperationPrototype provides a name space for its ArgumentPrototypes
and therefore has a unique identifier, which identifies the operation within the corre-
sponding ClientServerInterface. The OperationPrototypes have no order-
ing within a ClientServerInterface (there is no such thing as the ”first” opera-
tion)2.

It is not possible to define default values for ArgumentPrototypes defined in the con-
text of an OperationPrototype. Default values might lead to complicated mappings
to programming languages.

In contrast to the unordered relationship of ClientServerInterface to Opera-
tionPrototype, the definition of ArgumentPrototypes within the context of an
OperationPrototype is ordered, i.e. an OperationPrototype may have a first
argument3.

Please note that ArgumentPrototype inherits from DataPrototype and therefore
has a reference to a concrete Datatype.

Class 〈〈atpPrototype〉〉 DataPrototype (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

2In different parts of the definition of a ClientServerInterface, a ”calling-order” of the Oper-
ationPrototypes might be prescribed: the client might be required to use the OperationProto-
types in a certain logical ordering. However, this ordering has nothing to do with the order in which the
OperationPrototypes are listed in the definition of a ClientServerInterface

3 Giving the ArgumentPrototypes of an OperationPrototype both an ordering and a unique
identifier might seem redundant. For example, in the operation ”foo(a, b, c)”; we can refer to the ”second
argument” or to ”the argument named b”. In many common programming languages (like C or Java),
only the ordering is actually used by the client during the invocation of the server (the client invokes the
operation as ”foo(1,2,3)” not as ”foo(a=1,c=3,b=2)”. In addition, the names of the arguments represent
an arbitrary choice made when implementing of the invocation. In C, only the data types and ordering
of the arguments constitute the signature, not the names of the arguments.

36 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Class
Desc. Base class for prototypical roles of a datatype.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description

swDataDef
Props SwData

DefProps 0..1 aggregation

This element describes all of the
distinguishing characteristics of a data object
(variable or parameter). <swDataDefProps>
is used in every case, where characteristics of
data objects must be given.

It is inevitable that not all of the inputs are
useful all of the time. Hence, the process
definition or the DCI has the task of
implementing limitations.

The <swDataDefProps> describe the
characteristics of all axes:

* The characteristics of the argument axes
(abscissas) are described in
<swCalprmAxisSet> .

* The characteristics of the value axis are
described directly in <swDataDefProps> .

type Datatype 1 reference to
type

Table 3.8: DataPrototype

Note further that a ClientServerInterface does not define any timing information
(how quickly the client expects a response of the server). It does not define how the
threading works (if the client for example blocks until the response comes back from
the server).

It also does not define explicitly how information is passed between an implementation
of the client and the server and the underlying RTE (for example: through ”pointers” or
”by value”).

3.3.2 Error Handling in client/server communication

This section describes the handling of errors occurring either within an application
software-component or during the communication across the VFB [3]. Errors that are
created and consumed by basic software modules are not in scope.

Therefore, errors in the scope of this document are divided into two simple classes:

• infrastructure errors and

• application errors.

37 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

A software-component implementation uses RTE API methods to communicate with
other software-components. During this communication certain errors can occur as
a result of infrastructure faults, like a bus not working, or an expected data value not
arriving in time.

These errors are listed in the VFB specification [3], as they are an inherent feature
of the infrastructure provided by the VFB. Software-components will therefore typically
not raise infrastructure errors on their own. Instead, basic software and RTE will de-
termine infrastructure faults and communicate the corresponding errors to the relevant
software-components.

PortInterface

«atpType»
ClientServerInterface

Identifiable

«atpStructureElement»
OperationPrototype

Identifiable

ApplicationError

+ errorCode: Int
0..*

+possibleError

0..*

+operation 1..*

+interface 1

+possibleError 0..*

Figure 3.3: Application error meta-model

As the fixed set of infrastructure errors is defined as an implicit part of the VFB, a
developer of an AUTOSAR system does not need to explicitly describe them. They are
assumed to be possible and application developers should take measures to handle
them.

Application errors on the other hand are specific to the functionality or information that
is described in form of a PortInterface. It is not possible to define such errors
up front, instead they are defined at design time of a certain PortInterface. In
principle, such ApplicationErrors could be part of all kinds of PortInterfaces,
but as of now, AUTOSAR supports (as depicted by Figure 3.3) ApplicationErrors
only for ClientServerInterfaces.

Class 〈〈atpObject〉〉 ApplicationError
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Class
Desc.

This is a user-defined error that is associated with an element of an AUTOSAR
interface. It is specific for the particular functionality or service provided by the
AUTOSAR software component.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description

38 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

errorCode Integer 1 aggregation

The RTE generator is forced to assign this
value to the corresponding error symbol. Note
that for error codes certain ranges are
predefined (see RTE specification).

Table 3.9: ApplicationError

Consequently, OperationPrototypes may be associated with a number of Ap-
plicationErrors they possibly raise. These errors are defined as part of the
ClientServerInterface.

3.4 Compatibility

In order to connect PortPrototypes of ComponentTypes, the compatibility of
PortPrototypes needs to be verified. This section defines the basic rules for for-
mal compatibility of PortPrototypes. 3.4 depicts the meta-classes relevant for the
discussion of compatibility.

«atpType»
SenderReceiv erInterface

«atpType»
ClientServerInterface

«atpPrototype»
DataElementPrototype

«atpStructureEleme...
OperationPrototype

ArgumentPrototype

«atpType»
Datatype

«atpPrototype»
DataPrototype +operation 1..*

+interface 1

+argument * {ordered}

1

0..*

«isOfType»

+type 1

+dataElement 0..*

+interface 1

Figure 3.4: Relevant meta-classes for compatibility considerations

39 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Compatibility will be defined bottom-up, i.e. first the rules for compatible Datatypes
are set up, then the rules for the different types of PortInterfaces are derived.

3.4.1 Compatibility of Data Types

To fully discuss compatibility rules for Datatypes, the different types and objects in
the Datatypes part of the AUTOSAR meta models have to be cleanly distinguished.
Please find more details on AUTOSAR Datatypes in chapter 4

The AUTOSAR meta model defines a number of meta classes (e.g. IntegerType),
that own a set of attributes (e.g. a lower boundary for its values). Instantiating such a
class and setting its attributes defines a new Datatype (e.g. Uint16). In other words:
IntegerType is an M2 artifact; it is taken for creating an M1 artifact Uint16.

In this context, the issue of compatibility refers to the M1 objects, i.e. the instances of
Datatype need to be considered.

3.4.1.1 PrimitiveType

Instances of PrimitiveType are compatible if and only if

1. The examined M1 data types are derived from the same PrimitiveType.

2. All attributes match exactly, with one exception: the name of the M1 data type.
This rule also covers aliases, which by definition differ only in shortName from
the original.

3. The semantics of the M1 data types are compatible.

3.4.1.2 CompositeType

Instances of CompositeType are compatible if and only if

1. The underlying CompositeTypes are identical.

2. They are composed of compatible Datatypes (either CompositeTypes or
PrimitiveTypes) in the same order (e.g. for RecordType).

3. All attributes match exactly, with the exception of the shortName of the M1 data
type.

3.4.2 Compatibility of Semantics

PrimitiveTypes may have associated semantics via aggregated SwDataDef-
Props, which contains semantics in form of a CompuMethod, a physical unit (class

40 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Unit) and an invalidValue. These meta-classes are further explained in chapter
4.5. Semantics thus consist of several characteristics that all need to be compatible
to satisfy the overall compatibility requirement. This is automatically the case if both
PrimitiveTypes refer to the same semantics objects.

In general, semantics of PrimitiveTypes are compatible if and only if:

1. They refer to compatible Unit definitions, or neither of them has an associated
Unit.

2. They contain identical conversion methods compuPhysToInternal from phys-
ical to internal values, or neither of them associates such a method.

3. They contain identical conversion methods compuInternalToPhys from inter-
nal to physical values, or neither of them associates such a method.

4. They contain (if applicable) the same invalidValue.

Identical methods refers to conversion methods where all attributes are identical.

Two Unit definitions are compatible if and only if:

1. They have identical shortNames.

2. They have identical attributes factorSiToUnit and offsetSiToUnit.

3. They either refer to identical definitions of PhysicalDimension or neither of
them associates a PhysicalDimension.

Two PhysicalDimension definitions are identical if they have identical shortNames
and attributes.

3.4.3 Compatibility of Data Element Prototypes

Although DataElementPrototypes can only exist in the context of a Sender-
ReceiverInterface, they are discussed separately.

Two DataElementPrototypes are compatible if and only if

1. They are typed by (read ”refer to”) compatible Datatypes.

2. The two DataElementPrototypes have identical shortNames. This is re-
quired to map DataElementPrototypes in unordered SenderReceiverIn-
terfaces.

3. For each such pair, the values of their isQueued attributes are equal.

3.4.4 Compatibility of Mode Declaration Groups

ModeDeclarationGroups are compatible if and only if

41 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

1. They have identical ModeDeclarations.

2. They refer to identical initialModes.

3.4.5 Compatibility of Sender Receiver Interfaces

Please note that this compatibility requirement only satisfies static correctness, which
means that logical consistency is not assured (e.g. that a receiver must process a
certain data value to correctly interpret the following values).

3.4.5.1 Connection of required and provided Port via AssemblyConnectorPro-
totype

The compatibility of SenderReceiverInterfaces is considered for connecting of
PortPrototypes with an AssemblyConnectorPrototype. PortPrototypes of
different SenderReceiverInterfaces are compatible if and only if

1. For each DataElementPrototype defined in the context of the Sender-
ReceiverInterface of the required PortPrototype a compatible
DataElementPrototype exists in the SenderReceiverInterface of
the provided PortPrototype. The shortNames of DataElementProto-
types are used to identify the pair.

2. For each ModeDeclarationGroupPrototype defined in the context of the
SenderReceiverInterface of the required PortPrototype a compatible
ModeDeclarationGroupPrototype exists in the SenderReceiverInter-
face of the provided PortPrototype. The shortNames of the ModeDecla-
rationGroupPrototypes are used to identify the pair.

3. For each such pair, the values of their isService attributes are identical.

3.4.5.2 Connection of inner and outer Port via DelegationConnectorPrototype

The compatibility of SenderReceiverInterfaces is considered for connecting of
PortPrototypes with a DelegationConnectorPrototype. PortPrototypes
of different SenderReceiverInterfaces are compatible if and only if

1. For each DataElementPrototype defined in the context of the Sender-
ReceiverInterface of the required inner PortPrototype a compatible
DataElementPrototype exists in the SenderReceiverInterface of the
required outer PortPrototype. The shortNames of DataElementProto-
types are used to identify the pair.

2. For each ModeDeclarationGroupPrototype defined in the context of the
SenderReceiverInterface of the required inner PortPrototype a com-

42 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

patible ModeDeclarationGroupPrototype exists in the SenderReceiver-
Interface of the required outer PortPrototype. The shortNames of the
ModeDeclarationGroupPrototypes are used to identify the pair.

3. For at least one DataElementPrototype defined in the context of the Sender-
ReceiverInterface of the provided inner PortPrototype a compatible
DataElementPrototype exists in the SenderReceiverInterface of the
provided outer PortPrototype. The shortNames of DataElementProto-
types are used to identify the pair.

4. For at least one ModeDeclarationGroupPrototype defined in the context
of the SenderReceiverInterface of the provided inner PortPrototype
a compatible ModeDeclarationGroupPrototype exists in the Sender-
ReceiverInterface of the provided outer PortPrototype. The short-
Names of the ModeDeclarationGroupPrototypes are used to identify the
pair.

5. For each such pair, the values of their isService attributes are identical.

3.4.6 Compatibility of Argument Prototypes

Two ArgumentPrototypes are compatible if and only if

1. They are typed by compatible Datatypes.

2. They have the same direction (in, out or inout).

3.4.7 Compatibility of Application Errors

Two ApplicationErrors are compatible if and only if

1. They have the same shortName.

2. They have the same attributes. Especially the errorCode must be identical in
both ApplicationErrors.

3.4.8 Compatibility of Operation Prototypes

Two OperationPrototypes are compatible if their signatures match. In particular,
they are compatible if and only if

1. They have the same number of OperationArguments.

2. The n-th arguments of both OperationPrototypes are compatible. This im-
plies ordering of OperationArguments.

43 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

3. They have the same shortName (again allows for mapping in PortInter-
faces).

4. The required OperationPrototype specifies a compatible Application-
Error for each ApplicationError that is possibly raised by the provided Op-
erationPrototype, maybe more.

3.4.9 Compatibility of Client Server Interfaces

Please note that this compatibility requirement only satisfies static correctness, which
means that logical consistency is not assured (e.g. that a client must call a certain
operation to allow the server to work correctly).

3.4.9.1 Connection of required and provided Port via AssemblyConnectorPro-
totype

ClientServerInterfaces are compatible if and only if

1. For each OperationPrototype defined in the context of the ClientServer-
Interface of the required PortPrototype a compatible OperationProto-
type exists in the ClientServerInterface of the provided PortProto-
type. The shortNames of OperationPrototypes are used to identify the
pair.

2. For each such pair, the values of their isService attributes are identical.

3.4.9.2 Connection of inner and outer Port via DelegationConnectorPrototype

ClientServerInterfaces are compatible if and only if

1. For each OperationPrototype defined in the context of the ClientServer-
Interface of the required inner PortPrototype a compatible Opera-
tionPrototype exists in the ClientServerInterface of the required outer
PortPrototype. The shortNames of OperationPrototypes are used to
identify the pair.

2. For at least one OperationPrototype defined in the context of the
ClientServerInterface of the provided inner PortPrototype a compati-
ble OperationPrototype exists in the ClientServerInterface of the pro-
vided outer PortPrototype. The shortNames of OperationPrototypes
are used to identify the pair.

3. For each such pair, the values of their isService attributes are identical.

44 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

3.4.10 Entire delegation of a provided Port Prototype

The delegation of an provided outer PortPrototype is entire defined, if following criteria
are fulfilled:

1. For each DataElementPrototype with attribute isQueued = TRUE present in
the SenderReceiverInterface of the provided outer PortPrototype, there
exists at least one connection via DelegationConnectorPrototype to a pro-
vided inner PortPrototype with a compatible DataElementPrototype in
the SenderReceiverInterface of the provided inner PortPrototype. The
shortNames of DataElementPrototype are used to identify the pair.

2. For each DataElementPrototype with attribute isQueued = FALSE present in
the SenderReceiverInterface of the provided outer PortPrototype, there
exists exactly one connection via DelegationConnectorPrototype to a pro-
vided inner PortPrototype with a compatible DataElementPrototype in
the SenderReceiverInterface of the provided inner PortPrototype. The
shortNames of DataElementPrototype are used to identify the pair.

3. For each ModeDeclarationGroupPrototype present in the Sender-
ReceiverInterface of the provided outer PortPrototype, there exists ex-
actly one connection via DelegationConnectorPrototype to a provided in-
ner PortPrototype with a compatible ModeDeclarationGroupPrototype
in the SenderReceiverInterface of the provided inner PortPrototype.
The shortNames of ModeDeclarationGroupPrototype are used to identify
the pair.

4. For each OperationPrototype present in the ClientServerInterface of
the provided outer PortPrototype, there exists exactly one connection via
DelegationConnectorPrototype to a provided inner PortPrototype with
a compatible OperationPrototype in the ClientServerInterface of the
provided inner PortPrototype. The shortNames of OperationPrototype
are used to identify the pair.

3.4.11 Split and merge of Data Element Prototypes

With the define Compatibility Rules in chapter 3.4.5 and 3.4.9 it is possible to split
and distribute data from a PortPrototype of type of a PortInterface containing
the superset of DataElementPrototypes to PortPrototypes of type of PortIn-
terfaces containing subsets of DataElementPrototypes.

The examples showing the relationship between the usage of DelegationConnec-
torPrototypes in different configurations and the DelegatedPortAnnotation.
Please consider that the DelegatedPortAnnotation is usually defined before the
internal structure of a CompositionType is fully defined. Afterward it has to be con-
sistent or can be removed. But showing it together simplifies the understanding of the
mean of the DelegatedPortAnnotation.

45 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Figure 3.5: Delegation Connector Example I and II

Example I

The required outer PortPrototype contains the superset of DataElementProto-
types {A ,B}. The two required inner PortPrototypes of the ComponentProto-
types contain the subsets of DataElementPrototypes {A} and {B}. In this case
the resulting communication pattern on the VFB would be x:1, whereas x can be 1 to
n. This would fulfill the criteria of a DelegatedPortAnnotation value single.

Example II

The required outer PortPrototype contains the superset of DataElementProto-
types {A ,B, C, D}. The two required inner PortPrototypes of the Component-
Prototypes contain the subsets of DataElementPrototypes {A, B} and {B, C}.
In this case the resulting communication pattern on the VFB for B would be 1:n. This
would require a DelegatedPortAnnotation value nfold. The data of DataEle-
mentPrototypes {D} isn’t used.

In addition the Compatibility Rules for DelegationConnectorPrototypes in chap-
ter 3.4.5.2 and 3.4.9.2 enable merging and collecting of data from PortPrototypes
of type of PortInterfaces containing subsets of DataElementPrototypes to a
PortPrototype of type of a PortInterface containing the superset of DataEle-
mentPrototypes.

46 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Figure 3.6: Delegation Connector Example III and IV

Example III

The provided outer PortPrototype contains the superset of DataElementProto-
types {A ,B}. The two provided inner PortPrototypes of the ComponentPrototypes
contain in each case a subset of one DataElementPrototypes {A} and {B}. In this
case the resulting communication pattern on the VFB would be 1:x, whereas x can be 0
to n. This would fulfill the criteria of a DelegatedPortAnnotation value single. All
DataElementPrototypes of the provided outer PortPrototypes are provided by
exactly one provided inner PortPrototype. Therefore the criteria of entire del-
egation defined in chapter 3.4.10 are fulfilled.

Example IV

The provided outer PortPrototype contains the superset of DataElementProto-
types {A ,B, C}. The two inner PortPrototypes of the ComponentPrototypes
contain the subsets of DataElementPrototypes {A, B} and {B, C}. In this case the
resulting communication pattern on the VFB for {B} would be n:1. This would require
a DelegatedPortAnnotation value nfold. All DataElementPrototypes of the
provided outer PortPrototype are provided by at least on provided inner PortPro-
totype. Therefore the criteria of entire delegation defined in chapter 3.4.10 are
fulfilled.

3.5 Port Annotation

3.5.1 Introduction

In addition to the formal specification required to implement the communication via
ports, a PortPrototype can carry so-called Port Annotations (please find a
summary in Figure 3.7). They do not directly influence the signature of calls via this
port, but contain further information useful for the application developers of the compo-
nents on both sides of the connection.

47 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Besides formally specified attributes it is also possible to place textual information as
provided in GeneralAnnotaion.

ARElement

«atpType»
ComponentType

Identifiable

«atpPrototype»
PortPrototype

GeneralAnnotation

SenderReceiverAnnotation

constraints
{"port's interface is a SenderReceiverInterface"}

GeneralAnnotation

IoHwAbstractionServerAnnotation

constraints
{"port's interface is a cl ient/server interface using the operations GET and SET"}

GeneralAnnotation

CalibrationPortAnnotation

constraints
{"The corresponding port interface must be a CalprmInterface."}

GeneralAnnotation

DelegatedPortAnnotation

constraints
{aggregating PortPrototype is a port of a CompositionType (DelegatedPort)}

+port 0..*

+component

+fai lureMonitoring

0..1

+delegatedPortAnnotation

0..1

+calibrationPortAnnotation

0..*

+ioHwAbstractionServerAnnotation

0..*

+senderReceiverAnnotation

0..*

Figure 3.7: Application Level Port Annotations Overview

3.5.2 SenderReceiverAnnotation

Embedded automotive software is used to implement open-loop and closed-loop
control-algorithms. Therefore, a software component description has to accommodate
typical control engineering description means which have only indirect influence of the
embedded software itself. Especially, from the embedded software point of view, these
annotations are not reflected by different configuration of the VFB.

However, these annotations give the (function-) developer a direct indication whether
a certain software-component is appropriate for the control-algorithm to be designed.
A typical annotation is the signal quality, which is characterized by several properties.
Each of the property is an annotation in its own.

Typical annotations for sender/receiver communication are:

• Signal Age: The attribute signal age expresses that the associated software-
component will only work correctly given that the propagation of the signal from
a sensor to a consumer can be finished within a particular time-limit. Of course,

48 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

this cannot be identified on component or role level, but has to take into account
the instance view as well as the actual ECU- and bus-scheduling.

• Raw: A raw signal is typically taken directly from the basic software modules
of the ECU abstraction layer. In particular, no sensor software-component has
filtered its original value. A DataElementPrototype in an RPortPrototype
of a ComponentType using this annotation indicates to the control engineer (who
develops a control-algorithm for this component) that the signal has to be filtered
(This relationship holds for SenderReceiverInterfaces).

• Filtered: The attribute filtered indicates that a raw signal has been manipu-
lated by some application software components by using a certain filter.

• Computed: This attribute shows that this signal is not measured directly, but cal-
culated from tentatively several other measured or calculated signals. In a vehi-
cle, there might be alternative signals to be used from other components having
a better quality, e.g. a raw signal.

• Min: This annotation indicates that the signal carries a minimum value. If, for
example, a reference value computed in the software-component is below that
value some dedicated actions (e.g. failure-mode) might have to be taken.

• Max: This annotation indicates that the signal carries a maximum value. If, for
example, a reference value computed in the software-component is above that
value some dedicated actions (e.g. failure-mode) might have to be taken.

In the meta-model this aspect is implemented by the abstract meta-class Sender-
ReceiverAnnotation which represents the base class of both SenderAnnota-
tion and ReceiverAnnotation. This relationship is depicted in Figure 3.8.

Class 〈〈atpObject〉〉 SenderReceiverAnnotation (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes
Class
Desc. Annotation of the data elements in a port that realizes a sender/receiver interface.

Base
Class(es) GeneralAnnotation

Attribute Datatype Mul. Link Type Description

computed Boolean 1 aggregation

Flag whether this data element was not
measured directly but instead was calculated
from possibly several other measured or
calculated values.

dataEle-
ment

DataEl-
ement
Prototype

1 reference The instance of data element annotated.

49 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

limitKind LimitKind 1 aggregation

This min or max has not to be mismatched
with the min- and max for data-value in a
compu-method. For example, this annotation
shows when the result of the calculation
performed in a RunnableEntity owned by one
AtomicSoftwareComponentType is transmitted
to another AtomicSoftwareComponentType
whose RunnableEntity will use this value as a
limit, e.g. the max.power which can be used
by that software-component, or the current
min. slip.

processing
Kind Processing

Kind 1 aggregation

Table 3.10: SenderReceiverAnnotation

Class 〈〈atpObject〉〉 SenderAnnotation
Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes
Class
Desc.

Annotation of a sender port, specifying properties of data elements that don’t affect
communication or generation of the RTE.

Base
Class(es) SenderReceiverAnnotation

Attribute Datatype Mul. Link Type Description

Table 3.11: SenderAnnotation

Class 〈〈atpObject〉〉 ReceiverAnnotation
Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes

Class
Desc.

Annotation of a receiver port, specifying properties of data elements that don’t affect
communication or generation of the RTE. The given attributes are requirements on
the required data.

Base
Class(es) SenderReceiverAnnotation

Attribute Datatype Mul. Link Type Description

signalAge Float 1 aggregation

The maximum allowed age of the signal since
it was originally read by a sensor. This is a
requirement specified on the receiver side.

Table 3.12: ReceiverAnnotation

The Min and Max annotations are valid for a certain amount of time. The value is likely
to change to another valid value while the ECU is running. E.g. the maximal torque
which can be requested from an engine is a typical use-case.

50 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Identifiable

«atpPrototype»
PortPrototype

GeneralAnnotation

SenderReceiverAnnotation

+ computed: Boolean
+ limitKind: LimitKind
+ processingKind: ProcessingKind

constraints
{"port's interface is a SenderReceiverInterface"}

DataPrototype

«atpPrototype»
DataElementPrototype

+ isQueued: Boolean

SenderAnnotation ReceiverAnnotation

+ signalAge: Float

«enumeration»
ProcessingKind

 none
 raw
 filtered

«enumeratio...
LimitKind

 none
 min
 max

+senderReceiverAnnotation 0..*

0..1

+dataElement

1

Figure 3.8: SenderReceiverAnnotation

This value might vary depending on e.g. the status of the climate control system.
Therefore, these annotations must not be mismatched with the min and max attributes
of CompuMethods.

The application level port annotations for sender/receiver communication have to be
associated to each DataElementPrototype in a PortPrototype, e.g. there might
be a ”raw” DataElementPrototype and a ”filtered” DataElementPrototype in
the same PortPrototype!

Furthermore, if two DataElementPrototypes use the same application-level Por-
tAnnotation, a reference from the annotation to the DataElementPrototypes will
be established by an appropriate tool.

As shown in Figure 3.8 the PortAnnotations for sender/receiver communication are
grouped into

• processing type, indicating to some extend the direct quality of the signal,

• computed, which is just a flag or,

• limit type, showing the component expects an actual limit.

In the case of an RPortPrototype, the signal age of the value, carried by the as-
sociated ConnectorPrototype, can be specified. Each of these groups can be
interpreted as a property of the signal-quality.

51 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

3.5.3 Annotation for the I/O Hardware Abstraction Layer

The attributes BswRangeMin, BswRangeMax, BswResolution and Unit of physical
signals are currently being described by attributes of meta-class IoHwAbstraction-
ServerAnnotation4.

DataPrototype

«atpPrototype»
PortInterface::

DataElementPrototype

+ isQueued: Boolean

Identifiable

«atpPrototype»
Components::PortPrototype

GeneralAnnotation

IoHwAbstractionServerAnnotation

- Age: Int
- BswRangeMax: Int
- BswRangeMin: Int
- BswResolution: Float
- FilteringDebouncing: Fi lterDebouncingEnum
- PulseTest: PulseTestEnum
- Unit: String

ReportFeature

WakeUp

DataPrototype

PortInterface::
ArgumentPrototype

+ direction: DirectionKind

«enumeration»
FilterDebouncingEnum

 rawData
 debounceData
 waitTimeDate

«enumeration»
PulseTestEnum

 disable
 enable

+argumentPrototype

0..1

+dataElementPrototype

0..1

+failureMonitoring 0..1

+ioHwAbstractionServerAnnotation 0..*

+supportsWakeUpRunnable

0..1

+supportsReportRunnable

0..1

Figure 3.9: IoHwAbstractionServerAnnotation

Class 〈〈atpObject〉〉 IoHwAbstractionServerAnnotation
Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes

Class
Desc.

The IoHwAbstractionPort Annotation will only be used from a sensor- or an actuator
component while interacting with the IoHwAbstraction layer

Base
Class(es) GeneralAnnotation

Attribute Datatype Mul. Link Type Description

Age Integer 1 aggregation

In case of a SET operation, the age will be
interpreted as Delay while in a GET operation
(input) it specifies the Lifetime of the signal
within the IoHwAbstraction Layer

BswRange
Max Integer 1 aggregation Specifies the maximum value of the Range

the ECU-Signal is supposed to have

BswRange
Min Integer 1 aggregation Specifies the maximum value of the Range

the ECU-Signal is supposed to have.

4In future versions of the document, this should be expressed more in alignment to the rest of the
Software Component Template by assigning SwDataDefProps to the PrimitiveType representing
the physical signal that is to be exchanged over the IoHardwareAbstraction interface.

52 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

BswReso-
lution Float 1 aggregation

This value is determined by an appropriate
combination of the range, the unit as well as
the data-elements type, i.e.
(BswRangeMax-BswRangeMin) /
(2ˆ datatypelength - 1)

Filtering
Debounc-
ing

FilterDe-
bouncing
Enum

1 aggregation

This attribute is used to indicate what kind of
filtering/debouncing has been put to the signal
in the IoHwAbstraction layer.

rawData means that no modification of the
signal has been applied.This is the default
value
debounceData means that the signal is a
mean value
waitTimeData means that the signal is
delivered by a GET operation after a certain
amount of time

PulseTest PulseTest
Enum 1 aggregation

This attribute indicates to the connected
SensorActuatorSoftwareComponentType
whether the DataElementPrototype can be
used to generate pulse test sequences using
the IoHwAbstraction layer

Unit String 1 aggregation

These are either electrical units like Volts (V)
or time units like milliseconds (ms). The unit is
set according to the ECU Input signal class
which is either analogue or modulation

argument
Prototype Argument

Prototype 0..1 reference

Reference to the corresponding
ArgumentPrototype. The
IoHwAbstractionServerAnnotation can be
applied either to sender-receiver or to
client-server communication. This association
only applies in the latter case

dataEl-
ement
Prototype

DataEl-
ement
Prototype

0..1 reference

Reference to the corresponding
DataElementPrototype. The
IoHwAbstractionServerAnnotation can be
applied either to sender-receiver or to
client-server communication. This association
only applies in the former case

failureMon-
itoring PortProto-

type 0..1 reference

This is only applicable in SET operations. If it
is enabled, the IoHwAbstraction layer will
monitor the result of the operation and issue
an diagnostic signal. This means especially,
that an additional client-server port has to be
created. Tools can use this information to
cross-check whether for each data-element in
a SET operation with FailureMonitoring
enabled an additional port is created

The referenced port monitors a failure in the to
be monitored data-element of the
IoHwAbstraction layer. The referenced port
has to be another port of the same Actuator or
Sensor Component.

53 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

supports
Report
Runnable

Report
Feature 0..1 aggregation

supports
WakeUp
Runnable WakeUp 0..1 aggregation

Table 3.13: IoHwAbstractionServerAnnotation

Enumeration FilterDebouncingEnum
Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes

Enum Desc.
This element indicates to the connected Actuator Software component whether
the data-element can be used to generate pulse test sequences using the
IoHwAbstraction layer

Literal Description

rawData
means that no modification of the
signal has been applied.This is the default
value

debounce
Data

The signal is a
mean value

waitTimeDate The signal is delivered by a GET operation after a certain amount of time

Enumeration PulseTestEnum
Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes
Enum Desc.
Literal Description
disable Disables the pulse test
enable Enables the pulse test

This way, the Range and Unit attributes will be expressed by ordinary Datatype se-
mantics as detailed in chapter 4.5.

Within the ECU-Abstraction Layer there are ECU-signals defined. These signals rep-
resent the electrical signals as they arrive in the microcontroller peripheral and are
fetched from the registers via the MCAL. Access to the I/O Hardware Abstraction Layer
is done via service interfaces, i.e. the I/O Hardware Abstraction Layer provides GET-
and SET-operations at the specified service ports of a SensorActuatorSoftware-
ComponentType.

The OperationPrototypes provide an ArgumentPrototype where several anno-
tations can be assigned to. They are depicted in the IoHwAbstractionServerAn-
notation meta-class in Figure 3.9.

A detailed description of the attributes can be found in the IoHwAbstraction Layer
software specification document [13]. For example, the signal age has a very ded-
icated meaning in this particular interface w.r.t. a register whereas the signal age in the
SenderReceiverAnnotation is more generic. Especially, there is no relationship
with the microcontroller peripherals.

54 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

3.5.4 Calibration Port Annotation

The CalibrationPortAnnotation can be used to provide more information with
respect to calibration parameter prototypes of the port. The data provided at the Port-
Prototype is calibration parameters. The CalibrationPortAnnotation provides
a reference to a particular CalprmElementPrototype.

Class 〈〈atpObject〉〉 CalibrationPortAnnotation
Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes
Class
Desc. Annotation to a port used for calibration regarding a certain CalprmElement.

Base
Class(es) GeneralAnnotation

Attribute Datatype Mul. Link Type Description
calprm
Element

Calprm
Element
Prototype

1 reference The instance of calprm element annotated.

Table 3.14: CalibrationPortAnnotation

The main use-case is to allow easy access to the information which calibration param-
eters influence the data on the PortPrototype.

GeneralAnnotation

CalibrationPortAnnotation

constraints
{"The corresponding port interface must be a CalprmInterface."}

DataPrototype

CalprmElementPrototype

Identifiable

«atpPrototype»
PortPrototype

+calibrationPortAnnotation 0..*

+calprmElement

1

Figure 3.10: CalibrationPortAnnotation

3.5.5 Delegated Port Annotations

The DelegatedPortAnnotation is used to define the Signal Fan In or Signal Fan
Out inside the CompositionType. This information is used to pre-define and pre-
check resulting communication patterns in the VFB (1:n, n:1, 1:1) if empty Composi-
tionTypes are used as interface definition for sub-systems. The DelegatedPor-
tAnnotation guides either the system designer in connecting the empty Composi-
tionType or the sub system designer in applying communication pattern (1:n, n:1,
1:1) inside of the CompositionType.

Class 〈〈atpObject〉〉 DelegatedPortAnnotation

55 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes
Class
Desc.

Annotation to a ”delegated port” to specify the Signal Fan In or Signal Fan Out inside
the Composition Type.

Base
Class(es) GeneralAnnotation

Attribute Datatype Mul. Link Type Description

signalFan SignalFan
Enum 1 aggregation

Specify the Signal Fan In or Signal Fan Out
inside the Composition Type

Table 3.15: DelegatedPortAnnotation

The attribute values have following definition:

• single: the internal connections in the CompositionType via Delegation-
ConnectorPrototypes and AssemblyConnectorPrototypes are defined
in a way that each DataElementPrototype present in the SenderReceiver-
Interfaces or OperationPrototype in the ClientServerInterfaces of
the outer PortPrototype is involved in a 1:1 communication pattern only.

• nfold: The internal connections in the CompositionType via Delegation-
ConnectorPrototypes and AssemblyConnectorPrototoypes are defined
in a way that at least one DataElementPrototype present in the Sender-
ReceiverInterfaces or one OperationPrototype in the ClientServer-
Interfaces of the outer PortPrototype is involved in a 1:n or n:1 communi-
cation pattern.

3.5.6 General Annotation

Besides formally specified attributes it is also possible to place textual information as
provided in the abstract GeneralAnnotation (see Figure 3.11 for an overview).

56 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Annotation::
GeneralAnnotation

+ annotationOrigin: String

«atpMixed»
Annotation::

Remark

MlDataModel1

MultilanguageData::MlData1

+ helpEntry: String [0..1]
+ keepWithPrevious: KeepWithPreviousEnum [0..1]

+p 1

+annotationText 1

Figure 3.11: textual information in annotations

Class 〈〈atpObject〉〉 GeneralAnnotation (abstract)
Package M2::AUTOSARTemplates::GenericStructure::CommonPatterns::Annotation

Class
Desc.

This class represents textual comments (called annotations) which relate to the object
in which it is aggregated. These are intended for use during the development process,
to transfer information from one stage of the development process to the next one.

The approach is similar to the ”yellow pads ...”

This abstract class can be specialized in order to add some further formal properties.

Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description

annotation
Origin String 1 aggregation

This element identifies the origin of the
annotation. It is an arbitrary string since it can
be an individual’s name as well as the name
of a tool or even the name of a process step.

annotation
Text Remark 1 aggregation This is the text of the annotation.

label MlData4 1 aggregation
label is used as a long designator (similar to
longName) for objects which cannot be
referenced.

Table 3.16: GeneralAnnotation

Class 〈〈atpMixed〉〉 Remark
Package M2::AUTOSARTemplates::GenericStructure::CommonPatterns::Annotation

Class
Desc.

<remark> is used for comments e.g. on the specific calibration state. The remark
can be a regular paragraph or a preformatted text.

57 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description
p MlData1 1 aggregation Use <p> to create a paragraph for continuous

texts.

verbatim MlData5 1 aggregation

<verbatim> is a paragraph in which
white-space (in particular blanks and line
feeds) is obeyed. This enables basic
preformatting to be carried out, which can
even be displayed on simple devices.
Behavior is the same as PRE in HTML .

Table 3.17: Remark

3.6 Communication of Runnables

In this section we describe the communication properties of an AtomicSoftware-
ComponentType from the point of view of a RunnableEntity (the concept of a
RunnableEntity is introduced in chapter 5.2).

3.6.1 Communication Attributes

The highest level of description of information exchanged between components in an
AUTOSAR system is the PortInterfaces, as shown in earlier sections. Such an
interface however, only describes structure and does not include information about
whether communication needs to be done reliably, or whether an init value exists in
case the real data is not yet available.

This kind of information is known only within the particular scenario the interface is
used and also frequently differs depending on whether an interface is required or pro-
vided. Therefore, most communication relevant attributes are related to the ports of a
component. The communication attributes are organized in a so-called communication
specification (in terms of the meta-model: ComSpec) classes.

The model distinguishes three basic classes depending on the role (R-, P-Port or con-
nector) as detailed below. Certain communication specifications are indirectly part of
a composition: within a composition, multiple components are put to use (in form of
component prototypes) and connected through assembly connectors.

Only in this particular context the assignment of the rather instance-specific commu-
nication attributes is relevant. Therefore, these ComSpec classes are attached to the
assembly connectors.

Other ComSpec classes which are rather required on component type level are at-
tached to the PortPrototype declarations, which in turn are part of the definition of
a ComponentType. Nevertheless the usage of ComSpecs is not restricted to the ports
of AtomicSoftwareComponentType.

58 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

ComSpecs attached to a PortPrototype owned by an AtomicSwComponentType
have a direct impact on the generation of the RTE. The RTE Generator, on the other
hand, does not consider the existence of CompositionTypes.

Nevertheless, there are some cases where the definition of a ComSpec attached to a
PortPrototype owned by a CompositionSwComponentType does make sense.

That is, in case an OEM wants to submit the definition of a CompositionType to a
supplier for adding more details and implementing the behavior the OEM might want
to point out that from the OEM’s point of view initValues apply for the elements of
PortInterfaces used to type the delegation PortPrototypes.

The idea is that the supplier takes over the initValues attached to the delegation
PortPrototypes and copies them to the PortPrototypes owned by Component-
Prototypes of the CompositionType.

The RTE Generator would still only take the initial values of the PortPrototypes of
AtomicSoftwareComponentTypes and ignore the initValues at the delegation
PortPrototypes.

Therefore, the initValues of the delegation PortPrototype would be taken as
mere templates for the detailing of PortPrototypes connected to the delegation
PortPrototypes.

It is not required that the initValues of delegated PortPrototype and a Port-
Prototype connected by means of a DelegationSwConnector match.

Although this would certainly make sense in many cases it is eventually still left to the
supplier to decide on the specific initValues applicable inside the Composition-
SwComponentType.

On the other hand, a requirement that the initValues defined on the surface of
CompositionType and the inside of the CompositionType must be consistent in
any case might effectively prevent the reuse of existing AtomicSwComponentTypes.

Sections 3.6.2 and 3.6.3 then explain the sender-receiver and client-server communi-
cation patterns with respect to the RTE, the RTE events and the corresponding com-
munication attributes.

59 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

3.6.1.1 Communication Specification of an R-Port

RPortComSpec

ReceiverComSpec ClientComSpec

UnqueuedReceiverComSpec

+ al iveTimeout: Float
+ handleInval id: HandleInvalidType
+ resyncTime: Float

QueuedReceiverComSpec

+ queueLength: Int

DataPrototype

ValueSpecification

DataPrototype

«atpPrototype»
DataElementPrototype

+ isQueued: Boolean

DataFilter

Identifiable

«atpStructureElement»
OperationPrototype

PortPrototype

«atpPrototype»
RPortPrototype

«enumeration»
HandleInvalidType

 keep
 replace
 dontInval idate

InitValueAssignment

ParameterRequireComSpec

+requiredComSpec 0..*

1

+dataElement 1

+initValue

1

+fil ter

0..1

1

+operation 1

Figure 3.12: Communication attributes of RPortPrototype.

Figure 3.12 shows the model of the communication attributes relevant for an R-Port.

The ComSpec attributes are collected depending on the kind of data transmitted, which
means they may differ depending on whether data elements are exchanged (sender-
receiver), operations are called (client-server), or even depending on whether the data-
elements represent queued or non-queued data.

This is expressed in the inheritance tree of ComSpec classes. Each of these classes
may then carry the specific attributes. An RPortPrototype may aggregate many
ComSpec, possibly one for each interface element (data element or operation) the
associated interface contains.

Granted, the definition of a ComSpec for CalprmElementPrototypes looks strange
on first sight. A CalprmElementPrototype owned by a PPortPrototype typed
by a CalprmInterface is not actually transmitted over any communication medium.
Therefore, the term communication should in this case be taken with a grain of salt.

However, it is generally necessary to be able to define role-specific initial values for
CalprmElementPrototypes aggregated in a CalprmInterface. In other words,
the actual problem closely resembles the definition of initial values in the case of
sender-receiver communication.

60 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Therefore, it is only reasonable to apply the existing and well-known pattern to the
definition of initial values for CalprmElementPrototypes aggregated in a Cal-
prmInterface. The actual modeling is sketched in Figure 3.16 for provided Parame-
terDataPrototypes and in Figure 3.13 for required ParameterDataPrototypes.

Please note that the abstract meta-class InitValueAssignment has been intro-
duced to allow for the application of the same initialization mechanism to CalprmEle-
mentPrototypes owned by InternalBehavior.

Class 〈〈atpObject〉〉 InitValueAssignment (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::
ComponentLocalCalprm

Class
Desc.

This represents the ablity to assign an initial value to a calibration parameter.

Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description

initValue Value
Specifica-
tion

1 reference This is the init value.

parameter Calprm
Element
Prototype

1 reference This is the parameter for which the initial value
applies.

