
Specification of RTE
V2.3.0

R3.1 Rev 5

Document Title Specification of RTE
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 084

Document Classification Standard

Document Version 2.3.0

Document Status Final

Part of Release 3.1

Revision 5

Document Change History
Date Version Changed by Change Description

22.09.2010 2.3.0 AUTOSAR
Administration

• Generation of the indirect API de-
coupled from multiple instantiation:
changed rte sws 1355, rte sws 2613,
rte sws 2615.

• Behavior in name clashes of AUTOSAR
types PIM types: added rte sws 5195,
changed rte sws 3789, rte sws 3782.

1 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

27.01.2010 2.2.0 AUTOSAR
Administration

• Allow Communication Attributes on Com-
positions: changed rte sws in 0055,
rte sws in 0062, rte sws in 5023,
rte sws in 5050, rte sws in 0067,
rte sws in 0029, rte sws in 2701,
rte sws in 2693

• Support for initial calibration data val-
ues: added rte sws 7186, rte sws 7185,
rte sws 2750.

• Reverted implementation of ”‘in-
compatible function declarations”’:
changed rte sws 1017, rte sws 1018,
rte sws 1019, rte sws 1020, rte sws 5107,
rte sws 5108, rte sws 5109, rte sws 1254,
rte sws 3930, rte sws 3593, rte sws 5512;
added rte sws 5195, rte sws 5196,
rte sws 5197, rte sws 5198, rte sws 5199,
rte sws 5200, rte sws 5201, rte sws 5202,
rte sws 5203, rte sws 5204, rte sws 5205,
rte sws 5206, rte sws 5207, rte sws 5208,
rte sws 5209; removed rte sws 3743; Fixed
typo in rte sws 6129, rte sws 3750 (CalPrm
vs. Calprm).

04.02.2009 2.1.0 AUTOSAR
Administration

• updated VFB-Tracing:
changes rte sws 1327, rte sws 1328

• unconnected R-Ports are supported:
changed rte sws 1329, rte sws 3019;
added rte sws 1330, rte sws 1331,
rte sws 1333, rte sws 1334, rte sws 1336,
rte sws 1337, rte sws 1346, rte sws 2621,
rte sws 2638, rte sws 2639, rte sws 2640,
rte sws 3785, rte sws 5099, rte sws 5100,
rte sws 5101, rte sws 5102

• incompatible function declarations:
changed rte sws 1018, rte sws 1019,
rte sws 1020; added rte sws 5107,
rte sws 5108, rte sws 5109; removed
rte sws 6030.

• Insufficient RTE server mapping require-
ment: changed rte sws 2204.

2 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

15.02.2008 2.0.1 AUTOSAR
Administration

Layout adaptations

20.12.2007 2.0.0 AUTOSAR
Administration

• Adapted to new version of meta model

• ”RTE ECU Configuration” added

• Calibration and measurement revised

• Document meta information extended

• Small layout adaptations made

31.01.2007 1.1.1 AUTOSAR
Administration

• ”Advice for users” revised

• ”Revision Information” added

01.12.2006 1.1.0 AUTOSAR
Administration

Updated for AUTOSAR Release 2.1.

• Adapted to new version of meta model

• New feature ’debouncing of runnable activa-
tion’

• New feature ’runnable activation offset’

• ’Measurement and Calibration’ added

• Semantics of implicit communication en-
hanced

• Legal disclaimer revised

18.07.2006 1.0.1 AUTOSAR
Administration

Second release. Additional features integrated,
adapted to updated version of meta-model.

05.05.2006 1.0.0 AUTOSAR
Administration

Initial release

3 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for the
purpose of information only. AUTOSAR and the companies that have contributed to it
shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types of
Intellectual Property Rights. The commercial exploitation of the material contained in
this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only. For any other purpose, no part of
the specification may be utilized or reproduced, in any form or by any means, without
permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary refer-
ence models, ”use cases”, and/or references to exemplary technical solutions, devices,
processes or software).

Any such exemplary items are contained in the Specification Documents for illustration
purposes only, and they themselves are not part of the AUTOSAR Standard. Neither
their presence in such Specification Documents, nor any later documentation of AU-
TOSAR conformance of products actually implementing such exemplary items, imply
that intellectual property rights covering such exemplary items are licensed under the
same rules as applicable to the AUTOSAR Standard.

4 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Table of Contents

1 Introduction 14

1.1 Scope . 14
1.2 Dependency to other AUTOSAR specifications 15
1.3 Acronyms and Abbreviations . 16
1.4 Technical Terms . 16
1.5 Document Conventions . 17
1.6 Requirements Traceability . 18

2 RTE Overview 28

2.1 The RTE in the Context of AUTOSAR 28
2.2 AUTOSAR Concepts . 28

2.2.1 AUTOSAR Software-components 28
2.2.2 Basic Software Modules . 29
2.2.3 Communication . 29

2.2.3.1 Communication Models 29
2.2.3.2 Communication Modes 30
2.2.3.3 Static Communication 30
2.2.3.4 Multiplicity . 30

2.2.4 Concurrency . 31
2.3 The RTE Generator . 32
2.4 Design Decisions . 32

3 RTE Generation Process 34

3.1 RTE Contract Phase . 36
3.2 RTE Configuration Editing . 37
3.3 RTE Generation Phase . 38
3.4 RTE Configuration and OS Interaction 38

4 RTE Functional Specification 41

4.1 Architectural concepts . 41
4.1.1 Scope . 41
4.1.2 RTE and AUTOSAR Software-Components 41

4.1.2.1 Structure of SW-Components 42
4.1.2.2 Ports, Interfaces and Connections 42
4.1.2.3 Internal Behavior . 44
4.1.2.4 Implementation . 46

4.1.3 Instantiation . 47
4.1.3.1 Scope and background 47
4.1.3.2 Concepts of instantiation 48
4.1.3.3 Single instantiation . 49
4.1.3.4 Multiple instantiation . 49

4.1.4 RTE and AUTOSAR Services . 50
4.1.5 RTE and ECU Abstraction . 51
4.1.6 RTE and Complex Device Driver 52

5 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.2 RTE Implementation Aspects . 52
4.2.1 Scope . 52
4.2.2 OS . 54

4.2.2.1 OS Objects . 54
4.2.2.2 Runnable Entities . 56
4.2.2.3 RTE Events . 57
4.2.2.4 Mapping of runnable entities to tasks 58
4.2.2.5 Activation Offset for runnable 66
4.2.2.6 Activation and Start of Runnable Entities 68

4.2.3 Interrupt decoupling and notifications 71
4.2.3.1 Basic notification principles 71
4.2.3.2 Interrupts . 72
4.2.3.3 Decoupling interrupts on RTE level 73
4.2.3.4 RTE and interrupt categories 74

4.2.4 Data Consistency . 74
4.2.4.1 General . 74
4.2.4.2 Communications to look at 76
4.2.4.3 Concepts . 76
4.2.4.4 Mechanisms to guarantee data consistency 77
4.2.4.5 Exclusive Areas . 80
4.2.4.6 InterRunnableVariables 82

4.2.5 Multiple trigger of Runnables . 85
4.2.6 Measurement and Calibration . 86

4.2.6.1 General . 86
4.2.6.2 Measurement . 87
4.2.6.3 Calibration . 92

4.3 Communication Models . 107
4.3.1 Sender-Receiver . 107

4.3.1.1 Introduction . 107
4.3.1.2 Receive Modes . 108
4.3.1.3 Multiple Data Elements 110
4.3.1.4 Multiple Receivers and Senders 112
4.3.1.5 Implicit and Explicit Data Reception and Transmission . 112
4.3.1.6 Transmission Acknowledgement 117
4.3.1.7 Communication Time-out 119
4.3.1.8 Data Element Invalidation 120
4.3.1.9 Filters . 122
4.3.1.10 Buffering . 122
4.3.1.11 Operation . 123

4.3.2 Client-Server . 131
4.3.2.1 Introduction . 131
4.3.2.2 Multiplicity . 132
4.3.2.3 Communication Time-out 134
4.3.2.4 Port-Defined argument values 135
4.3.2.5 Buffering . 136
4.3.2.6 Inter ECU Response to Request Mapping 137

6 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.3.2.7 Operation . 139
4.3.3 SWC internal communication . 144

4.3.3.1 InterRunnableVariables 144
4.4 Modes . 145

4.4.1 Mode User . 145
4.4.2 Mode Manager . 147
4.4.3 Refinement of the semantics of ModeDeclarations and Mode-

DeclarationGroups . 148
4.4.4 Order of actions taken by the RTE upon interception of a mode

switch notification . 148
4.4.5 Notification of mode switches . 152

4.5 Initialization and Finalization . 155
4.5.1 Initialization and Finalization of the RTE 155
4.5.2 Initialization and Finalization of AUTOSAR Software-Components 155

4.6 RTE Functionality Levels . 156

5 RTE Reference 157

5.1 Scope . 157
5.1.1 Programming Languages . 157
5.1.2 Generator Principles . 158

5.1.2.1 Operating Modes . 158
5.1.2.2 Optimization Modes . 159

5.1.3 Generator external configuration switches 160
5.2 API Principles . 160

5.2.1 RTE Namespace . 161
5.2.2 Direct API . 161
5.2.3 Indirect API . 162

5.2.3.1 Accessing Port Handles 162
5.2.4 DataReadAccess and DataWriteAccess 163
5.2.5 PerInstanceMemory . 164
5.2.6 API Mapping . 166

5.2.6.1 “RTE Contract” Phase 167
5.2.6.2 “RTE Generation” Phase 168
5.2.6.3 Function Elidation . 168
5.2.6.4 API Naming Conventions 169
5.2.6.5 API Parameters . 170
5.2.6.6 Error Handling . 174
5.2.6.7 Success Feedback . 175

5.2.7 Unconnected Ports . 175
5.2.7.1 Data Elements . 176
5.2.7.2 Mode Ports . 177
5.2.7.3 Client-Server . 178

5.2.8 Non-identical ports . 178
5.3 RTE Modules . 179

5.3.1 RTE Header File . 179
5.3.2 Lifecycle Header File . 180

7 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5.3.3 Application Header File . 180
5.3.3.1 File Name . 181
5.3.3.2 Scope . 181
5.3.3.3 File Contents . 182

5.3.4 AUTOSAR Types Header File . 184
5.3.4.1 File Contents . 184
5.3.4.2 Primitive AUTOSAR Data Types 184
5.3.4.3 Complex AUTOSAR Data Types 186
5.3.4.4 C/C++ . 188

5.3.5 VFB Tracing Header File . 188
5.3.5.1 C/C++ . 188
5.3.5.2 File Contents . 188

5.3.6 RTE Configuration Header File 190
5.3.6.1 C/C++ . 190
5.3.6.2 File Contents . 190

5.3.7 Generated RTE . 191
5.3.7.1 Header File Usage . 191
5.3.7.2 C/C++ . 192
5.3.7.3 File Contents . 192
5.3.7.4 Reentrancy . 194

5.4 RTE Data Structures . 194
5.4.1 Instance Handle . 194
5.4.2 Component Data Structure . 195

5.4.2.1 Data Handles Section 197
5.4.2.2 Per-instance Memory Handles Section 199
5.4.2.3 Inter Runnable Variable Handles Section 200
5.4.2.4 Exclusive-area handles Section 200
5.4.2.5 Port API Section . 201
5.4.2.6 Calibration Parameter Handles Section 205
5.4.2.7 Inter Runnable Variable API Section 205
5.4.2.8 Vendor Specific Section 206

5.5 API Data Types . 206
5.5.1 Std ReturnType . 206

5.5.1.1 Infrastructure Errors . 208
5.5.1.2 Application Errors . 208
5.5.1.3 Predefined Error Codes 209

5.5.2 Rte Instance . 211
5.5.3 RTE Modes . 211
5.5.4 Enumeration Data Types . 212
5.5.5 Range Data Types . 213

5.6 API Reference . 213
5.6.1 Rte Ports . 214
5.6.2 Rte NPorts . 214
5.6.3 Rte Port . 215
5.6.4 Rte Send/Rte Write . 215
5.6.5 Rte Switch . 217

8 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5.6.6 Rte Invalidate . 218
5.6.7 Rte Feedback . 219
5.6.8 Rte Read . 222
5.6.9 Rte Receive . 223
5.6.10 Rte Call . 224
5.6.11 Rte Result . 226
5.6.12 Rte Pim . 228
5.6.13 Rte CData . 229
5.6.14 Rte Calprm . 229
5.6.15 Rte IRead . 230
5.6.16 Rte IWrite . 231
5.6.17 Rte IWriteRef . 232
5.6.18 Rte IInvalidate . 233
5.6.19 Rte IStatus . 234
5.6.20 Rte IrvIRead . 235
5.6.21 Rte IrvIWrite . 236
5.6.22 Rte IrvRead . 237
5.6.23 Rte IrvWrite . 238
5.6.24 Rte Enter . 238
5.6.25 Rte Exit . 239
5.6.26 Rte Mode . 240

5.7 Runnable Entity Reference . 241
5.7.1 Signature . 241
5.7.2 Entry Point Prototype . 241
5.7.3 Role Parameters . 242
5.7.4 Return Value . 242
5.7.5 Triggering Events . 242

5.7.5.1 TimingEvent . 243
5.7.5.2 ModeSwitchEvent . 243
5.7.5.3 AsynchronousServerCallReturnsEvent 243
5.7.5.4 DataReceiveErrorEvent 243
5.7.5.5 OperationInvokedEvent 244
5.7.5.6 DataReceivedEvent . 245
5.7.5.7 DataSendCompletedEvent 245

5.7.6 Reentrancy . 245
5.8 RTE Lifecycle API Reference . 246

5.8.1 Rte Start . 246
5.8.2 Rte Stop . 247

5.9 RTE Call-backs Reference . 248
5.9.1 RTE-COM Message Naming Conventions 248
5.9.2 Communication Service Call-backs 248
5.9.3 Naming convention of CallbackRoutineName 249

5.10 VFB Tracing Reference . 250
5.10.1 Prinicple of Operation . 251
5.10.2 Trace Events . 251

5.10.2.1 RTE API Trace Events 251

9 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5.10.2.2 COM Trace Events . 252
5.10.2.3 OS Trace Events . 253
5.10.2.4 Runnable Entity Trace Events 255

5.10.3 Configuration . 256
5.10.4 Interaction with Object-code Software-Components 256

6 RTE ECU Configuration 257

6.1 RTE Generation Parameters . 260
6.2 Handling of Software Component instances 263

6.2.1 Selection of SW-Component Implementation 264
6.2.2 Runnable Entity to task mapping 265
6.2.3 Exclusive Area implementation 268
6.2.4 NVRam Allocation . 270

6.3 Component Type Calibration . 272
6.4 Communication infrastructure . 273

A Metamodel Restrictions 274

A.1 Restriction concerning WaitPoint . 274
A.2 Restriction concerning RTEEvent . 274
A.3 Restriction concerning isQueued attribute of DataElementPrototype . . 275
A.4 Restriction concerning ServerCallPoint 275
A.5 Restriction concerning multiple instantiation of software components . . 276
A.6 Restriction concerning runnable entity 276
A.7 Restrictions concerning runnables with dependencies on modes 276
A.8 Restriction concerning InterRunnableVariables 278
A.9 Restriction concerning InternalBehavior 278
A.10 Restriction concerning Initial Value . 279
A.11 Restriction concerning PerInstanceMemory 279
A.12 Restriction concerning unconnected r-port 279
A.13 Restrictions regarding n:1 sender-receiver communication 280
A.14 Restrictions regarding Measurement and Calibration 280
A.15 Restriction concerning ExclusiveAreaImplMechanism 280

B Required Input Information 282

B.1 SWC and instance . 282
B.2 Runnable entity and task . 286
B.3 Port and interface . 291
B.4 Communication . 299
B.5 Data consistency . 301
B.6 RTE configuration . 303
B.7 Measurement and calibration . 305
B.8 Mode management . 306

C External Requirements 310

D MISRA C Compliance 312

10 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

E Interfaces of COM used by the RTE 313

11 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Bibliography

[1] Glossary
AUTOSAR Glossary.pdf

[2] Methodology
AUTOSAR Methodology.pdf

[3] Requirements on Communication
AUTOSAR SRS COM.pdf

[4] Requirements on ECU Configuration
AUTOSAR RS ECU Configuration.pdf

[5] Requirements on Operating System
AUTOSAR SRS OS.pdf

[6] Specification of Communication
AUTOSAR SWS COM.pdf

[7] Specification of ECU Configuration
AUTOSAR ECU Configuration.pdf

[8] Specification of ECU State Manager
AUTOSAR SWS ECU StateManager.pdf

[9] Specification of Interoperability of Authoring Tools
AUTOSAR InteroperabilityAuthoringTools.pdf

[10] Specification of I/O Hardware Abstraction
AUTOSAR SWS IO HWAbstraction.pdf

[11] Specification of Operating System
AUTOSAR SWS OS.pdf

[12] Specification of Standard Types
AUTOSAR SWS StandardTypes.pdf

[13] Specification of the Virtual Functional Bus

12 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

AUTOSAR VirtualFunctionBus.pdf

[14] Specification of System Template
AUTOSAR SystemTemplate.pdf

[15] DTD File
AUTOSAR DTD File.dtd

[16] Template Modeling Guide
AUTOSAR TemplateModelingGuide.pdf

[17] Software Component Template
AUTOSAR SoftwareComponentTemplate.pdf

[18] Gemeinsames Subset der MISRA C Guidelines
http://www.automotive-his.de/download/
HIS SubSet MISRA C 1.0.3.pdf

13 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

http://www.automotive-his.de/download/

Specification of RTE
V2.3.0

R3.1 Rev 5

Note on XML examples
This specification includes examples in XML based on the AUTOSAR metamodel avail-
able at the time of writing. These examples are included as illustrations of configura-
tions and their expected outcome but should not be considered part of the specification.

1 Introduction

This document contains the software specification of the AUTOSAR Run-Time Envi-
ronment (RTE). Basically, the RTE together with the OS, AUTOSAR COM and other
Basic Software Modules is the implementation of the Virtual Functional Bus concepts
(VFB, [13]). The RTE implements the AUTOSAR Virtual Functional Bus interfaces and
thereby realizes the communication between AUTOSAR software-components.

This document describes how these concepts are realized within the RTE. Further-
more, the Application Programming Interface (API) of the RTE and the interaction of
the RTE with other basic software modules is specified.

1.1 Scope

This document is intended to be the main reference for developers of an RTE gener-
ator tool or of a concrete RTE implementation respectively. The document is also the
reference for developers of AUTOSAR software-components and basic software mod-
ules that interact with the RTE, since it specifies the application programming interface
of the RTE and therefore the mechanisms for accessing the RTE functionality. Fur-
thermore, this specification should be read by the AUTOSAR working groups that are
closely related to the RTE (see Section 1.2 below), since it describes the interfaces of
the RTE to these modules as well as the behavior / functionality the RTE expects from
them.

This document is structured as follows. After this general introduction, Chapter 2 gives
a more detailed introduction of the concepts of the RTE. Chapter 3 describes how an
RTE is generated in the context of the overall AUTOSAR methodology. Chapter 4 is
the central part of this document. It specifies the RTE functionality in detail. The RTE
API is described in Chapter 5.

The appendix of this document consists of five parts: Appendix A lists the restrictions to
the AUTOSAR metamodel that this version of the RTE specification relies on. Appendix
B describes the input that is needed for the RTE generation process and where this
input is assumed to come from. Appendix C explicitly lists all external requirements, i.e.
all requirements that are not about the RTE itself but specify the assumptions on the
environment and the input of an RTE generator. In Appendix D some HIS MISRA rules
are listed that are likely to be violated by RTE code, and the rationale why these vio-
lations may occur. Finally, Appendix E lists the COM API and COM Callback functions
that are used by the RTE

14 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Note that Chapters 1 and 2, as well as Appendix D and E do not contain any require-
ments and are thus intended for information only.

Chapters 4, 5, and Appendix B are are probably of most interest for developers of an
RTE Generator. Chapters 2, 3, 5 are important for developers of AUTOSAR software-
components and basic software modules. The most important chapters for related
AUTOSAR work packages would be Chapters 4 and 5, as well as Appendix B and C.

The specifications in this document do not define details of the implementation of a
concrete RTE or RTE generator respectively. Furthermore, aspects of the ECU- and
system-generation process (like e.g. the mapping of SW-Cs to ECUs, or schedulability
analysis) are also not in the scope of this specification. Nevertheless, it is specified
what input the RTE generator expects from these configuration phases.

1.2 Dependency to other AUTOSAR specifications

The main documents that served as input for the specification of the RTE are the spec-
ification of the Virtual Functional Bus [13] and the specification of the Software Com-
ponent Template [17]. Also of primary importance are the specifications of those Basic
Software modules that closely interact with the RTE (or vice versa). These are espe-
cially the communication module [6] and the operating system [11]. The main input of
an RTE generator is described (among others) in the ECU Configuration Description.
Therefore, the corresponding specification [4] is also important for the RTE specifica-
tion. Furthermore, as the process of RTE generation is an important part of the overall
AUTOSAR Methodology, the corresponding document [2] is also considered.

The following list shows the specifications that are closely interdependent to the speci-
fication of the RTE:

• Specification of the Virtual Functional Bus [13]

• Specification of the Software Component Template [17]

• Specification of AUTOSAR COM [6]

• Specification of AUTOSAR OS [11]

• Specification of ECU State Manager and Communication Manager [8]

• Specification of ECU-Configuration Description / Generation [4]

• Specification of System Description / Generation [14]

• AUTOSAR Methodology [2]

• Documents relevant for the AUTOSAR Metamodel [16, 15]

15 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

1.3 Acronyms and Abbreviations

All abbreviations used throughout this document – except the ones listed here – can
be found in the official AUTOSAR glossary [1].

1.4 Technical Terms

All technical terms used throughout this document – except the ones listed here – can
be found in the official AUTOSAR glossary [1] or the Software Component Template
Specification [17].

Term Description

mode switch interface

A SenderReceiverInterface with a ModeDeclara-
tionGroupPrototype of a ModeDeclarationGroup is
called mode switch interface for the ModeDeclaration-
Group. The mode ports of the mode manager and
the mode user are of the type of a mode switch inter-
face.
Beware, a SenderReceiverInterface may contain any
combination of DataElementPrototypes and Mod-
eDeclarationGroupPrototypes.

mode port
The port for receiving (or sending) a mode switch no-
tification. For this purpose, a mode port is typed by a
mode switch interface.

mode user

An AUTOSAR SW-C that depends on modes
by ModeDisablingDependency, ModeSwitchEvent, or
simply by reading the currend state of a mode is called
a mode user. A mode user is defined by having a
require mode port. See also section 4.4.1.

mode manager

Entering and leaving modes is initiated by a mode
manager. A mode manager is defined by having a pro-
vide mode port. A mode manager might be either
an application mode manager or a basic soft-
ware module that provides a service including mode
switches, like the ECU State Manager. See also sec-
tion 4.4.2.

application mode manager

An application mode manager is an AUTOSAR
Software-Component that provides the service of
switching modes. The modes of an application
mode manager do not have to be standardized.

mode switch notification
The communication of a mode switch from the mode
manager to the mode user using the mode switch
interface is called mode switch notification.

16 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

mode machine instance

The instances of mode machines or ModeDeclaration-
Groups are defined by the ModeDeclarationGroupPro-
totypes of the mode managers.
Since a mode switch is not executed instantaneously,
The RTE has to maintain it’s own states. For
each mode manager’s ModeDeclarationGroupProto-
type, RTE has one state machine. This state ma-
chine is called mode machine instance. For all mode
users of the same mode manager’s ModeDeclara-
tionGroupPrototype, RTE uses the same mode ma-
chine instance. See also section 4.4.2.

mode disabling dependent
runnable

A mode disabling dependent runnable is triggered by
an RteEvent with a ModeDisablingDependency. RTE
prevents the start of that runnable by the RteEvent,
when the corresponding mode disabling is active.
See also section 4.4.1.

mode disabling

When a ‘mode disabling’ is active, RTE dis-
ables the start of mode disabling dependent
runnables. The ‘mode disabling’ is active during the
mode that is referenced in the mode disabling depen-
dency and during the transitions that enter and leave
this mode. See also section 4.4.1.

OnEntry runnable

A runnable that is triggered by a ModeSwitchEvent
with ModeActivationKind ‘entry’ is triggered on enter-
ing the mode. It is called OnEntry runnable. See also
section 4.4.1.

OnExit runnable

A runnable that is triggered by a ModeSwitchEvent
with ModeActivationKind ‘exit’ is triggered on exiting
the mode. It is called OnExit runnable. See also sec-
tion 4.4.1.

server runnable

A server that is triggered by an OperationInvokedE-
vent. It has a mixed behaviour between a runnable
and a function call. In certain situations, RTE can im-
plement the client server communication as a simple
function call.

runnable activation

The activation of a runnable is defined as the activation
of the task that contains the runnable and eventually
includes setting a flag that tells the glue code in the
task which runnable is to be executed.

runnable start
A runnable is started by the calling the C-function that
implements the runnable from within a started task.

1.5 Document Conventions

Requirements in the SRS are referenced using [RTE<n>] where <n> is the require-
ment id. For example, [RTE00098].

17 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Requirements in the SWS are marked with [rte sws <n>] as the first text in a para-
graph. The scope of the requirement is the entire paragraph.

Requirements on the input of the RTE specified in terms of the meta model are marked
with [rte sws in <n>] accordingly.

External requirements on the input of the RTE are marked with [rte sws ext <n>].

Technical terms are typeset in monospace font, e.g. Warp Core.

API function calls are also marked with monospace font, like Rte ejectWarpCore().

1.6 Requirements Traceability

Requirement Satisfied by
[BSW00300] Module naming convention rte sws 1171 rte sws 1157 rte sws 1158

rte sws 1003 rte sws 1161 rte sws 1169
[BSW00304] AUTOSAR integer data types rte sws 1175 rte sws 1176 rte sws 1177

rte sws 1178 rte sws 1179 rte sws 1180
rte sws 1181 rte sws 1182 rte sws 1183
rte sws 1184 rte sws 1185

[BSW00305] Self-defined data types naming
convention

rte sws 1150 rte sws 3713 rte sws 3714
rte sws 3733 rte sws 2301 rte sws 3731
rte sws 1055

[BSW00307] Global variables naming conven-
tion

rte sws 1171 rte sws 3712

[BSW00308] Definition of global data not testable
[BSW00310] API naming convention rte sws 1071 rte sws 1072 rte sws 2631

rte sws 1206 rte sws 1083 rte sws 1091
rte sws 1092 rte sws 1102 rte sws 1111
rte sws 1118 rte sws 1252 rte sws 3928
rte sws 3741 rte sws 3744 rte sws 5509
rte sws 3800 rte sws 3550 rte sws 3553
rte sws 3560 rte sws 3565 rte sws 1120
rte sws 1123 rte sws 2569

[BSW00312] Shared code shall be reentrant rte sws 3749
[BSW00326] Transition from ISRs to OS tasks rte sws 3600 rte sws 3594 rte sws 3530

rte sws 3531 rte sws 3532
[BSW00327] Error values naming convention rte sws 1058 rte sws 1060 rte sws 1064

rte sws 1317 rte sws 1061 rte sws 1065
rte sws 2571

[BSW00330] Usage of macros / inline functions
instead of functions

rte sws 1274

[BSW007] HIS MISRA C rte sws 3715 rte sws 1168
[RTE00003] Tracing of sender-receiver com-
munication

rte sws 1357 rte sws 1238 rte sws 1240
rte sws 1241 rte sws 3814 rte sws 1242

18 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[RTE00004] Tracing of client-server communi-
cation

rte sws 1357 rte sws 1238 rte sws 1240
rte sws 1241 rte sws 3814 rte sws 1242

[RTE00005] Support for ’trace’ build rte sws 3607 rte sws 1320 rte sws 1322
rte sws 1323 rte sws 1327 rte sws 1328

[RTE00008] VFB tracing configuration rte sws 3607 rte sws 1320 rte sws 1236
rte sws 1321 rte sws 1322 rte sws 1323
rte sws 1324 rte sws 1325

[RTE00011] Support for multiple AUTOSAR
software-component instances

rte sws 2000 rte sws 2001 rte sws 2008
rte sws 2009 rte sws 2002 rte sws 2017
rte sws 1148 rte sws 1012 rte sws 1013
rte sws 3806 rte sws 3793 rte sws 3713
rte sws 3718 rte sws 3719 rte sws 1349
rte sws 3720 rte sws 3721 rte sws 3716
rte sws 3717 rte sws 3722 rte sws 3711
rte sws 1016

[RTE00012] Multiply instantiated AUTOSAR
software-components delivered as binary code
shall share code

rte sws 3015 rte sws 2017 rte sws 1007

[RTE00013] Static memory sections rte sws 3790 rte sws 2303 rte sws 2304
rte sws 3789 rte sws 3782 rte sws 2305
rte sws 5062 rte sws 2301 rte sws 2302

[RTE00017] Rejection of inconsistent compo-
nent implementations

rte sws 3755 rte sws 4504 rte sws 3764
rte sws 1004 rte sws 1276

[RTE00018] Rejection of invalid configurations rte sws 2750 rte sws 5508 rte sws 7006
rte sws 5508 rte sws 2254 rte sws 2100
rte sws 2051 rte sws 2009 rte sws 2204
rte sws 1313

[RTE00019] RTE is the communication infras-
tructure

rte sws 6000 rte sws 6011 rte sws 5500
rte sws 4527 rte sws 6023 rte sws 4526
rte sws 6024 rte sws 3760 rte sws 3761
rte sws 3762 rte sws 4515 rte sws 4516
rte sws 4520 rte sws 4522 rte sws 2527
rte sws 2528 rte sws 3769 rte sws 1048
rte sws 1231 rte sws 5063 rte sws 3007
rte sws 3008 rte sws 3000 rte sws 3001
rte sws 3002 rte sws 3775 rte sws 2612
rte sws 2610 rte sws 3004 rte sws 3005
rte sws 3776 rte sws 5065 rte sws 2611
rte sws 1264 rte sws 3795 rte sws 3796

[RTE00020] Access to OS rte sws 2250 rte sws 5071 rte sws 5076
rte sws 5077 rte sws 5072

[RTE00021] Per-ECU RTE customization rte sws 5000 rte sws 1316
[RTE00022] Interaction with call-backs rte sws 1165
[RTE00023] RTE Overheads rte sws 5053
[RTE00024] Source-code AUTOSAR software
components

rte sws 1315 rte sws 1000 rte sws 1195

[RTE00025] Static communication rte sws 6026

19 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[RTE00027] VFB to RTE mapping shall be se-
mantic preserving

rte sws 2200 rte sws 2201 rte sws 1274

[RTE00028] 1:n Sender-receiver communica-
tion

rte sws 6023 rte sws 4526 rte sws 6024
rte sws 1071 rte sws 1072 rte sws 1077
rte sws 1081 rte sws 2633 rte sws 2635
rte sws 1082 rte sws 2631 rte sws 1091
rte sws 1092 rte sws 1135

[RTE00029] n:1 Client-server communication rte sws 6019 rte sws 4519 rte sws 4517
rte sws 3763 rte sws 3770 rte sws 3767
rte sws 3768 rte sws 2579 rte sws 3769
rte sws 1102 rte sws 1109 rte sws 1133
rte sws 1359 rte sws 1166

[RTE00031] Multiple runnable entities rte sws 2202 rte sws 1126 rte sws 1132
rte sws 1016 rte sws 1130 rte sws 3749

[RTE00032] Data consistency mechanisms rte sws 3811 rte sws 3514 rte sws 3500
rte sws 3504 rte sws 3595 rte sws 3596
rte sws 3503 rte sws 7005 rte sws 3516
rte sws 3517 rte sws 3519 rte sws 1122
rte sws 3739 rte sws 3740 rte sws 3812

[RTE00033] Serialization of server runnables rte sws 4515 rte sws 4518 rte sws 4522
rte sws 2527 rte sws 2528 rte sws 2529
rte sws 2530 rte sws 7008 rte sws 2699

[RTE00036] Assignment to OS Applications protection is cancelled for release 3.0
[RTE00037] The RTE shall be able to invoke
functions across protection boundaries

protection is cancelled for release 3.0

[RTE00045] Standardized VFB tracing inter-
face

rte sws 1319 rte sws 1250 rte sws 1251
rte sws 1321 rte sws 1326 rte sws 1238
rte sws 1239 rte sws 1240 rte sws 1241
rte sws 3814 rte sws 1242 rte sws 1243
rte sws 1244 rte sws 1245 rte sws 1246
rte sws 1247 rte sws 1248 rte sws 1249

[RTE00046] Support for ’runnable runs inside’
exclusive areas

rte sws 3500 rte sws 3515 rte sws 1120
rte sws 1122 rte sws 1123

[RTE00048] RTE Generator input rte sws 5001 rte sws 5076 rte sws 5077
[RTE00049] Construction of task bodies rte sws 2251 rte sws 2254 rte sws 2204

20 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[RTE00051] RTE API mapping rte sws 3014 rte sws 3921 rte sws 1269
rte sws 1148 rte sws 3706 rte sws 3707
rte sws 1143 rte sws 1348 rte sws 1155
rte sws 1156 rte sws 1153 rte sws 1146
rte sws 2619 rte sws 2613 rte sws 3602
rte sws 2614 rte sws 2615 rte sws 3603
rte sws 1354 rte sws 1355 rte sws 1280
rte sws 1281 rte sws 2632 rte sws 1282
rte sws 1283 rte sws 2676 rte sws 1284
rte sws 2677 rte sws 1285 rte sws 2678
rte sws 1286 rte sws 2679 rte sws 1287
rte sws 1289 rte sws 1291 rte sws 1292
rte sws 1313 rte sws 1288 rte sws 1290
rte sws 1293 rte sws 1294 rte sws 1296
rte sws 1297 rte sws 1298 rte sws 1312
rte sws 1299 rte sws 1119 rte sws 1300
rte sws 1254 rte sws 3927 rte sws 3952
rte sws 3929 rte sws 3930 rte sws 1301
rte sws 1268 rte sws 3593 rte sws 1302
rte sws 3746 rte sws 3747 rte sws 5510
rte sws 5511 rte sws 5512 rte sws 3801
rte sws 1303 rte sws 3552 rte sws 1304
rte sws 3557 rte sws 3559 rte sws 3555
rte sws 1305 rte sws 3562 rte sws 3563
rte sws 3564 rte sws 1306 rte sws 3567
rte sws 3568 rte sws 1307 rte sws 1123
rte sws 1308 rte sws 3718 rte sws 3719
rte sws 1349 rte sws 3720 rte sws 3721
rte sws 3716 rte sws 3717 rte sws 3723
rte sws 3733 rte sws 2608 rte sws 2588
rte sws 1363 rte sws 1364 rte sws 2607
rte sws 1365 rte sws 1366 rte sws 3734
rte sws 2666 rte sws 2589 rte sws 1367
rte sws 2301 rte sws 2302 rte sws 3739
rte sws 3740 rte sws 3812 rte sws 2616
rte sws 2617 rte sws 3799 rte sws 3731
rte sws 3732 rte sws 3601 rte sws 3730
rte sws 2620 rte sws 2621 rte sws 1055
rte sws 3726 rte sws 2618 rte sws 1343
rte sws 1342 rte sws 1053 rte sws 6029
rte sws 3949 rte sws 3725 rte sws 3752
rte sws 2623 rte sws 3791 rte sws 1309
rte sws 1310 rte sws 1159 rte sws 1009
rte sws 1276 rte sws 1266 rte sws 1197
rte sws 1132

[RTE00052] Initialization and finalization of
components

rte sws 2503 rte sws 2562 rte sws 2564

21 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[RTE00053] AUTOSAR data types rte sws 1282 rte sws 3559 rte sws 3564
rte sws 1160 rte sws 2648 rte sws 1163
rte sws 1175 rte sws 1176 rte sws 1177
rte sws 1178 rte sws 1179 rte sws 1180
rte sws 1181 rte sws 1182 rte sws 1183
rte sws 1184 rte sws 1185 rte sws 1186
rte sws 1187 rte sws 1188 rte sws 1265
rte sws 1214 rte sws 1189 rte sws 1190
rte sws 1191 rte sws 1192 rte sws 1161
rte sws 1162

[RTE00055] Use of global namespace rte sws 1171
[RTE00056] Pre-defined primitive data types
cannot be redefined

rte sws 1263

[RTE00059] RTE API passes ’in’ primitive data
types by value

rte sws 1017

[RTE00060] RTE API shall pass ’in’ complex
data types by reference

rte sws 1018 rte sws 5107 rte sws 5201
rte sws 5202

[RTE00061] ’in/out’ and ’out’ parameters rte sws 1019 rte sws 1020 rte sws 5196
rte sws 5197 rte sws 5108 rte sws 5203
rte sws 5204 rte sws 5109 rte sws 5205
rte sws 5206

[RTE00062] Local access to basic software
components

rte sws 2100 rte sws 2051

[RTE00064] AUTOSAR Methodology rte sws 5071 rte sws 5076 rte sws 5077
rte sws 5072

[RTE00065] Deterministic generation rte sws 2514 rte sws 5071 rte sws 5076
rte sws 5077 rte sws 5072

[RTE00068] Signal initial values rte sws 2517 rte sws 5078
[RTE00069] Communication timeouts rte sws 6002 rte sws 6013 rte sws 3754

rte sws 3758 rte sws 3759 rte sws 3763
rte sws 3770 rte sws 3773 rte sws 3771
rte sws 3772 rte sws 3767 rte sws 3768
rte sws 1064 rte sws 1095 rte sws 1107
rte sws 1114

[RTE00070] Invocation order of runnables rte sws 2207
[RTE00072] Activation of runnable entities rte sws 3526 rte sws 3527 rte sws 3530

rte sws 3531 rte sws 3532 rte sws 2697
rte sws 3523 rte sws 3520 rte sws 3524
rte sws 2203 rte sws 1131 rte sws 2512
rte sws 1133 rte sws 1359 rte sws 1166
rte sws 1135 rte sws 1137

[RTE00073] Data items are atomic rte sws 4527
[RTE00075] API for accessing static memory
sections

rte sws 1118 rte sws 1119

[RTE00077] Instantiation of static memory sec-
tions

rte sws 3790 rte sws 2303 rte sws 2304
rte sws 3789 rte sws 3782 rte sws 2305
rte sws 5062

22 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[RTE00078] Support for INVALIDATE attribute rte sws 5024 rte sws 2594 rte sws 2702
rte sws 1206 rte sws 1282 rte sws 1231
rte sws 5063 rte sws 2626 rte sws 3800
rte sws 3801 rte sws 3802 rte sws 5064
rte sws 3778 rte sws 2599 rte sws 2600
rte sws 2603 rte sws 2629 rte sws 2607
rte sws 2666 rte sws 2589 rte sws 2590
rte sws 2609

[RTE00079] Single asynchronous client-server
interaction

rte sws 3765 rte sws 3766 rte sws 3771
rte sws 3772 rte sws 2658 rte sws 1105
rte sws 1109 rte sws 1133 rte sws 1359
rte sws 1166

[RTE00080] Multiple requests of servers rte sws 4516 rte sws 4520
[RTE00082] Standardized communication pro-
tocol

rte sws 2649 rte sws 2651 rte sws 2652
rte sws 2653 rte sws 2579 rte sws 5066
rte sws 2654 rte sws 2655 rte sws 2656
rte sws 2657 rte sws 5067 rte sws 5054
rte sws 5055 rte sws 6028 rte sws 5056
rte sws 5057 rte sws 5058 rte sws 5059

[RTE00083] Optimization for source-code
components

rte sws 1274 rte sws 1152

[RTE00084] Support infrastructural errors rte sws 2593 rte sws 1318
[RTE00087] Application Header File rte sws 1000 rte sws 3786 rte sws 1004

rte sws 1006 rte sws 1263 rte sws 5078
rte sws 1009 rte sws 1132

[RTE00089] Independent access to interface
elements

rte sws 6008

[RTE00091] Inter-ECU Marshalling rte sws 4505 rte sws 4506 rte sws 4507
rte sws 4508 rte sws 2557 rte sws 5081
rte sws 4527

[RTE00092] Implementation of VFB model
waitpoints

rte sws 1358 rte sws 3010 rte sws 7007
rte sws 3018

[RTE00094] Communication and Resource Er-
rors

rte sws 2524 rte sws 2525 rte sws 1318
rte sws 2571 rte sws 1034 rte sws 1073
rte sws 1074 rte sws 2674 rte sws 1207
rte sws 1339 rte sws 1084 rte sws 3774
rte sws 1086 rte sws 1093 rte sws 2598
rte sws 1094 rte sws 1095 rte sws 2572
rte sws 1103 rte sws 1104 rte sws 1105
rte sws 1106 rte sws 1107 rte sws 1112
rte sws 1113 rte sws 1114 rte sws 3606
rte sws 2578 rte sws 3803 rte sws 2602
rte sws 1261 rte sws 1262 rte sws 1259
rte sws 1260

[RTE00098] Explicit Transmission rte sws 6011 rte sws 6016 rte sws 1071
[RTE00099] Decoupling of interrupts rte sws 3600 rte sws 3594 rte sws 3530

rte sws 3531 rte sws 3532

23 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[RTE00100] Compiler independent API rte sws 1314
[RTE00107] Support for INFORMATION TYPE
attribute

rte sws 6010 rte sws 4500 rte sws 2516
rte sws 2518 rte sws 2520 rte sws 2521
rte sws 2522 rte sws 2523 rte sws 2524
rte sws 2525 rte sws 2571 rte sws 2572
rte sws 1135 rte sws 1137

[RTE00108] Support for INIT VALUE attribute rte sws 4525 rte sws 6009 rte sws 4501
rte sws 4502 rte sws 2517 rte sws 1268
rte sws 5078

[RTE00109] Support for RECEIVE MODE at-
tribute

rte sws 3018 rte sws 6002 rte sws 6012
rte sws 2519

[RTE00110] Support for BUFFERING attribute rte sws 2515 rte sws 2522 rte sws 2523
rte sws 2524 rte sws 2525 rte sws 2526
rte sws 2527 rte sws 2529 rte sws 2530
rte sws 7008 rte sws 2571 rte sws 2572

[RTE00111] Support for CLIENT MODE at-
tribute

rte sws 1293 rte sws 1294

[RTE00115] API for data consistency mecha-
nism

rte sws 1120 rte sws 1307 rte sws 1122
rte sws 1308

[RTE00116] RTE Initialization, finalization and
resumption

rte sws 2513 rte sws 2535 rte sws 2536
rte sws 2538 rte sws 2544 rte sws 2569
rte sws 2585 rte sws 2570 rte sws 2584

[RTE00121] Support for FILTER attribute rte sws 5503 rte sws 5500 rte sws 5501
[RTE00122] Support for SUCCESS attribute rte sws 5504 rte sws 3754 rte sws 3756

rte sws 3757 rte sws 3604 rte sws 3758
rte sws 1080 rte sws 2673 rte sws 1083
rte sws 1283 rte sws 2676 rte sws 1284
rte sws 2677 rte sws 1285 rte sws 2678
rte sws 1286 rte sws 2679 rte sws 1287
rte sws 1084 rte sws 1086 rte sws 3002
rte sws 3775 rte sws 2612 rte sws 2610
rte sws 3005 rte sws 3776 rte sws 5065
rte sws 2611 rte sws 1137

[RTE00123] Forwarding of application level er-
rors

rte sws 2593 rte sws 2576 rte sws 1103
rte sws 2577 rte sws 2578

[RTE00124] APIs for application level server
errors

rte sws 2573 rte sws 2575 rte sws 1103
rte sws 1130

[RTE00125] Interaction of 1:n communication
with the SUCCESS attribute

rte sws 5506

[RTE00126] C support rte sws 3724 rte sws 1005 rte sws 3709
rte sws 3710 rte sws 1162 rte sws 1169
rte sws 1167

[RTE00128] Implicit Reception rte sws 3012 rte sws 6000 rte sws 6001
rte sws 6004 rte sws 6011 rte sws 3741
rte sws 1268 rte sws 1005 rte sws 3709
rte sws 3710

24 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[RTE00129] Implicit Transmission rte sws 6011 rte sws 3570 rte sws 3571
rte sws 3572 rte sws 3573 rte sws 3744
rte sws 3746 rte sws 5509

[RTE00130] API to determine executing runn-
able entity

protection is cancelled for release 3.0

[RTE00131] n:1 Sender-receiver communica-
tion

rte sws 2670 rte sws 3760 rte sws 3761
rte sws 3762 rte sws 1071 rte sws 1072
rte sws 1077 rte sws 1081 rte sws 2633
rte sws 2635 rte sws 2631 rte sws 1091
rte sws 1092 rte sws 1135

[RTE00133] No parallel execution of runnable
instance

rte sws 2697 rte sws 2698 rte sws 3523

[RTE00134] Runnable entity categories sup-
ported by the RTE

rte sws 3016 rte sws 6003 rte sws 6007
rte sws 3574 rte sws 3954 rte sws 3598
rte sws 3955 rte sws 3599 rte sws 3953
rte sws 3956 rte sws 3957

[RTE00137] API for mismatched ports rte sws 1368 rte sws 1369
[RTE00138] C++ support rte sws 1370 rte sws 3724 rte sws 1162

rte sws 1169 rte sws 1011
[RTE00139] API for unconnected ports rte sws 3019 rte sws 2750 rte sws 3978

rte sws 5101 rte sws 3980 rte sws 5102
rte sws 1329 rte sws 5100 rte sws 1330
rte sws 1331 rte sws 1336 rte sws 1344
rte sws 1345 rte sws 1332 rte sws 3783
rte sws 1346 rte sws 1347 rte sws 3784
rte sws 3785 rte sws 2638 rte sws 2639
rte sws 2640 rte sws 2641 rte sws 2642
rte sws 1333 rte sws 1337 rte sws 1334
rte sws 5099

[RTE00140] Binary-code AUTOSAR software
components

rte sws 1315 rte sws 1000 rte sws 1195

[RTE00141] Explicit Reception rte sws 6011 rte sws 1072 rte sws 1091
rte sws 1092

[RTE00142] InterRunnableVariables rte sws 3518 rte sws 3588 rte sws 3591
rte sws 3589 rte sws 3516 rte sws 3517
rte sws 3582 rte sws 3583 rte sws 3584
rte sws 3519 rte sws 3580 rte sws 3550
rte sws 1303 rte sws 3581 rte sws 3552
rte sws 3556 rte sws 3558 rte sws 3553
rte sws 1304 rte sws 3557 rte sws 3559
rte sws 3555 rte sws 3560 rte sws 1305
rte sws 3562 rte sws 3563 rte sws 3564
rte sws 3565 rte sws 1306 rte sws 3567
rte sws 3568 rte sws 3569 rte sws 2636
rte sws 1350 rte sws 1351

25 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[RTE00143] Mode switches rte sws 2706 rte sws 2500 rte sws 2662
rte sws 2663 rte sws 2664 rte sws 2503
rte sws 2504 rte sws 2667 rte sws 2661
rte sws 2562 rte sws 2564 rte sws 2563
rte sws 2587 rte sws 2665 rte sws 2668
rte sws 2544 rte sws 2630 rte sws 2669
rte sws 2546 rte sws 2634 rte sws 2631
rte sws 2675 rte sws 2512

[RTE00144] Mode switch notification via AU-
TOSAR interfaces

rte sws 2544 rte sws 2549 rte sws 2586
rte sws 2508 rte sws 2566 rte sws 2624
rte sws 2567 rte sws 2546 rte sws 2627
rte sws 2659 rte sws 2568 rte sws 2628
rte sws 2660

[RTE00145] Compatibility mode rte sws 1257 rte sws 3794 rte sws 1279
rte sws 1326 rte sws 1277 rte sws 1151
rte sws 1216 rte sws 1234

[RTE00146] Vendor mode rte sws 1234
[RTE00147] Support for communication infras-
tructure time-out notification

rte sws 5020 rte sws 5021 rte sws 3759
rte sws 5022 rte sws 2703 rte sws 2599
rte sws 2600 rte sws 2604 rte sws 2629
rte sws 2607 rte sws 2666 rte sws 2589
rte sws 2590 rte sws 2609

[RTE00148] Support ’Specification of Memory
Mapping’

rte sws 3788

[RTE00149] Support ’Specification of Compiler
Abstraction’

rte sws 3787 rte sws 1164

[RTE00150] Support ’Specification of Platform
Types’

rte sws 1164

[RTE00151] Support RTE relevant require-
ments of the ’General Requirements on Basic
Software Modules’

see [BSW...] entries in this table

[RTE00152] Support for port-defined argument
values

rte sws 1360

[RTE00153] Support of Measurement rte sws 3951 rte sws 3900 rte sws 3972
rte sws 3973 rte sws 3974 rte sws 3901
rte sws 3975 rte sws 3976 rte sws 3977
rte sws 3902 rte sws 3978 rte sws 5101
rte sws 3980 rte sws 5102 rte sws 3979
rte sws 3903 rte sws 3904 rte sws 3950
rte sws 3981 rte sws 3982

26 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[RTE00154] Support of Calibration rte sws 3970 rte sws 3958 rte sws 7186
rte sws 3959 rte sws 7185 rte sws 3905
rte sws 3906 rte sws 3907 rte sws 3971
rte sws 3909 rte sws 3942 rte sws 3910
rte sws 3943 rte sws 3911 rte sws 3912
rte sws 3968 rte sws 3913 rte sws 3947
rte sws 3936 rte sws 3914 rte sws 3948
rte sws 3915 rte sws 3935 rte sws 3916
rte sws 3917 rte sws 3918 rte sws 3969
rte sws 3908 rte sws 3920 rte sws 3940
rte sws 3921 rte sws 3922 rte sws 3960
rte sws 3932 rte sws 3933 rte sws 3934
rte sws 3961 rte sws 3962 rte sws 3963
rte sws 3964 rte sws 3965 rte sws 3966
rte sws 3967 rte sws 3937 rte sws 3938
rte sws 6029 rte sws 3949

[RTE00155] API to access calibration parame-
ters

rte sws 1252 rte sws 1300 rte sws 1254
rte sws 3927 rte sws 3952 rte sws 3928
rte sws 3929 rte sws 3930 rte sws 6029
rte sws 3949

[RTE00156] Support different calibration data
emulation methods

rte sws 3970 rte sws 3905 rte sws 3906
rte sws 3971 rte sws 3909 rte sws 3942
rte sws 3910 rte sws 3943 rte sws 3911
rte sws 3968 rte sws 3913 rte sws 3947
rte sws 3936 rte sws 3914 rte sws 3948
rte sws 3915 rte sws 3935 rte sws 3916
rte sws 3917 rte sws 3918 rte sws 3969
rte sws 3908 rte sws 3920 rte sws 3940
rte sws 3922 rte sws 3960 rte sws 3932
rte sws 3933 rte sws 3934 rte sws 3961
rte sws 3962 rte sws 3963 rte sws 3964
rte sws 3965 rte sws 3966 rte sws 3967

[RTE00157] Support calibration parameters in
NVRAM

rte sws 3936 rte sws 3937 rte sws 3938

[RTE00158] Support separation of calibration
parameters

rte sws 3907 rte sws 3911 rte sws 3912
rte sws 3908

[RTE00159] Sharing of calibration parameters rte sws 2750 rte sws 3958 rte sws 7186
rte sws 7185

[RTE00160] Debounced start of runnable enti-
ties

rte sws 2697

[RTE00161] Activation Offset of runnable enti-
ties

rte sws 7000

27 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

2 RTE Overview

2.1 The RTE in the Context of AUTOSAR

The Run-Time Environment (RTE) is at the heart of the AUTOSAR ECU architecture.
The RTE is the realization (for a particular ECU) of the interfaces of the AUTOSAR
Virtual Function Bus (VFB). The RTE provides the infrastructure services that enable
communication to occur between AUTOSAR software-components as well as acting as
the means by which AUTOSAR software-components access basic software modules
including the OS and communication service.

The RTE encompasses both the variable elements of the system infrastructure that
arise from the different mappings of components to ECUs as well as standardized RTE
services.

The RTE is generated1 for each ECU to ensure that the RTE is optimal for the ECU
[RTE00023].