Table 3.18: InitValueAssignment

ComponentLocalCalprm::
InitValueAssignment

DataPrototype

Constants::
ValueSpecification

RPortComSpec

PortPrototype

«atpPrototype»
Components::RPortPrototype

ParameterRequireComSpec

+requiredComSpec 0..*

+initValue 1

Figure 3.13: Communication attributes for calibration parameters.

The meaning of the attributes shown above is explained in the following class tables.
Classes that have no attributes are not listed here.

Class 〈〈atpObject〉〉 ReceiverComSpec (abstract)

61 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Class
Desc. Receiver specific communication attributes (R-Port and sender-receiver interface).

Base
Class(es) RPortComSpec

Attribute Datatype Mul. Link Type Description
dataEle-
ment

DataEl-
ement
Prototype

1 reference Data element these attributes belong to.

filter DataFilter 0..1 aggregation

Table 3.19: ReceiverComSpec

Enumeration HandleInvalidType
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Enum Desc. Strategies of handling the reception of invalidValue.
Literal Description

keep
Keep a received invalidValue. This allows handling of Signal Invalidation on RTE
API level either by DataReceiveErrorEvent or return of an error code on on read
access.

replace Replace a received invalidValue. The replacement value is specified by the
initValue.

dontInvalidate Invalidation is switched off.

Class 〈〈atpObject〉〉 UnqueuedReceiverComSpec
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Class
Desc. Communication attributes specific to unqueued receiving.

Base
Class(es) ReceiverComSpec

Attribute Datatype Mul. Link Type Description

aliveTime-
out Float 1 aggregation

Specify the amount of time (in seconds) after
which the software component (via the RTE)
needs to be notified if the corresponding data
item have not been received according to the
specified timing description.

handle
Invalid Handle

InvalidType 1 aggregation Specifies strategy of handling the reception of
invalidValue.

initValue Value
Specifica-
tion

1 reference

Initial value to be used in case the sending
component is not yet initialized. If the sender
also specifies an init value the receiver’s value
will be used.

resync
Time Float 1 aggregation

Time allowed for resynchronization of data
values after current data is lost, e.g. after an
ECU reset.

Table 3.20: UnqueuedReceiverComSpec

Class 〈〈atpObject〉〉 QueuedReceiverComSpec

62 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Class
Desc. Communication attributes specific to queued receiving.

Base
Class(es) ReceiverComSpec

Attribute Datatype Mul. Link Type Description
queue
Length Integer 1 aggregation Length of queue for received events.

Table 3.21: QueuedReceiverComSpec

Class 〈〈atpObject〉〉 ClientComSpec
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Class
Desc. Client specific communication attributes (R-Port and client-server interface).

Base
Class(es) RPortComSpec

Attribute Datatype Mul. Link Type Description
operation Operation

Prototype 1 reference Operation these attributes belong to.

Table 3.22: ClientComSpec

63 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

3.6.1.2 Communication Specification of Data Filters

DataFilter

Always

Never

MaskedNewEqualsX

+ mask: Int
+ x: Int

NewIsEqual

MaskedNewEqualsMaskedOld

+ mask: Int

NewIsWithin

+ max: Int
+ min: Int

NewIsGreater

OneEveryN

+ offset: Int
+ period: Int

MaskedNewDiffersX

+ mask: Int
+ x: Int

NewIsDifferent

MaskedNewDiffersMaskedOld

+ mask: Int

NewIsOutside

+ max: Int
+ min: Int

NewIsLessOrEqual

NewIsLess

NewIsGreaterOrEqual

Figure 3.14: DataFilter and its communication attributes.

Figure 3.14 shows the model of the communication attributes relevant for defining data
filters. For every r-port with sender-receiver semantics a data filter can be defined.
Depending on the chosen filter, the filter specific attributes have to be defined.

The fifteen filter algorithms that are listed in the meta-model are taken from OSEK COM
3.0.2 specification that is referenced by the RTE specification. This OSEK specification
states that ”filtering is only used for messages that can be interpreted as C language

64 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

unsigned integer types (characters, unsigned integers and enumerations).” Therefore,
filters can only be applied to values with integer datatype.

Class 〈〈atpObject〉〉 DataFilter (abstract)
Package M2::AUTOSARTemplates::CommonStructure::Filter
Class
Desc. Base class for data filters.

Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description

Table 3.23: DataFilter

Class 〈〈atpObject〉〉 Always
Package M2::AUTOSARTemplates::CommonStructure::Filter
Class
Desc. No filtering is performed so that the message always passes.

Base
Class(es) DataFilter

Attribute Datatype Mul. Link Type Description

Table 3.24: Always

Class 〈〈atpObject〉〉 Never
Package M2::AUTOSARTemplates::CommonStructure::Filter
Class
Desc. The filter removes all messages.

Base
Class(es) DataFilter

Attribute Datatype Mul. Link Type Description

Table 3.25: Never

Class 〈〈atpObject〉〉 MaskedNewEqualsX
Package M2::AUTOSARTemplates::CommonStructure::Filter

Class
Desc.

Pass messages whose masked value is equal to a specific value x

(new value&mask) == x
new value: current value of the message

Base
Class(es) DataFilter

Attribute Datatype Mul. Link Type Description
mask Integer 1 aggregation mask for the new Value

x Integer 1 aggregation Value to compare with

Table 3.26: MaskedNewEqualsX

65 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Class 〈〈atpObject〉〉 MaskedNewDiffersX
Package M2::AUTOSARTemplates::CommonStructure::Filter

Class
Desc.

Pass messages whose masked value is not equal to a specific value x

(new value&mask) != x
new value: current value of the message

Base
Class(es) DataFilter

Attribute Datatype Mul. Link Type Description
mask Integer 1 aggregation mask for the new Value

x Integer 1 aggregation Value to compare with

Table 3.27: MaskedNewDiffersX

Class 〈〈atpObject〉〉 NewIsEqual
Package M2::AUTOSARTemplates::CommonStructure::Filter

Class
Desc.

Pass messages which have not changed.

newValue == oldValue
new value: current value of the message
old value: last value of the message (initialised with the initial value of the message,
updated with new value if the new message value is not filtered out)

Base
Class(es) DataFilter

Attribute Datatype Mul. Link Type Description

Table 3.28: NewIsEqual

Class 〈〈atpObject〉〉 NewIsDifferent
Package M2::AUTOSARTemplates::CommonStructure::Filter

Class
Desc.

Pass messages which have changed.

newValue != oldValue
new value: current value of the message
old value: last value of the message (initialised with the initial value of the message,
updated with new value if the new message value is not filtered out)

Base
Class(es) DataFilter

Attribute Datatype Mul. Link Type Description

Table 3.29: NewIsDifferent

Class 〈〈atpObject〉〉 MaskedNewEqualsMaskedOld
Package M2::AUTOSARTemplates::CommonStructure::Filter

66 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Class
Desc.

Pass messages where the masked value has not changed.

(new value&mask) ==(old value&mask)
new value: current value of the message
old value: last value of the message (initialised with the initial value of the message,
updated with new value if the new message value is not filtered out)

Base
Class(es) DataFilter

Attribute Datatype Mul. Link Type Description
mask Integer 1 aggregation mask for old and new value

Table 3.30: MaskedNewEqualsMaskedOld

Class 〈〈atpObject〉〉 MaskedNewDiffersMaskedOld
Package M2::AUTOSARTemplates::CommonStructure::Filter

Class
Desc.

Pass messages where the masked value has changed.

(new value&mask) !=(old value&mask)
new value: current value of the message
old value: last value of the message (initialised with the initial value of the message,
updated with new value if the new message value is not filtered out)

Base
Class(es) DataFilter

Attribute Datatype Mul. Link Type Description
mask Integer 1 aggregation mask for old and new value

Table 3.31: MaskedNewDiffersMaskedOld

Class 〈〈atpObject〉〉 NewIsWithin
Package M2::AUTOSARTemplates::CommonStructure::Filter

Class
Desc.

Pass a message if its value is within a predefined boundary.

min <= new value <= max
Base
Class(es) DataFilter

Attribute Datatype Mul. Link Type Description
max Integer 1 aggregation Value to specify the upper boundary

min Integer 1 aggregation Value to specify the lower boundary

Table 3.32: NewIsWithin

Class 〈〈atpObject〉〉 NewIsOutside
Package M2::AUTOSARTemplates::CommonStructure::Filter

67 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Class
Desc.

Pass a message if its value is outside a predefined boundary.

(min > new value) OR (new value > max)
Base
Class(es) DataFilter

Attribute Datatype Mul. Link Type Description
max Integer 1 aggregation Value to specify the upper boundary

min Integer 1 aggregation Value to specify the lower boundary

Table 3.33: NewIsOutside

Class 〈〈atpObject〉〉 NewIsGreater
Package M2::AUTOSARTemplates::CommonStructure::Filter

Class
Desc.

Pass a message if its value has increased.

new value > old value
new value: current value of the message
old value: last value of the message (initialised with the initial value of the message,
updated with new value if the new message value is not filtered out)

Base
Class(es) DataFilter

Attribute Datatype Mul. Link Type Description

Table 3.34: NewIsGreater

Class 〈〈atpObject〉〉 NewIsLessOrEqual
Package M2::AUTOSARTemplates::CommonStructure::Filter

Class
Desc.

Pass a message if its value has not increased.

new value <= old value
new value: current value of the message
old value: last value of the message (initialised with the initial value of the message,
updated with new value if the new message value is not filtered out)

Base
Class(es) DataFilter

Attribute Datatype Mul. Link Type Description

Table 3.35: NewIsLessOrEqual

Class 〈〈atpObject〉〉 NewIsLess
Package M2::AUTOSARTemplates::CommonStructure::Filter

68 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Class
Desc.

Pass a message if its value has decreased.

new value < old value
new value: current value of the message
old value: last value of the message (initialised with the initial value of the message,
updated with new value if the new message value is not filtered out)

Base
Class(es) DataFilter

Attribute Datatype Mul. Link Type Description

Table 3.36: NewIsLess

Class 〈〈atpObject〉〉 NewIsGreaterOrEqual
Package M2::AUTOSARTemplates::CommonStructure::Filter

Class
Desc.

Pass a message if its value has not decreased.

new value >= old value
new value: current value of the message
old value: last value of the message (initialised with the initial value of the message,
updated with new value if the new message value is not filtered out)

Base
Class(es) DataFilter

Attribute Datatype Mul. Link Type Description

Table 3.37: NewIsGreaterOrEqual

Class 〈〈atpObject〉〉 OneEveryN
Package M2::AUTOSARTemplates::CommonStructure::Filter

Class
Desc.

Pass a message once every N message occurrences.
Algorithm: occurrence % period == offset
Start: occurrence = 0.
Each time the message is received or transmitted, occurrence is incremented by 1
after filtering.
Length of occurrence is 8 bit (minimum).

Base
Class(es) DataFilter

Attribute Datatype Mul. Link Type Description
offset Integer 1 aggregation specifies the initial number of messages to

occur before the first message is passed

period Integer 1 aggregation
specifies number of messages to occur before
the message is passed again

Table 3.38: OneEveryN

69 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

3.6.1.3 Communication Specification of a P-Port

In analogy to the previous section, Figure 3.15 shows the attribute classes relevant for
a P-Port.

PPortComSpec

SenderComSpec ServerComSpec

+ queueLength: Int

QueuedSenderComSpec

Identifiable

«atpStructureElem...
OperationPrototype

TransmissionAcknowledgementRequest

+ timeout: Float

DataPrototype

ValueSpecification

DataPrototype

«atpPrototype»
DataElementPrototype

+ isQueued: Boolean

PortPrototype

«atpPrototype»
PPortPrototype

ModeSwitchComSpec

+ queueLength: Int

UnqueuedSenderComSpec

+ canInvalidate: Boolean

Identifiable

«atpPrototype»
ModeDeclarationGroupPrototype

ModeSwitchedAckRequest

+ timeout: Float

InitValueAssignment

ParameterProvideComSpec

1

+modeGroup 1

+modeSwitchedAck 0..1

1

+operation 1

+providedComSpec 0..*

1

+dataElement 1

+initValue 1

+transmissionAcknowledge0..1

Figure 3.15: Communication attributes of PPortPrototype.

The same concept is applied here: a tree of ComSpec classes allows specification of
such attributes on the different abstraction layers. Here are the new classes.

Class 〈〈atpObject〉〉 SenderComSpec (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Class
Desc. Communication attributes for a sender port (P-Port and sender-receiver interface).

Base
Class(es) PPortComSpec

Attribute Datatype Mul. Link Type Description
dataEle-
ment

DataEl-
ement
Prototype

1 reference Data element these quality of service
attributes apply to.

transmission
Acknowl-
edge

Transmission
Acknowl-
edgement
Request

0..1 aggregation Requested transmission acknowledgement for
data element.

Table 3.39: SenderComSpec

70 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Class 〈〈atpObject〉〉 TransmissionAcknowledgementRequest
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Class
Desc.

Requests transmission acknowledgement that data has been sent successfully.
Success/failure is reported via a SendPoint of a Runnable.

Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description

timeout Float 1 aggregation

Number of seconds before an error is
reported or in case of allowed redundancy, the
value is sent again.

Table 3.40: TransmissionAcknowledgementRequest

Class 〈〈atpObject〉〉 UnqueuedSenderComSpec
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Class
Desc.

Communication attributes specific to distribution of data (P-Port, sender-receiver
interface and data element carries ”data” opposed to carrying an ”event”).

Base
Class(es) SenderComSpec

Attribute Datatype Mul. Link Type Description
canInvali-
date Boolean 1 aggregation Flag whether the component can actively

invalidate data.

initValue Value
Specifica-
tion

1 reference
Init value to be sent if sender component is
not yet fully initialized, but receiver needs data
already.

Table 3.41: UnqueuedSenderComSpec

Class 〈〈atpObject〉〉 QueuedSenderComSpec
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Class
Desc.

Communication attributes specific to distribution of events (P-Port, sender-receiver
interface and data element carries an ”event”).

Base
Class(es) SenderComSpec

Attribute Datatype Mul. Link Type Description

Table 3.42: QueuedSenderComSpec

Class 〈〈atpObject〉〉 ServerComSpec
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Class
Desc. Communication attributes for a server port (P-Port and client-server interface).

Base
Class(es) PPortComSpec

Attribute Datatype Mul. Link Type Description
operation Operation

Prototype 1 reference Operation these communication attributes
apply to.

71 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

queue
Length Integer 1 aggregation

Length of call queue on the server side. The
queue is implemented by the RTE.

Table 3.43: ServerComSpec

Class 〈〈atpObject〉〉 ModeSwitchComSpec
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Class
Desc.

Communication attributes for both sender /server port (P-Port and sender-receiver
interface).

Base
Class(es) PPortComSpec

Attribute Datatype Mul. Link Type Description

mode
Group

ModeDec-
laration
Group
Prototype

1 reference
Mode Declaration Group (of the same Port
Interface) to which these communication
attributes apply.

mode
Switched
Ack

Mode
Switched
AckRe-
quest

0..1 aggregation

queue
Length Integer 1 aggregation

Length of call queue on the server side. The
queue is implemented by the RTE. The value
must be greater or equal to 0. Setting the
value of queueLength to 0 implies non-queued
communication.

Table 3.44: ModeSwitchComSpec

Class 〈〈atpObject〉〉 ModeSwitchedAckRequest
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Class
Desc. Requests acknowledgements that a mode switch has been proceeded successfully

Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description

timeout Float 1 aggregation

Number of seconds before an error is
reported or in case of allowed redundancy, the
value is sent again.

Table 3.45: ModeSwitchedAckRequest

72 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

PPortComSpec

PortPrototype

«atpPrototype»
PPortPrototype

ParameterProvideComSpec

InitValueAssignment

DataPrototype

ValueSpecification

+initValue 1

+providedComSpec 0..*

Figure 3.16: Communication attributes for calibration parameters.

3.6.2 Runnables and Sender Receiver Communication

This section describes the sender-receiver communication relevant attributes of a
software-component, which influence the behavior and API of the AUTOSAR RTE.
Furthermore, the possible interaction patterns for application of the sender-receiver
paradigm are explained, namely:

1. Data-access in a cat. 1 RunnableEntity,

2. explicit sending,

3. the DataSendCompletedEvent: dealing with the success/failure of an explicit
send, and

4. the DataReceivedEvent: responding to the reception of data

5. the DataReceiveErrorEvent: notifying an error concerning the reception of
data.

3.6.2.1 Terminology

The AUTOSAR meta-model foresees two different approaches for sender-receiver
communication. These are described in detail in chapters 3.6.2.2 and 3.6.2.3. How-
ever, it turned out that it is rather cumbersome to discuss issues of communication
approaches directly on the basis of meta-classes and their attributes.

73 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Therefore, it seems appropriate to introduce a dedicated terminology for this purpose.
The approach eventually selected was originally introduced by the contributors to the
RTE specification.

This terminology proposes to use the term ”implicit” for communication based on Data-
Access (for more information about details of this approach please consult chap-
ter 3.6.2.2) and ”explicit” for communication based on Data-Points (please refer to
chapter 3.6.2.3).

The motivation for the differentiation between ”implicit” and ”explicit” was originally the
characteristics of the RTE specification that foresaw an API for handling a DataSend-
Point or DataReceivePoint in contrast to the Data-Access that was supposed
to be part of the function signature (therefore, no API was required) of a specific
RunnableEntity.

Although the specification of the RTE changed in the meantime (and the original mo-
tivation no longer applies) it turned out that the terminology based on ”implicit” and
”explicit” communication” was already widely used within AUTOSAR.

As no consensus could be reached over alternative proposals this terminology ap-
proach is taken over by this document as well.

3.6.2.2 Data Access

The InternalBehavior may specify that a RunnableEntity needs read-access
(respectively write-access) to the DataElementPrototypes of an RPortProto-
type (respectively PPortPrototype). The usage of this access mechanism to the
DataElementPrototypes is appropriate for cat. 1 RunnableEntities only, which
guarantees finite response time (opposed to waiting for data for instance).

74 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

ExecutableEntity

RunnableEntity

SwComponentType

AtomicSwComponentType

InternalBehavior

SwcInternalBehav ior

AutosarDataPrototype

VariableDataPrototype

Identifiable

VariableAccess

AutosarVariableRef

DataInterface

SenderReceiv erInterface

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

+localVariable 0..1

+accessedVariable 1

«atpVariation,atpSplitable»

+internalBehavior 0..1
+dataElement 1..*

+interface 1

«atpVariation»

+dataReceivePointByValue

0..*

«atpVariation»

+dataReceivePointByArgument

0..*

«atpVariation»

+dataWriteAccess

0..*

«atpVariation»

+dataReadAccess

0..*

«atpVariation»

+dataSendPoint

0..*

+runnable 1..*

«atpVariation»

Figure 3.17: DataReadAccess and DataWriteAccess

Please note that from the formal point of view read-access is implemented by means
of the meta-class DataReadAccess while the write-access is defined by means of the
corresponding meta-class DataWriteAccess. This aspect is depicted in Figure 3.17.

Class 〈〈atpObject〉〉 DataReadAccess

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Data
Elements

Class
Desc.

The presence of a DataReadAccess implies that a RunnableEntity needs access to a
DataElementPrototype in an RPortPrototype. The RunnableEntity will not modify the
contents of the data but only read the information.
The RunnableEntity expects that the contents of this data does NOT change during
the entire duration of its execution.

Base
Class(es) Identifiable

75 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Attribute Datatype Mul. Link Type Description
dataEle-
ment

DataEl-
ement
Prototype

1 instanceRef The data element that is going to be read by
this runnable.

Table 3.46: DataReadAccess

Class 〈〈atpObject〉〉 DataWriteAccess

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Data
Elements

Class
Desc.

The presence of a DataWriteAccess means that the RunnableEntity will potentially
modify the DataElementPrototype in the PPortPrototype. The RunnableEntity has
free access to the DataElementPrototype while it is running. The RunnableEntity has
the responsibility to make sure that the DataElementPrototype is in a consistent state
when it returns. When using DataWriteAccess the new values of the
DataElementPrototype is not made available via the communication infrastructure
before the RunnableEntity returns (exits the ”Running” state).

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description
dataEle-
ment

DataEl-
ement
Prototype

1 instanceRef The data element that is going to be written to
by this runnable.

Table 3.47: DataWriteAccess

3.6.2.3 Explicit Sending and Receiving

A RunnableEntity can also have DataSendPoints. Using an instanceRef as-
sociation, these eventually reference a DataElementPrototype in the context of
a PPortPrototype, owned by the AtomicSoftwareComponentType associated
with the RunnableEntity.

More precisely, as the RunnableEntity is owned by an InternalBehavior ref-
erencing an AtomicSoftwareComponentType, the PPortPrototype in the in-
stanceRef.context needs to be owned by this specific AtomicSoftwareCompo-
nentType, and the DataElementPrototype in the instanceRef.target needs
to be owned by the SenderReceiverInterface being implemented by the PPort-
Prototype.

As opposed to the DataWriteAccess:

• Using the DataSendPoint, the RunnableEntity needs to explicitly ”send”
through an API; when using a DataWriteAccess, the RunnableEntity only
needs to modify the value of certain variables.

• Using DataSendPoint, the Runnable can decide to ”send” an arbitrary number
of times; when using DataWriteAccess the new values of the DataElement-

76 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Prototype is not made available before the RunnableEntity returns (exits
the ”Running” state).

• The presence of a DataSendPoint per definition lets the corresponding
RunnableEntity attain cat. 1B.

ComponentType

AtomicSoftwareComponentType

ARElement

InternalBehavior

+ supportsMultipleInstantiation: Boolean

ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean
+ minimumStartInterval: Float
+ symbol: String

Identifiable

DataSendPoint

DataPrototype

«atpPrototype»
DataElementPrototype

+ isQueued: Boolean

RTEEvent

DataSendCompletedEvent

+runnable 1..*

+behavior

+dataSendPoint *

+runnable

+event

0..1

+eventSource

1

0..*

«instanceRef»

+dataElement 1

*

+component 1

Figure 3.18: DataSendPoint

Class 〈〈atpObject〉〉 DataSendPoint

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Data
Elements

Class
Desc.

A DataSendPoint specifies that a RunnableEntity explicitly sends a certain
DataElementPrototype.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description
dataEle-
ment

DataEl-
ement
Prototype

1 instanceRef The data element that is sent by this runnable.

Table 3.48: DataSendPoint

In analogy to explicitly sending data it is also possible to define explicit polling for new
available data through a DataReceivePoint as shown in Figure 3.19.

77 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Identifiable

DataReceivePoint

ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean
+ minimumStartInterval: Float
+ symbol: String

DataPrototype

«atpPrototype»
DataElementPrototype

+ isQueued: Boolean

«instanceRef»

+dataElement 1

+dataReceivePoint *

+runnable

Figure 3.19: Definition of an explicit request to receive data

By using a DataReceivePoint instead of DataReadAccess the constraining ac-
cess to the referenced data element - other RunnableEntities must not change
the DataElementPrototype during the read execution - is limited to a short, well-
defined amount of time.

Therefore, category 1 RunnableEntities may also have DataReceivePoints
and consequently become RunnableEntities of category 1B.

Class 〈〈atpObject〉〉 DataReceivePoint

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Data
Elements

Class
Desc.

A DataReceivePoint allows a RunnableEntity to explicitly query for received
information, thereby blocking write access to the same information only for a very
brief period.

Base
Class(es) Identifiable

78 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Attribute Datatype Mul. Link Type Description
dataEle-
ment

DataEl-
ement
Prototype

1 instanceRef The data element to be explicitly read.

Table 3.49: DataReceivePoint

Please note that it would in general be possible to combine a DataReceivePoint
with a WaitPoint in the scope of a particular RunnableEntity. This would allow for
a call to a blocking receive routine implemented by the RTE. The timeout attribute of
meta-class WaitPoint can be used to specify the time until the blocking call expires.

Please note however, that in this case (in response to the presence of a WaitPoint)
the RunnableEntity becomes category 2.

3.6.2.4 DataSendCompletedEvent

The DataSendPoint also allows for the definition of a DataSendCompletedEvent,
as shown in Figure 3.18. This event occurs when the data has been sent successfully
or when an error has occurred during sending.

This feature can only be used, when the AtomicSoftwareComponentType de-
scribes the meaning of success or failure of the send operation.

In particular, via a ComSpec class different acknowledgment requests (in this case:
successful transmission) can be attached to a PPortPrototype, as is shown in the
left part of Figure 3.15.

This will configure the RTE that when data is sent, it will try to obtain the specified
acknowledgment, possibly by waiting a certain timeout period.

Class 〈〈atpObject〉〉 DataSendCompletedEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE
Events

Class
Desc.

The event is raised when the referenced data elements have been sent or an error
occurs.

Base
Class(es) RTEEvent

Attribute Datatype Mul. Link Type Description
event
Source DataSend

Point 1 reference Data send point that triggers the event.

Table 3.50: DataSendCompletedEvent

79 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

3.6.2.5 DataReceivedEvent

Similarly, a receiver is notified through the same event mechanism when a DataEle-
mentPrototype is received. As shown in Figure 3.20, the DataReceivedEvent is
directly associated with the corresponding data element.

DataReceivedEv ent

Identifiable

RTEEvent

ExecutableEntity

RunnableEntity

AutosarDataPrototype

VariableDataPrototype

DataInterface

SenderReceiverInterface

ARElement
AtpType

PortInterface

PPortPrototype

AtpPrototype

PortPrototype

ARElement
AtpType

SwComponentType

AtomicSwComponentType

InternalBehavior

SwcInternalBehav ior

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

«atpVariation,atpSplitable»

+internalBehavior 0..1

+port

0..*«atpVariation»

+component

+pPort *

«isOfType»

+providedInterface
1
{redefines atpType}

+dataElement 1..*

+interface 1

+runnable 1..*

«atpVariation»

+event *

«atpVariation»

+startOnEvent

0..1

+event
«instanceRef»

+data

Figure 3.20: Receiver is notified by an event when new data has arrived

Class 〈〈atpObject〉〉 DataReceivedEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE
Events

Class
Desc. The event is raised when the referenced data elements are received.

Base
Class(es) RTEEvent

Attribute Datatype Mul. Link Type Description

data DataEl-
ement
Prototype

1 instanceRef Data element referenced by event

Table 3.51: DataReceivedEvent

80 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

3.6.2.6 DataReceiveErrorEvent

A receiver is notified of DataReceiveErrorEvent through the activation of its
RunnableEntity which is referenced by this RTEEvent. A DataReceiveEr-
rorEvent includes a reference to a DataElementPrototype and is raised by the
RTE when an error concerning the reception of the referenced data is detected by the
COM 5 layer. The following cases present some situations which will cause the RTE to
raise a DataReceiveErrorEvent:

• the RTE receives a signal-outdated notification from the COM layer when a mon-
itored periodic signal is not received in time. The COM layer monitors the validity
of the signal’s value based on the value of the aliveTimeout attribute of Re-
ceiverComSpec referencing the DataElementPrototype associated with the
signal. If the time elapsed since the last update of a signal’s value exceeds its
aliveTimeout then the COM layer notifies the RTE of a signal outdated error.

• The RTE receives a signal invalid notification from the COM layer when this latter
detects that an incoming signal has the predefined ’invalid’ value.

This RTEEvent is used by the RTE to activate RunnableEntities which handle
the above-mentioned errors. The error code will be made available to the activated
RunnableEntity through the appropriate RTE API function.

This RTEEvent cannot be associated with a WaitPoint. It can only be used for the
receiver component in a sender-receiver communication and in release 2.0 (and newer)
its data reference is restricted to DataElementPrototypes with their isQueued
attribute set to false.

5In case of internal communication the RTE is not enforced to use the COM layer. It is also possible
to implement the required behavior directly in the RTE [1].

81 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

DataReceiv eErrorEv ent

Identifiable

RTEEvent

ExecutableEntity

RunnableEntity

AutosarDataPrototype

VariableDataPrototype

DataInterface

SenderReceiv erInterface

InternalBehavior

SwcInternalBehav ior

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

+runnable 1..*

«atpVariation»

+startOnEvent

0..1

+event

*

«atpVariation»

+dataElement 1..*

+interface 1

+event
«instanceRef»

+data

Figure 3.21: DataReceiveErrorEvent references a Runnable and a DataElementPrototype

As shown in Figure 3.21, the DataReceiveErrorEvent is directly associated with
the corresponding DataElementPrototype and references the RunnableEntity
that is activated due to the occurrence of this RTEEvent.

Class 〈〈atpObject〉〉 DataReceiveErrorEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE
Events

Class
Desc.

This event is raised by the RTE when the Com layer detects and notifies an error
concerning the reception of the referenced data element.

Base
Class(es) RTEEvent

Attribute Datatype Mul. Link Type Description

data DataEl-
ement
Prototype

1 instanceRef Data element referenced by event

Table 3.52: DataReceiveErrorEvent

82 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

3.6.3 Runnables and Client Server Communication

3.6.3.1 Invoking an Operation

A RunnableEntity invokes an operation via an RPortPrototype of the enclos-
ing ComponentPrototype typed by a particular AtomicSoftwareComponent-
Type. Note that the operation itself can be invoked either ”synchronously” or ”asyn-
chronously”.

In the majority of cases the operation will be invoked at a different ComponentPro-
totype but in general it would be possible to invoke an operation on the very same
ComponentPrototype as well. The decision whether a specific operation is called
synchronously or asynchronously needs to be specified in the formal description of
the corresponding AtomicSoftwareComponentType, namely in the context of an
InternalBehavior (see Figure 3.22 for more details).

In case of a synchronous operation invocation the particular RunnableEntity merely
needs a SynchronousServerCallPoint (see Figure 3.22). The other case is a bit
more complex because it is necessary to specify how to respond to a notification about
the completion of the corresponding operation.

This is done using the generic RTEEvent mechanism: the notification about an
asynchronously executed operation being complete is implemented as an Asyn-
chronousServerCallReturnsEvent. Therefore, if an AsynchronousServer-
CallReturnsEvent is raised the RTE can either trigger the execution of a spe-
cific RunnableEntity or the AtomicSoftwareComponentType can implement
a WaitPoint that blocks the execution of the calling runnable until the Asyn-
chronousServerCallReturnsEvent is recognized.

83 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Identifiable

ServerCallPoint

+ timeout: Float

ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean
+ minimumStartInterval: Float
+ symbol: String

SynchronousServerCallPointAsynchronousServerCallPointIdentifiable

RTEEvent

AsynchronousServerCallReturnsEvent

ARElement

InternalBehavior

+ supportsMultipleInstantiation: Boolean

ComponentType

AtomicSoftwareComponentType

Identifiable

«atpStructureElement»
OperationPrototype

0..*

«instanceRef»

+operation 1

+event *

+runnable 1..*

+behavior

*

+component 1

+serverCallPoint

*+runnable

+startOnEvent 0..1

+event

1

+eventSource 1

Figure 3.22: Model of a server call point.

For example, let’s consider the case of an asynchronous call to a remote operation
where the RTE is supposed to trigger a specific RunnableEntity when the opera-
tion completes. The description of the corresponding AtomicSoftwareComponentType
would typically contain the following elements:

1. The AtomicSoftwareComponentType contains an RPortPrototype ’my-
Port’ typed by a PortInterface that in turn contains the definition of an Oper-
ationPrototype ’remoteOperation’.

2. The AtomicSoftwareComponentType’s InternalBehavior contains at
least two RunnableEntities: the RunnableEntity ’main’ is supposed to
invoke the operation; the RunnableEntity ’callback’ is the one that should be
called when the operation completes.

3. The description of the RunnableEntity ’main’ contains an Asyn-
chronousServerCallPoint ’invokeMyOperation’ referencing the respective
OperationPrototype in the PortInterface used to type the PortProto-
type ’myPort’. This implies that the RunnableEntity is allowed to invoke this
operation asynchronously.

84 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

4. The description of the AtomicSoftwareComponentType includes an
AsynchronousServerCallReturnsEvent ’myOperationReturns’ which ref-
erences the previously defined AsynchronousServerCallPoint ’invokeMy-
Operation’ out of RunnableEntity ’main’.

5. The description of the AsynchronousServerCallReturnsEvent ’myOper-
ationReturns’ references the RunnableEntity ’callback’, indicating that the
RTE should trigger the execution of this Runnable when ’myOperationReturns’
is raised.

Class 〈〈atpObject〉〉 ServerCallPoint (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::ServerCall

Class
Desc.

When a runnable has a serverCallPoint, it has the possibility to invoke any of the
operations of a specific rport of the component.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description
operation Operation

Prototype 1 instanceRef The operation that is called by this runnable.

timeout Float 1 aggregation

Time in seconds before the server call times
out and returns with an error message. It
depends on the call type (synchronous or
asynchronous) how this is reported.

Table 3.53: ServerCallPoint

Class 〈〈atpObject〉〉 AsynchronousServerCallPoint
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::ServerCall

Class
Desc.

An asynchronous server call-point is used for asynchronous invocation of an
operation prototype. It is associated with AsynchronousServerCallReturnsEvent, this
RTEEvent notifies the completion of the required operation or a timeout, this event
can be waited for or it can lead to the invocation of a runnable.
IMPORTANT: a server-call-point cannot be used concurrently. Once the client
runnable has made the invocation, the server-call-point cannot be used until the call
returns (or an error occurs!) at which point the server call-point becomes available
again...

Base
Class(es) ServerCallPoint

Attribute Datatype Mul. Link Type Description

Table 3.54: AsynchronousServerCallPoint

Class 〈〈atpObject〉〉 SynchronousServerCallPoint
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::ServerCall
Class
Desc.

This means that the runnable will block for a response from the server.

Base
Class(es) ServerCallPoint

Attribute Datatype Mul. Link Type Description

85 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Table 3.55: SynchronousServerCallPoint

Class 〈〈atpObject〉〉 AsynchronousServerCallReturnsEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE
Events

Class
Desc. This event is raised when an asynchronous server call is finished.

Base
Class(es) RTEEvent

Attribute Datatype Mul. Link Type Description
event
Source

Asynchronous
ServerCall
Point

1 reference The referenced server call point

Table 3.56: AsynchronousServerCallReturnsEvent

3.6.3.2 Providing an Implementation of an Operation

A software-component can define an OperationInvokedEvent for each operation
inside one of the server P-Ports. This way a Runnable may respond to such an invo-
cation through the generic event handling mechanisms described above (as formally
expressed in Figure 3.23).

86 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

OperationInvokedEv ent

Identifiable

RTEEvent

ExecutableEntity

RunnableEntity

ARElement
AtpType

PortInterface

PPortPrototype

AtpPrototype

PortPrototype

ARElement
AtpType

SwComponentType

AtomicSwComponentType

InternalBehavior

SwcInternalBehav ior

ClientServerInterface

AtpStructureElement
Identifiable

ClientServerOperation

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

+operation 1..*

+interface 1

«atpVariation,atpSplitable»

+internalBehavior 0..1

+port

0..*«atpVariation»

+component

+pPort *
«isOfType»

+providedInterface
1
{redefines atpType}

+runnable 1..*

«atpVariation»

+event *

«atpVariation»

+startOnEvent

0..1

+event
«instanceRef»

+operation

Figure 3.23: The OperationInvokedEvent references the operation that was called by
a client.

Class 〈〈atpObject〉〉 OperationInvokedEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE
Events

Class
Desc. The OperationInvokedEvent references the OperationPrototype invoked by the client.

Base
Class(es) RTEEvent

Attribute Datatype Mul. Link Type Description
operation Operation

Prototype 1 instanceRef The operation to be executed as the
consequence of the event.

Table 3.57: OperationInvokedEvent

87 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

4 Data Types and Data Semantics

4.1 Introduction

In the context of defining data types, the AUTOSAR concept distinguishes between
different levels of abstraction as depicted in Figure 4.1.

Figure 4.1: Levels of abstraction

The abstraction level called Data Structure is the common level at which Software
Interface Definition Languages (like OMG IDL) specify a data type. Typically, a set of
primitive data types (such as int and floats) is defined. On top of this, it is usually
possible to build various structures with these primitive types.

ARElement

«atpType»
Datatype

Identi fiable

«atpPrototype»
DataPrototype

«atpPrototype»
DataElementPrototype

ArgumentPrototypeValueSpecificationRecordElement CalprmElementPrototype

IsSyscond

SwDataDefProps
+swDataDefProps

0..1

0..*

«isOfType»

+type 1

Figure 4.2: Data type usage

The Data-Implementation level is the implementation of Data-Structures on bits and
bytes. The mapping of a given Data-Structure on a Data-Implementation depends
on the medium on which the data is transported. For example, a typical 16-bit un-
signed integer might look very different when sent over CAN, when seen by a software-
component on a big-endian 32-bit machine or as seen by a software-component on a
little-endian 16-bit processor.

88 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Conversion between several Data-Implementations of the same Data-Structure might
be necessary in case of communication between components on different ECUs.
AUTOSAR COM [14] is responsible for this. It implies that the configuration depends
on the exact Data-Structures that are transmitted between components.

AUTOSAR COM might need to convert a 16-bit integer between little-endian and big-
endian representations; whereas an array of 16 bits does not need to be swapped even
if the endianness changes. In case of intra-ECU communication byte order conversion
is not necessary, since the software-components reside on the same machine.

The Data-Semantics finally are an additional layer of information that at least partly also
has an impact on the RTE. For example, data-semantics describe how the numerical
values stored in the data-structure can be mapped onto physical quantities. This is
not expected to be of relevance for the RTE. On the other hand, data-semantics also
defines signal invalidation that directly impacts the RTE implementation.

The description of the Data Structure level is contained in chapter 4.4. It explains what
kinds of Datatype are available at this level within AUTOSAR and how new data types
can be constructed.

The following chapter 4.5 deals with the optional Data-Semantics used to describe the
correct interpretation of the values stored in the Data-Structures.

The Data Implementation level is not necessarily described in the scope of this docu-
ment but depends on the medium on which the Data-Structure is used. Note that in
particular for measurement and calibration this can be specified using the meta-class
BaseType.

4.2 About Meta-Model Data Types

The representation of the concept of a data type within the AUTOSAR concept is imple-
mented by means of the meta-class Datatype. It is taken as the base class for mainly
two specializations, PrimitiveType and CompositeType. The latter, however, are
taken as base classes for an even finer breakdown of the data type diversity.

Class 〈〈atpType〉〉 Datatype (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Class
Desc. Abstract base class for user defined (and AUTOSAR predefined) datatypes.

Base
Class(es) ARElement

Attribute Datatype Mul. Link Type Description

Table 4.1: Datatype

Class 〈〈atpType〉〉 PrimitiveType (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

89 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Class
Desc. A primitive datatype consists of a set of allowed values.

Base
Class(es) Datatype

Attribute Datatype Mul. Link Type Description
swDataDef
Props SwData

DefProps 0..1 aggregation

Table 4.2: PrimitiveType

Class 〈〈atpType〉〉 CompositeType (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Class
Desc. Abstract base class for all data types composed of other data types.

Base
Class(es) Datatype

Attribute Datatype Mul. Link Type Description

Table 4.3: CompositeType

Please note, however, that all these flavors of Datatype exist on meta-level M2 (as
depicted in Figure 4.3), i.e. they can be taken as the basis for defining specific data
types on the M1 meta-level. On the other hand, it is not possible to directly use e.g.
IntegerType directly in an M1 model.

To ensure compatibility between communicating software components, not only the
data types involved in the transactions must match. Even if sender and receiver ex-
change a velocity as 8-bit integer between 0 and 255, the sender may provide this
velocity in miles per hours with a resolution of 0.1 mph, while the receiver expects
meters per second with a resolution of 1 m/s.

90 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

ARElement

«atpType»
Datatype

«atpType»
CompositeType

«atpType»
PrimitiveType

IsSyscond

SwDataDefProps

ValueSpecification

PrimitiveSpecification

ARElement

CompuMethod

BaseType

SwBaseType

+baseType 0..1 +compuMethod 0..1 +invalidValue 0..1

+swDataDefProps 0..1

Figure 4.3: Summary of data types on the M2 level

Since the RTE will not implement automatic type conversion on this level, the compati-
bility of provider and consumer need to be ensured - among other things - through the
compatibility of the so-called data-semantics. Data-semantics specify how to convert
between physical values (including the physical unit) and the corresponding represen-
tation of a computer system. In section 4.5 these two representations are referred to
as physical and internal.

4.3 Usage of Data Types in the Meta-Model

Figure 4.2 sketches some of the usages of a Datatype in the AUTOSAR meta-model.
In particular, Datatype is used to define

• RecordElements within the scope of a RecordType,

• Constant,

• DataElementPrototypes inside a SenderReceiverInterface, or

91 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

• ArgumentPrototypes for the OperationPrototypes in a ClientServer-
Interface.

Note that a Datatype does not contain any information on the evolution of the values
in the DataType over time. For example: when a data type types a data-element in-
side a sender-receiver interface, the data type defines the structure (and semantics) of
a specific value (snapshot) of the data; it does not describe any aspects related to its
value changing over time.

4.4 Data Type Details

In general, a data type is a set of values characterized by properties of those values
and by operations on those values. Primitive data types cannot be decomposed in
other data types.

In low-level programming languages primitive data types are implemented with respect
to the natural data sizes (typically 8, 16, 32, 64 bits) and the operations available in a
CPU (for example arithmetic operations for integer and floating-point numbers).

In higher-level programming languages data types like integer and float with arbitrary
precision, lists, stacks, hash tables and others are provided as primitive data types.
For these programming languages resource consumption of time and memory play a
minor role.

However in AUTOSAR, resource consumption of time and memory are very important
and the exchange of data between software-components must be as efficient as pos-
sible. Therefore, the primitive AUTOSAR data types must allow an efficient mapping to
programming languages like C.

On networks with low bandwidth and small package sizes, like typical automotive CAN,
the signals inside the frames mostly are of a much finer granularity: they are not limited
to the power-of-2 data-sizes found in software, but can be of arbitrary bit-size. It is
common to find a 4-bit or a 12-bit unsigned integer.

At the Data-Structure level, the AUTOSAR data types

1. are limited to a small and simple set (and could be extended later by more com-
plex primitive types)

2. support the ”arbitrary” bit-sizes needed for a compact representation on networks

Note that it is important to keep in mind the distinction between the structural and the
Implementation level. A 12-bit unsigned integer will probably take exactly 12 bits inside
a CAN-frame but will probably be mapped onto a 16-bit integer inside the software.

The conversion between both representations is done by the COM layer, which in
turn is utilized by the RTE. To ensure the relocatability of software-components, the
AUTOSAR standard needs to define a fixed mapping between the structural data types
and their implementations in a specific programming language.

92 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

4.4.1 Range

When defining a Datatype, it is often necessary to specify an open or closed range
of values. Semantically, the range represents all real numbers defined by:

range = {x ∈ <‖LOWER− LIMIT.V ALUE < x < UPPER− LIMIT.V ALUE}⋃ {LOWER− LIMIT.V ALUE}iffLOWER − LIMIT.INTERV AL − TY PE ==
CLOSED⋃ {UPPER− LIMIT.V ALUE}iffUPPER − LIMIT.INTERV AL − TY PE ==
CLOSED

Class 〈〈atpObject〉〉 Range (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Class
Desc. Abstract class for specifying a range from lower limit to upper limit.

Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description

lowerLimit ARLimit 1 aggregation

This element specifies the lower limit of a
closed, half-open or open interval. It can also
be set to infinity by setting the attribute
INTERVAL-TYPE to INFINITE. No value has
to be set in the case of an infinite interval.

upperLimit ARLimit 1 aggregation

This element specifies the upper limit of a
closed, half-open or open interval. It can also
be set to infinity by setting the attribute
INTERVAL-TYPE to INFINITE. No value has
to be set in the case of an infinite interval.

Table 4.4: Range

Enumeration IntervalTypeEnum
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::LocalConstraints
Enum Desc.
Literal Description
closed
infinite
open

4.4.2 Primitive Data Types

The following sections describes the primitive types (see Figure 4.4) on M2 level in
AUTOSAR.

93 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

«atpType»
PrimitiveType

BooleanType

OpaqueType

+ numberOfBits: Int

IntegerType

Range

RealType

+ allowNaN: Boolean
+ encoding: RealTypeEncodingEnum

CharType

+ encoding: String

StringType

+ encoding: String
+ maxNumberOfChars: Int

ARElement

«atpType»
Datatype IsSyscond

SwDataDefProps

+ displayFormat: DisplayFormatString [0..1]
+ swAliasName: String [0..1]
+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]
+ swCalprmNoEffectValue: String [0..1]
+ swImplPolicy: SwImplPolicyEnum [0..1]
+ swIntendedResolution: NumericalValue [0..1]
+ swInterpolationMethod: String [0..1]
+ swIsVirtual: Boolean [0..1]
+ swVariableAccessImplPolicy: SwVariableAccessImplPolicyEnum [0..1]
+ swVarNotAvlValue: String [0..1]

ValueSpecification

PrimitiveSpecification

ARElement

CompuMethod

+ compuIdenti ty: String [0..1]
+ displayFormat: DisplayFormatString [0..1]

ARElement

BaseType

SwBaseType

ARLimit

+ intervalType: IntervalTypeEnum [0..1]
+ value: String

«enumeration»
RealTypeEncodingEnum

 single
 double

+lowerLimit 1

+swDataDefProps

0..1

+invalidValue 0..1
+compuMethod 0..1

+baseType 0..1

+upperLimit 1

Figure 4.4: Summary of PrimitiveType

4.4.2.1 Boolean Type

Class 〈〈atpType〉〉 BooleanType
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Class
Desc.

This datatype represents a set containing the logical value true and false

Base
Class(es) PrimitiveType

Attribute Datatype Mul. Link Type Description

Table 4.5: BooleanType

4.4.2.2 Opaque Type

Class 〈〈atpType〉〉 OpaqueType
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Class
Desc.

This Datatype represents an array of exactly numberOfBits bits. It is called ”opaque”
because this array of bits should be transported ”as is” by the AUTOSAR RTE.

Base
Class(es) PrimitiveType

Attribute Datatype Mul. Link Type Description
numberOf
Bits Integer 1 aggregation

The number of bits that are used to make up
the opaque type.

Table 4.6: OpaqueType

4.4.2.3 Integer Type

IntegerType inherits from both Range (see section 4.4.1) and PrimitiveType.
Therefore the attributes upperLimit and lowerLimit are defined implicitly.

94 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Class 〈〈atpType〉〉 IntegerType
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Class
Desc. This data-type are the integers in the interval defined by the Range.

Base
Class(es) PrimitiveType , Range

Attribute Datatype Mul. Link Type Description

Table 4.7: IntegerType

Semantically a range of type IntegerType is the intersection of the range of real
numbers as defined section 4.4.1 and the numbers that can be expressed by the data
type integer. For example, the following values of the IntegerType attributes define
a (M1) data type containing the integers 0, 1, 2 and 3.

lowerLimit = 0
lowerLimit.INTERVAL-TYPE = CLOSED
upperLimit = 4
upperLimit.INTERVAL-TYPE = OPEN

4.4.2.4 Real Type

When attribute encoding is set to Single or Double, the values in this data type are
the real numbers that can be represented by the IEC 60559 (IEEE 754) standard for
single-precision resp. double-precision numbers and that lie in the interval defined by
the Range.

Class 〈〈atpType〉〉 RealType
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Class
Desc.

This represents a range of reals that can be represented by either the IEEE 754
”Single Precision” (encoding is ”Single”) or IEEE 754 ”Double Precision” (encoding is
”Double”) arithmetic.
Note that these standards include representations for +infinity, -infinity, QNaN and
SNaN. When defining a RealType, one must indicate whether these special values
are allowed or not.

Base
Class(es) PrimitiveType , Range

Attribute Datatype Mul. Link Type Description
allowNaN Boolean 1 aggregation Denotes whether this data type permits for

”not a number” being represented by the type

encoding RealType
Encoding
Enum

1 aggregation Denotes the precision of the RealType

Table 4.8: RealType

95 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

In other words: A range of type RealType is the intersection of the range of real num-
bers as defined section 4.4.1 and the numbers that can be expressed by the floating
point representation defined by the attribute encoding.

For example, a RealType with the following attributes defines the entire range of val-
ues that can be represented as a common IEC 60559 single-precision float, including
the special values infinity and NaN (Not-a-Number).

encoding = "Single"
lowerLimit = -INF
lowerLimit.INTERVAL-TYPE = CLOSED
upperLimit = +INF
upperLimit.INTERVAL-TYPE = CLOSED
allowNaN = TRUE

It might be possible to extend this format to allow for other floating-point formats (for
example, special formats used by specific digital signal processors).

4.4.2.5 Char Type

For the definition of the attribute encoding of CharType and StringType the names
described in table 4.10 shall be used. The table shows a list of frequently used encod-
ings and is based on the Character Sets document of the Internet Assigned Numbers
Authority. That document describes The official names of character sets that may be
used in the Internet and references to the definitions and standardizations of these
character sets.

Class 〈〈atpType〉〉 CharType
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Class
Desc.

This represents a character belonging to the character-set specified in the encoding.
The semantics are built-in into this datatype.

Base
Class(es) PrimitiveType

Attribute Datatype Mul. Link Type Description

encoding String 1 aggregation
Specification of character encoding, e.g.
ISO-8859-1

Table 4.9: CharType

The table was created by

1. choosing the name or alias of a character set which is marked as preferred MIME
name

2. or by choosing the name if no preferred MIME name is defined

If table 4.10 needs to be extended the same rules shall be applied.

Name of Encoding Description
US-ASCII American standard code for information interchange

96 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

UTF-8 Eight-bit Unicode transformation format
UTF-16 Sixteen-bit Unicode Transformation Format, byte order

specified by a mandatory initial byte-order mark
ISO-8859-1 Latin alphabet No. 1
ISO-8859-2 Latin alphabet No. 2
ISO-8859-3 Latin alphabet No. 3
ISO-8859-4 Latin alphabet No. 4
ISO-8859-5 Latin/Cyrillic alphabet
ISO-8859-6 Latin/Arabic alphabet
ISO-8859-7 Latin/Greek alphabet
ISO-8859-8 Latin/Hebrew alphabet
ISO-8859-9 Latin alphabet No. 5

Table 4.10: Character encodings

4.4.2.6 String Type

Class 〈〈atpType〉〉 StringType
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Class
Desc.

This represents a string of characters out of the character-set specified by the given
encoding.
The maxNumberOfChars is the maximal number of characters which can be stored
within the String. The actual number of bytes that is required to represent the string
can be calculated out of maxNumberOfChars and the encoding:

bytes required to represent the string =
maxNumberOfChars * (max bytes per character using the given encoding) + 1
(terminating null)

Base
Class(es) PrimitiveType

Attribute Datatype Mul. Link Type Description
encoding String 1 aggregation Specification of character encoding, e. g.

ISO-8859-1.
maxNum-
berOf
Chars Integer 1 aggregation

The maxNumberOfChars is the maximum
number of characters that can be stored in the
string.

Table 4.11: StringType

4.4.2.7 About enumerations

In the AUTOSAR meta-model, an enumeration is not implemented by means of Prim-
itiveType. Instead, a range of integer numbers can be used as a structural descrip-
tion. The mapping of the integer numbers on labels in the scope of the definition of an
enumeration is part of the Data-Semantics level and therefore not part of the structural
description.

97 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

4.4.3 Composite Data Types

The meta-classes ArrayType and RecordType (details are depicted in Figure 4.5)
provide the means to define composite data types. It is possible to use a combina-
tion of ArrayType and RecordType, so that an ArrayType could be defined as
RecordElement of a RecordType and in the same manner a RecordType could be
used as the base type of an ArrayType. The creation of nested CompositeTypes
is also possible.

«atpType»
CompositeType

ArrayType

RecordType

Identifiable

«atpPrototype»
DataPrototype

ARElement

«atpType»
Datatype

RecordElement

ArrayElement

«atpMaxMultipl icity»
+ maxNumberOfElements: Int

+element

1

0..*

«isOfType»

+type 1

+element

1..* {ordered}

Figure 4.5: Summary of CompositeType

4.4.3.1 ArrayType

An ArrayType may contain maxNumberOfElements ArrayElements. Each of
these ArrayElements must have the same type. When referring to an element of an
array within the software-component descriptions, the element-index runs from 0 to the
value of maxNumberOfElements-1.

98 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Class 〈〈atpType〉〉 ArrayType
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Class
Desc.
Base
Class(es) CompositeType

Attribute Datatype Mul. Link Type Description
element Array

Element 1 aggregation

Table 4.12: ArrayType

Class 〈〈atpPrototype〉〉 ArrayElement
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Class
Desc.
Base
Class(es) DataPrototype

Attribute Datatype Mul. Link Type Description
maxNum-
berOf
Elements Integer 1 aggregation

The maximum number of elements that the
array can contain.

Table 4.13: ArrayElement

4.4.3.2 RecordType

A declaration of RecordType describes a nonempty set of objects, each of which has
a unique identifier with respect to the RecordType and a Datatype. The shortName
of each RecordElement within the scope of an RecordType must be unique.

Class 〈〈atpType〉〉 RecordType
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Class
Desc.
Base
Class(es) CompositeType

Attribute Datatype Mul. Link Type Description
element
(ordered)

Record
Element 1..* aggregation

Table 4.14: RecordType

Class 〈〈atpPrototype〉〉 RecordElement
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Class
Desc. An element in a record.

Base
Class(es) DataPrototype

99 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Attribute Datatype Mul. Link Type Description

Table 4.15: RecordElement

4.4.4 Constant

The AUTOSAR standard allows the utilization of constant values in two ways:

1. by referencing a publicly defined ConstantSpecification

2. or through an inline aggregation of a constant value (meta-class ValueSpeci-
fication).

Class 〈〈atpObject〉〉 ConstantSpecification
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Constants
Class
Desc.

Specification of a constant that can be part of a package, i.e. it can be defined
stand-alone.

Base
Class(es) ARElement

Attribute Datatype Mul. Link Type Description

value Value
Specifica-
tion

1 aggregation Specification of an expression leading to a
value of a given datatype.

Table 4.16: ConstantSpecification

Class 〈〈atpPrototype〉〉 ValueSpecification (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Constants
Class
Desc. Description of a constant of a modeled datatype (M1 datatype).

Base
Class(es) DataPrototype

Attribute Datatype Mul. Link Type Description

Table 4.17: ValueSpecification

Class 〈〈atpPrototype〉〉 PrimitiveSpecification (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Constants
Class
Desc. A constant of a primitive datatype.

Base
Class(es) ValueSpecification

Attribute Datatype Mul. Link Type Description

Table 4.18: PrimitiveSpecification

Class 〈〈atpPrototype〉〉 ArraySpecification

100 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Constants
Class
Desc. A constant array, which refers to its elements by index.

Base
Class(es) ValueSpecification

Attribute Datatype Mul. Link Type Description

element
(ordered)

Value
Specifica-
tion

* aggregation Elements of array.

Table 4.19: ArraySpecification

Class 〈〈atpPrototype〉〉 RecordSpecification
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Constants
Class
Desc.
Base
Class(es) ValueSpecification

Attribute Datatype Mul. Link Type Description

element
(ordered)

Value
Specifica-
tion

* aggregation Elements of the record.

Table 4.20: RecordSpecification

The structure of a ValueSpecification is defined by its Datatype. Specialized
subclasses of ValueSpecification allow for the definition of values for the different
kinds of Datatype, e.g. BooleanValue specifies the value for a BooleanType and
an ArraySpecification does the same for an ArrayType. This relationship is
formally expressed in Figure 4.6.

Class 〈〈atpPrototype〉〉 BooleanLiteral
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Constants
Class
Desc. Boolean constant expression.

Base
Class(es) PrimitiveSpecification

Attribute Datatype Mul. Link Type Description
value Boolean 1 aggregation The Boolean value.

Table 4.21: BooleanLiteral

Class 〈〈atpPrototype〉〉 OpaqueLiteral
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Constants
Class
Desc. An opaque literal.

Base
Class(es) PrimitiveSpecification

Attribute Datatype Mul. Link Type Description

101 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

value String 1 aggregation
The string encodes an array of bytes in the
following syntax ”ae:05:fe”

Table 4.22: OpaqueLiteral

Class 〈〈atpPrototype〉〉 IntegerLiteral
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Constants
Class
Desc. Constant integer value.

Base
Class(es) PrimitiveSpecification

Attribute Datatype Mul. Link Type Description
value Integer 1 aggregation The value.

Table 4.23: IntegerLiteral

Class 〈〈atpPrototype〉〉 RealLiteral
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Constants
Class
Desc. Constant description for real values.

Base
Class(es) PrimitiveSpecification

Attribute Datatype Mul. Link Type Description
value Float 1 aggregation The numeric value itself.

Table 4.24: RealLiteral

Class 〈〈atpPrototype〉〉 CharLiteral
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Constants
Class
Desc. Character constant description.

Base
Class(es) PrimitiveSpecification

Attribute Datatype Mul. Link Type Description
value String 1 aggregation The character value (a string of length 1).

Table 4.25: CharLiteral

Class 〈〈atpPrototype〉〉 StringLiteral
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Constants
Class
Desc. A constant string.

Base
Class(es) PrimitiveSpecification

Attribute Datatype Mul. Link Type Description
value String 1 aggregation The string itself.

102 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Table 4.26: StringLiteral

ValueSpecification

PrimitiveSpecification

ARElement

«atpType»
Datatype

RecordSpecificationArraySpecificationConstantReference

ARElement

ConstantSpecification

Identifiable

«atpPrototyp...
DataPrototype

RealLiteral

+ value: Float

BooleanLiteral

+ value: Boolean

CharLiteral

+ value: String

StringLiteral

+ value: String

OpaqueLiteral

+ value: String

IntegerLiteral

+ value: Int

+element

*
{ordered}

+element

*
{ordered}

+value

1

+constant 1

0..* «isOfType»

+type

1

Figure 4.6: Summary of Constant

A specific ValueSpecification is the ConstantReference: it passes the defini-
tion of the constant value on to another ConstantSpecification that is defined as
part of an AUTOSAR Package.

Class 〈〈atpPrototype〉〉 ConstantReference
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Constants
Class
Desc. Instead of defining this constant inline, another constant is referenced.

Base
Class(es) ValueSpecification

Attribute Datatype Mul. Link Type Description

constant Constant
Specifica-
tion

1 reference The referenced constant.

Table 4.27: ConstantReference

103 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

4.5 Datatypes with Semantics

It does not make sense to specify semantics and therefore a physical meaning to all of
the data types explained in the previous section. More precisely, data semantics may
be assigned to PrimitiveTypes only.

Class 〈〈atpObject〉〉 SwDataDefProps
Package M2::AUTOSARTemplates::CommonStructure::DataDefProperties

Class
Desc.

This class is a collection of properties relevant for data objects under various aspects.
One could consider this class as a ”pattern of inheritance by aggregation”. The
properties can be applied to all objects of all classes in which SwDataDefProps is
agrregated.

Note that not all of the attributes or associated elements are useful all of the time.
Hence, the process definition (e.g. expressed with an OCL or a Document Control
Instance) MSR-DCI has the task of implementing limitations.

SwDataDefProps covers various aspects:

* Structure of the data element, is it a single value, a curve, or a map, but also the
recordLayouts which specify, how such elements are mapped/converted to the
DataTypes in the programming language (or in Autosar). This is mainly expressed by
properties like swRecordLayout and swCalprmAxisSet

* Implementation policy, mainly expressed by swImplPolicy,
swVariableAccessImplPolicy, swAddrMethod

* Access policy for the MDC system, mainly expressed by swCalibrationAccess

* Semantics of the data element, mainly expressed by compuMethod and/or unit,
dataConstr

* Code generation policy provided by swCodeSyntax
Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description

annotation Annotation * aggregation
This aggregation allows to add annotations
(yellow pads ...) related to the current data
object.

baseType SwBase
Type 0..1 reference Base type associated with the value axis of

this data object.
compu
Method Compu

Method 0..1 reference Computation method associated with the
semantics of this data object.

dataConstr DataCon-
str 0..1 reference Data constraint for this data object.

display
Format

Display
Format
String

0..1 aggregation
This property describes how a number is to be
rendered e.g. in documents or in a
measurement and calibration system.

invalid
Value

Primitive
Specifica-
tion

0..1 aggregation

Optional value to express invalidity of the
actual data element. If given, the owning
component has the API to set this data
element invalid, otherwise it does not.

104 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

swAddr
Method SwAddr

Method 0..1 reference Addressing method related to this data object.

swBitRep-
resentation SwBitRep-

resentation 0..1 aggregation Description of the binary representaion in
case of a bit variable.

swCalibra-
tionAccess

SwCalibra-
tionAccess
Enum

0..1 aggregation Specifies the read or write access by MCD
tools for this data object.

swCalprm
AxisSet SwCalprm

AxisSet 0..1 aggregation
This specifies the properties of the axes in
case of a curve or map etc. This is mainly
applicable to calibration parameters.

swCode
Syntax SwCode

Syntax 0..1 reference Coding policy for this data object expressed
as a reference to a Code syntax to be applied.

swDataDe-
pendency

SwData
Depen-
dency

0..1 aggregation

If the data object is virtual - that means it is
not directly in the ecu, then this property
describes how the ”virtual variable” can be
computed from the real ones.

swHost
Variable SwVariable

Ref 0..1 aggregation
Contains a reference to a variable, which
serves as a host-variable for a bit variable.
Only applicable to bit objects.

swImpl
Policy

SwImpl
Policy
Enum

0..1 aggregation Implementation policy for this data object.

swPointer SwPointer 0..1 aggregation Specifies that the containing data object is a
pointer to another data object.

swRecord
Layout SwRecord

Layout 0..1 reference Record layout for this data object.

swText
Props SwText

Props 0..1 aggregation the specific properties if the data object is a
text object.

swValue
BlockSize SwArray-

size 0..1 aggregation

Specifies the size in case the data object is an
VAL BLK. It is there for compatibility reasons,
where value blocks were introduced as a kind
of an array.

swVariable
Access
ImplPolicy

SwVariable
Access
ImplPolicy
Enum

0..1 aggregation
In case of a swImplPolicy set to ”message” the
access policy can be refined here.

unit Unit 0..1 reference

Physical unit associated with the semantics of
this data object. This attribute applies, if no
compuMethod is specified. If buth units (this
as well as via compuMethod is specified,the
units ust be the same.

Table 4.28: SwDataDefProps

Class 〈〈atpObject〉〉 CompuMethod
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::ComputationMethod
Class
Desc.

105 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Base
Class(es) ARElement

Attribute Datatype Mul. Link Type Description
compu
InternalTo
Phys Compu 0..1 aggregation

compu
PhysTo
Internal Compu 0..1 aggregation

display
Format

Display
Format
String

0..1 aggregation
This property specifies, how the physical
value shall be displayed e.g. in documents or
measurement and calibration tools.

unit Unit 0..1 reference This is the physical unit of the Physical values
for which the CompuMethod applies.

Table 4.29: CompuMethod

A CompositeType cannot be given a particular semantic meaning besides the one
occasionally specified for the contained primitive data elements.

Since PrimitiveTypes with specified semantics may often be reused, it is possible
to assign additional properties to a PrimitiveType using swDataDefProps. The
actual semantics class is called CompuMethod, due to compatibility with MSR-SW.

The diagram also shows that in addition to the semantics defined through the Com-
puMethod (explained below), also an invalidValue can be specified. This is a
requirement of the VFB [3], allowing to express which specific value in a given data
range is used to indicate invalidation.

«atpType»
PrimitiveType

IsSyscond

SwDataDefProps

ARElement

«atpType»
Datatype

ARElement

CompuMethod
ValueSpecification

PrimitiveSpecification

Range

IntegerType
Range

RealType

CharTypeStringType

OpaqueType

BooleanType
+invalidValue 0..1+compuMethod 0..1

+swDataDefProps 0..1

106 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Figure 4.7: Data types with semantics

The PrimitiveType allows to specify a constant value for this purpose. Of course,
the constant value also needs to be a primitive value again. More specific, it even
needs to be of the same type as the original PrimitiveType (not shown in diagram).
Please note that Constants are explained in section 4.4.4.

The following section explains the usage of the class CompuMethod in order to allow
specification of the data semantics of a PrimitiveType.

4.5.1 Computation Methods

This meta-class was actually taken from the ASAM standard’s harmonized data ob-
jects. This is also indicated by the green color of the meta-classes in the diagram.

CompuMethods (see Figure 4.8) are used for the conversion of internal values into
their physical representation and vice versa. The direction of the conversion depends
on the origin of the value to be converted: If the value is provided by the ECU then the
conversion direction is from internal to physical. Physical values that are provided by
the tester are converted to internal values before they are sent to the ECU.

107 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

ARElement

ComputationMethod::CompuMethod

+ compuIdenti ty: String [0..1]
+ displayFormat: DisplayFormatString [0..1]

ComputationMethod::CompuScale

+ shortLabel: Identifier [0..1]

ComputationMethod::
Compu

ComputationMethod::
CompuContent

ComputationMethod::
CompuScales

ValueByFormula

«atpMixedString»
LocalConstraints::Limit

+ intervalType: IntervalTypeEnum [0..1] = CLOSED

«enumeration»
LocalConstraints::
IntervalTypeEnum

Attributes
+ closed
+ infinite
+ open

ComputationMethod::
CompuScaleContents

ComputationMethod::
CompuScaleRationalFormula

ComputationMethod::
CompuRationalCoeffs

«atpMixed»
ComputationMethod::

CompuNominatorDenominator

ComputationMethod::
CompuScaleConstantContents

ComputationMethod::
CompuConst

+compuScaleContentsType 0..1

+compuPhysToInternal

0..1

+compuInternalToPhys

0..1

+compuContentType

1

+lowerLimit

0..1

+compuScale 0..*

+compuRationalCoeffs

1

+compuDenominator 1+compuNumerator 1

+compuInverseValue 0..1

+compuConst 1

+upperLimit

0..1

Figure 4.8: A CompuMethod and its attributes define data semantics

The preferred conversion direction depends on the use case. The physical-to-internal
direction is suitable for calibration while the internal-to-physical direction is preferred
for diagnostic purposes. A CompuMethod can be defined for each of these directions.

In the following section, the internal-to-physical conversion direction is used as the
default. Usually a CompuMethod is defined for one conversion direction only even if it
is used in both directions. For simple functions like identical or linear functions this is
sufficient because the inverse function as well as the applicable limits can be derived
quite easily from the defined function.

For more complex functions (e.g. rational functions) it is usually not possible to com-
pute the inverse function automatically. More seriously, the inversion yields ambiguous
results if the function is not monotonic. To deal with such possible ambiguities in a
direct way an inverse value can be provided explicitly for the function or for each of its

108 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

parts respectively. In case that both domains are specified in the compu-method, both
shall have limits.

The compuDefaultValue is used to specify an invalid value and is specified in the
internal domain. Additionally, the compuDefaultValue is not bound to the given
upper- and lower-limits of an integer-type or of an associated compu-method.

As a CompuMethod specifies the conversion between the physical world and the nu-
merical values, they must refer to a unit.

Figure 4.8 sketches a conceptual overview of CompuMethod. It consists of the follow-
ing attributes:

• A physical unit (described in next section) to be associated with the Datatype
to which the CompuMethod is associated. Note that quantities like ”%” are not
derived from SI units. However, they have a meaning in the physical world and
need to be represented in form of datatypes. Therefore, a CompuMethod also
applies in those cases.

• A conversion specification from internal to physical values, as well as the reverse
conversion. Both of them in turn consist of an abstract CompuContent. De-
rived classes allow the specification of a conversion formula in two different ways.
Within AUTOSAR only the stepwise definition (CompuScales) is used.

• CompuScales is a number of intervals (called CompuScale) within which a cer-
tain conversion applies. The respective interval is given in terms of upper and
lower limit. Limits have already been explained in the data types chapter. Within
each CompuScale we have the abstract CompuScaleContent. To deal with
possible ambiguities in a direct way an inverse value can be provided explicitly for
that particular scale (compuInverseValue).

• As the diagram shows, CompuScaleContent is an abstract meta-class. A num-
ber of derived meta-classes allow the specification of a conversion formula in a
variety of ways, including:

– mapping the whole interval to a constant (CompuConst)

– providing rational coefficients of the conversion formula
(CompuRationalCoeffs)

• The rational function is specified as rational coefficients for the numerator
(compuNumerator) and the denominator (compuDenominator). CompuNom-
inatorDenominator can have as many V elements as needed for the rational
function. The sequence of the values V carries the information for the exponents,
that means the first V is the coefficient for x0, the second V is the coefficient for
x1, etc. With this sequence the values of the exponents can be entirely repre-
sented.

Class 〈〈atpObject〉〉 Compu
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::ComputationMethod
Class
Desc.

109 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description
compu
Content
Type

Compu
Content 1 aggregation

compuDe-
faultValue Compu

Const 0..1 aggregation

This property can be used to specify an output
value for a conversion formula, if the value to
be converted lies outside the plausibility limit.
Although this is possible for all conversion
formulae, it is especially valid for variables
with tabular conversion formulae.

Table 4.30: Compu

Class 〈〈atpObject〉〉 CompuContent (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::ComputationMethod
Class
Desc.
Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description

Table 4.31: CompuContent

Class 〈〈atpObject〉〉 CompuScale
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::ComputationMethod
Class
Desc.
Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description
desc MlData2 0..1 aggregation <desc> represents a general but brief

description of the object in question.
compu
ScaleCon-
tentsType

Compu
Scale
Contents

0..1 aggregation

lowerLimit Limit 0..1 aggregation

This element specifies the lower limit of a
closed, half-open or open interval. It can also
be set to infinity by setting the attribute
INTERVAL-TYPE to INFINITE. No value has
to be set in the case of an infinite interval.

shortLabel Identifier 0..1 aggregation

This element specifies a short name for the
particular scale. The name can for example
be used to derive a programming language
identifier.

110 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

upperLimit Limit 0..1 aggregation

This element specifies the upper limit of a
closed, half-open or open interval. It can also
be set to infinity by setting the attribute
INTERVAL-TYPE to INFINITE. No value has
to be set in the case of an infinite interval.

Table 4.32: CompuScale

Class 〈〈atpObject〉〉 CompuScales
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::ComputationMethod
Class
Desc.
Base
Class(es) CompuContent

Attribute Datatype Mul. Link Type Description
compu
Scale Compu

Scale * aggregation

Table 4.33: CompuScales

Class 〈〈atpObject〉〉 CompuScaleContents (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::ComputationMethod
Class
Desc.
Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description

Table 4.34: CompuScaleContents

Class 〈〈atpObject〉〉 CompuRationalCoeffs
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::ComputationMethod
Class
Desc.
Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description

compuDe-
nominator

Compu
Nominator
Denomina-
tor

1 aggregation

compu
Numerator

Compu
Nominator
Denomina-
tor

1 aggregation

Table 4.35: CompuRationalCoeffs

Class 〈〈atpObject〉〉 CompuConst

111 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::ComputationMethod
Class
Desc.
Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description
compu
ConstCon-
tentType

Compu
Const
Content

1 aggregation

Table 4.36: CompuConst

For a detailed description of compuMethods, please refer to the ASAM MCD 2 Har-
monized Data Objects.

112 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5
A

S
A

M
C

at
eg

or
y

M
ea

ni
ng

S
pe

ci
fic

da
ta

D
ef

P
ro

ps
ID

E
N

TI
C

A
L

Th
is
C
o
m
p
u
M
e
t
h
o
d

ju
st

ha
nd

s
ov

er
th

e
in

te
rn

al
va

lu
e

w
ith

an
op

tio
na

l
un

it.

O
nl

y
th

e
ba

se
el

em
en

ts
ar

e
al

lo
w

ed
an

d
U
N
I
T
-
R
E
F

,P
H
Y
-
S
C
O
N
S
T
R

an
d

I
N
T
E
R
N
A
L
-
C
O
N
S
T
R

ar
e

op
tio

na
l.

Th
is

is
th

e
si

m
pl

es
t

ty
pe

of
a
C
o
m
-

p
u
M
e
t
h
o
d

.

LI
N

E
A

R
A

lin
ea

r
co

nv
er

si
on

ca
n

be
pe

rfo
rm

ed
in

tw
o

st
ep

s:
Th

e
in

te
rn

al
va

lu
e

is
m

ul
tip

lie
d

w
ith

a
fa

ct
or

;
af

te
r

th
at

,
an

of
f-

se
ti

s
ad

de
d

to
th

e
re

su
lt

of
th

e
m

ul
tip

lic
at

io
n.

E
xa

ct
ly

on
e
C
o
m
p
u
S
c
a
l
e

,w
ith

tw
o

V
in
c
o
m
p
u
N
o
m
i
n
a
t
o
r

an
d

on
V

in
c
o
m
p
u
D
e
n
o
m
i
n
a
t
o
r

.

S
C

A
LE

LI
N

E
A

R
U

se
d

fo
ra

pi
ec

ew
is

e
lin

-
ea

rc
on

ve
rs

io
n

m
or

e
th

an
on

e
C
O
M
P
U
-
S
C
A
L
E

ca
n

be
de

fin
ed

.
A

dd
iti

on
al

ly
th

er
e

ha
ve

to
be

th
e
U
P
P
E
R
-
L
I
M
I
T

an
d
L
O
W
E
R
-
L
I
M
I
T

el
em

en
ts

,w
hi

ch
de

fin
e

th
e

re
gi

on
of

va
lid

ity
fo

r
th

e
lin

ea
r

fu
nc

tio
n.

Th
e

bo
un

da
rie

s
of

th
e

re
gi

on
s

m
us

tn
ot

ov
er

la
p.

R
AT

FU
N

C
Th

e
ra

tio
na

l
fu

nc
tio

n
ty

pe
is

si
m

ila
r

to
th

e
lin

ea
r

ty
pe

w
ith

ou
t

th
e

re
st

ric
tio

ns
fo

r
th

e
C
O
M
P
U
-
N
U
M
E
R
A
T
O
R
s

an
d

C
O
M
P
U
-

D
E
N
O
M
I
N
A
T
O
R
s

.

It
ca

n
ha

ve
as

m
an

y
V
e
l
e
m
e
n
t
s

as
ne

ed
ed

fo
rt

he
ra

tio
na

lf
un

ct
io

n.
Th

e
se

qu
en

ce
of

th
e

va
lu

es
V

ca
rr

ie
s

th
e

in
fo

rm
at

io
n

fo
r

th
e

ex
po

ne
nt

s,
th

at
m

ea
ns

th
e

fir
st

V
is

th
e

co
ef

fic
ie

nt
fo

r
x0

,t
he

se
co

nd
V

is
th

e
co

ef
fic

ie
nt

fo
rx

1,
et

c.
W

ith
th

is
se

qu
en

ce
th

e
va

lu
es

of
th

e
ex

po
ne

nt
s

ca
n

be
en

tir
el

y
re

pr
es

en
te

d.
A

ra
tio

na
lf

un
ct

io
n

is
on

ly
ap

pl
ic

ab
le

fo
r

co
nv

er
si

on
s

in
th

e
di

re
ct

io
n

th
at

it
is

de
fin

ed
fo

r,
i.e

.
th

e
au

to
m

at
ic

ca
lc

ul
at

io
n

of
th

e
in

ve
rs

e
fu

nc
tio

n
is

no
ts

up
po

rt
ed

by
th

e
M

C
D

sy
st

em
.

S
C

A
LE

R
AT

FU
N

C
U

se
d

fo
r

pi
ec

ew
is

e
de

-
fin

ed
ra

tio
na

l
co

nv
er

-
si

on
.

113 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5
A

S
A

M
C

at
eg

or
y

M
ea

ni
ng

S
pe

ci
fic

da
ta

D
ef

P
ro

ps
TE

X
TT

A
B

LE
Th

e
ty

pe
TE

X
TT

A
B

LE
is

us
ed

fo
rt

ra
ns

fo
rm

at
io

ns
of

th
e

in
te

rn
al

va
lu

e
in

to
te

xt
ua

le
le

m
en

ts
.

U
N

IT
-R

E
F

an
d

P
H

Y
S

-C
O

N
S

TR
ar

e
no

t
al

lo
w

ed
.

C
O

M
P

U
-IN

TE
R

N
A

L-
TO

-P
H

Y
S

m
us

te
xi

st
w

ith
C

O
M

P
U

-S
C

A
LE

S
co

ns
is

tin
g

of
U

P
P

E
R

-L
IM

IT
an

d
LO

W
E

R
-L

IM
IT

.
Th

e
re

su
lt

is
pl

ac
ed

in
th

e
V

T
m

em
be

r
of

C
O

M
P

U
-

C
O

N
S

T.
Th

e
C

O
M

P
U

-D
E

FA
U

LT
VA

LU
E

is
op

tio
na

l.
If

th
e

re
ve

rs
e

ca
lc

u-
la

tio
n

is
ne

ed
ed

th
en

fo
r

ea
ch

sc
al

e
th

e
C

O
M

P
U

-IN
V

E
R

S
E

-V
A

LU
E

ca
n

be
us

ed
to

de
fin

e
th

e
re

ve
rs

e
ca

lc
ul

at
io

n
re

su
lt.

If
no

in
ve

rs
e

va
lu

e
is

ex
pl

ic
itl

y
de

fin
ed

th
en

th
e

sm
al

le
st

po
ss

ib
le

va
lu

e
of

th
e

sc
al

e1
2

w
ill

be
us

ed
as

re
su

lt
of

th
e

re
ve

rs
e

ca
lc

ul
at

io
n.

TA
B

N
O

IN
TP

S
im

ila
r

to
TE

X
TT

A
B

LE
bu

tf
or

nu
m

er
ic

al
va

lu
es

.
Th

e
va

lu
es

pe
rs

ca
le

ar
e

de
fin

ed
in
c
o
m
p
u
C
o
n
s
t

.

Ta
bl

e
4.

37
:

A
S

A
M

co
m

pu
M

et
ho

d

114 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Class 〈〈atpObject〉〉 CompuScaleRationalFormula
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::ComputationMethod
Class
Desc.
Base
Class(es) CompuScaleContents

Attribute Datatype Mul. Link Type Description
compu
Rational
Coeffs

Compu
Rational
Coeffs

1 aggregation

Table 4.38: CompuScaleRationalFormula

Class 〈〈atpObject〉〉 CompuScaleConstantContents
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::ComputationMethod
Class
Desc.
Base
Class(es) CompuScaleContents

Attribute Datatype Mul. Link Type Description
compu
Const Compu

Const 1 aggregation

Table 4.39: CompuScaleConstantContents

Class 〈〈atpMixed〉〉 CompuNominatorDenominator
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::ComputationMethod
Class
Desc.
Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description
v String 1 aggregation Use <v> to enter a numerical value.

vf Vf 1 aggregation

Value calculated via a system constant. This
element is included in every case, where
parameters should be generated from
numerical values during compile time (not
runtime!). Thus for example, the influence of
the cylinder number on conversion formulae,
can be introduced in a repeatable manner.

Table 4.40: CompuNominatorDenominator

4.5.1.1 Example for Enumeration

The following example illustrates how an enumeration is specified using Com-
puMethod.

115 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

<COMPU-METHOD>
<SHORT-NAME>boolean</SHORT-NAME>
<CATEGORY>TEXTTABLE</CATEGORY>
<COMPU-INTERNAL-TO-PHYS>

<COMPU-SCALES>
<COMPU-SCALE>

<LOWER-LIMIT INTEVAL-TYPE="CLOSED">0</LOWER-LIMIT>
<UPPER-LIMIT INTEVAL-TYPE="CLOSED">0</UPPER-LIMIT>
<COMPU-CONST>

<VT>false</VT>
</COMPU-CONST>

</COMPU-SCALE>
<COMPU-SCALE>

<LOWER-LIMIT INTEVAL-TYPE="CLOSED">1</LOWER-LIMIT>
<UPPER-LIMIT INTEVAL-TYPE="CLOSED">1</UPPER-LIMIT>
<COMPU-CONST>

<VT>true</VT>
</COMPU-CONST>

</COMPU-SCALE>
</COMPU-SCALES>

</COMPU-INTERNAL-TO-PHYS>
</COMPU-METHOD>

4.5.1.2 Example for linear conversion

The following example illustrates how a linear conversion is specified using Com-
puMethod.

F[kmh] = 30[kmh] + 2[kmh] ∗ x
<COMPU-METHOD>

<SHORT-NAME>linear</SHORT-NAME>
<CATEGORY>LINEAR</CATEGORY>
<UNIT-REF>kmh</UNIT-REF>
<COMPU-INTERNAL-TO-PHYS>

<COMPU-SCALES>
<COMPU-SCALE>

<COMPU-RATIONAL-COEFFS>
<COMPU-NUMERATOR>

<V>30</V>
<V>2</V>

</COMPU-NUMERATOR>
<COMPU-DENOMINATOR>

<V>1</V>
</COMPU-DENOMINATOR>

</COMPU-RATIONAL-COEFFS>
<COMPU-SCALE>

</COMPU-SCALES>
</COMPU-INTERNAL-TO-PHYS>

</COMPU-METHOD>

116 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

4.5.2 Physical Units

An important part of the semantics associated with a data type is its physical dimen-
sion. Units are used to augment the value with additional information like m/s or liter.
That is necessary for a correct interpretation of the physical value for input and output
processes.

The conversion of values into other units like km/h into miles/h is also possible. There-
fore the unit involves information about its physical dimensions. The substructure of
physical dimensions defines all used quantities in the SI-System 1 (e.g. velocity as
length/time corresponds to m/s).

The unit references one physical dimension. If the physical dimensions of two units are
identical, a conversion between them is possible. Figure 4.9 depicts the concept how
units are defined.

ARElement

Units::Unit

+ factorSiToUnit: Float [0..1]
+ offsetSiToUnit: Float [0..1]

ARElement

Units::PhysicalDimension

+ currentExp: Integer [0..1]
+ lengthExp: Integer [0..1]
+ luminousIntensityExp: Integer [0..1]
+ massExp: Integer [0..1]
+ molarAmountExp: Integer [0..1]
+ temperatureExp: Integer [0..1]
+ timeExp: Integer [0..1]

MixedContentForUnitNames

«atpMixedString»
SingleLanguageData::

SingleLanguageUnitNames

Units::UnitSpec

+ category: String [0..1]

+displayName 0..1

+physicalDimension

0..1

+physicalDimension 0..*

+unit 0..*

Figure 4.9: Definition of SI based units

For a detailed description of these elements please refer to the ASAM MCD 2 Harmo-
nized Data Objects. Standard units are already predefined for AUTOSAR in form of a
description file.

Class 〈〈atpObject〉〉 Unit
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Units

1For the definition of what SI units are, see http://physics.nist.gov/cuu/Units/

117 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Class
Desc.