2.2 AUTOSAR Concepts

This section introduces fundamental AUTOSAR concepts and how they are understood
within the context of the RTE.

2.2.1 AUTOSAR Software-components

In AUTOSAR, “application” software is conceptually located above the AUTOSAR RTE
and consists of “AUTOSAR application software-components” that are ECU and loca-
tion independent and “AUTOSAR sensor-actuator components” that are dependent on
ECU hardware and thus not readily relocatable for reasons of performance/efficiency.
This means that, subject to constraints imposed by the system designer, an AUTOSAR
software-component can be deployed to any available ECU during system configura-
tion. The RTE is then responsible for ensuring that components can communicate
and that the system continues to function as expected wherever the components are
deployed. Considering sensor/actuator software components, they may only directly
address the local ECU abstraction. Therefore, access to remote ECU abstraction shall
be done through an intermediate sensor/actuator software component which broad-
casts the information on the remote ECU. Hence, moving the sensor/actuator software
components on different ECUs, may then imply to also move connected devices (sen-
sor/actuator) to the same ECU (provided that efficient access is needed).

1An implementation is free to configure rather than generate the RTE. The remainder of this specifi-
cation refers to generation for reasons of simplicity only and these references should not be interpreted
as ruling out either a wholly configured, or partially generated and partially configured, RTE implemen-
tation.

28 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

An AUTOSAR software-component is defined by a type definition that defines the com-
ponent’s interfaces. A component type is instantiated when the component is deployed
to an ECU. A component type can be instantiated more than once on the same ECU in
which case the component type is said to be “multiply instantiated”. The RTE supports
per-instance memory sections that enable each component instance to have private
states.

The RTE supports both AUTOSAR software-components where the source is avail-
able (“source-code software-components”) [RTE00024] and AUTOSAR software-
components where only the object code (“object-code software components”) is avail-
able [RTE00140].

Details of AUTOSAR software-components in relation to the RTE are presented in
Section 4.1.2.

2.2.2 Basic Software Modules

As well as “AUTOSAR software-components” an AUTOSAR ECU includes basic soft-
ware modules. Basic software modules can access the ECU abstraction layer as well
as other basic software modules directly and are thus neither ECU nor location inde-
pendent.

An “AUTOSAR software-component” cannot directly access basic software modules –
all communication is via AUTOSAR interfaces and therefore under the control of the
RTE. The requirement to not have direct access applies to all basic software modules
including the operating system [RTE00020] and the communication service.

2.2.3 Communication

The communication interface of an AUTOSAR software-component consists of several
ports (which are characterized by port-interfaces). An AUTOSAR software-component
can communicate through its interfaces with other AUTOSAR software-components
(whether that component is located on the same ECU or on a different ECU) or with
basic software modules that have a port and are located on the same ECU. This com-
munication can only occur via the component’s ports. A port can be categorized by
either a sender-receiver or client-server port-interface. A sender-receiver interface pro-
vides a message passing facility whereas a client-server interface provides function
invocation.

2.2.3.1 Communication Models

The AUTOSAR VFB Specification [13] defines two communication models within the
RTE core services; sender-receiver (signal passing) and client-server (function in-
vocation). Each communication model can be applied to either intra-ECU software-

29 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

component distribution (which includes both intra-task and inter-task distribution) and
inter-ECU software-component distribution. Intra-task communication occurs between
runnable entities that are mapped to the same OS task whereas inter-task communi-
cation occurs between runnable entities mapped to different tasks and can therefore
involve a context switch and possibly cross memory protection boundaries. In contrast,
inter-ECU communication occurs between runnable entities in components that have
been mapped to different ECUs and so is inherently concurrent and involves potentially
unreliable communication.

Details of the communication models that are supported by the RTE are contained in
Section 4.3.

2.2.3.2 Communication Modes

The RTE supports two modes for sender-receiver communication:

• Explicit — A component uses explicit RTE API calls to send and receive data
elements [RTE00098].

• Implicit — The RTE automatically reads a specified set of data elements before
a runnable is invoked and automatically writes (a different) set of data elements
after the runnable entity has terminated [RTE00128] [RTE00129]. The term “im-
plicit” is used here since the runnable does not actively initiate the reception or
transmission of data.

Implicit and explicit communication is considered in greater detail in Section 4.3.1.5.

2.2.3.3 Static Communication

[rte sws 6026] The RTE shall support static communication only.

Static communication includes only those communication connections where the
source(s) and destination(s) of all communication is known at the point the RTE is
generated. [RTE00025]. Dynamic reconfiguration of communication is not supported
due to the run-time and code overhead which would therefore limit the range of devices
for which the RTE is suitable.

2.2.3.4 Multiplicity

As well as point to point communication (i.e. “1:1”) the RTE supports communication
connections with multiple providers or requirers:

• When using sender-receiver communication, the RTE supports both “1:n” (sin-
gle sender with multiple receivers) [RTE00028] and “n:1” (multiple senders and
a single receiver) [RTE00131] communication with the restriction that multiple

30 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

senders are not allowed for mode switch notifications, see metamodel
restrictions rte sws 2670.

The execution of the multiple senders or receivers is not coordinated by the RTE.
This means that the actions of different software-components are independent –
the RTE does not ensure that different senders transmit data simultaneously and
does not ensure that all receivers read data or receive events simultaneously.

• When using client-server communication, the RTE supports “n:1” (multiple clients
and a single server) [RTE00029] communication. The RTE does not support “1:n”
(single client with multiple servers) client-server communication.

Irrespective of whether “1:1”, “n:1” or “1:n” communication is used, the RTE is respon-
sible for implementing the communication connections and therefore the AUTOSAR
software-component is unaware of the configuration. This permits an AUTOSAR
software-component to be redeployed in a different configuration without modification.

2.2.4 Concurrency

AUTOSAR software-components have no direct access to the OS and hence there are
no “tasks” in an AUTOSAR application. Instead, concurrent activity within AUTOSAR
is based around runnable entities within components that are invoked by the RTE.

The AUTOSAR VFB specification [13] defines a runnable entity as a “sequence of
instructions that can be started by the Run-Time Environment”. A component provides
one2 or more runnable entities [RTE00031] and each runnable entity has exactly one
entry point. An entry point defines the symbol within the software-component’s code
that provides the implementation of a runnable entity.

The RTE is responsible for invoking runnable entities – AUTOSAR software-
components are not able to (dynamically) create private threads of control. Hence,
all activity within an AUTOSAR application is initiated by the triggering of runnable en-
tities by the RTE as a result of RTEEvents.

An RTEEvent encompasses all possible situations that can trigger execution of a runn-
able entity by the RTE. The different classes of RTEEvent are defined in Section 5.7.5.

The RTE supports runnable entities in any component that has an AUTOSAR interface
- this includes AUTOSAR software-components and basic software modules.3

Runnable entities are divided into multiple categories with each catgory supporting dif-
ferent facilities. The categories supported by the RTE are described in Section 4.2.2.2.

2The VFB specification does not permit zero runnable entities.
3The OS and COM are basic software modules but present a standardized interface to the RTE and

have no AUTOSAR interface. The OS and COM therefore do not have runnable entities.

31 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

2.3 The RTE Generator

The RTE generator is one of a set of tools4 that create the realization of the AUTOSAR
virtual function bus for an ECU based on information in the ECU Configuration De-
scription. The RTE Generator is responsible for creating the AUTOSAR software-
component API functions that link AUTOSAR software-components to the OS and
manage communication between AUTOSAR software-components and between AU-
TOSAR software-components and basic software modules.

The RTE generation process consists of two distinct phases:

• RTE Contract phase – a limited set of information about a component, principally
the AUTOSAR interface definitions, is used to create an application header file
for a component type. The application header file defines the “contract” between
component and RTE.

• RTE Generation phase - all relevant information about components, their de-
ployment to ECUs and communication connections is used to generate the RTE.
One RTE is generated for each ECU in the system.

The two-phase development model ensures that the RTE generated application header
files are available for use for source-code AUTOSAR software-components as well
as object-code AUTOSAR software-components with both types of component having
access to all definitions created as part of the RTE generation process.

The RTE generation process, and the necessary inputs in each phase, are considered
in more detail in Section 3.

2.4 Design Decisions

This section details decisions that affect both the general direction that has been taken
as well as the actual content of this document.

1. The role of this document is to specify RTE behavior, not RTE implementation.
Implementation details should not be considered to be part of the RTE software
specification unless they are explicitly marked as RTE requirements.

2. An AUTOSAR system consists of multiple ECUs each of which contains an RTE
that may have been generated by different RTE generators. Consequently, the
specification of how RTEs from multiple vendors interoperate is considered to be
within the scope of this document.

3. The RTE does not have sufficient information to be able to derive a mapping from
runnable entity to OS task. The decision was therefore taken to require that the
mapping be specified as part of the RTE input.

4The RTE generator works in conjuction with other tools, for example, the OS and COM generators,
to fully realize the AUTOSAR VFB.

32 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4. Support for C++ is provided by making the C RTE API available for C++ com-
ponents rather than specifying a completely separate object-oriented API. This
decision was taken for two reasons; firstly the same interface for the C and C++

simplifies the learning curve and secondly a single interface greatly simplifies
both the specification and any subsequent implementations.

5. There is no support within the specification for Java.

6. The support for AUTOSAR OS protection mechanisms has been deferred until a
later release of the RTE software specification.

7. The AUTOSAR meta-model is a highly expressive language for defining sys-
tems however for reasons of practicality certain restrictions and constraints have
been placed on the use of the meta-model. The restrictions are described in
Appendix A.

33 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

3 RTE Generation Process

This chapter describes the methodology of the RTE generation. For a detailed descrip-
tion of the overall AUTOSAR methodology refer to methodology document [2].

[rte sws 2514] The RTE generator shall produce the same RTE API and RTE code
when the input information is the same.

The RTE-Generator gets involved in the AUTOSAR Methodology twice. In the following
section the two applications of the RTE-Generator are described.

In Figure 3.1 the overall AUTOSAR Methodology is outlined with respect to the RTE.

RTE Generation Phase

RTE Contract Phase

.h.h

Component
API

Generate
Component API

.XML.XML

Component
Internal

Behav ior
Description

[API
Generation]

:
InternalBehav ior

.XML.XML

Component
Type

Description
:

AtomicSoftwareComponentType

Configure
System

.XML.XML

Collection
of

Av ailable
SWC

Implementations

.XML.XML

System
Configuration
Description

:System

Extract ECU-
Specific

Information

Configure
ECU

.XML.XML

ECU
Extract of
System

Configuration
:System

.XML.XML

ECU
Configuration

Description

.c.c

RTE
Code

.h.h

RTE
Header

Generate
RTE

AUTOSAR
RTE

Generator

AUTOSAR
Component

API
Generator

AUTOSAR
System

Configuration
Generator

Edit ECU
Configuration

AUTOSAR
ECU

Configuration
Editors

Figure 3.1: System Build Methodology

For the development of AUTOSAR Software Components it is essential that the ’Com-
ponent API Generator Tool’ 1 produces the ’Component API’ file in the so called ’RTE
Contract Phase’ (see section 3.1).

The whole vehicle functionality is described with means of Composite SW-Components
and Atomic SW-Components. In the Composite SW-Component descriptions the con-
nections between the SW-Component’s ports are also defined. Such a collection of
SW-Components connected to each other, without the mapping on actual ECUs, is
called the VFB view.

1The ’Component API Generator Tool’ might be a separate tool or the RTE-Generator might be
operated in a special mode to achieve the same functionality. This specification does not require how
the tool is implemented.

34 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

During the ’Configure System’ step the ’System Configuration Generator’ gets the in-
formation about the needed SW-Components, the available ECUs and the System
Constraints. Now the Atomic SW-Components are mapped on the available ECUs.

Since in the VFB view the communication relationships between the Atomic SW-Com-
ponents have been described and the mapping of each Atomic SW-Component to a
specific ECU has been fixed, the communication matrix can be generated. In the SW-
Component descriptions the signals that are exchanged through ports are defined in
an abstract way. Now the ’System Configuration Generator’ needs to define system
signals (including the actual signal length and the frames in which they will be transmit-
ted) to be able to transmit the application signals over some network. COM signals that
correspond to the system signals will be later used by the ’RTE Generator’ to actually
transmit the application signals.

In the next step the ’System Configuration Description’ is split into descriptions for each
individual ECU. The extract only contains information necessary to configure each ECU
individually and it is fed into the ECU Configuration for each ECU.

[rte sws 5000] The RTE is configured and generated for each ECU instance individu-
ally.

The ’ECU Configuration Editors’ (see also Section 3.2) are working iteratively on the
’ECU Configuration Description’ until all configuration issues are resolved. There will
be the need for several configuration editors, each specialized on a specific part of
ECU Configuration. So one editor might be configuring the COM stack (not the com-
munication matrix but the interaction of the individual modules) while another editor is
used to configure the RTE.

Since the configuration of a specific Basic-SW module is not entirely independent from
other modules there is the need to apply the editors several times to the ’ECU Config-
uration Description’ to ensure all configuration parameters are consistent.

Only when the configuration issues are resolved the ’RTE Generator’ will be used to
generate the actual RTE code (see also Section 3.3) which will then be compiled and
linked together with the other Basic-SW modules and the SW-Components code.

The ’RTE Generator’ needs to cope with many sources of information since the nec-
essary information for the RTE Generator is based on the ’ECU Configuration Descrip-
tion’ which might be distributed over several files and itself references to multiple other
AUTOSAR descriptions.

[rte sws 5001] The RTE Generation tools needs to support input according to the
Interoperability of AUTOSAR Authoring Tools document [9].

This is just a rough sketch of the main steps necessary to build an ECU with AUTOSAR
and how the RTE is involved in this methodology. For a more detailed description of
the AUTOSAR Methodology please refer to the methodology document [2]. In the next
sections the steps with RTE interaction are explained in more detail.

35 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

3.1 RTE Contract Phase

To be able to support the SW-Component development with RTE-specific APIs the
’Component API’ (application header file) is generated from the ’SW-Component Inter-
nal Behavior Description’ (see Figure 3.1) by the RTE-Generator in the so called ’RTE
Contract Phase’ (see Figure 3.2).

In the SW-Component Interface description – which is using the AUTOSAR Soft-
ware Component Template – at least the AUTOSAR interfaces of the particular SW-
Component have to be described. This means the SW-Component Types with Ports
and their Interfaces. In the SW-Component Internal Behavior description additionally
the Runnable Entities and the RTE Events are defined. From this information the RTE-
Generator can generate specific APIs to access the Ports and send and receive data.

.h.h

Component
API

Generate
Component

API

.XML.XML

Component
Internal

Behav ior
Description

[API
Generation]

:
InternalBehav ior

.XML.XML

Component
Type

Description
:

AtomicSoftwareComponentType

Implement
Component

.c.c

Component
Implementation

Compile
Component

.obj.obj

Compiled
Component

Measure
Resources

.XML.XML

Component
Implementation

Description
[resource
needs] :

Implementation

.XML.XML

Component
Implementation

Description
[for Object-

Code] :
Implementation

AUTOSAR
Component

API
Generator

Figure 3.2: RTE Contract Phase

With the generated ’Component API’ (application header file) the Software Compo-
nent developer can provide the Software Component’s source code without being con-
cerned as to whether the communication will later be local or using some network(s).

It has to be considered that the SW-Component development process is iterative and
that the SW-Component description might be changed during the development of the
SW-Component. This requires the application header file to be regenerated to reflect
the changes done in the SW-Component description.

When the SW-Component has been compiled successfully the ’Component Implemen-
tation Description Generation’ tool will analyze the resulting object files and enhance
the SW-Component description with the information from the specific implementation.
This includes information about the actual memory needs for ROM as well as for

36 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

RAM and goes into the ’Component Implementation Description’ section of the SW-
Component Description template.

So when a SW-Component is delivered it will consist of the following parts:

• Component Type Description

• Component Internal Behavior Description

• The actual source and/or object code

• Component Implementation Description

The afore listed information will be needed to provide enough information for the Sys-
tem Generation steps when the whole system is assembled.

3.2 RTE Configuration Editing

During the configuration of an ECU the RTE also needs to be configured. This is
mainly divided into two sections: The configuration of the RTE and the request for
configuration of other modules.

So first the ’RTE Configuration Editor’ needs to collect all the information needed to es-
tablish an operational RTE. This gathering includes information on the SW-Component
instances and their communication relationships, the Runnable Entities and the in-
volved RTE-Events and so on. The main source for all this information is the ’ECU
Configuration Description’, which might provide references to further descriptions like
the SW-Component description or the System Configuration description.

One extremely important point is the mapping of application signals from SW-Compo-
nent’s ports to COM signals. A mapping of the application signals to system signals
has already been defined by the ’System Configuration Generator’ (see Figure 3.1).
The ’RTE Configuration Editor’ now has to substantiate this system-level mapping by
mapping the application signals to COM signals for the ECU. This application signal to
COM signal mapping has to respect the mapping from application signals to system
signals done at system generation time.

Additional requirements on the interaction between RTE and OS are specified in sec-
tion 3.4.

The usage of ’ECU Configuration Editors’ covering different parts of the ’ECU Config-
uration Description’ will – if there are no cyclic dependencies which do not converge
– converges to a stable configuration and then the ECU Configuration process is fin-
ished. A detailed description of the ECU Configuration can be found in [7]. The next
phase is the generation of the actual RTE.

37 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

3.3 RTE Generation Phase

After the ECU has been entirely configured the generation of the actual RTE can be
performed. Since all the relationships to and from the other Basic-SW modules have
been already resolved during the ECU Configuration phase, the generation can be
performed in parallel for all modules (see Figure 3.3).

.obj.obj

Compiled
RTE

.c.c

RTE
Code

Compile
RTE

.h.h

RTE
Header

AUTOSAR
RTE

Generator

Generate
RTE

.XML.XML

ECU
Configuration

Description

Figure 3.3: RTE Generation Phase

The actual SW-Component and Basic-SW modules code will be linked together with
the RTE code to build the entire ECU software.

3.4 RTE Configuration and OS Interaction

The generated RTE interacts with AUTOSAR COM and OS. For the latter, the RTE
both uses OS objects already in existance (e.g. tasks for which the RTE generator
builds bodies) as well as requires new objects (e.g. a schedule table or periodic alarms
for periodic runnable entities). The coordination of configuration information between
the OS and RTE is therefore key since both the RTE and OS have to agree upon the
set of OS objects.

The AUTOSAR OS is configured in the ECU Configuration Description2 [7]. The RTE
configurator/generator needs to communicate its needs to the OS and therefore it
seems sensible to use the same format order to allow the communication of the set
of OS object required by the generated RTE.

The specification of the OS objects used by the generated RTE, henceforth termed
OsNeeds, can be done either at configuration time only or at a mixture of configuration
and generation time, depending on which approach is supported by the configuration
and generation tools of RTE and OS. Thus according to figure 3.4 the output informa-
tion OsNeeds can be alternatively provided by the RTE Configuration Editor or the RTE
Generator.

[rte sws 5071] If the RTE Generator (in the generation phase) does not export
OsNeeds information then the RTE Configuration editor shall export the OsNeeds in-
formation.

2This is the same format which is also used to store the configuration values for the RTE and the OS.

38 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

.obj.obj

Compiled
RTE

.c.c

RTE
Code

Compile
RTE

.h.h

RTE
Header

AUTOSAR
RTE

Generator

Generate
RTE

.XML.XML

ECU
Configuration

Description

Edit ECU
Configuration

AUTOSAR
ECU

Configuration
Editors

.XML.XML

OsNeeds Configure OS

«alternative» «alternative»

Figure 3.4: RTE Editing Phase and OS interaction

[rte sws 5076] When provided with OsNeeds information, the RTE Generator (in the
generation phase) shall utilize only the OS objects defined in the container.

Requirement 5076 indicates that it is not possible to use/introduce new OS objects
which are not part of the OsNeeds definition when such objects are provided.

[rte sws 5077] The RTE shall access OsNeeds information from the module configu-
ration container Rte_OsNeeds.

Requirement 5077 names the container that holds the OsNeeds information; and
hence the container that the RTE generator should read and write. This container is
separate from the OS information that is purely read by the RTE configurator/generator
(e.g. tasks) and the two containers will require merging within the OS generation pro-
cess.

If the RTE Configuration editor provides a list of the OS Objects to be used the RTE
Generator then that information does not need to be recreated by the RTE generator
during generation phase and hence the generation phase should respect the objects
provided by the OsNeeds information.

[rte sws 5072] If no Rte_OsNeeds container is provided, the RTE Generator (in the
generation phase) shall assume the existence of required OS objects ex nihilo and
export OsNeeds information containing all required OS objects.

If RTE Configuration editor is not able to provide the OsNeeds information (for example,
because a Generic ECU Configuration Editor is used that does not know the details of
a particular RTE implementation) the RTE Generator in the generation phase shall
provide this information.

[rte sws 5073] The exported OsNeeds shall be described using the OS Configuration
format defined in the OS SWS [11] and formalized according to the ECU Configuration
Specification [7].

39 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

The exported OsNeeds information is, by definition, the sole mechanism for the RTE to
impose existence requirements on the OS configuration process. The exported infor-
mation should contain all information necessary for the OS configuration to proceed.

Since the OS Configuration format is used to describe the OsNeeds this information
can be directly used within the OS Configuration process to enhance the information.

Caution has to be taken in order not to break the references between the RTE Config-
uration and the OsNeeds . If changes on the OsNeeds are performed, for example a
task priority changed, and this requires changes on the RTE configuration/generation
this has to be synchronized.

[rte sws 5074] The exported OsNeeds shall only utilize the standardized configuration
parameters from the OS SWS [11] in an ICC3 delivery.

Because only the standardized configuration parameters are used the RTE and OS
are independent and can be provided by different vendors. If both RTE and OS are
provided by the same vendor and they are delivered in an ISS2 cluster (bundle) re-
quirement rte sws 5074 is not valid.

40 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4 RTE Functional Specification

4.1 Architectural concepts

4.1.1 Scope

In this section the concept of an AUTOSAR software-component and its usage within
the RTE is introduced.

The Software-Component Template [17] defines the kinds of SW-Components within
the AUTOSAR context. These are shown in Figure 4.1. The abstract ComponentType
can not be instantiated, so there can only be either a CompositionType or
a specialized class ApplicationSoftwareComponentType, SensorActuator
SoftwareComponentType, ServiceComponentType, ComplexDeviceDriver
ComponentType or EcuAbstractionComponentType of the abstract class
AtomicSoftwareComponentType.

In the following document the term AtomicSoftwareComponentType is used as
collective term for all the mentioned non-abstract derived meta-classes.

The ComponentType is defining the type of a SW-Component which is independent
of any usage and can be potentially re-used several times in different scenarios. In
a composition the types are occurring in specific roles which are called Component
Prototypes. The prototype is the utilization of a type within a certain scenario. In
AUTOSAR any ComponentType can be used as a type for a prototype.

The SW-Components shown in Figure 4.1 are located above the RTE in the architec-
tural Figure 4.2.

Below the RTE there are also software entities that have an AUTOSAR Interface.
These are the AUTOSAR services, the ECU Abstraction and the Complex Device
Drivers. For these software not only the AUTOSAR Interface will be described but
also information about their internal structure will be available in the Basic Software
Module Description.

In the next sections the different SW-Components kinds will be described in detail with
respect to their influence on the RTE.

4.1.2 RTE and AUTOSAR Software-Components

The description of a SW-Component is divided into the sections

• hierarchical structure

• ports and interfaces

• internal behavior

• implementation

41 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

cd Components

ARElement

«atpType»
ComponentType

AtomicSoftwareComponentType «atpType»
CompositionType

Identifiable

«atpPrototype»
ComponentPrototype

SensorActuatorSoftwareComponentType

«atpType»
CalprmComponentType

Serv iceComponentTypeApplicationSoftwareComponentType

EcuAbstractionComponentType

ComplexDev iceDriverComponentType

+component 1..*

*«isOfType»

+type

1

Figure 4.1: AUTOSAR SW-Component classification

which will be addressed separately in the following sections.

4.1.2.1 Structure of SW-Components

In AUTOSAR the structure of an E/E-system is described using the AUTOSAR SW-
Component Template and especially the mechanism of compositions. Such a Top
Level Composition assembles subsystems and connects their ports.

Of course such a composition utilizes a lot of hierarchical levels where compositions
instantiate other composition types and so on. But at some low hierarchical level each
composition only consists of AtomicSoftwareComponentType instances. And those
instances of AtomicSoftwareComponentTypes are what the RTE is going to be working
with.

4.1.2.2 Ports, Interfaces and Connections

Each SW-Component is providing and/or requiring ports to communicate with other
SW-Components. This is shown in Figure 4.3. The Interface determines if the port is a
sender/receiver or a client/server port.

When compositions are built of instances the ports can be connected either within the
composition or made accessible to the outside of the composition. For the connections

42 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Figure 4.2: AUTOSAR ECU architecture diagram

inside a composition the AssemblyConnector is used, while the DelegationConnector
is used to connect ports from the inside of a composition to the outside. Ports not
connected will be handled according to the requirement [RTE00139].

The next step is to map the SW-C instances on ECUs and to establish the communi-
cation relationships. From this step the actual communication is derived, so it is now
fixed if a connection between two instance’s ports is going to be over a communication
bus or locally within one ECU.

[rte sws 2200] The RTE shall implement the communication paths specified by the
ECU Configuration description (see [RTE00027]).

[rte sws 2201] The RTE shall implement the semantic of the communication attributes
given by the SW-Component description (see [RTE00027]). The semantic of the given
communication mechanism shall not change regardless of whether the communication
partner is located on the same ECU or remote, the communication is done by COM or
the RTE.

43 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Figure 4.3: SW-Components and Ports

E.g., according to rte sws 2200 and rte sws 2201 the RTE is not permitted to change
the semantic of an asynchronous client to synchronous because both client and server
are mapped to the very same ECU.

4.1.2.3 Internal Behavior

Only for AtomicSoftwareComponents the internal structure is exposed in the Internal
Behavior description. Here the definition of the Runnable Entities and used RTEEvents
is done (see Figure 4.4).

Runnable Entities (also abbreviated simply as Runnable) are the smallest code frag-
ments that are provided by AUTOSAR software-components and those basic software
modules that implement AUTOSAR interfaces. They are represented by the meta-class
“RunnableEntity”, see Figure 4.5.

In general, software components are composed of multiple Runnable Entities in order
to accomplish servers, receivers, feedback, etc.

[rte sws 2202] The RTE shall support multiple Runnable Entities in AUTOSAR SW-
Components (see [RTE00031]).

Runnable Entities are executed in the context of an OS task, their execution is triggered
by RTEEvents. Section 4.2.2.2 gives a more detailed description of the concept of
Runnable Entities, Section 4.2.2.4 discusses the problem of mapping Runnable Entities

44 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

cd InternalBehav ior Overv iew

ARElement

InternalBehav ior

ExecutableEntity

RunnableEntity

Identifiable

RTEEvent

Identifiable

ExclusiveArea

ComponentType

AtomicSoftwareComponentType

Identifiable

PerInstanceMemory

DataPrototype

InterRunnableVariable
PortAPIOption

DataPrototype

CalprmElementPrototype

Identifiable

Serv iceNeeds

Implementation

SwcImplementation

+perInstanceCalprm 0..*

+canEnterExclusiveArea

0..*

+runsInsideExclusiveArea

0..*

+runnable 1..*

+behavior

+perInstanceMemory *

+interRunnableVariable 0..*

+event * +serviceNeeds 0..*

+portAPIOption 0..*

+exclusiveArea *

+sharedCalprm 0..*

*

+component 1 *

+behavior 1

Figure 4.4: SW-Component internal behavior

to OS tasks. RTEEvents and the activation of Runnable Entities by RTEEvents is
treated in Section 4.2.2.3.

[rte sws 2203] The RTE shall trigger the execution of Runnable Entities in accordance
with the connected RTEEvent (see [RTE00072]).

[rte sws 2204] The RTE-Generator shall reject configurations where not all RTE
Events which can start a Runnable Entity are mapped to OS tasks (see [RTE00049]
and [RTE00018]). The only exceptions are OperationInvokedEvents in case they are
implemented by a direct function call.

[rte sws 2207] The RTE shall respect the configured execution order of Runnable
Entities within one OS task (see [RTE00070]).

With the information from Internal Behavior a part of the setup of the SW-Component
within the RTE and the OS can already be configured. Furthermore, the information
(description) of the structure (ports, interfaces) and the internal behavior of an AU-
TOSAR software component are sufficient for the RTE Contract Phase.

However, some detailed information is still missing and this is part of the Implementa-
tion description.

45 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

cd RunnableEntity

ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean
+ minimumStartInterval: Float
+ symbol: String

Identifiable

DataReadAccess

Identifiable

DataSendPoint

Identifiable

DataWriteAccess

Identifiable

ServerCallPoint

+ timeout: Float

Identifiable

WaitPoint

+ timeout: Float

DataPrototype

InterRunnableVariable

+ communicationApproach: CommunicationApproachType

ARElement

InternalBehav ior

+ supportsMultipleInstantiation: Boolean

Identifiable

DataReceivePoint

ExecutableEntity

BswModuleEntity

+interRunnableVariable 0..*+runnable 1..*

+behavior

* +writtenVariable *

*

+readVariable

*

+bswEntity

0..1

+dataSendPoint

*

+runnable

+dataWriteAccess

*

+runnable

+dataReadAccess

*

+runnable

+waitPoint

*

+runnable

+dataReceivePoint

*

+runnable

+serverCallPoint

*

+runnable

Figure 4.5: SW-Component runnable entity

4.1.2.4 Implementation

In the Implementation description an actual implementation of a SW-Component is
described including the memory consumption (see Figure 4.6).

Note that the information from the Implementation part are only required for the RTE
Generation Phase, if at all.

46 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

cd ResourceConsumption

ARElement

Implementation

Identifiable

ExecutionTime

Identifiable

ResourceConsumption

Identifiable

StackUsage

Identifiable

HeapUsage

Identifiable

MemorySection

Identifiable

ExecutableEntity

+stackUsage 0..*

+objectFileSection 1..* +heapUsage 0..*

+executionTime 0..*

+resourceConsumption 1

+runnable

0..1

+runnable

0..1

Figure 4.6: SW-Component resource consumption

4.1.3 Instantiation

4.1.3.1 Scope and background

Generally spoken, the term instantiation refers to the process of deriving specific in-
stances from a model or template. But, this process can be accomplished on different
levels of abstraction. Therefore, the instance of the one level can be the model for the
next.

With respect to AUTOSAR four modeling levels are distinguished. They are refered to
as the levels M3 to M0.

The level M3 describes the concepts used to derive an AUTOSAR meta model of level
M2. This meta model at level M2 defines a language in order to be able to describe
specific attributes of a model at level M1, e.g., to be able to describe an specific type
of an AUTOSAR software component. E.g., one part of the AUTOSAR meta model is
called Software Component Template or SW-C-T for short and specified in [17]. It is
discussed more detailed in section 4.1.2.

At level M1 engineers will use the defined language in order to design components or
interfaces or compositions, say to describe an specific type of a LightManager. Hereby,
e.g., the descriptions of the (atomic) software components will also contain an internal
behavior as well as an implementation part as mentioned in section 4.1.2.

Those descriptions are input for the RTE-Generator in the so-called ’Contract Phase’
(see section 3.1). Out of this information specific APIs (in a programming language) to
access ports and interfaces will be generated.

Software components generally consist of a set of Runnable Entities. They can now
specifically be described in a programming language which can be refered to as “imple-
mentation”. As one can seen in section 4.1.2 these “implementation” then correspond

47 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

exactly to one implementation description as well as to one internal behavior descrip-
tion. However, they are still blueprints on M1.

M0 refers to a specific running instance on a specific car.

Objects derived from those specified component types can only be executed in a spe-
cific run time environment (on a specific target). The objects embody the real and
running implementation and shall therefore be referred to as software component in-
stances (on modeling level M0). E.g., there could be two component instances derived
from the same component type LightManager on a specific light controller ECU each
responsible for different lights. Making instances would mean here in first place, that
it should be possible to distinguish them even though the objects are descended from
the same model.

With respect to this more narrative description the RTE as the run time environment
shall enable the process of instantiation. Thereby the term instantiation throughout the
document shall refer to the process of deriving M0 from M1. Therefore, this section will
address the problems which can arise out of the instantiation process and will specify
the needs for AUTOSAR components and the AUTOSAR RTE respectively.

[rte sws 2000] The RTE-Generator shall be able to instantiate AUTOSAR software
components out of an AUTOSAR software component description.

4.1.3.2 Concepts of instantiation

Regardless of the fact that the (aforementioned) instantiation of AUTOSAR software
components can be generally achieved on a per-system basis, the RTE-Generator
restricts its view to a per-ECU customization (see rte sws 5000).

Generally, there are two different kinds of instantiations possible:

• single instantiation – which refers to the case where only one object or AUTOSAR
software component instance will be derived out of the AUTOSAR software com-
ponent description

• multiple instantiation – which refers to the case where multiple objects or AU-
TOSAR software component instances will be derived out of the AUTOSAR soft-
ware component description

[rte sws 2001] The RTE shall be able to instantiate one or more AUTOSAR software
component instances out of a single AUTOSAR software component description.

[rte sws 2008] The RTE-Generator shall evaluate the attribute supportsMultipleIn-
stantiation of the InternalBehavior of an AUTOSAR software component description.

[rte sws 2009] The RTE-Generator shall reject configurations where multiple instan-
tiation is required, but the value of the attribute supportsMultipleInstantiation of the
InternalBehavior of an AUTOSAR software component description is set to FALSE.

48 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.1.3.3 Single instantiation

Single instantiation refers to the easiest case of instantiation.

To be instantiated merely means that the code and the corresponding data of a partic-
ular RunnableEntity are embedded in a runtime context. In general, this is achieved by
the context of an OS task (see example 4.1).

Example 4.1

Runnable entity R1 called out of a task context:

1 TASK(Task1){
2 ...
3 R1();
4 ...
5 }

Since the single instance of the software component is unambigous per se no addi-
tional concepts have to be added.

4.1.3.4 Multiple instantiation

[rte sws 2002] Multiple objects instantiated from a single AUTOSAR software compo-
nent (type) shall be identifiable without ambiguity.

There are two principle ways to achieve this goal –

• by code duplication (of runnable entities)

• by code sharing (of reentrant runnable entities)

For now it was decided to solely concentrate on code sharing and not to support code
duplication.

[rte sws 2017] Multiple instantiation shall be achieved by sharing code.

Multiple instances can share the same code, if the code is reentrant.

4.1.3.4.1 Reentrant code

In general, side effects can appear if the same code entity is invoked by different
threads of execution running, namely tasks. This holds particularly true, if the invoked
code entity inherits a state or memory by the means of static variables which are vis-
ible to all instances. That would mean that all instances are coupled by those static
variables.

Thus, they affect each other. This would lead to data consistency problems on one
hand. On the other – and that is even more important – it would introduce a new

49 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

communication mechanism to AUTOSAR and this is forbidden. AUTOSAR software
components can only communicate via ports.

To be complete, it shall be noted that a calling code entity also inherits the reentrancy
problems of its callee. This holds especially true in case of recursive calls.

4.1.3.4.2 Unambiguous object identification

[rte sws 2015] The instantiated AUTOSAR software component objects shall be un-
ambiguously identifiable by an instance handle, if multiple instantiation by sharing code
is required.

4.1.3.4.3 Multiple instantiation and Per-instance memory

An AUTOSAR SW-C can define internal memory only accessible by a SW-C instance
itself. This concept is called PerInstanceMemory. The memory can only be accessed
by the runnable entities of this particular instance. That means in turn, other instances
don’t have the possibility to access this memory.

PerInstanceMemory API principles are explained in Section 5.2.5.

The API for PerInstanceMemory is specified in Section 5.6.12.

4.1.4 RTE and AUTOSAR Services

According to the AUTOSAR glossary [1] “an AUTOSAR service is a logical entity of the
Basic Software offering general functionality to be used by various AUTOSAR software
components. The functionality is accessed via standardized AUTOSAR interfaces”.

Therefore, AUTOSAR services provide standardized AUTOSAR Interfaces: ports typed
by standardized PortInterfaces.

[rte sws 2100] The RTE shall support the connection of AUTOSAR services only to
AUTOSAR software-components located on the same ECU.

The RTE supports neither connections to AUTOSAR services located on remote ECUs
nor connections between AUTOSAR services rte sws 2100.

When connecting AUTOSAR service ports to ports of AUTOSAR software components
the RTE maps standard RTE API calls to the symbols defined in the RTE input (i.e.
XML) for the AUTOSAR service runnables of the BSW. The key technique to distin-
guish ECU dependent identifiers for the AUTOSAR services is called “port-defined
argument values”, which is described in Section 4.3.2.4. Currently “port-defined argu-
ment values” are only supported for client-server communication. It is not possible to
use a pre-defined symbol for sending or receiving data.

50 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

The RTE does not pass an instance handle to the C-based API of AUTOSAR services
since the latter are single-instantiatable (see rte sws 3806).

4.1.5 RTE and ECU Abstraction

The ECU Abstraction provides an interface to physical values for AUTOSAR software
components. It abstracts the physical origin of signals (their pathes to the ECU hard-
ware ports) and normalizes the signals with respect to their physical appearance (like
specific values of current or voltage).

See the AUTOSAR ECU architecture in figure 4.2. From an architectural point of view
the ECU Abstraction is part of the Basic Software layer and offers AUTOSAR interfaces
to AUTOSAR software components. The ECU Abstraction is classified as firmware and
will mostly interact with sensor and actuator software components.

Seen from the perspective of an RTE, regular AUTOSAR ports are connected. With-
out any restrictions all communication paradigms specified by the AUTOSAR Virtual
Functional Bus (VFB) shall be applicable to the ports, interfaces and connections –
sender-receiver just as well as client-server mechanisms.

However, ports of the ECU Abstraction shall always only be connected to ports of
specific AUTOSAR software components: sensor or actuator software components. In
this sense they are tightly coupled to a particular ECU Abstraction.

Furthermore, it must not be possible (by an RTE) to connect AUTOSAR ports of the
ECU Abstraction to AUTOSAR ports of any AUTOSAR component located on a remote
ECU (see rte sws 2051 and [RTE00136]).

This means, e.g., that sensor-related signals coming from the ECU Abstraction are
always received by an AUTOSAR sensor component located on the same ECU. The
AUTOSAR sensor component will then process the received signal and deploy it to
other AUTOSAR components regardless of whether they are located on the same or
any remote ECU. This applies to actuator-related signals accordingly, however, the
opposite way around.

[rte sws ext 2054] The RTE-Generator expects only one instance of the ECU Ab-
straction.

[rte sws 2050] The RTE-Generator shall generate a communication path between
connected ports of AUTOSAR sensor or actuator software components and the ECU
Abstraction in the exact same manner like for connected ports of AUTOSAR software
components.

[rte sws 2051] The RTE-Generator shall reject configurations which require a com-
munication path from a AUTOSAR software component to an ECU Abstraction located
on a remote ECU.

Further information about the ECU Abstraction can be found in the corresponding spec-
ification document [10].

51 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.1.6 RTE and Complex Device Driver

A Complex Device Driver has an AUTOSAR Interface, therefore the RTE can deal with
the communication on the Complex Device Drivers ports. The Complex Device Driver
is allowed to have code entities that are not under control of the RTE but yet still may
use the RTE API (e.g. ISR2, BSW main functions).

4.2 RTE Implementation Aspects

4.2.1 Scope

This section describes some specific implementation aspects of an AUTOSAR RTE. It
will mainly address

• the mapping of logical concepts (e.g., Runnable Entities) to technical architec-
tures (namely, the AUTOSAR OS)

• the decoupling of pending interrupts (in the Basic Software) and the notification
of AUTOSAR software components

• data consistency problems to be solved by the RTE

Therefore this section will also refer to aspects of the interaction of the AUTOSAR RTE
and the two modules of the AUTOSAR Basic Software with standardized interfaces
(see Figure 4.7):

• the module AUTOSAR Operating System [5, 11]

• the module AUTOSAR COM [3, 6]

Having a standardized interface means first that the modules do not provide or request
services for/of the AUTOSAR software components located above the RTE. They do
not have ports and therefore cannot be connected to the aforementioned AUTOSAR
software components. AUTOSAR OS as well as AUTOSAR COM are simply invisible
for them.

Secondly AUTOSAR OS and AUTOSAR COM are used by the RTE in order to achieve
the functionality requested by the AUTOSAR software components. The AUTOSAR
COM module is used by the RTE to route a signal over ECU boundaries, but this
mechanisms is hidden to the sending as well as to the receiving AUTOSAR software
component. The AUTOSAR OS module is used by the RTE in order to properly sched-
ule the single Runnables in the sense that the RTE-Generator generates Task-bodies
which contain then the calls to appropriate Runnables.

In this sense the RTE shall also use the available means to convert interrupts to notifi-
cations in a task context or to guarantee data consistency.

With respect to this view the RTE is thirdly not the abstraction layer for AUTOSAR OS
and AUTOSAR COM! Only the RTE offers the same interface to the AUTOSAR Soft-

52 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Figure 4.7: Scope of the section on Basic Software modules

ware Components like the VFB. For a specific ECU the RTE implements in conjunction
with the modules of the Basis Software the entire functionality of the VFB (for that
specific ECU). Hence, AUTOSAR OS and AUTOSAR COM are specific modules of a
specific implementation of the VFB for a specific ECU. They shall be able to support
the implementation of the VFB functionality, but the functionality of the modules are
neither known by the AUTOSAR software components nor offered to them per se.

[rte sws 2250] The RTE shall only use the AUTOSAR OS and AUTOSAR COM in
order to provide the RTE functionality to the AUTOSAR components (see [RTE00020]).

[rte sws 2251] The RTE-Generator shall construct task bodies for those tasks which
contain Runnable Entities (see [RTE00049]).

The information for the construction of task bodies has to be given by the ECU Con-
figuration description. The mapping of Runnable Entities to tasks is given as an input
by the ECU Configuration description. The RTE-Generator does not decide on the
mapping of Runnable Entities to tasks.

[rte sws 2254] Missing input information for the RTE-Generator regarding the map-
ping of Runnable Entities to tasks or the construction of tasks bodies shall be taken as
an invalid configuration and shall be rejected (see [RTE00049] and [RTE00018]).

53 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.2.2 OS

This chapter describes the interaction between the RTE and the AUTOSAR OS. The
interaction is realized via the standardized interface of the OS - the AUTOSAR OS API.
See Figure 4.7.

The OS is statically configured by the ECU-Configuration and not by the RTE genera-
tor. The RTE generator is not allowed to create tasks and other OS objects, which are
necessary for the runtime environment. Also the mapping of runnable entities to tasks
is not the job of the RTE generator. This mapping has to be done in a configuration
step before, in the RTE-Configuration phase. The RTE generator is responsible for the
generation of task bodies, which contain the calls for the runnable entities. The runn-
able entities themselves are OS independent and are not allowed to use OS service
calls. The RTE has to encapsulate such calls via the standardized RTE API.

4.2.2.1 OS Objects

Tasks

• The RTE has to create the task bodies, which contain the calls of the runnable
entities. Note that the term task body is used here to describe a piece of code,
while the term task describes a configuration object of the OS.

• The RTE controls the task activation/resumption either directly by calling OS
services like SetEvent() or ActivateTask() or indirectly by initializing OS
alarms or starting Schedule-Tables for time-based activation of runnable enti-
ties. If the task terminates, the generated taskbody also contains the calls of
TerminateTask() or ChainTask().

• The RTE generator does not create tasks. The mapping of runnable entities to
tasks is the input to the RTE generator and is therefore part of the RTE Configu-
ration.

• The RTE configurator has to allocate the necessary tasks in the OS configuration.

OS applications

• The current AUTOSAR RTE SWS specification does not support memory protec-
tion.

Events

• The RTE may use OS Events for the implementation of the abstract RTEEvents.

• The RTE therefore may call the OS service functions SetEvent(),
WaitEvent(), GetEvent() and ClearEvent().

• The used OS Events are part of the input information of the RTE generator.

54 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

• The RTE configurator has to allocate the necessary events in the OS configura-
tion.

Resources

• The RTE may use OS Resources (standard or internal) e.g. to implement data
consistency mechanisms.

• The RTE may call the OS services GetResource() and ReleaseResource().

• The used Resources are part of the input information of the RTE generator.

• The RTE configurator has to allocate the necessary resources (all types of re-
sources) in the OS configuration.

Interrupt Processing

• An alternative mechanism to get consistent data access is disabling/enabling of
interrupts. The AUTOSAR OS provides different service functions to handle in-
terrupt enabling/disabling. The RTE may use these functions and must not use
compiler/processor dependent functions for the same purpose.

Alarms

• The RTE may use Alarms for timeout monitoring of asynchronous client/server
calls. The RTE is responsible for Timeout handling.

• The RTE may setup cyclic alarms for periodic triggering of runnable entities (runn-
able entity activation via RTEEvent TimingEvent)

• The used Alarms are part of the input information of the RTE generator.

• The RTE configurator has to allocate the necessary alarms in the OS configura-
tion.

Schedule Tables

• The RTE may setup schedule tables for cyclic task activation (runnable entity
activation via RTEEvent TimingEvent)

• The used schedule tables are part of the input information of the RTE generator.

• The RTE configurator has to allocate the necessary schedule tables in the OS
configuration.

Memory Protection (SCC3/SCC4)

The current AutoSAR RTE specification does not support features of the AUTOSAR OS
memory protection mechanisms. Nevertheless for future versions of the specification,
the RTE is responsible to transfer the data of sender/receiver communication as well
as for client-server communication over protection boundaries (OS applications).

Common OS features

55 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Depending on the global scheduling strategy of the OS, the RTE can make decisions
about the necessary data consistency mechanisms. E.g. in an ECU, where all tasks
are non-preemptive - and as the result also the global scheduling strategy of the com-
plete ECU is non-preemptive - the RTE may optimize the generated code regarding
the mechanisms for data consistency.

Hook functions

The AUTOSAR OS Specification defines hook functions as follows:

A Hook function is implemented by the user and invoked by the operating system in
the case of certain incidents. In order to react to these on system or application level,
there are two kinds of hook functions.

• application-specific: Hook functions within the scope of an individual OS Appli-
cation.

• system-specific: Hook functions within the scope of the complete ECU (in gen-
eral provided by the integrator).

If no memory protection is used (scalability classes SCC1 and SCC2) only the system-
specific hook functions are available.

The current AutoSAR RTE SWS specification does not support memory protection.
Therefore, only the system-specific hooks are relevant. In the SRS the requirements to
implement the system-specific hook functions are rejected [RTE00001], [RTE00101],
[RTE00102] and [RTE00105]. The reason for the rejection is the system (ECU) global
scope of those functions. The RTE is not the only user of those functions. Other BSW
modules might have requirements to use hook functions as well. This is the reason
why the RTE is not able to generate these functions without the necessary information
of the BSW configuration.

It is intended that the implementation of the system specific hook functions is done by
the system integrator and NOT by the RTE generator.

4.2.2.2 Runnable Entities

The following chapter describes the runnable entities, their categories and their task-
mapping aspects. The prototypes of the functions implementing runnable entities are
described in Chapter 5.7

Runnable entities are the schedulable parts of SW-Cs. With the exception of reentrant
server runnables that are invoked via direct function calls, they have to be mapped to
tasks. The mapping must be described in the ECU Configuration Description. This
configuration - or just the RTE relevant parts of it - is the input of the RTE generator.

All runnable entities are activated by the RTE as a result an RTEEvent. Possible ac-
tivation events are described in the meta-model by using RTEEvents (see Figure 4.8.

56 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

RTEEvents are described in the following chapter. If no RTEEvent is specified as Star-
tOnEvent for the runnable entity, the runnable entity is never activated by the RTE.

The runnable entities are categorized as follows. Category 1
Category 1 runnable entities do not have WaitPoints and have to terminate in finite
time. With respect to some constraints, category 1 runnable entities can be mapped to
Basic Tasks of the AUTOSAR OS. The VFB Specification [13] distinguishes between
Category 1A and Category 1B runnable entities. For mapping aspects, both sub cate-
gories can be handled equally and therfore the term Category 1 is used instead.

Category 2
In contrast to category 1 runnable entities, runnable entities of category 2 always have
at least one WaitPoint or they invoke a server and wait for the response to return (Syn-
chronousServerCallPoint). Category 2 runnable entities usually have to be mapped to
Extended Tasks, because only extended tasks provide the task state WAITING. The
existence of at least one WaitPoint or of a SynchronousServerCallPoint classifies the
runnable entity as a category 2 runnable.

Category 3
Runnable entities of category 3 are described in the VFB-Specification [13] in Chapter
4.5.4.4 but are currently out of scope of the RTE Specification. This restriction is also
described in Section A.

4.2.2.3 RTE Events

The meta model describes the following RTE events.

Figure 4.8: Different kinds of RTE-Events

57 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

T TimingEvent
DR DataReceivedEvent (S/R Communication only)
DRE DataReceiveErrorEvent (S/R Communication only)
DSC DataSendCompletedEvent (S/R Communication only)
OI OperationInvokedEvent (C/S Communication only)
ASCR AsynchronousServerCallReturnsEvent (C/S communication only)
MS ModeSwitchEvent

According to the meta model it is possible that all kinds of RTEEvents can either
1.) activate a runnable entity or
2.) wakeup a runnable entity at its waitpoints

The meta model makes no restrictions. As a consequence RTE API functions would
be necessary to set up the waitpoints for all kinds of RTEEvents.

Nevertheless in some cases it seems to make no sense to implement all possible
combinations of the general meta model. E.g. setting up a waitpoint, which should be
resolved by a cyclic TimingEvent. Therefore the RTE SWS of AUTOSAR Release 2.0
makes some restrictions, which are also described in Section A.

The meta model also allows, that the same runnable entity can be triggered by several
RTEEvents. For the current approach of the RTE and restrictions see Section 4.2.5.

T DR DRE DSC OI ASCR MS
Activation of runnable entity x x x x x x x
Wakeup of waitpoint x x x

The table shows, that activation of runnable entity is possible for all kinds of
RTEEvents. For runnable entity activation, no explicit RTE API is necessary. The
RTE itself is responsible for the activation of the runnable entity depending on the con-
figuration in the SW-C Description.

If the runnable entity contains a waitpoint, it can be resolved by the assigned RTE-
Event(s). Entering the waitpoint requires an explicit call of a RTE API function. The
RTE (together with the OS) has to implement the Waitpoint inside this RTE API.

The following list shows which RTE API function has to be called to set up waitpoints.

• DataReceivedEvent: Rte_Receive()

• DataSendCompletedEvent: Rte_Feedback()

• AsynchronousServerCallReturnsEvent: Rte_Result()

4.2.2.4 Mapping of runnable entities to tasks

One of the main requirements of the RTE is ”Construction of task bodies” [RTE00049].
The necessary input information e.g. the mapping of runnable entities to tasks must be
provided by the ECU configuration description.

58 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

The ECU configuration description (or an extract of it) is the input for the RTE-Generator
(see Figure 3.3). It is also the purpose of this document to define the necessary input
information. Therefore the following scenarios may help to derive requirements for the
ECU-Configuration Template as well as for the RTE-generator itself.
Note: The scenarios do not cover all possible combinations.
The RTE-Configurator configures parts of the ECU-Configuration, e.g. the mapping of
runnable entities to tasks. In this configuration process the RTE-Configurator also allo-
cates those OS-objects (e.g. Tasks, Events, Alarms...) which are used in the generated
RTE. The RTE-Configurator must be the owner of these configuration items. Other
configurators, e.g. the OS Configurator, should not be able to change these settings.

Some figures for better understanding use the following conventions:

Figure 4.9: Element description

4.2.2.4.1 Scenario for mapping of runnable entities to tasks

The different properties of runnable entities with respect to data access and termination
have to be taken into account when discussing possible scenarios of mapping runnable
entities to tasks.

• Runnable entities using (implicit) DataReadAccess/DataWriteAccess have to ter-
minate.

• Runnable entities using (implicit) DataReadAccess/DataWriteAccess are cate-
gory 1 runnables (1A or 1B). Runnable entities of category 2 do not allow (implicit)
DataReadAccess/DataWriteAccess.

• Runnable entities of category 1 can be mapped either to basic or extended tasks.
(see next subsection).