This is a physical measurement unit. All units that might be defined should stem from
SI units. In order to convert one unit into another factor and offset are defined. For the
calculation from SI-unit to the defined unit the factor (factorSiToUnit) and the offset
(offsetSiToUnit) are applied:

unit = siUnit * factorSiToUnit + offsetSiToUnit

For the calculation from a unit to SI-unit the reciprocal of the factor (factorSiToUnit)
and the negation of the offset (offsetSiToUnit) are applied:

siUnit = (unit - offsetSiToUnit) / factorSiToUnit
Base
Class(es) ARElement

Attribute Datatype Mul. Link Type Description
display
Name SlData3 0..1 aggregation

factorSiTo
Unit Float 0..1 aggregation this is the factor for the convesion from and to

siUnits.

offsetSiTo
Unit Float 0..1 aggregation this is the offset for the convesion from and to

siUnits.

physical
Dimension Physical

Dimension 0..1 reference

Table 4.41: Unit

For basing a new unit directly upon SI units an exponent for each of the seven fun-
damental dimensions and its corresponding SI unit needs to be specified. Negative
exponents are allowed. Note that quantities like ”%” are not derived from SI units and
therefore have no association to a physical dimension.

If a new unit is based on an existing unit that has been defined earlier, a factor and
offset, which are applied to the referenced unit, need to be specified.

Class 〈〈atpObject〉〉 PhysicalDimension
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Units

Class
Desc.

This class represents a physical dimension.
If the physical dimension of two units is identical a conversion between them is
possible. The conversion between units is related to the definition of the physical
dimension.

Base
Class(es) ARElement

Attribute Datatype Mul. Link Type Description
currentExp Integer 0..1 aggregation the exponent of the physical dimension

”electric current”
lengthExp Integer 0..1 aggregation The exponent of the physical dimension

”length”

118 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

luminous
Intensity
Exp Integer 0..1 aggregation The exponent of the physical dimension

”luminous intensity”

massExp Integer 0..1 aggregation The exponent of the physical dimension
”mass”

molar
Amount
Exp Integer 0..1 aggregation The exponent of the physical dimension

”quantity of substance”

temperature
Exp Integer 0..1 aggregation The exponent of the physical dimension

”temperature”

timeExp Integer 0..1 aggregation The exponent of the physical dimension ”time”

Table 4.42: PhysicalDimension

4.5.3 Base Type

BaseType is used to specify in detail the Data Implementation level mentioned in chap-
ter 4.1. For a detailed description of BaseTypes, please refer to the ASAM MCD 2
Harmonized Data Objects2. This information is necessary to create an A2L-File.

Class 〈〈atpObject〉〉 BaseType (abstract)
Package M2::AUTOSARTemplates::CommonStructure::BaseTypes
Class
Desc.
Base
Class(es) ARElement

Attribute Datatype Mul. Link Type Description
baseType
Definition
Type

BaseType
Definition 1 aggregation

Table 4.43: BaseType

Class 〈〈atpObject〉〉 BaseTypeDefinition (abstract)
Package M2::AUTOSARTemplates::CommonStructure::BaseTypes
Class
Desc.
Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description

Table 4.44: BaseTypeDefinition

2The definition of Harmonized Data Objects can be retrieved from ASAM at www.asam.net. Access
is limited to ASAM members

119 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Class 〈〈atpObject〉〉 BaseTypeDirectDefinition
Package M2::AUTOSARTemplates::CommonStructure::BaseTypes
Class
Desc. This BaseType is defined directly (as opposite to a derived BaseType)

Base
Class(es) BaseTypeDefinition

Attribute Datatype Mul. Link Type Description
baseType
Encoding

BaseType
Encoding
String

1 aggregation
This specifies, how an object of the current
BaseType is encode eg. in an ECU in a
message sequence.

baseType
SizeDefin-
tionType

Base
TypeSize
Definition

1 aggregation
This aggregation is necessary to specify the
exact sequence of properties in the xml-file. It
represents the size of the BaseType.

byteOrder ByteOrder 0..1 aggregation

This element specifies the byte order of the
parent element. The byte order is defined with
the attribute TYPE. Possible values are:

* MOST-SIGNIFICANT-BYTE-FIRST

* MOST-SIGNIFICANT-BYTE-LAST

memAlign-
ment Integer 0..1 aggregation

describes the alignment of the memory object
in bits. E.g. ”1” specifies, that the object in
question is aligned to a byte while ”32”
specifies that it is aligned four byte.

Table 4.45: BaseTypeDirectDefinition

Class BaseTypeSizeDefintion (abstract)

Package M2::M2::AUTOSARTemplates::SWComponentTemplate::MeasurementAnd
Calibration::BaseTypes

Class
Desc.
Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description

Table 4.46: BaseTypeSizeDefintion

Class 〈〈atpObject〉〉 BaseTypeAbsSize
Package M2::AUTOSARTemplates::CommonStructure::BaseTypes
Class
Desc. This is the absolute size of the basetype. In this case the BaseType is of fixed lenght.

Base
Class(es) BaseTypeSizeDefinition

Attribute Datatype Mul. Link Type Description
baseType
Size Integer 0..1 aggregation

Describes the length of the data type specified
in the container in bits.

Table 4.47: BaseTypeAbsSize

120 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Class 〈〈atpObject〉〉 BaseTypeMaxSize
Package M2::AUTOSARTemplates::CommonStructure::BaseTypes
Class
Desc. This is the maximum size of a BaseType in case of a dynamic BaseType.

Base
Class(es) BaseTypeSizeDefinition

Attribute Datatype Mul. Link Type Description
maxBase
TypeSize Integer 0..1 aggregation

Describes the maximum length of the
BaseType in bits

Table 4.48: BaseTypeMaxSize

ARElement

BaseTypes::
BaseType

BaseTypes::BaseTypeAbsSize

+ baseTypeSize: Integer [0..1]

BaseTypes::
BaseTypeDefinition

BaseTypes::BaseTypeDirectDefinition

+ baseTypeEncoding: BaseTypeEncodingString
+ memAlignment: Integer [0..1]

BaseTypes::BaseTypeMaxSize

+ maxBaseTypeSize: Integer [0..1]

BaseTypes::
BaseTypeSizeDefinition

ByteOrder::ByteOrder

+ content: ByteOrderEnum
+ type: ByteOrderEnum [0..1]

+byteOrder

0..1

+baseTypeSizeDefintionType 1

+baseTypeDefinitionType 1

Figure 4.10: BaseType

121 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

The properties of a BaseType are:

• For CATEGORY only the values FIXED LENGTH and VARIABLE LENGTH are sup-
ported. In case of FIXED LENGTH BaseTypeSize is filled with content. In case
of VARIABLE LENGTH BaseTypeMaxSize is filled. In both cases the size is
specified in bits.

• baseTypeEncoding specifies how the values of the base type are encoded.
The Supported values for this member are:

– 1C: One’s complement

– 2C: Two’s complement

– BCD-P: Packed Binary Coded Decimals

– BCD-UP: Unpacked Binary Coded Decimals

– DSP-FRACTIONAL: Digital Signal Processor

– SM: Sign Magnitude

– IEEE754: floating point numbers

– ISO-8859-1: ASCII-Strings

– ISO-8859-2: ASCII-Strings

– WINDOWS-1252: ASCII-Strings

– UTF-8: UCS Transformation Format 8

– UCS-2: Universal Character Set 2

– NONE: Unsigned Integer

• memAlignment describes the alignment of the memory object in bits. For ex-
ample, if memAlignment is set to 16, the data object in question is aligned to a
memory address that can be divided by 2.

• ByteOrder specifies the ordering of bits in memory. Possible values are MOST-
SIGNIFICANT-BYTE-FIRST and MOST-SIGNIFICANT-BYTE-LAST.

Class 〈〈atpObject〉〉 ByteOrder
Package M2::AUTOSARTemplates::CommonStructure::ByteOrder

Class
Desc.

This element specifies the byte order of the parent element. The byte order is defined
with the attribute TYPE. Possible values are:

* MOST-SIGNIFICANT-BYTE-FIRST

* MOST-SIGNIFICANT-BYTE-LAST
Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description
content ByteOrder

Enum 1 aggregation

122 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Table 4.49: ByteOrder

123 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

5 Internal Behavior

5.1 Introduction

This chapter focuses on the description of the InternalBehavior meta-class and
the various meta-classes it aggregates. An overview of the meta-class is sketched in
Figure 5.1.

Class 〈〈atpObject〉〉 InternalBehavior
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior
Class
Desc.

The internal behavior of an atomic software component describes the RTE relevant
aspects of a component, i.e. the runnable entities and the events they respond to.

Base
Class(es) ARElement

Attribute Datatype Mul. Link Type Description

component
Atomic
Software
Compo-
nentType

1 reference The component this behavior is defined for.

event RTEEvent * aggregation

exclusive
Area Exclusive

Area * aggregation

initValue
LocalPa-
rameterInit
ValueAs-
signment

* aggregation

inter
Runnable
Variable

Inter
Runnable
Variable

* aggregation

perIn-
stance
Calprm

Calprm
Element
Prototype

* aggregation

the perInstanceCalprm is aggregated in the
internal behavior, since it is read only.
Therefore not protection mechanisms are
necessary regardless which runnable
performs the access

perIn-
stance
Memory

PerIn-
stance
Memory

* aggregation Defines a per-instance memory object needed
by this software component.

portAPI
Option PortAPI

Option * aggregation
Options for generating the signature of
port-related calls from a runnable to the RTE
and vice versa.

runnable Runnable
Entity 1..* aggregation

service
Needs Service

Needs * aggregation the requirements on an AUTOSAR Service
defined by this InternalBehavior

shared
Calprm

Calprm
Element
Prototype

* aggregation

124 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

supports
MultipleIn-
stantiation Boolean 1 aggregation

Indicate whether the corresponding
software-component can be multiply
instantiated on one ECU. In this case the
attribute will result in an appropriate
component API on programming language
level (with or without instance handle).

Table 5.1: InternalBehavior

ARElement

InternalBehavior

ExecutableEntity

RunnableEntity

Identifiable

RTEEvent

Identifiable

ExclusiveArea

ComponentType

AtomicSoftwareComponentType

Identi fiable

PerInstanceMemory

DataPrototype

InterRunnableVariable
PortAPIOption

DataPrototype

CalprmElementPrototype

Identifiable

ServiceNeeds

Implementation

SwcImplementation

+perInstanceMemory *

+canEnterExclusiveArea

0..*

+runsInsideExclusiveArea

0..*

+sharedCalprm 0..*

+exclusiveArea *

+perInstanceCalprm 0..*
+portAPIOption 0..*

+serviceNeeds 0..*

+interRunnableVariable 0..*

+runnable 1..*

+behavior

*

+behavior 1*

+component 1

+event *

Figure 5.1: InternalBehavior

5.2 Runnable Entity

The concept of RunnableEntity (more details can be found in Figure 5.2) is defined
in the specification of the Virtual Function Bus [3]. RunnableEntities are
the smallest code-fragments that are provided by the component and are (at least
indirectly) a subject for scheduling by the underlying operating system.

125 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean
+ minimumStartInterval: Float
+ symbol: String

Identifiable

DataReadAccess

Identifiable

DataSendPoint

Identifiable

DataWriteAccess

Identifiable

ServerCallPoint

+ timeout: Float

Identifiable

WaitPoint

+ timeout: Float

DataPrototype

InterRunnableVariable

+ communicationApproach: CommunicationApproachType

ARElement

InternalBehavior

+ supportsMultipleInstantiation: Boolean

Identifiable

DataReceivePoint

ExecutableEntity

BswModuleEntity

+interRunnableVariable 0..*+runnable 1..*

+behavior

* +writtenVariable*

*

+readVariable

*

+bswEntity

0..1

+dataSendPoint

*

+runnable

+dataReadAccess

*

+runnable

+waitPoint

*

+runnable

+dataReceivePoint

*

+runnable

+dataWriteAccess

*

+runnable

+serverCallPoint

*

+runnable

Figure 5.2: Details of RunnableEntity

Please note that it is intentionally not possible for CompositionType to be ref-
erenced by InternalBehavior. Consequently, CompositionTypes don’t have
RunnableEntities by themselves. Only the AtomicSoftwareComponentType
that are populating a CompositionType in the role of ComponentPrototypes may
have RunnableEntities. This correlation is depicted in Figure 5.3.

126 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

ARElement

«atpType»
ComponentType

«atpType»
CompositionType

AtomicSoftwareComponentType

ARElement

InternalBehavior

+ supportsMultipleInstantiation: Boolean

ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean
+ minimumStartInterval: Float
+ symbol: String

*

+component 1

+runnable

1..*

+behavior

Figure 5.3: Only AtomicSoftwareComponentTypes may have RunnableEntities

Please note that RunnableEntities exist in several categories that have different
properties. Please find more explanation about categories of RunnableEntities in
the specification document of the VFB [3]. Note further that this document emphasizes
on RunnableEntities of category 1A, 1B, and 2.

Class 〈〈atpObject〉〉 RunnableEntity
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior

Class
Desc.

The runnable entities are the smallest code-fragments that are provided by the
component and are executed in the RTE. Runnables are for instance set up to
respond to data reception or operation invocation on a server.

Base
Class(es) ExecutableEntity

Attribute Datatype Mul. Link Type Description

bswEntity BswMod-
uleEntity 0..1 reference

Optional reference to the corresponding
BswModuleEntity in case the RunnableEntity
is implemented as part of a BSW module (in
the case of an AUTOSAR Service, a Complex
Device Driver or an ECU Abstraction). It can
be used by a tool to find relevant information
on the behavior, e.g. whether the bswEntity
shall be running in interrupt context.

calprm
Access Calprm

Access * aggregation

127 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

canBe
Invoked
Concur-
rently

Boolean 1 aggregation

Normally, this is FALSE.
When this is TRUE, it is allowed that this
runnable entity is invoked concurrently (even
for one instance of the SW-C), which implies
that it is the responsibility of the
implementation of the runnable to take care of
this form of concurrency.

canEnter
Exclusive
Area

Exclusive
Area * reference

This means that the runnable can enter/leave
the referenced exclusive area through explicit
API calls.

dataRead
Access DataRead

Access * aggregation Runnable has read access to data element

dataRe-
ceivePoint DataRe-

ceivePoint * aggregation Data receive points of this runnable.

dataSend
Point DataSend

Point * aggregation The runnable has data send point.

dataWrite
Access DataWrite

Access * aggregation Runnable has write access to data element

minimum
StartInter-
val Float 1 aggregation

Specifies the time in seconds which two starts
of a RunnableEntity are guaranteed to be
separated.

mode
Switch
Point

Mode
Switch
Point

* aggregation The runnable has a mode switch point.

perIn-
stance
Calprm
Access

Calprm
Element
Prototype

* reference

readVari-
able

Inter
Runnable
Variable

* reference Inter-runnable variables that are read by this
Runnable.

runsInside
Exclusive
Area

Exclusive
Area * reference The runnable entity runs inside the referenced

exclusive area

serverCall
Point ServerCall

Point * aggregation The runnable has server call point.

shared
Calprm
Access

Calprm
Element
Prototype

* reference

128 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

symbol String 1 aggregation

The symbol describing this runnable’s entry
point. This is considered the API of the
runnable and is required during the RTE
contract phase.

waitPoint WaitPoint * aggregation The runnable has wait point.

written
Variable

Inter
Runnable
Variable

* reference Inter-runnable variables that are written by
Runnable.

Table 5.2: RunnableEntity

The attribute minimumStartInterval defines the time which the RTE will guarantee
between two starts of this RunnableEntity.

Please note that the formal definition of the semantics of a RunnableEntity has
strong relations to the specification of the AUTOSAR RTE [1]. The definition of the
RTE semantics is not in the scope of this document. However, the formal definition
requires some background discussion that can’t be completely left out of this document.
Otherwise the meaning of specific model elements could not be understood properly.

5.2.1 Concurrency and Reentrancy of a RunnableEntity that cannot be Invoked
Concurrently

This section applies to the case that the attribute canBeInvokedConcurrently is
FALSE. During runtime, each RunnableEntity of each instance of an AtomicSoft-
wareComponentType is (by being a member of an AUTOSAR OS task) in one of three
states:

• Suspended: the initial state, when the RunnableEntity is passive and can be
started

• Enabled: the RunnableEntity should run (because for example a message
has been received on a PortPrototype of an AtomicSoftwareComponent-
Type or a TimingEvent occurs).

• Running: the RunnableEntity is running within a running task. From this
state, the RunnableEntity can either perform a transition to Enabled (if it has
been preempted because the task has been preempted) or to Suspended.

129 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Figure 5.4: Task-derived run-time states of a RunnableEntity

The InternalBehavior describes for each RunnableEntity, when a transition
from Suspended to Enabled should occur. This is done using the concept of an
RTEEvent.

When a RunnableEntity is in state Enabled, the RTE can decide to start run-
ning the RunnableEntity. The delay between entering the state Enabled (e.g. a
message has been received in response to which the RunnableEntity should run)
and moving into the state Running (the first instruction of the RunnableEntity has
been executed) depends on the scheduling strategy of the RTE, i.e. the mapping of
RunnableEntities on AUTOSAR OS tasks.

The transition from the state Running into the state Suspended is in the hands of the
RunnableEntity: the transition occurs when the RunnableEntity returns (thereby
handing over control to the AUTOSAR OS [15]). Some RunnableEntities (like
cat. 2 RunnableEntities) might never return to the ”Suspended” state once they
entered the ”Running” state.

They might enter the ”Enabled” state when being preempted. The same applies if a
RunnableEntity needs to wait for a WaitPoint to be unblocked.

Cat. 1A and 1B RunnableEntities will typically return after having executed a spe-
cific finite algorithm (the execution time of which might be provided).

In most cases RunnableEntities will not be scheduled individually but as parts
of AUTOSAR OS tasks. Please note that the concept of runtime states as depicted
in Figure 5.4 has been created along the example of the OSEK Operating System
specification.

In case the internal behavior defines a RunnableEntity as one that cannot be
invoked concurrently, it is the responsibility of the RTE to make sure that the
RunnableEntity is never started concurrently (in, for example, two AUTOSAR OS
tasks). This implies that the implementation of the AtomicSoftwareComponent-
Type does not need to worry about concurrency issues.

For example: The internal behavior of an AtomicSoftwareComponentType My-
ComponentType describes a RunnableEntity R1, which should be enabled when
an operation on a client-server p-port of the AtomicSoftwareComponentType is in-
voked. The AtomicSoftwareComponentType specifies that the RunnableEntity
R1 cannot be invoked concurrently.

The AtomicSoftwareComponentType MyComponentType is instantiated on an
ECU. When a call of the operation is received, the corresponding instance of the
RunnableEntity R1 is enabled and the RTE will start executing the RunnableEn-
tity (the RunnableEntity is in state running) in a task eventually managed by
the AUTOSAR OS.

If another call of the operation is received while the RunnableEntity is in state run-
ning, it is not allowed that the RTE runs the RunnableEntity again in a second

130 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

task. Rather, the RTE has to wait (and maybe queue the second incoming request)
until the RunnableEntity has returned and has moved to the Suspended state.

5.2.2 Concurrency and Reentrancy of a RunnableEntity that can be Invoked
Concurrently

This section applies to the case that the attribute canBeInvokedConcurrently is
TRUE. In this case, it is allowed that the same RunnableEntity is running several
times concurrently in different AUTOSAR OS tasks. This implies that the state machine
defined in Figure 5.4 is not the state of the RunnableEntity any more, but can be
cloned an arbitrary number of times.

Note that the software-component description itself does not put any bounds on the
number of concurrent invocations of the RunnableEntity that are allowed. The
software-component description only specifies whether the RunnableEntity can be
invoked concurrently or not.

Allowing concurrent invocation of a RunnableEntity implies that the implementation
of the AtomicSoftwareComponentType needs to take care of this additional form
of concurrency.

For example: The internal behavior of a component-type MyComponentType describes
a RunnableEntity R1, which should be enabled when an OperationPrototype
on a PPortPrototype typed by a ClientServerInterface of the AtomicSoft-
wareComponentType is invoked.

The AtomicSoftwareComponentType specifies that the RunnableEntity R1 can
be invoked concurrently. The AtomicSoftwareComponentType MyComponentType
is instantiated on an ECU. When a call of the OperationPrototype is received, the
corresponding instance of the RunnableEntity R1 is enabled and the RTE will start
executing the RunnableEntity (the RunnableEntity is in state running) in a task
eventually managed by the AUTOSAR OS.

If another call of the OperationPrototype is received, it is allowed that the same
RunnableEntity is started again in a different task.

A typical use-case of concurrent RunnableEntities are the AUTOSAR services.
The AUTOSAR services will typically take care of concurrency internally: several
software-components can directly use the services in parallel. The ECU-integrator
could then decide that the RunnableEntity implementing the AUTOSAR service
runs directly in the context (in the task) of the AtomicSoftwareComponentType in-
voking the service.

This is a very efficient, direct coupling between the client and the server: the connector
between the client and the server is reduced to a local function-call.

131 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

5.2.3 Additional Remarks and Clarifications

5.2.3.1 Reentrancy and Multiple Instantiation

Note that it is useful to consider the combinations of the attributes supportsMulti-
pleInstantiation and canBeInvokedConcurrently.

supportsMultiple-
Instantiation

canBeInvoked-
Concurrently

Implication for an implementation of a
RunnableEntity

FALSE FALSE This implies that the implementation of the
RunnableEntity will never be invoked concur-
rently from several tasks. The implementation
does not need to care about reentrancy issues
and can typically use static variables to
store state.

TRUE FALSE In case there are several instances of the
same AtomicSoftwareComponentType on
the local ECU, the implementation of the
RunnableEntity can still be invoked concur-
rently from several tasks. However, there will be
no concurrent invocations of the implementation
with the same instance handle. To ensure
that this is safe, the implementation will typically
use per-instance memory.

FALSE/TRUE TRUE In this case the RunnableEntity can be in-
voked concurrently from several tasks, even with
the same instance handle.

Table 5.3: supportsMultipleInstantiation vs. canBeInvokedConcurrently

Note that the combination of supportsMultipleInstantiation=FALSE and
canBeInvokedConcurrently=FALSE is only uncritical in case each RunnableEn-
tity is implemented by its own C-function.

In case the AtomicSoftwareComponentType implementation decides to map sev-
eral RunnableEntities to the same symbol there are reentrancy problems to be
sorted out. However, this scenario is not supported by the RTE [1] anyway and must
therefore be avoided.

5.2.3.2 Reentrancy and ”Library Functions”

Note that all code that is called by different RunnableEntities (like e.g. library
routines, etc.) must obviously be reentrant. A filter algorithm implemented in C, for
example, is not allowed to store values from previous runs by means of static variables
or variables with external binding.

132 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

5.2.4 Timed Activation of Runnable Entities

In many cases, RunnableEntities need to be activated in response to timing events
rather than related to communication (e.g. the reception of a response to an asyn-
chronous operation invocation). Many RunnableEntities will need to run cyclically
with a fixed rate.

The approach taken in the software-component description is to define so-called
TimingEvents (please find more details in Figure 5.5) as special kinds of
RTEEvents. So far, only one kind of timing-related RTEEvent has been defined:
a simple periodic TimingEvent.

Identifiable

RTEEvent

ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean
+ symbol: CIdentifier

TimingEvent

+ period: Float

+startOnEvent

0..1

Figure 5.5: Periodic activation of RunnableEntities

Therefore, if the InternalBehavior of an AtomicSoftwareComponentType re-
quires that the RTE executes certain RunnableEntities periodically, the description
needs to define a TimingEvent with the desired period. This TimingEvent then
contains a reference to the Runnable that needs to be executed with this period.

Class 〈〈atpObject〉〉 TimingEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE
Events

Class
Desc.

TimingEvent references the runnable that need to be started in response to the
TimingEvent

Base
Class(es) RTEEvent

Attribute Datatype Mul. Link Type Description
period Float 1 aggregation Period of timing event in seconds.

Table 5.4: TimingEvent

133 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

5.3 RTEEvent

During execution, several RTEEvents will occur, such as the reception of a remote
invocation of an OperationPrototype on a PPortPrototype or a timeout on an
RPortPrototype that is not receiving the DataElementPrototypes it expects to
receive. Describing an RTEEvent includes two aspects:

1. defining an RTEEvent

2. defining how the RTE should deal with the RTEEvent when it occurs.

Class 〈〈atpObject〉〉 RTEEvent (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE
Events

Class
Desc. Abstract base class for all RTE-related events

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description

modeDe-
pendency

Mode
Disabling
Depen-
dency

0..1 aggregation Provides the means to describe the Modes
this RTEEvent can be disabled by.

startOn
Event Runnable

Entity 0..1 reference Runnable starts when event occurs

Table 5.5: RTEEvent

Class 〈〈atpObject〉〉 AsynchronousServerCallReturnsEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE
Events

Class
Desc. This event is raised when an asynchronous server call is finished.

Base
Class(es) RTEEvent

Attribute Datatype Mul. Link Type Description
event
Source

Asynchronous
ServerCall
Point

1 reference The referenced server call point

Table 5.6: AsynchronousServerCallReturnsEvent

Class 〈〈atpObject〉〉 DataSendCompletedEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE
Events

Class
Desc.

The event is raised when the referenced data elements have been sent or an error
occurs.

Base
Class(es) RTEEvent

Attribute Datatype Mul. Link Type Description

134 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

event
Source DataSend

Point 1 reference Data send point that triggers the event.

Table 5.7: DataSendCompletedEvent

Class 〈〈atpObject〉〉 DataReceivedEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE
Events

Class
Desc. The event is raised when the referenced data elements are received.

Base
Class(es) RTEEvent

Attribute Datatype Mul. Link Type Description

data DataEl-
ement
Prototype

1 instanceRef Data element referenced by event

Table 5.8: DataReceivedEvent

Class 〈〈atpObject〉〉 DataReceiveErrorEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE
Events

Class
Desc.

This event is raised by the RTE when the Com layer detects and notifies an error
concerning the reception of the referenced data element.

Base
Class(es) RTEEvent

Attribute Datatype Mul. Link Type Description

data DataEl-
ement
Prototype

1 instanceRef Data element referenced by event

Table 5.9: DataReceiveErrorEvent

Class 〈〈atpObject〉〉 OperationInvokedEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE
Events

Class
Desc. The OperationInvokedEvent references the OperationPrototype invoked by the client.

Base
Class(es) RTEEvent

Attribute Datatype Mul. Link Type Description
operation Operation

Prototype 1 instanceRef The operation to be executed as the
consequence of the event.

Table 5.10: OperationInvokedEvent

Class 〈〈atpObject〉〉 TimingEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE
Events

135 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Class
Desc.

TimingEvent references the runnable that need to be started in response to the
TimingEvent

Base
Class(es) RTEEvent

Attribute Datatype Mul. Link Type Description
period Float 1 aggregation Period of timing event in seconds.

Table 5.11: TimingEvent

Class 〈〈atpObject〉〉 ModeSwitchEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE
Events

Class
Desc. This event is listening to mode changes coming from the StateManager.

Base
Class(es) RTEEvent

Attribute Datatype Mul. Link Type Description

activation ModeAc-
tivation
Kind

1 aggregation Specifies if the event is activated on entering
or exiting the referenced Mode.

mode ModeDec-
laration 1 instanceRef Reference to the Mode that initiates the Mode

Switch Event.

Table 5.12: ModeSwitchEvent

Class 〈〈atpObject〉〉 ModeSwitchedAckEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE
Events

Class
Desc. The event is raised when the referenced mode have been received or an error occurs.

Base
Class(es) RTEEvent

Attribute Datatype Mul. Link Type Description
event
Source

Mode
Switch
Point

1 reference Mode switch point that triggers the event.

Table 5.13: ModeSwitchedAckEvent

As described in the Virtual Functional Bus specification [3], the RunnableEntities
of an AtomicSoftwareComponentType can interact with the occurrence of such
RTEEvents in two ways:

• the RTE can be instructed to enable a specific RunnableEntity when the
RTEEvent occurs

• the RTE can provide WaitPoints, that allow a RunnableEntity to block until
an RTEEvent in a set of RTEEvents occurs.

136 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

5.3.1 Defining an Event

The description of the InternalBehavior includes a description of all RTEEvents
that the InternalBehavior of the AtomicSoftwareComponentType relies on.
This RTEEvent shows up as an ”abstract” base-class (see Figure 5.6) in the meta-
model: the exact attributes of the RTEEvent depend on the specific sub-class of
RTEEvent that is used for the purpose.

Identifiable

RTEEvent

AsynchronousServerCallReturnsEvent

ServerCallPoint

AsynchronousServerCallPoint

DataSendCompletedEvent

Identifiable

DataSendPoint

DataReceivedEvent OperationInvokedEvent TimingEvent

+ period: Float

ModeSwitchEvent

+ activation: ModeActivationKind

Identi fiable

«atpStructureElement»
OperationPrototype

Identifiable

«atpStructureElement»
ModeDeclaration

DataPrototype

«atpPrototype»
DataElementPrototype

DataReceiveErrorEvent ModeSwitchedAckEvent

Identifiable

ModeSwitchPoint

Identifiable

«atpPrototype»
ModeDeclarationGroupPrototype

ARElement

«atpType»
ModeDeclarationGroup

0..*

«instanceRef»

+mode 1

+event 1

+eventSource 1

+initialMode 1

«isOfType»

+type

+event 0..1

+eventSource 1

+event 1

«instanceRef»

+operation 1

+event 0..1

«instanceRef»

+data 1

0..* «instanceRef»

+dataElement

1

+event *

«instanceRef»

+data 1

+event 0..1

+eventSource 1

0..*

«instanceRef»

+modeGroup 1

+modeDeclaration 1..*

Figure 5.6: Kinds of RTEEvents

The details of the various kinds of concrete RTEEvents (such as the TimingEvent,
DataSendCompletedEvent, etc.), is described in chapters 3.6.2, 3.6.3 and 5.2.4.

5.3.2 Defining how to Respond to an Event

If the software-component description contains a reference from an RTEEvent to a
RunnableEntity it is the responsibility of the RTE to trigger the execution of the
corresponding RunnableEntity when the RTEEvent occurs.

In case the RunnableEntity wants to block and wait for RTEEvents (which
makes the RunnableEntity into a cat. 2 RunnableEntity), the description of the
RunnableEntity may include the definition of a WaitPoint.

Such a WaitPoint (see Figure 5.7) contains a reference to all RTEEvents that can
unblock the specific WaitPoint. In other words: the WaitPoint will block until one
of the referenced RTEEvents occurs.

137 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Identifiable

RTEEvent

ARElement

InternalBehavior

+ supportsMultipleInstantiation: Boolean

Identi fiable

WaitPoint

+ timeout: Float

ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean
+ minimumStartInterval: Float
+ symbol: String

+event *
+runnable 1..*

+behavior

+startOnEvent

0..1

+waitPoint *

+runnable

*

+trigger 1

Figure 5.7: Description of the interaction between an RTEEvent and RunnableEnti-
ties

A single RunnableEntity can actually wait only at a single WaitPoint provided
that the RunnableEntity can only be scheduled a single time1. On the other hand,
it is in general possible that a single RTEEvent can be used to trigger WaitPoints in
different RunnableEntities.

Class 〈〈atpObject〉〉WaitPoint

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE
Events

Class
Desc. This defines a wait-point for which the runnable can wait.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description

timeout Float 1 aggregation
Time in seconds before the waitpoint times
out and the blocking wait call returns with an
error indicating the timeout.

trigger RTEEvent 1 reference Events this wait point is waiting for.

Table 5.14: WaitPoint

1This constraint is valid at least in the OSEK standard where an extended task (that can have wait
points) can only exist a single time in the context of the scheduler.

138 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

5.4 Communication among Runnable Entities

It is taken for granted that particular RunnableEntities within a specific Atomic-
SoftwareComponentType will need to communicate among each other. This implies
that the RTE need to provide synchronization mechanisms to the RunnableEntities
such that safe (in the multi-threading sense) exchange of data is possible.

Several concepts for implementing communication among RunnableEntities can
be identified. As an introduction, this section first describes the various techniques that
the RTE might use to provide efficient interaction between RunnableEntities within
one AtomicSoftwareComponentType.

Next, two possible approaches for formal specification of this kind of communication
are described:

• Specifying that several RunnableEntities belong in a specific Exclu-
siveArea

• Specifying the data exchanged between the RunnableEntities

5.4.1 Background: the Issues

This section gives some background information and lists possible strategies concern-
ing the implementation of the RunnableEntities and the RTE w.r.t. efficient com-
munication between the RunnableEntities.

The communication among RunnableEntities can very efficiently be implemented
by means of ”sharing memory”2.

This is technically feasible because it is always guaranteed that the RunnableEnti-
ties within an AtomicSoftwareComponentType are always gathered at a specific
processing unit (in other words: distribution is not an option).

Note that the purpose of communication among the RunnableEntities is to estab-
lish a data flow scheme. The latter is a very popular pattern in the application of control
theory to automotive embedded systems. So if ”global variables” are used for establish-
ing internal communication among RunnableEntities they acquire the semantics
of so called state-messages.

Nevertheless, directly sharing memory between RunnableEntities requires a se-
rious problem to be solved: the guarantee of data consistency among communicat-
ing RunnableEntities. The RunnableEntities will indeed be mapped to tasks
so that one RunnableEntity of an AtomicSoftwareComponentType may be pre-
empted by a different RunnableEntity of the same AtomicSoftwareComponent-
Type.

2Please note that the term ”sharing memory” can be interpreted on different levels. It is e.g. in the C
language possible to use variables with external linkage (a.k.a. ”global variables”, although this term is
not officially defined by the C language) for the purpose of inter-Runnable communication.

139 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Please note that a purist approach to achieving data consistency not only applies to
single accesses of concurrently accessed variables. Rather, it would not be permitted
that the value of a concurrently accessed variable (with state-message semantics) is
unintentionally changed during the runtime of a RunnableEntity.

The following paragraphs describe some common strategies that can be used to en-
sure the required data-consistency. We do not attempt to describe the pros or cons of
these approaches.

5.4.1.1 Mutual Exclusion with Semaphores

Multi-threaded operating systems provide mutexes (mutual exclusion semaphores) that
protect access to an exclusive resource that is used from within several tasks.

The RTE could use these OS-provided mutexes to make sure that the RunnableEn-
tities sharing a memory-space would never run concurrently. The RTE would make
sure the task running the RunnableEntity has taken an appropriate mutex before
accessing the memory shared between the RunnableEntities.

5.4.1.2 Interrupt Disabling

Another alternative would be the disabling of interrupts during the run-time of
RunnableEntities or at least for a period in time identical to the interval from the
first to the last usage of a concurrently accessed variable in a RunnableEntity. This
approach could lead to seriously non-deterministic execution timing.

5.4.1.3 Priority Ceiling

Priority ceiling allows for a non-blocking protection of shared resources. Provided that
the priority scheme is static, the AUTOSAR OS is capable of temporarily raising the
priority of a task that attempts to access a shared resource to the highest priority of all
tasks that would ever attempt to access the resource.

By this means is technically impossible that a task in temporary possession of a re-
source is ever preempted by a task that attempts to access the resource as well.

5.4.1.4 Implicit Communication by Means of Variable Copies

Another alternative is the usage of copies of concurrently accessed variables with state
message semantics. Note that this approach directly corresponds to the semantics of
”implicit” sender-receiver communication (see 3.6.2.2).

140 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

This means in particular that for a concurrently used variable a copy is created on
which a RunnableEntity entity can work without any danger of data inconsistency.

This concept requires additional code to write the value of the concurrently accessed
variable to the copy before the RunnableEntity that accesses the variable is exe-
cuted. The value of the copy must be written back to the concurrently accessed variable
after the RunnableEntity has been terminated.

This concept is sketched in Figure 5.8. Since it would be too expensive and error-prone
to manually care about the copy routines it would be a good idea to leave the creation
of the additional code to a suitable code generator.

Figure 5.8: Generation of copy routines around RunnableEntities

The additional copy routines as sketched in Figure 5.8 already protect the particular
RunnableEntities from unintended changes of concurrently accessed variables. It
would, however, be possible to further optimize the process by reducing the additional
code at the beginning and end of each task (see Figure 5.9).

In addition, copy routines will only be inserted where appropriate, e.g. a copy routine
for writing the value of a copy back to the concurrently accessed variable will only be
inserted if the RunnableEntity has write access to the concurrently used variable.

Please note that the copy routines have to temporarily make sure that the copy process
is not interrupted in order to be capable of consistently copying the values from and to
the concurrently accessed variable. These periods, however, are supposed to be very
short compared with the overall run-time consumption of the RunnableEntity and
thus would not have a significant impact on the runtime behavior.

Figure 5.9: Optimized insertion of copy routines

Further optimization criteria can be applied, for example: it would be perfectly safe
to avoid the creation of copies for runnables that are scheduled in the task with the

141 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

highest priority of all tasks that (via contained runnables) access a certain concurrently
accessed variable.

In order to keep the application code free of any dependencies from the code gener-
ation, access to concurrently accessed variables will be guarded by macros that are
later resolved by the code generator.

The presence of the guard macros directly supports the reuse on the level of source
code. The reuse on the level of object code is only possible if the scheduling scenario
(in terms of the assignment of RunnableEntities to priority levels) does not change.

This concept can only be implemented properly with the aid of a code generator if the
variables in question can be identified. In other words: the description of an Atomic-
SoftwareComponentType has to expose all concurrently accessed variables to the
outside world.

5.4.2 Description possibility 1: Exclusive Area

This section describes how the concept of ExclusiveAreas can be used in the
description of the InternalBehavior of an AtomicSoftwareComponentType.
These ExclusiveAreas do not imply a specific implementation (e.g. with mutual-
exclusion semaphores).

Class 〈〈atpObject〉〉 ExclusiveArea
Package M2::AUTOSARTemplates::CommonStructure::InternalBehavior
Class
Desc. Prevents an executable entity running in the area from being preempted.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description

Table 5.15: ExclusiveArea

An ExclusiveArea (please find details about the formal definition of this meta-class
in Figure 5.10) merely specifies a constraint on the scheduling policy and configuration
of the RTE: If two or more RunnableEntities refer to the same ExclusiveArea
only one of these RunnableEntities is allowed to be executed while being inside
that ExclusiveArea.

In other words: these RunnableEntities must not run concurrently (preempt each
other) while executing inside the ExclusiveArea.

142 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Identi fiable

ExclusiveArea

ARElement

InternalBehavior

+ supportsMultipleInstantiation: Boolean

ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean
+ minimumStartInterval: Float
+ symbol: String

+canEnterExclusiveArea

0..*+runsInsideExclusiveArea 0..*

+exclusiveArea *

+runnable 1..*

+behavior

Figure 5.10: Description of logical exclusive areas

There are in general two ways to use the ExclusiveAreas. Note that it is even
possible to use a specific ExclusiveArea in one RunnableEntity according to
chapter 5.4.2.1 while another RunnableEntity might go for accessing the Exclu-
siveArea according to chapter 5.4.2.2.

5.4.2.1 Entire Runnable Runs in the Exclusive Area

In the first approach, the formal description specifies that certain RunnableEnti-
ties always run inside an exclusive area. For example, if the formal description spec-
ifies that both RunnableEntity ’r1’ and RunnableEntity ’r2’ run within Exclu-
siveArea ’s1’, the RTE must make sure that RunnableEntities ’r1’ and ’r2’ never
run concurrently; the scheduler should never preempt ’r1’ to run ’r2’.

Note that this pattern does not force the RTE to implement this by using semaphores
or mutexes that are taken before the RunnableEntity starts and given when
the RunnableEntity returns. It only obliges the RTE to make sure that both
RunnableEntities are never running concurrently.

This requirement could be implemented by several of the implementation strategies
described above. For example:

1. Scheduling strategy: if, for example, RunnableEntities ’r1’ and ’r2’ are
mapped to the same task, the criterion is automatically satisfied. For this pur-
pose it is necessary to make sure that the OS can only execute a single instance
of the task into which the RunnableEntities are put.

143 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

2. Mutual exclusion semaphores: in case ’r1’ and ’r2’ are mapped to different tasks
(’T1’, respectively ’T2’), the OS must make sure that while ’T1’ is executing
’r1’, ’T2’ running ’r2’ can never preempt it and vice-versa. This could be im-
plemented by taking a mutual-exclusion semaphore before executing ’r1’ (resp.
’r2’) in the context of ’t1’ (resp. ’t2’) and returning the semaphore on exiting the
RunnableEntity.

5.4.2.2 Runnable would Dynamically Enter and Leave the Exclusive Area

In the second approach, the RunnableEntity would explicitly make API-calls to the
RTE within the implementation of the RunnableEntity to enter and leave a specific
ExclusiveArea. This could, for example, be implemented by means of the priority
ceiling concept described in chapter 5.4.1.3.

Additionally it is possible to define the execution time the RunnableEntity will spend
in this ExclusiveArea segment. Please note that although this aspect is described
in [8] the concept can be applied to software-components as well.

5.4.3 Description possibility 2: Inter-Runnable Variable

For certain important strategies (like the ”variable copies” described above) the Ex-
clusiveArea concept does not provide enough information to configure the RTE
correctly.

The concept of copying concurrently accessed variables is very efficient and can even
be used in ambitious automotive applications like, for example, engine management.

Please note however, that a certain amount of RAM has to be reserved for the copies.
This is obviously a slight drawback of the concept.

Concerning the introduction in the AUTOSAR meta-model, data required for
communication among RunnableEntities needs to be explicitly identified
(InterRunnableVariable). Furthermore, the relationship of these data with
RunnableEntities must be specified. For this purpose references with role send
and receive from RunnableEntity to InterRunnableVariable are introduced.