• Runnable entities using at least one Waitpoint are of category 2.

• Runnables of category 2 that contain WaitPoints will be typically mapped to ex-
tended tasks.

• Runnables of cateogry 2 that contain a SynchronousServerCallPoint generally
have to be mapped to extended tasks.

59 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

• Runnables of category 2 that contain a SynchronousServerCallPoint can be
mapped to basic tasks if no timeout monitoring is required.

• Runnables of category 2 that contain a SynchronousServerCallPoint can be
mapped to basic tasks if the server runnable is invoked directly and is itself of
category 1.

Note that the runnable to task mapping scenarios supported by a particular RTE im-
plementation might be restricted.

4.2.2.4.1.1 Scenario 1

Runnable entity category 1A: ”runnable1”

• Ports: only S/R with DataReadAccess / DataWriteAccess

• RTEEvents: TimingEvent

• no sequence of runnable entities specified

• no explicit DataSendPoint

• no WaitPoint

Possible mappings of ”runnable1” to tasks:

Basic Task
If only one of those kinds of runnable entities is mapped to a task (task contains
only one runnable entity), or if multiple runnable entities with the same cycletime are
mapped to the same task, a basic task can be used. In this case, the execution order
of the runnable entities within the task is necessary. In case the runnable entities have
different cycletimes, the RTE has to provide the glue-code to garantee the correct call
cycle of each runnable entity.

The ECU-Configuration-Template has to provide the sequence of runnable entities
mapped to the same task, see rte sws in 0014.

Figure 4.10 shows the possible mappings of runnable entities into a basic task. If and
only if a sequence order is specified, more than one runnable entity can be mapped
into a basic task.

Extended Task

If more than one runnable entity is mapped to the same task and the special condition
(same cycletime) does not fit, an extended task is used.

If an extended task is used, the entry points to the different runnable entities might be
distinguished by evaluation of different OS events. In the scenario above, the different
cycletimes may be provided by different OS alarms. The corresponding OS events
have to be handled inside the task body. Therefore the RTE-generator needs for each
task the number of assigned OS Events and their names.

60 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Figure 4.10: Mapping of Category 1 runnable entities to Basic Tasks

The ECU-Configuration has to provide the OS events assigned to the RTEEvents trig-
gering the runnable entities that are mapped to an extended task, see rte sws in 0039.

Figure 4.11 shows the possible mapping of the multiple runnable entities of category 1
into an Extended Task. Note: The Task does not terminate.

Figure 4.11: Mapping of Category 1 runnable entities to Extended Tasks

For both, basic tasks and extended tasks, the ECU-Configuration must provide the
name of the task.

The ECU-Configuration has to provide the name of the task, see rte sws in 5012.

61 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

The ECU-Configuration has to provide the task type (BASIC or EXTENDED), which
can be determined from the presence or absence of OS Events associated with that
task, see rte sws in 0040.

4.2.2.4.1.2 Scenario 2

Runnable entity category 1B: ”runnable2”

• Ports: S/R with DataSendPoints.

• RTEEvents: TimingEvent

• no sequence of runnables specified

• no WaitPoint

Possible mappings of ”runnable2” to tasks:

The following figure shows the different mappings:

• One category 1B runnable

• More than one category 1B runnable mapped to the same basic task with a spec-
ified sequence order

• More than one category 1B runnable mapped into an extended task

The gluecode to realize the DataReadAccess and DataWriteAccess respectively be-
fore entering the runnable and after exiting is not necessary.

Figure 4.12: Mapping of Category 1 runnable entities using no DataReadAccess /
DataWriteAccess

4.2.2.4.1.3 Scenario 3

Runnable entity category 1A: ”runnable3”

• Ports: S/R with DataReadAccess / DataWriteAccess

• RTEEvents: Runnable is activated by a DataReceivedEvent

62 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

• no sequence of runnables specified

• no DataSendPoint

• no WaitPoint

There is no difference between Scenario 1. Only the RTEEvent that activates the
runnable entity is different.

4.2.2.4.1.4 Scenario 4

Runnable entity category 2: ”runnable4”

• Ports: S/R with DataReceivePoint and WaitPoint (blocking read)

• RTEEvents: WaitPoint referencing a DataReceivedEvent

• no sequence of runnables specified

Runnable is activated by an arbitrary RTEEvent (e.g. by a TimingEvent). When the
runnable entity has entered the WaitPoint and the DataReceivedEvent occurs, the
runnable entity resumes execution.

The runnable has to be mapped to an extended task. Normally each category 2 runn-
able has to be mapped to its own task. Nevertheless it is not forbidden to map multiple
category 2 runnable entities to the same task, though this might be restricted by an
RTE generator. Mapping multiple category 2 runnable entities to the same task can
lead to big delay times if e.g. a WaitPoint is resolved by the incoming RTEEvent, but
the task is still waiting at a different WaitPoint.

Figure 4.13: Mapping of Category 2 runnable entities to Extended Tasks

4.2.2.4.1.5 Scenario 5

There are two runnable entities implementing a client (category 2) and a server for
synchronous C/S communication and the timeout attribute of the ServerCallPoint is 0.

There are two ways to invoke a server synchronously:

• Simple function call for intra-ECU C/S communication if the canBeInvokedCon-
currently attribute of the server runnable is set and if the server runnable is of

63 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

category 1. In that case the server runnable is executed in the same task con-
text (same stack) as the client runnable that has invoked the server. The client
runnable can be mapped to a basic task.

• The server runnable is mapped to its own task. If the canBeInvokedConcurrently
attribute is not set, the server runnable must be mapped to a task.

If the implementation of the synchronous server invocation does not use OS
events, the client runnable can be mapped to a basic task and the task of the
server runnable must have higher priority than the task of the client runnable.
Furthermore, the task to which the client runnable is mapped must be preempt-
able. This has to be checked by the RTE generator. Activation of the server
runnable can be done by ActivateTask() for a basic task or by SetEvent() for an
extended task. In both cases, the task to be activated must have higher priority
than the task of the client runnabe to enforce a task switch (necessary, because
the server invocation is synchronous).

4.2.2.4.1.6 Scenario 6

There are two runnable entities implementing a client (category 2) and a server for
synchronous C/S communication and the timeout attribute of the ServerCallPoint is
greater than 0.

There are again two ways to invoke a server synchronously:

• Simple function call for intra-ECU C/S communication if the canBeInvokedCon-
currently attribute of the server runnable is set and the server is of category 1. In
that case the server runnable is executed in the same task context (same stack)
as the client runnable that has invoked the server and no timeout monitoring is
performed (see rte sws 3768). In this case the client runnable can be mapped to
a basic task.

• The server runnable is mapped to its own task. If the canBeInvokedConcurrently
attribute is not set, the server runnable must be mapped to a task.

If the implementation of the timeout monitoring uses OS events, the task of the
server runnable must have lower priority than the task of the client runnable and
the client runnable must be mapped to an extended task. Furthermore, both
tasks must be preemptable1. This has to be checked by the RTE generator. The
notification that a timeout occurred is then notified to the client runnable by using
an OS Event. In order for the client runnable to immediately react to the timeout,
a task switch to the client taks must be possible when the timeout occurs.

1Strictly speaking, this restriction is not necessary for the task to which the client runnable is mapped.
If OS events are used to implement the timeout monitoring and the notification that the server is finished,
the RTE API implementation generally uses the OS service WaitEvent, which is a point of rescheduling.

64 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.2.2.4.1.7 Scenario 7

Runnable entity category 2: ”runnable7”

• Ports: only C/S with AsynchronousServerCallPoint and WaitPoint

• RTEEvents: AsynchronousServerCallReturnsEvent (C/S communication only)

• no sequence of runnables specified

The mapping scenario for ”runnable7”, the client runnable that collects the result of the
asynchronous server invocation, is similar to Scenario 4.

65 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.2.2.5 Activation Offset for runnable

In order to allow optimizations (smooth cpu load, mapping of runnables with different
periods in the same task to avoid data sharing, etc.), the RTE has to handle the activa-
tion offset information from a task shared reference point only for time trigger runnables.
The maximum period of a task can be calculated automatically as the greatest common
divisor (GCD) of all runnables period and offset.It is assumed that the runnables worst
case execution is less than the GCD. In case of the worst case execution is greater
than the GCD, the behavior becomes undefined.

[rte sws 7000] The RTE shall respect the configured activation offset of runnable en-
tities mapped within one OS task.

[rte sws ext 7001] The runnables worst case execution time shall be less than the
GCD of all runnables period and offset in activation offset context for runnables.

Example 1:
This example describes 3 runnables mapped in one task with an activation offset de-
fined for each runnables.

Runnable Period Activation Offset
R1 100ms 20ms
R2 100ms 60ms
R3 100ms 100ms

Table 4.1: Runnables timings

The runnables R1, R2 and R3 are mapped in the task T1 at 20 ms which is the GCD
of all runnables period and activation offset.

Figure 4.14: Example of activation offset for runnables

66 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Example 2:
This example describes 4 runnables mapped in one task with an activation offset and
position in task defined for each runnables.

Runnable Period Position in task Activation Offset
R1 50ms 1 0ms
R2 100ms 2 0ms
R3 100ms 3 70ms
R4 50ms 4 20ms

Table 4.2: Runnables timings with position in task

The runnables R1, R2,R3 and R4 are mapped in the task T1 at 10 ms which is the
GCD of all runnables period and activation offset.

Figure 4.15: Example of activation offset for runnables with position in task

67 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.2.2.6 Activation and Start of Runnable Entities

This section defines the activation of a runnable entity by using a state machine.

The main principles for the activation of runnables are:

• runnables are activated by RTE events

• runnable activations are not queued (with exception of OperationInvokedEvent).

If a runnable is activated due to several DataReceivedEvents of DataElements
with isQueued=true, it is the responsibility of the runnabe to dequeue all queued
data.

• A ’minimum start interval’ will delay the activation of a runnable to prevent that a
runnable is started more than once within the ’minimum start interval’.

Each runnable has its own state machine to describe all necessary states and transi-
tions between a suspended and a running runnable. The runnable state machine is
shown in Fig. 4.16.

started

suspended

debounce
activation

running

waiting

preempted activated

not
activated

to be started

terminate

[runnable debounce timer >=
minimum start interval]

activate

start

/runnable debounce timer =
minimum start intervall

start /
runnable debounce timer =
0

[activated]

resume

release

preempt

wait

[activation][main]

ready

Figure 4.16: Statemachine of a runnable entity (not a server runnable) Note: the runnable
debounce timer is an increasing timer. It is local to the runnable. The runnable debounce
timer is just a concept for the specification, not for the implementation.

The state machine of a runnable is not identical to that of the task containing the runn-
able, but there are dependencies between them. E.g., the runnable can only be ‘run-
ning’ when the corresponding task is ‘running’.

Table 4.3 describes all runnable states in detail. The runnable state machine is split
in two sub state machines. The runnable main states describe the real state of the
runnable, while the activation states describe the state of the pending activations by
RTE events.

runnable state description
runnable main states
suspended The runnable is not started and there is no pending request

to start the runnable.

68 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

to be started The runnable is activated but not yet started. Entering the to
be started state, usually implies the activation of a task that
starts the runnable. The runnable stays in the ‘to be started’
state, when the task is already running until the gluecode of
the task actually starts the execution of the runnable.

running The runnable code is being executed. A task that contains
the runnable is running.

waiting A task containing the runnable is waiting at a WaitPoint
within the runnable.

preempted A task containing the runnable is preempted from executing
the runnable code.

started ‘started’ is the super state of ‘running’, ‘waiting’ and ‘pre-
empted’ between start and termination of the runnable.

runnable activation states
not activated No RTE event requires the activation of the runnable.
debounce activation One or more RteEvents with a startOnEvent relation to the

runnable have occurred, but the debounce timer has not yet
exceeded the minimum start interval. The activation will au-
tomatically advance to activated, when the debounce timer
reaches the minimum start interval.

activated One or more RteEvents with a startOnEvent to the runn-
able have occurred, and the debounce timer has exceeded
the minimum start interval. While the activated state is ac-
tive, the main state of the runnable automatically advances
from the suspended to the ’to be started’ state. When the
runnable starts, the activation will be reset to ‘not activated’.

Table 4.3: States defined for each runnable.
Note: For tasks, the equivalent state machine does not dis-
tinguish between preempted and to be started. They are
subsumed as ‘ready’

[rte sws 2697] The activation of runnable entities (except for server runnables)
shall behave as described by the runnable state machine in Fig. 4.16 and Table 4.3.

The following examples in Fig. 4.17 and Fig. 4.18 show the different timing situations of
the runnables with or without a minimum start interval. The minimum start interval can
reduce the number of activations by collecting more activating RTE Events within that
interval. No activation will be lost, the activations are just delayed to keep the minimum
start interval.

When a data received event activates a runnable when it is still running, it might be
that the data is already dequeued during the current execution of the runnable. Still,
the runnable will be started again. So, it is possible that a runnable that is activated by
a data received event finds an empty receive queue.

A server runnable is exclusively activated by OperationInvokedEvents and imple-
ments the server in client server communication. In some cases, the client server

69 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

activated

started

start start start start start start start

Figure 4.17: This figure illustrates the activation of a runnable without minimum start
interval. The started state of the runnable main states and the activated state of the
runnable activation states are shown. Each flash indicates the occurrence of an RTE
event. The runnable can only be activated once. The activation is not queued. The
runnable can be activated again when it is still started.

debounce
activation

started

start start start start start

activated

debounce time

debounce
activation

started

start start start start start

activated

debounce time

Figure 4.18: This figure illustrates the activation of a runnable with a minimum start
interval. The started state of the runnable main states and the debounce activation and
activated states of the runnable activation states are shown. Each flash indicates the
occurrence of an RTE event. The red arrows indicate the minimum start interval after
each start of the runnable. An RTE event within this minimum start interval leads to
the debounce activation state. When the minimum start interval ends, the debounce
activation state changes to the activated state.

communication is implemented by RTE as a direct function call of the server by the
client. In this case, a minimum start distance is not applicable.

[rte sws 2698] RTE shall not use the minimum start interval for server runnables.

When a server runnable is called by direct function call, the states ‘to be started’,
‘debounce activation’, and ‘activated’ are passed immediately. If a server runnable can
be invoked concurrently and is invoked by different clients using direct function call,
each client’s concurrent execution of the server runnable has it’s own state machine.

[rte sws 2699] When RTE implements server serialization, the activations of the
server shall be queued according to Fig. 4.19.b.

70 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

serialized server call

started

suspended

running

waiting

preempted activated

not
activated

to be
started

start

resume

release

preempt

wait
[activated]

terminate

activate
/activations=1

start /activations -= 1

[activations > 0]

[activations = 0]

ready

[activation][main]

for serialized server calls
activate / activations + = (activations==queue length)?0:1

b)

started

suspended

debounce
activation

running

waiting

preempted activated

not
activated

to be started

terminate

[runnable debounce timer >=
minimum start interval]

activate

start

/runnable debounce timer =
minimum start intervall

start /
runnable debounce timer =
0

[activated]

resume

release

preempt

wait

[activation][main]

ready

direct server call
started

su spended

debounce
activation

running

waiting

preempted activated

not
activated

to be started

terminate

[runnable debounce timer >=
minimum start interval]

activate

start

/runnable debounce timer =
minimum start intervall

start /
runnable debounce timer =
0

[activated]

resume

release

preempt

wait

[activation][main]

ready

direct server call
started

su spended

debounce
activation

running

waiting

preempted activated

not
activated

to be started

terminate

[runnable debounce timer >=
minimum start interval]

activate

start

/runnable debounce timer =
minimum start intervall

start /
runnable debounce timer =
0

[activated]

resume

release

preempt

wait

[activation][main]

ready

direct server call

started

suspended

debounce
activation

running

waiting

preempted activated

not
activated

to be started

terminate

[runnable debounce timer >=
minimum start interval]

activate

start

/runnable debounce timer =
minimum start intervall

start /
runnable debounce timer =
0

[activated]

resume

release

preempt

wait

[activation][main]

ready

direct server call
started

su spended

debounce
activation

running

waiting

preempted activated

not
activated

to be started

terminate

[runnable debounce timer >=
minimum start interval]

activate

start

/runnable debounce timer =
minimum start intervall

start /
runnable debounce timer =
0

[activated]

resume

release

preempt

wait

[activation][main]

ready

direct server call
started

su spended

debounce
activation

running

waiting

preempted activated

not
activated

to be started

terminate

[runnable debounce timer >=
minimum start interval]

activate

start

/runnable debounce timer =
minimum start intervall

start /
runnable debounce timer =
0

[activated]

resume

release

preempt

wait

[activation][main]

ready

direct server call

for each direct function call

a)

Figure 4.19: Statemachines of a server runnable. (a) For each client where RTE im-
plements the server call as a direct function call, the server runnable has a separate
state machine as displayed in the upper state charts. States that are directly passed are
grayed out. (b) The client server transactions that are queued by RTE require a queueing
of the activations as displayed in the lower state chart

4.2.3 Interrupt decoupling and notifications

4.2.3.1 Basic notification principles

Several BSW modules exist which contain functionality which is not directly activated,
triggered or called by AUTOSAR software-components but by other circumstances, like
digital input port level changes, complex driver actions, CAN signal reception, etc. In
most cases interrupts are a result of those circumstances. For a definition of interrupts,
see the VFB [13].

Several of these BSW functionalities create situations, signalled by an interrupt, when
AUTOSAR SW-Cs have to be involved. To inform AUTOSAR software components of
those situations, runnables in AUTOSAR software components are activated by no-
tifications. So interrupts that occur in the basic software have to be transformed into
notifications of the AUTOSAR software components. Such a transformation has to take

71 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

place at RTE level at the latest! Which interrupt is connected to which notification is
decided either during system configuration/generation time or as part of the design of
Complex Device Drivers or the Microcontroller Abstraction Layer.

This means that runnables in AUTOSAR SW-Cs have to be activated or ”waiting” cat2
runables in extended tasks have to be set to ”ready to run” again. In addition some
event specific data may have to be passed.

There are two different mechanisms to implement these notifications, depending on
the kind of BSW interfaces.

1. BSW with Standardized interface. Used with COM and OS.
Basic-SW modules with Standardized interfaces cannot create RTEEvents. So
another mechanism must be chosen: ”callbacks”
The typical callback realization in a C/C++ environment is a function call.

2. BSW with AUTOSAR interface: Used in all the other BSW modules.
Basic-SW modules with AUTOSAR-Interfaces have their interface specified in an
AUTOSAR BSW description XML file which contains signal specifications accord-
ing to the AUTOSAR specification. The BSW modules can employ RTE API calls
like Rte Send – see 5.6.4). RTEEvents may be connected with the RTE API
calls, so realizing AUTOSAR SW-C activation.

Note that an AUTOSAR software component can send a notification to another AU-
TOSAR software component or a BSW module only via an AUTOSAR interface.

4.2.3.2 Interrupts

The AUTOSAR concept as stated in the VFB specification [13] does not allow AU-
TOSAR software components to run in interrupt context. Only the Microcontroller Ab-
straction Layer, Complex Device Drivers and the OS are allowed to directly interact with
interrupts and implement interrupt service routines (see Requirement BSW164). This
ensures hardware independency and determinism.

If AUTOSAR software components were allowed to run in interrupt context, one AU-
TOSAR software component could block the entire system schedule for an unaccept-
ably long period of time. But the main reason is that AUTOSAR software components
are supposed to be independent of the underlying hardware so that exchangeability
between ECUs can be ensured. The schedule of an ECU is more predictable and bet-
ter testable if the timing effects of interrupts are restricted to the basic software of that
ECU.

Furthermore, AUTOSAR software components are not allowed to explicitly block inter-
rupts as a means to ensure data consistency. They have to use RTE functions for this
purpose instead, see Section 4.2.4.

72 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.2.3.3 Decoupling interrupts on RTE level

Runnables in AUTOSAR SW-Cs may be running as a consequence of an interrupt but
not in interrupt context, which means not within an interrupt service routine! Between
the interrupt service routine and an AUTOSAR SW-C activation there must always be
a decoupling instance. AUTOSAR SW-C runnables are only executed in the context of
tasks.

The decoupling instance is latest the RTE. For the RTE there are several options to
realize the decoupling of interrupts. Which option is the best depends on the configu-
ration and implementation of the RTE, so only examples are given here.

Example 1:

Situation:

• An interrupt routine calls an RTE callback function

Intention:

• Start a runnable

RTE job:

• RTE starts a task containing the runnable activation code by using the ”Activate-
Task()” OS service call.

• Other more sophisticated solutions are possible, e.g. if the task containing the
runnable is activated periodically.

Example 2:

Situation:

• An interrupt routine calls an RTE callback function

Intention:

• Make a runnable wake up from a wait point

RTE job:

• RTE sets an OS event

These scenarios described in the examples above not only hold for RTE callback func-
tions but for other RTE API functions as well.

[rte sws 3600] The RTE shall prevent runnable entities of AUTOSAR software-
components to run in interrupt context.

73 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.2.3.4 RTE and interrupt categories

Since category 1 interrupts are not under OS control the RTE has absolutely no pos-
sibility to influence their execution behavior. So no category 1 interrupt is allowed to
reach RTE. This is different for interrupt of category 2.

[rte sws 3594] Only interrupt category 2 can use RTE services.

4.2.3.4.1 Interrupt decoupling for COM

COM callbacks are used to inform the RTE about something that happened indepen-
dently of any RTE action. This is often interrupt driven, e.g. when a data item has been
received from another ECU or when a S/R transmission is completed.
It is the RTE’s job e.g. to create RTEEvents from the interrupt.

[rte sws 3530] The RTE has to provide callback functions to allow COM to signal COM
events to the RTE.

[rte sws 3531] The RTE has to support runnable activation by COM callbacks.

[rte sws 3532] The RTE has to support cat2 runnables to wake up from a wait point
as a result of COM callbacks.

See RTE callback API in chapter 5.9.

4.2.4 Data Consistency

4.2.4.1 General

Concurrent accesses to shared data memory can cause data inconsistencies. In gen-
eral this must be taken into account when several code entities accessing the same
data memory are running in tasks with different priority levels - in other words when
systems using parallel (or quasi parallel) execution of code are designed. More gen-
eral: Whenever task context-switches occur and data is shared between tasks, data
consistency is an issue.

AUTOSAR systems use operating systems according to the AUTOSAR-OS specifica-
tion which is derived from the OSEK-OS specification. The Autosar OS specification
defines a priority based scheduling to allow event driven systems. This means that
tasks with higher priority levels are able to interrupt (preempt) tasks with lower priority
level.

The ”lost update” example in Figure 4.20 illustrates the problem for concurrent read-
modify-write accesses:

There are two tasks. Task A has higher priority than task B. A increments the com-

74 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Task B

Task A

Data X

X

1) X*=5 2) X*++ => X*=6
3) X = X* => X=6

Time

1) Get X‘=5
2) X‘+=2
3) X = X‘

1) X*=5

5 5 5 5 5 5 5 5 5 7 7 7 7 7 6 6 6 6 6 6 6 6

Figure 4.20: Data inconsistency example - lost update

monly accessed counter X by 2, B increments X by 1. So in both tasks there is a read
(step1) – modify (step2) – write (step3) sequence. If there are no atomic accesses (fully
completed read-modify-write accesses without interruption) the following can happen:

1. Assume X=5.

2. B makes read (step1) access to X and stores value 5 in an intermediate store
(e.g. on stack or in a CPU register).

3. B cannot continue because it is preempted by A.

4. A does its read (step1) – modify (step2) – write (step3) sequence, which means
that A reads the actual value of X, which is 5, increments it by 2 and writes the
new value for X, which is 7. (X=5+2)

5. A is suspended again.

6. B continues where it has been preempted: with its modify (step2) and write
(step3) job. This means that it takes the value 5 form its internal store, incre-
ments it by one to 6 and writes the value 6 to X (X=5+1).

7. B is supended again.

The correct result after both Tasks A and B are completed should be X=8, but the
update of X performed by task A has been lost.

75 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.2.4.2 Communications to look at

In AUTOSAR systems the RTE has to take care that a lot of the communication is not
corrupted by data consistency problems. RTE Generator has to apply suitable means
if required.

The following communication mechanisms can be distinguished:

• Intra ECU communication within one AUTOSAR SW-C:
Communication between Runnables of one AUTOSAR SW-C running in different
task contexts where communication between these Runnables takes place via
commonly accessed data. If the need to support data consistency by the RTE
exists it must be specified by using the concepts of ”ExclusiveAreas” or ”Inter-
RunnableVariables” only.

• Intra-ECU communication between AUTOSAR SW-Cs:
Sender/Receiver (S/R) communication between Runnables of different AU-
TOSAR SW-Cs using implicit or explicit data exchange can be realized by the
RTE through commonly accessed RAM memory areas. Data consistency in
Client/Server (C/S) communication can be put down to the same concepts as
S/R communication. Data access collisions must be avoided. The RTE is re-
sponsible for guaranteeing data consistency.

• Intra-ECU communication between AUTOSAR SW-Cs and BSW modules with
AUTOSAR interfaces:
Principally the same as above: Sender/Receiver (S/R) communication between
AUTOSAR SW-Cs and BSW modules using implicit or explicit data exchange can
be realized by the RTE through shared RAM memory areas. Data consistency
in Client/Server (C/S) communication can be put down to the same concepts as
S/R communication. Data access collisions must be avoided. Again, the RTE
has to guarantee data consistency!

• Inter ECU communication
COM has to guarantee data consistency for communication between ECUs on
complete path between the COM modules of different ECUs. The RTE on each
ECU has to guarantee that no data inconsistency might occur when it invokes
COM send respectively receive calls supplying respectively receiving data items
which are concurrently accessed by application via RTE API call, especially when
queueing is used since the queues are provided by the RTE and not by COM.

[rte sws 3514] The RTE has to guarantee data consistency for communication via
AUTOSAR interfaces.

4.2.4.3 Concepts

In the AUTOSAR SW-C Template [17] chapter ”Interaction between runnables within
one component”, the concepts of

76 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

1. ExclusiveAreas (see section 4.2.4.5 below)

2. InterRunnableVariables (see section 4.2.4.6 below)

are introduced to allow the user (SW-Designer) to specify where the RTE shall guar-
antee data consistency for AUTOSAR SW-C internal communication and execution
circumstances. This is discussed in more detail in next sections.

The AUTOSAR SW-C template specification [17] also states that AUTOSAR SW-Cs
may define PerInstanceMemory, allowing reservation of static (permanent) need of
global RAM for the SW-C. Nothing is specified about the way Runnables might access
this memory. RTE only provides a reference to this memory (see section 5.6) but
doesn’t guarantee data consistency for it.

The creater of an AUTOSAR SW-C has to take care by himself that accesses to RAM
reserved as PerInstanceMemory out of Runnables running in different task contexts
don’t cause data inconsistencies. On the other hand this provides more freedom in
using the memory.

4.2.4.4 Mechanisms to guarantee data consistency

ExclusiveAreas and InterRunnableVariables are only mentioned in association with
AUTOSAR SW-C internal communication. Nevertheless the data consistency mecha-
nisms behind can be applied to communication between AUTOSAR SW-Cs or between
AUTOSAR SW-Cs and BSW modules too. Everywhere where the RTE has to guaran-
tee data consistency.

The data consistency guaranteeing mechanisms listed here are derived from AU-
TOSAR SW-C Template and from further discussions. There might be more.
The RTE has the responsibility to apply such mechanisms if required. The details how
to apply the mechanisms are left open to the RTE supplier.

Mechanisms:

• Sequential scheduling strategy
The activation code of Runnables is sequentially placed in one task so that no
interference between them is possible because one Runnable is only activated
after the termination of the other. Data consistency is guaranteed.

• Interrupt blocking strategy
Interrupt blocking can be an appropriate means if collision avoidance is required
for a very short amount of time. This might be done by disabling respectively
suspending all interrupts or - if hardware supports it - only of some interrupt levels.
In general this mechanism must be applied with care because it might influence
SW in tasks with higher priority too and the timing of the complete system.

77 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

• Usage of OS resources
Usage of OS resources. Advantage in comparison to Interrupt blocking strategy
is that less SW parts with higher priority are blocked. Disadvantage is that im-
plementation might consume more resources (code, runtime) due to the more
sophisticated mechanism.

• Task blocking strategy
Mutual task preemption is prohibited. This might be reached e.g. by assign-
ing same priorities to affected tasks, by assigning same internal OS resource to
affected tasks or by configuring the tasks to be non-preemptive.

• Cooperative Runnable placement strategy
The principle is that tasks containing Runnables to be protected by ”Cooperative
Runnable placement strategy” are not allowed to preempt other tasks also con-
taining Runnables to be protected by ”Cooperative Runnable placement strategy”
when one of the Runnables to protect is active - but are allowed between Runn-
able executions. The RTE’s job is to create appropriate task bodies and use OS
services or other mechanisms to achieve the required behavior.

To point out the difference to ”Task blocking strategy”:
In ”Task blocking strategy” no task containing Runnables with access to the Ex-
clusiveArea at all is allowed to preempt another task containing Runnables with
access to same ExclusiveArea. In ”Cooperative Runnable placement strategy”
this task blocking mechanism is limited to tasks defined to be within same coop-
erative context.

Example to explain the cooperative mechanism:

– Runnables R2 and R3a are marked to be protected by cooperative mecha-
nism.

– Runnables R1, R3b and R4 have no cooperative marking.

– R1 is activated in Task T1, R2 is activated in Task T2, R3a is activated in
Task T3a, R3b is activated in Task T3b, R4 is activated in Task T4.

– Task priorities are: T4 > T3a > T2 > T1, T3b has same priority as T3a

This setup results in this behavior:

– T4 can always preempt all other tasks (Higher prio than all others).

– T3b can preempt T2 (higher prio of T3b, no cooperative restriction)

– T3a cannot preempt T2 (Higher prio of T3a but same cooperative context).
So data access of Runnable R2 to common data cannot interfere with data
access by Runnable R3a. Nevertheless if both tasks T3a and T2 are ready
to run, it’s guaranteed that T3a is running first.

– T1 can never preempt one of the other tasks because of lowest assigned
prio.

78 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

• Copy strategy
Idea: The RTE creates copies of data items so that concurrent accesses in dif-
ferent task contexts cannot collide because some of the accesses are redirected
to the copies.

How it can work:

– Application for read conflicts:
For all readers with lower priority than the writer a read copy is provided.

Example:
There exist Runnable R1, Runnable R2, data item X and a copy data
item X*. When Runnable R1 is running in higher priority task context than
R2, and R1 is the only one writing X and R2 is reading X it is possible to
guarantee data consistency by making a copy of data item X to variable X*
before activation of R2 and redirecting write access from X to X* or the read
access from X to X* for R2.

– Application for write conflicts:
If one or more data item receiver with a higher priority than the sender exist,
a write copy for the sender is provided.

Example:
There exist Runnable R1, Runnable R2, data item X and copy data item X*.
When Runnable R1 (running in lower priority task context than R2) is
writing X and R2 is reading X, it is possible to guarantee data consistency
by making a copy of data item X to data item X* before activation of R1
together with redirecting the write access from X to X* for R1 or the read
access from X to X* for R2.

Usage of this copy mechanism may make sense if one or more of the following
conditions hold:

– This copy mechanism can handle those cases when only one instance does
the data write access.

– R2 is accessing X several times.

– More than one Runnable R2 has read (resp. write) access to X.

– To save runtime is more important than to save code and RAM.

– Additional RAM requirements to hold the copies is acceptable.

Further issues to be taken into account:

– AUTOSAR SW-Cs provided as source code and AUTOSAR SW-Cs pro-
vided as object code may or have to be handled in different ways. The
redirecting mechanism for source code could use macros for C and C++
very efficiently whereas object-code AUTOSAR SW-Cs most likely are

79 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

forced to use references.

Note that the copy strategy is used to guarantee data consistency for implicit
sender-receiver communication (realizing DataReadAccess and DataWriteAc-
cess) and for AUTOSAR SW-C internal communication using InterRunnableVari-
ables with implicit behavior.

4.2.4.5 Exclusive Areas

The concept of ExclusiveArea is more a working model. It’s not a concrete implementa-
tion approach, although concrete possible mechanisms are listed in AUTOSAR SW-C
template specification [17].

Focus of the ExclusiveArea concept is to block potential concurrent accesses to
get data consistency.

ExclusiveAreas are associated with Runnables. The RTE is forced to guarantee data
consistency when the Runnable runs in an ExclusiveArea. A Runnable can run inside
one or several ExclusiveAreas completely or can enter one or several ExclusiveAreas
during their execution for one or several times .

• If an AUTOSAR SW-C requests the RTE to look for data consistency for it’s inter-
nally used data (for a part of it or the complete one) using the ExclusiveArea
concept, the SW designer can use the API calls ”Rte Enter()” in 5.6.24 and
”Rte Exit()” in 5.6.25 to specify where he wants to have the protection by RTE
applied.
”Rte Enter()” defines the begin and ”Rte Exit()” defines the end of the code se-
quence containing data accesses the RTE has to guarantee data consistency
for.

• If the SW designer wants to have the mutual exclusion for complete Runnables
he can specify this by setting the attribute ”RunnableEntityRunsInExclusiveArea”
in the AUTOSAR SW-C description.

In principle the ExclusiveArea concept can handle the access to single data items as
well as the access to several data items realized by a group of instructions. It also
doesn’t matter if one Runnable is completely running in an ExclusiveArea and another
Runnable only temporarily enters the same ExclusiveArea. The RTE has to guarantee
data consistency.

[rte sws 3500] The RTE has to guarantee data consistency for arbitrary accesses to
data items accessed by Runnables marked with the same ExclusiveArea.

[rte sws 3515] RTE has to provide an API enabling the SW-Cs to access and leave
ExclusiveAreas.

If Runnables accessing same ExclusiveArea are assigned to be executing in different
task contexts, the RTE can apply suitable mechanisms, e.g. task blocking, to guarantee

80 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

data consistency for data accesses in the common ExclusiveArea. However, specials
attributes can be set that require certain data consistency mechanisms in which case
the RTE generator is forced to apply the selected mechanism.

4.2.4.5.1 Assignment of data consistency mechanisms

There might be domain, ECU or even project specific needs which data consistency
mechanism makes sense most to be applied to an ExclusiveArea. The decision which
mechanism has to be applied by RTE is taken during ECU integration by setting the
ExclusiveArea configuration parameter ExclusiveAreaImplMechanism. This parameter
is an input for RTE generator.

As stated in section 4.2.4.4 there might be more mechanisms to realize ExclusiveAr-
eas as mentioned in this specification. So RTE implementations might provide other
mechanisms in plus by a vendor specific solutions. This allows further optimizations.

Actually following values for configuration parameter ExclusiveAreaImplMechanism
must be supported:

• InterruptBlocking
This value requests enabling and disabling of Interrupts and is based on the In-
terrupt blocking strategy.

• OSResources
This value requests to apply the Usage of OS recources mechanism.

• NonPreemptiveTasks
This value requests to apply the Task blocking strategy.

• CooperativeRunnablePlacement
This value requires to apply the Cooperative Runnable Placement Strategy.

The strategies / mechanisms are described in general in section 4.2.4.4.

[rte sws 3504] If the configuration parameter ExclusiveAreaImplMechanism of an Ex-
clusiveArea is set to value ”InteruptBlocking” the RTE generator shall use the mech-
anism of Interrupt blocking to guarantee data consistency if data inconsistency could
occur.

[rte sws 3595] If the configuration parameter ExclusiveAreaImplMechanism of an Ex-
clusiveArea is set to value ”OSResources” the RTE generator shall use OS resources
to guarantee data consistency if data inconsistency could occur.

The requirements above have the limitation ”if data inconsistency could occur”
because it makes no sense to apply a data consistency mechanism if no potential
data inconsistency can occur. This can be relevant if e.g. the ”Sequential scheduling
strategy” (described in section 4.2.4.4) still has solved the item by the ECU integrator

81 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

defining an appropriate runnable-to-task mapping.

[rte sws 3596] If the configuration parameter ExclusiveAreaImplMechanism of an Ex-
clusiveArea is set to value ”NonPreemptiveTasks” the RTE generator shall generate
code relying on the fact that the task containing Runnables accessing the Exclu-
siveArea cannot be preempted by other tasks containing Runnables accessing the
same ExclusiveArea too.

For usage of value ”NonPreemptiveTasks” it is assumed that the corresponding
runnable to task mapping and the task configuration has been done appropriate.

[rte sws 3503] If the configuration parameter ExclusiveAreaImplMechanism of an Ex-
clusiveArea is set to value ”CooperativeRunnablePlacement” the RTE generator shall
generate code according the Cooperative Runnable Placement Strategy to guarantee
data consistency.

Since the decision to select the Cooperative runnable placement strategy to prohibit
data access conflicts affects the behavior of several tasks and potentially many Exclu-
siveAreas the RTE generator is not allowed to override the decision.

In a SWC code, it is not allowed to use waitpoints inside an ExclusiveArea: The RTE
generator might use OSEK services to implement ExclusiveAreas and waiting for an
OS event is not allowed when an OSEK resource has been taken for example. For
RunnableEntityEntersExclusiveArea, the RTE generator cannot check if waitpoints are
inside an ExlusiveArea. Therefore, this is the responsibility of the SWC Code writ-
ter to ensure that no waits points are used inside exclusive area. But for runnable
”RunnableEntityRunsInExclusiveArea”, the RTE generator is able to do the following
check.

[rte sws 7005]The RTE generator shall reject a configuration with a waitpoint applied
to a runnable for which the attribute ”RunnableEntityRunsInExclusiveArea” is set.

4.2.4.6 InterRunnableVariables

A non-composite AUTOSAR SW-C can reserve InterRunnableVariables which can be
accessed by the Runnables of this one AUTOSAR SW-C (also see section 4.3.3.1).
Read and write accesses are possible. There is a separate set of those variables per
AUTOSAR SW-C instance.

Again the RTE has to guarantee data consistency. Appropriate means will depend on
Runnable placement decisions which are taken during ECU configuration.

[rte sws 3516] The RTE has to guarantee data consistency for communication be-
tween Runnables of one AUTOSAR SW-Component instance using the same Inter-
RunnableVariable.

Next the two kinds of InterRunnableVariables are treated:

82 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

1. InterRunnableVariables with implicit behavior

2. InterRunnableVariables with explicit behavior

4.2.4.6.1 InterRunnableVariables with implicit behavior

In applications with very high SW-C communication needs and much real time con-
straints (like in powertrain domain) the usage of a copy mechanism to get data consis-
tency might be a good choice because during Runnable execution no data consistency
overhead in form of concurrent access blocking code and runtime during its execution
exists - independent of the number of data item accesses.
Costs are code overhead in the Runnable prolog and epilog which is often be minimal
compared to other solutions. Additional RAM need for the copies comes in plus.

When InterRunnableVariables with implicit behavior are used the RTE is required to
make the data available to the Runnable using the semantic of a copy operation but is
not necessarily required to use a unique copy for each Runnable.

Focus of InterRunnableVariable with implicit behavior is to avoid concurrent ac-
cesses by redirecting second, third, .. accesses to data item copies.

[rte sws 3517] The RTE shall guarantee data consistency for InterRunnableVariables
with implicit behavior by avoiding concurrent accesses to data items specified by In-
terRunnableVariables using one or more copies and redirecting accesses to the copies.

Compared with Sender/Receiver communication

• Like with DataReadAccess/DataWriteAccess the Runnable IN data is stable dur-
ing Runnable execution, which means that during an Runnable execution several
read accesses to an InterRunnableVariable always deliver the same data item
value.

• Like with DataWriteAccess/DataWriteAccess the Runnable OUT data is for-
warded to other Runnables not before Runnable execution has terminated, which
means that during an Runnable execution write accesses to InterRunnableVari-
able are not visible to other Runnables.

This behavior requires that Runnable execution terminates.

[rte sws 3582] Several read accesses to InterRunnableVariables with implicit behav-
ior during a Runnable execution shall always deliver the same data item value.

[rte sws 3583] Several write accesses to InterRunnableVariables with implicit
behavior during a Runnable execution shall result in only one update of the Inter-
RunnableVariable content visible to other Runnables with the last written value.

83 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 3584] The update of InterRunnableVariables with implicit behavior done
during a Runnable execution shall be made available to other Runnables after the
Runnable execution has terminated.

The usage of InterRunnableVariables with implicit behavior shall be valid for category
1a and 1b Runnable entities. Usage in category 2 (and 3) Runnables is not allowed
because there Runnable termination is not guaranteed and so it’s not guaranteed that
other Runnables will ever get the updated data. See also requirement rte sws 3518.

For API of InterRunnableVariables with implicit behavior see sections 5.6.20 and
5.6.21.

For more details how this mechanism could work see ”Copy strategy” in section 4.2.4.4.

4.2.4.6.2 InterRunnableVariables with explicit behavior

In many applications saving RAM is more important than saving runtime. Also some
application require to have access to the newest data item value without any delay,
even several times during execution of a Runnable.

Both requirements can be fulfilled when RTE supports data consistency by blocking
second/third/.. concurrent accesses to a signal buffer if data consistency is jeopar-
dized. (Most likely RTE has nothing to do if SW is running on a 16bit machine and
making an access to an 16bit value when a 16bit data bus is present.)

Focus of InterRunnableVariables with explicit behavior is to block potential con-
current accesses to get data consistency.

The mechanism behind is the same as in the ExclusiveArea concept (see section
4.2.4.5). But although ExclusiveAreas can handle single data item accesses too, their
API is made to make the RTE to apply data consistency means for a group of in-
structions accessing several data items as well. So when using an ExclusiveArea to
protect accesses to one single common used data item each time two RTE API calls
grouped around are needed. This is very inconvenient and might lead to faults if the
calls grouped around might be forgotton.
The solution is to support InterRunnableVariables with explicit behavior.

[rte sws 3519] The RTE shall guarantee data consistency for InterRunnableVariables
with explicit behavior by blocking concurrent accesses to data items specified by
InterRunnableVariables.

The RTE generator is not free to select on it’s own if implicit or explicit behavior shall
be applied. Behavior must be known at AUTOSAR SW-C design time because in case
of InterRunnableVariables with implicit behavior the AUTOSAR SW-C designer might
rely on the fact that several read accesses always deliver same data item value.

84 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 3580] The RTE shall supply different APIs for InterRunnableVariables with
implicit behavior and InterRunnableVariables with explicit behavior.

For API of InterRunnableVariables with explicit behavior see sections 5.6.22 and
5.6.23.

4.2.5 Multiple trigger of Runnables

Concurrent activation

The AUTOSAR SW-C template specification [17] states that runnable entities (further
called ”Runnables”) might be invoked concurrently several times if the Runnables at-
tribute ”canBeInvokedConcurrently” is set. It’s then in the responsability of the AU-
TOSAR SW-C designer that no data might be corrupted when the Runnable is acti-
vated several times in parallel.

[rte sws 3523] The RTE has to support concurrent activation of the same instance
of a runnable entity if the associative attribute ”canBeInvokedConcurrently” is set to
TRUE. This includes concurrent activation in several tasks. If the attribute is not set
resp. set to FALSE, concurrent activation of the runnable entity is forbidden.

Activation by several RTEEvents

Nevertheless a Runnable whose attribute ”canBeInvokedConcurrently” is NOT set
might be still activated by several RTEEvents if activation configuration guarantees
that concurrent activation can never occur. This includes activation in different tasks. A
standard use case is the activation of same instance of a runnable in different modes.

[rte sws 3520] The RTE supports activation of same instance of a runnable entity by
multiple RTEEvents.

RTEEvents are triggering Runnable activation and may supply 0..several role param-
eters, see section 5.7.3. Role parameters are not visible in the Runnables signature
- except in those triggered by an OperationInvokedEvent. With the exception of the
RTEEvent OperationInvokedEvent all role parameters can be accessed by user with
implicit or explicit Receiver API.

[rte sws 3524] The RTE supports activation of same instance of a runnable entity by
RTEEvents of different kinds.

The RTE shall NOT support a runnable entity triggered by an RTEEvent OperationIn-
vokedEvent to be triggered by any other RTEEvent except for other OperationIn-
vokedEvents of compatible operations. This limitation is stated in appendix in section
A.2.

85 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.2.6 Measurement and Calibration

4.2.6.1 General

Calibration is the process of adjusting an ECU SW to fulfill its tasks to control physical
processes respectively to fit it to special project needs or environments. To do this two
different mechanisms are required and have to be distinguished:

1. Measurement
Measure what’s going on in the ECU e.g. by monitoring communication data
(Inter-ECU, Intra-ECU, Intra-SWC). There are several ways to get the monitor
data out of the ECU onto external visualization and interpretation tools.

2. Calibration
Based on the measurement data the ECU behavior is modified by changing
parameters like runtime SW switches, process controlling data of primitive or
complex type, interpolation curves or interpolation fields. In the following for such
parameters the term calibration parameter is used.

Online and offline calibration

The way how measurement and calibration is performed is company, domain and
project specific. Nevertheless two different basic situations can be distinguished and
are important for understanding:

1. Offline calibration
Measure when ECU is running, change calibration data when ECU is off.
Process might look like this:

(a) Flash the ECU with current program file

(b) PowerUp ECU in target (actual or emulated) environment

(c) Measure running ECU behavior - log or monitor via external tooling

(d) Switch off ECU

(e) Change calibration parameters and create a new flashable program file (hex-
file) e.g. by performing a new SW make run

(f) Back to (a).

Do loop as long as a need for calibration parameter change exists or the Flash
survives.

2. Online calibration

Do measurement and calibration in parallel.
In this case in principle all steps mentioned in ”Offline calibration” above have
to be performed in parallel. So other mechanisms are introduced avoiding ECU
flashing when modifying ECU parameters. ECU works temporarily with changed

86 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

data and when the calibration process is over the result is an updated set of
calibration data. In next step this new data set might be merged into the existing
program file or the new data set might be an input for a new SW make run. In
both cases the output is a new program file to flash into the ECU.

Process might look like this:

(a) Flash the ECU with current program file

(b) PowerUp ECU in target environment

(c) Measure running ECU behavior and temporarily modify calibration parame-
ters. Store set of updated calibration parameters (not on the ECU but on the
calibration tool computer). Actions in step c) may be done iteratively.

(d) Switch off ECU

(e) Create a new flashable program file (hex-file) containing the new calibration
parameters

Procedure over

4.2.6.2 Measurement

4.2.6.2.1 What can be measured

The AUTOSAR SW-C template specification [17] explains to which AUTOSAR proto-
types a measurement pattern can be applied.

RTE provides measurement support for

1. communication between Ports
Measurable are

• DataElementPrototypes of a SenderReceiverInterface used in a PortProto-
type (of a ComponentPrototype) to capture sender-receiver communication
between ComponentPrototypes

• ArgumentPrototypes of an OperationPrototype in a ClientServerInterface to
capture client-server communication between ComponentPrototypes

2. communication inside of AUTOSAR SW-Cs
Measurable are InterrunnableVariables

4.2.6.2.2 RTE support for Measurement

The way how measurement data is read out of the ECU is not focus of the RTE spec-
ification. But the RTE structure and behavior must be specified in that way that mea-
surement values can be provided by RTE during ECU program execution.

87 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

To avoid synchronization effort it shall be possible to read out measurement data asyn-
chronously to RTE code execution. For this the measurement data must be stable. As
a consequence this might forbid direct reuse of RAM locations for implementation of
several AUTOSAR communications which are independent of each other but occurring
sequentially in time (e.g. usage of same RAM cell to store UInt8 data sender receiver
communication data between Runnables at positions 3 and 7 and later the same RAM
cell for the communication between Runnables at positions 9 and 14 of same periodi-
cally triggered task). So applying measurable elements might lead to less optimizations
in the generated RTE’s code and to increased RAM need.

There are circumstances when RTE will store same communication data in different
RAM locations, e.g. when realizing implicit sender receiver communication or Inter-
RunnableVariables with implicit behavior. In these cases there is only the need to have
the content of one of these stores made accessible from outside.

The information that measurement shall be supported by RTE is defined in applied
SwDataDefProps:
The value READ-ONLY of the property swCalibrationAccess defines that measure-
ment shall be supported, any other value of the property swCalibrationAccess is to be
ignored for measurement.

Following requirements rte sws 3900, rte sws 3901 and rte sws 3902 cover 2 cases
each where SwDataDefProps can be applied:

• On level of type (only supported for primitive types):
Every instance of the type is to be measured

• On level of DataPrototype and its specializations (e.g. ArgumentPrototype or
InterrunnableVariable)) (supported for all types):
The settings override the settings given by the type

SwDataDefProps contain more informations how measurement values are to be in-
terpreted and presented by external calibration tools. These informations are needed
for the ASAM2 respectively A2L file generation. Afterwards the A2L file is used by
ECU-external measurement and calibration tools so that these tools know e.g. how to
interpret raw data received from ECU and how to get them.

SwDataDefProps also contain information about which section shall be used to
allocate memory for measurement data. For that see section 4.2.6.3.5.7.

For sender-receiver resp. client-server communication same or compatible interfaces
are used to specified connected ports. So very often measurement will be demanded
two times for same or compatible DataElementPrototype on provide and require side
of a 1:1 communication resp. multiple times in case of 1:N or M:1 communication. In
that case providing more than one measurement value for a DataElementPrototype
doesn’t make sense and would increase ECU resources need excessively. Instead
only one measurement value shall be provided.

88 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Sender-receiver communication

[rte sws 3900] If the property swCalibrationAccess enclosed in the SwDataDefProps
of a DataPrototype or its associated type used in an interface of a sender-receiver port
of a ComponentPrototype is set to READ-ONLY the RTE generator has to provide one
reference to a location in memory where the actual content of the instance specific
data of the corresponding DataElementPrototype of the communication can be read.

To prohibit multiple measurement values for same communication:
(Note that affected DataElementPrototypes might be specified in same or compatible
port interfaces.)

[rte sws 3972] For 1:1 and 1:N sender-receiver communication the RTE shall provide
measurement values taken from sender side if measurement is demanded in provide
and require port.

[rte sws 3973] For N:1 intra-ECU sender-receiver communication the RTE shall pro-
vide measurement values taken from receiver side if measurement is demanded in
provide and require ports.

Note:
See further below for support of queued communication.

[rte sws 3974] For a DataElementPrototype with measurement demand associated
with received data of inter-ECU sender-receiver communication the RTE shall provide
only one measurement store reference containing the actual received data even if sev-
eral receiver ports demand measurement.

Client-Server communication

[rte sws 3901] If the property swCalibrationAccess enclosed in the SwDataDefProps
of an ArgumentPrototype or its associated type used in an interface of a client-server
port of a ComponentProtype is set to READ-ONLY the RTE generator has to provide
one reference to a location in memory where the actual content of the instance specific
argument data of the communication can be read.

To prohibit multiple measurement values for same communication:
(Note that affected DataElementPrototypes might be specified in same or compatible
port interfaces.)

[rte sws 3975] For intra-ECU client-server communication the RTE shall provide mea-
surement values taken from client side if measurement of an ArgumentPrototype is
demanded by provide and require ports.

[rte sws 3976] For inter-ECU client-server communication with the client being
present on same ECU as the RTE, the RTE shall provide measurement values taken
from client side.

[rte sws 3977] For inter-ECU client-server communication with the server being
present on same ECU as the RTE, the RTE shall provide measurement values taken

89 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

from server if no client present on same ECU as the server is connected with that
server too.

Note:
When a measurement is applied to a client-server call additional copy code might be
produced so that a zero overhead direct server invocation is no longer possible for this
call.

InterrunnableVariables

[rte sws 3902] If the property swCalibrationAccess enclosed in the SwDataDefProps
of an InterRunnableVariable or its associated type is set to READ-ONLY the RTE
generator has to provide one reference to a location in memory where the actual
content of the InterRunnableVariable can be read for a specific instantiation of the
AUTOSAR SWC.

Unconnected ports or compatible interfaces

As stated in section 5.2.7 RTE supports handling of unconnected ports.

Measurement support for unconnected sender-receiver provide ports makes sense
since a port might be intentionally added for monitoring purposes only.

Measurement support for unconnected sender-receiver require ports makes sense
since the measurement is specified on the type level of the Software Component and
therefore independent of the individual usage of the Software Component. In case
of unconnected sender-receiver require ports the measurement shall return the initial
value.

Support for unconnected client-server provide port does not make sense since the
server cannot be called and with this no data can be passed there.

Support for unconnected client-server require port makes sense since the measure-
ment is specified on the type level of the Software Component and therefore inde-
pendent of the individual usage of the Software Component. In case of unconnected
client-server require ports the measurement shall return the actually provided and re-
turned values.

[rte sws 3978] For sender-receiver communication the RTE generator shall respect
measurement demands enclosed in unconnected provide ports.

[rte sws 5101] For sender-receiver communication the RTE generator shall respect
measurement demands enclosed in unconnected require ports and deliver the initial
value.

[rte sws 3980] For client-server communication the RTE generator shall ignore mea-
surement demands enclosed in unconnected provide ports.

[rte sws 5102] For client-server communication the RTE generator shall respect mea-
surement demands enclosed in unconnected require ports.

90 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Principly same thoughts as above are applied to unused DataElementPrototypes for
sender-receiver communication where ports with compatible but not same interfaces
are connected. It’s no issue for client-server due to compatibility rules for client-server
interfaces since in compatible client-server interfaces all OperationPrototypes have to
be present in provide and require port (see AUTOSAR SW-C Template [17]).

[rte sws 3979] For sender-receiver communication the RTE generator shall respect
measurement demands of those DataElementPrototypes in connected ports when
provide and require port interfaces are not the same (but only compatible) even when
a DataElementPrototype in the provide port has no assigned DataElementPrototype
in the require port.

General measurement disabling switch

To support saving of ECU resources for projects where measurement isn’t required at
all whereas enclosed AUTOSAR SW-Cs contain SwDataDefProps requiring it, it shall
be possible to switch off support for measurement. This shall not influence support for
calibration (see 4.2.6.3).

[rte sws 3903] The RTE generator shall have the option to switch off support for
measurement for generated RTE code. This option shall influence complete RTE code
at once.

There also might be projects in which monitoring of ECU internal behavior is required
but calibration is not.

[rte sws 3904] The enabling of RTE support for measurement shall be independent
of the enabling of the RTE support for calibration.

Queued communication

Measurement of queued communication is not supported yet. Reasons are:

• A queue can be empty. What’s to measure then?

• Which of the queue entries is the one to take the data from might differ out of user
view?

• Only quite inefficient solutions possible because implementation of queues en-
tails storage of information dynamically at different memory locations. So always
additional copies are required.

[rte sws 3950] RTE generator shall reject configurations where measurement for
queued communication is configured.

91 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.2.6.3 Calibration

The RTE has to support the allocation of calibration parameters and the access to
them for SW using them. As seen later on for some calibration methods the RTE must
contain support SW too (see 4.2.6.3.5).

But in general the RTE is not responsible for the exchange of the calibration data values
or the transportation of them between the ECU and external calibration tools.

4.2.6.3.1 Calibration parameters

Calibration parameters (which the AUTOSAR SW-C template specification [17] calls
CalprmElements) can be defined in CalprmComponentTypes and in AUTOSAR SW-
Cs.

1. CalprmComponentTypes don’t have an internal behavior but contain CalprmEle-
mentPrototypes and serve to provide calibration parameters used commonly by
several AUTOSAR SW-Cs. The use case that one or several of the user SW-Cs
are instantiated on different ECUs is supported by instantiation of the Calprm-
ComponentType on the affected ECUs too.
Of course several AUTOSAR SW-Cs allocated on one ECU can commonly ac-
cess the calibration parameters of CalprmComponentTypes too. Also several
instances of an AUTOSAR SW-Cs can share the same calibration parameters of
a CalprmComponentType.

2. Calibration parameters defined in AUTOSAR SW-Cs can only be used inside the
SW-C and are not visible to other SW-Cs. Instance individual and common cali-
bration parameters accessible by all instances of a AUTOSAR SW-C are possible.

[rte sws 3958] Several AUTOSAR SW-Cs (and also several instances of AUTOSAR
SW-Cs) shall be able to share same calibration parameters defined in CalprmCompo-
nentTypes.

[rte sws 7186] The generated RTE shall initialize the memory objects implement-
ing CalprmElementPrototypes in p-ports of CalprmComponentTypes accord-
ing to the ValueSpecification of the ParameterProvideComSpec referring the
CalprmElementPrototype in the p-port.

[rte sws 3959] If the attribute ”perInstanceCalprm” of a CalprmElementPrototype of
an ATOMIC SW-C is set to TRUE the RTE shall support the access to instance specific
calibration parameters of the AUTOSAR SW-C. If the attribute of a CalprmElement-
Prototype of an ATOMIC SW-C is set to FALSE access to a the RTE shall create a
common access to the shared calibration parameter.

[rte sws 7185] The generated RTE shall initialize the memory objects im-
plementing CalprmElementPrototypes in the role perInstanceCalprm
or sharedCalprm if a LocalParameterInitValueAssignment (part of

92 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

InternalBehavior) exists referring to the CalprmElementPrototype according
to this ValueSpecification.

It might be project specific or even project phase specific which calibration parameters
have to be calibrated and which are assumed to be stable. So it shall be selectable on
CalprmComponentTypes and AUTOSAR SW-C granularity level for which calibration
parameters RTE shall support calibration.

[rte sws 3905] It shall be configurable for each CalprmComponentType if RTE calibra-
tion support for the enclosed CalprmElementPrototypes is enabled or not.

[rte sws 3906] It shall be configurable for each AUTOSAR SW-C if RTE calibration
support for the enclosed CalprmElementPrototypes is enabled or not.

RTE calibration support means the creation of SW as specified in section 4.2.6.3.5
”Data emulation with SW support”.

Require ports on CalprmComponentTypes don’t make sense. CalprmComponent-
Types only have to provide calibration parameters to other Component types. So the
RTE generator shall reject configurations containing require ports attached to Calprm-
ComponentTypes. (see section A.14)

4.2.6.3.1.1 Separation of calibration parameters

Sometimes it is required that one or more calibration parameters out of the mass of
calibration parameters of an CalprmComponentType respectively an AUTOSAR SW-C
shall be placed in another memory location than the other parameters of the Calprm-
ComponentType respectively the AUTOSAR SW-C. This might be due to security rea-
sons (separate normal operation from monitoring calibration data in memory) or the
possibility to change calibration data during a diagnosis session (which the calibration
parameter located in NVRAM).

[rte sws 3907] The RTE generator shall support separation of calibration parameters
from CalprmComponentTypes respectively AUTOSAR SW-Cs depending on the Cal-
prmElementPrototype property ”swAddrMethod”.

4.2.6.3.2 Support for offline calibration

As described in section 4.2.6.1 when using an offline calibration process measure-
ment is decoupled from providing new calibration parameters to the ECUs SW. During
measurement phase information is collected needed to define to which values the cal-
ibration parameters are to be set best. Afterwards the new calibration parameter set is
brought into the ECU e.g. by using a bootloader.

93 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 3971] The RTE generator shall have the option to switch off all data emulation
support for generated RTE code. This option shall influence complete RTE code at
once.

The term data emulation is related to mechanisms described in section 4.2.6.3.3.

Out of view of RTE the situation is same as when data emulation without SW support
(described in section 4.2.6.3.4) is used:
The RTE is only responsible to provide access to the calibration parameters via the
RTE API as specified in section 5.6. Exchange of CalprmElement content is done
invisibly for ECU program flow and with this for RTE too.

When no data emulation support is required calibration parameter accesses to param-
eters stored in FLASH could be performed by direct memory read accesses without
any indirection for those cases when accesses are coming out of single instantiated
AUTOSAR SW-Cs. Nevertheless it’s not goal of this specification to require direct ac-
cesses since this touches implementation. It might be ECU HW dependent or even
be project dependent if other accesses are more efficient or provide other significant
advantages or not.

4.2.6.3.3 Support for online calibration: Data emulation

To allow online calibration it must be possible to provide alternative calibration param-
eters invisible for application. The mechanisms behind are described here. We talk of
data emulation.

In the following several calibration methods are described:

1. Data emulation without SW support and

2. several methods of data emulation with SW-support.

The term data emulation is used because the change of calibration parameters is
emulated for the ECU SW which uses the calibration data. This change is invisible for
the user-SW in the ECU.

RTE is significantly involved when SW support is required and has to create calibration
method specific SW. Different calibration methods means different support in Basic
SW which typically is ECU integrator specific. So it does not make sense to support
DIFFERENT data emulation with SW support methods in ANY one RTE build. But
it makes sense that the RTE supports direct access (see section 4.2.6.3.4) for some
AUTOSAR SW-Cs resp. CalprmComponentTypes and one of the data emulation with
SW support methods (see section 4.2.6.3.5) for all the other AUTOSAR SW-Cs resp.
CalprmComponentTypes at the same time.

[rte sws 3909] The RTE shall support only one of the data emulation with SW support
methods at once.

94 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.2.6.3.4 Data emulation without SW support (direct access)

For ”online calibration” (see section 4.2.6.1) the ECU is provided with additional
hardware which consists of control logic and memory to store modified calibration
parameters in. During ECU execution the brought in control logic redirects memory
accesses to new bought in memory whose content is modified by external tooling
without disturbing normal ECU program flow. Some microcontrollers contain features
supporting this. A lot of smaller microcontrollers don’t. So this methods is highly HW
dependent.

To support these cases the RTE doesn’t have to provide e.g. a reference table like
described in section 4.2.6.3.5. Exchange of CalprmElement content is done invisibly
for program flow and for RTE too.

[rte sws 3942] The RTE generator shall have the option to switch off data emulation
with SW support for generated RTE code. This option shall influence complete RTE
code at once.

4.2.6.3.5 Data emulation with SW support

In case ”online calibration” (see section 4.2.6.1) is required, quite often data emulation
without support by special SW constructs isn’t possible. Several methods exist, all
have the consequence that additional need of ECU resources like RAM, ROM/FLASH
and runtime is required.

Data emulation with SW support is possible in different manners. During calibration
process in each of these methods modified calibration data values are kept typically in
RAM. Modification is controlled by ECU external tooling and supported by ECU internal
SW located in AUTOSAR basic SW or in complex driver.

If calibration process isn’t active the accessed calibration data is originated in
ROM/FLASH respectively in NVRAM in special circumstances (as seen later on).

Since multiple instantiation is to be supported several instances of the same
CalprmElementPrototypes have to be allocated. Because the RTE is the only one
SW in an AUTOSAR ECU able to handle the different instances the access to these
calibration parameters can only be handled by the RTE. So the RTE has to provide
additional SW constructs required for data emulation with SW support for calibration.

However the RTE doesn’t know which of the ECU functionality shall be calibrated dur-
ing a calibration session. To allow expensive RAM to be reused to calibrate different
ECU functionalities in one or several online calibration sessions (see 4.2.6.1) in case of
the single and double pointered methods for data emulation with SW support described
below the RTE has only to provide the access to CalprmElements during runtime but
allowing other SW (a BSW module or a complex driver) to redirect the access to alter-
native calibration parameter values (e.g. located in RAM) invisibly for application.

95 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

The RTE is neither the instance to supply the alternative values for CalprmElements
nor in case of the pointered methods for data emulation with SW support to do the
redirection to the alternative values.

[rte sws 3910] The RTE shall support data emulation with SW support for calibration.

[rte sws 3943] The RTE shall support these data emulation methods with SW support:

• Single pointered calibration parameter access
further called ”single pointered method”

• Double pointered calibration parameter access further called ”double pointered
method”

• Initialized RAM parameters further called ”initRAM parameter method”

To save RAM/ROM/FLASH resources in single pointered method and double pointered
method CalprmElement allocation is done in groups. One entry of the calibration
reference table references the begin of a group of CalprmElements. For better under-
standing successional this group is called CalprmElementGroup (which is no term
out of the AUTOSAR SW-C template specification [17]). One CalprmElementGroup
can contain one or several CalprmElements.

[rte sws 3911] If data emulation with SW support is enabled, the RTE generator shall
allocate all CalprmElements marked with same property ”swAddrMethod” of one in-
stance of a CalprmComponentType consecutively. Together they build a separate Cal-
prmElementGroup.

[rte sws 3912] If data emulation with SW support is enabled, the RTE shall guarantee
that all CalprmElements marked with same property ”swAddrMethod” of an AUTOSAR
SWC instance are allocated consecutively. Together they build a separate CalprmEle-
mentGroup.

It is not possible to access same calibration parameter inside of a CalprmComponent-
Type via several ports. This is a consequence of the need to support the use case
that a CalprmComponentType shall be able to contain several calibration parameters
derived from one CalprmElementPrototype which is contained in one interface applied
to several ports of the CalprmComponentType. Using only the CalprmElementProto-
type names for the names of the elements of a CalprmElementGroup would lead to
a name clash since then several elements with same name would have to created.
So port prototype and CalprmElementPrototype name are concatenated to specify the
CalprmElementGroup member names.
This use case cannot be applied to AUTOSAR SW-C internal calibration parameters
since they cannot be accessed via AUTOSAR ports.

[rte sws 3968] The names of the elements of a CalprmElementGroup derived from
a CalprmComponentType shall be <port>_<element> where <port> is the short-

96 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

name of the provided AUTOSAR port prototype and <element> the short-name of the
CalprmElementPrototype within the CalPrmInterface categorizing the PPort.

4.2.6.3.5.1 Single pointered method

There is one calibration reference table in RAM with references to one or several Cal-
prmElementGroups. Accesses to calibration parameters are indirectly performed via
this reference table.

Action during calibration procedure e.g. calibration parameter value exchange is not
focus of this specification. Nevertheless an example is given for better understanding.

Example how the exchange of calibration parameters could be done for single point-
ered method:

1. Fill a RAM buffer with the modified calibration parameter values for complete
CalprmElementGroup

2. Modify the corresponding entry in the calibration reference table so that a redi-
rection to new CalprmElementGroup is setup

Now calibration parameter accesses deliver the modified values.

Figure figure 4.21 illustrates the method.

Calibration
reference

table…

CalprmElement CalprmElementGroup

Figure 4.21: CalprmElementGroup in single pointered method context

[rte sws 3913] If data emulation with SW support with single pointered method is en-
abled, the RTE generator shall create a table located in RAM with references to Cal-
prmElementGroups. The type of the table is of ArrayType.

One reason why in this approach the calibration reference table is realized as an array
is to make ECU internal reference allocation traceable for external tooling. Another is to
allow a Basic-SW respectively a complex driver to emulate other calibration parameters
which requires the standardization of the calibration reference table too.

97 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 3947] If data emulation with SW support with single method is enabled the
name (the label) of the calibration reference table shall be <RteCalprmRefTab>.

Calibration parameters located in NVRAM are handled same way (also see section
4.2.6.3.6).

[rte sws 3936] If data emulation with SW support with single or double pointered
method is enabled and calibration parameter respectively a CalprmElementGroups is
located in NVRAM the corresponding calibration reference table entry shall reference
the PerInstanceMemory working as the NVRAM RAM buffer.

4.2.6.3.5.2 Double pointered method

There is one calibration reference table in ROM respectively Flash with references
to one or several CalprmElementGroups. Accesses to calibration parameters are
performed through a double indirection access. During system startup the base
reference is initially filled with a reference to the calibration reference table.

Action during calibration procedure e.g. calibration parameter value exchange is not
focus of this specification. Nevertheless an example is given for better understanding.

Example how the exchange of calibration parameters could be done for double point-
ered method:

1. Copy the calibration reference table into RAM

2. Fill a RAM buffer with modified calibration parameter values for complete Cal-
prmElementGroup

3. Modify the corresponding entry in the RAM copy of the reference table so that a
redirection to new CalprmElementGroup is setup

4. Change the content of the base reference so that it references the calibration
reference table copy in RAM.

Now calibration parameter accesses deliver the modified values.

[rte sws 3914] If data emulation with SW support with double pointered method is
enabled, the RTE generator shall create a table located in ROM respectively FLASH
with references to CalprmElementGroups. The type of the table is of ArrayType.

Figure figure 4.22 illustrates the method.

To allow a Basic-SW respectively a complex driver to emulate other calibration param-
eters the standardization of the base reference is required.

[rte sws 3948] If data emulation with SW support with double method is enabled the
name (the label) of the calibration base reference shall be <RteCalprmBase>. This
label and the base reference type shall be exported and made available to other SW

98 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Calibration

reference

table…

Base reference

CalprmElement CalprmElementGroup

Figure 4.22: CalprmElementGroup in double pointered method context

on same ECU.

Calibration parameters located in NVRAM are handled same way (also see section
4.2.6.3.6).

For handling of calibration parameters located in NVRAM with single or double point-
ered method see rte sws 3936 in section 4.2.6.3.5.1. General information is found in
section 4.2.6.3.6).

4.2.6.3.5.3 InitRam parameter method

For each instance of a CalprmElementPrototype the RTE generator creates a calibra-
tion parameter in RAM and a corresponding value in ROM/FLASH. During startup of
RTE the calibration parameter values of ROM/FLASH are copied into RAM. Accesses
to calibration parameters are performed through a direct access to RAM without any
indirection.

Action during calibration procedure e.g. calibration parameter value exchange is not
focus of this specification. Nevertheless an example is given for better understanding:
An implementation simply would have to exchange the content of the RAM cells during
runtime.

[rte sws 3915] If data emulation with SW support with initRam parameter method is
enabled, the RTE generator shall create code guaranteeing that

1. calibration parameters are allocated in ROM/Flash and

2. a copy of them is allocated in RAM made available latest during RTE startup

for those CalprmElementPrototypes for which calibration support is enabled.

99 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

RTE access

Copy

Parameter in
ROM / FLASH

...

Copied parameter in
RAM

...

Figure 4.23: initRam Parameter method setup

Figure figure 4.23 illustrates the method.

A special case is the access of CalprmElementPrototypes instantiated in NVRAM (also
see section 4.2.6.3.6). In this no extra RAM copy is required because a RAM location
containing the calibration parameter value still exists.

[rte sws 3935] If data emulation with SW support with initRam parameter method is
enabled, the RTE generator shall create direct accesses to the PerInstanceMemory
working as RAM buffer for the calibration parameters defined to be in NVRAM.

4.2.6.3.5.4 Arrangement of a CalprmElementGroup for pointered methods

For data emulation with SW support with single or double pointered methods the RTE
has to guarantee access to each single member of a CalprmElementGroup for source
code and object code delivery independent if the member is a primitive or a complex
data type. For this the creation of a record type for a CalprmElementGroup was chosen.

[rte sws 3916] One CalprmElementGroup shall be realized as one record type.

To support object code delivery of CalprmComponents and AUTOSAR SWCs the Cal-
prmElement sequence order in a CalprmElementGroup and in the reference table have
to be specified too.

[rte sws 3917] In compatibility mode the members of a CalprmElementGroup are or-
dered consecutively according following sequence:

1. At first primitive types:

(a) Double types (BSW: base type float64)

(b) Double with NaN types (BSW: base type float64)

(c) Float types (BSW: REAL-TYPEs with base type float32)

100 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

(d) Float with NaN types (BSW: REAL-TYPEs with base type float32)

(e) UInt32 types (BSW: INTEGER-TYPEs with base type uint32

(f) SInt32 types (BSW: INTEGER-TYPEs with base type sint32

(g) OPAQUE-TYPEs with base type uint32

(h) UInt16 types (BSW: base type uint16

(i) SInt16 types (BSW: base type sint16

(j) Char16 types (BSW: base type uint16

(k) OPAQUE-TYPEs with base type uint16

(l) UInt8 types (BSW: base type uint8

(m) SInt8 types (BSW: base type sint8

(n) Char8 types (BSW: base type uint8

(o) OPAQUE-TYPEs with base type uint8

(p) UInt4 types (BSW: base type uint4

(q) SInt4 types (BSW: base type sint4

(r) Boolean types (BSW: base type boolean

2. Second the complex data types (the elements of AUTOSAR arrays and records
are ”ordered”, therefore there is no need to specify sequence rules):

(a) array types

(b) record types

For AUTOSAR data types also see 5.3.4.

In vendor mode CalprmElementGroup order can be redefined to support target specific
needs.

[rte sws 3918] Sequence order of elements of same type in a CalprmElementGroup
derived from a AUTOSAR SW-C shall be alphabetically (ASCII / ISO 8859-1 code in
ascending order) derived from CalprmElementPrototype names.

With respect to requirement rte sws 3968 this is different for parameters stored in Cal-
prmComponentTypes:

[rte sws 3969] Sequence order of elements of same type in a CalprmElementGroup
derived from a CalprmComponentType shall be alphabetically (ASCII / ISO 8859-1
code in ascending order) at first derived from AUTOSAR port prototype name and if
equal secondly derived from CalprmElementPrototype names.

101 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.2.6.3.5.5 Further definitions for pointered methods

As stated in section 4.2.6.3.1.1, dependent of the value of property ”swAddrMethod”
calibration parameters shall be separated in different memory locations.

[rte sws 3908] If data emulation with SW support with single or double pointered
method is enabled the RTE shall create a separate instance specific CalprmElement-
Group for all those CalprmElementPrototypes with a common value of the appended
property ”swAddrMethod”. Those CalprmElementPrototypes which have no property
”swAddrMethod” appended, shall be grouped together too.

To allow traceability for external tooling an order must be specified for entries in cali-
bration reference table.

[rte sws 3920] The entries of the reference table of data emulation with SW support
with single or double pointered method shall be a sorted alphabetically (ASCII / ISO
8859-1 code in ascending order) based on the names of the first CalprmElementPro-
totype member of the referenced CalprmElementGroups.

[rte sws 3940] Entries in the calibration reference table for data emulation with SW
support with single or double pointered method caused by multiple instantiation of Cal-
prmComponentTypes respectively AUTOSAR SW-Cs shall be sorted based on the Cal-
prmComponentTypes respectively AUTOSAR SW-Cs instance names. Sorting rule is
ASCII / ISO 8859-1 code in ascending order.

4.2.6.3.5.6 Calibration parameter access

Calibration parameters are derived from CalprmElementPrototypes.

[rte sws 3921] The RTE has to provide access to each calibration parameter via a
separate API call.

API is specified in 5.6.

[rte sws 3922] If data emulation with SW support and single or double pointered
method is enabled the RTE generator shall export the label of the calibration reference
table.

[rte sws 3960] If data emulation with SW support and double pointered method is
enabled the RTE generator shall export the label and the type of the calibration base
reference.

[rte sws 3932] If data emulation with SW support with single pointered method is en-
abled the RTE generator shall create API calls using single indirect access via the
calibration reference table for those CalprmElementsPrototypes which are in a Cal-
prmElementGroup for which calibration is enabled.

[rte sws 3933] If data emulation with SW support with double pointered method is
enabled the RTE generator shall create API calls using double indirection access via

102 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

the calibration base reference and the calibration reference table for those CalprmEle-
mentPrototypes which are in a CalprmElementGroup for which calibration is enabled.

[rte sws 3934] If data emulation with SW support with double pointered method is
enabled, the calibration base reference shall be located in RAM.

4.2.6.3.5.7 Calibration parameter allocation

Since only the RTE knows which instances of AUTOSAR SW-Cs and CalprmCompo-
nentTypes are present on the ECU the RTE has to allocate the calibration parameters
and reserve memory for them. This approach is also covering multiple instantiated
object code integration needs. So memory for instantiated CalprmElementPrototypes
is neither provided by CalprmComponentTypes nor by AUTOSAR SW-C.

[rte sws 3961] The RTE shall allocate the memory for calibration parameters.

A CalprmElementType can be defined to be instance specific or can be shared over all
instances of an AUTOSAR SW-C or a CalprmComponentType. The input for the RTE
generator contains the values the RTE shall apply to the calibration parameters.

To support online and offline calibration (see section 4.2.6.1) all parameter values for
all instances have to be provided.
Background:

• For online calibration often initially the same default values for calibration param-
eters can be applied. Variation is then handled later by post link tools. Initial
ECU startup is not jeopardized. This allows the usage of a default value e.g. by
AUTOSAR SW-C or CalprmComponentType supplier for all instances of a Cal-
prmElementPrototype.

• On the other hand applying separate default values for the different instances
of a CalprmElementPrototype will be required often for online calibration too, to
make a vehicle run initially. This requires additional configuration work e.g. for
integrator.

• Offline calibration based on new SW build including new RTE build and com-
pilation process requires all calibration parameter values for all instances to be
available for RTE.

Shared CalprmElementPrototypes

[rte sws 3962] For accesses to a shared CalprmElementPrototype the RTE API shall
deliver the same one value independent of the instance the calibration parameter is
assigned to.

[rte sws 3963] The calibration parameter of a shared CalprmElementPrototype shall
be stored in one memory location only.

103 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Requirements rte sws 3962 and rte sws 3963 are to guarantee that only one physical
location in memory has to be modified for a change of a shared CalprmElementProto-
type. Otherwise this could lead to unforseeable confusion.
Multiple locations are possible for calibration parameters stored in NVRAM. But there
a shared CalprmElementPrototype is allowed to have only one logical data too.

Instance specific CalprmElementPrototypes

[rte sws 3964] For accesses to an instance specific CalprmElementPrototype the RTE
API shall deliver a separate calibration parameter value for each instance of a Cal-
prmElementPrototype.

[rte sws 3965] For an instance specific CalprmElementPrototype the calibration
parameter value of each instance of the CalprmElementPrototype shall be stored in a
separate memory location.

Usage of swAddressMethod

SwDataDefProps contain the optional property swAddressMethod. It contains meta
information about the memory section in which a measurement data store resp. a
calibration parameter shall be allocated in. This abstraction is needed to support the
reuse of unmodified AUTOSAR SW-Cs resp. CalprmComponentTypes in different
projects but allowing allocation of measurement data stores resp. calibration parame-
ters in different sections.
Section usage typically depends on availability of HW resources. In one project the
micro controller might have less internal RAM than in another project, requiring that
most measurement data have to be placed in external RAM. In another project one
addressing method (e.g. indexed addressing) might be more efficient for most of the
measurement data - but not for all. Or some calibration parameters are accessed
less often than others and could be - depending on project specific FLASH availability
- placed in FLASH with slower access speed, others in FLASH with higher access
speed.

[rte sws 3981] The memory section used to store measurement values in shall be
the the memory sections associated with the swAddressMethod enclosed in the Sw-
DataDefProps of a measurement definition.

Since it’s measurement data obviously this must be in RAM.

[rte sws 3982] The memory section used to store calibration parameters in shall be
the the memory sections associated with the swAddressMethod enclosed in the Sw-
DataDefProps of a calibration parameter definition.

104 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.2.6.3.5.8 Default parameter values

CalprmComponentPrototype or AUTOSAR SW-Cs have to provide one default value
for each CalprmElementPrototype. The RTE has to apply this default value for a cali-
bration parameters for all instances of the CalprmElementPrototype if not explicitly an
additional calibration parameters is provided. This additional provided parameter value
which can be instance specific overrules the default value.

Example:

A CalprmComponentType with calibration parameters for several window lifters con-
tains these 2 CalprmElementPrototypes:

• LeftHandDrive
- shared
- Boolean
- interpretation 0=left/1=right
- default value = 0

• InitialWindowSpeed
- instanceSpecific
- UInt8
- interpretation 0 = 0m/s, 255 = 0.255m/s
- default value = 100

If the RTE generator doesn’t get explicitly values for ”LeftHandDrive” and ”InitialWin-
dowSpeed” than he will apply

1. value 0 for ”LeftHandDrive”

2. value 100 for first instance of ”InitialWindowSpeed”

3. value 100 for second instance of ”InitialWindowSpeed”

If the RTE generator only gets additionally the explicit value 1 for ”LeftHandDrive” than
he will apply

1. value 1 for ”LeftHandDrive”

2. value 100 for first instance of ”InitialWindowSpeed”

3. value 100 for second instance of ”InitialWindowSpeed”

If the RTE generator gets additionally the explicit value 1 for ”LeftHandDrive” and the
value 123 for the first instance of ”InitialWindowSpeed” than he will apply

1. value 1 for ”LeftHandDrive”

2. value 123 for first instance of ”InitialWindowSpeed”

3. value 100 for second instance of ”InitialWindowSpeed”

105 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 3966] The RTE generator shall apply the default calibration parameter value
for all instances of a CalprmElementPrototype for which no explicit alternative value is
provided.

[rte sws 3967] If an explicit calibration parameter value is specified for a CalprmEle-
mentPrototype the RTE generator shall apply this value according to the specified in-
stance.

4.2.6.3.6 Calibration parametes in NVRAM

Calibration parameters can be located in NVRAM too. One use case for this is to have
the possibility to modify calibration parameters via a diagnosis service without need for
special calibration tool.

To allow NVRAM calibration parameters to be accessed, NVRAM with statically al-
located RAM buffer in form of PIM memory for the calibration parameters has to be
defined. Support of NVRAM with temporarily associated RAM buffer is not possible.

[rte sws 3937] The RTE shall support calibration parameters configured to be allo-
cated in NVRAM. Access to these parameters shall be supported via access of asso-
ciated permanent PIM buffer.

[rte sws 3938] The RTE generator shall reject configurations with calibration param-
eters defined in NVRAM when no associated NVRAM buffer in form of PIM has been
defined statically.

4.2.6.3.7 Calibration parameters in Basic-SW

Calibration parameters can be defined in AUTOSAR SW as well as in Basic-SW (re-
spectively in complex drivers). So data emulation must be possible for them all requir-
ing special SW constructs for data emulation with SW support as described above.

But how can Basic-SW (respectively a complex drivers) force the allocation of their
calibration parameters? In principle there are 2 possibilities. Which one to chose is not
focus of this RTE specification.

1. RTE provides the calibration parameter access
Basic-SW implementing an AUTOSAR Interface can define a CalprmComponent-
Type with the CalprmelementPrototypes it requires, define an AUTOSAR Inter-
face in plus and define constraints about connections between them.

2. Calibration parameter access invisible for RTE
Since multiple instantiation is not allowed for Basic-SW it’s possible for Basic-SW
to define own methods how calibration parameters are allocated. In case data
emulation with SW-support is used, the Basic-SW (respectively complex driver)
which handles emulation details and data exchange with external calibration tools

106 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

then has to deal with two emulation methods at once: The one the RTE uses and
the other one the Basic-SW practices.

4.3 Communication Models

AUTOSAR supports two basic communication patterns: Client-Server and Sender-
Receiver. AUTOSAR software-components communicate through well defined ports
and the behavior is statically defined by attributes. Some attributes are defined on
the modeling level and others are closely related to the network topology and must be
defined on the implementation level.

The RTE provides the implementation of these communication patterns. For inter-
ECU communication the RTE uses the functionalities provided by COM. For intra-ECU
communication the RTE can use the services of COM, but may as well implement the
functionality on its own if that is more efficient.

With Sender-Receiver communication there are two main principles: Data Distribution
and Event Distribution. When data is distributed, the last received value is of inter-
est (last-is-best semantics). When events are distributed the whole history of received
events is of interest, hence they must be queued on receiver side. Therefore an ’is-
Queued’ attribute of the data element is used to distinguish between Data and Event
Distribution. 2 If a data element has event semantics, the isQueued attribute is set to
true, if the data element has data semantics, the isQueued attribute is set to false.

[rte sws 5508] The RTE generator shall reject the configuration when an r-port is con-
nected to an r-port or a p-port is connected to a p-port with an AssemblyConnector-
Prototypes or a ServiceConnectorPrototype.

For example, a required port (r-port) of a component typed by an AUTOSAR sender-
receiver interface can read data elements of this interface. A provide port (p-port) of a
component typed by an AUTOSAR sender-receiver interface can write data elements
of this interface.

[rte sws 7006] The RTE generator shall reject the configuration when an r-port is con-
nected to a p-port or a p-port is connected to an r-port with a DelegationConnectorPro-
totypes.

4.3.1 Sender-Receiver

4.3.1.1 Introduction

Sender-receiver communication involves the transmission and reception of signals con-
sisting of atomic data elements that are sent by one component and received by one
or more components. A sender-receiver interface can contain multiple data elements.

2The isQueued attribute corresponds to the VFB attribute INFORMATION TYPE.

107 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Sender-receiver communication is one-way - any reply sent by the receiver is sent as
a separate sender-receiver communication.

[rte sws 5508] The RTE generator shall reject the configuration when an r-port is con-
nected to an r-port or a p-port is connected to a p-port. A require port (r-port) of a
component typed by an AUTOSAR sender-receiver interface can read data elements
of this interface. A provide port (p-port) of a component typed by an AUTOSAR sender-
receiver interface can write data elements of this interface.

4.3.1.2 Receive Modes

The RTE supports multiple receive modes for passing data to receivers. The four
possible receive modes are:

• “Implicit data read access” – when the receiver’s runnable executes it shall
have access to a “copy” of the data that remains unchanged during the execution
of the runnable.

[rte sws 6000] For data elements specified with implicit data read access, the
RTE shall make the receive data available to the runnable through the semantics
of a copy [RTE00128].

[rte sws 6001] For data elements specified with implicit data read access the
receive data shall not change during execution of the runnable [RTE00128].

When “implicit data read access” is used the RTE is required to make the data
available as a “copy”. It is not necessarily required to use a unique copy for each
runnable. Thus the RTE may use a unique copy of the data for each runnable
entity or may, if several runnables (even from different components) need the
same data, share the same copy between runnables. Runnable entities can only
share a copy of the same data when the scheduling structure can make sure the
contents of the data is protected from modification by any other party.

[rte sws 6004] The RTE shall read the data elements specified with implicit data
read access before the associated runnable entity is invoked [RTE00128].

Complex data types shall be handled in the same way as primitive data types, i.e.
RTE shall make a “copy” available for the runnable.

[rte sws 6003] The “implicit data read access” receive mode shall be valid for all
categories of runnable entity (i.e. 1A, 1B and 2).[RTE00134].

• “Explicit data read access” – the RTE generator creates a non-blocking API
call to enable a receiver to poll (and read) data. This receive mode is an “explicit”
mode since an explicit API call is invoked by the receiver.

The explicit “data read access” receive mode is only valid for category 1B or 2
runnable entities [RTE00134].

108 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

• “wake up of wait point” – the RTE generator creates a blocking API call that the
receiver invokes to read data.

[rte sws 6002] The “wake up of wait point” receive mode shall support a timeout
to prevent infinite blocking if no data is available [RTE00109].

The “wake up of wait point” receive mode is inherently only valid for a category 2
runnable entity.

A category 2 runnable entity is required since the implementation may need to
suspend execution of the caller if no data is available.

• “activation of runnable entity” – the receiving runnable entity is invoked auto-
matically by the RTE whenever new data is available. To access the new data,
the runnable entity either has to use “implicit data read access” or “explicit data
read access”, i.e. invoke an Rte Read or Rte Receive call, depending on the in-
put configuration. This receive mode differs from “implicit data read access” since
the receiver is invoked by the RTE in response to a DataReceivedEvent.

[rte sws 6007] The “activation of runnable entity” receive mode shall be valid for
category 1A, 1B and 2 runnable entities [RTE00134].

The validity of receive modes in conjunction with different categories of runnable entity
is summarized in Table 4.4.

Receive Mode Cat 1A Cat 1B Cat 2
Implicit Data Read Access Yes Yes Yes
Explicit Data Read Access No Yes Yes
Wake up of wait point No No Yes
Activation of runnable entity Yes Yes Yes

Table 4.4: Receive mode validity

The category of a runnable entity is not an inherent property but is instead determined
by the features of the runnable. Thus the presence of explicit API calls makes the
runnable at least category 1B and the presence of a wait point forces the runnable to
be category 2.

4.3.1.2.1 Applicability

The different receive modes are not just used for receivers in sender-receiver commu-
nication. The same semantics are also applied in the following situations:

• Success feedback – The mechanism used to return transmission acknowledg-
ments to a component. See Section 5.2.6.7.

• Asynchronous client-server result – The mechanism used to return the result
of an asynchronous client-server call to a component. See Section 5.7.5.3.

109 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.3.1.2.2 Representation in the Software Component Template

The following list serves as a reference for how the RTE Generator determines the
Receive Mode from its input [RTE00109]. Note that references to “the DataElement-
Prototype” within this sub-section will implicitly mean “the DataElementPrototype for
which the API is being generated”.

• “wake up of wait point” – A DataReceivePoint references a DataElementProto-
type and a WaitPoint references a DataReceivedEvent which in turn references
the same DataElementPrototype.

• “activation of runnable entity” – a DataReceivedEvent refences the DataEle-
mentPrototype and a runnable entity to start when the data is received.

• “explicit data read access” – A DataReceivePoint references the DataElement-
Prototype.

• “implicit data read access” – A DataReadAccess references the DataElement-
Prototype.

It is possible to combine certain access methods; for example ‘activation of runnable
entity’ can be combined with ‘explicit’ or ‘implicit’ data read access (indeed, one of
these pairings is necessary to cause API generation to actually read the datum) but it
is an input error if ‘activation of runnable entity’ and ‘wakeup of wait point’ are combined
(i.e. a WaitPoint references a DataReceivedEvent that references a runnable entity). It
is also possible to specify both implicit and explicit data read access simultaneously.

For details of the semantics of “implicit data read access” and “explicit data read ac-
cess” see Section 4.3.1.5.

4.3.1.3 Multiple Data Elements

A sender-receiver interface can contain one or more data elements. The transmission
and reception of elements is independent – each data element, eg. AUTOSAR signal,
can be considered to form a separate logical data channel between the “provide” port
and a “require” port.

[rte sws 6008] Each data element in a sender-receiver interface shall be sent sepa-
rately [RTE00089].

Example 4.2

Consider an interface that has two data elements, speed and freq and that
a component template defines a provide port that is typed by the interface.
The RTE generator will then create two API calls; one to transmit speed
and another to transmit freq.

Where it is important that multiple data elements are sent simultaneously they should
be combined into a complex data structure (Section 4.3.1.11.1). The sender then cre-

110 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

ates an instance of the data structure which is filled with the required data before the
RTE is invoked to transmit the data.

4.3.1.3.1 Initial Values

[rte sws 6009] For each data element in an interface specified with data semantics
(isQueued = false), the RTE shall support the initValue attribute [RTE00108].

The initValue attribute is used to ensure that AUTOSAR software-components al-
ways access valid data even if no value has yet been received. This information is
required for both inter-ECU and intra-ECU communication. For inter-ECU communica-
tion initial values can be handled by COM but for intra-ECU communication RTE has
to guarantee that initValue is handled.

The specification of an init value is mandatory for each data element prototype with
isQueued = FALSE, see [17].

[rte sws 6010] When isQueued is specified as false, the RTE shall use any speci-
fied initial value to prevent the receiver performing calculations based on invalid (i.e.
uninitialized) values [RTE00107].

The above requirement ensures that RTE API calls return the initialized value until
a “real” value has been received, possibly via the communication service. The re-
quirement does not apply when the isQueued attribute is set to true, i.e. when “event”
semantics are used since the implied state change when the event data is received will
mean that the receiver will not start to process invalid data and would therefore never
see the initialized value.

[rte sws 4500] An initial value cannot be specified when the isQueued attribute is
specified as true [RTE00107].

For senders, an initial value is not used directly by the RTE (since an AUTOSAR SW-C
must supply a value using Rte Send) however it may be needed to configure the com-
munication service - for example, an un-initialised signal can be transmitted if multiple
signals are mapped to a single frame and the communication service transmits the
whole frame when any contained signal is sent by the application. Note that it is not
the responsibility of the RTE generator to configure the communication service.

It is permitted for an initial value to be specified for either the sender or receiver. In this
case the same value is used for both sides of the communication.

[rte sws 4501] If in context of one ECU a sender specifies an initial value and the
receiver does not (or vice versa) the same initial value is used for both sides of the
communication [RTE00108].

It is also permitted for both sender and receiver to specify an initial value. In this case
it is defined that the receiver’s initial value is used by the RTE generator for both sides
of the communication.

111 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 4502] If in context of one ECU both receiver and sender specify an initial
value the specification for the receiver takes priority [RTE00108].

4.3.1.4 Multiple Receivers and Senders

Sender-receiver communication is not restricted to communication connections be-
tween a single sender and a single receiver. Instead, sender receiver communica-
tion connection can have multiple senders (’n:1’ communication) or multiple receivers
(’1:m’ communication) with the restrictions that multiple senders are not allowed for
mode switch notifications, see metamodel restriction rte sws 2670.

The RTE does not impose any co-ordination on senders – the behavior of senders is
independent of the behavior of other senders. For example, consider two senders A
and B that both transmit data to the same receiver (i.e. ’n:1’ communication). Trans-
missions by either sender can be made at any time and there is no requirement that
the senders co-ordinate their transmission. However, while the RTE does not impose
any co-ordination on the senders it does ensure that simultaneous transmissions do
not conflict.

In the same way that the RTE does not impose any co-ordination on senders there is no
co-ordination imposed on receivers. For example, consider two receivers P and Q that
both receive the same data transmitted by a single sender (i.e. ’1:m’ communication).
The RTE does not guarantee that multiple receivers see the data simultaneously even
when all receivers are on the same ECU.

4.3.1.5 Implicit and Explicit Data Reception and Transmission

[rte sws 6011] The RTE shall support ’explicit’ and ’implicit’ data reception and trans-
mission.

Implicit data access transmission means that a runnable does not actively initiate the
reception or transmission of data. Instead, the required data is received automatically
when the runnable starts and is made available for other runnables at the earliest when
it terminates.

Explicit data reception and transmission means that a runnable employs an explicit
API call to send or receive certain data elements. Depending on the category of the
runnable and on the configuration of the according ports, these API calls can be either
blocking or non-blocking.

4.3.1.5.1 Implicit

DataReadAccess

112 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

For the implicit reading of data, called DataReadAccess [RTE00128], the data is made
available when the runnable starts using the semantics of a copy operation and the
RTE ensures that the ’copy’ will not be modified until after the runnable terminates.

When a runnable R is started, the RTE reads all data elements marked with
’DataReadAccess’, if the data elements may be changed by other runnables a copy is
created that will be available to runnable R. The runnable R can read the data element
by using the RTE APIs for implicit read (see the API description in Sect. 5.6.15). That
way, the data is guaranteed not to change (e.g. by write operations of other runnables)
during the entire lifetime of R. If several runnables (even from different components)
need the data, they can share the same buffer. This is only applicable when the
scheduling structure can make sure the contents of the data is protected from mod-
ification by any other party.

Note that this concept implies that the runnable does in fact terminate. Therefore,
while DataReadAccess is allowed for category 1A and 1B runnable entities as well as
category 2 only the former are guaranteed to have a finite execution time. A category
2 runnables that runs forever will not see any updated data.

DataReadAccess is only allowed for DataElement-Prototypes with their isQueued at-
tribute set to false (rte sws 3012).

DataWriteAccess

Implicit sending, called DataWriteAccess [RTE00129], is the opposite concept. Data
elements marked as ’DataWriteAccess’ are sent by the RTE after the runnable termi-
nates. The runnable can write the data element by using the RTE APIs for implicit
write (see the API description in Sect. 5.6.16 and 5.6.17). The sending is independent
from the position in the execution flow in which the Rte IWrite is performed inside the
Runnable. When performing several write accesses during runnable execution to the
same data element, only the last one will be recognized. Here we have a last-is-best
semantics.

Note:
If DataWriteAccess is specified for a certain data element, but no RTE API for implicit
write of this data element is called during an execution of the runnable, an undefined
value is written back when the runnable terminates.

[rte sws 3570] For DataWriteAccess the RTE shall make the send data available to
others (other runnables, other AUTOSAR SWCs, Basic SW, ..) with the semantics of a
copy [RTE00129].

[rte sws 3571] For DataWriteAccess the RTE shall make the send data available to
others (other runnables, other AUTOSAR SWCs, Basic SW, ..) at the earliest when the
runnable returns (exits the ’Running’ state) [RTE00129].

[rte sws 3572] For DataWriteAccesses several accesses to the same data element
performed inside a runnable during one runnable execution shall lead to only one trans-
mission of the data element [RTE00129].

113 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 3573] If several DataWriteAccesses to the same data element are performed
inside a runnable during the runnable execution, the RTE shall use the last value writ-
ten. (last-is-best semantics) [RTE00129]

DataWriteAccess is only sensible for runnable entities that are guaranteed to terminate,
i.e. category 1A and 1B. It is use DataWriteAccess for a category 2 runnable but if they
do not terminate then no data write-back will occur.

[rte sws 3574] DataWriteAccess shall be valid for all categories of runnable entity
[RTE00134].

To get common behavior in RTEs from different suppliers further requirements
defining the semantic of implicit communication exist:

[rte sws 3954] Buffers used by the RTE to contain data copies for implicit communi-
cation shall have task wide scope.

Requirement rte sws 3954 means that all runnable entities mapped to a task that ac-
cess a data element using DataReadAccess and/or DataWriteAccess access the same
buffers.

[rte sws 3598] For implicit communication, a single shared read/write buffer shall be
used when no runnable entity mapped to the task has both DataReadAccess and
DataWriteAccess to the same data element.

[rte sws 3955] For implicit communication, separate read and write buffers shall be
used when at least one runnable entity mapped to the task has both DataReadAccess
and DataWriteAccess to the same data element.

[rte sws 3599] For implicit communication all readers (runnables that perform
DataReadAccess) within a task shall access the same buffer.

[rte sws 3953] For implicit communication all writers (runnables that perform
DataWriteAccess) within a task shall access the same buffer.

The content of a shared buffer (see rte sws 3598) is not guaranteed to stay constant
during the whole task since a writer will change the shared copy and hence read-
ers mapped in the task after the writer will access the updated copy. When buffers
are shared, written data is visible to other runnables within the same execution of the
task. However since no runnable within the task will both read and write the buffer
(rte sws 3598) consistency within a runnable is ensured.

When separate buffers used for implicit communication (see rte sws 3955) any data
written by a runnable is not visible (to either other runnables or to the writing runnable)
until the data is written back after the runnable has terminated. For runnables within
the same task it will not be visible until the next task execution.

[rte sws 3956] The content of a task specific buffer used for DataReadAccess shall
be filled with actual data by a copy action at the begin of the task.

114 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 3957] The content of a buffer modified by DataWriteAccess in one task shall
be made available to runnable entities using DataReadAccess allocated in other tasks
after the execution of the last runnable mapped to the task.

Note:
It’s the semantic of implicit communication that a DataWriteAccess is interpreted as
writing the whole data element.

4.3.1.5.2 Explicit

The behavior of explicit reception depends on the category of the runnable and on the
configuration of the according ports.

An explicit API call can be either non-blocking or blocking. If the call is non-blocking (i.e.
there is a DataReceivePoint referencing the DataElementPrototype for which the API is
being generated, but no WaitPoint referencing the DataReceivePoint), the API call im-
mediately returns the next value to be read and, if the communication is queued (event
reception), it removes the data from the receiver-side queue, see Section 4.3.1.10

[rte sws 6012] A non-blocking RTE API “read” call shall indicate if no data is available
[RTE00109].

In contrast, a blocking call (i.e. there is a WaitPoint referencing the DataReceivePoint
for which the API is being generated) will suspend execution of the caller until new
data arrives (or a timeout occurs) at the according port. When new data is received,
the RTE resumes the execution of the waiting runnable. ([RTE00092])

To prevent infinite waiting, a blocking RTE API call can have a timeout applied. The RTE
monitors the timeout and if it expires without data being received returns a particular
error status.

[rte sws 6013] A blocking RTE API “read” call shall indicate the expiry of a timeout
[RTE00069].

The “timeout expired” indication also indicates that no data was received before the
timeout expired.

Blocking reception of data (“wake up of wait point” receive mode as described in Sec-
tion 4.3.1.2) is only applicable for category 2 runnables whereas non-blocking reception
(“explicit data read access” receive mode) can be employed by runnables of category
2 or 1B. Neither blocking nor non-blocking explicit reception is applicable for category
1A runnable because they must not invoke functions with unknown execution time (see
table 4.4).

[rte sws 6016] The RTE API call for explicit sending (DataSendPoint, [RTE00098])
shall be non-blocking.

Using this API call, the runnable can explicitly send new values of the according data
element.

115 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Explicit writing is valid for runnables of category 1b and 2 only. Explicit writing is not al-
lowed for a category 1A runnable since these require API calls with constant execution
time (i.e. macros).

Although the API call for explicit sending is non-blocking, it is possible for a category
2 runnable to block waiting for a notification whether the (explicit) send operation was
successful. This is specified by the AcknowledgementRequest attribute and occurs by
a separate API call Rte Feedback. If the feedback method is ’wake up of wait point’,
the runnable will block and be resumed by the RTE either when a positive or negative
acknowledgement arrives or when the timeout associated with the wait point expires.

4.3.1.5.3 Concepts of data access

Tables 4.5 and 4.6 summarize the characteristics of implicit versus explicit data recep-
tion and transmission.

116 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Implicit Read Explicit Read
Receiving of data element values
is performed only once when runn-
able starts

Runnable decides when and how
often a data element value is re-
ceived

Values of data elements do not
change while runnable is running.

Runnable can always decide to re-
ceive the latest value

Several API calls to the same signal
always yield the same data element
value

Several API calls to the same sig-
nal may yield different data element
values

Runnable must terminate (all cate-
gories)

Runnable is of cat. 1B or 2

Table 4.5: Implicit vs. explicit read

Implicit Write Explicit Write
Sending of data element values is
only done once after runnable re-
turns

Runnable can decide when sending
of data element values is done via
the API call

Several usages of the API call in-
side the runnable cause only one
data element transmission

Several usages of the API call in-
side the runnable cause several
transmissions of the data element
content. (Depending on the behav-
ior of COM, the number of API calls
and the number of transmissions
are not necessarily equal.)

Runnable must terminate (all cate-
gories)

Runnable is cat. 1B or 2

Table 4.6: Implicit vs. explicit write

4.3.1.6 Transmission Acknowledgement

When AcknowledgementRequest is specified, the RTE will inform the sending compo-
nent if the signal has been sent correctly or not. Note that there is no insurance that the
signal has actually been received correctly by the corresponding receiver AUTOSAR
software-component. Thus, only the RTE on the sender side is involved in supporting
AcknowledgementRequest.

In case of mode switch communication (see Section 4.4), the communication is local
to one ECU. The transmission acknowledgement will be sent, when the mode switch is
executed by the RTE, see rte sws 2587.3

3Currently, no mode switch acknowledgement is defined. If a mode switch acknowledement will be
defined in future releases, it shall be used instead of the transmission acknowledgement.

117 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 5504] The RTE shall support the use of AcknowledgementRequest indepen-
dently for each data item of an AUTOSAR software-component’s AUTOSAR interface
[RTE00122].

[rte sws 5506] The RTE generator shall reject specification of the
AcknowledgementRequest attribute for transmission acknowledgement for 1:n
communication [RTE00125], except for mode switch communication. Restriction: In
some cases, when more than one receiver is connected via one physical bus, this can
not be discovered by the RTE generator.

The result of the feedback can be collected using “wake up of wait point”, “explicit data
read access” or “activation of runnable entity”.

The AcknowledgementRequest attribute allows to specify a timeout.

[rte sws 3754] If AcknowledgementRequest is specified, the RTE shall ensure that
timeout monitoring is performed, regardless of the receive mode of the acknowledge-
ment.

For inter-ECU communication, AUTOSAR COM provides the necessary functionality,
for intra-ECU communication, the RTE has to implement the timeout monitoring.

If a WaitPoint is specified to collect the acknowledgement, two timeout values have to
be specified, one for the AcknowledgementRequest and one for the WaitPoint.

[rte sws 3755] If different timeout values are specified for the AcknowledgementRe-
quest for a DataElementPrototype and for the WaitPoint associated with the DataSend-
CompletedEvent for the DataSendPoint for that DataElementPrototype, the configura-
tion shall be rejected by the RTE generator.

The DataSendCompletedEvent associated with the DataSendPoint for a DataElement-
Prototype shall indicate that the transmission was successful or that the transmission
was not successful. The status information about the success of the transmission shall
be available as the return value of the generated RTE API call.

[rte sws 3756] For each transmission of a DataElementPrototype only one acknow-
ledgement shall be passed to the sending component by the RTE. The acknowledge-
ment indicates either that the transmission was successful or that the transmission was
not successfull.

[rte sws 3757] The status information about the success or failure of the transmission
shall be available as the return value of the RTE API call to retrieve the acknowledge-
ment.