144 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

ARElement

InternalBehavior

+ supportsMultipleInstantiation: Boolean

InterRunnableVariable

+ communicationApproach: CommunicationApproachType

ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean
+ minimumStartInterval: Float
+ symbol: String

Identifiable

«atpPrototype»
DataPrototype

ValueSpecification

«enumeration»
CommunicationApproachType

 implicit
 explicit

*

+readVariable

*

*

+writtenVariable

*

+initValue 0..1

+interRunnableVariable 0..*+runnable 1..*

+behavior

Figure 5.11: InterRunnableVariable

InterRunnableVariables must have a data type; therefore the meta-class In-
terRunnableVariable is derived from DataPrototype.

Class 〈〈atpPrototype〉〉 InterRunnableVariable

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Inter
RunnableCommunication

Class
Desc.

Implement state message semantics for establishing communication among
runnables of the same component.

Base
Class(es) DataPrototype

Attribute Datatype Mul. Link Type Description

communication
Approach

Communication
Approach
Type

1 aggregation

Communication among RunnableEntities
resembles the approaches taken for the
communication among software components.
The explicit communication corresponds to
DataReceivePoint/DataSendPoint. The
implicit communication resembles
DataReadAccess/DataWriteAccess

initValue Value
Specifica-
tion

0..1 reference

Table 5.16: InterRunnableVariable

Please note that it is possible to define an initial value for a specific InterRunnabl-
eVariable. For this purpose the AUTOSAR meta-model features an association be-
tween an InterRunnableVariable and a ValueSpecification in the role of an
initValue (see Figure 5.11).

145 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

The behavior is undefined if no initial value is specified and a RunnableEntity
reads an InterRunnableVariable before it is actually written to by another
RunnableEntity.

As already mentioned before, the concept of InterRunnableVariables can be
used in two different flavors (indicated by the attribute communicationApproach)
that resemble the communication principles applied for the communication on the level
of ComponentTypes.

Please note that the attribute directly controls the usage of RTE API calls and is there-
fore obligatory for any subsequent process step, especially the ECU configuration. A
subsequent tool (e.g. ECU configuration editor) must under no circumstances ignore
or change the settings made for communicationApproach.

The semantics of the attribute is that explicit implies the direct access to the value of an
InterRunnableVariable. By this means it is possible to get different values for a
specific InterRunnableVariable each time the corresponding API call is executed.

The setting implicit corresponds to an execution model where the value of an Inter-
RunnableVariable does not change (for the reading RunnableEntity, obviously)
during the runtime of a RunnableEntity. This approach is in detail described in
chapter 5.4.1.4.

5.5 Port API Options

The RTE Generator needs additional options per PortPrototype to choose the
proper generation schema. These are subsumed in the PortAPIOption element
which is shown in Figure 5.12.

Class 〈〈atpObject〉〉 PortAPIOption

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::PortAPI
Options

Class
Desc.

Options how to generate the signatures of calls for an
AtomicSoftwareComponentType in order to communicate over a PortPrototype (for
calls into a RunnableEntity as well as for calls from a RunnableEntity to the
PortPrototype).

Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description
enable
TakeAd-
dress Boolean 1 aggregation

If set to true, the software-component is able
to use the API reference for deriving a pointer
to an object.

indirectAPI Boolean 1 aggregation

true: Specifies an ”indirect API” to be
generated for the associated port, which
means that the SWC is able to access the
actions on a port via a pointer to an object
representing a port. This allows e.g. iterating
over ports in a loop. This option has no effect
for PPorts of client/server interfaces.

146 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

port PortProto-
type 1 reference the option is valid for generated functions

related to communication over this port

portArg
Value
(ordered)

Primitive
Specifica-
tion

* aggregation

A ”port defined argument values” is passed to
a runnable dealing with the operations
provided by a given port. Restricted to PPorts
of a client/server interface.

Table 5.17: PortAPIOption

5.5.1 Enable to TakeAddress

If enableTakeAddress = TRUE the generated API related to this PortPrototype
is provided in a way that the software component is able to used the API reference for
deriving an pointer to an object.

5.5.2 Indirect API Generation

The indirectAPI option switches the generation of the RTE’s indirect API function-
ality for a certain PortPrototype. The generated indirect API does allow to iterate
over ports within the SW-Component.

5.5.3 Port Defined Argument Value

In addition to the formal parameters of a client/server invocation that are defined as part
of the server’s PortInterface, it is possible to specify a number of implicit values
that are passed by the RTE to the server’s entry point.

The initial need for this feature arises in the context of basic software services, although
it is not limited to those. For a service like the NVRAM manager every accessing port
is in addition to its logical identity as a sequence of ShortNames - uniquely identified
through a NVRAM specific memory block id.

Instead of exposing this mechanism on the logical ClientServerInterface level
in form of a formal Argument, one or more port-defined arguments can be specified.
This way, the implementation detail is hidden from the logical component designer.

Figure 5.12 shows the meta-model of Port API Options and the portArgValue. The
values are primitive types, typically integer values to specify an id. In case of the
NVRAM example this list would have just one value of type int8 holding the memory
block id.

147 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

ValueSpecification

PrimitiveSpecification

ARElement

InternalBehavior

+ supportsMultipleInstantiation: Boolean

PortAPIOption

+ enableTakeAddress: Boolean
+ indirectAPI: Boolean

Identifiable

«atpPrototype»
PortPrototype

+portArgValue 0..* {ordered}

0..1

+port

1

+portAPIOption 0..*

Figure 5.12: Port API Options.

148 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

5.6 PerInstanceMemory

AtomicSoftwareComponentTypes that support multiple instantiation (attribute
supportsMultipleInstantiation == TRUE) will typically need a given amount
of private memory per instance. It is the responsibility of the RTE to provide a mecha-
nisms with which each instance of an AtomicSoftwareComponentType can access
its own instance-specific memory.

An AtomicSoftwareComponentType can define an arbitrary number of per-
instance memory blocks (formally defined by aggregating the meta-class PerIn-
stanceMemory).

Identifiable

PerInstanceMemory

+ type: String
+ typeDefinition: String

ARElement

InternalBehavior

+ supportsMultipleInstantiation: Boolean

+perInstanceMemory *

Figure 5.13: PerInstanceMemory

For each such memory block, the software-component description must provide the
name of the data type (the ”C”-type) it needs to store in the memory block. This attribute
allows for the RTE to generate an API function that provides a convenient and type-safe
access to the data item.

In addition, the software-component description must define the data type in the at-
tribute typeDefinition. This attribute is supposed to contain a C typedef of the
data type in valid C-syntax. In other words, this typeDefinition must be formulated
such that it can be included verbatim in a C header file.

Note that the PerInstanceMemory is not explicitly initialized by the RTE. Instead, it
is the responsibility of the AtomicSoftwareComponentType to initialize the PerIn-
stanceMemory.

More details on the use of these attributes in the generation of software-component
header-files can be found in the RTE specification [1].

149 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

AtomicSoftwareComponentTypes that do not support multiple instantiation (at-
tribute supportsMultipleInstantiation == FALSE) do not necessarily need to
use the PerInstanceMemory: because there will only be a single instance of the
AtomicSoftwareComponentType on an ECU, the AtomicSoftwareComponent-
Type can use static variables to store the AtomicSoftwareComponentType’s inter-
nal state. However, the usage of PerInstanceMemory is also allowed in this case.

Class 〈〈atpObject〉〉 PerInstanceMemory

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Per
InstanceMemory

Class
Desc.

Defines a memory-block that needs to be available for each instance of the
SW-component. This is typically only useful if supportsMultipleInstantiation is TRUE
of if the component defines NVRAM access via permanent blocks.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description
type String 1 aggregation The ”C”-type

typeDefini-
tion String 1 aggregation A definition of the type

Table 5.18: PerInstanceMemory

5.7 Service Needs

5.7.1 Overview

ApplicationSoftwareComponentTypes are designed to be independent of their
mapping to actual ECU Hardware. However, each software-component might need
services which are provided by the ECU’s Basic Software through AUTOSAR Services.
The ServiceNeeds (see Figure 5.14 and Figure 5.15) are used to provide detailed
information what the software-component expects from the AUTOSAR Services when
integrated on an actual ECU. Note that only atomic software-components can be con-
nected to AUTOSAR Services.

When integrating application software-components on an ECU, the actual values of
ECU configuration parameters must be chosen so that they fulfill the requirements
given by the ServiceNeeds of all the integrated atomic software-components.

Note that the actual values of configuration parameters will in addition depend on the
properties of the basic software and the hardware of that specific ECU, see also chap-
ter 10. For further information about the relation between the ServiceNeeds and the
ECU configuration parameters see [16].

The meta-class ServiceNeeds and the sub-classes for several Services are located
in the CommonStructure package of the meta-model, because they are also used
in the Basic Software Module Description Template [8]. Note that Ser-

150 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

viceNeeds is not abstract, which allows to use it via textual information also for those
AUTOSAR Services for which no sub-classes are defined.

The first level of meta-classes derived from ServiceNeeds is shown in the next two
figures (two figures instead of one are shown due to limited drawing space).

Identifiable

ServiceNeeds NvBlockNeeds

+ nDataSets: Int
+ readonly: Boolean
+ reliability: NvBlockNeedsReliabilityEnum
+ resistantToChangedSw: Boolean
+ restoreAtStart: Boolean
+ writeOnlyOnce: Boolean
+ writingFrequency: Int
+ writingPriority: NvBlockNeedsWritingPriorityEnum

SupervisedEntityNeeds

+ activateAtStart: Boolean
+ enableDeactivation: Boolean
+ expectedAliveCycle: Float
+ maxAliveCycle: Float
+ minAliveCycle: Float
+ toleratedFailedCycles: Int

ComMgrUserNeeds

+ maxCommMode: MaxCommModeEnum

«enumeration»
MaxCommModeEnum

 none
 si lent
 full

«enumeration»
NvBlockNeedsReliabili tyEnum

 low
 medium
 high

«enumeration»
NvBlockNeedsWritingPriorityEnum

 low
 medium
 high

EcuStateMgrUserNeeds

Figure 5.14: ServiceNeeds: Common structure (part 1)

151 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Identifiable

ServiceNeeds DiagnosticEventNeeds

FunctionInhibitionNeeds

DiagnosticCommunicationNeeds

ObdPidServiceNeeds

+ dataLength: Int
+ parameterId: Int
+ standard: String

ObdRatioServiceNeeds

+ connectionType: ObdRatioConnectionKind
+ iumprGroup: String

ObdInfoServiceNeeds

+ dataLength: Int
+ infoType: Int

ObdMonitorServiceNeeds

+ onBoardMonitorId: Int
+ testId: Int
+ unitAndScalingId: Int

ObdControlServiceNeeds

+ testId: Int

«enumeration»
ObdRatioConnectionKind

 apiUse
 observer

+usedFid

0..1

+rateBasedMonitoredEvent

1

Figure 5.15: ServiceNeeds: Common structure (part 2)

Class 〈〈atpObject〉〉 ServiceNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Class
Desc.

This expresses the abstract needs that a Software Component or Basic Software
Module has on the configuration of an AUTOSAR Service to which it will be
connected. ”Abstract needs” means, that the model abstracts from the Configuration
Paramaters of the underlying Basic Software.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description

Table 5.19: ServiceNeeds

152 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

ServiceNeeds specified by AtomicSoftwareComponentTypes are part of the In-
ternalBehavior because in special cases they can have associations to other parts
of the InternalBehavior like RunnableEntity or PerInstanceMemory. In most
cases they are also related to certain ports belonging to the AtomicSoftwareCom-
ponentTypes (or more precisely, one of its non-abstract derived meta-classes) of
this InternalBehavior, because AtomicSoftwareComponentTypes communi-
cate with AUTOSAR Services via those ports.

This relationship to ports is defined via RoleBasedRPortAssignment for RPort-
Prototype and RoleBasedPPortAssignment for PPortPrototype. RoleBase-
dRPortAssignment and RoleBasedPPortAssignment are aggregating the at-
tribute role.

Class 〈〈atpObject〉〉 RoleBasedRPortAssignment

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Service
Mapping

Class
Desc.

This class specifies an assignment of a role to a particular R-Port. This port must
contain a service which is outside of the component and called by the component in
order to handle a particular issue (e.g. a communication event).

Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description
rPortProto-
type RPort

Prototype 1 reference Port which requires the software component
to be connected to an AUTOSAR Service.

role Identifier 1 aggregation

This is the role the assigned Port in given
context.

The value must be a name of a PortInterface
as standardized in Software Specification of
the related AUTOSAR Service.

Table 5.20: RoleBasedRPortAssignment

Class 〈〈atpObject〉〉 RoleBasedPPortAssignment

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Service
Mapping

Class
Desc.

This class specifies an assignment of a role to a particular P-Port. This port must
contain a service which is inside of the component and called by outside entity in
order to handle a particular issue (e.g. a communication event). This is often named
as callback.

Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description
pPortPro-
totype PPort

Prototype 1 reference Port which provides the software component
to be connected to an AUTOSAR Service.

153 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

role Identifier 1 aggregation

This is the role of the assigned Port in the
given context.

The value must be a name of a PortInterface
as standardized in the Software Specification
of the related AUTOSAR Service.

Table 5.21: RoleBasedPPortAssignment

The attribute role specifies the role of the PortPrototype in the interaction of the
software-component with the AUTOSAR Service and is required for the generation of
Service-related Model Elements, see chapter 10.

In order to define these special associations, further sub-classes exist which are used
to describe the detailed ServiceNeeds in the scope of the InternalBehavior of
an AtomicSoftwareComponentType. They are explained in the next sub-sections
together with the generic classes for the individual Services.

5.7.2 Service Needs for the NVRAM Service

Figure 5.16 and the following class tables show the meta-classes NvBlockNeeds and
SwcNvBlockNeeds which are used to define requirements and special associations
needed to configure the NVRAM Service. An AtomicSoftwareComponentType
may provide several SwcNvBlockNeeds elements, each defines all the mappings for
one NV Block (for the terms related to the AUTOSAR NVRAM Manager see [17]).

154 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

ARElement

InternalBehav ior

+ supportsMultipleInstantiation: Boolean

SwcNv BlockNeeds

DataPrototype

CalprmElementPrototype

PortPrototype

«atpPrototype»
RPortPrototype

Identifiable

PerInstanceMemory

+ type: String
+ typeDefinition: String

PortPrototype

«atpPrototype»
PPortPrototype

NvBlockNeeds

+ nDataSets: Int
+ readonly: Boolean
+ reliabili ty: NvBlockNeedsReliabil ityEnum
+ resistantToChangedSw: Boolean
+ restoreAtStart: Boolean
+ writeOnlyOnce: Boolean
+ writingFrequency: Int
+ writingPriority: NvBlockNeedsWritingPriorityEnum

Identifiable

Serv iceNeeds

RoleBasedRPortAssignment

+ role: Identifier

RoleBasedPPortAssignment

+ role: Identifier
+callBackPort

0..*

+serviceCallPort

0..*

+rPortPrototype

1

+defaultBlock 0..1

+perInstanceMemory *

+sharedCalprm 0..*+perInstanceCalprm 0..*

+pPortPrototype

1

+mirrorBlock 0..1

+serviceNeeds 0..*

Figure 5.16: SwcNvBlockNeeds

155 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Class 〈〈atpObject〉〉 NvBlockNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds
Class
Desc. Specifies the abstract needs on the configuration of a single Nv block.

Base
Class(es) ServiceNeeds

Attribute Datatype Mul. Link Type Description
nDataSets Integer 1 aggregation number of data sets to be provided by the

NVRAM manager for this block

readonly Boolean 1 aggregation

true: data of this block are write protected for
normal operation (but protection can be
disabled)
false: no restriction

reliability
NvBlock
Needs
Reliability
Enum

1 aggregation Reliability against data loss on the non-volatile
medium.

resistantTo
Changed
Sw Boolean 1 aggregation

Defines whether an Nv block shall be treated
resistant to configuration changes (true) or not
(false). For details how to handle initialization
in the latter case, refer to the NVRAM
specification.

restoreAt
Start Boolean 1 aggregation

Defines whether the associated RAM mirror
block shall be implictly restored during startup
by the basic SW or not. Only relevant if a
RAM mirror block (PerInstanceMemory) is
associated with this port.

writeOnly
Once Boolean 1 aggregation

Defines write protection after first write:
true: This block is prevented from being
changed/erased or being replaced with the
default ROM data after first initialization by the
SWC.
false: No such restriction.

writing
Frequency Integer 1 aggregation

Provides the amount of updates to this block
from the application point of view. It has to be
provided in ”number of write access per year”.

writing
Priority

NvBlock
Needs
Writing
Priority
Enum

1 aggregation

Requires the priority of writing this block in
case of concurrent requests to write other
blocks.

Table 5.22: NvBlockNeeds

Class 〈〈atpObject〉〉 SwcNvBlockNeeds

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Service
Mapping

156 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Class
Desc.

Specialization of NvBlockNeeds for the case it is owned by a
SoftwareComponentType. It specifies all mappings to elements of the
SoftwareComponentType concerning a single Nv block. Note that the mapping is the
same for all instances of a SoftwareComponentType (because the code depends on
it).

Note that the block size is not specified here because
- it can be derived from the associated PerInstanceMemory size (implementatiion
specific) in case of implicit storage/restauration of the block
- if can be derived from the array size passed via the correponding operations of the
Service Interface in case of explicit storage/restauration of the block

Base
Class(es) NvBlockNeeds

Attribute Datatype Mul. Link Type Description

callBack
Port

RoleBased
PPortAs-
signment

* aggregation

This is the provided service to be called by the
NvRam Manager to handle a particular
NvBlock.

The value of the role attribute in the
aggregated class must be a name of a
PortInterface as standardized in ”Specification
of NVRAM Manager” (e.g. something like
”NvMNotify”)

default
Block

Calprm
Element
Prototype

0..1 reference Defines the ROM default for an Nv block. This
data can be also calibratable.

mirror
Block

PerIn-
stance
Memory

0..1 reference Defines the RAM mirror in case of a
permanant Nv block.

serviceCall
Port

RoleBased
RPortAs-
signment

* aggregation

This is the expected service to be called by
the software component to handle a particular
NvBlock.

The value of the role attribute in the
aggregated class must be a name of a
PortInterface as standardized in ”Specification
of NVRAM Manager” (e.g. something like
”NvMAdministration” , ”NvMService”)

Table 5.23: SwcNvBlockNeeds

For each NV Block the NVRAM Manager can be configured to use a RAM area as
mirror for the access of the NV Block content at runtime. It is the responsibility of the
NVRAM Manager to provide the content of the NV Block in this RAM mirror during
startup and write back the content to the storage medium during shut-down.

If an AtomicSoftwareComponentType is using the RAM mirror feature, a PerIn-
stanceMemory section is used as mirror for each NV Block. The PerInstance-
Memory section is allocated by the RTE during ECU Configuration. If the Atomic-
SoftwareComponentType is using some NV Blocks without a RAM mirror it is the
responsibility of the AtomicSoftwareComponentType to provide a memory area
available to the API call to the NVRAM Manager for storage of the NV data.

157 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

5.7.3 Service Needs for the Watchdog Service

Figure 5.17 and the following class table show the meta-classes SupervisedEnti-
tyNeeds and SwcSupervisedEntityNeeds which are used to define requirements
and special associations needed to configure the Watchdog Service. An Atomic-
SoftwareComponentType may provide several SwcSupervisedEntityNeeds el-
ements, each defines all the mappings for one supervised entity (for the terms related
to the AUTOSAR Watchdog Manager see [18]).

ARElement

SwcInternalBehavior::InternalBehavior

+ supportsMultipleInstantiation: Boolean

PortPrototype

«atpPrototype»
Components::RPortPrototype

Identifiable

ServiceNeeds::ServiceNeeds

ServiceNeeds::
SupervisedEntityNeeds

+ activateAtStart: Boolean
+ enableDeactivation: Boolean
+ expectedAliveCycle: Float
+ maxAliveCycle: Float
+ minAliveCycle: Float
+ toleratedFailedCycles: Int

SwcSupervisedEntityNeeds RoleBasedRPortAssignment

+ role: Identifier
+serviceCallPort

0..*

+serviceNeeds

0..*

+rPortPrototype

1

Figure 5.17: SwcSupervisedEntityNeeds

Class 〈〈atpObject〉〉 SupervisedEntityNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds
Class
Desc.

Specifies the abstract needs on the configuration of the Watchdog Manager for one
specific Supervised Entity (SE).

Base
Class(es) ServiceNeeds

Attribute Datatype Mul. Link Type Description
activateAt
Start Boolean 1 aggregation true/false: supervision activation status of SE

shall be enabled/disabled at start

enableDe-
activation Boolean 1 aggregation

true: SWC shall be allowed to deactivate
supervision of this SE
false: not

expected
AliveCycle Float 1 aggregation Expected cycle time of alive trigger of this SE

(in seconds)

maxAlive
Cycle Float 1 aggregation Maximum cycle time of alive trigger of this SE

(in seconds)

minAlive
Cycle Float 1 aggregation Minimum cycle time of alive trigger of this SE

(in seconds)

158 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

tolerated
FailedCy-
cles Integer 1 aggregation

Number of consecutive failed alive cycles for
this SE which shall be tolerated until the
supervision status of the SE is set to
EXPIRED (see WdgM documentation for
details). Note that this has to be recalculated
w.r.t. the WdgMs own cycle time for ECU
configuration.

Table 5.24: SupervisedEntityNeeds

Class 〈〈atpObject〉〉 SwcSupervisedEntityNeeds

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Service
Mapping

Class
Desc.

Specialization of SupervisedEntityNeeds for the case it is owned by a
SoftwareComponentType.

Base
Class(es) SupervisedEntityNeeds

Attribute Datatype Mul. Link Type Description

serviceCall
Port

RoleBased
RPortAs-
signment

* aggregation

This is the expected service to be called by
the software component to handle a
supervised entity by the watchdoc.

The value of the role attribute in the
aggregated class must be a name of a
PortInterface as standardized in ”Specification
of Watchdog Manager” (e.g. something like
”WdgMService”)

Table 5.25: SwcSupervisedEntityNeeds

5.7.4 Service Needs for the ComM Service

Figure 5.18 and the following class tables show the meta-classes ComMgrUserNeeds
and SwcComMgrUserNeeds which are used to define requirements and special as-
sociations needed to configure the ComM Service. An AtomicSoftwareCompo-
nentTypemay provide several SwcComMgrUserNeeds elements, each defines all the
mappings for one ”user” of the ComM Service (for the terms related to the AUTOSAR
Communication Manager see [19]).

159 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

ARElement

SwcInternalBehavior::InternalBehavior

+ supportsMultipleInstantiation: Boolean

PortPrototype

«atpPrototype»
Components::RPortPrototype

Identifiable

ServiceNeeds::ServiceNeeds

ServiceNeeds::ComMgrUserNeeds

+ maxCommMode: MaxCommModeEnum

SwcComMgrUserNeeds RoleBasedRPortAssignment

+ role: Identifier

PortPrototype

«atpPrototype»
Components::PPortPrototype

RoleBasedPPortAssignment

+ role: Identi fier

+callbackPort

0..*

+pPortPrototype

1

+serviceCallPort

0..*

+serviceNeeds

0..*

+rPortPrototype

1

Figure 5.18: SwcComMgrUserNeeds

Class 〈〈atpObject〉〉 ComMgrUserNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds
Class
Desc.

Specifies the abstract needs on the configuration of the Communication Manager for
one ”user”.

Base
Class(es) ServiceNeeds

Attribute Datatype Mul. Link Type Description
maxComm
Mode

MaxComm
Mode
Enum

1 aggregation
Maximum communication mode requested by
this ComM user

Table 5.26: ComMgrUserNeeds

Class 〈〈atpObject〉〉 SwcComMgrUserNeeds

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Service
Mapping

Class
Desc.

Specialization of the ComMgrUserNeeds for the case it is owned by a
SoftwareComponentType.

Base
Class(es) ComMgrUserNeeds

Attribute Datatype Mul. Link Type Description

160 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

callback
Port

RoleBased
PPortAs-
signment

* aggregation

This is the provided service to be called by the
Com Manager to handle a particular
communication channel of the Com Manager.

The value of the role attribute in the
aggregated class must be a name of a
PortInterface as standardized in ”Specification
ot Com Manager” (e.g. something like
”modeRequester”)

serviceCall
Port

RoleBased
RPortAs-
signment

* aggregation

This is the expected service to be called by
the software component to handle a particular
Com Manger event.

The value of the role attribute in the
aggregated class must be a name of a
PortInterface as standardized in ”Specification
ot Com Manager” (e.g. something like
”modeRequester”)

Table 5.27: SwcComMgrUserNeeds

5.7.5 Service Needs for the EcuM Service

Figure 5.19 and the following class tables show the meta-classes EcuStateM-
grUserNeeds and SwcEcuStateMgrUserNeeds which are used to define special
associations needed to configure the ECU State Manager Service. An AtomicSoft-
wareComponentType may provide several SwcEcuStateMgrNeeds elements, each
defines all the mappings for one ”user” of the EcuM Service (for the terms related to
the AUTOSAR ECU State Manager see [20]).

161 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

ARElement

SwcInternalBehavior::InternalBehavior

+ supportsMultipleInstantiation: Boolean

PortPrototype

«atpPrototype»
Components::

RPortPrototype

Identifiable

ServiceNeeds::ServiceNeeds

SwcEcuStateMgrUserNeeds

ServiceNeeds::
EcuStateMgrUserNeeds

RoleBasedRPortAssignment

+ role: Identi fier
+serviceCallPort

0..*

+serviceNeeds

0..*

+rPortPrototype

1

Figure 5.19: SwcEcuStateMgrUserNeeds

Class 〈〈atpObject〉〉 EcuStateMgrUserNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Class
Desc.

Specifies the abstract needs on the configuration of the ECU State Manager for one
”user”. This class currently contains no attributes. Its name can be regarded as a
symbol identifying the user from the viewpoint of the component or module which
owns this class.

Base
Class(es) ServiceNeeds

Attribute Datatype Mul. Link Type Description

Table 5.28: EcuStateMgrUserNeeds

Class 〈〈atpObject〉〉 SwcEcuStateMgrUserNeeds

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Service
Mapping

Class
Desc.

Specialization of the EcuStateMgrUserNeeds for the case it is owned by a
SoftwareComponentType. It allows to navigate to all the ports which are used by this
component to put requests for this ”user”.

Note that there are further ports which a component can use to obtain various
information from the ECU State Manager. These ports are not included in the
mapping because they will be implemented as pure function calls which can be called
independently of being a certain”user”.

Note that the AUTOSAR ECU State Manager does not support callbacks to services
provided by users of ECU State Manger, therefore there is not property ”callbackPort”.

Base
Class(es) EcuStateMgrUserNeeds

162 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Attribute Datatype Mul. Link Type Description

serviceCall
Port

RoleBased
RPortAs-
signment

* aggregation

This is the expected service to be called by
the software component to handle a particular
User of the Ecu State Manager..

The value of the role attribute in the
aggregated class must be a name of a
PortInterface as standardized in ”Specification
ot ECU State Manager”. Examples are
”CurrentMode”, ”ShutdownTarget”,
”BootTarget” , ”ApplicationMode”,
”StateRequest”.

Table 5.29: SwcEcuStateMgrUserNeeds

5.7.6 Service Needs for the DEM Service

Figure 5.20 and the following class tables show the meta-classes DiagnosticEvent-
Needs and SwcDiagnosticEventNeeds which are used to define special associa-
tions needed to configure the Diagnostic Event Manager Service. An AtomicSoft-
wareComponentType may provide several SwcDiagnosticEventNeeds elements,
each defines all the mappings for one diagnostic event (for the terms related to the
AUTOSAR Diagnostic Event Manager see [21]). In addition, SwcObdPidService-
Needs and SwcObdRatioServiceNeeds are required in order to specify the needs
for OBD diagnostic service calls.

163 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

ARElement

SwcInternalBehavior::InternalBehavior

+ supportsMultipleInstantiation: Boolean

PortPrototype

«atpPrototype»
Components::RPortPrototype

Identi fiable

ServiceNeeds::ServiceNeeds

SwcDiagnosticEventNeeds

PortPrototype

«atpPrototype»
Components::PPortPrototype

ServiceNeeds::
DiagnosticEventNeeds

RoleBasedPPortAssignment

+ role: Identifier
RoleBasedRPortAssignment

+ role: Identifier

ServiceNeeds::ObdPidServiceNeeds

+ dataLength: Int
+ parameterId: Int
+ standard: String

ServiceNeeds::ObdRatioServiceNeeds

+ connectionType: ObdRatioConnectionKind
+ iumprGroup: String

ServiceNeeds::
FunctionInhibitionNeeds

SwcObdRatioServiceNeeds
SwcObdPidServiceNeeds

+pPortPrototype 1

+serviceNeeds

0..*

+rPortPrototype 1

+rateBasedMonitoredEvent

1

+usedFid 0..1

+callbackPort 1

+callbackPort

0..*

+serviceCallPort
0..* +serviceCallPort1

Figure 5.20: SwcDiagnosticEventNeeds

Class 〈〈atpObject〉〉 DiagnosticEventNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Class
Desc.

Specifies the abstract needs on the configuration of the Diagnostic Event Manager for
one diagnostic event. Its name can be regarded as a symbol identifying the diagnostic
event from the viewpoint of the component or module which owns this class.

Base
Class(es) ServiceNeeds

Attribute Datatype Mul. Link Type Description

Table 5.30: DiagnosticEventNeeds

Class 〈〈atpObject〉〉 SwcDiagnosticEventNeeds

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Service
Mapping

Class
Desc.

Specialization of the DiagnosticEventNeeds for the case it is owned by a
SoftwareComponentType. It allows to navigate to all ports associated with this
diagnostic event.

Note that there may be further ports to communicate with the DEM Service (e.g.
setting the operation cycle type) which are not included in this mapping because they
are independent of the diagnostic event.

164 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Base
Class(es) DiagnosticEventNeeds

Attribute Datatype Mul. Link Type Description

callback
Port

RoleBased
PPortAs-
signment

* aggregation

This aggregation specifies the expected
service to be called by the Diagnostic Event
Manager.

The value of the role attribute in the
aggregated class must be be a name of a
PortInterface as standardized in ”Specification
of Diagnostics Event Manager”, for example
CallbackInitMonitorForEvent.

serviceCall
Port

RoleBased
RPortAs-
signment

* aggregation

This is the expected service to be called by
the software component to handle a particular
diagnostic event.

The value of the role attribute in the
aggregated class must be a name of a
PortInterface as standardized in ”Specification
of Diagnostics Event Manager”, for example
”DiagnosticMonitor”.

Table 5.31: SwcDiagnosticEventNeeds

Class 〈〈atpObject〉〉 ObdPidServiceNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Class
Desc.

Specifies the abstract needs of a compoment or module on the configuration of OBD
Services in relation to a particular PID (parameter identifier), which is supported by
this component or module.

Base
Class(es) ServiceNeeds

Attribute Datatype Mul. Link Type Description
dataLength Integer 1 aggregation Length of data (in bytes) provided for this

particular PID.
parameter
Id Integer 1 aggregation

Standardized parameter identifier (PID)
according to the OBD standard specified in
attribute ”standard”.

standard String 1 aggregation

Annotates the standard according to which
the PID is given, e.g. ”ISO15031-5” or ”SAE
J1979 Rev May 2007”.

Table 5.32: ObdPidServiceNeeds

Class 〈〈atpObject〉〉 SwcObdPidServiceNeeds

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Service
Mapping

Class
Desc.

Specialization of the ObdPidServiceNeeds for the case it is owned by a
SoftwareComponentType. It allows to navigate to all ports associated with this
particular PID.

Base
Class(es) ObdPidServiceNeeds

165 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Attribute Datatype Mul. Link Type Description

callback
Port

RoleBased
PPortAs-
signment

1 aggregation

This aggregation specifies the expected port
to be called by the Diagnostic Event Manager
or Diagnosticc Communication Manager in
order to read the PID value.

Table 5.33: SwcObdPidServiceNeeds

Class 〈〈atpObject〉〉 ObdRatioServiceNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Class
Desc.

Specifies the abstract needs of a compoment or module on the configuration of OBD
Services in relation to a particular ”ratio monitoring”, which is supported by this
component or module.

Base
Class(es) ServiceNeeds

Attribute Datatype Mul. Link Type Description
connection
Type

ObdRatio
Connec-
tionKind

1 aggregation
Defines how the DEM is connected to the
component or module to perform the IUMPR
service.

iumpr
Group String 1 aggregation

Defines the IUMPR Group of the SAE
standard. Note that possible values are not
predefined by an enumeration meta-type in
oder to make the meta-model independent of
the details of the SAE standard. Possible
values are currently (AUTOSAR R3.1):
CAT1 CAT2 OXS1 OXS2 EGR SAIR EVAP
SECOXS1 SECOXS2 NMHCCAT NOXCAT
NOXADSORB PMFILTER EGSENSOR
BOOSTPRS NOGROUP NONE.

rateBased
Monitored
Event

Diagnostic
Event
Needs

1 reference The rate based monitored Diagnosic Event.

usedFid Function
Inhibition
Needs

0..1 reference Function Inhibition Identifier used for the rate
based monitor. This is an optional attribute.

Table 5.34: ObdRatioServiceNeeds

Enumeration ObdRatioConnectionKind
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Enum Desc. Defines the way how the IUMPR service connection between the DEM and the
client component or module is handled (for details see the DEM Specification).

Literal Description

apiUse The IUMPR service (of the DEM) uses an explicit API to connect to the component
or module.

observer The IUMPR service (of the DEM) uses no API but ”observes” the associated
diagnostic event.

Class 〈〈atpObject〉〉 SwcObdRatioServiceNeeds

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Service
Mapping

166 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Class
Desc.

Specialization of the ObdRatioServicetNeeds for the case it is owned by a
SoftwareComponentType. It allows to navigate to all ports associated with this
element.

Base
Class(es) ObdRatioServiceNeeds

Attribute Datatype Mul. Link Type Description
serviceCall
Port

RoleBased
RPortAs-
signment

1 aggregation
Via calls from this port the Software
Component is expected to handle a particular
ratio monitoring.

Table 5.35: SwcObdRatioServiceNeeds

5.7.7 Service Needs for the FIM Service

Figure 5.21 and the following class table show the meta-classes FunctionInhibi-
tionNeeds and SwcFunctionInhibitionNeeds which are used to define special
associations needed to configure the Diagnostic Event Manager Service. An Atomic-
SoftwareComponentType may provide several FunctionInhibitionNeeds ele-
ments, each defines all the mappings for one diagnostic event (for the terms related to
the AUTOSAR Function Inhibition Manager see [22]).

ARElement

SwcInternalBehavior::InternalBehavior

+ supportsMultipleInstantiation: Boolean

PortPrototype

«atpPrototype»
Components::RPortPrototype

Identi fiable

ServiceNeeds::ServiceNeeds

SwcFunctionInhibitionNeeds

ServiceNeeds::
FunctionInhibitionNeeds

RoleBasedRPortAssignment

+ role: Identi fier

ServiceNeeds::ObdRatioServiceNeeds

+ connectionType: ObdRatioConnectionKind
+ iumprGroup: String

+serviceCallPort

0..*

+usedFid

0..1

+serviceNeeds

0..*

+rPortPrototype

1

Figure 5.21: SwcFunctionInhibitionNeeds

Class 〈〈atpObject〉〉 FunctionInhibitionNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

167 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Class
Desc.

Specifies the abstract needs on the configuration of the Function Inhibition Manager
for one Function Identifier (FID). This class currently contains no attributes. Its name
can be regarded as a symbol identifying the FID from the viewpoint of the component
or module which owns this class.

Base
Class(es) ServiceNeeds

Attribute Datatype Mul. Link Type Description

Table 5.36: FunctionInhibitionNeeds

Class 〈〈atpObject〉〉 SwcFunctionInhibitionNeeds

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Service
Mapping

Class
Desc.

Specialization of the FunctionInhibitionNeeds for the case it is owned by a
SoftwareComponentType.

Note that the Function Inhibit Manger does not provide callbacks to services provided
by software components. Therefoer there is no property ”callbackPort”.

Base
Class(es) FunctionInhibitionNeeds

Attribute Datatype Mul. Link Type Description

serviceCall
Port

RoleBased
RPortAs-
signment

* aggregation

This is the expected service to be called by
the software component to handle a particular
inhibition of a particular function. This
inhibition is controlled by the
FunctionInhibitManager.

The value of the role attribute in the
aggregated class must be a name of a
PortInterface as standardized in ”Specification
ot Function Inhibition Manager”. e-g-
”FunctionInhibition”.

Table 5.37: SwcFunctionInhibitionNeeds

5.7.8 Service Needs for the DCM Service

Figure 5.22 and the following class table show the meta-classes DiagnosticCom-
municationNeeds and SwcDiagnosticCommunicationNeeds which are used to
define special associations needed to configure the Diagnostic Communication Man-
ager Service. An AtomicSoftwareComponentType may provide a SwcDiagnos-
ticCommunicationNeeds element, which defines the mappings for the general di-
agnostic communication (for the terms related to the AUTOSAR Diagnostic Com-
munication Manager see [23]). In addition, SwcObdPidServiceNeeds, SwcObd-
InfoServiceNeeds, SwcObdMonitorServiceNeeds and SwcObdControlSer-
viceNeeds are required in order to specify the specific needs for OBD diagnostic

168 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

service calls. Note that SwcObdPidServiceNeeds is used for the Diagnostic Event
Manager as well, therefore the class table is not repeated here.

ServiceNeeds::
DiagnosticCommunicationNeeds

Identifiable

ServiceNeeds::ServiceNeeds

SwcDiagnosticCommunicationNeeds

PortPrototype

«atpPrototype»
Components::RPortPrototype

RoleBasedRPortAssignment

+ role: Identi fier

PortPrototype

«atpPrototype»
Components::PPortPrototype

RoleBasedPPortAssignment

+ role: Identifier

ARElement

SwcInternalBehavior::InternalBehavior

+ supportsMultipleInstantiation: Boolean

ServiceNeeds::
ObdInfoServiceNeeds

+ dataLength: Int
+ infoType: Int

ServiceNeeds::
ObdMonitorServiceNeeds

+ onBoardMonitorId: Int
+ testId: Int
+ unitAndScalingId: Int

ServiceNeeds::
ObdControlServiceNeeds

+ testId: Int

SwcObdInfoServiceNeeds SwcObdMonitorServiceNeeds SwcObdControlServiceNeeds

ServiceNeeds::
ObdPidServiceNeeds

+ dataLength: Int
+ parameterId: Int
+ standard: String

SwcObdPidServiceNeeds

+callbackPort
1

+serviceNeeds

0..*

+rPortPrototype 1 +pPortPrototype 1

+callbackPort
1

+callbackPort
1

+callbackPort

1+callbackPort 0..*
+serviceCallPort

Figure 5.22: SwcDiagnosticCommunicationNeed

Class 〈〈atpObject〉〉 DiagnosticCommunicationNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Class
Desc.

Specifies the abstract needs on the configuration of the Diagnostic Communication
Manager for one ”user”.

Details are an expert task for AUTOSAR Release 4.0.
Base
Class(es) ServiceNeeds

Attribute Datatype Mul. Link Type Description

Table 5.38: DiagnosticCommunicationNeeds

Class 〈〈atpObject〉〉 SwcDiagnosticCommunicationNeeds

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Service
Mapping

Class
Desc.

Specialization of the DiagnosticCommunicationNeeds for the case it is owned by a
SoftwareComponentType.

169 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Base
Class(es) DiagnosticCommunicationNeeds

Attribute Datatype Mul. Link Type Description

callback
Port

RoleBased
PPortAs-
signment

* aggregation

This is the provided service to be called by the
Diagnostic Communication Manager to handle
a particular Diagnostic Communication..

The value of the role attribute in the
aggregated class must be a name of a
PortInterface as standardized in ”Specification
ot Diagnostic Communication Manager” (e.g.
something like ”CallBakReqTreatment”).

serviceCall
Port

RoleBased
RPortAs-
signment

1 aggregation

This is the expected service to be called by
the software component to handle a particular
Diagnostic Communkication.

The value of the role attribute in the
aggregated class must be a name of a
PortInterface as standardized in ”Specification
ot Diagnostic Communication Manager” (e.g.
something like ”DcmService”)

Table 5.39: SwcDiagnosticCommunicationNeeds

Class 〈〈atpObject〉〉 ObdInfoServiceNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Class
Desc.

Specifies the abstract needs of a compoment or module on the configuration of OBD
Services in relation to a given InfoType (OBD Service 09), which is supported by this
component or module.

Base
Class(es) ServiceNeeds

Attribute Datatype Mul. Link Type Description
dataLength Integer 1 aggregation Length of date (in bytes) provided for this

InfoType.
infoType Integer 1 aggregation The InfoType according to ISO 15031-5

Table 5.40: ObdInfoServiceNeeds

Class 〈〈atpObject〉〉 SwcObdInfoServiceNeeds

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Service
Mapping

Class
Desc.

Specialization of the ObdInfoServiceNeeds for the case it is owned by a
SoftwareComponentType. It allows to navigate to all ports associated with this
particular InfoType.

Base
Class(es) ObdInfoServiceNeeds

Attribute Datatype Mul. Link Type Description
callback
Port

RoleBased
PPortAs-
signment

1 aggregation Port which must be used for reading this
InfoType.

Table 5.41: SwcObdInfoServiceNeeds

170 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Class 〈〈atpObject〉〉 ObdMonitorServiceNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Class
Desc.

Specifies the abstract needs of a compoment or module on the configuration of OBD
Services in relation to a particular on-board monitoring test supported by this
component or module. (OBD Service 06).