[rte sws 3604] The status information about the success or failure of the transmission
shall be buffered with last-is-best semantics. When a data item is sent, the status
information is reset.

rte sws 3604 implies that once the DataSendCompletedEvent has occurred, repeated
API calls to retrieve the acknowledgement shall always return the same result until the
next data item is sent.

118 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 3758] If the timeout value of the AcknowledgementRequest is 0, no timeout
monitoring shall be performed.

4.3.1.7 Communication Time-out

When sender-receiver communication is performed using some physical network there
is a chance this communication may fail and the receiver does not get an update of
data (in time or at all). To allow the receiver of a data element to react appropriately
to such a condition the SW-C template allows the specification of a time-out which the
infrastructure shall monitor and indicate to the interested software components.

A “data element” is the actual information exchanged in case of sender-receiver com-
munication. In the COM specification this is represented by a ComSignal. In the SW-C
template a data element is represented by the instance of a DataElementPrototype.

[rte sws 5020] When present, the aliveTimeout attribute4 rte sws in 0067 enables
the monitoring of the timely reception of the data element with data semantics (is-
Queued = false) transmitted over the network.

The monitoring functionality is provided by the COM module, the RTE transports the
event of reception time-outs to software components as “data element outdated”. The
software components can either subscribe to that event (activation of runnable entity)
or get that situation passed by the implicit and explicit status information (using API
calls).

[rte sws 5021] If aliveTimeout is present, but the communication is local to the ECU,
time-out monitoring is disabled and no notification of the software components will
occur.

Therefore the Software Component shall not rely in its functionality on the time-out
notification, because for local communication the notification will never occur. Time-out
notification is intended as pure error reporting.

[rte sws 3759] If the aliveTimeout attribute is 0, no timeout monitoring shall be
performed.

[rte sws 5022] If a time-out has been detected, the last correctly received value shall
be provided to the software components (preserving the last-is-best-semantics, see
Section 4.3.1.10.1).

The time-out support (called “deadline monitoring” in COM) provided by COM has
some restrictions which have to be respected when using this mechanism. Since the
COM module is configured based on the System Description the restrictions mainly
arise from the data element to I-PDU mapping. This already has to be considered
when developing the System Description and the RTE Generator can only provide
warnings when inconsistencies are detected. Therefore the RTE Generator needs to
have access to the configuration information of COM.

4This attribute is called “LIVELIHOOD” in the VFB specification

119 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

In case time-out is enabled on a data element with update bit, there shall be a
separate time-out monitoring for each data element with an update bit [COM292].

There shall be an I-PDU based time-out for data elements without an update bit
[COM290]. For all data elements without update bits within the same I-PDU, the small-
est configured time-out of the associated data elements is chosen as time-out for the
I-PDU[COM291]. The notification from COM to RTE is performed per data element.

In case one data element coming from COM needs to be distributed to several SW-
Components the SW-C template allows to specify different aliveTimeout values at
each Port. But COM does only support one aliveTimeout value per data element,
therefore the smallest aliveTimeout value shall be used for the notification of the
time-out to several SW-Components.

4.3.1.8 Data Element Invalidation

The Software Component template allows to specify whether a data element, de-
fined in an AUTOSAR Interface, can be invalidated by the sender. The communication
infrastructure shall provide means to set a data element to invalid and also indicate an
invalid data element to the receiving software components. This functionality is called
“data element invalidation”.

[rte sws 5024] On sender side the canInvalidate attribute rte sws in 5023 (when
present) enables the invalidation support for this data element. The actual value
used to represent the invalid data element shall be specified in the Data Semantics
part of the data element definition defined in rte sws in 50315.

[rte sws 5032] On receiver side the handleInvalid attribute rte sws in 5050 of the
UnqueuedReceiverComSpec specifies how to handle the reception of the invalid value.

[rte sws 5033] Data element invalidation is only supported for data elements with the
isQueued attribute set to false rte sws in 45.

The API to set a data element to invalid shall be provided to the runnable entities
on data element level.

In case an invalidated data element is received a software component can be notified
using the activation of runnable entity. If an invalidated data element is read by the
SW-C the invalid status shall be indicated in the status code of the API.

4.3.1.8.1 Data Element Invalidation in case of Inter-ECU communication

Sender:

If canInvalidate is enabled and the communication is Inter-ECU:
5When canInvalidate is enabled but there is no invalidValue specified it is considered an invalid con-

figuration.

120 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

• explicit data transmission: data element invalidation will be performed by COM
(COM needs to be configured properly).

• implicit data transmission: data element invalidation will be performed by RTE.

Receiver:

[rte sws 5026] If a data element has been received invalidated in case of Inter-ECU
communication and the attribute handleInvalid rte sws in 5050 is set to keep –
the query of the value shall return the value provided by COM together with an in-
dication of the invalid case. Then the reception of the invalid value will be han-
dled as an error and the activation of runnable entities can be performed using the
DataReceiveErrorEvent.

[rte sws 5048] If a data element has been received invalidated in case of Inter-
ECU communication and the attribute handleInvalidrte sws in 5050 is set to
replace – COM shall be configured to perform the “invalid value substitution”
(Com_DataInvalidAction is Replace [COM314]) with the initValue. Then the re-
ception will be handled as if a valid value would have been received (activation of
runnable entities using the DataReceivedEvent).

4.3.1.8.2 Data Element Invalidation in case of Intra-ECU communication

Sender:

[rte sws 5025] If canInvalidate is enabled, and the communication is Intra-ECU,
data element invalidation can be implemented by the RTE or the RTE may utilize the
implementation of the AUTOSAR COM module.

In case of implicit data transmission the RTE shall always implement the data element
invalidation and therefore provide an API to set the data element’s value to the invalid
value. The actual invalid value is specified in the SW-C template rte sws in 5031.

Receiver:

[rte sws 5030] If a data element has been invalidated in case of Intra-ECU commu-
nication and the attribute handleInvalid rte sws in 5050 is set to keep – the query
of the value shall return the same value as if COM would have handled the inval-
idation (copy COM behavior). Then the reception of the invalid value will be han-
dled as an error and the activation of runnable entities can be performed using the
DataReceiveErrorEvent.

[rte sws 5049] If a data element has been received invalidated in case of Intra-ECU
communication and the attribute handleInvalidrte sws in 5050 is set to replace –
RTE shall perform the “invalid value substitution” with the initValue. Then the recep-
tion will be handled as if a valid value would have been received (activation of runnable
entities using the DataReceivedEvent).

121 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.3.1.9 Filters

By means of the filter attribute [RTE00121] an additional filter layer can be added
on the receiver side. Value-based filters can be defined, i.e. only signal values fulfilling
certain conditions are made available for the receiving component. The possible filter
algorithms are taken from OSEK COM version 3.0.2. They are listed in the meta model
(see [17], Sect. ’Communication specification of data filters’). According to the SW-C
template [17], filters are only allowed for signals that are compatible to C language
unsigned integer types (i.e. characters, unsigned integers and enumerations). Thus,
filters cannot be applied to complex data types like records or arrays.

[rte sws 5503] The RTE shall provide value-based filters on the receiver-side as spec-
ified in the SW-C template [17], Section ’Communication specification of data filters’.

[rte sws 5500] For inter-ECU communication, the RTE shall use the filter implemen-
tation of the COM layer [RTE00121]. For intra-ECU communication, the RTE can use
the filter implementation of COM, but may also implement the filters itself for efficiency
reasons, without using COM.

[rte sws 5501] The RTE shall support a different filter specification for each data ele-
ment in a component’s AUTOSAR interface [RTE00121].

4.3.1.10 Buffering

[rte sws 2515] The buffering of sender-receiver communication shall be done on the
receiver side. This does not imply that COM does no buffering on the sender side. On
the receiver side, two different approaches are taken for the buffering of ‘data’ and of
‘events’, depending on the value of the isQueued attribute of the data element.

4.3.1.10.1 Last-is-Best-Semantics for ‘data’ Reception

[rte sws 2516] On the receiver side, the buffering of ‘data’ (isQueued = false) shall be
realized by the RTE by a single data set for each data element instance.

The use of a single data set provides the required semantics of a single element queue
with overwrite semantics (new data replaces old). Since the RTE is required to ensure
data consistency, the generated RTE should ensure that non-atomic reads and writes
of the data set (e.g. for complex data) are protected from conflicting concurrent access.
RTE may use lower layers like COM to implement the buffer.

[rte sws 2517] Depending on the ports attributes, the RTE shall initialize this data set
with a startup value.

[rte sws 2518] Implicit or explicit read access shall always return the last received
data.

122 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Requirement rte sws 2518 applies whether or not there is a DataReceivedEvent refer-
encing the DataElementPrototype for which the API is being generated.

[rte sws 2519] Explicit read access shall be non blocking in the sense that it does not
wait for new data to arrive. The RTE shall provide mutual exclusion of read and write
accesses to this data, e.g., by ExclusiveAreas.

[rte sws 2520] When new data is received, the RTE shall silently discard the previous
value of the data, regardless of whether it was read or not.

4.3.1.10.2 Queueing for ‘event’ Reception

The application of event semantics implies a state change. Events usually have to be
handled. In many cases, a loss of events can not be tolerated. Hence the isQueued
attribute is set to true to indicate that the received ‘events’ have to be buffered in a
queue.

[rte sws 2521] The RTE shall implement a receive queue for each event-like data
element (isQueued = true) of a receive port.

The queueLength attribute of the EventReceiverComSpec referencing the event as-
signs a constant length to the receive queue.

[rte sws 2522] The events shall be written to the end of the queue and read (consum-
ing) from the front of the queue (i.e. the queue is first-in-first-out).

[rte sws 2523] If a new event is received when the queue is already filled, the RTE
shall discard the received event and set an error flag.

[rte sws 2524] The error flag shall be reset during the next explicit read access on
the queue. In this case, the status value RTE E LOST DATA shall be presented to the
application together with the data.

[rte sws 2525] If an empty queue is polled, the RTE shall return with a status
RTE E NO DATA to the polling function, (see chap. 5.5.1).

The minimum size of the queue is 1.

[rte sws 2526] The RTE generator shall reject a queueLength attribute of an Even-
tReceiverComSpec with a queue length ≤ 0.

4.3.1.11 Operation

4.3.1.11.1 Inter-ECU Mapping

This section describes the mapping from DataElementPrototypes to COM signals or
COM signal groups for sender-receiver communication. The mapping is described

123 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

in the input of the RTE generator, in the DataMapping section of the System Tem-
plate [14].

If a DataElementPrototype is mapped to a COM signal or COM signal group but the
communication is local, the RTE generator can use the COM signal/COM signal group
for the transmission or it can use its own direct implementation of the communication
for the transmission.

4.3.1.11.1.1 Primitive Data Types

[rte sws 4504] If a data element is a primitive type and the communication is inter-
ECU, the DataMappings element shall contain a mapping of the data element to at least
one COM signal, else the missing data mapping shall be interpreted as an unconnected
port.

The mapping defines all aspects of the signal necessary to configure the communica-
tion service, for example, the network signal endianess and the communication bus.
The RTE generator only requires the COM signal handle id since this is necessary for
invoking the COM API.

[rte sws 4505] The RTE shall use the handle id of the corresponding COM signal
when invoking the COM API for signals.

The actual COM handle id has to be gathered from the ECU configuration of the COM
module. The input information rte sws in 5079 is used to establish the link between the
ComSignal of the COM module’s configuration and the corresponding SignalInstance
of the System Template.

4.3.1.11.1.2 Complex Data Types

When a data element is a complex type the RTE is required to perform more complex
actions to marshall the data [RTE00091] than is the case for primitive data types.

The DataMappings element of the ECU configuration contains (or reference) sufficient
information to allow the data item or operation parameters to be transmitted. The
mapping indicates the COM signals or signal groups to be used when transmitting
a given data item of a given port of a given software component instance within the
composition.

[rte sws 4506] If a data element is a complex type and the communication is inter-
ECU, the DataMappings element shall contain a mapping of the data element to COM
signals such that each element of the complex data type that is a primitive data type
is mapped to a separate COM signal(s), else the missing data mapping shall be inter-
preted as an unconnected port.

[rte sws 4507] If a data element is a complex type and the communication is inter-
ECU, the DataMappings element shall contain a mapping of the data element to COM

124 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

signals such that each element of the complex data type that is itself a complex data
type shall be recursively mapped to a primitive type and hence to a separate COM
signal(s).

The above requirements have two key features; firstly, COM is responsible for endian-
ness conversion (if any is required) of primitive types and, secondly, differing structure
member alignment between sender and receiver is irrelevant since the COM signals
are packed into I-PDUs by the COM configuration.

The DataMappings shall contain sufficient COM signals to map each primitive element6

of the AUTOSAR signal.

[rte sws 4508] If a data element is a complex type and the communication is inter-
ECU, the DataMappings element shall contain at least one COM signal for each primi-
tive element of the AUTOSAR signal.

[rte sws 2557]

1. Each signal that is mapped to an element of the same composite data item shall
be mapped to the same signal group.

2. If two signals are not mapped to an element of the same composite data item,
they shall not be mapped to the same signal group.

3. If a signal is not mapped to an element of a composite data item, it shall not be
mapped to a signal group.

[rte sws 5081] The RTE shall use the handle id of the corresponding COM signal
group when invoking the COM API for signal groups.

The actual COM handle id has to be gathered from the ECU configuration of the COM
module. The input information rte sws in 5080 is used to establish the link between
the ComSignalGroup of the COM module’s configuration and the corresponding Sig-
nalInstance of the System Template.

4.3.1.11.2 Atomicity

[rte sws 4527] The RTE is required to treat AUTOSAR signals transmitted using
sender-receiver communication atomically [RTE00073]. To achieve this the “signal
group” mechanisms provided by COM shall be utilized. See rte sws 2557 for the map-
ping.

The RTE decomposes the complex data type into single signals as described
above and passes them to the COM module by using the COM API call
Com UpdateShadowSignal. As this set of single signals has to be treated as atomic, it
is placed in a “signal group”. A signal group has to be placed always in a single I-PDU.

6An AUTOSAR signal that is a primitive data type contains exactly one one primitive element whereas
a signal that is a complex type contains one or more primitive elements.

125 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Thus, atomicity is established. When all signals have been updated, the RTE initiates
transmission of the signal group by using the COM API call Com SendSignalGroup.

As would be expected, the receiver side is the exact reverse of the transmission side:
the RTE must first call Com ReceiveSignalGroup precisely once for the signal group
and then call Com ReceiveShadowSignal to extract the value of each signal within the
signal group.

A signal group has the additional property that COM guarantees to inform the receiver
by invoking a call-back about its arrival only after all signals belonging to the signal
group have been unpacked into a shadow buffer.

4.3.1.11.3 Fan-out

Fan-out can be divided into two scenarios; “PDU fanout” where the same I-PDU is sent
to multiple destinations and “signal fan-out” where the same signal, i.e. data element
is sent in different I-PDUs to multiple receivers.

For Inter-ECU communication, the RTE does not perform PDU fan-out. Instead, the
RTE invokes Com_SendSignal once for a primitive data element and expects the fan-
out to multiple destinations to occur lower down in the AUTOSAR communication stack.
However, it is necessary for the RTE to support “signal fan-out” since this cannot be
performed by any lower level layer of the AUTOSAR communication stack.

[rte sws 6023] For inter-ECU transmission of a primitive data type, the RTE shall in-
voke Com_SendSignal for each COM signal to which the primitive data element is
mapped.

If the data element is a complex data type, RTE invokes Com_UpdateShadowSignal
for each primitive element in the complex data type and each COM signal to which
that primitive element is mapped, and Com_SendSignalGroup for each COM signal
group to which the data element is mapped.

[rte sws 4526] For inter-ECU transmission of complex data type, the RTE shall invoke
Com_UpdateShadowSignal for each COM signal to which an element in the com-
plex data type is mapped and Com_SendSignalGroup for each COM signal group to
which the complex data element is mapped.

For intra-ECU transmission of data elements, the situation is slightly different; the RTE
handles the communication (the lower layers of the AUTOSAR communication stack
are not used) and therefore must ensure that the data elements are routed to all re-
ceivers.

[rte sws 6024] For intra-ECU transmission of data elements, the RTE shall perform
the fan-out to each receiver [RTE00028].

126 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.3.1.11.4 Fan-in

When receiving data from multiple senders in inter-ECU communication, either the
RTE on the receiver side has to collect data received in different COM signals or COM
signal groups and pass it to one receiver or the RTE on the sender side has to pro-
vide shared access to a COM signal or COM signal group to multiple senders. The
receiver RTE, which has to handle multiple COM signals or signal groups, is notified
about incoming data for each COM signal or COM signal group separately but has
to ensure data consistency when passing the data to the receiver. The sender RTE,
which has to handle multiple senders sharing COM signals or signal groups, has to
ensure consistent access to the COM API, since COM API calls for the same signal
are not reentrant.

[rte sws 3760] If multiple senders use different COM signals or signal groups for inter-
ECU transmission of a data element prototype with isQueued = false to a receiver, the
RTE on the receiver side has to pass the last received value to the receiver component
while ensuring data consistency.

[rte sws 3761] If multiple senders use different COM signals or signal groups for inter-
ECU transmission of a data element prototype with isQueued = true to a receiver,
the RTE on the receiver side has to queue all incoming values while ensuring data
consistency.

[rte sws 3762] If multiple senders share COM signals or signal groups for inter-ECU
transmission of a data element prototype to a receiver, the RTE on the sender side has
to ensure that the COM API for those signals is not invoked concurrently.

For intra-ECU transmission, the RTE must handle the fan-in, which is already stated in
rte sws 6024.

127 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.3.1.11.5 Sequence diagrams of Sender Receiver communication

Figure 4.24 shows a sequence diagram of how Sender Receiver communication for
data transmission and non-blocking reception may be implemented by RTE. The se-
quence diagram also shows the Rte Read API behavior if an initValue is specified.

Sender
Application

Sender's RTE Sender's COM
Network

Receiver's COM

Receiver's RTE Receiver
application

(3) init value is
stored in the
receiver's OUT
parameter.

(7) The last received
data item a is stored
in the receiver's
OUT parameter

Inter-ECU communication
Explicit Sender-Receiver communication:

Port name = p
Data element name = a
DataElementPrototype attribute isQueued = FALSE (Data
distribution)
The sender DataElementPrototype is referenced by a DataSendPoint

The receiver DataElementPrototype is referenced by a
DataReceivePoint

(5) RTE receives the data item a from COM
and replace the previous value in the RTE
buffer for data item a.
Note! The callback must block the
RTERead_p_a call.

(1) The initValue is
stored in the RTE buffer
allocated for data item
a.

(4) The received data item is
copied to the COM buffer for data
item a and the notification callback
provided by RTE is invoked.

(2) The buffer for data
item a is copied to the
receiver's OUT
parameter.

(6) The buffer for data
item a is copied to the
receiver's OUT
parameter.

Rte_Read_p_a

RTE_E_OK

Rte_Write_p_a

Com_SendSignal

E_OK

RTE_E_OK

Rte_COMCbk_<sn>

Com_ReceiveSignal

E_OK

Rte_Read_p_a

RTE_E_OK

Figure 4.24: Sender Receiver communication with isQueued false and DataReceivePoint
as reception mechanism

128 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Figure 4.25 shows a sequence diagram of how Sender Receiver communication for
event transmission and non-blocking reception may be implemented by RTE. The se-
quence diagram shows the Rte Receive API behavior when the queue is empty.

Sender
Application

Sender's RTE Sender's COM
Netwok

Receiver's COM

Receiver's RTE Receiver
application

(2) The RTE - queue for event
p_e is empty =>
RTE_E_NO_DATA is returned to
Receiver application.

Inter-ECU communication
Explicit Sender-Receiver communication:
Port name = p
Data element name = e
DataElementPrototype attribute isQueued = TRUE (Event distribution)
The sender DataElementPrototype is referenced by a DataSendPoint
The receiver DataElementPrototype is referenced by a DataReceivePoint
No WaitPoint is referencing the DataReceivePoint (non-blocking reception)

(6) The received
event item a is
stored in the
receiver's OUT
parameter

(1) The RTE -
queue for event
p_e is initialized
(flushed).

(4) RTE receives the event
item e from COM and puts
it into the RTE - queue for
event e.

(3) The receiver's COM
invokes the callback
function provided by RTE.

(5) RTE fetches an event
from the event e queue and
copies it to the Receiver's
OUT parameter.

Rte_Receive_p_e

RTE_E_NO_DATA

Rte_Send_p_e

Com_SendSignal

E_OK

RTE_E_OK

Rte_COMCbk_<sn>

Com_ReceiveSignal

E_OK

Rte_Receive_p_e

RTE_E_OK

Figure 4.25: Sender Receiver communication with isQueued true and DataReceivePoint
as reception mechanism

129 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Figure 4.26 shows a sequence diagram of how Sender Receiver communication for
event transmission and activation of runnable entity on the receiver side may be imple-
mented by RTE.

Sender
Application

Sender's RTE Sender's COM
Netwok

Receiver's COM

Receiver's RTE Receiver
runnable

(4) RTE fetches an event
from the event e queue and
calls the receiver's
runnable. (5) The task is

completed

(3) The AUTOSAR OS
task that will execute
the receiver's runnable
is started.

(1) The receiver's COM
invokes the callback
function provided by RTE.

Inter-ECU communication
Port name = p
Data element name = e
DataElementPrototype attribute isQueued = TRUE (Event distribution)
The sender DataElementPrototype is referenced by a DataSendPoint
The receiver DataElementPrototype is referenced by a
DataReceivedEvent which in turn references the receiver
RunnableEntity.

(2) RTE receives the
event item e from COM
and puts it into the RTE -
queue for event e.

Rte_Send_p_e

Com_SendSignal

E_OK

RTE_E_OK

Rte_COMCbk_<sn>

Com_ReceiveSignal

E_OK

Activate an OSEK Task

ReceiversRunnable

Figure 4.26: Sender Receiver communication with isQueued true and activation of runn-
able entity as reception mechanism

130 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.3.2 Client-Server

4.3.2.1 Introduction

Client-server communication involves two entities, the client which is the requirer (or
user) of a service and the server that provides the service.

The client initiates the communication, requesting that the server performs a service,
transferring a parameter set if necessary. The server, in the form of the RTE, waits for
incoming communication requests from a client, performs the requested service and
dispatches a response to the client’s request. So, the direction of initiation is used to
categorize whether a AUTOSAR software-component is a client or a server.

A single component can be both a client and a server depending on the software
realization.

The invocation of a server is performed by the RTE itself when a request is made by
a client. The invocation occurs synchronously with respect to the RTE (typically via a
function call) however the client’s invocation can be either synchronous (wait for server
to complete) or asynchronous with respect to the server.

[rte sws 6019] The only mechanism through which a server can be invoked is through
a client-server invocation request from a client [RTE00029].

The above requirement means that direct invocation of the function implementing the
server outside the scope of the RTE is not permitted.

A server has a dedicated provide port and a client has a dedicated require port. To
be able to connect a client and a server, both ports must be categorized by the same
interface.

The client can be blocked (synchronous communication) respectively non-blocked
(asynchronous communication) after the service request is initiated until the response
of the server is received.

A server implemented by a RunnableEntity with attribute canBeInvokedConcurrently
set to FALSE is not allowed to be invoked concurrently and since a server can have
one or more clients the server may have to handle concurrent service calls (n:1 com-
munication) the RTE must ensure that concurrent calls do not interfere.

[rte sws 4515] It is the responsibility of the RTE to ensure that serialization7 of the
operation is enforced when the server runnable attribute canBeInvokedConcurrently is
FALSE. Note that the same server may be called using both synchronous and asyn-
chronous communication [RTE00033].

7Serialization ensures at most one thread of control is executing an instance of a runnable entity at
any one time. An AUTOSAR software-component can have multiple instances (and therefore a runnable
entity can also have multiple instances). Each instance represents a different server and can be exe-
cuted in parallel by different threads of control thus serialization only applies to an individual instance of
a runnable entity – multiple runnable entities within the same component instance may also be executed
in parallel.

131 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 4516] The RTE’s implementation of the client-server communication has to
ensure that a service result is dispatched to the correct client if more than one client
uses a service [RTE00080].

The result of the client/server operation can be collected using “wake up of wait point”,
“explicit data read access” or “activation of runnable entity”.

If the client and server are executing in the same ECU, i.e. intra ECU Client-Server
communication, the RTE API call for client-server communication (see Sect. 5.6.10)
can be optimized to a direct function call of the client without any interaction with the
RTE or the communication service. Since the communication occurs conceptually via
the RTE (it is initiated via an RTE API call) the optimization does not violate the re-
quirement that servers are only invoked via client-server requests.

4.3.2.2 Multiplicity

Client-server interfaces contain two dimensions of multiplicity; multiple clients invoking
a single server and multiple operations within a client-server interface.

4.3.2.2.1 Multiple Clients Single Server

Client-server communication involves an AUTOSAR software-component invoking a
defined “server” operation in another AUTOSAR software-component which may or
may not return a reply.

[rte sws 4519] The RTE shall support multiple clients invoking the same server oper-
ation (’n:1’ communication where n ≥ 1). [RTE00029]

4.3.2.2.2 Multiple operations

A client-server interface contains one or more operations. A port of a AUTOSAR
software-component that requires an AUTOSAR client-server interface to the com-
ponent can independently invoke any of the operations defined in the interface
[RTE00089].

[rte sws 4517] The RTE API shall support independent access to operations in a
client-server interface [RTE00029].

Example 4.3

Consider a client-server interface that has two operations, op1 and op2 and
that an AUTOSAR software-component definition requires a port typed by
the interface. As a result, the RTE generator will create two API calls; one
to invoke op1 and another to invoke op2. The calls can invoke the server

132 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

operations either synchronously or asynchronously depending on the con-
figuration.

Recall that each data element in a sender-receiver interface is transmitted indepen-
dently (see Section 4.3.1.3) and that the coherent transmission of multiple data items
is achieved through combining multiple items into a single complex data type. The
transmission of the parameters of an operation in a client-server interface is simi-
lar to a record since the RTE guarantees that all parameters are handled atomically
[RTE00073].

[rte sws 4518] The RTE shall treat the parameters (and results) of a client-server
operation atomically [RTE00033].

However, unlike a sender-receiver interface, there is no facility to combine multiple
client-server operations so that they are invoked as a group.

4.3.2.2.3 Single Client Multiple Server

The RTE is not required to support multiple server operations invoked by a single client
component request (’1:n’ communication where n > 1).

4.3.2.2.4 Serialization

Each client can invoke the server simultaneously and therefore the RTE is required to
support multiple requests of servers. If the server requires serialization, the RTE has
to ensure it.

[rte sws 4520] The RTE shall support simultaneous invocation requests of a server
operation. [RTE00080]

[rte sws 4522] The RTE shall ensure that the runnable entity implementing a server
operation has completed the processing of a request before it begins processing the
next request, if serialization is required by the server operation, i.e canBeInvokedCon-
currently attribute set to FALSE [RTE00033].

When this requirement is met the operation is said to be “serialized”. A serialized
server only accepts and processes requests atomically and thus avoids the potential
for conflicting concurrent access.

Client requests that cannot be serviced immediately due to a server operation being
“busy” are required to be queued pending processing. The presence and depth of the
queue is configurable.

If the runnable entity implementing the server operation is reentrant , i.e. canBeIn-
vokedConcurrently attribute set to TRUE, no serialization is necessary. This allows to
implement invocations of reentrant server operations as direct function calls without
involving the RTE.

133 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.3.2.3 Communication Time-out

The ServerCallPoint allows to specify a timeout so that the client can be notified that
the server is not responding and can react accordingly. If the client invokes the server
synchronously, the RTE API call to invoke the server reports the timeout. If the client
invokes the server asynchronously, the timeout notification is passed to the client by
the RTE as a return value of the API call that collects the result of the server operation.

[rte sws 3763] The RTE shall ensure that timeout monitoring is performed for client-
server communication, regardless of the receive mode for the result.

If the server is invoked asynchronously and a WaitPoint is specified to collect the result,
two timeout values have to be specified, one for the ServerCallPoint and one for the
WaitPoint.

[rte sws 3764] If different timeout values are specified for the AsynchronousServer-
CallPoint and for the WaitPoint associated with the AsynchronousServerCallReturn-
sEvent for this AsynchronousServerCallPoint, the configuration shall be rejected by
the RTE generator.

In asynchronous client-server communication the AsynchronousServerCallReturnsEv-
ent associated with the AsynchronousServerCallPoint for an OperationPrototype shall
indicate that the server communication is finished or that a timeout occurred. The
status information about the success of the server operation shall be available as the
return value of the RTE API call generated to collect the result.

[rte sws 3765] For each asynchronous invocation of an operation prototype only one
AsynchronousServerCallReturnsEvent shall be passed to the client component by the
RTE. The AsynchronousServerCallReturnsEvent shall indicate either that the trans-
mission was successful or that the transmission was not successfull.

[rte sws 3766] The status information about the success or failure of the asyn-
chronous server invocation shall be available as the return value of the RTE API call to
retrieve the result.

After a timeout was detected, no result shall be passed to the client.

[rte sws 3770] If a timeout was detected by the RTE, no result shall be passed back
to the client.

Since an asynchronous client can have only one outstanding server invocation at a
time, the RTE has to monitor when the server can be safely invoked again. In normal
operation, the server can be invoked again when the result of the previous invocation
was collected by the client.

[rte sws 3773] If a server is invoked asynchronously and no timeout occurred, the
RTE shall ensure that the server can be invoked again by the same client, after the
result was successfully passed to the client.

In intra-ECU client-server communication, the RTE can determine whether the server
runnable is still running or not.

134 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 3771] If a timeout was detected in asynchronous intra-ECU client-server
communication, the RTE shall ensure that the server is not invoked again by the same
client until the server runnable has terminated.

In inter-ECU communication, the client RTE has no knowledge about the actual status
of the server. The response of the server could have been lost because of a commu-
nication error or because the server itself did not respond. Since the client-side RTE
cannot distinguish the two cases, the client must be able to invoke the server again
after a timeout expired.

[rte sws 3772] If a timeout was detected in asynchronous inter-ECU client-server
communication, the RTE shall ensure that the server can be invoked again by the
same client after the timeout notification was passed to the client.

Note that this might lead to client and server running out of sync, i.e. the response of
the server belongs to the previous, timed-out invocation of the client. The application
has to handle the synchronization of client and server after a timeout occurred.

[rte sws 3767] If the timeout value of the ServerCallPoint is 0, no timeout monitoring
shall be performed.

If the canBeInvokedConcurrently attribute of the server runnable is set to TRUE, no
timeout monitoring has to be performed to allow the optimization of the RTE API call to
invoke the server to a direct function call.

[rte sws 3768] If the canBeInvokedConcurrently attribute of the server runnable is set
to TRUE, no timeout monitoring shall be performed if the RTE API call to invoke the
server is implemented as a direct function call.

4.3.2.4 Port-Defined argument values

Port-defined argument values exist in order to support interaction between Application
Software Components and Basic Software Modules.

Several Basic Software Modules use an integer identifier to represent an object that
should be acted upon. For instance, the NVRAM Manager uses an integer identifier
to represent the NVRAM block to access. This identifier is not known to the client,
as the client must be location independent, and the NVRAM block to access for a
given application software component cannot be identified until components have been
mapped onto ECUs.

There is therefore a mismatch between the information available to the client and that
required by the server. Port-defined argument values bridge that gap.

The required port-defined arguments (the fact that they are required, their data type
and their values) are specified within the input to the RTE generator. (See requirements
rte sws in 1361 and rte sws in 1362.)

135 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 1360] When invoking the runnable entity specified for an OperationInvokedE-
vent, the RTE must include the port-defined argument values between the instance
handle (if it is included) and the operation-specific parameters, in the order they are
given in the template.

Requirement rte sws 1360 means that a client will make a request for an operation on
a require (Client-Server) port including only its instance handle (if required) and the
explicit operation parameters, yet the server will be passed the implicit parameters as
it requires.

Note that the values of implicit parameters are constant for a particular server runnable
entity; it is therefore expected that using port-defined argument values imposes no
RAM overhead (beyond any extra stack required to store the additional parameters).

4.3.2.5 Buffering

Client-Server-Communication is a two-way-communication. A request is sent from the
client to the server and a response is sent back.

Unless a server call is implemented as direct function call, the RTE shall store or buffer
the communication on the corresponding receiving sides, requests on server side and
responses on client side, respectively:

• [rte sws 2527] Unless a server call is implemented as a direct function call, the
RTE shall buffer a request on the server side in a first-in-first-out queue as de-
scribed in chapter 4.3.1.10.2 for queued data elements.

• [rte sws 2528] Unless a server call is implemented as a direct function call, RTE
shall keep the response on the client side in a queue with queue length 1.

For the server side, the attribute queueLength of the ServerComSpec specifies the
length of the queue.

[rte sws 2529] The RTE shall reject a queue of length ≤ 0.

[rte sws 2530] The RTE shall use the queue of requests to serialise access to a
server.

A buffer overflow of the server is not reported to the client. The client will receive a time
out.

[rte sws 7008] If a server call is implemented by direct function call the RTE shall not
create any copies for parameters passed by reference. Therefore, it is the responsibil-
ity of the application to provide consistency mechanisms for referenced parameters if
necessary.

136 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.3.2.6 Inter ECU Response to Request Mapping

RTE is responsible to map a response to the corresponding request. With this map-
ping, RTE can activate or resume the corresponding runnable and provide the re-
sponse to the correct client. The following situations can be distinguished:

• Mapping of a response to the correct request within one ECU. In general, this is
solved already by the call stack. The details are implementation specific and will
not be discussed in this document.

• Mapping of a response coming from a different ECU.

The problem of reqest to response mapping in inter-ECU communication can be split
into:

• Mapping of a response to the correct client. This is discussed in 4.3.2.6.1.

• Mapping of a response to the correct request within of one client. This is dis-
cussed in 4.3.2.6.2.

The general approach for the inter-ECU request response mapping is to use transac-
tion handles.

[rte sws 2649] The transaction handle shall contain two parts of unsigned integer type
with configurable size,

• the client identifier

• and a sequence counter.

[rte sws 2651] The transaction handle shall be used for the identification of client
server transactions communicated via COM.

[rte sws 2652] The transaction handle shall be bundled with the parameters of a re-
quest or response in the same signal group.

[rte sws 2653] The RTE on the server side shall return the transaction handle of the
request without modification together with the response.

Since there is always at most one open request per client (see rte sws 2658), the
transaction handle can be kept within the RTE and does not have to be exposed to the
SW-C.

4.3.2.6.1 Client Identity

The RTE uses the following mechanism to implement client identity:

[rte sws 2579] In case of a server on one ECU with multiple clients on other ECUs, the
client server communication shall use different unique COM signals and signal groups
for each client to allow the identification of the client associated with each system sig-
nal.

137 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

With this mechanism, the server-side RTE must handle the fan-in. This is done in the
same way as for sender-receiver communication.

[rte sws 3769] If multiple clients have access to one server, the RTE on the server
side has to queue all incoming server invocations while ensuring data consistency.

[rte sws 5066] The data type used to hold the client identifier shall be derived from the
system template’s [14] length attribute of the corresponding SystemSignal referenced
by the ClientIdMapping.

The structure is shown in figure 4.27.

4.3.2.6.2 SequenceCounter

The purpose of sequence counters is to map a response to the correct request of a
known client.

[rte sws 2658] In case of inter-ECU communication, RTE shall allow only one request
per client and server operation at any time.

rte sws 2658 does not apply to intra-ECU communication.

rte sws 2658 implies under normal operation that a response can be mapped to the
previous request. But, when a request or response is lost or delayed, this order can get
out of phase. To allow a recovery from lost or delayed signals, a sequence counter is
used. The sequence counter can also be used to detect stale responses after a restart
of the client side RTE and SW-C.

[rte sws 2654] RTE shall have a sequence counter for each inter ECU client server
connection.

[rte sws 2655] RTE shall initialize all sequence counters with zero during Rte Start.

[rte sws 2656] RTE shall increase each sequence counter in a cyclic manner after a
client server operation has finished successfully or with a timeout.

[rte sws 2657] RTE shall ignore incoming responses that do not match the sequence
counter.

[rte sws 5067] The data type used to hold the sequence counter shall be derived
from the system template’s [14] length attribute of the corresponding SystemSignal
referenced by the SequenceCounterMapping.

The structure is shown in figure 4.27.

138 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.3.2.7 Operation

4.3.2.7.1 Inter-ECU Mapping

The client server protocol defines how a client call and the server response are mapped
onto the communication infrastructure of AUTOSAR is case of inter-ECU communica-
tion. This allows RTE implementations from different vendors to interpret the client
server communication in the same way.

The AUTOSAR System Template [14] does specify a protocol for the client server com-
munication in AUTOSAR. A short overview of the major elements is provided in this
section.

The structure in figure 4.27 describes the client server protocol as defined in the AU-
TOSAR System Template [14].

DataMapping

ClientServ erToSignalGroupMapping

ARElement

SystemSignal::
SystemSignalGroup

ClientServ erPrimitiv eTypeMapping

ARElement

SystemSignal::SystemSignal

+ signalLength: Int

Identifiable

PortInterface::
OperationPrototype

DataPrototype

PortInterface::ArgumentPrototype

+ direction: DirectionKind

ClientServerCompositeTypeMappingClientId SequenceCounter ApplicationError EmptySignal

0..1

+containedSignals 1..*

+clientID 0..1 +primitiveTypeMapping *+sequenceCounter 0..1 +applicationError 0..* +emptySignal 0..1 +compositeTypeMapping *

+systemSignal 1
«instanceRef»

+argument 1+systemSignal 1
+systemSignal

1+systemSignal 1 +systemSignal 1

«instanceRef»
+mappedOperation 1

+argument * {ordered}

1

+signalGroup 1

Figure 4.27: Standardized client server protocol

For each OperationPrototype defined at a PortPrototype two ClientServerToSig-
nalGroupMapping objects have to be defined representing the server call and the
response.

[rte sws 5054] The RTE Generator shall reject an input configuration where for any
OperationPrototype of any PortPrototype there are no two ClientServerToSignal-
GroupMappings defined, one representing the server call and the other representing
the response.

[rte sws 5055] The RTE Generator shall use the ClientServerToSignalGroupMap-
ping information to establish the configuration with the lower layers of AUTOSAR (e.g.
COM).

[rte sws 6028] The arguments, application errors, client identifier, and sequence
counter of an operation shall be mapped to two dedicated composite data items; one
for the request and one for the response.

Each ClientServerToSignalGroupMapping references a unique SystemSignal-
Group which holds all the signals related to the call or response.

139 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

For each ArgumentPrototype either a ClientServerPrimitiveTypeMapping or a
ClientServerCompositeTypeMapping is defined which maps the operation argu-
ments to SystemSignal elements.

[rte sws 5056] If a ClientId element is configured it references the SystemSignal
which holds the Client Id (see section 4.3.2.6.1). The RTE Generator shall utilize this
SystemSignal as the ClientId.

[rte sws 5057] If a SequenceCounter element is configured it references the Sys-
temSignal which holds the Sequence Counter (see section 4.3.2.6.2). The RTE Gen-
erator shall utilize this SystemSignal as the SequenceCounter.

[rte sws 5058] If an ApplicationError element is configured it references the Sys-
temSignal which holds the Application Error (see section 5.2.6.6). The RTE Generator
shall utilize this SystemSignal as the ApplicationError.

There might be configuration where no actual data is transferred between the client
and the server (or vice versa). In this case a SystemSignalGroup shall be used with
an update bit defined in System Description. In this case at least one SystemSignal
is required to be present in the SystemSignalGroup.

[rte sws 5059] If no actual data is configured for a client server communication the
element EmptySignal shall reference a zero length SystemSignal. In this case the
RTE shall send the SignalGroup to initialte the communication.

4.3.2.7.2 Atomicity

The requirements for atomicity from Section 4.3.1.11.2 also apply for the composite
data types described in Section 4.3.2.7.1.

4.3.2.7.3 Fault detection and reporting

Client Server communication may encounter interruption like:

• Buffer overflow at the server side.

• Communication interruption.

• Server might be inaccessible for some reason.

The client specifies a timeout that will expire in case the server or communication fails
to complete within the specified time. The reporting method of an expired timeout
depends on the communication attributes:

• If the C/S communication is synchronous the RTE returns RTE_E_TIMEOUT on the
Rte Call function (see chapter 5.6.10).

• If the C/S communication is asynchronous the RTE returns RTE_E_TIMEOUT on
the Rte Result function (see chapter 5.6.11).

140 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

In the case that RTE detects that the COM service is not available when forwarding
signals to COM, the RTE returns RTE_E_COM_STOPPED on the Rte Call (see chapter
5.6.10).

If the client still has an outstanding server invocation when the server is invoked again,
the RTE returns RTE_E_LIMIT on the Rte Call (see chapter 5.6.10).

In the absence of structural errors, application errors will be reported if present.

141 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.3.2.7.4 Asynchronous Client Server communication

Figure 4.28 shows a sequence diagram of how asynchronous client server communi-
cation may be implemented by RTE.

Client's COM
Netwok Server's

COM

Server's RTE Server

(1) RTE calls
Com_UpdateShadowSignal for
each IN parameter of the
operation and the client-ID and
invokes
Com_SendSignalGroup to
force the atomic sending
provided by the client's COM

(2) The Server's COM
invokes RTE callback
when all data elements
have been received.

(3) RTE fetches the IN
parameters from the COM
and the Client ID and puts
them into RTE queue. The
Server Task is activated.

Client Application

Inter-ECU communication
Asynchronous Client-Server communication
Port name = p
Operation name = o

The ClientResponseRunnable is referencing an
AsynchronousServerCallReturnsEvent.
The client runnable that invokes the server call is referencing an
AsynchronousServerCallPoint
The server runnable is refered by an OperationInvokedEvent
ServerComSpec attribute queueLength = number of possible
queued server calls

(7) RTE receives all OUT parameters and activates the
Client's response runnable.

loop

[All IN, INOUT and Client ID]

(4) RTE fetches the
server parameter from
its queue and calls the
Server runnable.

(5) RTE sends the
respons to the Client.

Client's RTE

loop

[All INOUT and OUT]

loop

[All IN, INOUT and Client ID]

loop

[All INOUT and OUT]

(6) The Client's
COM invokes RTE
callback when all
data elements
have been
received.

Rte_Call_p_o

Com_UpdateShadowSignal

E_OK

Com_SendSignalGroup

E_OK

RTE_E_OK

Rte_COMCbk_<sg>

Com_ReceiveSignalGroup

E_OK

Com_ReceiveShadowSignal

E_OK

Activate Server's Task

ServerRunnable

Com_UpdateShadowSignal

E_OK

Com_SendSignalGroup

E_OK

Rte_COMCbk_<sg>

Activate Client's response task

Com_ReceiveSignalGroup

E_OK

Com_ReceiveShadowSignal

E_OK

ClientResponseRunnable

Figure 4.28: Client Server asynchronous

142 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.3.2.7.5 Synchronous Client Server communication

Figure 4.29 shows a sequence diagram of how synchronous client server communica-
tion may be implemented by RTE.

Client's RTE Client's COM
Netwok Server's

COM

Server's RTE Server

(1) RTE calls
Com_UpdateShadowSignal for
each PrimitiveType element of
each IN parameter of the
operation and invokes
Com_SendSignalGroup to force
the atomic sending provided by
the client's COM

(2) The Server's COM
invokes RTE callback
when all data elements
have been received.

(3) RTE fetches all
elements of the the IN
parameters from the COM
and the Client ID and puts
them into RTE queue. The
Server Task is activated.

Client Application

Inter-ECU communication
Synchronous Client-Server communication
Port name = p
Operation name = o

The client runnable that invokes the server call is
referencing an SynchronousServerCallPoint
The server runnable is refered by an
OperationInvokedEvent
ServerComSpec attribute queueLength = number of
possible queued server calls

(6) RTE receives all
OUT parameters and
return execution control
to the Client Application.

loop

[All IN, INOUT and Client ID]

loop

[All IN, INOUT and Client ID]

loop

[All OUT and INOUT]

(5) RTE sends the
respons to the Client.

loop

[All OUT and INOUT]

Client Application
is blocked. Client task is

set waiting

Client task is
started

Client Application
continues

Client task is
released

(4) RTE fetches the server
parameter from its queue
and calls the Server
runnable.

Rte_Call_p_o

Com_UpdateShadowSignal

E_OK

Com_SendSignalGroup

E_OK

WaitEvent(EventXY)

Rte_COMCbk_<sg>

Com_ReceiveSignalGroup

E_OK

Com_ReceiveShadowSignal

E_OK

Activate Server's task

ServerRunnable

Com_UpdateShadowSignal

E_OK

Com_SendSignalGroup

E_OK

Rte_COMCbk_<sg>

SendEvent(EventXY)

Com_ReceiveSignalGroup

E_OK

Com_ReceiveShadowSignal

E_OK

RTE_E_OK

Figure 4.29: Client Server synchronous

143 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.3.3 SWC internal communication

4.3.3.1 InterRunnableVariables

Sender/Receiver and Client/Server communication through AUTOSAR ports are the
model for communication between AUTOSAR SW-Cs.

For communication between Runnables inside of an AUTOSAR SW-C the AUTOSAR
SW-C Template [17] establishes a separate mechanism. Non-composite AUTOSAR
SW-C can reserve InterRunnableVariables which can only be accessed by the
Runnables of this one AUTOSAR SW-C. The Runnables might be running in the same
or in different task contexts. Read and write accesses are possible.

[rte sws 3589] The RTE has to support InterRunnableVariables for single and multiple
instances of AUTOSAR SW-Cs.

InterRunnableVariables have a behavior corresponding to Sender/Receiver commu-
nication between AUTOSAR SW-Cs (or rather between Runnables of different AU-
TOSAR SW-Cs).

But why not use Sender/Receiver communication directly instead? Purpose is data
encapsulation / data hiding. Access to InterRunnableVariables of an AUTOSAR SW-C
from other AUTOSAR SWCs is not possible and not supported by RTE. InterRunnabl-
eVariable content stays SW-C internal and so no other SW-C can use. Especially not
misuse it without understanding how the data behaves.

Like in Sender/Receiver (S/R) communication between AUTOSAR SW-Cs two different
behaviors exist:

1. InterRunnableVariables with implicit behavior
This behavior corresponds with DataReadAccess / DataWriteAccess of
Sender/Receiver communication and is supported by implicit S/R API in this
specification.

Note:
If DataWriteAccess is specified for a certain interrunnable variable, but no RTE
API for implicit write of this interrunnable variable is called during an execution of
the runnable, an undefined value is written back when the runnable terminates.

For more details see section 4.2.4.6.1.
For APIs see sections 5.6.20 and 5.6.21.

2. InterRunnableVariables with explicit behavior
This behavior corresponds with DataSendPoint / DataReceivePoint of
Sender/Receiver communication and is supported by explicit S/R API in this
specification.

For more details see section 4.2.4.6.2
For APIs see sections 5.6.22 and 5.6.23.

144 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.4 Modes

Identifiable

ModeDeclaration

Identifiable

RTEEvent

ModeSwitchEvent

+ activation: ModeActivationKind

Identifiable

RunnableEntity

+ symbol: String
+ canBeInvokedConcurrently: Boolean

«enumeration»
ModeActivationKind

+ entry:
+ exit:

ModeDisablingDependency

ARElement

ModeDeclarationGroup

0..1

+startOnEvent

«instanceRef»

1..*+dependentOnMode

0..* «instanceRef» 1

+mode

0..1

+modeDependency

1..*+modeDeclaration 1+initialMode

Figure 4.30: Summary of the use of ModeDeclarations by an AUTOSAR Software-
Component instance as defined in the Software Component Template Specification [17].

The purpose of modes is to start runnables on the transition between modes and to
disable (/enable) specified triggers of runnables in certain modes. Here, we use the
specification of modes from the Software Component Template Specification [17].

The first subsection 4.4.1 describes how modes can be used by an AUTOSAR
software-component mode user(). The role of the mode manager who initiates
mode switches is described in section 4.4.2. How ModeDeclarations are connected
to a state machine is described in subsection 4.4.3. The behaviour of the RTE regard-
ing mode switches is detailed in subsection 4.4.4.

One usecase of modes is described in section 4.5.2 for the initialization and finalization
of AUTOSAR Software-Components. Modes can be used for handling of communica-
tion states as well as for specific application purposes. The specific definition of modes
and their use is not in the scope of this document.

The status of the modes will be notified to the mode user by a specific form of sender
receiver communication - mode switch notifications - as described in the sub-
section 4.4.5. The port for receiving (or sending) a mode switch notification is
called mode port.

4.4.1 Mode User

To use modes, an AUTOSAR software-component (mode user) has to reference
a ModeDeclarationGroup by a ModeDeclarationGroupPrototype of a require mode
port, see section 4.4.5. The ModeDeclarationGroup contains the required modes.

145 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

The ModeDeclarations can be used in two ways by the mode user (see also figure
4.30):

1. Modes can be used to trigger runnables: The InternalBehavior of the AUTOSAR
SW-C can define a ModeSwitchEvent referencing the required ModeDeclaration.
This ModeSwitchEvent can then be used as trigger for a runnable. The Mod-
eSwitchEvent carries an attribute ModeActivationKind which can be ‘exit’ or ‘en-
try’.

A runnable that is triggered by a ModeSwitchEvent with ModeActivationKind
‘exit’ is triggered on exiting the mode. For simplicity it will be called OnExit
runnable. Correspondingly, an OnEntry runnable is triggered by a Mod-
eSwitchEvent with ModeActivationKind ‘entry’ and will be executed when the
mode is entered.

Since a runnable can be triggered by multiple RteEvents, it can be both, an
OnExit- and OnEntry runnable

RTE does not support a wait point for a ModeSwitchEvent (see rte sws 1358).

2. An RTEEvent that starts a runnable can contain a ModeDisabelingDependency
which references a ModeDeclaration.

[rte sws 2503] If a runnable entity r is referenced with startOnEvent by an RTE-
Event e that has a ModeDisablingDependency on a mode m, then RTE shall not
activate runnable r on any occurrence of e while the mode m is active.

Note: As a consequence of rte sws 2503 in combination with rte sws 2661, RTE
will not start runnable r on any occurrence of e while the mode m is active.

The mode disabling is active during the transition to a mode, during the mode
itself and during the transition for exiting the mode. For a precise definition see
section 4.4.4.

The existence of a ModeDisabelingDependency prevents the RTE to start the
mode disabling dependent runnable by the disabled RTEEvent during
the mode, referenced by the ModeDisabelingDependency, and during the tran-
sitions from and to that mode. ModeDisablingDependencies override any acti-
vation of a runnable by the disabled RTEEvents. This is also true for the Mod-
eSwitchEvent.

A runnable can not be ‘enabled’ explicitly. A runnable is only ‘enabled’ by the
absence of any active ModeDisablingDependency.

Note that ModeDisablingDependencies do not prevent the wake up from a Wait-
Point by the ‘disabled’ RTEEvent.

[rte sws 2504] The existence of a ModeDisabelingDependency shall not instruct
the RTE to kill or preempt a running runnable at a mode switch.

The RTE might switch schedule tables to implement mode disabling dependen-
cies for cyclic triggers of runnables.

146 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

• To do this, the RTE generator needs to know mutual exclusivity and coverage
of modes, see rte sws 2542.

• [rte sws ext 2559] The RTE configurator shall have access to the schedule
table configuration (see also rte sws 4014).

4.4.2 Mode Manager

Entering and leaving modes is initiated by a mode manager. A mode manager might
be a basic software module, for example the communication manager (COMM) or the
ECU state manager. The mode manager may also be an AUTOSAR SW-C. In this
case, it is called an application mode manager. The modes of an application
mode manager do not have to be standardized.

The mode manager contains the master state machine to represent the modes. The
mode manager has a provide mode port to communicate the current mode to the
mode users via the RTE.

The RTE will take the actions necessary to switch between the modes. This includes
the termination and execution of several runnables from all mode users that are
connected to the same ModeDeclarationGroupPrototype of the mode manager. To
do so, the RTE needs a state machine to keep track of the currently active modes
and transitions initiated by the mode manager. The RTE’s mode machine is called
mode machine instance. There is exactly one mode machine instance for
each ModeDeclarationGroupPrototype of a mode manager’s provide mode port.