Base
Class(es) ServiceNeeds

Attribute Datatype Mul. Link Type Description
onBoard
MonitorId Integer 1 aggregation On-board monitor ID according to ISO

15031-5.

testId Integer 1 aggregation Test Identifier (TID) according to ISO 15031-5.

unitAnd
ScalingId Integer 1 aggregation Unit and scaling ID according to ISO 15031-5.

Table 5.42: ObdMonitorServiceNeeds

Class 〈〈atpObject〉〉 SwcObdMonitorServiceNeeds

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Service
Mapping

Class
Desc.

Specialization of the ObdMonitorServiceNeeds for the case it is owned by a
SoftwareComponentType. It allows to navigate to all ports associated with this
particular ratio monitoring.

Base
Class(es) ObdMonitorServiceNeeds

Attribute Datatype Mul. Link Type Description
callback
Port

RoleBased
PPortAs-
signment

1 aggregation Port which must be used for reading the TID
data provided by trhe Software Component.

Table 5.43: SwcObdMonitorServiceNeeds

Class 〈〈atpObject〉〉 ObdControlServiceNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Class
Desc.

Specifies the abstract needs of a compoment or module on the configuration of OBD
Service 08 (request control of on-board system) in relation to a particular
test-Identifier (TID) supported by this component or module.

Base
Class(es) ServiceNeeds

Attribute Datatype Mul. Link Type Description
testId Integer 1 aggregation Test Identifier (TID) according to ISO 15031-5.

Table 5.44: ObdControlServiceNeeds

Class 〈〈atpObject〉〉 SwcObdControlServiceNeeds

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Service
Mapping

171 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Class
Desc.

Specialization of the ObdControlServiceNeeds for the case it is owned by a
SoftwareComponentType. It allows to navigate to all ports associated with this
particular TID.

Base
Class(es) ObdControlServiceNeeds

Attribute Datatype Mul. Link Type Description
callback
Port

RoleBased
PPortAs-
signment

1 aggregation
Port which must be used for reading the test
result data provided by trhe Software
Component.

Table 5.45: SwcObdControlServiceNeeds

172 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

6 Implementation

Previous versions of this document contained a comprehensive description of the
meta-class Implementation. This meta-class still exists but the description of most
of its content has been moved to another document, in particular the specification of
the Basic Software Module Description Template [8].

Please note that the Software Component Template and the Basic Software
Module Description Template share the content of Implementation. How-
ever, the semantics of Implementation is closer to the Basic Software Module
Description Template.

Nevertheless, there is still content strictly related to the Software Component Tem-
plate. This part of Implementation consisting of SwcImplementation (see Fig-
ure 6.1) remains in this document.

ARElement

Implementation::Implementation

+ codeGenerator: String [0..1]
+ programmingLanguage: ProgramminglanguageEnum
+ swMajorVersion: Int
+ swMinorVersion: Int
+ swPatchVersion: Int
+ vendorId: Int

SwcImplementation

+ requiredRTEVendor: String [0..1]

ARElement

SwcInternalBehavior::InternalBehavior

+ supportsMultipleInstantiation: Boolean

PerInstanceMemorySize

+ alignment: Int
+ size: Int

Identifiable

PerInstanceMemory::
PerInstanceMemory

+ type: String
+ typeDefinition: String

Identifiable

Implementation::Code

+ type: CodeTypeEnum

Identifiable

Implementation::
Dependency

HWElement

ProcessingUnit::
ProcessingUnit

Identifiable

Implementation::
Compiler

+ name: String
+ options: String
+ vendor: String
+ version: String

Identifiable

ResourceConsumption::
ResourceConsumption

+perInstanceMemory

1

+perInstanceMemory

*
*

+behavior

1

+perInstanceMemorySize

*

+resourceConsumption

1

+codeDescriptor

1..*

+implementationDependency

*

+compiler

*

+processor

*

Figure 6.1: Implementation part specific to the Software Component Template

Class 〈〈atpObject〉〉 SwcImplementation
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcImplementation
Class
Desc.
Base
Class(es) Implementation

Attribute Datatype Mul. Link Type Description
behavior Internal

Behavior 1 reference The internal behavior implemented by this
Implementation.

173 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

perIn-
stance
Memory
Size

PerIn-
stance
Memory
Size

* aggregation Allows a definition of the size of the
per-instance memory for this implementation.

requiredRT
EVendor String 0..1 aggregation

Identify a specific RTE vendor. This
information is potentially important at the time
of integrating (in particular: linking) the
application code with the RTE. The semantics
is that (if the association exists) the
corresponding code has been created to fit to
the vendor-mode RTE provided by this
specific vendor. Attempting to integrate the
code with another RTE generated in vendor
mode is in general not possible.

Table 6.1: SwcImplementation

Class 〈〈atpObject〉〉 PerInstanceMemorySize
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcImplementation

Class
Desc.

Resources needed by the allocation of PerInstanceMemory for each SWC instance.
Note that these resources are not covered by an ObjectFileSection, because they are
supposed to be allocated by the RTE.

Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description
alignment Integer 1 aggregation Required alignment (1,2,4,...) of the

referenced PerInstanceMemory
perIn-
stance
Memory

PerIn-
stance
Memory

1 reference

size Integer 1 aggregation
Size (in bytes) of the reference
perInstanceMemory

Table 6.2: PerInstanceMemorySize

174 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

7 Mode Management

In general the Software Component Template doesn’t define the kind of modes, which
must be supported by State Managers or software-components explicitly. However the
Software Component template provides generic mechanisms for describing modes.
In this section the general relationship between modes, interfaces and software-
components is discussed.

The assumption from the software-component point of view is that State Managers
are using a Standardized AUTOSAR Interface 1 to influence the software-component
and also provide an interface to get requests and confirmations from the software-
component. They will be implemented as AUTOSAR services and be part of the Basic
Software on each ECU. The actual modes a State Manager provides will have to be
standardized as well to allow compatibility between software-components.

7.1 Declaration of Modes

The SW-Component Template provides some simple means to define collections of
modes. The name of the mode is the most important attribute that has to be pro-
vided for each ModeDeclaration. The ModeDeclarations are grouped together
within the ModeDeclarationGroup. The initialMode is active before any mode
switches occurred. This is shown in Figure 7.1

ARElement

«atpType»
ModeDeclarationGroup

Identifiable

«atpStructureElement»
ModeDeclaration

+initialMode

1

+modeDeclaration

1..*

Figure 7.1: ModeDeclaration

The class ModeDeclarationGroup has been introduced to support the grouping of
modes and (on M1 level) to provide predefined sets of modes that could be standard-
ized and re-used. The set of modes eventually defines a flat (i.e. no hierarchical states)
state-machine where only one mode can be active at a given point in time.

Please note that the actual definition of modes and their relationship is not in the re-
sponsibility of this document. In other words: the definition of modes represents M1
artifacts whereas this document is limited to describing M2 model elements.

Class 〈〈atpStructureElement〉〉 ModeDeclaration
Package M2::AUTOSARTemplates::SWComponentTemplate::ModeDeclaration
Class
Desc.

Declaration of one Mode. The name and semantics of a special mode is not defined
in the metamodel.

1See also AUTOSAR Glossary for ”Standardized AUTOSAR Interface”.

175 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description

Table 7.1: ModeDeclaration

Class 〈〈atpType〉〉 ModeDeclarationGroup
Package M2::AUTOSARTemplates::SWComponentTemplate::ModeDeclaration
Class
Desc.

A collection of Mode Declarations.

Base
Class(es) ARElement

Attribute Datatype Mul. Link Type Description

initialMode ModeDec-
laration 1 reference

The initial mode of the
ModeDeclarationGroup. This mode is active
before any mode switches occured.

modeDec-
laration ModeDec-

laration 1..* aggregation The ModeDeclarations collected in this
ModeDeclarationGroup.

Table 7.2: ModeDeclarationGroup

176 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

7.2 Communication of Modes

The Software-Component Template describes the concept of the communication of
ModeDeclarationGroupPrototypes similar to the communication of DataEle-
mentPrototypes: The collections of ModeDeclarations that are required or pro-
vided by a ComponentType are defined through its SenderReceiverInterfaces
as shown in Figure 7.2.

This allows for explicitly defining ConnectorPrototypes which communicate be-
tween ComponentPrototypes and to define service interfaces for communication
with ServiceComponentPrototypes. Due to the compatibility rules of PortIn-
terfaces (see chapter 3.4) each ComponentType can rely on the availability of re-
quired mode activations.

Eventually, the abstract definition of the mode management concept refers to the ECU
state management [2], i.e. an AUTOSAR service. Consequently, the communication
of modes by means of ModeDeclarationGroupPrototypes is - like other services
- not allowed to go beyond the scope of a particular ECU.

This is because the AUTOSAR concept does not foresee any means to map Mod-
eDeclarationGroupPrototypes to bus elements (for more details please refer to
the specification of the System Template [10]). It is therefore by concept not possible
to communicate mode changes over a communication bus.

Furthermore, ConnectorPrototypes for communicating modes can only be created
at the time of ECU configuration (see chapter 10 for more details).

ARElement

«atpType»
ModeDeclarationGroup

Identifiable

«atpStructur...
ModeDeclaration

PortInterface

«atpType»
PortInterface::SenderReceiverInterface

Identifiable

«atpPrototype»
PortInterface::

ModeDeclarationGroupPrototype

DataPrototype

«atpPrototype»
PortInterface::

DataElementPrototype

+ isQueued: Boolean

«isOfType»

+type

+modeDeclaration

1..*

+initialMode

1

+modeGroup 0..*

+interface 1

+dataElement 0..*

+interface
1

Figure 7.2: Communication of modes

177 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Please note, that each ComponentType - AtomicSoftwareComponentType as
well as CompositionType - can provide (via their PortPrototypes and Sender-
ReceiverInterfaces) a list of required and provided ModeDeclarationGroup-
Prototypes.

Eventually, a CompositionType requires and provides the modes that are required
or provided by its contained ComponentPrototypes. The delegation of these modes
from ComponentPrototypes to the enclosing CompositionType is explicitly de-
scribed by DelegationConnectorPrototypes.

The Software-Component description does not make any assumptions about the se-
mantics of the required and provided ModeDeclarationGroupPrototypes. It just
requires and provides the ModeDeclarationGroupPrototypes by name.

7.3 Modes and Events

Software-components need to be capable of reacting to state changes issued by some
Mode Manager and adopt their behavior to the new situation. Such a mode dependent
software-component is shown in Figure 7.3.

Since the behavior of AtomicSoftwareComponentTypes is mainly determined by
the RunnableEntities contained in the InternalBehavior it is necessary to con-
figure the response to mode changes on the level of RunnableEntities.

Figure 7.3: State Managers and software-components

Figure 7.4 shows an excerpt of the meta-model illustrating how the relationship be-
tween the current mode and the InternalBehavior of the AtomicSoftwareCom-
ponentType can be described.

178 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Identifiable

«atpStructureEle...
ModeDeclaration

Identifiable

RTEEvent

ModeSwitchEvent

+ activation: ModeActivationKind

ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean
+ minimumStartInterval: Float
+ symbol: String

«enumeration»
ModeActivationKind

 entry
 exit

ModeDisablingDependency+startOnEvent

0..1

0..* «instanceRef»

+mode

1

«instanceRef»

+dependentOnMode 1..*

+modeDependency

0..1

Figure 7.4: Modes and events

The AtomicSoftwareComponentType can use two mechanisms to define how its
InternalBehavior should interact with the mode management.

Using the first mechanism (ModeSwitchEvent, see Figure 7.5), an Atomic-
SoftwareComponentType can define an RTEEvent to specify that a specific
RunnableEntity must be started whenever a mode is entered and/or exited.

Using the second mechanism (ModeDisablingDependency), the AtomicSoft-
wareComponentType can indicate whether an RTEEvent that starts an associated
RunnableEntity is mode-dependent. RTEEvents without a modeDependency oc-
cur regularly according to their definition. RTEEvents with the optional modeDe-
pendency have the additional limitation that the associated RunnableEntity is
not started when the ModeDeclaration referenced by the ModeDisablingDepen-
dency is active.

Class 〈〈atpObject〉〉 ModeDisablingDependency
Package M2::AUTOSARTemplates::SWComponentTemplate::ModeDeclaration
Class
Desc. Collection of references to the Modes that disable the RTEEvent

Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description
dependent
OnMode ModeDec-

laration 1..* instanceRef Reference to the Modes that disable the
Runnable Entity.

Table 7.3: ModeDisablingDependency

179 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

ExecutableEntity

SwcInternalBehavior::RunnableEntity

+ canBeInvokedConcurrently: Boolean
+ minimumStartInterval: Float
+ symbol: String

Identi fiable

ModeSwitchPoint

Identifiable

«atpPrototype»
PortInterface::

ModeDeclarationGroupPrototype

RTEEvent

RTEEvents::ModeSwitchedAckEvent

0..*«instanceRef»

+modeGroup

1

+event 0..1

+eventSource 1

+modeSwitchPoint *

+runnable

Figure 7.5: ModeSwitchEvent

A RunnableEntity can also have ModeSwitchPoints that eventually associates a
RunnableEntity with a specific ModeDeclarationGroup.

Class 〈〈atpObject〉〉 ModeSwitchPoint

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Mode
DeclarationGroup

Class
Desc.

A ModeSwitchPoint is required by a RunnableEntity owned a Mode Manager. Its
semantics implies the ability to initiate a mode switch.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description

mode
Group

ModeDec-
laration
Group
Prototype

1 instanceRef

Table 7.4: ModeSwitchPoint

180 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

The ModeSwitchPoint also allows for the definition of a ModeSwitchedAckEvent.
This RTEEvent is eventually owned by a mode manager to allow for getting confirma-
tion of a mode change.

Class 〈〈atpObject〉〉 ModeSwitchedAckRequest
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Class
Desc. Requests acknowledgements that a mode switch has been proceeded successfully

Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description

timeout Float 1 aggregation

Number of seconds before an error is
reported or in case of allowed redundancy, the
value is sent again.

Table 7.5: ModeSwitchedAckRequest

Class 〈〈atpObject〉〉 ModeSwitchedAckEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE
Events

Class
Desc. The event is raised when the referenced mode have been received or an error occurs.

Base
Class(es) RTEEvent

Attribute Datatype Mul. Link Type Description
event
Source

Mode
Switch
Point

1 reference Mode switch point that triggers the event.

Table 7.6: ModeSwitchedAckEvent

7.4 Initialization / Finalization

The AUTOSAR standard must support the execution of initialization code for every
AtomicSoftwareComponentType. Most AtomicSoftwareComponentTypes will
need to initialize by executing specific code; this code must complete before any other
code in the component is executed. Data will be initializing to specific values before
the ”normal” application software is running.

The AUTOSAR standard must also support the execution of finalization code for every
AtomicSoftwareComponentType. Most AtomicSoftwareComponentTypes will
need to finalize by calling specific code; this code must complete before the functional-
ity of the application software shut down (e.g. a motor drive in a start or end position).

With the mechanisms provided by the mode manager and the activation of
RunnableEntities driven by ModeSwitchEvents it is easily possible to define
a mode ”Initialization”. When ”Entering” this state initialization RunnableEntities
can be activated. When all initialization RunnableEntities have finished the mode
manager can change to further modes.

181 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Also the equivalent can be realized for the finalization of AtomicSoftwareCompo-
nentTypes.

Please note: The initial modes of AtomicSoftwareComponentTypes are defined by
the initial mode references of the required mode groups. These modes are activated
before any other mode activation has occurred. It is the responsibility of the RTE to
activate all initial modes on a certain ECU.

182 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

7.5 Summary Meta-Model Excerpt Related to Modes

Figure 7.6 provides an overview of all meta-model elements that have a semantical
relationship to the mode-management aspect.

Interface

ModeDeclaration

InternalBehavior and Runnables

Component and Port

Identifiable

«atpStructureElement»
ModeDeclaration

ARElement

«atpType»
ModeDeclarationGroup

ModeDisablingDependency

Identifiable

«atpPrototype»
ModeDeclarationGroupPrototype

«atpType»
SenderReceiverInterface

ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean
+ minimumStartInterval: Float
+ symbol: String

ARElement

«atpType»
PortInterface

+ isService: Boolean

«atpPrototyp...
PPortPrototype

«atpPrototyp...
RPortPrototype

AtomicSoftwareComponentType

ARElement

InternalBehavior

+ supportsMultipleInstantiation: Boolean

ARElement

«atpType»
ComponentType

Identifiable

«atpPrototyp...
PortPrototype

DataPrototype

«atpPrototype»
DataElementPrototype

+ isQueued: Boolean

«atpType»
CompositionType

Identifiable

RTEEvent

ModeSwitchEvent

+ activation: ModeActivationKind

+modeDependency0..1

+modeDeclaration

1..*

0..*

«instanceRef»

+mode 1

+initialMode

1

«instanceRef»

+dependentOnMode 1..*

*

+component 1

+port

0..*

+component

«isOfType»

+type

+dataElement 0..*

+interface 1

+startOnEvent

0..1

+event * +runnable 1..*

+behavior

+pPort *

«isOfType»

+providedInterface
1

+rPort *

«isOfType»

+requiredInterface
1

+modeGroup 0..*

+interface 1

Figure 7.6: Summary meta-model excerpt related to modes

183 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

8 Measurement and Calibration

This section describes how software components have to be prepared for measure-
ment & calibration. It is the goal to merge the AUTOSAR ideas with practice currently
supported by ASAM definitions such as A2L, MDX, CDF.

Please note: Calibration and Measurement support is taken over from the approaches
of ASAM, and in particular MDX which is based on MSRSW. This takeover was done
by reverse engineering the MSRSW to UML and importing the relevant classes. Also
note that some of the documentation provided here is taken from MSR and might even
reflect some differences between the MSR approach and AUTOSAR which will be
harmonized in future versions.

8.1 Basic Approach

While performing the calibration process using a MCD tool (Measurement, Calibration
and Diagnostic), the calibration engineer needs to have a specific insight to the data
within the CPU at runtime. This insight is provided by access to ECU internal variables
(also called measurements) as well as calibration parameters (sometimes also called
characteristic value).

A calibration parameter is a parameter which characterizes the dynamics of a con-
trol algorithm. From a software implementation point of view, it is a variable with only
read-access during normal operation of an ECU. Similar to DataPrototypes Cali-
bration Parameters can be defined for an InternalBehavior of a ComponentType
(this relates to InterRunnableVariables), individually for a ComponentProto-
type (similar to PerInstanceMemory) as well as for several SoftwareComponent-
Prototypes (using the port-/interface-concept).

Therefore, the description of variables and calibration parameters are basically the
same. In AUTOSAR both appear finally as DataPrototypes.

8.2 Properties of Data Definitions

Measurement and calibration entities are based on the concept of data definitions. The
properties of these data definitions are reflected by a dedicated meta-model element,
the so-called SwDataDefProps, which covers all properties of a particular data el-
ement under various aspects, e.g. how a DataPrototype can be measured or a
parameter can be calibrated.

The aspects covered by the SwDataDefProps are

• Structure of the data element, is it a single value, a curve, or a map, but also the
recordLayouts which specify, how such elements are mapped/converted to the

184 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

DataTypes in AUTOSAR. This is mainly expressed by properties like swRecord-
Layout and swCalprmAxisSet

• Implementation policy, mainly expressed by swImplPolicy, swVariableAc-
cessImplPolicy, swAddrMethod

• Access policy for the MDC system, mainly expressed by swCalibrationAc-
cess

• Semantics of the data element, mainly expressed by compuMethod and/or unit,
dataConstr

• Code generation policy provided by swCodeSyntax

In AUTOSAR, SwDataDefProps can be attached on primitive type level as well as on
prototype level. In general, properties specified on prototype level override the ones
specified on type level.

Obviously such an override is not applicable in all cases. In particular, the properties
covering the Structure must not be redefined on DataPrototype. Implementation
policy, semantics and code generation policy may be changed under consideration of
compatibility rules. Access policy for the MCD system is the most likely subject to be
redefined on the DataPrototype.

In AUTOSAR SwDataDefProps are attached to derivations of DataPrototypes,
namely

• DataElementPrototypes and ArgumentPrototypes in their respective
context of PortPrototypes and ComponentPrototypes.

• InterRunnableVariable and

• CalprmElementPrototype

to set the swCalibrationAccess to READ respectively READ-WRITE in the first
two cases or to define the properties of Calibration Parameters in case three.

185 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Identifiable

«atpPrototype»
Datatypes::DataPrototype

IsSyscond

DataDefProperties::SwDataDefProps

+ displayFormat: DisplayFormatString [0..1]
+ swAliasName: String [0..1]
+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]
+ swCalprmNoEffectValue: String [0..1]
+ swImplPolicy: SwImplPolicyEnum [0..1]
+ swIntendedResolution: NumericalValue [0..1]
+ swInterpolationMethod: String [0..1]
+ swIsVirtual: Boolean [0..1]
+ swVariableAccessImplPolicy: SwVariableAccessImplPolicyEnum [0..1]
+ swVarNotAvlValue: String [0..1]

Identifiable

Composition::ConnectorPrototype

«atpStructureElement»
Composition::

AssemblyConnectorPrototype

PortPrototype

«atpPrototyp...
Components::

PPortPrototype

ARElement

«atpType»
PortInterface::
PortInterface

+ isService: Boolean

«atpType»
PortInterface::

SenderReceiverInterface

«atpPrototype»
PortInterface::

DataElementPrototype

+ isQueued: Boolean

+dataElement

0..*

+interface

1

+pPort

*«isOfType»

+providedInterface

1

0..*

«instanceRef»+provider

1

+swDataDefProps

0..1

Figure 8.1: Data-Def-Properties in Connector Context

InterRunnableCommunication::InterRunnableVariable

+ communicationApproach: CommunicationApproachType

ARElement

Auxil laryObjects::
SwAddrMethod

ARElement

AuxillaryObjects::
SwCodeSyntax

ARElement

AuxillaryObjects::
SwRecordLayout

ARElement

SwcInternalBehavior::InternalBehavior

+ supportsMultipleInstantiation: Boolean

IsSyscond

DataDefProperties::SwDataDefProps

+ displayFormat: DisplayFormatString [0..1]
+ swAliasName: String [0..1]
+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]
+ swCalprmNoEffectValue: String [0..1]
+ swImplPolicy: SwImplPolicyEnum [0..1]
+ swIntendedResolution: NumericalValue [0..1]
+ swInterpolationMethod: String [0..1]
+ swIsVirtual: Boolean [0..1]
+ swVariableAccessImplPolicy: SwVariableAccessImplPolicyEnum [0..1]
+ swVarNotAvlValue: String [0..1]

Identifiable

«atpPrototype»
Datatypes::DataPrototype

ComponentType

Components::
AtomicSoftwareComponentType

+swCodeSyntax

0..1

+interRunnableVariable 0..*

+swAddrMethod

0..1

+swRecordLayout

0..1

+swDataDefProps 0..1*

+component 1

Figure 8.2: Data-Def-Props in Inter-Runnable-Variable Context

186 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Section 8.3 describes how SwDataDefProps are attached to DataPrototypes for
measuring purposes while Section 8.4 and 8.5 describe the construction of character-
istics based on the combination of SwDataDefProps with DataPrototypes.

Section 8.4 describes in which context characteristics can be defined. Finally, sections
8.6, 8.7, and 8.8 show how characteristics are used in RunnableEntities and show
the link to an actual ECU implementation.

The way the SwDataDefProps are attached to a DataPrototype depends on the
purpose of the DataPrototype and is described in detail in the following sections.

Enumeration SwCalibrationAccessEnum
Package M2::AUTOSARTemplates::CommonStructure::DataDefProperties
Enum Desc. Determines the access rights to a data object w.r.t. measurement and calibration.
Literal Description
readOnly The element will only appear as read-only in an ASAP file.

notAccessible The element will not be accessible via MCD tools, i.e. will not appear in the ASAP
file.

readWrite The element will appear in the ASAP file with both read and write access.

Class 〈〈atpObject〉〉 SwDataDefProps
Package M2::AUTOSARTemplates::CommonStructure::DataDefProperties

Class
Desc.

This class is a collection of properties relevant for data objects under various aspects.
One could consider this class as a ”pattern of inheritance by aggregation”. The
properties can be applied to all objects of all classes in which SwDataDefProps is
agrregated.

Note that not all of the attributes or associated elements are useful all of the time.
Hence, the process definition (e.g. expressed with an OCL or a Document Control
Instance) MSR-DCI has the task of implementing limitations.

SwDataDefProps covers various aspects:

* Structure of the data element, is it a single value, a curve, or a map, but also the
recordLayouts which specify, how such elements are mapped/converted to the
DataTypes in the programming language (or in Autosar). This is mainly expressed by
properties like swRecordLayout and swCalprmAxisSet

* Implementation policy, mainly expressed by swImplPolicy,
swVariableAccessImplPolicy, swAddrMethod

* Access policy for the MDC system, mainly expressed by swCalibrationAccess

* Semantics of the data element, mainly expressed by compuMethod and/or unit,
dataConstr

* Code generation policy provided by swCodeSyntax
Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description

annotation Annotation * aggregation
This aggregation allows to add annotations
(yellow pads ...) related to the current data
object.

187 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

baseType SwBase
Type 0..1 reference Base type associated with the value axis of

this data object.
compu
Method Compu

Method 0..1 reference Computation method associated with the
semantics of this data object.

dataConstr DataCon-
str 0..1 reference Data constraint for this data object.

display
Format

Display
Format
String

0..1 aggregation
This property describes how a number is to be
rendered e.g. in documents or in a
measurement and calibration system.

invalid
Value

Primitive
Specifica-
tion

0..1 aggregation

Optional value to express invalidity of the
actual data element. If given, the owning
component has the API to set this data
element invalid, otherwise it does not.

swAddr
Method SwAddr

Method 0..1 reference Addressing method related to this data object.

swBitRep-
resentation SwBitRep-

resentation 0..1 aggregation Description of the binary representaion in
case of a bit variable.

swCalibra-
tionAccess

SwCalibra-
tionAccess
Enum

0..1 aggregation Specifies the read or write access by MCD
tools for this data object.

swCalprm
AxisSet SwCalprm

AxisSet 0..1 aggregation
This specifies the properties of the axes in
case of a curve or map etc. This is mainly
applicable to calibration parameters.

swCode
Syntax SwCode

Syntax 0..1 reference Coding policy for this data object expressed
as a reference to a Code syntax to be applied.

swDataDe-
pendency

SwData
Depen-
dency

0..1 aggregation

If the data object is virtual - that means it is
not directly in the ecu, then this property
describes how the ”virtual variable” can be
computed from the real ones.

swHost
Variable SwVariable

Ref 0..1 aggregation
Contains a reference to a variable, which
serves as a host-variable for a bit variable.
Only applicable to bit objects.

swImpl
Policy

SwImpl
Policy
Enum

0..1 aggregation Implementation policy for this data object.

swPointer SwPointer 0..1 aggregation Specifies that the containing data object is a
pointer to another data object.

swRecord
Layout SwRecord

Layout 0..1 reference Record layout for this data object.

swText
Props SwText

Props 0..1 aggregation the specific properties if the data object is a
text object.

swValue
BlockSize SwArray-

size 0..1 aggregation

Specifies the size in case the data object is an
VAL BLK. It is there for compatibility reasons,
where value blocks were introduced as a kind
of an array.

188 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

swVariable
Access
ImplPolicy

SwVariable
Access
ImplPolicy
Enum

0..1 aggregation
In case of a swImplPolicy set to ”message” the
access policy can be refined here.

unit Unit 0..1 reference

Physical unit associated with the semantics of
this data object. This attribute applies, if no
compuMethod is specified. If buth units (this
as well as via compuMethod is specified,the
units ust be the same.

Table 8.1: SwDataDefProps

8.3 Measurement

In embedded automotive software design, measurement means access to memory
locations in an ECU and transferring its contents to the measurement & calibration
system. While in classical software design, variables abstract the memory locations in
the code, AUTOSAR provides for this purpose the DataPrototype, which is used in the
context of several other prototypes. The following DataPrototypes corresponds to
SW-VARIABLE in ASAM-MDX.

• DataElementPrototype of a SenderReceiverInterface used in a Port-
Prototype (of a ComponentPrototype), to capture sender-receiver com-
munication between ComponentPrototypes, and ArgumentPrototype of
an OperationPrototype in a ClientServerInterface to capture client-
server communication between ComponentPrototypes, and

• InterRunnableVariable to capture communication between RunnableEn-
tities within a ComponentPrototype.

Various categories “variables” the can be distinguished by the category in Identi-
fiable

ASAM Category purpose Specific dataDefProps
VALUE One single value
VALUE ARRAY An array of values Must refer to an ArrayType. Cat-

egory in ArrayElement must be
”VALUE”. DataDefProps within Ar-
rayElement must be specified.

ASCII A String swTextProps / swMaxTextSize
BOOLEAN A Boolean value
STRUCTURE A Structure of Val-

ues
Must refer to a RecordType. Cat-
egory within RecordElement must
be ”VALUE”. DataDefProps within
RecordElement must be specified.

189 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

STRUCTURE ARRAY An array of Struc-
ture of Values

Must refer to an ArrayType of
which ArrayElement must refer to
a RecordType. Category in Ar-
rayElement must be STRUCTURE.
DataDefProps within RecordEle-
ment must be specified. Cate-
gory within RecordElement must be
VALUE.

Table 8.2: ASAM Categories

Note that the type of the DataPrototype must match the purpose denoted by the
category value. For example if the measurement/category denotes a STRUCTURE,
the data type must be a composite data type. The following structural features from
SwDataDefProps apply:

Property Explanation
compuMethodRef Indicates the computation method of the particular

measurement. Note that in case the DataElement-
Prototype is of type PrimitiveType referring to
a compuMethod, both must refer to the same com-
puMethod.
If it is missing the CompuMethod is either specified
by the PrimitiveType, or it is the IDENTITY compu
method.

baseTypeRef Indicates the basic type how the object (measurement
or calibration parameter) is handled within the ECU.

swAddrMethodRef Indicates the method, how the object (measurement
or calibration parameter) is addressed within the CPU
such that a calibration system can handle it properly.

swCalibrationAccess Indicates the modes how a calibration system can ac-
cess the measurement

dataConstrRef Refers to the data constraints allowing the calibration
system to validate measurements and user input.

swImplPolicy Indicates, how the access to the measurement is im-
plemented.

unitRef The physical unit if not specified by the compuMethod

Table 8.3: SwDataDefProps Properties

Enumeration SwImplPolicyEnum
Package M2::AUTOSARTemplates::CommonStructure::DataDefProperties

Enum Desc. Specifies the implementation strategy with respect to consistency mechanisms of
variables.

Literal Description

190 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

measurement
Point

The data element is never read directly within the ECU software. It is written for
measurement purposes only.

standard No specific protection measures are taken. Usually applies to variables inside of
an excutable entity.

message

The access to the measurement must be implemented using protection
mechanisms. This mainly applies to variables shared by executable entities, i.e.
InterRunnableVariables.

The ability of such a Measurement to be accessed by, e.g. a calibration tool, is given
by setting the swCalibrationAccess attribute. The following table shows all valid
settings of swCalibrationAccess:

Enumeration SwCalibrationAccessEnum
Package M2::AUTOSARTemplates::CommonStructure::DataDefProperties
Enum Desc. Determines the access rights to a data object w.r.t. measurement and calibration.
Literal Description
readOnly The element will only appear as read-only in an ASAP file.

notAccessible The element will not be accessible via MCD tools, i.e. will not appear in the ASAP
file.

readWrite The element will appear in the ASAP file with both read and write access.

Value of swCalibra-
tionAccess

Explanation

NOT-ACCESSIBLE The element will not appear in an ASAP file A2L.
READ-ONLY The element will only appear as read-only in an ASAP

file
READ-WRITE Both read and write access.attribute

Table 8.4: swCalibrationAccess

All properties defined in SwDataDefProps at any location must be processed and
must be consistent. It is an error if conflicting properties are specified. As an example,
a dataConstraint may be specified at type as well as at prototype level. In this case
the prototype may specify stronger constraints than the type but not vice versa.

To keep it simple for AUTOSAR it is recommended to avoid the multiple definition of
the same data definition property. For example compuMethod might be defined on
type level only, while baseType might be defined on prototype level. In other words:
the various options to aggregate SwDataDefProps provide flexibility where to define
particular properties, but not to have properties overriding each other.

The same applies to units which may be defined at SwDataDefProps as well as within
a CompuMethod. Usually units are defined within the CompuMethod. But if it is defined
within SwDataDefProps (for exceptional use cases) it must be compatible to the ones
defined in the referred CompuMethod.

191 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

8.4 Characteristic Values

A Calibration Parameter is a parameter which characterizes the dynamics of a control
algorithm. From a software implementation point of view, it is a variable with only
read-access during the normal operation of an ECU. Characteristics are specialized
DataPrototype entities in terms of its associated type but are used in a similar way.
This means that Calibration Parameters can be defined for

• InternalBehavior of a ComponentType (this relates to InterRunnable-
Variables),

• individually for a ComponentPrototype (similar to PerInstanceMemory) as
well as

• for several SwComponentPrototypes (using the port-/interface-concept).

A characteristic is represented by the CalprmElementPrototype entity. It is derived
from Identifiable, thus having a longName and a shortName, a description
and a category. The category determines the type of the characteristic table. The
categories (according ASAM - MDX) are shown in table 8.5. The main ones are illus-
trated in Figure 8.3

192 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5
A

S
A

M
C

at
eg

or
y

pu
rp

os
e

S
pe

ci
fic

da
ta

D
ef

P
ro

ps
VA

LU
E

O
ne

si
ng

le
ca

lp
rm

va
lu

e
VA

LU
E

A
R

R
AY

A
rr

ay
of

ca
lp

rm
va

lu
es

M
us

tr
ef

er
to

an
A
r
r
a
y
T
y
p
e

.C
at

eg
or

y
in
A
r
-

r
a
y
E
l
e
m
e
n
t

m
us

t
be

”V
A

LU
E

”.
D
a
t
a
D
e
f
-

P
r
o
p
s

w
ith

in
A
r
r
a
y
E
l
e
m
e
n
t

m
us

tb
e

sp
ec

i-
fie

d.
VA

L
B

LK
Va

lu
e

bl
oc

k
-

a
ho

m
og

en
eo

us
fix

ed
si

ze
d

bl
oc

k
of

pa
ra

m
et

er
s.

S
w
V
a
l
u
e
B
l
o
c
k
s
i
z
e

C
U

R
V

E
C

ur
ve

(C
ha

ra
ct

er
is

tic
)
S
w
C
a
l
p
r
m
A
x
i
s
S
e
t

w
ith

on
e
c
a
l
p
r
m
A
x
i
s

C
U

R
V

E
A

R
R

AY
ar

ra
y

of
cu

rv
es

M
us

tr
ef

er
to

an
A
r
r
a
y
T
y
p
e

.C
at

eg
or

y
in
A
r
-

r
a
y
E
l
e
m
e
n
t

m
us

t
be

”C
U

R
V

E
”.

D
a
t
a
D
e
f
-

P
r
o
p
s

w
ith

in
A
r
r
a
y
E
l
e
m
e
n
t

m
us

tb
e

sp
ec

i-
fie

d
as

:
S
w
C
a
l
p
r
m
A
x
i
s
S
e
t

w
ith

on
e
c
a
l
p
r
m
A
x
i
s

M
A

P
M

ap
S
w
C
a
l
p
r
m
A
x
i
s
S
e
t

w
ith

tw
o

ca
lp

rm
A

xi
s

M
A

P
A

R
R

AY
ar

ra
y

of
m

ap
s

M
us

tr
ef

er
to

an
A
r
r
a
y
T
y
p
e

.C
at

eg
or

y
in
A
r
-

r
a
y
E
l
e
m
e
n
t

m
us

t
be

”C
U

R
V

E
”.

D
a
t
a
D
e
f
-

P
r
o
p
s

w
ith

in
A
r
r
a
y
E
l
e
m
e
n
t

m
us

tb
e

sp
ec

i-
fie

d
as

:
S
w
C
a
l
p
r
m
A
x
i
s
S
e
t

w
ith

tw
o
c
a
l
p
r
m
A
x
i
s

C
O

M
A

X
IS

C
om

m
on

A
xi

s
A

C
O

M
A

X
IS

(c
om

m
on

ax
is

)
is

an
ax

is
de

fin
iti

on
as

se
pa

ra
te

ca
lib

ra
tio

n
pa

ra
m

et
er

an
d

ca
n

be
re

fe
r-

en
ce

d
by

an
y

cu
rv

e
or

m
ap

.T
he

be
ne

fit
s

by
us

in
g

a
co

m
m

on
ax

is
is

th
at

it
sa

ve
s

m
em

or
y

sp
ac

e,
ca

us
e

it
is

st
or

ed
on

ly
on

e
tim

e
an

d
ca

n
be

us
ed

in
m

ul
ti-

pl
e

cu
rv

es
or

m
ap

s.

S
w
C
a
l
p
r
m
A
x
i
s
S
e
t

w
ith

on
e
c
a
l
p
r
m
A
x
i
s

193 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5
R

E
S

A
X

IS
R

es
ca

le
ax

is
A

R
E

S
A

X
IS

(r
es

ca
le

ax
is

)i
s

al
so

a
sh

ar
ed

ax
is

lik
e

C
O

M
A

X
IS

,
th

e
di

ffe
re

nc
e

is
th

at
th

is
ki

nd
of

ax
is

ca
n

be
us

ed
fo

rr
es

ca
lin

g.
N

ot
e

th
at

th
e

R
E

S
A

X
IS

is
by

na
tu

re
a

C
U

R
V

E
w

hi
ch

is
us

ed
to

im
pl

em
en

t
a

no
n

lin
ea

rs
ca

lin
g

(r
es

ca
le

)o
ft

he
ax

is
.

Th
e

be
ne

fit
s

by
us

in
g

a
re

sc
al

e
ax

is
is

th
at

it
sa

ve
s

m
em

or
y

sp
ac

e,
be

ca
us

e
it

is
st

or
ed

on
ly

on
e

tim
e

an
d

ca
n

be
us

ed
in

m
ul

tip
le

cu
rv

es
or

m
ap

s.
In

ad
di

tio
n

to
th

is
it

ca
n

co
m

pr
es

s
a

hu
ge

ra
ng

e
to

a
no

n
lin

ea
r

di
st

rib
ut

ed
ax

is
po

in
ts

th
us

re
ta

in
in

g
th

e
re

qu
ire

d
ac

cu
ra

cy
.

S
w
C
a
l
p
r
m
A
x
i
s
S
e
t

w
ith

on
e
c
a
l
p
r
m
A
x
i
s

A
S

C
II

ca
lp

rm
as

te
xt

Th
is

in
di

ca
te

s
a

pa
ra

m
et

er
in

te
xt

fo
rm

(e
.g

.a
m

es
-

sa
ge

to
be

di
sp

la
ye

d
to

th
e

dr
iv

er
).

s
w
T
e
x
t

/s
w
M
a
x
T
e
x
t
S
i
z
e

S
TR

U
C

TU
R

E
A

S
tr

uc
tu

re
of

Va
lu

es
M

us
t

re
fe

r
to

a
R
e
c
o
r
d
T
y
p
e

.
C

at
eg

or
y

w
ith

in
R
e
c
o
r
d
E
l
e
m
e
n
t

m
us

t
be

se
t

ac
co

rd
-

in
gl

y.
D
a
t
a
D
e
f
P
r
o
p
s

w
ith

in
R
e
c
o
r
d
E
l
e
-

m
e
n
t

m
us

tb
e

sp
ec

ifi
ed

.
S

TR
U

C
TU

R
E

A
R

R
AY

A
n

ar
ra

y
of

S
tr

uc
tu

re
of

Va
lu

es
M

us
t

re
fe

r
to

an
A
r
r
a
y
T
y
p
e

of
w

hi
ch

A
r
-

r
a
y
E
l
e
m
e
n
t

m
us

t
re

fe
r

to
a
R
e
c
o
r
d
T
y
p
e

.
C

at
eg

or
y

in
A
r
r
a
y
E
l
e
m
e
n
t

m
us

tb
e

S
TR

U
C

-
TU

R
E

.
D
a
t
a
D
e
f
P
r
o
p
s

w
ith

in
R
e
c
o
r
d
E
l
e
-

m
e
n
t

m
us

t
be

sp
ec

ifi
ed

.
C

at
eg

or
y

w
ith

in
R
e
c
o
r
d
E
l
e
m
e
n
t

m
us

tb
e

se
ta

cc
or

di
ng

ly
.

Ta
bl

e
8.

5:
C

al
P

rm
C

at
eg

or
ie

s

194 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Curve Map AxisCurve Map Axis

Figure 8.3: Some Categories of Calprms

Section 8.5 shows how to construct particular CalprmElementPrototypes based
on categories and axis descriptions. Though all DataPrototype are derived from
Identifiable and thus may have its category set to one of the entries above, this
particular setting is only allowed in the meta-model-element CalprmElementProto-
type. Authoring tools have to reflect this constraint.

8.5 Representing CalprmElementPrototypes based on Categories

A characteristic table is defined by setting the category of the CalprmElementPro-
totype to CURVE. Its SwDataDefProps determine an axis description. In MSRSW
the type of the functional values is given by the attached BaseType and the Com-
puMethod.

The axis description is defined by the meta-model element SwCalprmAxisSet aggre-
gating a SwCalprmAxis. In the latter’s aggregated SwCalprmAxisAxis it is deter-
mined whether the axis is a so called ”individual axis” or a ”grouped axis”. The latter
which is used to share axis points by several characteristic tables. The diagram below
shows how an individual axis is represented by the meta-model element SwAxisIn-
dividual.