It is the responsibility of the mode manager to advance the RTE’s mode machine
instance by sending mode switch notifications to the mode users. The
mode switch notifications are implemented by a non blocking API (see 5.6.5).
So, the mode switch notifications alone provide only a loose coupling between
the state machine of the mode manager and the mode machine instance of the
RTE. To prevent, that the mode machine instance lags behind and the states of
the mode manager and the RTE get out of phase, the mode manager can use ac-
knowledgment feedback for the mode switch notification. RTE can be config-
ured to send an acknowledgment of the mode switch notification to the mode
manager when the requested transition is completed.

At the mode manager, the acknowledgment results in an ModeSwitchedAckEvent.
As with DataSendCompletedEvents, this event can be picked up with the polling or
blocking Rte Feedback API. And the event can be used to trigger runnables to pick up
the status.

Some possible usage patterns for the acknowledgement are:

• The most straight forward method is to use a sequence of Rte Switch and a
blocking Rte Feedback to send the mode switch notification and wait for
the completion. This requires the use of an extended task.

147 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

• Another possibility is to have a cyclic runnable (maybe the same that switches
the modes) to poll for the feedback.

• The feedback can also be polled from a runnable that is started by the Mod-
eSwitchedAckEvent.

The mode manager can also use the Rte Mode API to read the currently active mode
from the RTE’s perspective.

4.4.3 Refinement of the semantics of ModeDeclarations and ModeDeclaration-
Groups

To implement the logic of mode switches, the RTE needs some basic information about
the available modes. For this reason, RTE will make the following additional assump-
tions about the modes of one ModeDeclarationGroup:

1. [rte sws ext 2542] Whenever any runnable entity is running, there shall always
be exactly one mode or one mode transition active of each ModeDeclaration-
Group.

2. Immediately after initialization, RTE will execute a transition to the initial mode of
each ModeDeclarationGroup (see rte sws 2544).

RTE will enforce the mode disablings of the initial modes and trigger the
OnEntry runnables of the initial modes (if there are any) immediately after
initialization.

In other words, RTE assumes, that the modes of one ModeDeclarationGroup belong to
exactly one state machine without nested states. The state machines cover the whole
lifetime8 of the atomic AUTOSAR SW-Cs.

4.4.4 Order of actions taken by the RTE upon interception of a mode switch
notification

This section describes what the ‘communication’ of a mode switch to a mode user
actually does. What does the RTE do to switch a mode and especially in which order.

Typical usage of modes to protect resources

RTE can start the execution of runnables and prevent the execution of runnables. In
the context of mode switches,

• RTE starts OnExit runnables for leaving the previous mode. This is typically
used by ‘clean up runnables’ to free resources that were used during the previous
mode.

8The lifetime of an atomic AUTOSAR SW-C is considered to be the time span in which the SW-C’s
runnables are being executed.

148 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

• RTE starts OnEntry runnables for entering the next mode. This is typically
used by ‘initialization runnables’ to allocate resources that are used in the next
mode.

• And RTE can prevent the execution of mode disabling dependent
runnables within a mode. This is typically used with time triggered ‘work
runnables’ that use a resource which is not available in a certain mode.

According to this use case, during the execution of ‘clean up runnables’ and ‘initializa-
tion runnables’ the ‘work runnables’ should be disabled to protect the resource. Also,
if the same resource is used (by different SW-C’s) in two successive modes, the ‘clean
up runnables’ should be savely terminated before the ‘initialization runnables’ of the
next mode are executed. In summary, this would lead to the following sequence of
actions by the RTE upon reception of the mode switch notification:

1. activate mode disablings for the next mode

2. wait for the newly disabled runnables to terminate

3. execute ‘clean up runnables’

4. wait for the ‘clean up runnables’ to terminate

5. execute ‘initialization runnables’

6. wait for the ‘initialization runnables’ to terminate

7. deactivate mode disablings for the previous modes and enable runnables that
have been disabled in the previous mode.

Often, only a fraction of the SW-Cs and runnables of one ECU depends on the modes
that are switched. Consequently, it should be possible to design the system in a way,
that the mode switch does not influence the performance of the remaining software.

The remainder of this section lists the requirements that guarantee the behavior de-
scribed above.

All runnables with dependencies on modes have to be executed or terminated during
mode transitions. Restriction rte sws 2500 requires these runnables to be of category
1 to guarantee finite execution time.

For simplicity of the implementation to guarantee the order of runnable executions, the
following restriction is made:

All OnEntry runnables and OnExit runnables of the same mode machine
instance should be mapped to the same task (see rte sws 2662).

[rte sws 2667] Within the mode manager’s Rte Switch API call to indicate a mode
switch, one of the following shall be done:

1. If the corresponding mode machine instance is in a transition, and the queue
for mode switch notifications is full, Rte Switch shall return an error im-
mediately.

149 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

mode
disabling
dependent
runnables

OnExit
runnables

OnEntry
runnables

mode
disabling
dependent
runnables

mode switch indication

Figure 4.31: This figure shall illustrate what kind of runnables will run in what order
during a mode transition. The boxes indicate activated runnables. Mode disabling de-
pendant runnables are printed in blue. OnExit and OnEntry runnables are printed in red
and green.

2. If the corresponding mode machine instance is in a transition, and the
queue for mode switch notifications is not full, the mode switch
notification shall be queued.

3. If the mode machine instance is not in a transition, Rte Switch shall activate
the mode disablings (see rte sws 2661) of the next mode, and initiate the
transition as described by the sequence in rte sws 2665.

The following list holds the requirements for the steps of a mode transition.

• [rte sws 2661] At the beginning of a transition of a mode machine instance,
the RTE shall activate the mode disablings of the next mode (see also
rte sws 2503), if any ModeDisablingDependencies for that mode are defined and
wait for the termination of the newly disabled runnables.

Note: To guarantee that all activated mode disabling dependent
runnables of this mode machine instance have terminated before the start
of the OnExit runnables of the transition, RTE can exploit the restriction
rte sws 2663 that mode disabling dependent runnables run with higher
or equal priority than the OnExit runnables and the OnEntry runnables.

• [rte sws 2562] RTE shall execute (activate and wait for termination) the OnExit
runnables of the previous mode.

• [rte sws 2564] RTE shall execute (activate and wait for termination)the OnEntry
runnabless of the next mode.

The OnExit runnables of the previous mode are executed before the
OnEntry runnables of the next mode within the same task, see rte sws 2664
and rte sws 2662.

150 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

• [rte sws 2563] The RTE shall deactivate the previous mode disablings and
only keep the mode disablings of the next mode.

With this, the transition is completed.

• [rte sws 2587] At the end of the transition, RTE shall trigger the
ModeSwitchedAckEvents connected to the mode manager’s ModeDeclara-
tionGroupPrototype.

This will result in an acknowledgment on the mode manager’s side which allows
the mode manager to wait for the completion of the mode switch.

[rte sws 2665] During a transition of a mode machine instance each applicable
of the steps

1. rte sws 2661 (The transition is entered in parallel with this step),

2. rte sws 2562,

3. rte sws 2564,

4. rte sws 2563 (The transition is completed with this step), and

5. immediately followed by rte sws 2587

shall be executed in the order as listed. If a step is not applicable, the order of the
remaining steps shall be unchanged.

[rte sws 2668] Immediately after the execution of a transition as described
in rte sws 2665, RTE shall check the queue for pending mode switch
notifications of this mode machine instance. If a mode switch
notification can be dequeued, the mode machine instance shall enter the
corresponding transition directly as described by the sequence in rte sws 2665.

The Rte Mode API will not indicate an intermediate mode, if a mode switch
notification to the next mode is indicated before the transition to the intermedi-
ate mode is completed.

[rte sws 2544] RTE shall initiate the transition to the initial modes of each mode
machine instance during Rte Start. During the transition to the initial modes, the
steps defined in the following requirements have to be omitted as no previous mode is
defined:

• rte sws 2562

• rte sws 2563

• rte sws 2587

If applicable, the steps described by the following requirements still have to be executed
for entering the initial mode:

• rte sws 2661

• rte sws 2564

151 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 2630] RTE shall execute all steps of a mode switch (see rte sws 2661,
rte sws 2562, rte sws 2563, rte sws 2564, and rte sws 2587) synchronously for the
whole mode machine instance.

I.e., the mode transitions will be executed synchronously for all mode users that are
connected to the same mode manager’s ModeDeclarationGroupPrototype.

[rte sws 2669] If the next mode and the previous mode of a transition are the same,
the transition shall still be executed.

4.4.5 Notification of mode switches

ARElement

ModeDeclarationGroup

Identifiable

ModeDeclaration

PortInterface

PortInterface::
SenderReceiverInterface

Identifiable

PortInterface::
ModeDeclarationGroupPrototype

DataPrototype

PortInterface::
DataElementPrototype

+ isQueued: Boolean

0..*+modeGroup

1+interface

0..*+dataElement

1+interface

1

+initialMode

1..*

+modeDeclaration

«isOfType»
+type

Figure 4.32: Definition of a mode switch interface.

• [rte sws 2549] Mode switches shall be communicated by ModeDeclara-
tionGroupPrototypes of a SenderReceiverInterface as defined in [17], see
Fig. 4.32.

A SenderReceiverInterface with a ModeDeclarationGroupPrototype of a Mode-
DeclarationGroup will be called mode switch interface for the Mode-
DeclarationGroup in the following. The mode ports of the mode manager and
the mode user are of the type of a mode switch interface.

• RTE only requires the notification of switches between modes.

• [rte sws ext 2507] The mode switch shall be notified to the mode user (and RTE)
locally on each ECU.

152 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 2586]The RTE generator shall reject a configuration with a nonlocal
connection of a ModeDeclarationGroupPrototype.

Rationale: Even without communication to other ECUs, each state machine has
to be in a well defined state/mode. This Requirement rte sws ext 2507 does not
prevent distributed mode management. But, for distributed mode management,
a local agent is required on each ECU.

This implies that the connector between an application mode manager in-
stance and the mode user instance can only be created after mapping of the
SW-C to an ECU, because the application mode manager instance needs
to be a specific agent, bound to one ECU.

• [rte sws 2508] A mode switch shall be notified asynchronously as indicated by
the use of a SenderReceiverInterface.

Rationale: This simplifies the communication. Due to rte sws ext 2507 the com-
munication is local and no handshake is required to guarantee reliable transmis-
sion.

RTE offers the api Rte Switch to the mode manager for this notification, see
5.6.5.

• The mode manager might still require a feedback to keep it’s internal state ma-
chine synchronized with the RTE view of active modes.

The RTE generator shall support an AcknowledgementRequest from the mode
port of a mode manager, see rte sws 2587, to notify the mode manager of
the completion of a mode switch.

• [rte sws 2566] A mode switch interface shall support 1:n communication.

Rationale: This simplifies the configuration and the communication. One mode
switch can be notified to all receivers simultaneously.

A mode switch interface does not support n:1 communication, see
rte sws 2670.

• [rte sws 2624] A mode switch shall be notified with event semantics, i.e., the
mode switch notifications shall be buffered by RTE.

The queueing of mode switches (and ModeSwitchEvents) depends like that of
DataReceivedEvents on the settings for the receiving port, see section 4.3.1.10.2.

• [rte sws 2567] A mode switch interface shall only indicate the next mode
of the transition.

The API takes a single parameter (plus, optionally, the instance handle) that indi-
cates the requested ’next mode’. For this purpose, RTE will use identifiers of the
modes as defined in rte sws 2568.

• [rte sws 2546] The RTE shall keep track of the active modes of a mode
manager’s ModeDeclarationGroupPrototypes (mode machine instances).

153 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Rationale: This allows the RTE to guarantee consistency between the timing for
fireing of ModeSwitchEvents and disabling the start of runnables by ModeDis-
abelingDependency without adding additional interfaces to a mode manager with
fine grained substates on the transitions.

• The RTE offers an Rte Mode API to the SW-C to get information about the active
mode, see section 5.6.26.

• In addition to the mode ports, the mode manager may offer an AUTOSAR
interface for requesting and releasing modes as a means to keep modes alive
like for COMM and ECU State Manager.

154 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

4.5 Initialization and Finalization

4.5.1 Initialization and Finalization of the RTE

The ECU state manager calls the startup routine Rte_Start of the RTE at the end of
startup phase II when the OS is available and all basic software modules are initialized.

[rte sws 2513] The initialization routine of the RTE shall return within finite execution
time.

Before the RTE is initialized completely, there is only a limited capability of RTE to
handle incoming data from COM:

[rte sws 2535] RTE shall ingore incoming client server communication requests, be-
fore RTE is initialized completely.

[rte sws 2536] Incoming data and events from sender receiver communication shall
be ignored, before RTE is initialized completely.

RTE will activate the mode disablings of all initial modes during RTEStart and trig-
ger the execution of the OnEntry runnables of the initial modes, see rte sws 2544.

The finalization routine RTE_Stop of the RTE is called by the ECU state manager at
the beginning of shutdown phase I when the OS is still available. (For details of the
ECU state manager, see [8]. For details of Rte_Start and Rte_Stop see section
5.8.)

[rte sws 2538] Rte Stop shall stop the execution of all runnables.

4.5.2 Initialization and Finalization of AUTOSAR Software-Components

For the initialization and finalization of AUTOSAR software components, RTE provides
the mechanism of mode switches. A ModeSwitchEvent of an appropriate ModeDec-
laration can be used to trigger a corresponding initialization or finalization runnable
(see rte sws 2562). Runnables that shall not run during initialization or finalization
can be disabled in the corresponding modes with a ModeDisabelingDependency (see
rte sws 2503).

Since category 2 runnables have no predictable execution time and can not be ter-
minated using ModeDisablingDependencies, it is the responsibility of the implementer
to set meaningful termination criteria for the cat 2 runnables. These criteria could in-
clude mode information. At latest, all runnables will be terminated by RTE during the
shutdown of RTE, see rte sws 2538.

It is appropriate to use user defined modes that will be handled in a proprietary
application mode manager.

All runnables that are triggered by entering an initial mode, are activated immediately
after the initialization of RTE. They can be used for initialization. In many cases it might

155 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

be prefereable to have a multi step initialization supported by a sequence of different
initialization modes.

4.6 RTE Functionality Levels

There is a single RTE functionality level. So RTE is compliant AUTOSAR Functionality
Conformance Class 1 (FCC1)

156 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5 RTE Reference

“Everything should be as simple as possible, but no simpler.”
– Albert Einstein

5.1 Scope

This chapter presents the RTE API from the perspective of AUTOSAR applications
and basic software – the same API applies to all software whether they are AUTOSAR
software-components or basic software.

Section 5.2 presents basic principles of the API including naming conventions and
supported programming languages. Section 5.3 describes the header files used by the
RTE and the files created by an RTE generator. The data types used by the API are
described in Section 5.5 and Sections 5.6 and 5.7 provide a reference to the RTE API
itself including the definition of runnable entities. Section 5.10 defines the events that
can be monitored during VFB tracing.

5.1.1 Programming Languages

The RTE is required to support components written using the C and C++ programming
languages [RTE00126] as well as legacy software modules [RTE IN016]. The ability
for multiple languages to use the same generated RTE is an important step in reducing
the complexity of RTE generation and therefore the scope for errors.

[rte sws 1167] The RTE shall be generated in C.

[rte sws 1168] All RTE code, whether generated or not, shall conform to the HIS sub-
set of the MISRA C standard [18]. In technically reasonable, exceptional cases MISRA
violations are permissable. Such violations shall be clearly identified and documented.

Specified MISRA violations are defined in Appendix D.

The RTE API presented in Section 5.6 is described using C. The API is also directly
accessible from an AUTOSAR software-component written using C++ provided all API
functions and instances of data structures are imported with C linkage.

[rte sws 1011] The RTE generator shall ensure that, for a component written in C++,
all imported RTE symbols are declared using C linkage.

For the RTE API for C and C++ components the import of symbols occurs within the
application header file (Section 5.3.3).

157 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5.1.2 Generator Principles

5.1.2.1 Operating Modes

An object-code component is compiled against an application header file that is cre-
ated during the first “RTE Contract” phase of RTE generation. The object code is then
linked against an RTE created during the second “RTE Generation” phase. To ensure
that the object-code component and the RTE code are compatible the RTE generator
supports compatibility mode that uses well-defined data structures and types for the
component data structure. In addition, an RTE generator may support a vendor oper-
ating mode that removes compatibility between RTE generators from different vendors
but permits implementation specific, and hence potentially more efficient, data struc-
tures and types.

[rte sws 1195] All RTE operating modes shall be source-code compatible at the SW-C
level.

Requirement rte sws 1195 ensures that a SW-C can be used in any operating mode
as long as the source is available. The converse is not true – for example, an object-
code SW-C compiled after the “RTE Contract” phase must be linked against an RTE
created by an RTE generator operating in the same operating mode. If the vendor
mode is used in the “RTE Contract” phase, an RTE generator from the same vendor
(or one compatible to the vendor-mode features of the RTE generator used in the “RTE
Contract” phase) has to be used for the “RTE Generation” phase.

5.1.2.1.1 Compatibility Mode

Compatibility mode is the default operating mode for an RTE generator and guarantees
compatibility even between RTE generators from different vendors through the use of
well-defined, “standardized”, data structures. The data structures that are used by the
generated RTE in the compatibility mode are defined in Section 5.4.

Support for compatibility mode is required and therefore is guaranteed to be imple-
mented by all RTE generators.

[rte sws 1151] The compatibility mode shall be the default operating mode and shall
be supported by all RTE generators, whether they are for the “RTE Contract” or “RTE
Generation” phases.

The compatibility mode uses custom (generated) functions with standardized names
and data structures that are defined during the “RTE Contract” phase and used when
compiling object-code components.

[rte sws 1216] SW-Cs that are compiled against an “RTE Contract” phase application
header file (i.e. object-code SW-Cs) generated in compatibility mode shall be compat-
ible with an RTE that was generated in compatibility mode.

158 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

The use of well-defined data structures imposes tight constraints on the RTE imple-
mentation and therefore restricts the freedom of RTE vendors to optimize the solution
of object-code components but have the advantage that RTE generators from different
vendors can be used to compile a binary-component and to generate the RTE.

Note that even when an RTE generator is operating in compatibility mode the data
structures used for source-code components are not defined thus permiting vendor-
specific optimizations to be applied.

5.1.2.1.2 Vendor Mode

Vendor mode is an optional operating mode where the data structures defined in the
“RTE Contract” phase and used in the “RTE Generation” phase are implementation
specific rather than “standardized”.

[rte sws 1152] An RTE generator may optionally support vendor mode.

The data structures defined and declared when an RTE generator operates in vendor
mode are implementation specific and therefore not described in this document. This
omission is deliberate and permits vendor-specific optimizations to be implemented for
object-code components. It also means that RTE generators from different vendors are
unlikely to be compatible when run in the vendor mode.

[rte sws 1234] An AUTOSAR software-component shall be assumed to be operating
in “compatibility” mode unless “vendor mode” is explicitly requested.

The potential for more efficient implementations of object-code components offered by
the vendor mode comes at the expense of requiring high cohesion between object-
code components (compiled after the “RTE Contract” phase) and the generated RTE.
However, this is not as restrictive as it may seem at first sight since the tight coupling
is also reflected in many other aspects or the AUTOSAR methodology, not least of
which is the requirement that the same compiler (and compatible options) is used when
compiling both the object-code component and the RTE.

5.1.2.2 Optimization Modes

The actual RTE code is generated – based on the input information – for each ECU
individually. To allow optimization during the RTE generation one of the two general op-
timization directions can be specified: MEMORY consumption or execution RUNTIME.

[rte sws 5053] The RTE Generator shall optimize the generated RTE code either for
memory consumption or execution runtime depending on the provided input informa-
tion (see rte sws in 5060).

159 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5.1.3 Generator external configuration switches

There are use-cases where there is need to influence the behavior of the RTE Gen-
erator without changing the RTE Configuration description. In order to support such
use-cases this section collects the external configuration switches.

Note: it is not specified how these switches shall be implemented in the actual RTE
Generator implementation.

[rte sws 5099] The RTE Generator shall support the external configuration switch
strictUnconnectedRPortCheck which, when enabled, forces the RTE Generator
to consider unconnected R-Ports as an error.

5.2 API Principles

[rte sws 1316] The RTE shall be configured and/or generated for each ECU
[RTE00021].

Part of the process is the customization (i.e. configuration or generation) of the RTE
API for each AUTOSAR software-component on the ECU. The customization of the
API implementation for each AUTOSAR software-component, whether by generation
anew or configuration of library code, permits improved run-time efficiency and reduces
memory overheads.

The design of the RTE API has been guided by the following core principles:

• The API should be orthogonal – there should be only one way of performing a
task.

• [rte sws 1314] The API shall be compiler independent.

• [rte sws 3787] The RTE implementation shall use the compiler abstraction.

• [rte sws 1315] The API shall support components where the source-code is
available [RTE00024] and where only object-code is available [RTE00140].

• The API shall support the multiple instantiation of AUTOSAR software-
components [RTE00011] that share code [RTE00012].

Two forms of the RTE API are available to software-components; direct and indirect.
The direct API has been designed with regard to efficient invocation and includes an
API mapping that can be used by an RTE generator to optimize a component’s API, for
example, to permit the direct invocation of the generated API functions or even eliding
the generated RTE completely. The indirect API cannot be optimized using the API
mapping but has the advantage that the handle used to access the API can be stored
in memory and accessed, via an iterator, to apply the same API to multiple ports.

160 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5.2.1 RTE Namespace

All RTE symbols (e.g. function names, global variables, etc.) visible within the global
namespace are required to use the “Rte” prefix.

[rte sws 1171] All externally visible symbols created by the RTE generator shall use
the prefix Rte_.

In order to maintain control over the RTE namespace the creation of symbols in the
global namespace using the prefix Rte_ is reserved for the RTE generator.

The generated RTE is required to work with components written in several source lan-
guages and therefore should not use language specific features, such as C++ names-
paces, to ensure symbol name uniqueness.

5.2.2 Direct API

The direct invocation form is the form used to present the RTE API in Section 5.6. The
RTE direct API mapping is designed to be optimizable so that the instance handle is
elided (and therefore imposes zero run-time overhead) when the RTE generator can
determine that exactly one instance of a component is mapped to an ECU.

[rte sws 1048] The RTE shall support direct invocation of generated API functions
where the instance handle is passed to the API as the first formal parameter.

All runnable entities for a AUTOSAR software-component type are passed the same
instance handle type (as the first formal parameter) and can therefore use the same
type definition from the component’s application header file.

The direct API can also be further optimized for source code components via the API
mapping.

The direct API is typically implemented as macros that are modified by the RTE gener-
ator depending on configuration. This technique places certain restrictions on how the
API can be used within a program, for example, it is not possible in C to take the ad-
dress of a macro and therefore direct API functions cannot be placed within a function
table or array. If it is required by the implementation of a software-component to derive
a pointer to an object for the port API, for instance to setup a constant function pointer
table, the PortAPIOption enableTakeAddress can be used. Additionally the indirect API
provides support for API addresses and iteration over ports.

[rte sws 7100] If a PortPrototype is referenced by PortAPIOption with enableTakeAd-
dress = TRUE the RTE generator has to provide ”C” functions and non function like
macro for the API related to this port.

The PortAPIOption attribute enableTakeAddress = TRUE is not supported for software-
components supporting multiple instantiation. See see rte sws in 7101.

161 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5.2.3 Indirect API

The indirect API is an optional form of API invocation that uses indirection through a
port handle to invoke RTE API functions rather than direct invocation. This form is less
efficient (the indirection cannot be optimized away) but supports a different program-
ming style that may be more convenient. For example, when using the indirect API,
an array of port handles of the same interface and provide/require direction is provided
by RTE and the same RTE API can be invoked for multiple ports by iterating over the
array.

Both direct and indirect forms of API call are equivalent and result in the same gener-
ated RTE function being invoked.

Whether the indirect API is generated or not can be specified for each software com-
ponent and for each port prototype of the software component separately with the
indirectAPI attribute, see rte sws in 3798.

The semantics of the port handle must be the same in both the “RTE Contract” and
“RTE Generation” phases since the port handle accesses the standardized data struc-
tures of the RTE.

It is possible to mix the indirect and direct APIs within the same SW-C, if the indirect
API is present for the SW-C.

The indirect API uses port handles during the invocation of RTE API calls. The type
of the port handle is determined by the port interface that types the port which means
that if a component declares multiple ports typed by the same port interface the port
handle points to an array of port data structures and the same API invoked for each
element.

The port handle type is defined in Section 5.4.2.5.

5.2.3.1 Accessing Port Handles

An AUTOSAR SW-C needs to obtain port handles using the instance handle before the
indirect API can be used. The definition of the instance handle in Section 5.4.2 defines
the “Port API” section of the component data structure and these entries can be used
to access the port handles in either object-code or source-code components.

The API Rte Ports and Rte NPorts provides port data handles of a given interface.
Example 5.1 shows how the indirect API can be used to apply the same operation to
multiple ports in a component within a loop.

Example 5.1

The port handle points to an array that can be used within a loop to apply
the same operation to each port. The following example sends the same
data to each receiver:

162 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

1 void TT1(Rte_Instance self)
2 {
3 Rte_PortHandle_interface1_P my_array;
4 my_array=Rte_Ports_interface1_P(self);
5 int s;
6 for(s = 0; s < Rte_NPorts_interface1_P(self); s++) {
7 my_array[s].Send_a(23);
8 }
9 }

Note that if csInterface1 is a client/server interface with an operation op, the mech-
anism sketched in Example5.1 only works if op is invoked either by all clients syn-
chronously or by all clients asynchronously, since the signature of Rte Call and the
existence of Rte Result depend on the kind of invocation (see restriction rte sws 3605.

5.2.4 DataReadAccess and DataWriteAccess

The RTE is required to support DataReadAccess and DataWriteAccess semantics for
data elements. The required semantics are subject to two constraints:

• For DataReadAccess, the data accessed by a runnable entity must not change
during the lifetime of the runnable entity.

• For DataWriteAccess, the data written by a runnable entity is only visible to other
runnable entities after the accessing runnable entity has terminated.

The generated RTE satisfies both requirements through data copies that are created
when the RTE is generated based on the known task and runnable mapping.

Example 5.2

Consider a data element, a, of port p which is accessed using DataReadAc-
cess semantics by runnable re1 and DataWriteAccess by runnable re2.
Furthermore, consider that re1 and re2 are mapped to different tasks and
that execution of re1 can pre-empt re2.

In this example, the RTE will create two different copies to contain a to
prevent updates from re2 ‘corrupting’ the value access by re1 since the
latter must remain unchanged during the lifetime of re1.

The RTE API includes three API calls to support DataReadAccess and DataWriteAc-
cess for a software-component; Rte IRead (see Section 5.6.15), Rte IWrite, and
Rte IWriteRef (see Section 5.6.16 and 5.6.17). The API calls Rte IRead and
Rte IWrite access the data copies (for read and write access respectively). The API
call Rte IWriteRef returns a reference to the data copy, thus enabling the runnable to
write the data directly. This is especially useful for complex data types and strings. The
use of an API call for reading and writing enables the definition to be changed based
on the task and runnable mapping without affecting the software-component code.

Example 5.3

163 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Consider a data element, a, of port p which is declared as being accessed
using DataWriteAccess semantics by runnables re1 and re2 within com-
ponent c. The RTE API for component c will then contain four API functions
to write the data element;

1 void Rte_IWrite_re1_p_a(Rte_Instance self, <type> val);
2 void Rte_IWrite_re2_p_a(Rte_Instance self, <type> val);
3 <type> Rte_IWriteRef_re1_p_a(Rte_Instance self);
4 <type> Rte_IWriteRef_re2_p_a(Rte_Instance self);

The API calls are used by re1 and re2 as required. The definitions of the
API depend on where the data copies are defined. If both re1 and re2 are
mapped to the same task then each can access the same copy. However,
if re1 and re2 are mapped to different (pre-emptable) tasks then the RTE
will ensure that each API access a different copy.

The Rte IRead and Rte IWrite use the “data handles” defined in the component data
structure (see Section 5.4.2).

5.2.5 PerInstanceMemory

The RTE is required to support PerInstanceMemory [RTE00013].

The component’s instance handle defines a particular instance of a component and is
therefore used when accessing the PerInstanceMemory using the Rte Pim API.

The Rte Pim API does not impose the RTE to apply a data consistency mechanism
for the access to PerInstanceMemory. An application is responsible for consistency
of accessed data by itself. This design decision permits efficient (zero overhead) ac-
cess when required. If a component possesses multiple runnable entities that require
concurrent access to the same PerInstanceMemory, an exclusive area can be used to
ensure data consistency, either through explicit Rte Enter and Rte Exit API calls or
by declaring that, implicitly, the runnable entities run inside an exclusive area.

Thus, the PerInstanceMemory is exclusively used by a particular software-component
instance and needs to be declared and allocated (statically).

[rte sws 2303] The generated RTE shall declare PerInstanceMemory in accordance
to the attribute type of a particular PerInstanceMemory.

In addition, the attribute type needs to be defined in the corresponding software-
component header. Therefore, the attribute typeDefinition of the PerInstanceMemory
contains its definition as plain text string. It is assumed that this text is valid ’C’ syntax,
because it will be included verbatim in the application header file.

[rte sws 2304] The generated RTE shall define the type of a PerInstanceMemory by
interpreting the text string of the attribute typeDefinition of a particular PerInstance-
Memory as the ’C’ definition.

164 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Note that the type is specified within the scope of a software component and therefore
not necessarily unique within the scope of the ECU. Therefore the RTE needs to define
a unique type within the RTE Types header file while providing the component-specific
type via the application header file to the software component.

[rte sws 3789] If there is no AUTOSAR data type in the input configuration with the
same name as the value of the type attribute of a PerInstanceMemory, the RTE types
header file shall contain the type definition
typedef <typedefinition> Rte_PimType_<c>_<t>;
where

• <typedefinition> is the value of the typeDefinition attribute of the PerIn-
stanceMemory,

• <c> is the name of the component type to which the PerInstanceMemory belongs
and

• <t> is the value of the type attribute of the PerInstanceMemory.

[rte sws 3782] If there is no AUTOSAR data type in the input configuration with the
same name as the value of the type attribute of a PerInstanceMemory, the RTE gen-
erator shall define the type in the application header file as
typedef Rte_PimType_<c>_<t> <t>;
where

• <c> is the name of the component type to which the PerInstanceMemory belongs
and

• <t> is the value of the type attribute of the PerInstanceMemory.

Note that it shall be possible to reuse an AUTOSAR data type for the definition of a
PerInstanceMemory.

[rte sws 5195] If there is an AUTOSAR data type in the input configuration with the
same name as the value of the type attribute of the PerInstanceMemory, the RTE
Generator shall issue a warning that the data type has possibly been misused.

[rte sws 2305] The generated RTE shall instantiate (or allocate) declared PerIn-
stanceMemory.

[rte sws 5062] In case the PerInstanceMemeory is used as a permanent ram mirror for
the NvRam manager the name for the instantiated PerInstanceMemory shall be taken
from the input information RamBlockLocationSymbol rte sws in 5061. Otherwise the
RTE generator is free to choose an arbitrary name.

Note that the memory allocated for a PerInstanceMemory is not initialized by the gen-
erated RTE, but by the corresponding software-component instances.

Example 5.4

A software-component c contains a particular PerInstanceMemory
mem with the attributes type = MyMemType and typeDefinition =

165 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

struct {uint16
val1; uint8 * val2; };. This description shall result in the following
code:

In the RTE Types header file:

1 /* typedef to ensure unique typename */
2 /* according to the attributes */
3 /* ’type’ and ’typeDefinition’ */
4 typedef struct{
5 uint16 val1;
6 uint8 * val2;
7 } Rte_PimType_c_MyMemType;

In the respective application header file:

1 /* typedef visible within the scope */
2 /* of the component according to the attributes */
3 /* ’type’ and ’typeDefinition’ */
4 typedef Rte_PimType_c_MyMemType MyMemType;

In Rte.c:

1 /* declare and instantiate mem1 */
2 /* "mem1" name may be taken from RamBlockLocationSymbol */
3 Rte_PimType_c_MyMemType mem1;

Note that the name used for the definition of the PerInstanceMemory may be used
outside of the RTE. One use-case is to support the definition of the link between the
NvRam Manager’s permanent blocks and the SW-Components. The name in Ram-
BlockLocationSymbol (rte sws in 5061) is used to configure the location at which the
NvRam Manager shall store and retrieve the permanent block content. For a detailed
description please refer to the SW-Component Template [17].

5.2.6 API Mapping

The RTE API is implemented by macros and generated API functions that are created
(or configured, depending on the implementation) by the RTE generator during the
“RTE Generation” phase. Typically one customized macro or function is created for
each “end” of a communication though the RTE generator may elide or combine custom
functions to improve run-time efficiency or memory overheads.

[rte sws 1274] The API mapping shall be implemented in the application header file.

The RTE generator is required to provide a mapping from the RTE API name to the
generated function [RTE00051]. The API mapping provides a level of indirection neces-
sary to support binary components and multiple component instances. The indirection
is necessary for two reasons. Firstly, some information may not be known when the
component is created, for example, the component’s instance name, but are necessary
to ensure that the names of the generated functions are unique. Secondly, the names

166 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

of the generated API functions should be unique (so that the ECU image can link cor-
rectly) and the steps taken to ensure this may make the names not “user-friendly”.
Therefore, the primary rationale for the API mapping is to provide the required abstrac-
tion that means that a component does not need to concern itself with the preceding
problems.

The requirements on the API mapping depend on the phase in which an RTE generator
is operating. The requirements on the API mapping are only binding for RTE generators
operating in compatibility mode.

5.2.6.1 “RTE Contract” Phase

Within the “RTE Contract” phase the API mapping is required to convert from the
source API call (as defined in Section 5.6) to the runnable entity provided by a software-
component or the implementation of the API function created by the RTE generator.

When compiled against a “RTE Contract” phase header file a software-component that
can be multiply instantiated is required to use a general API mapping that uses the
instance handle to access the function table defined in the component data structure.

[rte sws 3706] If a software-component supports multiple instantiation
rte sws in 0004, the “RTE Contract” phase API mapping shall access the gener-
ated RTE functions using the instance handle to indirect through the generated
function table in the component data structure.

Example 5.5

For a required client-server port ‘p1’ with operation ‘a’ with a single argu-
ment, the general form of the API mapping would be:

1 #define Rte_Call_p1_a(s,v) ((s)->p1.Call_a(v))

Where s is the instance handle.

[rte sws 3707] If a software-component does not support multiple instantiation
rte sws in 0004, the “RTE Contract” phase API mapping shall access the generated
RTE functions directly.

When accessed directly, the names of the generated functions are formed according
to the following rules:

• [rte sws 1143] The function generated for API calls of the form
<name>_<p>_<o> shall be <name>_<c>_<p>_<o> where <name> is the
API root (e.g. Call), <p> the port name, <o> the data element or operation name
and <c> the component type name.

• [rte sws 1348] The function generated for API calls of the form
<name>_<re>_<p>_<o> shall be <name>_<c>_<re>_<p>_<o> where
<name> is the API root (e.g. IrvRead), <p> the port name, <re> the runnable en-

167 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

tity name and <o> the data element or operation name and <c> the component
type name.

• [rte sws 1155] The function generated for API calls of the form <name>_<e>
shall be <name>_<c>_<e> where <name> is the API root (e.g. Enter), <e> the
API name (e.g. an exclusive area name) and <c> is the component type name.

• [rte sws 1156] The macro generated for the Rte Pim and Rte CData API calls
shall map to the relevant fields of the component data structure.

The functions generated that are the destination of the API mapping, which is created
during the “RTE Contract” phase, are created by the RTE generator during the second
“RTE Generation” phase.

[rte sws 1153] The generated function (or runnable) shall take the same parameters,
in the same order, as the API mapping.

Example 5.6

For a required client-server port ‘p1’ with operation ‘a’ with a single argu-
ment for component type ‘c1’ for which multiple instantiation is forbidden,
the following mapping would be generated:

1 #define Rte_Call_p1_a Rte_Call_c1_p1_a

5.2.6.2 “RTE Generation” Phase

There are no requirements on the form that the API mapping created during the “RTE
Generation” phase should take. This is because the application header files defined
during this phase are used by source-code components and therefore compatibility
between the generated RTE and source-code components is automatic.

The RTE generator is required to produce the component data structure instances re-
quired by object-code components and multiply instantiated source-code components.

If multiple instantiation of a software-component is forbidden, then the API mapping
specified for the “RTE Contract” phase (Section 5.2.6.1) defines the names of the gen-
erated functions. If multiple instantiation is possible, there are no corresponding re-
quirements that define the name of the generated function since all accesses to the
generated functions are performed via the component data structure which contains
well-defined entries (Sections 5.4.2.5 and 5.4.2.5).

5.2.6.3 Function Elidation

Using the “RTE Generation” phase API mapping, it is possible for the RTE generator
to elide the use of generated RTE functions.

168 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 1146] If the API mapping elides an RTE function the “RTE Generation” phase
API mapping mechanism shall ensure that the invoking component still receives a “re-
turn value” so that no changes to the AUTOSAR software-component are necessary.

In C, the elidation of API calls can be achieved using a comma expression1

Example 5.7

As an example, consider the following component code:

1 Std_ReturnType s;
2 s = Rte_Send_p1_a(self,23);

Furthermore, assume that the communication attributes are specified such
that the sender-receiver communication can be performed as a direct as-
signment and therefore no RTE API call needs to be generated. How-
ever, the component source cannot be modified and expects to receive an
Std_ReturnType as the return. The “RTE Generation” phase API map-
ping could then be rewritten as:

1 #define Rte_Send_p1_a(s,a) (<var> = (a), RTE_E_OK)

Where <var> is the implementation dependent name for an RTE created
cache between sender and receiver.

5.2.6.4 API Naming Conventions

An AUTOSAR software-component communicates with other components (including
basic software) through ports and therefore the names that constitute the RTE API are
formed from the combination of the API call’s functionality (e.g. Call, Send) that defines
the API root name and the access point through which the API operates.

For any API that operates through a port, the API’s access point includes the port
name.

A SenderReceiverInterface can support multiple data items and a ClientServerInterface
can support multiple operations, any of which can be invoked through the requiring
port by a client. The RTE API therefore needs a mechanism to indicate which data
item/operation on the port to access and this is implemented by including the data
item/operation name in the API’s access point.

As described above, the RTE API mapping is responsible for mapping the RTE API
name to the correct generated RTE function. The API mapping permits an RTE gener-
ator to include targeted optimization as well as removing the need to implement func-
tions that act as routing functions from generic API calls to particular functions within
the generated RTE.

1This is contrary to MISRA Rule 42 “comma expression shall not be used except in the control
expression of a for loop”. However, a comma expression is valid, legal, C and the elidation cannot be
achieved without a comma expression and therefore the rule must be relaxed.

169 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

For C and C++ the RTE API names introduce symbols into global scope and therefore
the names are required to be prefixed with Rte_ rte sws 1171.

5.2.6.5 API Parameters

All API parameters fall into one of two classes; parameters that are strictly read-only
(“In” parameters) and parameters whose value may be modified by the API function
(“In/Out” and “Out” parameters).

The type of these parameters is taken from the data element prototype or operation
prototype in the interface that characterizes the port for which the API is being gener-
ated.

Some RTE API calls (Rte CData, Rte Calprm, Rte IRead, and Rte IWriteRef) pass
the communication data as the return value. In these cases the type of the return
value is taken from the calprm element prototype or the data element prototype in the
interface that characterizes the port for which the API is being generated.

5.2.6.5.1 Primitive Data Types except Strings

• “In” Parameters

[rte sws 1017] All input parameters that are a primitive data type (with the ex-
ception of a string) shall be passed by value.

• “Out” Parameters

[rte sws 1019] All output parameters that are a primitive data type (with the ex-
ception of a string) shall be passed by reference.

• “In/Out” Parameters

[rte sws 1020] All bi-directional parameters (i.e. both input and output) that are
a primitive data type (with the exception of a string) shall be passed by reference.

• “Return” Value

[rte sws 5195] If communication data of a primitive data type (with the excep-
tion of a string) is passed as the return value, the type of the return value shall
be the data type specified at the calprm element prototype or the data element
prototype.

5.2.6.5.2 Record Composite Data Types

• “In” Parameters

170 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 1018] All input parameters that are a record composite data type shall
be passed by reference.

• “Out” Parameters

[rte sws 5196] All output parameters that are a record composite data type shall
be passed by reference.

• “In/Out” Parameters

[rte sws 5197] All bi-directional parameters (i.e. both input and output) that are
a record composite data type shall be passed by reference.

• “Return” Value

[rte sws 5198] If communication data of a record composite data type is passed
as the return value, the type of the return value shall be a pointer to the data type
specified at the calprm element prototype or the data element prototype.

5.2.6.5.3 Array Composite Data Types and Strings

In previous revisions of this document there existed some confusion and incompati-
bilities regarding the passing of arrays in the RTE API. Some implementations typed
array parameters as a pointer to the array base type, others typed array parameters
as a pointer to the array type itself. On object code level both variants are equivalent.
On source code level compiling a software component against an Application Header
File using the other variant of array passing leads to type incompatibility warnings and
error messages.

In order to support the coexistence of both array passing variants, a C preprocessor
macro is introduced to select the array passing scheme per software component type:

[rte sws 5199] The Application Header File shall contain the RTE API macro and func-
tion prototype definitions for both array passing schemes.

[rte sws 5200] The array passing scheme used in the Application Header File the
implementation of the software component is compiled against shall be selectable via
the C preprocessor define RTE_PTR2ARRAYBASETYPE_PASSING.

Dependent on the direction and the passing scheme arrays shall be passed as follows:

• “In” Parameters

[rte sws 5107] If the C preprocessor macro RTE_PTR2ARRAYBASETYPE_PASSING

is defined, input parameters that are an array composite data type or a string
shall be passed as an array expression (that is a pointer to the array base type).
This requirement applies to the Application Header File only.

Note that AUTOSAR defines a string as a primitive data type yet due to its inher-
ent size it would be inefficient to pass by value and is therefore treated the same
as an array composite data type.

171 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 5201] If the C preprocessor macro RTE_PTR2ARRAYBASETYPE_PASSING

is undefined, input parameters that are an array composite data type or a string
shall be passed as a pointer to the array type. This requirement applies to the
Application Header File Only.

[rte sws 5202] For the RTE implementation files (excluding the Application
Header Files) an array passing scheme according either to rte sws 5107 or to
rte sws 5201 shall be implemented. A dependency on the C preprocessor macro
RTE_PTR2ARRAYBASETYPE_PASSING is not necessary.

Note that for the implementation of the RTE itself it is not necessary to know
which of the two array passing variants was selected for the implementation of
the software component, because both variants are object-code compatible.

• “Out” Parameters

[rte sws 5108] If the C preprocessor macro RTE_PTR2ARRAYBASETYPE_PASSING

is defined, output parameters that are an array composite data type or a string
shall be passed as an array expression (that is a pointer to the array base type).
This requirement applies to the Application Header File Only.

[rte sws 5203] If the C preprocessor macro RTE_PTR2ARRAYBASETYPE_PASSING

is undefined, output parameters that are an array composite data type or a string
shall be passed as a pointer to the array type. This requirement applies to the
Application Header File Only.

[rte sws 5204] For the RTE implementation files (excluding the Application
Header Files) an array passing scheme according either to rte sws 5108 or to
rte sws 5203 shall be implemented. A dependency on the C preprocessor macro
RTE_PTR2ARRAYBASETYPE_PASSING is not necessary.

• “In/Out” Parameters

[rte sws 5109] If the C preprocessor macro RTE_PTR2ARRAYBASETYPE_PASSING

is defined, bi-directional parameters (i.e. both input and output) that are an array
composite data type or a string shall be passed as an array expression (that is
a pointer to the array base type). This requirement applies to the Application
Header File Only.

[rte sws 5205] If the C preprocessor macro RTE_PTR2ARRAYBASETYPE_PASSING

is undefined, bi-directional parameters (i.e. both input and output) that are an
array composite data type or a string shall be passed as a pointer to the array
type. This requirement applies to the Application Header File Only.

[rte sws 5206] For the RTE implementation files (excluding the Application
Header Files) an array passing scheme according either to rte sws 5109 or to
rte sws 5205 shall be implemented. A dependency on the C preprocessor macro
RTE_PTR2ARRAYBASETYPE_PASSING is not necessary.

• “Return” Value

172 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 5207] If communication data of an array composite data type is
passed as the return value, the type of the return value shall be a pointer
to the array base type under the condition, that the C preprocessor macro
RTE_PTR2ARRAYBASETYPE_PASSING is defined. This requirement applies to the
Application Header File Only.

[rte sws 5208] If communication data of an array composite data type is
passed as the return value, the type of the return value shall be a pointer
to the array type under the condition, that the C preprocessor macro
RTE_PTR2ARRAYBASETYPE_PASSING is undefined. This requirement applies to
the Application Header File Only.

[rte sws 5209] For the RTE implementation files (excluding the Application
Header Files) an array passing scheme according either to rte sws 5207 or to
rte sws 5208 shall be implemented. A dependency on the C preprocessor macro
RTE_PTR2ARRAYBASETYPE_PASSING is not necessary.

Note that in case of a n-dimensional array the array base type is the type of an indi-
vidual array element and not the type of the array of the dimension n − 1. E. g. for
a type MyInt32_Array_8_9 the pointer to the array base type is MyInt32 * and not
MyInt32_Array_9 *.

Example 5.8

Consider an RTE API call taking an array as an “out” parameter for a singly
instantiated SW-C. The signature of the API in the Application Header File
will be:

1 #ifdef RTE_PTR2ARRAYBASETYPE_PASSING
2 Std_ReturnType Rte_Write_p1_d1(UInt32* value);
3 #else
4 Std_ReturnType Rte_Write_p1_d1(UInt32Array_8* value);
5 #endif

The implementation of a software component passing arrays as pointers to
the array base type could invoke the API function as follows:

1 #define RTE_PTR2ARRAYBASETYPE_PASSING
2 #include "Rte_swc.h"
3 ...
4 UInt32Array_8 myArray; /* or: UInt32 myArray[8]; */
5 ...
6 Rte_Write_p1_d1(myArray);

The implementation of a software component passing arrays as pointers to
the array type could invoke the API function as follows:

1 #include "Rte_swc.h"
2 ...
3 UInt32Array_8 myArray;
4 ...
5 Rte_Write_p1_d1(&myArray);

173 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Example 5.9

Consider an RTE API call returning an array for a singly instantiated SW-C.
The signature of the API in the Application Header File will be:

1 #define RTE_PTR2ARRAYBASETYPE_PASSING
2 UInt32* Rte_IRead_re_p1_d1(void);
3 #else
4 UInt32Array_8* Rte_IRead_re_p1_d1(void);
5 #endif

The implementation of a software component passing arrays as pointers to
the array base type could invoke the API function as follows:

1 #define RTE_PTR2ARRAYBASETYPE_PASSING
2 #include "Rte_swc.h"
3 ...
4 UInt32 value0;
5 UInt32* myArray;
6 ...
7 myArray = Rte_IRead_re_p1_d1();
8 value0 = myArray[0];

The implementation of a software component passing arrays as pointers to
the array type could invoke the API function as follows:

1 #include "Rte_swc.h"
2 ...
3 UInt32 value0;
4 UInt32Array_8 myArray;
5 ...
6 myArray = Rte_IRead_re_p1_d1();
7 value0 = (*myArray)[0];

5.2.6.6 Error Handling

In RTE, error and status information is defined with the data type Std_ReturnType,
see Section 5.5.1.

It is possible to distinguish between infrastructure errors and application errors. Infras-
tructure errors are caused by a resource failure or an invalid input parameter. Infras-
tructure errors usually occur in the basic software or hardware along the communica-
tion path of a data element. Application errors are reported by a SW-C or by AUTOSAR
services. RTE has the capability to treat application errors that are forwarded

• by return value in client server communication or

• by signal invalidation in sender receiver communication with isQueued set to
false.

174 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Errors that are detected during an RTE API call are notified to the caller using the API’s
return value.

[rte sws 1034] Error states (including ’no error’) shall only be passed as return value
of the RTE API to the AUTOSAR SW-C.

Requirement rte sws 1034 ensures that, irrespective of whether the API is blocking or
non-blocking, the error is collected at the same time the data is made available to the
caller thus ensuring that both items are accessed consistently.

Certain RTE API calls operate asynchronously from the underlying communication
mechanism. In this case, the return value from the API indicates only errors detected
during that API call. Errors detected after the API has terminated are returned using
a different mechanism rte sws 1111. RTE also provides an ’implicit’ API for direct ac-
cess to virtually shared memory. This API does not return any errors. The underlying
communication is decoupled. Instead, an API is provided to pick up the current status
of the corresponding data element.

5.2.6.7 Success Feedback

The RTE supports the notification of results of transmission attempts to an AUTOSAR
software-component.

The Rte Feedback API rte sws 1083 can be configured to return the transmission re-
sult as either a blocking or non-blocking API or via activation of a runnable entity.

5.2.7 Unconnected Ports

[rte sws 1329] The RTE shall handle both require and provide ports that are not con-
nected.

[rte sws 5100] The handling of require ports as an error shall be configured using
rte sws 5099.

The API calls for unconnected ports are specified to behave as if the port was con-
nected but the remote communication point took no action.

Unconnected require ports are regarded by the RTE generator as an invalid configura-
tion (see rte sws 3019) if the strict handling has been enabled (see rte sws 5099).

175 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5.2.7.1 Data Elements

5.2.7.1.1 Explicit Communication

[rte sws 1330] A non-blocking Rte_Read API for an unconnected require port typed
by a SenderReceiverInterface shall return RTE E OK code as if a sender was con-
nected but did not transmit anything.

Requirement rte sws 1330 applies to elements with ”‘data”’ semantics (isQueued =
false) and therefore ”last is best”’ semantics. This means that the initial value will be
returned.

[rte sws 1331] A blocking Rte_Receive API for an unconnected require port typed
by a SenderReceiverInterface shall return RTE E TIMEOUT immediately without wait-
ing for expiry of the timeout.

[rte sws 1336] A non-blocking Rte_Receive API for an unconnected require port
typed by a SenderReceiverInterface shall return RTE E NO DATA immediately.

The existence of blocking and non-blocking Rte_Read and Rte_Receive API calls is
controlled by the presence of DataReceivePoints, DataReceiveEvents and WaitPoints
within the SW-C description rte sws 1288, rte sws 1289 and rte sws 1290.

[rte sws 1344] A blocking Rte Feedback API for a DataElementPrototype of an un-
connected provide port shall return RTE E TRANSMIT ACK immediately.

[rte sws 1345] A non-blocking Rte Feedback API for a DataElementPrototype of an
unconnected provide port shall return RTE E TRANSMIT ACK immediately.

The existence of blocking and non-blocking Rte Feedback API is controlled by the
presence of DataSendPoints, DataSendCompletedEvents and WaitPoints within the
SW-C description for a DataElementPrototype with acknowledgement enabled, see
rte sws 1283, rte sws 1284, rte sws 1285 and rte sws 1286.

[rte sws 1332] The Rte Send or Rte Write API for an unconnected provide port
typed by a SenderReceiverInterface shall discard the input parameters and return
RTE E OK.

The existence of Rte Send or Rte Write is controlled by the presence of DataSend-
Points within the SW/C description rte sws 1280 and rte sws 1281.

[rte sws 3783] The Rte Invalidate API for an unconnected provide port typed by a
SenderReceiverInterface shall return RTE E OK.

The existence of Rte Invalidate is controlled by the presence of DataSendPoints
within the SW/C description for a DataElementPrototype which is marked as invalidat-
able and has canInvalidate enabled rte sws 1282.

176 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5.2.7.1.2 Implicit Communication

[rte sws 1346] An Rte_IRead API for an unconnected require port typed by a
SenderReceiverInterface shall return the initial value.

The existence of Rte_IRead is controlled by the presence of DataReadAccess in the
SW-C description rte sws 1301.

[rte sws 1347] An Rte IWrite API for an unconnected provide port typed by a
SenderReceiverInterface shall discard the written data.

The existence of Rte IWrite is controlled by the presence of DataWriteAccess in the
SW-C description rte sws 1302.