The SwAxisIndividual references value-models to account the minimum and the
maximum number of axis values as well as the number of axis points. Hence, the size
of the structure to hold the functional values is determined by the number of axis values
for all axis’s. The type of the axis values is determined when the type of the referenced
input value (swVariableRef) has been set. For further details see 8.6.4.

195 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

IsSyscond

DataDefProperties::SwDataDefProps

+ displayFormat: DisplayFormatString [0..1]
+ swAliasName: String [0..1]
+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]
+ swCalprmNoEffectValue: String [0..1]
+ swImplPolicy: SwImplPolicyEnum [0..1]
+ swIntendedResolution: NumericalValue [0..1]
+ swInterpolationMethod: String [0..1]
+ swIsVirtual: Boolean [0..1]
+ swVariableAccessImplPolicy: SwVariableAccessImplPolicyEnum [0..1]
+ swVarNotAvlValue: String [0..1]

ARElement

Units::Unit

+ factorSiToUnit: Float [0..1]
+ offsetSiToUnit: Float [0..1]

ARElement

ComputationMethod::CompuMethod

+ compuIdentity: String [0..1]
+ displayFormat: DisplayFormatString [0..1]

BaseType

BaseTypes::
SwBaseType

ARElement

GlobalConstraints::
SwConstrObjects::

DataConstr

ARElement

AuxillaryObjects::
SwCodeSyntax

ARElement

AuxillaryObjects::
SwAddrMethod

CalibrationParameter::SwCalprmAxis

+ category: CalprmAxisCategoryEnum [0..1]
+ displayFormat: DisplayFormatString [0..1]
+ swAxisIndex: AxisIndexType [0..1]
+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

CalibrationParameter::
SwCalprmAxisSet

CalibrationParameter::
SwCalprmAxisTypeProps

CalibrationParameter::
SwCalprmAxisIndividualAxis

Axis::SwAxisIndividual

DatadictionaryProxies::
SwVariableRefProxy

ValueByFormula

«atpMixedStri...
ValueModel::Vf

CalprmElementPrototype
Identifiable

«atpPrototype»
Datatypes::DataPrototype

+dataConstr 0..1

+swAxisIndividual

1

+swCalprmAxisTypeProps 1

+swDataDefProps 0..1

+swAddrMethod

0..1

+swCodeSyntax

0..1

+baseType 0..1

+baseType

0..1

+swCalprmAxis 0..*

+swVariableRef 0..*

+dataConstr

0..1

+swMaxAxisPoints

0..1

+swMinAxisPoints

0..1

+compuMethod

0..1

+compuMethod
0..1

+unit 0..1+unit 0..1

+unit 0..1

+swCalprmAxisSet 0..1

Figure 8.4: Model of a Curve

The actual memory layout of the characteristic in an ECU is determined by the
SwRecordLayout which is referenced by the SwDataDefProps of CalprmEle-
mentPrototype. There are a tremendous number of record layouts used in auto-
motive industry.

Constructing a record layout by using an AUTOSAR CompositeType like record or
array would just describe very simple layouts assuming the use of contiguous memory
sections, which are rarely used. All employed meta-model entities to describe a curve
are shown in Figure 8.4.

In AUTOSAR, the type of DataType of a calibration parameter is given by the
Datatype of the CalprmElementPrototype, which is derived from DataEle-
mentPrototype which is again derived from DataPrototype.

For primitive values, this type must be correlated with the baseType specified in the
DataDefProps. For primitive values, this type correlates to the ”Data Structure” level
sketched in Figure 4.1.

196 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

For multidimensional calibration parameters (curves, maps), the data type from
AUTOSAR perspective must be in sync with the more detailed specification provided
by the referenced SwRecordLayout.

In migration scenarios from MSRSW to AUTOSAR, the baseType of the Datatype
of the functional values must be consistent with a baseType referenced within the
DataPrototype. As depicted by Figure 8.5 at the baseType can be specified on
type- and on prototype-level. For more details please refer to chapter 8.8.

«atpType»
PrimitiveType

ARElement

«atpType»
Datatype

Identifiable

ConnectorPrototype

Identifiable

«atpPrototype»
DataPrototype

IsSyscond

SwDataDefProps

+ displayFormat: DisplayFormatString [0..1]
+ swAliasName: String [0..1]
+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]
+ swCalprmNoEffectValue: String [0..1]
+ swImplPolicy: SwImplPolicyEnum [0..1]
+ swIntendedResolution: NumericalValue [0..1]
+ swInterpolationMethod: String [0..1]
+ swIsVirtual: Boolean [0..1]
+ swVariableAccessImplPolicy: SwVariableAccessImplPolicyEnum [0..1]
+ swVarNotAvlValue: String [0..1]

BaseType

SwBaseType

+swDataDefProps 0..1+swDataDefProps 0..1

+baseType 0..1

0..*

«isOfType»

+type

1

Figure 8.5: Type Determination of Calibration Data Value axis

8.6 Using Calibration Parameters

As mentioned above, a CalprmElementPrototype can be used in the context of
InternalBehavior as well as in the context of PortPrototypes.

197 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

8.6.1 Sharing Calibration Parameters within Compositions

This case is based on ComponentTypes, PortPrototypes, and PortInter-
faces. As provider, a dedicated software component called CalprmComponentType
(see Figure 8.6), which is derived from ComponentType, has to be used as prototype.
This dedicated software component type has no InternalBehavior and employs
exclusively PPortPrototypes of type CalprmInterface.

Class 〈〈atpType〉〉 CalprmInterface

Package M2::AUTOSARTemplates::SWComponentTemplate::MeasurementAndCalibration::
Characteristic

Class
Desc.
Base
Class(es) PortInterface

Attribute Datatype Mul. Link Type Description
calprm
Element

Calprm
Element
Prototype

* aggregation

Table 8.6: CalprmInterface

Every software ComponentType requiring access to shared Calibration Parameters
will have an RPortPrototype typed by a CalprmInterface. The definition of this
shared calibration access in a composition context will be defined by creating a Con-
nectorPrototype between both SoftwareComponentPrototype entities.

A ConnectorPrototype will only be valid if the referenced RPortPrototype and
PPort-Prototype are typed by the same interface. Calibration access can be pro-
vided and required even over compositions using delegation and assembly connectors.

This means that each access to calibration values between ComponentPrototypes
is explicitly visible. If a connector spans after the mapping of software Component-
Prototypes over two different ECUs, the system generation process has to ensure
the proper allocation of the CalprmElementPrototype (see Figure 8.7) while the
calibration system has to cope with setting the parameter synchronously.

198 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

ARElement

«atpType»
ComponentType

AtomicSoftwareComponentType «atpType»
CompositionType

Identifiable

«atpPrototype»
ComponentPrototype

SensorActuatorSoftwareComponentType

«atpType»
CalprmComponentType

«atpType»
ServiceComponentType

ApplicationSoftwareComponentType

EcuAbstractionComponentType

ComplexDeviceDriverComponentType

+component 1..*

*«isOfType»

+type

1

Figure 8.6: CalprmComponentType

Class 〈〈atpType〉〉 CalprmComponentType
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Class
Desc.
Base
Class(es) ComponentType

Attribute Datatype Mul. Link Type Description

Table 8.7: CalprmComponentType

199 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

«atpType»
CalprmInterface

Identifiable

«atpPrototype»
Components::PortPrototype

«atpPrototype»
Components::PPortPrototype

«atpPrototype»
Components::RPortPrototype

«atpType»
PortInterface::SenderReceiverInterface

«atpPrototype»
PortInterface::DataElementPrototype

+ isQueued: Boolean

Identifiable

«atpPrototype»
Datatypes::DataPrototype

ARElement

«atpType»
PortInterface::PortInterface

+ isService: Boolean

CalprmElementPrototype

IsSyscond

DataDefProperties::SwDataDefProps

+ displayFormat: DisplayFormatString [0..1]
+ swAliasName: String [0..1]
+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]
+ swCalprmNoEffectValue: String [0..1]
+ swImplPolicy: SwImplPolicyEnum [0..1]
+ swIntendedResolution: NumericalValue [0..1]
+ swInterpolationMethod: String [0..1]
+ swIsVirtual: Boolean [0..1]
+ swVariableAccessImplPolicy: SwVariableAccessImplPolicyEnum [0..1]
+ swVarNotAvlValue: String [0..1]

SwCalprmRefProxy

ArCalprmRef

«instanceRef»

+arCalprm 1

+calprmElement 0..* +dataElement 0..*

+interface 1

+rPort *

«isOfType»

+requiredInterface 1

+pPort *

«isOfType»

+providedInterface 1

+swDataDefProps 0..1

Figure 8.7: CalprmElementPrototype

200 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

8.6.2 Sharing Calibration Parameters between ”SoftwareComponentProto-
types” of the Same ”ComponentType”

To use the same Calibration Parameters between several SoftwareComponentPro-
totypes of the same SoftwareComponentType, a CalprmElementPrototype is
attached to an InternalBehavior in sharedCalprm role.

When the InternalBehavior is later on attached to an AtomicSoftwareCompo-
nentType, the actual calibration values of the CalprmElementPrototype is the
same for all ComponentPrototypes.

A typical example for this kind of sharing code between instances is dealing with two
lambda sensors in multiple cylinder-bank engines, where (at least) two Component-
Prototypes for each lambda sensor will use the very same Calibration Parameters.

8.6.3 Providing Instance Individual Characteristic Data

To provide instance individual Calibration Parameters, a CalprmElementPrototype
is attached to an InternalBehavior in perInstanceCalprm role. When the latter
is attached to a SoftwareComponentType, the actual calibration values are specific
for each ComponentPrototype.

ARElement

InternalBehavior

+ supportsMultipleInstantiation: Boolean

DataPrototype

CalprmElementPrototype

ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean
+ minimumStartInterval: Float
+ symbol: String

DataPrototype

ValueSpecification
InitValueAssignment

LocalParameterInitValueAssignment

+initValue 0..*

+perInstanceCalprmAccess 0..* +sharedCalprmAccess 0..*

+parameter 1

+initValue

1

+runnable 1..*

+behavior

+sharedCalprm

0..*

+perInstanceCalprm

0..*

Figure 8.8: CalprmElementPrototypes in internal behavior

201 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

The provision of an initial value of calibration parameters owned by PortPrototypes
is described in section 3.6.1. The same mechanism can be applied to sharedCalprm
and perInstanceCalprm. That is, InternalBehavior might aggregate Local-
ParameterInitValueAssignment in the role initValue in order to allow for the
provision of initial values of local calibration parameters.

Class 〈〈atpObject〉〉 LocalParameterInitValueAssignment

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::
ComponentLocalCalprm

Class
Desc.

This is the specialization for local parameters.

Base
Class(es) InitValueAssignment

Attribute Datatype Mul. Link Type Description

Table 8.8: LocalParameterInitValueAssignment

8.6.4 Setting an ”SwAxis” Input Value

When an interpolation routine is called, an input value has to be provided to find the
appropriate axis entry in the implementation of a runnable. However, this input value
cannot be arbitrarily chosen, but only be selected from available DataPrototype
entities having a Measurable entity assigned to it.

Every CalprmElementPrototype allows to specify zero or more input values in its
axis description. This means that at the specification time of an internal behavior a list
of input values has to be specified where the implementor of a runnable can choose of.
The input values are DataPrototype entities either being

• a DataElementPrototype in a SenderReceiverInterface of a PortPro-
totype, of the AtomicSoftwareComponentType where the InternalBe-
havior is associated to, or an ArgumentPrototype in an OperationPro-
totype of a ClientServerInterface in a PortPrototype of the Atomic-
SoftwareComponentType where the InternalBehavior is associated to, or

• an InterRunnableVariable within the InternalBehavior.

To achieve this, SwAxisIndividual is referencing a SwVariableRefProxy. This
proxy is an abstract class being refined in AUTOSAR style by a DataPrototype-
RefProxy entity as shown in Figure 8.9. This DataPrototypeRefProxy has an
instanceRef to a DataPrototype in the appropriate context.

Class 〈〈atpObject〉〉 SwVariable
Package M2::AUTOSARTemplates::CommonStructure::Variable

Class
Desc.

This element specifies a variable in the ECU. Variables are not adapted to the vehicle
in the calibration phase. They are manipulated during the normal operation of the
software.

Sub-structures are simulated through the aggregation of further swVariables .

202 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Base
Class(es) ARElement

Attribute Datatype Mul. Link Type Description
swArray-
size SwArray-

size 0..1 aggregation Specifies the size in case the variable is an
array.

swDataDef
Props SwData

DefProps 0..1 aggregation Associated SwDataDefProps describing the
technical characteristics of the variable.

swVariable SwVariable * aggregation Reference used to specify a sub-structure.

Table 8.9: SwVariable

Class 〈〈atpObject〉〉 SwCalprm
Package M2::AUTOSARTemplates::CommonStructure::CalibrationParameter

Class
Desc.

This element specifies the properties of calibration parameters in the ECU. Calibration
parameters are adapted to the vehicle in the calibration phase. Variables are quite the
opposite, they are manipulated during the normal operation of the software.

The category of the calprm is used to specify particular shapes of calibration
parameters (e.g. the categories as defined by ASAM MDX)

Base
Class(es) ARElement

Attribute Datatype Mul. Link Type Description
swArray-
size SwArray-

size 0..1 aggregation Array size in case the parameter is an array.

swCalprm SwCalprm * aggregation Sub-structure is simulated through the
recursive use of SwCalprm.

swDataDef
Props SwData

DefProps 0..1 aggregation Data properties for this calibration parameter.

Table 8.10: SwCalprm

Class 〈〈atpObject〉〉 SwCalprmAxisSet
Package M2::AUTOSARTemplates::CommonStructure::CalibrationParameter
Class
Desc.

This element specifies the input parameter axes (abscissas) of parameters (and
variables, if these are used adaptively).

Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description
swCalprm
Axis SwCalprm

Axis * aggregation One axis belonging to this SwCalprmAxisSet

Table 8.11: SwCalprmAxisSet

Class 〈〈atpObject〉〉 SwCalprmAxis
Package M2::AUTOSARTemplates::CommonStructure::CalibrationParameter

203 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Class
Desc. This element specifies an individual input parameter axis (abscissa).

Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description

category
Calprm
AxisCat-
egory
Enum

0..1 aggregation This property specifies the category of a
particular axis.

baseType SwBase
Type 0..1 reference The SwBaseType to be used for the axis.

display
Format

Display
Format
String

0..1 aggregation
This property specifies how the axis values
shall be displayed e.g. in documents or in
measurement and calibration tools.

swAxis
Index String 0..1 aggregation

Describes the index referring to the axis
currently described, for which the contents is
specified.

swCalibra-
tionAccess

SwCalibra-
tionAccess
Enum

0..1 aggregation Describes the applicability of parameters and
variables.

swCalprm
AxisType
Props

SwCalprm
AxisType
Props

1 aggregation specific properties depending on the type of
the axis.

Table 8.12: SwCalprmAxis

Class SwCalprmAxisAxis (abstract)

Package M2::M2::AUTOSARTemplates::SWComponentTemplate::MeasurementAnd
Calibration::CalibrationParameter

Class
Desc.
Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description

Table 8.13: SwCalprmAxisAxis

Class 〈〈atpObject〉〉 SwCalprmAxisIndividualAxis
Package M2::AUTOSARTemplates::CommonStructure::CalibrationParameter
Class
Desc. Container for the properties of an individual axis.

Base
Class(es) SwCalprmAxisTypeProps

Attribute Datatype Mul. Link Type Description
swAxis
Individual SwAxis

Individual 1 aggregation The grouped axis contained.

Table 8.14: SwCalprmAxisIndividualAxis

204 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Class 〈〈atpObject〉〉 SwAxisIndividual
Package M2::AUTOSARTemplates::CommonStructure::Axis

Class
Desc.

This element describes an axis integrated into a parameter (field etc.). The
integration makes this individual to each parameter. The so-called grouped axis
represents the counterpart to this. It is conceived as an independent parameter (see
class SwAxisGrouped).

The attributes swVariableRefs, compuMethod and unit can exist in parallel, although
physically speaking, only one is practical. This parallelism introduces flexibility into
the development process, as axes can be described purely physically, without a
conversion formula being available.
The following priority exists:
* swVariableRefs
* compuMethod
* unit

Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description
compu
Method Compu

Method 0..1 reference

dataConstr DataCon-
str 0..1 reference Refers to constraints, e.g. for plausibility

checks.

205 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

swAxis
Generic SwAxis

Generic 0..1 aggregation

This element defines an axis for the base
points calculated in the ECU. The ECU is
equipped with a fixed calculation algorithm.
Parameters for the algorithm can be stored in
the data component of the ECU. The following
is valid:

* The algorithm to be used is specified as
<swAxisType> in the data dictionary **
(reservation of keyword and specification of
parameters). Thus when forming an axis, the
algorithm is given through the appropriate
reference (<swAxisTypeRef>).

* The number of base points to be calculated
is defined in
<SW-NUMER-OF-AXIS-POINTS>. This
element exists to enable the number of axis
points to be stored explicitly, although it could
also be described as <swGenericAxisParam>
.

* The calculated base points can be stored on
a physical level in the element
<swValuesPhys> , which means that it is not
necessary for the required calculation
algorithm to be implemented in every MCD
system.

* The calculated base points can be stored on
a standardized level in the element
<swValuesCoded> , which means that it is
not necessary for the required calculation
algorithm to be implemented in every MCD
system.

swMaxAxis
Points Vf 0..1 aggregation Maximum number of base points contained in

the axis of a map or curve.

swMinAxis
Points Vf 0..1 aggregation

This element specifies the minimum number
of base points on the current axis of a map or
curve.

206 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

swVariable
Ref SwVariable

RefProxy * aggregation

Refers to an input variable of the axis. It is
possible to specify more than one variable.
Here the following is valid:

* The variable with the highest priority must be
given first. It is used in the generation of the
code and is also displayed first in the
application system.

* All variables referenced must be of the same
physical nature. This is usually detected in
that the conversion formulae affected refer
back to the same SI-units.

* This multiple referencing allows a base point
distribution for more than one input variable to
be used. One example of this are the
temperature curves, which can depend both
on the induction air temperature and the
engine temperature.

These variables can be displayed
simultaneously by MCD systems (adjustment
systems), enabling operating points to be
shown in the curves.

unit Unit 0..1 reference Use <unit> to enter the unit of a parameter.

Table 8.15: SwAxisIndividual

Originally, MSRSW uses a SwVariableRef to set the input value of an axis ap-
propriately. In AUTOSAR, this has been extended by first introducing a SwVari-
ableRefProxy. This will then be derived in DataPrototypeRef (AUTOSAR style)
or SwVariableRef (MSR style).

As shown in Figure 8.9 this approach is also used to represent a DataPrototype-
Ref in the roles of swTargetValue, i.e. the result of an interpolation routine applied
to an axis, and a tentative swHostVariable, which can be used for an optimized
bit-variable representation, and, as described above, the input value determination, a
swSemaphore, and a list of dependent parameters, swDataDependency.

207 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

IsSyscond

DataDefProperties::SwDataDefProps

+ displayFormat: DisplayFormatString [0..1]
+ swAliasName: String [0..1]
+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]
+ swCalprmNoEffectValue: String [0..1]
+ swImplPolicy: SwImplPolicyEnum [0..1]
+ swIntendedResolution: NumericalValue [0..1]
+ swInterpolationMethod: String [0..1]
+ swIsVirtual: Boolean [0..1]
+ swVariableAccessImplPolicy: SwVariableAccessImplPolicyEnum [0..1]
+ swVarNotAvlValue: String [0..1]

Axis::
SwAxisIndividual

CalibrationParameter::
SwCalprmAxisIndividualAxis

CalibrationParameter::SwCalprmAxisTypeProps

CalibrationParameter::SwCalprmAxis

+ category: CalprmAxisCategoryEnum [0..1]
+ displayFormat: DisplayFormatString [0..1]
+ swAxisIndex: AxisIndexType [0..1]
+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

CalibrationParameter::SwCalprmAxisSet

CalprmElementPrototype

Identifiable

«atpPrototype»
Datatypes::DataPrototype

DatadictionaryProxies::
SwVariableRefProxy

MeasurementProperty::
DataPrototypeRef

«atpPrototype»
PortInterface::

DataElementPrototype

+ isQueued: Boolean

«instanceRef»

+dataPrototype

+swDataDefProps

0..1

+swCalprmAxisTypeProps 1

+swVariableRef

0..*

+swCalprmAxis 0..*

+swAxisIndividual

1

+swCalprmAxisSet 0..1

Figure 8.9: Extended Axis Elements and Input Variable Reference

Class 〈〈atpObject〉〉 SwVariableRefProxy (abstract)
Package M2::AUTOSARTemplates::CommonStructure::DatadictionaryProxies
Class
Desc. Parent class for several kinds of references to a variable.

Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description

Table 8.16: SwVariableRefProxy

Class 〈〈atpObject〉〉 DataPrototypeRef

Package M2::AUTOSARTemplates::SWComponentTemplate::MeasurementAndCalibration::
MeasurementProperty

Class
Desc.
Base
Class(es) SwVariableRefProxy

208 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Attribute Datatype Mul. Link Type Description
dataProto-
type

DataEl-
ement
Prototype

1 instanceRef

Table 8.17: DataPrototypeRef

Grouped curves share the same axis definition. In MSRSW, this is shown by ref-
erencing the SwCalprm, representing an individual curve, from a SwAxisGrouped.
AUTOSAR applies a similar proxy approach for the SwCalprm as for the SwVari-
able. Therefore, a SwCalprmProxy is introduced in MSRSW, and is aggregated by
the SwAxisGrouped element.

Class 〈〈atpObject〉〉 SwAxisGrouped
Package M2::AUTOSARTemplates::CommonStructure::Axis
Class
Desc.

An SwAxisGrouped is an axis which is shared between multiple calibration
parameters.

Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description

swCalprm SwCalprm
RefProxy 1 aggregation

This property specifes the calibration
parameter which serves as the input axis.

Table 8.18: SwAxisGrouped

The SwCalprmProxy is refined into ArCalprmRef providing an association to a Cal-
prmElementPrototype, representing a curve with an axis. The AUTOSAR-style is
shown in the upper left part of Figure 8.11, while in the upper middle the MSRSW style
is shown, referencing the SwCalprm.

209 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

DatadictionaryProxies::
SwVariableRefMsr

DataPrototypeRef

DatadictionaryProxies::
SwVariableRefProxy

IsSyscond

DataDefProperties::SwDataDefProps

+ displayFormat: DisplayFormatString [0..1]
+ swAliasName: String [0..1]
+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]
+ swCalprmNoEffectValue: String [0..1]
+ swImplPolicy: SwImplPolicyEnum [0..1]
+ swIntendedResolution: NumericalValue [0..1]
+ swInterpolationMethod: String [0..1]
+ swIsVirtual: Boolean [0..1]
+ swVariableAccessImplPolicy: SwVariableAccessImplPolicyEnum [0..1]
+ swVarNotAvlValue: String [0..1]

DataDefProperties::
SwSemaphore

«atpMixed»
DataDefProperties::SwDataDependencyArgs

DataDefProperties::
SwComparisonVariables

DataDefProperties::
SwVariableRef

Axis::SwAxisIndividual

CalibrationParameter::
SwCalprmAxisIndividualAxis

CalibrationParameter::
SwCalprmAxisTypeProps

CalibrationParameter::SwCalprmAxis

+ category: CalprmAxisCategoryEnum [0..1]
+ displayFormat: DisplayFormatString [0..1]
+ swAxisIndex: AxisIndexType [0..1]
+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

CalibrationParameter::
SwCalprmAxisSet

DataDefProperties::SwDataDependency

RecordElementRef

+swVariableRef

1

+swComparisonVariables

0..1

+swDataDependencyArgs 0..1

+swCalprmAxisTypeProps

1

+swSemaphore

0..1

+swAxisIndividual 1

+swVariableRef

0..*

+swDataDependency

0..1

+swCalprmAxisSet 0..1

+swVariableRef 0..*

+swVariableRef

1

+swVariableRef

1

+swCalprmTarget

0..1

+swHostVariable

0..1

+swCalprmAxis

0..*

Figure 8.10: Extended Variable Reference Mechanism

Grouped curves share the same axis definition. In MSRSW, this is shown by referenc-
ing the SwCalprm, representing an individual curve, from a SwAxisGrouped.

AUTOSAR applies a similar proxy approach for the SwCalprm as for the SwVari-
able. Therefore, a SwCalprmProxy is introduced in MSRSW, and is aggregated by
the SwAxisGrouped element. The SwCalprmProxy is refined into ArCalprmRef
providing an association to a CalprmElementPrototype, representing a curve with
an axis.

The AUTOSAR-style is shown in the upper left part of Figure 8.11, while in the upper
middle the MSRSW style is shown, referencing the SwCalprm.

210 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

IsSyscond

DataDefProperties::SwDataDefProps

+ displayFormat: DisplayFormatString [0..1]
+ swAliasName: String [0..1]
+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]
+ swCalprmNoEffectValue: String [0..1]
+ swImplPolicy: SwImplPolicyEnum [0..1]
+ swIntendedResolution: NumericalValue [0..1]
+ swInterpolationMethod: String [0..1]
+ swIsVirtual: Boolean [0..1]
+ swVariableAccessImplPolicy: SwVariableAccessImplPolicyEnum [0..1]
+ swVarNotAvlValue: String [0..1]

CalibrationParameter::SwCalprmAxis

+ category: CalprmAxisCategoryEnum [0..1]
+ displayFormat: DisplayFormatString [0..1]
+ swAxisIndex: AxisIndexType [0..1]
+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

CalibrationParameter::SwCalprmAxisSet

CalibrationParameter::
SwCalprmAxisTypeProps

CalibrationParameter::
SwCalprmAxisCommonAxis

Axis::SwAxisGrouped

+ swAxisIndex: AxisIndexType [0..1]

DatadictionaryProxies::
SwCalprmRefProxy

ArCalprmRef

DataPrototype

CalprmElementPrototype

+swCalprmAxisSet 0..1

+swCalprm 1

«instanceRef»

+arCalprm 1

+swAxisGrouped 1

+swCalprmAxisTypeProps

1

+swCalprmAxis 0..*

Figure 8.11: Grouped Curves sharing input values of another CalprmElementPrototype

Class 〈〈atpObject〉〉 ArCalprmRef

Package M2::AUTOSARTemplates::SWComponentTemplate::MeasurementAndCalibration::
Characteristic

Class
Desc.
Base
Class(es) SwCalprmRefProxy

Attribute Datatype Mul. Link Type Description

arCalprm Calprm
Element
Prototype

1 instanceRef

Table 8.19: ArCalprmRef

8.7 Behavioral Access

There are several ways a Calibration Parameter is provided within a software compo-
nent. As mentioned above, if Calibration Parameters are shared among several Com-

211 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

ponentTypes a dedicated PortInterface in a PortPrototype will be used. The
designer of a software-component can use this access mechanism when designing a
runnable using, as input value, a DataPrototype

• from an arbitrary RPortPrototype associated either with a ClientServer-
Interface or a SenderReceiverInterface,

• or from an InterRunnableVariable

This input value will be fed to an interpolation routine whose result can be used inter-
nally or transferred to a neighbored ComponentPrototype via dedicated PortPro-
totypes. Typically, there will be a dedicated RunnableEntity (with ”ReceiveMode”
set to ”activation of runnable entity”) that itself calls the interpolation routine with the
appropriate input value and the appropriate CalprmElementPrototype.

The result of this interpolation routine call is provided as an ArgumentPrototype
with Direction being either set to out or inout in a ClientServerInterface.

ExecutableEntity

SwcInternalBehav ior::RunnableEntity

+ canBeInvokedConcurrently: Boolean
+ minimumStartInterval: Float
+ symbol: String

ComponentType

Components::
AtomicSoftwareComponentType

ARElement

SwcInternalBehav ior::InternalBehav ior

+ supportsMultipleInstantiation: Boolean

Identifiable

CalprmAccess

DataPrototype

CalprmElementPrototype

+calprmAccess
0..*

+runnable 1..*

+behavior

«instanceRef»

+arCalprm 1

*

+component 1

Figure 8.12: Runnable Access to a Calibration Port

Class 〈〈atpObject〉〉 CalprmAccess

212 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Package M2::AUTOSARTemplates::SWComponentTemplate::MeasurementAndCalibration::
Characteristic

Class
Desc.
Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description
calprm
Access

Calprm
Element
Prototype

1 instanceRef

Table 8.20: CalprmAccess

The access to a CalprmElementPrototype will be indicated

• by the CalprmAccess entity if the RunnableEntity wants to access it from a
RPortPrototype. This is shown in Figure 8.12

• by defining the sharedCalprmAccess association from a RunnableEntity
to the CalprmElementPrototype. This is shown in Figure 8.8 in the lower
association from RunnableEntity to CalprmElementPrototype

• by defining the perInstanceCalprmAccess association from a RunnableEn-
tity to every instance of the CalprmElementPrototype. This is shown in
Figure 8.8 in the upper association from RunnableEntity to CalprmEle-
mentPrototype.

8.8 Addressing Methods

In an ECU there might be various methods to access a particular object (e.g measure-
ment or calibration parameter) according to a given address. This variety might come
from different kind of memory (near, far, . . .), but also from indirections which are in-
troduced by the compiler. In order to allow a measurement and calibration system to
access such objects SwAddrMethods are specified.

SwAddrMethod will be used to group calibration parameters with respect to cover the
fact that sometimes it is required that one or more calibration parameters out of the
mass of calibration parameters of an CalprmComponentPrototype respectively an
AUTOSAR software component shall be placed in another memory location than the
other parameters of the CalprmComponentPrototype respectively the AUTOSAR
software component.

In Implementation the particular MemorySection is associated with the SwAd-
drMethod. This association indicates that all objects of the associated addressing
method shall be placed in the given memory section. If this association is missing,
the object can be placed anywhere without restriction e.g. using a default behavior of
the RTE generator. Contradicting specifications (e.g. two different component types

213 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

request different associations for one particular SwAddrMethod) must be flagged as
an error.

Figure 8.13 illustrates the context for a DataElementPrototype.

ARElement

SwcInternalBehavior::InternalBehavior

Components::
AtomicSoftwareComponentType

SwcImplementation::SwcImplementation Identi fiable

ResourceConsumption::
ResourceConsumption

ARElement

Implementation::Implementation

ARElement

AuxillaryObjects::SwAddrMethod

Identi fiable

MemorySection

ARElement

«atpType»
Components::

ComponentType

Identifiable

«atpPrototyp...
Components::
PortPrototype

«atpPrototyp...
Components::

RPortPrototype

ARElement

«atpType»
PortInterface::
PortInterface

«atpType»
PortInterface::

SenderReceiverInterface

«atpPrototype»
PortInterface::

DataElementPrototype

Identifiable

«atpPrototyp...
Datatypes::

DataPrototype

IsSyscond

DataDefProperties::SwDataDefProps

+swDataDefProps

0..1

+dataElement 0..*

+interface 1

+rPort *

«isOfType»

+requiredInterface 1

+port 0..*

+component

+swAddrMethod 0..1

+swAddrMethod 0..*

+resourceConsumption 1

+objectFi leSection 1..*

*

+component 1

*

+behavior 1

Figure 8.13: Assigning an adress method to a memory section

8.9 Record Layouts

ASAM defines common patterns for the record-layouts of calibration parameters. In
AUTOSAR, the selection of the proper category of a ”CalprmElementPrototype” deter-
mines the shape of the characteristic.

Via the SwDataDefProps a record-layout can be associated to the CalprmElement-
Prototype. On the one hand, if the very same CalprmInterface is either used in
several PPortPrototypes or even ComponentPrototypes all resulting instances
of the CalprmElementPrototype will refer to the same RecordLayout.

On the other hand, the record layout has to be known at the time when the interpolation
routines are configured. This is supposed to be done at ECU-configuration time prior
to the RTE generation.

214 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

ARElement

SwRecordLayout

SwRecordLayoutGroup

+ swRecordLayoutComponent: Identifier [0..1]
+ swRecordLayoutGroupAxis: AxisIndexType [0..1]
+ swRecordLayoutGroupFrom: Integer [0..1]
+ swRecordLayoutGroupIndex: Identifier [0..1]
+ swRecordLayoutGroupStep: Integer [0..1]
+ swRecordLayoutGroupTo: Integer [0..1]

«atpMixed»
SwRecordLayoutGroupContent

SwRecordLayoutV

+ swRecordLayoutVAxis: AxisIndexType [0..1]
+ swRecordLayoutVFixValue: Integer [0..1]
+ swRecordLayoutVIndex: Identi fier [0..1]
+ swRecordLayoutVProp: NameToken [0..1]

BaseType

SwBaseType

+swRecordLayoutV 1

+baseType

0..1

+swRecordLayoutGroupContentType

0..1

+swRecordLayoutGroup 0..*

+swRecordLayoutGroup

1

+swRecordLayout

1

Figure 8.14: Specification of a record layout

The purpose of record layout is to specify how an object (e.g. a calibration parameter) is
serialized in memory of an ECU. The basic approach for this is to define nested groups
(SwRecordLayoutGroup). The Contents (SwRecordLayoutGroupContent) is a
mixture of (thus nested) groups or particular values (SwRecordLayoutV) which refers
to particular properties of the object (e.g. value, count, . . .). By this pattern, the serial-
ization of any complex object can be specified.

Class 〈〈atpObject〉〉 SwRecordLayoutV
Package M2::AUTOSARTemplates::CommonStructure::AuxillaryObjects

Class
Desc.

This element specifies which values are stored for the current
SwRecordLayoutGroup. If no baseType is present, the SwBaseType referenced
initially in the father element SwRecordLayoutGroup is valid. The specification of
swRecordLayoutVAxis gives the axis of the values to be stored in accordance with the
current record layout SwRecordLayoutGroup. In swRecordLayoutVProp you are able
to specify the type of values that are to be stored, e.g. number or value. Under
swRecordLayoutVIndex, the symbolic values of the axes can be given, for which the
value given under swRecordLayoutVProp is iterated. These symbolic values relate to
the values given in swRecordLayoutGroupIndex.

Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description
baseType SwBase

Type 0..1 reference SwBaseType to be used for the values within
this SwRecordLayoutV.

swRecord
Layout SwRecord

Layout 0..1 reference tbd: I (bernhard Weichel) ar not sure if this
association is superfluous ...

swRecord
LayoutV
Axis String 0..1 aggregation This attribute specifies the axis from which the

value properties are used.

215 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

swRecord
LayoutVFix
Value Integer 0..1 aggregation

This attribute specifies the filler character for
the current record layout, in the form of hex
digits. The element present parallel to this in
swRecordLayoutVProp must therefore have
the contents FILL.

swRecord
LayoutV
Index Identifier 0..1 aggregation

The symbolic value for iteration, or the
symbolic values separated by white-spaces,
refer to the symbolic values given in
swRecordLayoutGroupIndex . The iterators
are processed from left to right, in such a
manner that they symbolize the loop index
from the outside to the inside.

An error has occurred if a parameter
references a record layout which contains an
swRecordLayoutVIndex with more
components than the number of parameter
axes.

swRecord
LayoutV
Prop

Name
Token 0..1 aggregation

The contents of this attribute describes the
type of values to be stored in the record.

Table 8.21: SwRecordLayoutV

Class 〈〈atpObject〉〉 SwRecordLayoutGroup
Package M2::AUTOSARTemplates::CommonStructure::AuxillaryObjects

Class
Desc.

Specifies how a record layout is set up. Using SwRecordLayoutGroup it recursively
models iterations through axis values. The subelement
swRecordLayoutGroupContentType may reference other SwRecordLayouts,
SwRecordLayoutVs and SwRecordLayoutGroups for the modeled record layout.

Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description

swRecord
Layout
Compo-
nent

Identifier 0..1 aggregation

This element is used to denote the component
to which the group in question applies. Thus,
the record layout supports structured objects.
This secures independence from the
sequence of components, because they can
be referred to via name.

swRecord
Layout
GroupAxis String 0..1 aggregation The contents of this element specifies the axis

number within a record layout group.

swRecord
Layout
GroupCon-
tentType

SwRecord
Layout
Group
Content

0..1 aggregation this is the contents of the recordLayout which
is produces for every step of iteration.

swRecord
Layout
Group
From

Integer 0..1 aggregation

This element specifies the iterator index for
the point in the axis from which a record layout
group is commenced. Negative values are
also possible, i.e. the value -4 counts from the
fourth value from the end.

216 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

swRecord
Layout
Group
Index

Identifier 0..1 aggregation

This element attributes a symbolic name to
the iterator of the superimposed record layout
group. This can be referenced as a loop index
beneath superimposed or subsequent
SwRecordLayoutV elements.

swRecord
Layout
GroupStep Integer 0..1 aggregation

This element specifies the step width for the
iterator index, which is used for a record layout
group .

swRecord
Layout
GroupTo Integer 0..1 aggregation

This element specifies the iterator index for a
point in the axis up to which iteration for a
record layout group takes place. Negative
values are also possible, i.e. the value -4
counts up to the fourth value from the end.

Table 8.22: SwRecordLayoutGroup

The properties of SwRecordLayoutGroup are:

• swRecordLayoutGroupAxis: This attribute specifies the axis number within a
SwRecordLayoutGroup. The current record layout group then refers exactly to
the axis with this number.

• swRecordLayoutGroupIndex: This attribute assigns a symbolic name to the
iterator assigned to the current record layout group. This name can be refer-
enced as a loop index beneath superimposed or subsequent swRecordLayoutV
elements. Note that this name can also be used to construct names for appropri-
ate data types.

• swRecordLayoutGroupFrom specifies the starting point for the iteration. Neg-
ative values are also possible, i.e. the value -4 counts from the fourth value from
the end.

• swRecordLayoutGroupTo specifies the end point for the iteration. Negative
values are also possible, i.e. the value -4 counts up to the fourth value from the
end.

• swRecordLayoutGroupeStep specifies the step width for the iterator index,
which is used for the current record layout group. Note that negative values are
also possible, in case of the starting point is higher than the endpoint.

• swRecordLayoutComponent is used to denote the component to which the
group in question applies. Thus, the record layout supports structured ob-
jects.This secures independence from the sequence of components, because
they can be referred to via name. swRecordLayoutV specifies which values
are stored for the current record layout group. Possible values are shown below.
swRecordLayoutVprop specifies, the property of the axis point to be stored,
e.g. number or value. Under swRecordVIndex, the symbolic values of the
axes can be given, for which the value given under swRecordLayoutVProp is

217 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

iterated. These symbolic values relate to the values given in swRecordLayout-
GroupIndex.

The Properties of SwRecordLayoutV are

• BaseType allows to refer to a base type in case a specific encoding is in-tended.
If no base type is referred, the base type referenced initially in the corresponding
DataPrototype is to be used.

• swRecordLayoutVAxis gives the index of the axis of which values that are
stored in the ECU. swRecordVIndex refers to the symbolic names of the itera-
tors for which the axis value shall be stored in the ECU. In case of nested iterators
(mainly for multidimensional objects) the iteratornames are specified as whites-
pace separated names. These symbolic names relate to swRecordLayout-
GroupIndex. The iterators are processed from left to right, in such a manner
that they symbolize the loop index from the outside to the inside. It is an error
if more components are specified than axis are there in the related calibration
parameter.

• swRecordLayoutVProp describes the type of values to be stored. The following
are permitted:

Property Description
VALUE The value of the axis for the current axis point
COUNT The amount of values of the axis
LEFTDIFF The difference to the previous axis point
RIGHTDIFF The difference to the next axis point
DIST The distance value of this axis in case of a fixed axis

with distance specification
SHIFT The shift value of this axis in case of a fixed axis with

shift/offset
OFFSET The offset value of this axis in case of a fixed axis with

shift/offset
SOURCE-ADR The address of the source of this axis (Note that this

does not apply to the value axis)
RESULT-ADR The address of the result for this axis (note that this

does not apply to input axis)
ADDRESS The address of the axis point
FILL Fill with the hex value specified as contents of

swRecordLayoutFixValue
FIXLEFTDIFF Difference between this and a fixed left-hand value

specified in swRecordLayoutFixValue
FIXRIGHTDIFF Difference between this and a fixed right-hand value

specified in swRecordLayoutFixValue

Table 8.23: swRecordLayoutVProp

218 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

• swRecordLayoutVFixValue specifies the filler character for the current record
layout, in the form of hex digits. It is also used to specify the fix value for
FIXRIGHTDIFF.

Here you can see an example for a SwRecordLayout noted in XML Example 8.1

<SW-RECORD-LAYOUT>
<SHORT-NAME>RecordLayoutCurve</SHORT-NAME>
<SW-RECORD-LAYOUT-GROUP>

<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF>A_UINT8</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-PROP>SOURCE-ADR</SW-RECORD-LAYOUT-V-PROP>

</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-V>

<SW-RECORD-LAYOUT-V-PROP>COUNT</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-GROUP>

<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>x</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM>1</SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>

<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
<SW-RECORD-LAYOUT-V-INDEX>x</SW-RECORD-LAYOUT-V-INDEX>

</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP>

<SW-RECORD-LAYOUT-GROUP-AXIS>0</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>v</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM>1</SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>

<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
<SW-RECORD-LAYOUT-V-INDEX>v</SW-RECORD-LAYOUT-V-INDEX>

</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>

</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT>

219 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Figure 8.15 and Figure 8.16 illustrate most of these properties.