[rte sws 3784] An Rte IInvalidate API for an unconnected provide port typed by a
SenderReceiverInterface shall perform no action.

The existence of Rte IInvalidate is controlled by the presence of DataWriteAccess
in the SW-C description for a DataElementPrototype which is marked as invalidatable
and has canInvalidate enabled rte sws 3801.

[rte sws 3785] An Rte_IStatus API for an unconnected require port typed by a
SenderReceiverInterface shall return RTE E OK.

The existence of Rte_IStatus is controlled by the presence of DataReadAccess in
the SW-C description for a DataElementPrototype with data element outdated notifica-
tion or data element invalidation rte sws 2600.

5.2.7.2 Mode Ports

For the mode user an unconnected mode port behaves as if it was connected to a
mode manager that never sends a mode switch notification.

[rte sws 2638] A Rte_Mode API for an unconnected mode port of a mode user shall
return the initial state.

[rte sws 2639] Regarding the modes of an unconnected mode port of a mode user,
the mode disabling dependencies on the initial mode shall be permanently active and
the mode disabling dependencies on all other modes shall be inactive.

[rte sws 2640] Regarding the modes of an unconnected mode port of a mode user,
RTE will only generate a ModeSwitchEvent for entering the initial mode which occurs
directly after startup.

[rte sws 2641] The Rte Switch API for an unconnected mode port of the mode man-
ager shall discard the input parameters and return RTE E OK.

[rte sws 2642] A blocking or non blocking Rte Feedback API for an unconnected
mode port of the mode manager shall return RTE_E_OK immediately.

177 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5.2.7.3 Client-Server

[rte sws 1333] The Rte_Result API for an unconnected asynchronous require port
typed by a ClientServerInterface with a WaitPoint for the AsynchronousServerCallRe-
turnsEvent shall return RTE E TIMEOUT immediately without waiting for expiry of the
timeout.

[rte sws 1337] The Rte_Result API for an unconnected asynchronous require port
typed by a ClientServerInterface without a WaitPoint for the AsynchronousServerCall-
ReturnsEvent shall return RTE E NO DATA immediately.

[rte sws 1334] An asynchronous Rte_Call API for an unconnected require port
typed by a ClientServerInterface shall return RTE E OK immediately.

5.2.8 Non-identical ports

Two ports are permitted to be connected provided that they are characterized by com-
patible, but not necessarily identical, interfaces. For the full definition of whether two
interfaces are compatible, see the System Template.

[rte sws 1368] The RTE generator must report an error if two connected ports are
connected by incompatible interfaces.

A significant issue in determining whether two interfaces are compatible is that the
interface characterizing the require port may be a strict subset of the interface char-
acterizing the provide port. This means that there may be provided data elements or
operations for which there is no corresponding element in the require port. This can be
imagined as a multi-strand wire between the two ports (the assembly connector) where
each strand represents the connection between two data elements or operations, and
where some of the strands from the ‘provide’ end are not connected to anything at the
‘require’ end.

Define, for the purposes of this section, an “unconnected element” as a data element
or operation that occurs in the provide interface, but for which no corresponding data
element or operation occurs in a particular R-Port’s interface.

[rte sws 1369] For each data element or operation within the provide interface, every
connected requirer with an “unconnected element” must be treated as if it were not
connected.

Note that requirement rte sws 1369 means that in the case of a 1:n Sender-Receiver
the Rte_Write call may transmit to some but not all receivers. Similarly, there may be
some clients that cannot write into a server’s queue.

The extreme is if all connected requirers have an “unconnected element”:

[rte sws 1370] For a data element or operation in a provide interface which is an un-
connected element in every connected R-Port, the generated Send or Write API must
act as if the port were unconnected.”

178 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

See Section 5.2.7 for the required behaviour in this case.

5.3 RTE Modules

Figure 5.1 defines the relationship between header files and how those files are in-
cluded by modules implementing AUTOSAR software-components and by general,
non-component, code.

Figure 5.1: Relationships between RTE Header Files

The output of an RTE generator can consist of both generated code and configuration
for “library” code that may be supplied as either object code or source code. Both
configured and generated code reference standard definitions that are defined in one
of two standardized header files; the RTE Header File and the Lifecycle Header File.

The relationship between the RTE header file, application header files, the lifecycle
header file and AUTOSAR software-components is illustrated in Figure 5.1.

5.3.1 RTE Header File

The RTE header file defines fixed elements of the RTE that do not need to be generated
or configured for each ECU.

[rte sws 1157] For C/C++ AUTOSAR software-components, the name of the RTE
header file shall be Rte.h.

Typically the contents of the standardized header file are fixed for any particular imple-
mentation and therefore it is not created by the RTE generator. However, customization
for each generated RTE is not forbidden.

179 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 1164] The RTE header file shall include the file Std_Types.h.

The file Std_Types.h is the standard AUTOSAR file [12] that defines basic data types
including platform specific definitions of unsigned and signed integers and provides
access to the compiler abstraction.

The contents of the RTE header file are not restricted to standardized elements that
are defined within this document – it can also contain definitions specific to a particular
implementation.

5.3.2 Lifecycle Header File

The Lifecycle header file defines the two RTE Lifecycle API calls Rte Start and
Rte Stop (see Section 5.8).

[rte sws 1158] For C/C++ AUTOSAR software-components, the name of the lifecycle
header file shall be Rte_Main.h.

[rte sws 1159] The lifecycle header file shall include the RTE header file.

5.3.3 Application Header File

The application header file [RTE00087] is central to the definition of the RTE API. An
application header file defines the RTE API and any associated data structures that
are required by the RTE implementation. But the application header file is not allowed
to create objects in memory.

[rte sws 1000] The RTE generator shall create an application header file for each
software-component type (excluding CalprmComponentTypes) defined in the input.

[rte sws 3786] The application header file shall not contain code that creates objects
in memory.

Due to the restriction rte sws 5034 it is only allowed to have exactly one InternalBe-
havior for each component type.

RTE generation consists of two phases; an initial “RTE Contract” phase and a second
“RTE Generation” phase (see Section 2.3). Object-code components are compiled
after the first phase of RTE generation and therefore the application header file should
conform to the form of definitions defined in Sections 5.4.1 and 5.5.2. In contrast,
source-code components are compiled after the second phase of RTE generation and
therefore the RTE generator produces an optimized application header file based on
knowledge of component instantiation and deployment.

180 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5.3.3.1 File Name

[rte sws 1003] The name of the application header file shall be formed by prefixing
the AUTOSAR software-component type name with Rte_ and appending the result
with .h.

Example 5.10

The following declaration in the input XML:

1 <ATOMIC-SOFTWARE-COMPONENT-TYPE>
2 <SHORT-NAME>Source</SHORT-NAME>
3 </ATOMIC-SOFTWARE-COMPONENT-TYPE>

should result in the application header file Rte_Source.h being gener-
ated.

The component type name is used rather than the component instance name for two
reasons; firstly the same component code is used for all component instances and,
secondly, the component instance name is an internal identifier, and should not appear
outside of generated code.

5.3.3.2 Scope

[rte sws 1004] The application header file for a component shall contain only informa-
tion relevant to that component.

Requirement rte sws 1004 means that compile time checks ensure that a component
that uses the application header file only accesses the generated data structures and
functions to which it has been configured. Any other access, e.g. to fields not defined in
the customized data structures or RTE API, will fail with a compiler error [RTE00017].

[rte sws 1005] The application header file shall be valid for both C and C++ source.

Requirement rte sws 1005 is met by ensuring that all definitions within the application
header file are defined using C linkage if a C++ compiler is used.

[rte sws 3709] All definitions within in the application header file shall be preceded by
the following fragment;

1 #ifdef __cplusplus
2 extern "C" {
3 #endif /* __cplusplus */

[rte sws 3710] All definitions within the application header file shall be suffixed by the
following fragment;

1 #ifdef __cplusplus
2 } /* extern "C" */
3 #endif /* __cplusplus */

181 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

1 #include <Rte_c1.h>
2

3 void
4 runnable_entry(Rte_Instance self)
5 {
6 /* ... server code ... */
7 }

Figure 5.2: Skeleton server runnable entity

The definitions of the RTE API contained in the application header file can be opti-
mized during the “RTE Generation” phase when the mapping of software-components
to ECUs and the communication matrix is known. Consequently multiple application
header files must not be included in the same source module to avoid conflicting defi-
nitions of the RTE API definitions that the files contains.

Figure 5.2 illustrates the code structure for the declaration of the entry point of a runn-
able entity that provides the implementation for a ServerPort in component c1. The
RTE generator is responsible for creating the API and tasks used to execute the server
and the symbol name of the entry point is extracted from the attribute symbol of the
runnable entitiy. The example shows that the first parameter of the entry point function
is the software-component’s instance handle rte sws 1016.

Figure 5.2 includes the component-specific application header file Rte_c1.h created
by the RTE generator. The RTE generator will also create the supporting data struc-
tures and the task body to which the runnable is mapped.

The RTE is also responsible for preventing conflicting concurrent accesses when the
runnable entity implementing the server operation is triggered as a result of a request
from a client received via the communication service or directly via inter-task commu-
nication.

5.3.3.3 File Contents

Multiple application header file must not be included in the same module
(rte sws 1004) and therefore the file contents should contain a mechanism to enforce
this requirement.

[rte sws 1006] An application header file shall include the following mechanism before
any other definitions.

1 #ifdef RTE_APPLICATION_HEADER_FILE
2 #error Multiple application header files included.
3 #endif /* RTE_APPLICATION_HEADER_FILE */
4 #define RTE_APPLICATION_HEADER_FILE

The RTE uses an instance handle to identify different instances of the same compo-
nent type. The definition of the instance handle type rte sws 1148 is unique to each
component type and therefore should be included in the application header file.

182 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 1007] The application header file shall define the type of the instance handle
for the component.

All runnable entities for a component are passed the same instance handle type (as
the first formal parameter rte sws 1016) and can therefore use the same type definition
from the component’s application header file.

[rte sws 1263] The application header file shall include the AUTOSAR Types Header
File.

The name of the AUTOSAR Types Header File is defined in Section 5.3.4.

The application header file also includes a prototype for each runnable entity entry
point (rte sws 1132) and the API mapping (rte sws 1274).

[rte sws 5078] The application header file shall define the init value of unqueued prim-
itive type DataElemetPrototypes

1 #define Rte_InitValue_<Port>_<DEPType> ((<DataType>) <initValue>)

where <Port> is the PortProtoype shortName, <DEPType> is the short-
Name of the DataElemetPrototype, <DataType> is the shortName of the
DataElementPrototype’s type and <initValue> is the initValue specified in
the UnqueuedReceiverComSpec respectively UnqueuedSenderComSpec.

Note that the initValue defined may be subject to change due to the fact that for
COM configuration it may be possible to change this value during ECU Configuration
or even post-build time.

5.3.3.3.1 RTE-Component Interface

The application header file defines the “interface” between a component and the RTE.
The interface consists of the RTE API for the component and the prototypes for runn-
able entities. The definition of the RTE API requires that both relevant data structures
and API calls are defined.

The data structures required to support the API are defined in the RTE Types header
file rte sws 3713. This enables the definitions to be available to multiple modules to
support direct function invocation.

The data structure types are declared in the RTE Types file whereas the instances are
defined in the generated RTE. The necessary data structures for object-code software-
components are defined 5.5.2.

[rte sws 1009] The application header file shall define the mapping from the RTE API
to the generated API functions that are generated/configured for the component.

The RTE generator is required rte sws 1004 to limit the contents of the application
header file to only that information that is relevant to that component type. This re-
quirement includes the definition of the API mapping.

183 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 1276] Only RTE API calls that are valid for the particular software-component
type shall be defined within the component’s application header file.

Requirement rte sws 1276 ensures that attempts to invoke invalid API calls will be
rejected as a compile-time error [RTE00017].

5.3.4 AUTOSAR Types Header File

The AUTOSAR types header file defines RTE specific types derived either from the
input configuration or from the RTE implementation.

The generated RTE can include zero or more AUTOSAR data types created from the
definitions of AUTOSAR meta-model classes within the RTE generator’s input. The
available meta-model classes are defined by the AUTOSAR software-component tem-
plate and include classes for defining integers, floats as well as “complex” data types
such as records.

[rte sws 1160] The RTE generator shall create the AUTOSAR Types header file defin-
ing the AUTOSAR data types and RTE implementation types.

The AUTOSAR data types header file should be output for “RTE Contract” and “RTE
Generation” phases. RTE implementation types include the Component Data Structure
(Section 5.4.2).

5.3.4.1 File Contents

[rte sws 2648] The AUTOSAR Types header file shall include the definitions of all
AUTOSAR data types irrespective of their use by the generated RTE.

This requirement ensures the availability of AUTOSAR data types for the internal use
in AUTOSAR software components.

The types header file may need to define types in terms of BSW types (from the file
Std_Types.h) or from the implementation specific RTE header file. However, since
the RTE header file includes the file Std_Types.h already so only the RTE header
file needs direct inclusion within the types header file.

[rte sws 1163] The AUTOSAR Types header file shall include the RTE header file.

5.3.4.2 Primitive AUTOSAR Data Types

The AUTOSAR types file defines the mapping from primitive AUTOSAR data-types (de-
fined in the XML) to programming language specific type definitions. The mapping from
primitive AUTOSAR data-types to BSW standard types (as defined in Std_Types.h
is defined in Table 5.1).

184 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Requirement Meta-type Range Base Type
[rte sws 1175] CHAR-TYPE Encoding ‘UTF-8’ uint8

[rte sws 1176] STRING-TYPE
Declaration, n is defined maxi-
mum length including zero termi-
nator

uint8[n]

[rte sws 1177] INTEGER-TYPE [-128,127] sint8

[rte sws 1178] INTEGER-TYPE [-32768,32767] sint16

[rte sws 1179] INTEGER-TYPE [-2147483648,2147483647] sint32

[rte sws 1180] INTEGER-TYPE [0,255] uint8

[rte sws 1181] INTEGER-TYPE [0,65535] uint16

[rte sws 1182] INTEGER-TYPE [0,4294967295] uint32

[rte sws 1183] OPAQUE-TYPE Bit length 1..8 uint8

[rte sws 1184] OPAQUE-TYPE Bit length 9..16 uint16

[rte sws 1185] OPAQUE-TYPE Bit length 17..32 uint32

[rte sws 1186] REAL-TYPE Encoding single float32

[rte sws 1187] REAL-TYPE Encoding double float64

[rte sws 1188] BOOLEAN-TYPE N/A boolean

Table 5.1: C/C++ mapping from primitive AUTOSAR data-
types

An integer type is defined using either an open or closed interval – a closed interval
includes its endpoints whereas an open interval does not. For simplicity, Table 5.1
defines mappings for integer types using closed intervals.

[rte sws 1265] Where the range expressed in a type definition is not exactly the same
as a range defined in Table 5.1, the RTE generator shall select the smallest suitable
base type.

Example 5.11 describes the definition of an 11-bit unsigned integer type in terms of a
16-bit base type.

Example 5.11

The following declaration of the user-defined type UInt11 in the input XML:

1 <INTEGER-TYPE>
2 <SHORT-NAME>UInt11</SHORT-NAME>
3 <LOWER-LIMIT>
4 <INTERVAL-TYPE>CLOSED</INTERVAL-TYPE>
5 <VALUE>0</VALUE>
6 </LOWER-LIMIT>
7 <UPPER-LIMIT>
8 <INTERVAL-TYPE>OPEN</INTERVAL-TYPE>
9 <VALUE>2048</VALUE>

10 </UPPER-LIMIT>
11 </INTEGER-TYPE>

185 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Should result in a mapping to the base type uint16 and the following type
definition;

1 typedef uint16 UInt11;

[rte sws 1214] An attempt to declare a type with a range which cannot be represented
by a base type from Table 5.1 shall be rejected by the RTE generator.

Table 5.1 applies to the standard AUTOSAR types as well as user-defined types and
primitive data-types with semantics. Using the requirements defined in Table 5.1 the
standard AUTOSAR primitive types are mapped as follows:

AUTOSAR Type BSW Type
UInt4 uint8

SInt4 sint8

UInt8 uint8

SInt8 sint8

UInt16 uint16

SInt16 sint16

UInt32 uint32

SInt32 sint32

Float_with_NaN float32

Float float32

Double_with_NaN float64

Double float64

Boolean boolean

Char8 uint8

Char16 uint16

Table 5.2: C/C++ mapping for standard AUTOSAR data-
types

5.3.4.3 Complex AUTOSAR Data Types

In addition to the primitive data-types defined in the previous section, it is also neces-
sary for the RTE generator to define complex data-types; arrays and records.

An array definition needs three pieces of information; the array base type, the array
name and the number of elements.

[rte sws 1189] An ARRAY-TYPE data-type shall be declared as typedef <type>
<name>[n] where <type> is the base type, <name> the data-type name and n the
number of elements.

Example 5.12

The array data-type declaration;

186 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

1 <ARRAY-TYPE>
2 <SHORT-NAME>array</SHORT-NAME>
3 <DESC>array of myInt values</DESC>
4 <ELEMENT-TYPE-REF>myInt</ELEMENT-TYPE-REF>
5 <MAX-NUMBER-OF-ELEMENTS>2</MAX-NUMBER-OF-ELEMENTS>
6 </ARRAY-TYPE>

Produces the following type definition;

1 typedef myInt array[2];

ANSI C does not allow a type declaration to have zero elements and therefore we
require that the “number of elements” to be a positive integer.

[rte sws 1190] The number of elements of an ARRAY_TYPE data type shall be an
integer that is ≥ 1.

A record definition contains references to one or more data elements with a base type
for each element. A record definition is recursive; a data element can include a type
reference that is itself another record definition.

[rte sws 1191] A RECORD-TYPE data-type shall be declared as typedef struct
{ <elements> } <name> where <elements> is the record element specification
and <name> the data-type name.

ANSI C does not allow a struct to have zero elements and therefore we require that
a record include at least one element.

[rte sws 1192] A record shall include at least one element.

Example 5.13

The record data-type declaration;

1 <RECORD-TYPE>
2 <SHORT-NAME>R2</SHORT-NAME>
3 <ELEMENTS>
4 <RECORD-ELEMENT>
5 <SHORT-NAME>Abc</SHORT-NAME>
6 <TYPE-TREF>myBool</TYPE-TREF>
7 </RECORD-ELEMENT>
8 <RECORD-ELEMENT>
9 <SHORT-NAME>Def</SHORT-NAME>

10 <TYPE-TREF>myInt</TYPE-TREF>
11 </RECORD-ELEMENT>
12 </ELEMENTS>
13 </RECORD-TYPE>

Produces the following type definition;

1 typedef struct {
2 myBool Abc;

187 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

3 myInt Def;
4 } R2;

5.3.4.4 C/C++

The following requirements apply to RTEs generated for C and C++.

[rte sws 1161] The name of the AUTOSAR types header file shall be Rte_Type.h.

[rte sws 1162] Within the AUTOSAR types header file, each data type shall be defined
using typedef.

A typedef is used when defining a new data type instead of a #define even though
C only provides weak type checking since other static analysis tools can then be used
to overlay strong type checking onto the C before it is compiled and thus detect type
errors before the module is even compiled.

5.3.5 VFB Tracing Header File

The VFB Tracing Header File defines the configured VFB Trace events.

[rte sws 1319] The VFB Tracing Header File shall be created by the RTE Generator
during “RTE Generation” phase only.

The VFB Tracing Header file is included by the generated RTE and by the user in the
module(s) that define the configured hook functions. The header file includes proto-
types for the configured functions to ensure consistency between the invocation by the
RTE and the definition by the user.

5.3.5.1 C/C++

The following requirements apply to RTEs generated for C and C++.

[rte sws 1250] The name of the VFB Tracing Header File shall be Rte_Hook.h.

5.3.5.2 File Contents

[rte sws 1251] The VFB Tracing header file shall include the RTE Configuration file
(Section 5.3.6).

[rte sws 1357] The VFB Tracing header file shall include the AUTOSAR Types Header
file (Section 5.3.4).

[rte sws 3607] The VFB Tracing header file shall include Os.h.

188 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 1320] The VFB Tracing header file shall contain the following code immedi-
ately after the include of the RTE Configuration file.

1 #ifndef RTE_VFB_TRACE
2 #define RTE_VFB_TRACE (0)
3 #endif /* RTE_VFB_TRACE */

Requirement rte sws 1320 enables VFB tracing to be globally enabled/disabled within
the RTE Configuration file and ensures that it defaults to ‘disabled’.

[rte sws 1236] For each trace event hook function defined in Section 5.10.2, the RTE
generator shall define the following code sequence in the VFB Tracing header file:

1 #if defined(<trace event>) && (RTE_VFB_TRACE == 0)
2 #undef <trace event>
3 #endif
4 #if defined(<trace event>)
5 #undef <trace event>
6 extern void <trace event>(<params>);
7 #else
8 #define <trace event>(<params>) ((void)(0))
9 #endif /* <trace event> */

In the example above, <trace event> is the name of trace event hook function and
<params> is the list of parameter names of the trace event hook function prototype as
defined in Section 5.10.2.

The code fragment within rte sws 1236 benefits from a brief analysis of its structure.
The first #if block ensures that an individually configured trace event in the RTE Con-
figuration file rte sws 1324 is disabled if tracing is globally disabled rte sws 1323. The
second #if block emits the prototype for the hook function only if enabled in the RTE
Configuration file and thus ensures that only configured trace events are prototyped.
The #undef is required to ensure that the trace event function is invoked as a function
by the generated RTE. The #else block comes into effect if the trace event is disabled,
either individually rte sws 1325 or globally, and ensures that it has no run-time effect.
Within the #else block the definition to ((void)(0)) enables the hook function to
be used within the API Mapping in a comma-expression.

An individual trace event defined in Section 5.10.2 actually defines a class of hook
functions. A member of the class is created for each RTE object created (e.g. for each
API function, for each task) and therefore an individual trace event may give rise to
many hook function definitions in the VFB Tracing header file.

Example 5.14

Consider an API call Rte_Write_p1_a for an instance of SW-C c. This will
result in two trace event hook functions being created by the RTE generator:

1 Rte_WriteHook_c_p1_a_Start

and

189 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

1 Rte_WriteHook_c_p1_a_Return

5.3.6 RTE Configuration Header File

The RTE Configuration Header file contains user definitions that affect the behaviour
of the generated RTE.

The directory containing the required RTE Configuration header file should be included
in the compiler’s include path when using the VFB tracing header file.

5.3.6.1 C/C++

The following requirements apply to RTEs generated for C and C++.

[rte sws 1321] The name of the RTE Configuration Header File shall be Rte_Cfg.h.

5.3.6.2 File Contents

[rte sws 1322] The RTE generator shall globally enable VFB tracing when
RTE_VFB_TRACE is defined in the RTE configuration header file as a non-zero inte-
ger.

Note that, as observed in Section 5.10, VFB tracing enables debugging of software
components, not the RTE itself.

[rte sws 1323] The RTE generator shall globally disable VFB tracing when
RTE_VFB_TRACE is defined in the RTE configuration header file as 0.

As well as globally enabling or disabling VFB tracing, the RTE Configuration header
file also configures those individual VFB tracing events that are enabled.

[rte sws 1324] The RTE generator shall enable VFB tracing for a given hook function
when there is a #define in the RTE configuration header file for the hook function
name and tracing is globally enabled.

Note that the particular value assigned by the #define, if any, is not significant.

[rte sws 1325] The RTE generator shall disable VFB tracing for a given hook function
when there is no #define in the RTE configuration header file for the hook function
name even if tracing is globally enabled.

Example 5.15

Consider the trace events from Example 5.14. The trace event for API start
is enabled by the following definition;

1 #define Rte_WriteHook_i1_p1_a_Start

190 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

And the trace event for API termination is enabled by the following definition;

1 #define Rte_WriteHook_i1_p1_a_Return

5.3.7 Generated RTE

Figure 5.1 defines the relationship between generated and standardized header files.
It is not necessary to standardize the relationship between the C module, Rte.c,
and the header files since when the RTE is generated the application header files are
created anew along with the RTE. This means that details of which header files are
included by Rte.c can be left as an implementation detail.

5.3.7.1 Header File Usage

[rte sws 1257] In compatibility mode, the Generated RTE module shall include Os.h.

[rte sws 3794] In compatibility mode, the generated RTE module shall include Com.h.

[rte sws 1279] In compatibility mode, the Generated RTE module shall include Rte.h.

[rte sws 1326] In compatibility mode, the Generated RTE module shall include the
VFB Tracing header file.

[rte sws 3788] The generated RTE shall use the file MemMap.h.

Figure 5.3 provides an example of how the RTE header and generated header files
could be used by a generated RTE.

Rte_Type.h

Application

Header File

Rte_Main.h

Generated RTE
Rte.c

*

1

1

1

1

Key

Generated

Standardized

Rte.h

1

Rte_Hook.h

1

Rte_Cfg.h

1

Figure 5.3: Example of header file use by the generated RTE.

191 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

In the example in Figure 5.3, the generated RTE C module requires access to the data
structures created for each AUTOSAR software-component and therefore includes
each application header file2. In the example, the generated RTE also includes the
RTE header file and the lifecycle header file in order to obtain access to RTE and
lifecycle related definitions.

5.3.7.2 C/C++

The following requirements apply to RTEs generated for C and C++.

[rte sws 1169] The name of the C module containing the generated RTE shall be
Rte.c.

An RTE that includes configured code from an object-code or source-code library may
use additional modules.

5.3.7.3 File Contents

By its very nature the contents of the generated RTE is largely vendor specific. It is
therefore only possible to define those common aspects that are visible to the “outside
world” such as the names of generated APIs and the definition of component data
structures that apply any operating mode.

5.3.7.3.1 Component Data Structures

The Component Data Structure (Section 5.4.2) is a per-component data type used to
define instance specific information required by the generated RTE.

[rte sws 3711] The generated RTE shall contain an instance of the relevant Compo-
nent Data Structure for each software-component instance on the ECU for which the
RTE is generated.

[rte sws 3712] The name of a Component Data Structure instantiated by the RTE gen-
erator shall be Rte_Instance_<name> where <name> is an automatically generated
name, created in some manner such that all instance data structure names are unique.

The software component instance name referred to in rte sws 3712 is never made
visible to the users of the generated RTE. There is therefore no need to specify the
precise form that the unique name takes. The Rte_Instance_ prefix is mandated in
order to ensure that no name clashes occur and also to ensure that the structures are
readily identifiable in map files, debuggers, etc.

2The requirement that a software module include at most one application header file applies only to
modules that actually implement a software-component and therefore does not apply to the generated
RTE.

192 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5.3.7.3.2 Generated API

[rte sws 1266] The RTE module shall define the generated functions that will be in-
voked when an AUTOSAR software-component makes an RTE API call.

The semantics of the generated functions are not defined (since these will obviously
vary depending on the RTE API call that it is implementing) nor are the implementation
details (which are vendor specific). However, the names of the generated functions
defined in Section 5.2.6.1.

The signature of a generated function is the same as the signature of the relevant RTE
API call (see Section 5.6) with the exception that the instance handle can be omitted
since the generated function is applicable to a specific software-component instance.

5.3.7.3.3 Callbacks

In addition to the generated functions for the RTE API, the RTE module includes call-
backs invoked by COM when signal events (receptions, transmission acknowledge-
ment, etc.) occur.

[rte sws 1264] The RTE module shall define COM callbacks for relevant signals.

The required callbacks are defined in Section 5.9.2.

[rte sws 3795] The RTE generator shall generate a separate header file containing
the prototypes of the COM callback functions.

[rte sws 3796] The name of the header file containing the COM callback prototypes
shall be Rte_Cbk.h in a C/C++environment.

5.3.7.3.4 Task bodies

The RTE module define task bodies for tasks created by the RTE generator only in
compatibility mode.

[rte sws 1277] In compatibility mode rte sws 1257, the RTE module shall define all
task bodies created by the RTE generator.

Note that in vendor mode it is assumed that greater knowledge of the OS is available
and therefore the above requirement does not apply so that specific optimizations,
such as creating each task in a separate module, can be applied.

5.3.7.3.5 Lifecycle API

[rte sws 1197] The RTE module shall define the RTE lifecycle API.

The RTE lifecycle API is defined in Section 5.8.

193 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5.3.7.4 Reentrancy

All code invoked by generated RTE code that can be subject to concurrent execution
must be reentrant. This requirement for reentrancy can be overridden if the gener-
ated code is not subject to concurrent execution, for example, if protected by a data
consistency mechanism to ensure that access to critical regions is serialized.

5.4 RTE Data Structures

Object-code software components are compiled against an application header file cre-
ated during the “RTE Contract” phase but are linked against an RTE (and application
header file) created during the “RTE Generation” phase. When generated in com-
patibility mode, an RTE has to work for object-code components compiled against an
application header file created in compatibility mode, even if the application header file
was created by a different RTE generator. It is thus necessary to define the data struc-
tures and naming conventions for the compatibility mode to ensure that the object-code
is compatible with the generated RTE. An RTE generated in vendor mode only has to
work for those object-code components that were compiled against application header
files created in vendor mode by a compatible RTE generator (which in general would
mean an RTE generator supplied by the same vendor).

The use of standardized data structures imposes tight constraints on the RTE imple-
mentation and therefore restricts the freedom of RTE vendors to optimize the solution
of object-code components but has the advantage that RTE generators from different
vendors can be used to compile an object-code software-component and to generate
the RTE. No such restrictions apply for the vendor mode. If an RTE generator operating
in vendor mode is used for an object-code component in both phases, vendor-specific
optimizations can be used.

Note that with the exception of data structures required for support object-code soft-
ware components in compatibility mode, the data structures used for “RTE Generation”
phase are not defined. This permits vendor specific API mappings and data structures
to be used for a generated RTE without loss of portability.

The following definitions only apply to RTE generators operating in compatibility mode –
in this mode the instance handle and the component data structure have to be defined
even for those (object-code) software components for which multiple instantiation is
forbidden to ensure compatibility.

5.4.1 Instance Handle

The RTE is required to support object-code components as well as multiple instances
of the same AUTOSAR software-component mapped to an ECU [RTE00011]. To
minimise memory overhead all instances of a component on an ECU share code

194 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[RTE00012] and therefore both the RTE and the component instances require a means
to distinguish different instances.

Support for both object-code components and multiple instances requires a level of
indirection so that the correct generated RTE custom function is invoked in response to
a component action. The indirection is supplied by the instance handle in combination
with the API mapping defined in Section 5.2.6.

[rte sws 1012] The component instance handle shall identify particular instances of a
component.

The instance handle is passed to each runnable entity in a component when it is ac-
tivated by the RTE as the first parameter of the function implementing the runnable
entity rte sws 1016. The instance handle is then passed back by the runnable entity
to the RTE, as the first parameter of each direct RTE API call, so that the RTE can
identify the correct component instance making the call. This scheme permits multiple
instances of a component on the same ECU to share code.

The instance handle indirection permits the name of the RTE API call that is used within
the component to be unique within the scope of a component as well as independent
of the component’s instance name. It thus enables object-code AUTOSAR software-
components to be compiled before the final “RTE Generation” phase when the instance
name is fixed.

[rte sws 1013] For the RTE C/C++ API, any call that can operate on different instances
of a component that supports multiple instantiation rte sws in 0004 shall have an in-
stance handle as the first formal parameter.

[rte sws 3806] If a component does not support multiple instantiation, the instance
handle parameter shall be omitted in the RTE C/C++ API and in the signature of the
RTE Hook functions.

If the component does not support multiple instantiation, the name of the instance
handle must be specified, since it is not passed to the API calls and runnable entities
as parameters.

[rte sws 3793] If a software component does not support multiple instantiation, the
name of the instance handle shall be Rte_Inst_<c>, where <c> is the component
type name.

The data type of the instance handle is defined in Section 5.5.2.

5.4.2 Component Data Structure

Different component instances share many common features - not least of which is
support for shared code. However, each instance is required to invoke different RTE
API functions and therefore the instance handle is used to access the component data
structure that defines all instance specific data.

195 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

It is necessary to define the component data structure to ensure compatibility between
the two RTE phases when operating in compatibility mode – for example, a “clever”
compiler and linker may encode type information into a pointer type to ensure type-
safety. In addition, the structure definition cannot be empty since this is an error in
ANSI C.

[rte sws 3713] The component data structure type shall be defined in the AUTOSAR
Types Header file.

[rte sws 3714] The type name of the component data structure shall be
Rte_CDS_<c> where <c> is the component type name.

The members of the component data structure include function pointers. It is important
that such members are not subject to run-time modification and therefore the compo-
nent data structure is required to be placed in read-only memory.

[rte sws 3715] All instances of the component data structure shall be defined as
“const” (i.e. placed in read-only memory).

The elements of the component data structure are sorted into sections, each of which
defines a logically related section. The sections defined within the component data
structure are:

• [rte sws 3718] Data Handles section.

• [rte sws 3719] Per-instance Memory Handles section.

• [rte sws 1349] Inter-runnable Variable Handles section.

• [rte sws 3720] Calibration Parameter Handles section.

• [rte sws 3721] Exclusive-area Handles section.

• [rte sws 3716] Port API section.

• [rte sws 3717] Inter Runnable Variable API section.

• [rte sws 3722] Vendor specific section.

The order of elements within each section of the component data structure is defined
as follows;

[rte sws 3723] Section entries shall be sorted alphabetically (ASCII / ISO 8859-1 code
in ascending order) unless stated otherwise.

The sorting of entries is applied to each section in turn.

Note that there is no prefix associated with the name of each entry within a section;
the component data structure as a whole has the prefix and therefore there is no need
for each member to have the same prefix.

ANSI C does not permit empty structure definitions yet an instance handle is required
for the RTE to function. Therefore if there are no API calls then a single dummy entry
is defined for the RTE.

196 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 3724] If all sections of the Component Data Structure are empty the Compo-
nent Data Structure shall contain a uint8 with name _dummy.

5.4.2.1 Data Handles Section

The data handles section is required to support the Rte IRead and Rte IWrite calls
(see Section 5.2.4).

[rte sws 3733] Data Handles shall be named <re>_<p>_<d>where <re> is the runn-
able entity name that reads (or writes) the data item, <p> the port name, <d> the data
element.

A runnable cannot read and write to the same port/data element since the port is
inherently uni-directional (a provide port can only be written, a required port can only
be read).

[rte sws 2608] The Data Handle shall be a pointer to a Data Element with
Status if and only if the runnable has read access and either

• data element outdated notification or

• data element invalidation

is activated for this data element.

[rte sws 2588] Otherwise, the data type for a Data Handle shall be a pointer to either
a Data Element without Status.

See below for the definitions of these terms.

5.4.2.1.1 Data Element without Status

[rte sws 1363] The data type for a “Data Element without Status” shall be named
Rte_DE_<dt> where <dt> is the data element type.

[rte sws 1364] A Data Element without Status shall be a structure containing
a single member named value.

[rte sws 2607] The value member of a Data Element without Status shall
have the same data type as the corresponding DataElement.

Note that requirements rte sws 1364 and rte sws 2607 together imply that creating a
variable of data type Rte_DE_<dt> allocates enough memory to store the data copy.

5.4.2.1.2 Data Element with Status

[rte sws 1365] The data type for a “Data Element with Status” shall be named
Rte_DES_<dt> where <dt> is the data element type.

197 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 1366] A Data Element with Status shall be a structure containing two
members.

[rte sws 3734] The first member of each Data Element with Status shall be
named ’value’

[rte sws 2666] The value member of a Data Element with Status shall have the
type of the corresponding DataElement.

[rte sws 2589] The second member of each Data Element with Status shall be
named ’status’.

[rte sws 2590] The status member of a Data Element with Status shall be of
the Std_ReturnType type.

[rte sws 2609] The status member of a Data Element with Status shall contain
the error status corresponding to the value member.

5.4.2.1.3 Usage

[rte sws 1367] A definition for every required Data Element with Status and
every Data Element without Status must be emitted in the AUTOSAR Types
Header File.

The AUTOSAR Types Header File is defined in Section 5.3.4).

Example 5.16

Consider a uint8 data element, a, of port p which is accessed using
DataWriteAccess semantics by runnables re1 and re2 and DataReadAc-
cess semantics by runnable re2 within component c. data element
outdated is defined for this DataElementPrototype.

The required data types within the AUTOSAR Types Header File would be:

1 typedef struct {
2 uint8 value;
3 } Rte_DE_uint8;
4

5 typedef struct {
6 uint8 value;
7 Std_ReturnType status;
8 } Rte_DES_uint8;

The component data structure for c would also include:

1 Rte_DE_uint8* re1_p_a;
2 Rte_DES_uint8* re2_p_a;

A software-component that is supplied as object-code or is multiply instanti-
ated requires “general purpose” definitions of Rte IRead, Rte IWrite, and

198 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Rte IStatus that use the data handles to access the data copies created
within the generated RTE. For example:

1 #define Rte_IWrite_re1_p_a(s,v) ((s)->re1_p_a->value = (v))
2 #define Rte_IWrite_re2_p_a(s,v) ((s)->re2_p_a->value = (v))
3 #define Rte_IRead_re2_p_a(s,v) ((s)->re2_p_a->value)
4 #define Rte_IStatus_re2_p_a(s) ((s)->re2_p_a->status)

The definitions of Rte IRead, Rte IWrite, and Rte IStatus are type-safe
since an attempt to assign an incorrect type will be detected by the compiler.

For source code component that does not use multiple instantiation the def-
initions of Rte IRead, Rte IWrite, and Rte IStatus can remain as above
or vendor specific optimizations can be applied without loss of portability.

The values assigned to data handles within instances of the component data structure
created within the generated RTE depend on the mapping of tasks and runnables –
See Section 5.2.4.

5.4.2.2 Per-instance Memory Handles Section

The Per-instance Memory Section Handles section enables to access instance specific
memory (sections).

[rte sws 2301] The CDS shall contain a handle for each Per-instance Memory. This
handle member shall be named Pim_<name> where <name> is the per-instance mem-
ory name.

The Per-instance Memory Handles are typed;

[rte sws 2302] The data type of each Per-instance Memory Handle shall be a pointer
to the type of the per instance memory that is defined in the RTE Types header file.

The RTE supports the access to the per-instance memories by the Rte Pim API.

Example 5.17

Referring to the specification items rte sws 2301 and rte sws 2302 Exam-
ple 5.4 can be extended –

with respect to the software-component header:

1 struct Rte_CDS_c {
2 ...
3 /* per-instance memory handle section */
4 Rte_PimType_c_MyMemType *Pim_mem;
5

6 ...
7 };
8

9 #define Rte_Pim_mem(s) ((s)->Pim_mem)

199 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

and in Rte.c:

1 Rte_PimType_c_MyMemType mem1;
2

3 const struct Rte_CDS_c Rte_Instance_c1 = {
4 ...
5 /* per-instance memory handle section */
6 /* Rte_PimType_c_MyMemType Pim_mem */
7 &mem1
8 ...
9 };

5.4.2.3 Inter Runnable Variable Handles Section

Each runnable may require separate handling for the inter runnable variables that it
accesses. The indirection required for explicit access to inter runnable variables is
described in section 5.4.2.7. The inter runnable variable handles section within the
component data structure contains pointers to the (shadow) memory of inter runnable
variables that can be directly accessed with the implicit API macros. The inter runnable
variable handles section does not contain pointers for memory to handle inter runnable
variables that are accessed with explicit API only.

[rte sws 2636] For each runnable and each inter runnable variable that is accessed
implicitly by the runnable, there shall be exactly one inter runnable handle member
within the component data structure and this inter runnable variable handle shall point
to the (shadow) memory of the inter runnable variable for the runnable.

[rte sws 1350] The name of each inter runnable variable handle member within the
component data structure shall be Irv_<re>_<name> where <name> is the Inter-
Runnable Variable short name and <re> is short name of the runnable name.

[rte sws 1351] The data type of each inter runnable variable handle member shall be
a pointer to the type of the inter runnable variable.

5.4.2.4 Exclusive-area handles Section

The exclusive area handles section includes exclusive areas that are accessed explic-
itly, using the RTE API, by the SW-C. Each entry in the section is a function pointer to
the relevant RTE API function generated for the SW-C instance.

[rte sws 3739] The name of each Exclusive-area handle shall be <root>_<name>
where <root> is either Entry or Exit and <name> is the Exclusive-area name.

[rte sws 3740] The data type of each Exclusive-area handle entry shall be a function
pointer that points to the generated RTE API function.

[rte sws 3812] Entries in the Exclusive-area handles section shall be sorted alphabet-
ically.

200 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Note that two function pointers will be required for each accessed exclusive area; one
for the Entry function and one for the Exit function.

5.4.2.5 Port API Section

Port API section comprises zero or more function references within the component
data structure type that defines all API functions that access a port and can be invoked
by the software-component (instance).

[rte sws 2616] The function table entries for port access shall be grouped by the port
names into port data structures.

Each entry in the port API section of the component data structure is a “port data
structure”.

[rte sws 2617] The name of each port data structure in the component data structure
shall be <p> where <p> is the port short-name.

[rte sws 3799] The component data structure shall contain a port data structure for
port p only if the component supports multiple instantiation or if the indirectAPI at-
tribute for p is set to ’true’.

[rte sws 3731] The data type name for a port data structure shall be
struct Rte_PDS_<c>_<i>_<P/R> where <c> is the component type name, <i> is
the port interface name and ‘P’ or ‘R’ are literals to indicate provide or require ports
respectively.

[rte sws 3732] The port data structure type(s) shall be defined in the AUTOSAR types
header file.

A port data structure type is defined for each port interface that types a port. Thus
different ports typed by the same port interface structure share the same port data
structure type.

[rte sws 3601] The AUTOSAR types header file shall contain a definition of a port data
structure type for interface i and port type R or P only if the component supports mul-
tiple instantiation or at least one require or provide port exists that has the indirectAPI
attribute set to ’true’.

[rte sws 3730] A port data structure shall contain a function table entry for each API
function associated with the port as referenced in table 5.3. Pure API macros, like
Rte_IRead and other implicit API functions, do not have a function table entry.

API function reference
Rte Send <p> <d> 5.6.4
Rte Write <p> <d> 5.6.4
Rte Switch <p> <m> 5.6.5
Rte Invalidate <p> <d> 5.6.6
Rte Feedback <p> <d> 5.6.7

201 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

API function reference
Rte Read <p> <d> 5.6.8
Rte Receive <p> <d> 5.6.9
Rte Call <p> <o> 5.6.10
Rte Result <p> <o> 5.6.11
Rte Calprm <p> <name> 5.6.14
Rte Mode <p> <o> 5.6.26

Table 5.3: Table of API functions that are referenced in the
port API section.

[rte sws 2620] An API function shall only be included in a port data structure, if it is
required at least by one port.

[rte sws 2621] If a function table entry is available in a port data structure, the corre-
sponding function shall be implemented for all ports that use this port data structure
type. API functions related to ports that are not required by the AUTOSAR configuration
shall behave like those for an unconnected port.

APIs may be required only for some ports of a software component instance due to
differences in for example the need for transmission acknowledgement. rte sws 2621
is necessary for the concept of the indirect API. It allows iteration over ports.

[rte sws ext 3813] The indirect API may only be used for a port if explicit data access
to this port is specified via DataSendPoints and DataReceivePoints.

[rte sws 1055] The name of each function table entry in a port data structure shall be
<name>_<d/o> where <name> is the API root (e.g. Call, Write) and <d/o> the data
element or operation name.

Requirement rte sws 1055 does not include the port name in the function table entry
name since the port is implicit when using a port handle.

[rte sws 3726] The data type of each function table entry in a port data structure shall
be a function pointer that points to the generated RTE function.

The signature of a generated function, and hence the definition of the function pointer
type, is the same as the signature of the relevant RTE API call (see Section 5.6) with
the exception that the instance handle is omitted.

Example 5.18

This example shows a port data structure for the provide ports of the inter-
face type i2 in an AUTOSAR SW-C c.

i2 is a SenderReceiverInterface which contains a data element prototype
of type uint8 with isQueued set to false.

If one of the provide ports of c for the interface i2 has a transmis-
sion acknowledgement defined and i2 is not used with data element

202 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

invalidation, the AUTOSAR types header file would include a port data
structure type like this:

1 struct Rte_PDS_c_i2_P {
2 Std_ReturnType (*Feedback_a)(uint8);
3 Std_ReturnType (*Write_a)(uint8);
4 }

If the provide port p1 of the AUTOSAR SW-C c is of interface i2, the gen-
erated component header file would include the following macros to provide
the direct API functions Rte Feedback p1 a and Rte Write p1 a:

1 /*direct API*/
2 #define Rte_Feedback_p1_a(inst,data)
3 ((inst)->p1.Feedback_a)(data)
4 #define Rte_Write_p1_a(inst,data) ((inst)->p1.Write_a)(data)

[rte sws 2618] The port data structures within a component data structure shall first
be sorted on the port data structure type name and then on the short name of the port.

The requirements rte sws 3731 and rte sws 2618 guarantee, that all port data struc-
tures within the component data structure are grouped by their interface type and
require/provide-direction.

Example 5.19

This example shows the grouping of port data structures within the compo-
nent data structure.

The AUTOSAR types header file for an AUTOSAR SW-C c with three pro-
vide ports p1, p2, and p3 of interface i2 would include a block of port data
structures like this in the generated AUTOSAR Types Header file:

1 struct Rte_CDS_c {
2 ...
3 struct Rte_PDS_c_i1_R z;
4

5 /* component data structures *
6 * for provide ports of interface i2 */
7 struct Rte_PDS_c_i2_P p1;
8 struct Rte_PDS_c_i2_P p2;
9 struct Rte_PDS_c_i2_P p3;

10

11 /*further component data structures*/
12 struct Rte_PDS_c_i2_R c;
13 ...
14 }
15

If inst is a pointer to a component data structure, and ph is defined by

1 struct Rte_PDS_c_i2_P *ph = &(inst->p1);

203 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

ph points to the port data structure p1 of the instance handle inst. Since
the three provide port data structures p1, p2, and p3 of interface i2 are
ordered squentially in the component data structure, ph can also be in-
terpreted as an array of port data structures. E.g., ph[2] is equal to
inst->p3.

In the following, ph will be called a port handle.

[rte sws 1343] RTE shall create port handle types for each port data structure using
typedef to a pointer to the appropriate port data structure.

[rte sws 1342] The port handle type name shall be Rte_PortHandle_<i>_<P/R>
where <i> is the port interface name and ‘P’ or ‘R’ are literals to indicate provide or
receive ports respectively.

[rte sws 1053] The port handle types shall be written to the application header file.

The port handle types cannot be included in the AUTOSAR types header file due to
potential name clashes between components.

RTE provides port handles for access to the arrays of port data structures of the same
interface type and provide/receive direction by the macro Rte Ports, see section 5.6.1,
and to the number of similar ports by the macro Rte NPorts, see 5.6.1.

Example 5.20

For the provide port i2 of AUTOSAR SW-C c from example 5.18, the fol-
lowing port handle type will be defined in the component header file:

1 typedef struct Rte_PDS_c_i2_P *Rte_PortHandle_i2_P;

The macros to access the port handles for the indirect API might look like
this in the generated component header file:

1 /*indirect (port oriented) API*/
2 #define Rte_Ports_i2_P(inst) &((inst)->p1)
3 #define Rte_NPorts_i2_P(inst) 3

So, the port handle ph of the previous example 5.19 could be defined by a
user as:

1 Rte_PortHandle_i2_P ph = Rte_Ports_i2_P(inst);

To write ‘49’ on all ports p1 to p3, the indirect API can be used within the
software component as follows:

1 uint8 p;
2 Rte_PortHandle_i2_P ph = Rte_Ports_i2_P(inst);
3 for(p=0;p<Rte_NPorts_i_P(inst);p++) {
4 ph[p].Write_a(49);
5 }

Software components may also want to set up their own port handle arrays to iterate
over a smaller sub group than all ports with the same interface and direction. Rte Port

204 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

can be used to pick the port handle for one specific port, see 5.6.3.

5.4.2.6 Calibration Parameter Handles Section

The RTE is required to support access to calibration parameters derived by per-
instance CalprmElementPrototypes (see 4.2.6.3) using the Rte CData (see section
5.6.13).

[rte sws 6029] The name of each Calibration parameter handle shall be
CData_<name> where <name> is the CalprmElementPrototype name.

[rte sws 3949] The type of Each calibration parameter handle shall be a function
pointer that points to the generated RTE function.

The function pointer points to the generated RTE function and therefore the return
value of the function call depends on the data type of the CalprmComponentPrototype;
it is the value for primitive data types whereas a reference is returned for complex data
types.

Note that accesses to CalprmElementPrototypes within CalprmComponentTypes do
not require handles within this section since the generated Rte Calprm (see section
5.6.14) API is accessed either directly (single instantiation) or through handles in the
port API section (multiple instantiation). Likewise, access to shared CalprmElement-
Prototypes does not require a handle since, by definition, no per-instance data is
present.

5.4.2.7 Inter Runnable Variable API Section

The Inter Runnable Variable API section comprises zero or more function table entries
within the component data structure type that defines all explicit API functions to access
an inter runnable variable by the software-component (instance). The API for implicit
access of inter runnable variables does not have any function table entries, since the
implicit API uses macro’s to access the inter runnable variables or their shadow mem-
ory directly, see section 5.4.2.3.

Since the entries of this section are only required to access the explicit InterRunnable-
Variable API if a software component supports multiple instantiation, it shall be omitted
for software components which do not support multiple instantiation.

[rte sws 3725] If the component supports multiple instantiation, the member
name of each function table entry within the component data structure shall be
<name>_<re>_<d> where <name> is the API root (e.g. IrvRead), <re> the runnable
name, and <d> the inter runnable variable name.

[rte sws 3752] The data type of each function table entry shall be a function pointer
that points to the generated RTE function.

205 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

The signature of a generated function, and hence the definition of the function pointer
type, is the same as the signature of the relevant RTE API call (see Section 5.6) with
the exception that the instance handle is omitted.

[rte sws 2623] If the component supports multiple instantiation, the inter runnable vari-
able API section shall contain pointers to the following API functions:

API function reference
Rte IrvRead <re> <d> 5.6.22
Rte IrvWrite <re> <d> 5.6.23

Table 5.4: Table of API functions that are referenced in the
inter runnable variable API section

[rte sws 3791] If the software component does not support multiple instantiation, the
inter runnable variable API section shall be empty.

5.4.2.8 Vendor Specific Section

The vendor specific section is used to contain any vendor specific data required to be
supported for each instances. By definition the contents of this section are outside the
scope of this chapter and only available for use by the RTE generator responsible for
the “RTE Generation” phase.

5.5 API Data Types

Besides the API functions for accessing RTE services, the API also contains RTE-
specific data types.

5.5.1 Std ReturnType

The specification in [12] specifies a standard API return type Std_ReturnType. The
Std_ReturnType defines the ”‘status”’ and ”‘error values”’ returned by API functions.
It is defined as a uint8 type. The value “0” is reserved for “No error occurred”.

Figure 5.4 shows the general layout of Std_ReturnType.

The two most significant bits of the Std_ReturnType are reserved flags:

• The most significant bit 7 of Std_ReturnType is the “Immediate Infrastructure
Error Flag” with the following values

– “1” the error code indicates an immediate infrastructure error.

– “0” the error code indicates no immediate infrastructure error.

206 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

0 1 2 3 4 5 6 7

Im
m

ediate Infrastructure
E

rror F
la

g

O
verlayed E

rror F
la

g

6 bits
available fo

r
error codes

LSB MSB

Figure 5.4: Bit-Layout of the Std ReturnType

• The second most significant bit 6 of Std_ReturnType is the Overlayed Error
Flag. The use of this flag depends on the context and will be explained in table
5.6.

207 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5.5.1.1 Infrastructure Errors

Infrastructure errors are split into two groups:

• “Immediate Infrastructure Errors” can be associated with the currently available
data set. These Immediate Infrastructure Errors are mutually exclu-
sive. Only one of these errors can be notified to a SW-C with one API call.

[rte sws 2593] Immediate Infrastructure Errors shall override any ap-
plication level error.

Immediate Infrastructure Error codes are used on the receiver side for
errors that result in no reception of application data and application errors.

An Immediate Infrastructure Error is indicated in the
Std_ReturnType by the Immediate Infrastructure Error Flag
being set.