1 2 3 4

COUNT = 4

1 2 3 41 2 3 4

COUNT = 4

RIGHTDIFFLEFTDIFF

FIXLEFTDIFF FIXRIGHTDIFF

RIGHTDIFFLEFTDIFF

FIXLEFTDIFF FIXRIGHTDIFF

0

VALUE

Current point

Figure 8.15: Values for swRecordLayoutVProp for individual axis

OFFSET DIST DIST

2^SHIFT

0
Value = OFFSET + n * 2^SHIFT

Value = OFFSET + n * DIST

OFFSET DIST DIST

2^SHIFT

0
Value = OFFSET + n * 2^SHIFT

Value = OFFSET + n * DIST

Figure 8.16: Values for swRecordLayoutVProp for fixed axis

8.10 Record Layouts and Data Types

As DataPrototypes have an isOfType Relation to DataTypes, the related data
types must properly match to the details as specified in swDataDefProps as shown
in the diagram

220 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

:ApplicationDataType

:SwDataDefProps :SwRecordLayout

:ImplementationDatatype

:BaseType

element :
DataTypeMap

Figure 8.17: Dependency of DataTypes and RecordLayouts

In order to maintain this compliance there are three approaches

• Manually create DataTypes for the calibration parameters and compatible
RecordLayouts

• Automatically create DataTypes from RecordLayouts. This could be per-
formed on a model transformation basis according to the algorithm shown below.

• Use OpaqueDatatypes. In this case the internals of a calibration parameter is
not visible to a software-component. The interpolation has to be done using a
service routine.

221 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Note that computing record layouts from data types is not possible, since the particular
meaning of the components is not available (swRecordLayoutVProp).

The following diagrams illustrate how data types can be derived from record layouts.
The blue data types are derived from the record layout.

222 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

element :
ApplicationDataType

category = CURVE
shortName = Curve1

:SwDataDefProps

element :SwRecordLayout

shortName = RlyCurve

:SwAxisIndiv idual

swMaxAxisPoints = 16

element :BaseType

shortName = A_UINT8

element :BaseType

shortName = A_UINT16

element :ImplementationDataType

category = STRUCTURE
shortName = Curve1Impl

subElement :ImplementationDataTypeElement

category = VALUE
shortName = noOfAxisPts

subElement :ImplementationDataTypeElement

category = ARRAY
shortName = outputValues

subElement :ImplementationDataTypeElement

category = VALUE
arraySize = swMaxAxisPoints
shortName = value

element :DataTypeMap

subElement :ImplementationDataTypeElement

category = ARRAY
shortName = inputValues

subElement :ImplementationDataTypeElement

category = VALUE
arraySize = swMaxAxisPoints
shortName = value

:SwRecordLayoutGroup

swRecordLayoutGroupAxis = 1
shortLabel = inputValues

:SwRecordLayoutV

swRecordLayoutVAxis = 1
shortLabel = value

:SwRecordLayoutV

swRecordLayoutVIndex = count
swRecordLayoutVAxis = 1
shortLabel = noOfAxisPts

:SwRecordLayoutGroup

swRecordLayoutGroupAxis = 1
shortLabel = outputValues

:SwRecordLayoutV

swRecordLayoutVAxis = 0
shortLabel = value

1

1

+baseType

+baseType

Figure 8.18: Curve implemented as two consecutive arrays

223 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

element :
ApplicationDataType

category = CURVE
shortName = Curve1

:SwDataDefProps

element :SwRecordLayout

shortName = RlyCurve

:SwAxisIndiv idual

swMaxAxisPoints = 16

element :BaseType

shortName = A_UINT8

element :BaseType

shortName = A_UINT16

element :DataTypeMap

element :ImplementationDataType

category = STRUCTURE
shortName = Curve1Impl

subElement :ImplementationDataTypeElement

category = VALUE
shortName = COUNT

subElement :ImplementationDataTypeElement

category = ARRAY
shortName = values

subElement :ImplementationDataTypeElement

category = VALUE
shortName = Xvalue

subElement :ImplementationDataTypeElement

category = VALUE
shortName = Yvalue

subElement :ImplementationDataTypeElement

category = STRUCTURE
arraySize = swMaxAxisPoints
shortName = values

:SwRecordLayoutGroup

swRecordLayoutGroupAxis = 1

:SwRecordLayoutV

swRecordLayoutVAxis = 1

:SwRecordLayoutV

swRecordLayoutVIndex = count

:SwRecordLayoutGroup

:SwRecordLayoutV

swRecordLayoutVAxis = 0

1

1

Figure 8.19: Curve implemented as array of record

224 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

«SwCalprmElement»
Map1

«SwDataDefPro...
Object1

«SwAxis»
index 1

«SwAxis»
Index 2

«BaseType»
A_UINT8

«BaseType»
A_UINT16

«SwRecordLayo...
RlyMap

«RecordType»
Mapt1_RlyMap

«ArrayType»
map1_RlyMap_sstx

- MaxNumberOfElements: int = 16

«ArrayType»
map1_RlyMap_ssty

- MaxNumberOfElements: int = 25

«ArrayType»
map1_RlyMap_v aluey

- MaxNumberOfElements: int = 25

«ArrayType»
map1_RlyMap_valuey_v aluex

- MaxNumberOfElements: int = 16

+valuey

+ssty

+sstx

+COUNT_2+COUNT_1

Figure 8.20: Record layout and data type for a map

The algorithm to generate the desired data types are shown in the following two dia-
grams. We create a data type for each calibration parameter prototype.

for all ApplicationDataTypes«iterativ e»

ApplicationDataType

TypeContentFromRecordLayout

create subElementCreateType

ImplementationDataTypeElement

Figure 8.21: algorithm to map record layouts to types

225 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

For each data type, several subtypes must be created. The details of the algorithm are
specified in the Figure 8.22.

process subElements of RecordLayoutGroup«iterativ e»

RecordElement

subElement

set category to
STRUCTURE

set category to ARRAY

set
MaxNumberOfElements

get RecordLayoutGroup or
RecordLayoutV

ImplementationDataTypeElement

set category to VALUE and set
dataDefProperties

create subElement

origin

ImplementationDataType Or
ImplementationDataTypeElement

create subElement

ImplementationDataTypeElement

ActivityFinal

[has
SwRecordLayoutFrom]

[has exactly one value][has no iterator]

[RecordLayoutValue]
[RecordLayoutGroup]

Figure 8.22: Creating types from record layouts

226 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

9 ECU Abstraction and Complex Drivers

9.1 Introduction

During the design of embedded systems there is one crucial point where the hard-
ware and software have to be related. In AUTOSAR the ECU Resource Template
describes the provided hardware resources.

On the other hand, the Software Component Template describes software gen-
erally without specific hardware in mind. But there are some places where both have
to meet and fit.

One interface between hardware and software is discussed in the memory and execu-
tion time section of [8]. In this chapter the overall system view of the interface between
sensors/actuators and software is described and the consequences for the Software
Component Template are derived.

9.2 High Level Hardware and Software Architecture

The AUTOSAR concept defines a software architecture (see Figure 9.1) and within this
layered architecture the interfaces between the hardware and the software are explicitly
modeled.

227 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Figure 9.1: AUTOSAR ECU Software Architecture

The signal 1 flow from a hardware to software and vice versa will be described in the
following sections.

A sensor 2 is converting a physical value (1) in Figure 9.2 (e.g. temperature, force, light
intensity) into an electrical signal (2) which can be either a current or a voltage.

Inside the ECU generally there will be some electronics to enhance the electrical signal
provided by the sensor. In AUTOSAR this is called ECU Electronics. This electronics
is also responsible for the conversion of the electrical signal into a microcontroller com-
patible form (3), usually a voltage.

After the electrical signal has been enhanced and converted it will be captured by the
microcontroller. This can either be done by a simple digital input, an analogue to digital
converter or maybe a pulse-width demodulation module. Now the electrical signal is
available as a software data value (4).

This signal flow is sketched in the top part of Figure 9.2.

Figure 9.2: Interfaces between hardware and software

This signal chain is represented one to one in the AUTOSAR software architecture and
depicted in the lower part of Figure 9.2.

In an implementation of AUTOSAR only the Microcontroller Abstraction (MCAL) has
direct access to the peripheral hardware. This layer is going to be standardized and all
hardware access should go through this layer. The idea of the AUTOSAR signal flow
is to map the hardware to the corresponding software modules.

So if an electrical current is the input to the microcontroller peripheral, the MCAL will
deliver a data value that represents this current. As the ECU Electronics has enhanced

1The term ”signal” is not going to be used here at its own but more specific terms will be used for the
different abstractions of signals at the different stages of the signal flow.

2For the sake of simplicity this discussion is limited to the sensor aspects. Nevertheless, the same
applies also for actuators.

228 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

and converted the electrical signal prior to the microcontroller, the corresponding soft-
ware entity is reversing this conversion. This is performed in the ECU Abstraction layer.

So if the input to the ECU is an electrical current and the ECU Electronics has con-
verted this current into a voltage (from 2 to 3), the ECU Abstraction will convert the
data value voltage into an AUTOSAR signal representing a current (from 4 to 5). This
AUTOSAR signal represents the actual current that was provided by the sensor (2).

Now the first step in the conversion has to be reversed: the sensor has converted a
physical value into an electrical signal. And so the Sensor Software Component has
to reverse this again. The Sensor Software Component will read the AUTOSAR signal
representing the electrical value and transform it into an AUTOSAR signal representa-
tion of the physical value (from 5 to 6).

Now this physical value is available on the RTE and can be consumed or read by other
SW-Components. Although the interface between the ECU Abstraction and the Sensor
Software Component is also an AUTOSAR interface and could be routed through some
communication bus, it will not be practical to separate the ECU Abstraction and the
corresponding SensorActuatorSoftwareComponentType due to potentially high
communication effort.

In Figure 9.3 a complete signal flow from a sensor input to an actuator output is shown.

Figure 9.3: Sensor and Actuator Signal Flow

In the next section the interfaces between the involved software modules are dis-
cussed.

229 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

9.3 Interfaces and APIs

Two fundamentally different interfaces are involved when converting from sen-
sors/actuators to software components, see markers ”4” and ”5” in Figure 9.2.

The interface between the Microcontroller Abstraction and the ECU Abstraction is a
Standardized Interface (see AUTOSAR Glossary [24]). This interface is not visible
on the Virtual Function Bus and therefore the MCAL and ECU Abstraction have to be
present on the same ECU.

For further description of this interface please refer to the ECU Resource Template
documentation.

The interface to the SensorActuatorSoftwareComponentTypes is visible on the
Virtual Function Bus. So the ECU Abstraction and the SensorActuator-
SoftwareComponentTypes do not need to be present on the same ECU but can
be separated. In general the SensorActuatorSoftwareComponentType should
be on the same ECU as the ECU hardware abstraction.

Also the interface between the SensorActuatorSoftwareComponentTypes and
the actual AtomicSoftwareComponentTypes representing the application is visible
on the VFB. To describe the data that is going to be exchanged via this interface the
standard AUTOSAR Interface description mechanisms are used (see chapter 2.4).

9.3.1 ECU Abstraction and its AUTOSAR Interfaces

Since the AUTOSAR standard is designed with the focus on the integration of software-
components coming from different contractors, the interfaces between the different
software-components obviously have to be compatible.

In the case of the sensors and actuators the interface is gathered in the ECU Abstrac-
tion. For each sensor and actuator there is one AUTOSAR PortPrototype that rep-
resents the AUTOSAR Signal that is delivered by the sensor or the AUTOSAR Signal
that is consumed by the actuator. This relationship is depicted in Figure 9.4

Figure 9.4: Interfaces of signals in software

230 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Each sensor and actuator has an AUTOSAR PortPrototype at the ECU Abstrac-
tion. Connected to this port is the SensorActuatorSoftwareComponentType. The
SensorActuatorSoftwareComponentType has one PortPrototype to the ECU
Abstraction (IF 2) where it gets the AUTOSAR signals from the hardware, and one
PortPrototype to AtomicSoftwareComponentTypes (IF 3) where it provides the
actual physical value to the rest of AUTOSAR on the RTE.

In addition, the Interfaces between the ECU Abstraction and the SensorActuator-
SoftwareComponentType have to be compatible like defined in chapter 3.4.

9.4 Shipment of Sensors/Actuators

In the layered software architecture described in [2] each hardware sensor/actuator is
coupled to a SensorActuatorSoftwareComponentType (see Figure 9.5). Since
the Software Component Template is going to be used to describe the Senso-
rActuatorSoftwareComponentType as well, there is also a reference needed from
the software representation of a sensor/actuator to the actual hardware element de-
scribed in the ECU Resource description.

Figure 9.5: Shipment of a sensor

So each time a sensor/actuator is selected to be connected to an ECU also the corre-
sponding SensorActuatorSoftwareComponentType is available.

AtomicSoftwareComponentType

Components::
SensorActuatorSoftwareComponentType

HWElement

Sensor Actuator::
SensorActuatorHW

+ accuracy: Float
+ resolution: Float [0..1]
+ type: String

+sensorActuator

1

Figure 9.6: Sensor/actuator to Hardware Relationship

231 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Figure 9.6 depicts the reference of SensorActuatorSoftwareComponentType de-
signed as a specialization of an AtomicSoftwareComponentType with an additional
reference to a SensorActuatorHW.

Furthermore, a SensorActuatorSoftwareComponentType needs to be mapped
and run on exactly that ECU that contains the SensorActuatorHW that it refers to in
case it accesses the hardware via the I/O hardware abstraction layer. And in contrast
to an AtomicSoftwareComponentType, an SensorActuatorSoftwareCompo-
nentType may use the I/O hardware abstraction directly (via ports/connectors). In
case the sensor/actuator hardware is accessed via bus communication, e.g. is located
on a LIN slave, no such mapping constraints apply (note that this is not handled via the
IO hardware abstraction layer).

Class 〈〈atpType〉〉 SensorActuatorSoftwareComponentType
Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Class
Desc.

The SensorActuatorSoftwareComponentType introduces the possibility to link from
the software representation of a sensor/actuator to its hardware description provided
by the ECU Resource Template.

Base
Class(es) AtomicSoftwareComponentType

Attribute Datatype Mul. Link Type Description
sensor
Actuator

Sensor
ActuatorH
W

1 reference
Reference from the Sensor Actuator Software
Component Type to the description of the
actual hardware.

Table 9.1: SensorActuatorSoftwareComponentType

Class 〈〈atpObject〉〉 SensorActuatorHW (abstract)
Package M2::AUTOSARTemplates::ECUResourceTemplate::SensorActuator

Class
Desc.

The common attributes for sensors and actuators.
The sensor and actuators can be connected via a Peripheral HW Port, a
Communication HW Port or a Power Driver HW Port.

Base
Class(es) HWElement

Attribute Datatype Mul. Link Type Description

accuracy Float 1 aggregation

Defines the error in the representation of the
Technical Signal in the data format
This applies only if the Technical Signal is
encoded before it is transferred to the ECU
Electronics (e.g. via Communication
Transceiver HW Port).

cycleTime Time
Range 0..1 aggregation

The time the sensor/actuator must be
accessed for correct information. It is possible
to give a minimum, a maximum and a typical
cycle time.

resolution Float 0..1 aggregation

Defines the granularity of the representation of
the Technical Signal in the data format.
This applies only if the Technical Signal is
encoded before it is transferred to the ECU
Electronics (e.g. via Communication
Transceiver HW Port).

232 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

type String 1 aggregation

Defines the general type of the
sensor/actuator type is a most common
naming for a sensor/actuator and is an open
list and is not restricted to the following items.
Several sets of types exist. Type is mandatory
for the usage of the template
- Sensor: Temperature, Pressure, Distance,
Hall
- Actuator: DC Motor, Valve, Relay, Display

Table 9.2: SensorActuatorHW

9.5 I/O Hardware Abstraction

The I/O Hardware Abstraction interfaces on one side the MCAL drivers via
Standardized Interfaces and on the other side the Sensor Actuator Software
Component via AUTOSAR Interfaces. On the VFB the I/O Hardware Abstrac-
tion is represented by the EcuAbstractionComponentType. Depending on the
complexity of an ECU, the I/O Hardware Abstraction might be sub structured.
In this case the I/O Hardware Abstraction Layer is described by several different
EcuAbstractionComponentTypes on M1.

Class 〈〈atpType〉〉 EcuAbstractionComponentType
Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Class
Desc.

The ECUAbstraction is a special AtomicSoftwareComponent that sits between a
component that wants to access ECUperiphery and the Microcontroller Abstraction.
The EcuAbstractionComponentType introduces the possibility to link from the
software representation to its hardware description provided by the ECU Resource
Template.

Base
Class(es) AtomicSoftwareComponentType

Attribute Datatype Mul. Link Type Description
bswMod-
uleDe-
scription

BswMod-
uleDe-
scription

* reference

Reference from the
EcuAbstractionComponentType to the Basic
Software Module Description describing the
BSW part of the ECU Abstraction Component.

hardware
Element HWEle-

ment * reference
Reference from the
EcuAbstractionComponentType to the
description of the used HWElements.

Table 9.3: EcuAbstractionComponentType

The I/O Hardware Abstraction abstracts from the location of peripheral I/O de-
vices (on-chip or on- board) and the ECU hardware layout and has therefore dependen-
cies to ECU Hardware described by HWElements. In addition the EcuAbstraction-
ComponentType is hybrid between Software Component and Basic Software
Module. The BSW part is described by the means of the Basic Software Module

233 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Template and the Basic Software Module Description is referenced by the
EcuAbstractionComponentType.

ARElement

ECUResourceTemplate::
HWElement

+ standbyCurrent: Float [0..1]

ARElement

«atpStructureElement»
BswOverview::BswModuleDescription

+ moduleId: Int

AtomicSoftwareComponentType

Components::
EcuAbstractionComponentType

+bswModuleDescription

0..*

+hardwareElement

0..*

Figure 9.7: ECUAbstractionComponentType

9.6 Complex Driver

A Complex Driver implements complex sensor evaluation and actuator control with
direct access to the Microcontroller using specific interrupts and/or complex Microcon-
troller peripherals to fulfill the special functional and timing requirements.

In addition it might be used to implement enhanced services / protocols or encapsu-
lates legacy functionality of a non-AUTOSAR system. See also document [3].

On the VFB the Complex Driver is represented by the ComplexDeviceDriver-
ComponentType. An ECU might have zero to many different ComplexDe-
viceDriverComponentTypes.

Class 〈〈atpType〉〉 ComplexDeviceDriverComponentType
Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Class
Desc.

The ComplexDeviceDriver Component is a special AtomicSoftwareComponent that
has direct access to hardware on an ECUand which is therefore linked to a specific
ECU or specific hardware. The ComplexDeviceDriver ComponentType introduces the
possibility to link from the software representation to its hardware description
provided by the ECU Resource Template.

Base
Class(es) AtomicSoftwareComponentType

Attribute Datatype Mul. Link Type Description

bswMod-
uleDe-
scription

BswMod-
uleDe-
scription

* reference

Reference from the
ComplexDeviceDriverComponentType to the
Basic Software Module Description describing
the BSW part of the Complex Device Driver
Component.

hardware
Element HWEle-

ment * reference
Reference from the
ComplexDeviceDriverComponentType to the
description of the used HWElements.

Table 9.4: ComplexDeviceDriverComponentType

234 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Similar to EcuAbstractionComponentType the ComplexDeviceDriverCompo-
nentType has dependencies to ECU Hardware described by HWElements and is a
hybrid between Software Component and Basic Software Module. The BSW
part is described by the means of the Basic Software Module Template and
the Basic Software Module Description is referenced by the ComplexDe-
viceDriverComponentType.

AtomicSoftwareComponentType

Components::
ComplexDeviceDriverComponentType

ARElement

ECUResourceTemplate::
HWElement

+ standbyCurrent: Float [0..1]

ARElement

«atpStructureElement»
BswOverview::BswModuleDescription

+ moduleId: Int

+bswModuleDescription

0..*

+hardwareElement

0..*

Figure 9.8: ComplexDeviceDriverComponentType

235 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

10 Services

10.1 Overview: Generation of Service-related Model Elements

This chapter covers the description and handling of AUTOSAR Service configuration.

AUTOSAR Services can be seen as a hybrid concept between Basic Software
Modules and a ComponentType. AUTOSAR Services actually provide access to
low-level and ECU-wide ”standard functionalities” commonly referred to as ”service”.

AtomicSoftwareComponentTypes requiring services use Standardized
AUTOSAR Interfaces to communicate with these AUTOSAR Services. The
connection of the PortPrototypes of the service components and the PortPro-
totypes of the atomic software components are realizing several communication
patterns. Following patterns are defined and used in further chapters.

Pattern
Name

Com. pattern
Client:Server
Sender:Receiver

Kind of PortPrototype at
Service : SW-C

Description / use case

A 1:n PPort : RPort distribution of data or
modes to n SW-Cs, e.g.
used for ECU mode

A* 1:n RPort : PPort currently not used, not
supported for client-server
communication

B 1:1 PPort : RPort SW-C acts as Server, used
for so called ”call-backs”,

B 1:1 RPort : PPort Service acts as Server,
typical Service usage

C* n:1 PPort : RPort conceptually not used to
support index abstraction
via PortDefinedArgu-
mentValues

C n:1 RPort:PPort SW-C acts as Server, used
for so called ”call-backs” in-
voked by more than one
Service

Table 10.1: ServiceConnectorePattern

Due to that special nature, the handling of such AUTOSAR Services requires a num-
ber of custom model elements, and also need to be handled specifically in the method-
ology [4]. The following list of paragraphs presents a short overview over the steps
required for the configuration of AUTOSAR Services.

236 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Note that most of these steps are performed by tools, and the model elements being
created in these steps are rather specific to Service configuration and are not to be
modeled manually within AUTOSAR authoring tools.

In particular, the following requirements apply:

1. The dependency of an AtomicSoftwareComponentType (or more precisely,
one of its non-abstract derived meta-classes) from an AUTOSAR Service is
modeled by aggregating required and provided PortPrototypes.

The PortInterface being implemented by the PortPrototypes needs to be
one of a number of standardized Service Interfaces, which is indicated by
having its isService attribute set to TRUE and is referenced by ServiceNeeds.

Additionally, the software components and Basic Software Modules shall
specify ServiceNeeds containing further input information for the later Service
configuration step.

2. When defining the software system, the AtomicSoftwareComponentType is
used in the form of ComponentPrototypes within a CompositionType. In
this step, the non-service ports of all required interfaces are being connected us-
ing AssemblyConnectorPrototypes and DelegationConnectorProto-
types in order to eventually form a top-level SoftwareComposition which
can be referenced in an AUTOSAR System.

3. In System Configuration Phase, the mapping of all AtomicSoftware-
ComponentType instances to ECUInstances is done. The ServiceNeeds
may be used by tools to check for available resources on the targeted ECUs.

4. The ECU Extract is extracted from the System Configuration for each
ECU. As explained in the AUTOSAR System Template [10], this contains an
ECU-centric view onto the system description, including a reduced version of
the system’s SoftwareComposition where ComponentPrototypes not be-
ing mapped to the ECU are being left out.

5. Early on in ECU Configuration, for each Service required on the ECU exactly
one ServiceComponentType is created based on the needs from the Atomic-
SoftwareComponentTypes: An adequate number of PortPrototypes are
created on this ServiceComponentType for each needed port at the Atomic-
SoftwareComponentType. Thereby the specified communication pattern A, B
or C for a specific kind of ServicePort has to be considered. See also chap-
ter 10.2.2 and table 10.1 .

6. Per Service exactly one ServiceComponentPrototype is created based on
the previously defined ServiceComponentType. Additionally, the connectors
are constructed that connect the pairs of PortPrototypes belonging to the
ComponentPrototypes requiring services and those belonging to the actual
services.

7. For each ServiceComponentType an InternalBehavior is created or ex-
tended providing the information about Port Defined Argument Values,

237 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

RunnableEntities and RTEEvents necessary for RTE generation. Further
detailing of the service ports by filling in these Port Defined Argument Val-
ues is also done in ECU Configuration phase. See also chapter 5.5.3.

8. For the RTE module configuration an implementation of the AUTOSAR Service
belonging to each ServiceComponentPrototype and described by a Ba-
sic Software Module Description has to be selected and the bswMod-
uleDescription reference is set accordingly.

For each InternalBehavior created in the previous step one SwcImplemen-
tation is being created. The information for SWCImplementation should be
generated based on the available information of BswImplementation.

9. In ECU Configuration phase the remaining Service parameters are specified.
Depending of the configuration of the Service BSW it might be necessary to up-
date the ValueSpecifications belonging to the Port Defined Argument
Values generated in a previous step.

Class 〈〈atpObject〉〉 ServiceNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Class
Desc.

This expresses the abstract needs that a Software Component or Basic Software
Module has on the configuration of an AUTOSAR Service to which it will be
connected. ”Abstract needs” means, that the model abstracts from the Configuration
Paramaters of the underlying Basic Software.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description

Table 10.2: ServiceNeeds

Class 〈〈atpObject〉〉 EcuInstance
Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreTopology
Class
Desc.

ECUInstances are used to define the ECUs used in the topology. The type of the ECU
is defined by a reference to an ECU specified with the ECU resource description.

Base
Class(es) FibexElement

Attribute Datatype Mul. Link Type Description
associated
IPduGroup IPduGroup * reference

With this reference it is possible to identify
which IPduGroups are applicable for which
CommunicationConnector/ ECU.

comCon-
figurationId Integer 0..1 aggregation This ID is returned by a call to

Com GetConfigurationId()

comPro-
cessing
Period Float 1 aggregation

The COM scheduling time is used in order to
be able to calculate the worst case bus timing.
The processing period shall be specified
AUTOSAR conform in seconds.

commCon-
troller Communication

Controller 1..* aggregation CommunicationControllers of the ECU.

connector Communication
Connector * aggregation All channels controlled by a single controller.

238 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

diagnostic
Address Integer 0..1 aggregation An ECU specific ID for responses of

diagnostic routines.

pduRCon-
figurationId Integer 0..1 aggregation unique PDURconfiguration identifier

response
Address Integer * aggregation An ECU specific ID for responses of

diagnostic routines.

sleepMode
Supported Boolean 1 aggregation

Specifies whether the ECU instance may be
put to a ”low power mode” TRUE: sleep mode
is supported FALSE: sleep mode is not
supported

Note: This flag may only be set to TRUE if the
feature is supported by both hardware and
basic software.

wakeUp
OverBus
Supported Boolean 1 aggregation Driver support for wakeup over Bus.

Table 10.3: EcuInstance

10.2 Service Related Model Elements in the Software Component
Template

This chapter covers meta-model elements exclusively designed for the handling of
AUTOSAR Services. Note that these model elements are not to be instantiated in
the normal context of modeling SoftwareComponentTypes, but rather are reserved
for the special purpose of Service configuration as part of the ECU configuration, a
step occurring only after System Configuration phase.

Although these model elements are only added to the EcuConfiguration in ECU
Configuration phase, they technically belong to the Software-Component Template be-
cause they are used for connecting PortPrototypes within CompositionTypes.
However, authoring tools shall not allow for the users to manually create instances of
these meta-model classes in software-component descriptions.

10.2.1 ECU Software Composition

As explained in chapter 10.1, Service Configuration takes place in ECU Configura-
tion phase. In doing so, ECU Configuration creates a new model element of type
EcuSwComposition as shown in Figure 10.1 represents the whole Software Com-
position on an ECU, including both the software components mapped to the ECU by
referencing the ECU Extract of the System Description, and the service components

239 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

by owning one ServiceComponentPrototype per AUTOSAR Service to be used
on the ECU.

Special connectors of type ServiceConnectorPrototype are used for connecting
service-requiring PortPrototype instances of Application Software Compo-
nents with the actual Service PortPrototype instances defined in the Service-
ComponentType.

Class 〈〈atpStructureElement〉〉 EcuSwComposition
Package M2::AUTOSARTemplates::SWComponentTemplate::Services
Class
Desc.

EcuSwComposition contains the complete Software Composition in an ECU,
consisting both of application software components and service components.

Base
Class(es) ARElement

Attribute Datatype Mul. Link Type Description

component
Service
Com-
ponent
Prototype

* aggregation Service components used within one
EcuSwComposition

connector Service
Connector
Prototype

* aggregation
The connectors used for connecting Service
ports with the AtomicSoftwareComponents’
service ports.

ecuExtract System 1 reference

Represents the extract of the System
Configuration which the referencing
EcuSwComposition applies to, in particular
the softwareComposition. As
EcuSwComposition is only valid in the context
of a given EcuConfiguration, this association
needs to have the same target as the
ecuExtract association from EcuConfiguration.

Table 10.4: EcuSwComposition

240 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

ARElement

«atpStructureElement»
Services::EcuSwComposition

AtomicSoftwareComponentType

«atpType»
Components::

ServiceComponentType

Identifiable

«atpPrototype»
Services::

ServiceComponentPrototype

ComponentType

«atpType»
Composition::CompositionType

ConnectorPrototype

«atpStructureElement»
Composition::

ServiceConnectorPrototype

ARElement

EcuConfiguration

ARElement

«atpStructureElement»
SystemTemplate::System

+ ecuExtractVersion: String [0..1]
+ systemVersion: String

Identifiable

«atpPrototype»
SystemTemplate::

SoftwareComposition

+ecuExtract 1

+softwareComposition 1

+ecuExtract

1

*

«isOfType»

+softwareComposition

1

«isOfType»

+serviceComponent 1

+component *

+ecuSwComposition 1

+connector *

Figure 10.1: EcuSwComposition

10.2.2 Service Component Type

AUTOSAR Services are represented by a meta model class of their own, the Ser-
viceComponentType. As can be seen in Figure 10.2 ServiceComponentType is
a specialization of AtomicSoftwareComponentType.

Like any other ComponentType they can aggregate PortPrototypes, in the case
of ServiceComponentType all aggregated PortPrototypes need to have an
isOfType relationship to a PortInterface which has its isService attribute set
to TRUE.

Similar to an EcuAbstractionComponentType and ComplexDeviceDriverCom-
ponentType the ServiceComponentType is a hybrid between Software Com-
ponent and Basic Software Module. The BSW part is described by the means
of the Basic Software Module Template and the Basic Software Module
Description is referenced by the ServiceComponentType.

241 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

AtomicSoftwareComponentType

«atpType»
Components::

ServiceComponentType

ARElement

«atpStructureElement»
BswOverview::BswModuleDescription

+ moduleId: Int

+bswModuleDescription

0..*

Figure 10.2: ServiceComponentType

ServiceComponentType must not be used when modeling application software us-
ing CompositionType; they are only added in ECU Configuration phase, where ex-
actly one ServiceComponentPrototype per ServiceComponentType per ECU
is added to the ECU Description model.

The Base ECU Config Generator tool needs to take care that for all service ports
of ComponentPrototypes mapped to the ECU service ports at the appropriate Ser-
viceComponentTypes are created. In the process the specified communication pat-
tern A, B or C for a specific kind of service port has to be considered, see table 10.1.

In case of pattern A for each different type of service port one port on the Service-
ComponentType is created.

In case of pattern B and C for each service port of a ComponentPrototype one port
on the ServiceComponentType is created.

Class 〈〈atpPrototype〉〉 ServiceComponentPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::Services

Class
Desc.

Each service in an ECU is represented by exactly one ServiceComponentPrototype.
Instances of this class are only to be created in ECU Configuration phase for the
specific purpose of the service configuration.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description
service
Compo-
nent

Service
Compo-
nentType

1 reference to
type

Table 10.5: ServiceComponentPrototype

More explicitly, all instances of AtomicSoftwareComponentType need to be
checked for PortPrototypes of PortInterfaces with isService attribute set
to TRUE and referenced by ServiceNeeds, and for each of these PortInterface
instances belonging to the AUTOSAR Service to be configured one PortPrototype
implementing the same or a compatible PortInterface needs to be created on the
ServiceComponentType.

The roles of the PortPrototypes (required/provided) on the Application Component
and the Service Component side obviously need to match, i.e. an RPortPrototype
attached to an application AtomicSoftwareComponentType matches a PPort-
Prototype attached to a ServiceComponentType.

242 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

10.2.3 Service Connector Prototype

The ServiceConnectorPrototype (see Figure 10.3) is exclusively used in ECU
Configuration Phase for connecting software components requiring AUTOSAR Ser-
vices to the Services they are requiring on. More detailed this means that for each
instance of an AtomicSoftwareComponentType containing a PortPrototype that
declares via its PortInterface that it needs to be connected to an AUTOSAR Ser-
vice the PortPrototype needs to be connected to the respective PortPrototype
on the ServiceComponentType.

Class 〈〈atpStructureElement〉〉 ServiceConnectorPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Class
Desc.

A ServiceConnectorPrototype connects a PortPrototype owned by an
ComponentPrototype
with the service PortPrototype owned by the ServiceComponentPrototype. A
ServiceConnectorPrototype is only added to the model in ECU Configuration phase
for the specific purpose of configuring services within an EcuSwComposition.

Base
Class(es) ConnectorPrototype

Attribute Datatype Mul. Link Type Description
application
Port PortProto-

type 1 instanceRef Service port to be connected on application
component side

service
Port PortProto-

type 1 instanceRef Service port to be connected on service
component side

Table 10.6: ServiceConnectorPrototype

Class 〈〈atpType〉〉 ServiceComponentType
Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Class
Desc.

ServiceComponentType is used for configuring services for a given ECU. Instances of
this class are only to be created in ECU Configuration phase for the specific purpose
of the service configuration.

Base
Class(es) AtomicSoftwareComponentType

Attribute Datatype Mul. Link Type Description
bswMod-
uleDe-
scription

BswMod-
uleDe-
scription

* reference

Reference from the ServiceComponentType
to the Basic Software Module Description
describing the BSW part of the Service
Component.

Table 10.7: ServiceComponentType

243 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

Software Component Template
V3.3.0

R3.1 Rev 5

Figure 10.3: ServiceConnectorPrototypes connecting Application Component Service
Ports to Service-ComponentPrototype Service Ports

Compared to the other connector types the ServiceConnectorPrototype is differ-
ent in the way that the two PortPrototypes it connects have different contexts: On
the one hand side a PortPrototype aggregated by an AtomicSoftwareCompo-
nentType can have an unlimited number of nested ComponentPrototypes forming
a Composition hierarchy in the ECU Extract Software Composition.

On the other hand, the ComponentPrototypes representing the ServiceCompo-
nentTypes are flatly aggregated by the EcuSwComposition. A further constraint is
that both connector ends need to connect PortPrototypes belonging to the same
or compatible PortInterface which must have its isService attribute set to TRUE.

Please find an overview of ServiceConnectorPrototype in Figure 2.6.

244 of 244
— AUTOSAR CONFIDENTIAL —

Document ID 062: AUTOSAR SoftwareComponentTemplate

	1 Introduction
	1.1 Overview
	1.2 Methodology for Defining Formal Template
	1.3 Scope
	1.4 Organization of the Meta-Model
	1.5 Structure of the Template
	1.5.1 Description of software-components on VFB level
	1.5.2 Description of software-components on RTE level
	1.5.3 Descriptions of software-components on implementation level

	1.6 Document Conventions

	2 Overview: Software Components, Ports, and Interfaces
	2.1 Introduction
	2.2 Software Component
	2.3 Composition
	2.4 Port Interface

	3 Details: Software Components, Ports, and Interfaces
	3.1 Introduction
	3.2 Sender Receiver Communication
	3.2.1 Data Element Prototype
	3.2.2 Mode Declaration Group Prototype

	3.3 Client Server Communication
	3.3.1 Client Server Interface
	3.3.2 Error Handling in client/server communication

	3.4 Compatibility
	3.4.1 Compatibility of Data Types
	3.4.1.1 PrimitiveType
	3.4.1.2 CompositeType

	3.4.2 Compatibility of Semantics
	3.4.3 Compatibility of Data Element Prototypes
	3.4.4 Compatibility of Mode Declaration Groups
	3.4.5 Compatibility of Sender Receiver Interfaces
	3.4.5.1 Connection of required and provided Port via AssemblyConnectorPrototype
	3.4.5.2 Connection of inner and outer Port via DelegationConnectorPrototype

	3.4.6 Compatibility of Argument Prototypes
	3.4.7 Compatibility of Application Errors
	3.4.8 Compatibility of Operation Prototypes
	3.4.9 Compatibility of Client Server Interfaces
	3.4.9.1 Connection of required and provided Port via AssemblyConnectorPrototype
	3.4.9.2 Connection of inner and outer Port via DelegationConnectorPrototype

	3.4.10 Entire delegation of a provided Port Prototype
	3.4.11 Split and merge of Data Element Prototypes

	3.5 Port Annotation
	3.5.1 Introduction
	3.5.2 SenderReceiverAnnotation
	3.5.3 Annotation for the I/O Hardware Abstraction Layer
	3.5.4 Calibration Port Annotation
	3.5.5 Delegated Port Annotations
	3.5.6 General Annotation

	3.6 Communication of Runnables
	3.6.1 Communication Attributes
	3.6.1.1 Communication Specification of an R-Port
	3.6.1.2 Communication Specification of Data Filters
	3.6.1.3 Communication Specification of a P-Port

	3.6.2 Runnables and Sender Receiver Communication
	3.6.2.1 Terminology
	3.6.2.2 Data Access
	3.6.2.3 Explicit Sending and Receiving
	3.6.2.4 DataSendCompletedEvent
	3.6.2.5 DataReceivedEvent
	3.6.2.6 DataReceiveErrorEvent

	3.6.3 Runnables and Client Server Communication
	3.6.3.1 Invoking an Operation
	3.6.3.2 Providing an Implementation of an Operation

	4 Data Types and Data Semantics
	4.1 Introduction
	4.2 About Meta-Model Data Types
	4.3 Usage of Data Types in the Meta-Model
	4.4 Data Type Details
	4.4.1 Range
	4.4.2 Primitive Data Types
	4.4.2.1 Boolean Type
	4.4.2.2 Opaque Type
	4.4.2.3 Integer Type
	4.4.2.4 Real Type
	4.4.2.5 Char Type
	4.4.2.6 String Type
	4.4.2.7 About enumerations

	4.4.3 Composite Data Types
	4.4.3.1 ArrayType
	4.4.3.2 RecordType

	4.4.4 Constant

	4.5 Datatypes with Semantics
	4.5.1 Computation Methods
	4.5.1.1 Example for Enumeration
	4.5.1.2 Example for linear conversion

	4.5.2 Physical Units
	4.5.3 Base Type

	5 Internal Behavior
	5.1 Introduction
	5.2 Runnable Entity
	5.2.1 Concurrency and Reentrancy of a RunnableEntity that cannot be Invoked Concurrently
	5.2.2 Concurrency and Reentrancy of a RunnableEntity that can be Invoked Concurrently
	5.2.3 Additional Remarks and Clarifications
	5.2.3.1 Reentrancy and Multiple Instantiation
	5.2.3.2 Reentrancy and "Library Functions"

	5.2.4 Timed Activation of Runnable Entities

	5.3 RTEEvent
	5.3.1 Defining an Event
	5.3.2 Defining how to Respond to an Event

	5.4 Communication among Runnable Entities
	5.4.1 Background: the Issues
	5.4.1.1 Mutual Exclusion with Semaphores
	5.4.1.2 Interrupt Disabling
	5.4.1.3 Priority Ceiling
	5.4.1.4 Implicit Communication by Means of Variable Copies

	5.4.2 Description possibility 1: Exclusive Area
	5.4.2.1 Entire Runnable Runs in the Exclusive Area
	5.4.2.2 Runnable would Dynamically Enter and Leave the Exclusive Area

	5.4.3 Description possibility 2: Inter-Runnable Variable

	5.5 Port API Options
	5.5.1 Enable to TakeAddress
	5.5.2 Indirect API Generation
	5.5.3 Port Defined Argument Value

	5.6 PerInstanceMemory
	5.7 Service Needs
	5.7.1 Overview
	5.7.2 Service Needs for the NVRAM Service
	5.7.3 Service Needs for the Watchdog Service
	5.7.4 Service Needs for the ComM Service
	5.7.5 Service Needs for the EcuM Service
	5.7.6 Service Needs for the DEM Service
	5.7.7 Service Needs for the FIM Service
	5.7.8 Service Needs for the DCM Service

	6 Implementation
	7 Mode Management
	7.1 Declaration of Modes
	7.2 Communication of Modes
	7.3 Modes and Events
	7.4 Initialization / Finalization
	7.5 Summary Meta-Model Excerpt Related to Modes

	8 Measurement and Calibration
	8.1 Basic Approach
	8.2 Properties of Data Definitions
	8.3 Measurement
	8.4 Characteristic Values
	8.5 Representing CalprmElementPrototypes based on Categories
	8.6 Using Calibration Parameters
	8.6.1 Sharing Calibration Parameters within Compositions
	8.6.2 Sharing Calibration Parameters between "SoftwareComponentPrototypes" of the Same "ComponentType"
	8.6.3 Providing Instance Individual Characteristic Data
	8.6.4 Setting an "SwAxis" Input Value

	8.7 Behavioral Access
	8.8 Addressing Methods
	8.9 Record Layouts
	8.10 Record Layouts and Data Types

	9 ECU Abstraction and Complex Drivers
	9.1 Introduction
	9.2 High Level Hardware and Software Architecture
	9.3 Interfaces and APIs
	9.3.1 ECU Abstraction and its AUTOSAR Interfaces

	9.4 Shipment of Sensors/Actuators
	9.5 I/O Hardware Abstraction
	9.6 Complex Driver

	10 Services
	10.1 Overview: Generation of Service-related Model Elements
	10.2 Service Related Model Elements in the Software Component Template
	10.2.1 ECU Software Composition
	10.2.2 Service Component Type
	10.2.3 Service Connector Prototype