• “Overlayed Errors” are associated with communication events that happened
after the reception of the currently available data set, e.g., data element
outdated notification, or loss of data elements due to queue overflow.

[rte sws 1318] Overlayed Error Flags shall be reported using the unique
bit of the Overlayed Error Flag within the Std_ReturnType type.

An Overlayed Error can be combined with any other application or infrastruc-
ture error code.

5.5.1.2 Application Errors

[rte sws 2573] RTE shall support application errors with the following format definition:
Application errors are coded in the least significant 6 bits of Std_ReturnType with the
Immediate Infrastructure Error Flag set to “0”. The application error code
does not use the Overlayed Error Flag.

This results in the following value range for application errors:

range minimum value maximum value
application errors 1 63

Table 5.5: application error value range

In client server communication, the server may return any value within the application
error range. The client will then receive one of the following:

• An Immediate Infrastructure Error to indicate that the communication
was not successful or

• The server return code or

208 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

• The server return code might be overlayed by the Overlayed Error Flag in
a future release of RTE. In this release, there is no overlayed error defined for
client server communication.

The client can filter the return value, e.g., by using the following code:

Std_ReturnType status;
status = Rte_Call_<p>_<d>(<instance>, <parameters>);
if (status & 64) {

/* handle overlayed error flag *
* in this release of the RTE, the flag is reserved *
* but not used for client server communication */

}
status &= (Std_ReturnType)(˜64);
if(status & 128) {

/* handle infrastructure error */
}
else {

/* handle application error with error code status */
}

5.5.1.3 Predefined Error Codes

[rte sws in 2622] For client server communication, application error values are de-
fined per client server interface and shall be passed to the RTE with the interface
configuration.

The following standard error and status identifiers are defined:

Symbolic name Value Comments
[rte sws 1058] RTE_E_OK 0 No error occurred.

Standard Application Error Values:
[rte sws 2594]
RTE_E_INVALID

1 Generic application error indicated by signal
invalidation in sender receiver communication
with isQueued = false on the receiver side.

To be defined by the correspond-
ing AUTOSAR Service

1 Returned by AUTOSAR Services to indicate a
generic application error.

Immediate Infrastructure Error codes

209 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Symbolic name Value Comments
[rte sws 1060]
RTE_E_COM_STOPPED

128 An IPDU group was disabled while the applica-
tion was waiting for the transmission acknowl-
edgment. No value is available. This is not
considered a fault, since the IPDU group is
switched off on purpose.
This semantics are as follows:

• The OUT buffers of a client or of explicit
read APIs are not modified

• no runnable with startOnEvent on a
DataReceivedEvent for this dataElement-
Prototype is triggered.

• the buffers for implicit read access will
keep the previous value.

[rte sws 1064]
RTE_E_TIMEOUT

129 A blocking API call returned due to expiry of
a local timeout rather than the intended result.
OUT buffers are not modified. The interpreta-
tion of this being an error depends on the appli-
cation.

[rte sws 1317] RTE_E_LIMIT 130 A internal RTE limit has been exceeded. Re-
quest could not be handled. OUT buffers are
not modified.

[rte sws 1061]
RTE_E_NO_DATA

131 An explicit read API call returned no data. (This
is no error.)

[rte sws 1065]
RTE_E_TRANSMIT_ACK

132 Transmission acknowledgement received.

Overlayed Errors

These errors do not refer to the data returned with the API. They can be overlayed
with other Application- or Immediate Infrastructure Errors.
[rte sws 2571]
RTE_E_LOST_DATA

64 An API call for reading received data of is-
Queued = true indicates that some incoming
data has been lost due to an overflow of the re-
ceive queue or due to an error of the underlying
communication stack.

[rte sws 2702]
RTE_E_MAX_AGE_EXCEEDED

64 An API call for reading received data of is-
Queued = false indicates that the available data
has exceeded the aliveTimeout limit. A COM
signal outdated callback will result in this error.

Table 5.6: RTE Error and Status values

210 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

The underlying type for Std_ReturnType is defined as a uint8 for reasons of com-
patibility – it avoids RTEs from different vendors assuming a different size if an enum
was the underlying type. Consequently, #define is used to declare the error values:

1 typedef uint8 Std_ReturnType;
2

3 #define RTE_E_OK ((Std_ReturnType) 0)

[rte sws 1269] The standard errors as defined in table 5.6 including RTE_E_OK shall
be defined in the RTE Header File.

[rte sws 2575] Application Error Identifiers with exception of RTE_E_INVALID shall
be defined in the Application Header File.

[rte sws 2576] The application errors shall have a symbolic name defined as follows:

1 #define RTE_E_<interface>_<error> <error value>

where <interface> rte sws in 1352 and <error> rte sws in 2574 are the interface
and error names from the configuration.

An Std_ReturnType value can be directly compared (for equality) with the above
pre-defined error identifiers.

5.5.2 Rte Instance

The Rte Instance data type defines the handle used to access instance specific in-
formation from the component data structure.

[rte sws 1148] The underlying data type for an instance handle shall be a pointer to a
Component Data Structure.

The component data structure (see Section 5.4.2) is uniquely defined for a component
type and therefore the data type for the instance handle is automatically unique for
each component type.

The instance handle type is defined in the application header file rte sws 1007.

To avoid long and complex type names within SW-C code the following requirement
imposes a fixed name on the instance handle data type.

[rte sws 1150] The name of the instance handle type shall be defined, using typedef
as Rte Instance.

5.5.3 RTE Modes

An Rte ModeType is used to hold the identifiers for the ModeDeclarations of a Mode-
DeclarationGroup.

211 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 2627] For each ModeDeclarationGroup, the AUTOSAR Types HeaderFile
shall contain a type definition

1 typedef <type> Rte_ModeType_<ModeDeclarationGroup>;

where <ModeDeclarationGroup> is the short name of the ModeDeclarationGroup
and <type> is uint8 for ModeDeclarationGroups with less than 256 ModeDeclara-
tions and uint16 for ModeDeclarationGroups with 256 or more ModeDeclarations.

Within the Rte ModeType <ModeDeclarationGroup>, the null value is reserved to ex-
press a transition between modes.

[rte sws 2659] For each ModeDeclarationGroup, the AUTOSAR Types HeaderFile
shall contain a definition

1 #define RTE_TRANSITION_<ModeDeclarationGroup> \
2 ((Rte_ModeType_<ModeDeclarationGroup>)<n>)

where <ModeDeclarationGroup> is the short name of the ModeDeclarationGroup
and <n> is the number of modes declared within the group.

[rte sws 2568] For each mode of a mode declaration, the AUTOSAR Types Header
file shall contain a definition

1 #define RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration> \
2 ((Rte_ModeType_<ModeDeclarationGroup>)<index>)

where <ModeDeclarationGroup> is the short name of the ModeDeclarationGroup,
<ModeDeclaration> is the short name of a ModeDeclaration, and <index> is the
index of the ModeDeclarations in alphabetic ordering (ASCII / ISO 8859-1 code in
ascending order) of the short names within the ModeDeclarationGroup. The lowest
index shall be ‘0’ and therefore the range of assigned values is 0..<n> where <n> is
the number of modes declared within the group

5.5.4 Enumeration Data Types

Enumeration is not a plain primitive data type. Rather a range of integers can be used
as a structural description. The mapping of integers on ”labels” in the enumeration
is actually modelled in the SwC-T with the semantics class CompuMethod of a Sw-
DataDefProps [17]. Enumeration data types are modeled as PrimitiveTypes having a
SwDataDefProps referencing a CompuMethod that contains only CompuScales with
point ranges (i. e. lower and upper limit of a CompuScale are identical).

[rte sws 3809] The AUTOSAR Types header file shall include the definitions of all enu-
meration constants of AUTOSAR data types irrespective of their use by the generated
RTE.

This requirement ensures the availability of AUTOSAR data type enumeration con-
stants for the internal use in AUTOSAR software components.

212 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 3810] For each CompuScale of a CompuMethod with category ”TEXTTABLE”
that contains only CompuScales with point ranges the AUTOSAR Types header file
shall contain a definition

1 #ifndef <EnumLiteral>
2 #define <EnumLiteral> ((<type>) <value>)
3 #endif /* <EnumLiteral> */

where <EnumLiteral> is the string specified in the VT element of the CompuConst
of the respective CompuScale. <type> is the identifier of the PrimitiveType the Com-
puMethod belongs to. <value> is the value representing the CompuScale’s point
range.

rte sws 3810 implies that the RTE does not add any prefix to the names of the enumer-
ation constants. This is necessary in order to handle enumeration constants supplied
by Basic Software modules which all use their own prefix convention. Enumeration
constant names have to be unique in the whole AUTOSAR system.

[rte sws 3813] If the input of the RTE generator contains two or more CompuMethods
with category ”TEXTTABLE” that both contain a CompuScale with a point range and
an identical enumeration literal name specified in the VT element of the CompuScale,
the RTE generator shall reject this input as an invalid configuration.

5.5.5 Range Data Types

For the AUTOSAR data types IntegerType and RealType a Range has to be spec-
ified giving the lowerLimit and the upperLimit. To allow a Software Component
the access to these values two definitions for these values shall be generated.

[rte sws 5051] The AUTOSAR Types header file shall include the definitions of all
Range constants of AUTOSAR data types irrespective of their use by the generated
RTE.

[rte sws 5052] For AUTOSAR data types which inherit from Range the AUTOSAR
Types header file shall contain two definitions

1 #define <DataType>_LowerLimit ((<DataType>) <lowerLimitValue>)
2 #define <DataType>_UpperLimit ((<DataType>) <upperLimitValue>)

where <DataType> is the short name of the data type. <lowerLimitValue> and
<upperLimitValue> are the values of the respective range.

5.6 API Reference

The functions described in this section are organized by the RTE API mapping name
used by C and C++ AUTOSAR software-components to access the API. The API map-
ping hides from the AUTOSAR software-component programmer any need to be aware

213 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

of the steps taken by the RTE generator to ensure that the generated API functions
have unique names.

The instance handle as the first parameter of the API calls is marked as an optional
parameter in this section. If an AUTOSAR software-component supports multiple in-
stantiation, the instance handle shall be passed rte sws 1013.

Note that rte sws 3806 requires that the instance handle parameter does not exist if
the AUTOSAR software-component does not support multiple instantiation.

5.6.1 Rte Ports

Purpose: Provide an array of the ports of a given interface type and a given
provide / require usage that can be accessed by the indirect API.

Signature: [rte sws 2619]
Rte_PortHandle_<i>_<R/P>
Rte_Ports_<i>_<R/P>([IN Rte_Instance])

Where here <i> is the port interface name and ‘P’ or ‘R’ are literals
to indicate provide or require ports respectively.

Existence: [rte sws 2613] An Rte Ports API shall be created for each interface
type and usage by a port when the indirectAPI attribute of the port
is set to true.

Description: The Rte Ports API provides access to an array of ports for the port
oriented API.

[rte sws 3602] Only those ports for which the indirect API was gen-
erated shall be contained in the array of ports.

Return Value: Array of port data structures of the corresponding interface type and
usage.

Notes: None.

5.6.2 Rte NPorts

Purpose: Provide the number of ports of a given interface type and provide /
require usage that can be accessed through the indirect API.

Signature: [rte sws 2614]
uint8
Rte_NPorts_<i>_<R/P>([IN Rte_Instance])

Where here <i> is the port interface name and ‘P’ or ‘R’ are literals
to indicate provide or require ports respectively.

214 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Existence: [rte sws 2615] An Rte NPorts API shall be created for each inter-
face type and usage by a port when the indirectAPI attribute of the
port is set to true.

Description: The Rte NPorts API supports access to an array of ports for the port
oriented API.

[rte sws 3603] The Rte NPorts shall return only the number of ports
of a given interface and provide / require usage for which the indirect
API was generated.

Return Value: Number of port data structures of the corresponding interface type
and usage.

Notes: None.

5.6.3 Rte Port

Purpose: Provide access to the port data structure for a single port of a particu-
lar software component instance. This allows a software component
to extract a sub-group of ports characterized by the same interface in
order to iterate over this sub-group.

Signature: [rte sws 1354]
Rte_PortHandle_<i>_<R/P>
Rte_Port_<p>([IN Rte_Instance])

where <i> is the port interface name and <p> is the name of the
port.

Existence: [rte sws 1355] The Rte Port API shall be created for each port of
an AUTOSAR SW-C for which the indirectAPI attribute is set to true.

Description: The Rte Port API provides a pointer to a single port data structure,
in order to support the indirect API.

Return Value: Pointer to port data structure for the appropriate port.

Notes: None.

5.6.4 Rte Send/Rte Write

Purpose: Initiate an “explicit” sender-receiver transmission of data elements.
The Rte Write API call is used for “data” (isQueued = false) and the
Rte Send API call used for “events” (isQueued = true).

Signature: [rte sws 1071]

215 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Std_ReturnType
Rte_Write_<p>_<o>([IN Rte_Instance <instance>],

IN <data>)

[rte sws 1072]
Std_ReturnType
Rte_Send_<p>_<o>([IN Rte_Instance <instance>],

IN <data>)

Where <p> is the port name and <o> the DataElementPrototype
within the sender-receiver interface categorizing the port.

Existence: [rte sws 1280] The presence of a DataSendPoint for a provided
DataElementPrototype with isQueued = false shall result in the gen-
eration of an Rte Write API for the provided DataElementPrototype.

[rte sws 1281] The presence of a DataSendPoint for a provided
DataElementPrototype with isQueued = true shall result in the gen-
eration of an Rte Send API for the provided DataElementPrototype.

[rte sws ext 2680] The Rte Send/Rte Write APIs may only be used
by the runnable that contains the corresponding DataSendPoint

Description: The Rte Send and Rte Write API calls initiate a sender-receiver
communication where the transmission occurs at the point the API
call is made (cf. explicit transmission).

The Rte Send and Rte Write API calls include exactly one IN param-
eter for the data element – this will be passed by value for primitive
data types and by reference for all other types.

If the IN parameter is passed by reference, the pointer must remain
valid until the API call returns.

Return Value: The return value is used to indicate errors detected by the RTE during
execution of the APICallWrite or APICallSend.

• [rte sws 1073] RTE_E_OK – data passed to communication ser-
vice successfully.

• [rte sws 1074] RTE_E_COM_STOPPED – the RTE could not per-
form the operation because the COM service is currently not
available (inter ECU communication only). RTE shall return
RTE_E_COM_STOPPED when the corresponding COM service
returns COM_E_STOPPED.

• [rte sws 2634] RTE_E_LIMIT – an ‘event’ has been discarded
due to a full queue. (intra ECU communication only).

Notes: The Rte Write and Rte Send calls are closely related – Rte Write is
used to transmit “data” (isQueued = false) and Rte Send to transmit
“events” (isQueued = true).

216 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 1077] In case of inter ECU communication, the Rte Write

and Rte Send shall cause an immediate transmission request.

Note that depending on the configuration a transmission request may
not result in an actual transmission, for example transmission may be
rate limited (time-based filtering) and thus dependent on other factors
than API calls.

[rte sws 1081] In case of inter ECU communication, the Rte Write

or Rte Send API shall return when the signal has been passed to the
communication service for transmission.

Depending on the communication server the transmission may or
may not have been acknowledged by the receiver at the point the
API call returns.

[rte sws 2633] In case of intra ECU communication, the Rte Send

API call shall return after attempting to enqueue the data.

[rte sws 2635] In case of intra ECU communication, the Rte Write

API call shall return after copying the data.

[rte sws 1080] If the transmission acknowledgement is enabled, the
RTE shall notify component when the transmission is acknowledged
or a transmission error occurs.

[rte sws 1082] If a provide port typed by a sender-receiver interface
has multiple require ports connected (i.e. it has multiple receivers),
then the RTE shall ensure that writes to all receivers are independent.

Requirement rte sws 1082 ensures that an error detected by the RTE
when writing to one receiver, e.g. an overflow in one component’s
queue, does not prevent the transmission of this message to other
components.

5.6.5 Rte Switch

Purpose: Initiate a mode switch. The Rte Switch API call is used for ‘explicit’
sending of a mode switch notification.

Signature: [rte sws 2631]
Std_ReturnType
Rte_Switch_<p>_<o>([IN Rte_Instance <instance>],

IN Rte_ModeType_<M> <mode>)

Where <p> is the port name and <o> the ModeDeclarationGroup-
Prototype within the sender-receiver interface categorizing the port.

Existence: [rte sws 2632] The existence of a ModeSwitchPoint shall result in
the generation of a Rte Switch API.

217 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws ext 2681] The Rte Switch API may only be used by the
runnable that contains the corresponding ModeSwitchPoint

Description: The Rte Switch triggers a synchronous mode switch for all con-
nected require ModeDeclarationGroupPrototypes.

The Rte Switch API call includes exactly one IN parameter for the
next mode <mode> of type Rte_ModeType_<M> where <M> is the
ModeDeclarationGroup short name.

Return Value: The return value is used to indicate errors detected by the RTE during
execution of the Rte Switch call.

• [rte sws 2674] RTE_E_OK – data passed to service success-
fully.

• [rte sws 2675] RTE_E_LIMIT – a mode switch has been dis-
carded due to a full queue.

Notes: Rte Switch is restricted to ECU local communication.

If a mode instance is currently involved in a transistion then the
Rte Switch API will attempt to queue the request and return
rte sws 2667. However if no transition is in progress for the mode
instance, the mode disablings and the activations of OnEntry and
OnExit runnables for this mode instance are executed before the
Rte Switch API returns rte sws 2665.

Note that the mode switch might be discarded when the queue is full
and a mode transition is in progress, see rte sws 2675.

[rte sws 2673] If the mode switched acknowledgment is enabled, the
RTE shall notify the mode manager when the mode switch is com-
pleted.

5.6.6 Rte Invalidate

Purpose: Invalidate a data element for an “explicit” sender-receiver transmis-
sion.

Signature: [rte sws 1206]
Std_ReturnType
Rte_Invalidate_<p>_<o>([IN Rte_Instance <instance>])

Where <p> is the port name and <o> the data element within the
sender-receiver interface categorizing the port.

Existence: [rte sws 1282] An Rte Invalidate API shall be created for any
DataSendPoint that references a provided DataElementPrototype

218 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

with isQueued = false that is marked as invalidatable and canInvali-
date is enabled.

[rte sws ext 2682] The Rte Invalidate API may only be used by
the runnable that contains the corresponding DataSendPoint

Description: The Rte Invalidate API takes no parameters other than the in-
stance handle – the return value is used to indicate the success, or
otherwise, of the API call to the caller.

[rte sws 1231] When COM is used for communication and the
DataElementPrototype is primitive the COM API function Com_-
InvalidateSignal shall be called for invalidation.

[rte sws 5063] When COM is used for communication and
the DataElementPrototype is composite the COM API function
Com_InvalidateShadowSignal shall be called iteratively for in-
validation of all the primitive parts of the composite DataElementPro-
totype.

The behavior required when COM is not used for communication is
described in Section 4.3.1.8.

Return Value: The return value is used to indicate the “OK” status or errors detected
by the RTE during execution of the Rte Invalidate call.

• [rte sws 1207] RTE_E_OK – No error occurred.

• [rte sws 1339] RTE_E_COM_STOPPED – the RTE could not per-
form the operation because the COM service is currently not
available (inter ECU communication only). RTE shall return
RTE_E_COM_STOPPED when the corresponding COM service
returns COM_E_STOPPED.

Notes: The API name includes an identifier <p>_<o> that is formed from the
port and operation item names. See Section 5.2.6.4 for details on the
naming convention.

The communication service configuration determines whether the
signal receiver(s) receive an “invalid signal” notification or whether
the invalidated signal is silently replaced by the signal’s initial value.

5.6.7 Rte Feedback

Purpose: Provide access to acknowledgement notifications for explicit sender-
receiver communication and to pass error notification to senders.

Signature: [rte sws 1083]
Std_ReturnType
Rte_Feedback_<p>_<o>([IN Rte_Instance <instance>])

219 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Where <p> is the port name and <o> the DataElementPrototype or
ModeDeclarationGroupPrototype within the sender-receiver interface
categorizing the port.

Existence: [rte sws 1283] Acknowledgement is enabled for a provided DataEle-
mentPrototype or ModeDeclarationGroupPrototype by the presence
of an AcknowledgementRequest.

[rte sws 2676] Acknowledgement is enabled for a provided Mod-
eDeclarationGroupPrototype when the needsAck attribute of the
ModeSwitchComSpec is true.

[rte sws 1284] A blocking Rte Feedback API shall be generated for
a provided DataElementPrototype if acknowledgement is enabled
and a WaitPoint references a DataSendCompletedEvent that in turn
references the DataElementPrototype or ModeDeclarationGroupPro-
totype.

[rte sws 2677] A blocking Rte Feedback API shall be generated for
a provided ModeDeclarationGroupPrototype if acknowledgement is
enabled and a WaitPoint references a ModeSwitchedAckEvent that
in turn references the ModeDeclarationGroupPrototype.

[rte sws 1285] A non-blocking Rte Feedback API shall be generated
for a provided DataElementPrototype if acknowledgement is enabled
and a DataSendPoint references the DataElementPrototype but no
WaitPoint references the DataSendCompletedEvent that references
the DataElementPrototype or ModeDeclarationGroupPrototype

[rte sws 2678] A non-blocking Rte Feedback API shall be gener-
ated for a provided ModeDeclarationGroupPrototype if acknowledge-
ment is enabled and a ModeSwitchPoint references the ModeDecla-
rationGroupPrototype but no ModeSwitchedAckEvent references the
ModeDeclarationGroupPrototype.

[rte sws 1286] If acknowledgement is enabled for a provided
DataElementPrototype/ModeDeclarationGroupPrototype and a
DataSendCompletedEvent references a runnable entity as well as
the DataElementPrototype/ModeDeclarationGroupPrototype, the
runnable entity shall be activated when the transmission acknow-
ledgement occurs or when a timeout was detected by the RTE.
rte sws 1137.

[rte sws 2679] If acknowledgement is enabled for a provided Mod-
eDeclarationGroupPrototype and a ModeSwitchedAckEvent refer-
ences a runnable entity as well as the ModeDeclarationGroupPro-
totype, the runnable entity shall be activated when the mode switch
acknowledgment occurs or when a timeout was detected by the RTE.
rte sws 1137.

220 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Requirements rte sws 1286 and rte sws 2679 merely affect when
the runnable is activated – an API call should still be created, ac-
cording to requirements rte sws 1285 and rte sws 2678 to actually
read the data.

[rte sws 1287] A DataSendCompletedEvent or ModeSwitchedAck-
Event that references a runnable entity and is referenced by a Wait-
Point shall be an invalid configuration.

[rte sws ext 2687] A blocking Rte Feedback API may only be used
by the runnable that contains the corresponding WaitPoint

Description: The Rte Feedback API takes no parameters other than the instance
handle – the return value is used to indicate the acknowledgement
status to the caller.

The Rte Feedback API applies only to explicit sender-receiver com-
munication.

Return Value: The return value is used to indicate the “status” status and errors
detected by the RTE during execution of the Rte Feedback call.

• [rte sws 1084] RTE_E_NO_DATA – (non-blocking read) no data
returned and no other error occurred when the feedback read
was attempted.

• [rte sws 3774] RTE_E_COM_STOPPED – (inter-ECU only) no
data was returned within the specified timeout because the cor-
responding IPDU group was disabled.

• [rte sws 1086] RTE_E_TRANSMIT_ACK – A transmission or
mode switched acknowledgment has been received from the
communication service. For intra-ECU communication this value
is always returned even if a queue overflow occurred.

For intra ECU communication of mode switches, this indicates,
that the runnables on the transition have been executed and
the mode disablings have been switched to the new mode (see
rte sws 2587).

The RTE E TRANSMIT ACK return value is not considered to be an
error but rather indicates correct operation of the API call.

When RTE_E_NO_DATA occurs, a component is free to reinvoke
Rte Feedback and thus repeat the attempt to read the feedback sta-
tus.

Notes: The API name includes an identifier <p>_<o> that indicates the read
access point name and is formed from the port and operation item
names. See Section 5.2.6.4 for details on the naming convention.

221 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

If multiple transmissions on the same port/element are outstanding
it is not possible to determine which is acknowledged first. If this is
important, transmissions should be serialized with the next occuring
only when the previous transmission has been acknowledged or has
timed out.

5.6.8 Rte Read

Purpose: Performs an “explicit” read on a sender-receiver communication data
element with “data” semantics (isQueued = false).

Signature: [rte sws 1091]
Std_ReturnType
Rte_Read_<p>_<o>([IN Rte_Instance <instance>],

OUT <data>)

Where <p> is the port name and <o> the data element within the
sender-receiver interface categorizing the port.

Existence: [rte sws 1289] A non-blocking Rte Read API shall be generated if a
DataReceivePoint references a required DataElementPrototype with
‘data’ semantics (isQueued = false).

[rte sws 1291] A WaitPoint that references a DataReceivedEvent
that in turn references a required DataElementPrototype with ‘data’
semantics (isQueued = false) shall be considered an invalid configu-
ration.

[rte sws 1292] When a DataReceivedEvent references a
RunnableEntity and a required DataElementPrototype and no
WaitPoint references the DataReceivedEvent, the runnable entity
shall be activated when the data is received. rte sws 1135.

[rte sws ext 2683] The Rte Read API may only be used by the runn-
able that contains the corresponding DataReceivePoint

Requirement rte sws 1292 merely affects when the runnable is ac-
tivated – an API call should still be created, according to require-
ment rte sws 1288 or rte sws 1289 as appropriate, to actually read
the data.

[rte sws 1313] A DataReceivedEvent that references a runnable en-
tity and is referenced by a WaitPoint shall be an invalid configuration.

Description: The Rte Read API call includes exactly one OUT parameter to pass
back the received data. The pointer to the OUT parameter must
remain valid until the API call returns.

222 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Return Value: The return value is used to indicate errors detected by the RTE during
execution of the Rte Read or Rte Receive API call or errors detected
by the communication system.

• [rte sws 1093] RTE_E_OK – data read successfully.

• [rte sws 2626] RTE_E_INVALID – data element invalid.

• [rte sws 2703] RTE_E_MAX_AGE_EXCEEDED – data
element outdated. This Overlayed Error can be
combined with any of the above error codes.

Notes: The API name includes an identifier <p>_<o> that indicates the read
access point name and is formed from the port and operation item
names. See Section 5.2.6.4 for details on the naming convention.

5.6.9 Rte Receive

Purpose: Performs an “explicit” read on a sender-receiver communication data
element with “event” semantics (isQueued = true).

[rte sws 1092]
Std_ReturnType
Rte_Receive_<p>_<o>([IN Rte_Instance <instance>],

OUT <data>)

Where <p> is the port name and <o> the data element within the
sender-receiver interface categorizing the port.

Existence: [rte sws 1288] A non-blocking Rte Receive API shall be generated
if a DataReceivePoint references a required DataElementPrototype
with ‘event’ semantics (isQueued = true).

[rte sws 1290] A blocking Rte Receive API shall be generated if a
DataReceivePoint references a required DataElementPrototype with
‘event’ semantics (isQueued = true) that is, in turn, referenced by a
DataReceivedEvent and the DataReceivedEvent is referenced by a
WaitPoint.

When a DataReceivedEvent references a RunnableEntity and a
required DataElementPrototype and no WaitPoint references the
DataReceivedEvent, the runnable entity shall be activated when the
event is received. rte sws 1292 rte sws 1135.

Requirement rte sws 1292 merely affects when the runnable is ac-
tivated – an API call should still be created, according to require-
ment rte sws 1288 or rte sws 1289 as appropriate, to actually read
the data.

223 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws ext 2684] The Rte Receive API may only be used by the
runnable that contains the corresponding DataReceivePoint

A DataReceivedEvent that references a runnable entity and is refer-
enced by a WaitPoint shall be an invalid configuration. rte sws 1313

Description: The Rte Receive API call includes exactly one OUT parameter to
pass back the received data.

The pointer to the OUT parameter must remain valid until the API call
returns.

Return Value: The return value is used to indicate errors detected by the RTE dur-
ing execution of the Rte Receive API call or errors detected by the
communication system.

• [rte sws 2598] RTE_E_OK – data read successfully.

• [rte sws 1094] RTE_E_NO_DATA – (explicit non-blocking read)
no data returned and no other error occurred when the read was
attempted.

• [rte sws 1095] RTE_E_TIMEOUT – (explicit blocking read) no
data returned and no other error occurred when the read was
attempted.

• [rte sws 2572] RTE_E_LOST_DATA – Indicates that some in-
coming data has been lost due to an overflow of the recieve
queue or due to an error of the underlying communication layers.
This is not an error of the data returned in the parameters. This
Overlayed Error can be combined with any of the above.

The RTE E NO DATA and RTE E TIMEOUT return value are not
considered to be errors but rather indicate correct operation of the
API call.

Notes: The API name includes an identifier <p>_<o> that indicates the read
access point name and is formed from the port and operation item
names. See Section 5.2.6.4 for details on the naming convention.

5.6.10 Rte Call

Purpose: Initiate a client-server communication.

Signature: [rte sws 1102]
Std_ReturnType
Rte_Call_<p>_<o>([IN Rte_Instance <instance>],

[IN|IN/OUT|OUT] <data_1>...
[IN|IN/OUT|OUT] <data_n>)

224 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Where <p> is the port name and <o> the operation within the client-
server interface categorizing the port.

Existence: [rte sws 1293] A synchronous Rte Call API shall be generated if a
SynchronousServerCallPoint references a required OperationProto-
type.

[rte sws 1294] An asynchronous Rte Call API shall be generated
if an AsynchronousServerCallPoint references a required Opera-
tionPrototype.

A configuration that includes both synchronous and asyn-
chronous ServerCallPoints for a given OperationPrototype is invalid
(rte sws 3014).

[rte sws ext 2685] The Rte Call API may only be used by the runn-
able that contains the corresponding ServerCallPoint

Description: Client function to initiate client-server communication. The Rte Call

API is used for both synchronous and asynchronous calls.

The Rte Call API includes zero or more IN, IN/OUT and OUT pa-
rameters. IN parameters are passed by value for primitive data types
and by reference for all other types, OUT parameters are always by
reference and IN/OUT parameters are passed by value when they are
primitive data types and the call is asynchronous and by reference for
all other cases.

The pointers to all parameters passed by reference must remain valid
until the API call returns.

Return Value: [rte sws 1103] The return value shall be used to indicate infrastruc-
ture errors detected by the RTE during execution of the Rte Call call
and, for synchronous communication, infrastructure and application
errors during execution of the server.

• [rte sws 1104] RTE_E_OK – The API call completed success-
fully.

• [rte sws 1105] RTE_E_LIMIT – The client has multiple out-
standing asynchronous client-server invocations in the same
server call point. The server invocation shall be discarded, the
buffers of the return parameters shall not be modified (see also
rte sws 2658).

• [rte sws 1106] RTE_E_COM_STOPPED – the RTE could not per-
form the operation because the COM service is currently not
available (inter ECU communication only). RTE shall return
RTE_E_COM_STOPPED when the corresponding COM service
returns COM_E_STOPPED. The buffers of the return parameters
shall not be modified.

225 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

• [rte sws 1107] RTE_E_TIMEOUT – (synchronous inter-task and
inter-ECU only) No reply was received within the configured
timeout. The buffers of the return parameters shall not be modi-
fied.

• [rte sws 2577] The application error (synchronous client-
server) from a server shall only be returned if none of the above
infrastructure errors (other than RTE_E_OK) have occured.

Note that the RTE E OK return value indicates that the Rte Call

API call completed successfully. In case of a synchronous client
server call it also indicates successful processing of the request by
the server.

An asynchronous server invocation is considered to be outstanding
until either the client retrieved the result successfully, a timeout was
detected by the RTE in inter-ECU communication or the server runn-
able has terminated after a timeout was detected in intra-ECU com-
munication.

When the RTE_E_TIMEOUT error occurs, RTE shall discard any sub-
sequent responses to that request, (see rte sws 2657).

Notes: [rte sws 1109] The interface operation’s OUT parameters shall be
omitted for an asynchronous call.

For asynchronous communication the Rte Call should include only
IN and IN/OUT parameters – the OUT parameters are required when
the client collects the result (e.g. using Rte Result).

5.6.11 Rte Result

Purpose: Get the result of an asynchronous client-server call.

Signature: [rte sws 1111]
Std_ReturnType
Rte_Result_<p>_<o>([IN Rte_Instance <instance>],

[OUT <param 1>]...
[OUT <param n>])

Where <p> is the port name and <o> the operation within the client-
server interface categorizing the port.

The signature can include zero or more OUT parameters depending
on the signature of the operation in the client-server interface.

Existence: [rte sws 1296] A non-blocking Rte Result API shall be gener-
ated if an AsynchronousServerCallReturnsEvent references a re-
quired OperationPrototype and no WaitPoint references the Asyn-
chronousServerCallReturnsEvent.

226 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 1297] A blocking Rte Result API shall be generated if an
AsynchronousServerCallReturnsEvent references a required Opera-
tionPrototype and a WaitPoint references the AsynchronousServer-
CallReturnsEvent.

[rte sws ext 2686] The blocking Rte Result API may only be used
by the runnable that contains the corresponding WaitPint

[rte sws 1298] If an AsynchronousServerCallReturnsEvent refer-
ences a RunnableEntity and a required OperationPrototype the runn-
able entity shall be activated when the operation’s result is available
or when a timeout was detected by the RTE rte sws 1133.

Requirement rte sws 1298 merely affects when the runnable is acti-
vated – an API call should still be created to actually read the reply
based on requirement rte sws 1296.

[rte sws 1312] An AsynchronousServerCallReturnsEvent that refer-
ences a runnable entity and is referenced by a WaitPoint is invalid.

Description: The Rte Result API is used by a client to collect the result of an
asynchronous client-server communication.

The Rte Result API includes zero or more OUT parameters to pass
back results.

The pointers to all parameters passed by reference must remain valid
until the API call returns.

Return Value: The return value is used to indicate errors from either the Rte Result

call itself or communication errors detected before the API call was
made.

• [rte sws 1112] RTE_E_OK – The API call completed success-
fully.

• [rte sws 1113] RTE_E_NO_DATA – (non-blocking read) The
server’s result is not available but no other error occurred within
the API call. The buffers for the OUT parameters shall not be
modified.

• [rte sws 1114] RTE_E_TIMEOUT – The server’s result is not
available within the specified timeout but no other error occurred
within the API call. The buffers for the OUT parameters shall not
be modified.

• [rte sws 3606] RTE_E_COM_STOPPED – the RTE could not per-
form the operation because the COM service is currently not
available (inter ECU communication only). RTE shall return
RTE_E_COM_STOPPED when the corresponding COM service
returns COM_E_STOPPED. The server’s result has not been suc-

227 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

cessfully retrieved from the communication service. The buffers
of the return parameters shall not be modified.

• [rte sws 2578] Application Errors – The error code of the server
shall only be returned, if none of the above infrastructure errors
or indications have occured.

The RTE E NO DATA and RTE E TIMEOUT return value are not
considered to be errors but rather indicate correct operation of the
API call.

When the RTE_E_TIMEOUT error occurs, RTE shall discard any sub-
sequent responses to that request, (see rte sws 2657).

When RTE E NO DATA occurs, a component is free to invoke
Rte Result again and thus repeat the attempt to read the server’s
result.

Notes: The API name includes an identifier <p>_<o> that indicates the read
access point name and is formed from the port and operation item
names. See Section 5.2.6.4 for details on the naming convention.

5.6.12 Rte Pim

Purpose: Provide access to the defined per-instance memory (section) of a
software component.

Signature: [rte sws 1118]
<type>
Rte_Pim_<name>([IN Rte_Instance <instance>])

Where <name> is the (short) name of the per-instance name.

Existence: [rte sws 1299] An Rte PIM API shall be created for each defined
PerInstanceMemory within the AUTOSAR software-component (de-
scription).

Description: The Rte PIM API provides access to the per-instance memory (sec-
tion) defined in the context of a InternalBehavior of a software-
component description.

Return Value: [rte sws 1119] The API returns a typed reference (in C a typed
pointer) to the per-instance memory.

Notes: The software-component shall define the return type <type> in the
attribute <typeDefinition> of PerInstanceMemory, if it is a com-
plex AUTOSAR data type. It is assumed that this attribute contains a
String that represents a C type definition (typedef) in valid C syntax
(see rte sws 2304).

228 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5.6.13 Rte CData

Purpose: Provide access to the calibration parameter an AUTOSAR software-
component defined internally. The CalprmElementPrototype is used
to define software component internal calibration parameters. Inter-
nal because the CalprmElementPrototype cannot be reused outside
the software-component. Access is read-only. It can be configured for
each calibration parameter individually if it is shared by all instances
of an AUTOSAR software-component or if each instance has an own
data value associated with it.

Signature: [rte sws 1252]
<return>
Rte_CData_<name>([IN Rte_Instance <instance>])

Where <name> is the calibration parameter name.

Existence: [rte sws 1300] An Rte CData API shall be created for each defined
CalprmElementPrototype within an AUTOSAR software-component.

Description: The Rte CData API provides access to the defined calibration pa-
rameter within a software-component. The actual data values for a
software-component instance may be set after component compila-
tion.

Return Value: [rte sws 1254] The Rte CData API shall return access to the cal-
ibration parameter value. For the type of the return value re-
fer to rte sws 5195, rte sws 5198, rte sws 5207, rte sws 5208,
rte sws 5209.

[rte sws 3927] If the attribute ”perInstanceCalprm” of a CalprmEle-
mentPrototype of a software-component is set to ”FALSE”, the return
value shall provide access to one common calibration parameter for
all instances.

[rte sws 3952] If the attribute ”perInstanceCalprm” of a CalprmEle-
mentPrototype of a software-component is set to ”TRUE”, the return
value of the Rte CaData API shall provide access to the instance
specific calibration parameter.

Notes: None.

5.6.14 Rte Calprm

Purpose: Provide access to the calibration parameters defined by an AU-
TOSAR CalprmComponentType. Access is read-only.

Signature: [rte sws 3928]

229 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

<return>
Rte_Calprm_<p>_<name>([IN Rte_Instance <instance>])

Where <p> is the port name and <name> is the calibration parameter
name.

Existence: [rte sws 3929] An Rte Calprm API shall be created for each defined
CalprmElementPrototype within an AUTOSAR CalprmComponent-
Type.

Description: The Rte Calprm API provides access to the defined calibration pa-
rameter within a CalprmComponentType. The actual data values for
a CalprmComponentType instance may be set after CalprmCompo-
nentType compilation.

Return Value: [rte sws 3930] The Rte Calprm API shall return access to the
calibration parameter value. For the type of the return value
refer to rte sws 5195, rte sws 5198, rte sws 5207, rte sws 5208,
rte sws 5209.

Notes: None.

5.6.15 Rte IRead

Purpose: Provide read access to the data elements defined with
DataReadAccess semantics.

Signature: [rte sws 3741]
<return>
Rte_IRead_<re>_<p>_<d>([IN Rte_Instance])

Where <re> is the runnable entity name, <p> the port name and <d>
the data element name.

Existence: [rte sws 1301] An Rte IRead API shall be created for a required
DataElementPrototype if the RunnableEntity has DataReadAccess
that refers to the DataElementPrototype.

Description: The Rte IRead API provides access to the data elements declared
as accessed by a runnable using DataReadAccess. The API function
is guaranteed to be have constant execution time and therefore can
also be used within category 1A runnable entities.

No error information is provided by this API. If required, the error
status can be picked up with a separate API, see 5.6.19

The data value can always be read. To provide the required consis-
tency the API provides access to a copy of the data data element for
which it’s guaranteed that it never changes during the actual execu-
tion of the runnable entity.

230 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Implicit data read access by a SW-C should always return defined
data.

[rte sws 1268] The RTE shall ensure that implicit read accesses will
not deliver undefined data item values.

In case where there may be an implicit read access before the first
data reception an initial value has to be provided as the result of this
implicit read access.

Return Value: [rte sws 3593] The Rte IRead API shall return access to the
value of the data element. For the type of the return value
refer to rte sws 5195, rte sws 5198, rte sws 5207, rte sws 5208,
rte sws 5209.

Notes: None.

5.6.16 Rte IWrite

Purpose: Provide write access to the data elements defined with
DataWriteAccess semantics.

Signature: [rte sws 3744]
void
Rte_IWrite_<re>_<p>_<d>([IN RTE_Instance],

IN <type>)

Where <re> is the runnable entity name, <p> the port name and
<d> the data element name. If the datatype of the data element is
a primitive type, <type> is the datatype of the data element. If the
datatype is a composite datatype, <type> is the pointertype of the
data element’s datatype.

Existence: [rte sws 1302] An Rte IWrite API shall be created for a provided
DataElementPrototype if the RunnableEntity has DataWriteAccess
that refers to the DataElementPrototype.

Description: The Rte IWrite API provides write access to the data elements de-
clared as accessed by a runnable using DataWriteAccess. The API
function is guaranteed to be have constant execution time and there-
fore can also be used within category 1A runnable entities.

No access error information is required for the user – the value can
always be written. To provide the required write-back semantics the
RTE only makes written values available to other entities after the
writing runnable entity has terminated.

[rte sws 3746] The Rte IWrite API call include exactly one IN pa-
rameter for the data element – this is passed by value for primitive
data types and by reference for all other types.

231 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Return Value: [rte sws 3747] Rte IWrite has no return value.

For C/C++ rte sws 3747 means using a return type of void.

Notes: None.

5.6.17 Rte IWriteRef

Purpose: Provide a reference to the data elements defined with
DataWriteAccess semantics.

Signature: [rte sws 5509]
<return>
Rte_IWriteRef_<re>_<p>_<d>([IN RTE_Instance])

Where <re> is the runnable entity name, <p> the port name and <d>
the data element name.

Existence: [rte sws 5510] An Rte IWriteRef API shall be created for a pro-
vided DataElementPrototype if the RunnableEntity has DataWriteAc-
cess that refers to the DataElementPrototype.

Description: The Rte IWriteRef API returns a reference to the data elements
declared as accessed by a runnable using DataWriteAccess. The
reference can be used by the runnable to directly update the corre-
sponding data elements. This is especially useful for data elements
of complex types or strings. The API function is guaranteed to be
have constant execution time and therefore can also be used within
category 1A runnable entities.

No error information is required for the user. To provide the required
write-back semantics the RTE only makes written values available to
other entities after the writing runnable entity has terminated.

Return Value: [rte sws 5511] Rte IWriteRef returns a reference to the corre-
sponding data element.

[rte sws 5512] The return type of Rte IWriteRef is dependent on
the data element type. For a primitive data type (with the excep-
tion of a string) it is a pointer to the data element type. For com-
posite data types refer to rte sws 5195, rte sws 5198, rte sws 5207,
rte sws 5208, rte sws 5209.

Notes: None.

232 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5.6.18 Rte IInvalidate

Purpose: Invalidate a data element defined with DataWriteAccess seman-
tics.

Signature: [rte sws 3800]
void
Rte_IInvalidate_<re>_<p>_<d>([IN Rte_Instance <instance>])

Where <re> is the runnable entity name, <p> the port name and <d>
the data element name.

Existence: [rte sws 3801] An Rte IInvalidate API shall be created for a pro-
vided DataElementPrototype if the RunnableEntity has DataWriteAc-
cess that refers to the DataElementPrototype and canInvalidate is
enabled.

Description: The Rte IInvalidate API takes no parameters other than the in-
stance handle – the return value is used to indicate the success, or
otherwise, of the API call to the caller.

[rte sws 3802] In case of a primitive DataElementPrototype the
Rte IInvalidate shall be implemented as a macro that writes the
invalid value rte sws in 5031 to the buffer.

[rte sws 5064] In case of a composite DataElementPrototype the
Rte IInvalidate shall be implemented as a macro that writes the
invalid values rte sws in 5031 of every primitive part of the composi-
tion to the buffer.

[rte sws 3778] If Rte IInvalidate is followed by an Rte IWrite for
the same data element prototype call or vice versa, the RTE shall
use the last value written before the runnable entity terminates (last-
is-best semantics).

rte sws 3778 states that an Rte IWrite overrules an Rte IInvali-

date call if it occurs after the Rte IInvalidate, since Rte IWrite

overwrites the contents of the internal buffer for the data element pro-
totype before it is made known to other runnable entities.

Return Value: [rte sws 3803] Rte IInvalidate has no return value.

For C/C++ rte sws 3803 means using a return type of void.

Notes: The communication service configuration determines whether the
signal receiver(s) receive an “invalid signal” notification or whether
the invalidated signal is silently replaced by the signal’s initial value.

233 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5.6.19 Rte IStatus

Purpose: Provide the error status of a data element defined with
DataReadAccess semantics.

Signature: [rte sws 2599]
Std_ReturnType
Rte_IStatus_<re>_<p>_<d>([IN Rte_Instance])

Where <re> is the runnable entity name, <p> the port name and <d>
the data element name.

Existence: [rte sws 2600] An Rte IStatus API shall be created for a re-
quired DataElementPrototype if a RunnableEntity has DataReadAc-
cess refering to the DataElementPrototype and if either

• data element outdated notification or

• data element invalidation

is activated for this data element.

[rte sws ext 2601] The Rte IStatus API shall only be used by a
RunnableEntity that either has a DataReadAccess refering to the
DataElementPrototype or is triggered by a DataReceiveErrorEvent
refering to the DataElementPrototype.

Description: The Rte IStatus API provides access to the current status of
the data elements declared as accessed by a runnable using
DataReadAccess. The API function is guaranteed to be have con-
stant execution time and therefore can also be used within category
1A runnable entities.

To provide the required consistency access by a runnable is to a copy
of the status together with the data that is guaranteed never to be
modified by the RTE during the lifetime of the runnable entity.

Return Value: The return value is used to indicate errors detected by the communi-
cation system.

• [rte sws 2602] RTE_E_OK – no errors.

• [rte sws 2603] RTE_E_INVALID – data element invalid.

• [rte sws 2604] RTE_E_MAX_AGE_EXCEEDED – data
element outdated. This Overlayed Error can be
combined with any of the above error codes.

Notes: None.

234 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5.6.20 Rte IrvIRead

Purpose: Provide read access to the InterRunnableVariables with implicit be-
havior of an AUTOSAR SW-C.

Signature: [rte sws 3550]
<return>
Rte_IrvIRead_<re>_<name>([IN RTE_Instance <instance>])

Where <re> is the name of the runnable entity the API might be used
in, <name> is the name of the InterRunableVariables.

Existence: [rte sws 1303] An Rte IrvIRead API shall be created for each read
InterRunnableVariable.

Description: The Rte IrvIRead API provides read access to the defined Inter-
RunnableVariables with implicit behavior within a component descrip-
tion.

The return value is used to deliver the requested data value. The
return value is not required to pass error information to the user be-
cause no inter-ECU communication is involved and there will always
be a readable value present.

Requirement rte sws 3581 is valid for InterRunnableVariables with
implicit and InterRunnableVariables with explicit behavior:

[rte sws 3581] The RTE has to ensure that read accesses to an In-
terRunnableVariables won’t deliver undefined data item values. In
case write access before read access cannot be guaranteed by con-
figuration an initial values for the InterRunnableVariable has to be
written to it.

This initial value has to be an input for the RTE generator and might
be initially defined in the AUTOSAR SW-C description.

Return Value: [rte sws 3552] The Rte IrvIRead call returns the actual value of the
accessed InterRunnableVariable.

The return type of Rte IrvIRead is dependent on the InterRunnabl-
eVariable data type. Thus the component does not need to use type
casting to convert access the InterRunnableVariable data.

[rte sws 3556] The return value of the Rte IrvIRead API call shall
pass a value.

[rte sws 3558] The Rte IrvIRead API call does not support com-
plex data types.

Notes: The runnable entity name in the signature allows runnable context
specific optimizations.

235 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

The concept of InterRunnableVariables is explained in section
4.2.4.6. More details about InterRunnableVariables with implicit be-
havior is explained in section 4.2.4.6.1.

5.6.21 Rte IrvIWrite

Purpose: Provide write access to the InterRunnableVariables with implicit be-
havior of an AUTOSAR SW-C.

Signature: [rte sws 3553]
void
Rte_IrvIWrite_<re>_<name>([IN RTE_Instance <instance>],

IN <data>)

Where <re> is the name of the runnable entity the API might be
used in, <name> is the name of the InterRunnableVariable to access
and <data> is the placeholder for the data the InterRunnableVariable
shall be set to.

Existence: [rte sws 1304] An Rte IrvIWrite API shall be created for each writ-
ten InterRunnableVariable.

Description: The Rte IrvIWrite API provides write access to the InterRunnable-
Variables with implicit behavior within a component description. The
runnable entity name in the signature allows runnable context specific
optimizations.

The data given by Rte IrvIWrite is dependent on the InterRunnabl-
eVariable data type. Thus the component does not need to use type
casting to write the InterRunnableVariable.

The return value is unused. The return value is not required to pass
error information to the user because no inter-ECU communication is
involved and the value can always be written.

[rte sws 3557] The Rte IrvIWrite API call include exactly one IN
parameter for the data element - which is a pass by value.

[rte sws 3559] The Rte IrvIWrite API call does not support com-
plex data types.

Return Value: [rte sws 3555] Rte IrvIWrite shall have no return value.

For C/C++, requirement rte sws 3555 means using a return type of
void.

Notes: The runnable entity name in the signature allows runnable context
specific optimizations.

236 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

The concept of InterRunnableVariables is explained in section
4.2.4.6. Further details about InterRunnableVariables with implicit
behavior are explained in Section 4.2.4.6.1.

5.6.22 Rte IrvRead

Purpose: Provide read access to the InterRunnableVariables with explicit be-
havior of an AUTOSAR SW-C.

Signature: [rte sws 3560]
<return>
Rte_IrvRead_<re>_<name>([IN RTE_Instance <instance>])

Where <re> is the name of the runnable entity the API might be used
in, <name> is the name of the InterRunableVariables.

Existence: [rte sws 1305] An Rte IrvIRead API shall be created for each read
InterRunnableVariable using explicit access.

Description: The Rte IrvRead API provides read access to the defined Inter-
RunnableVariables with explicit behavior within a component descrip-
tion.

The return value is used to deliver the requested data value. The
return value is not required to pass error information to the user be-
cause no inter-ECU communication is involved and there will always
be a readable value present.

Return Value: [rte sws 3562] The Rte IrvRead call returns the actual value of the
accessed InterRunnableVariable.

The return type of Rte IrvRead is dependent on the InterRunnable-
Variable data type. Thus the component does not need to use type
casting to convert access the InterRunnableVariable data.

[rte sws 3563] The return value of the Rte IrvRead API call shall
pass a value.

[rte sws 3564] The Rte IrvRead API call does not support complex
data types.

Notes: The runnable entity name in the signature allows runnable context
specific optimizations.

The concept of InterRunnableVariables is explained in section
4.2.4.6. Further details about InterRunnableVariables with explicit
behavior are explained in Section 4.2.4.6.2.

237 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5.6.23 Rte IrvWrite

Purpose: Provide write access to the InterRunnableVariables with explicit be-
havior of an AUTOSAR SW-C.

Signature: [rte sws 3565]
void
Rte_IrvWrite_<re>_<name>([IN RTE_Instance <instance>],

IN <data>)

Where <re> is the name of the runnable entity the API might be
used in, <name> is the name of the InterRunnableVariable to access
and <data> is the placeholder for the data the InterRunnableVariable
shall be set to.

Existence: [rte sws 1306] An Rte IrvIWrite API shall be created for each writ-
ten InterRunnableVariable using explicit access.

Description: The Rte IrvWrite API provides write access to the InterRunnable-
Variables with explicit behavior within a component description.

The data given by Rte IrvWrite is dependent on the InterRunnabl-
eVariable data type. Thus the component does not need to use type
casting to write the InterRunnableVariable.

The return value is unused. The return value is not required to pass
error information to the user because no inter-ECU communication is
involved and the value can always be written.

[rte sws 3567] The Rte IrvWrite API call include exactly one IN
parameter for the data element - which is a pass by value.

[rte sws 3568] The Rte IrvWrite API call does not support com-
plex data types.

Return Value: [rte sws 3569] Rte IrvWrite shall have no return value.

For C/C++, requirement rte sws 3569 means using a return type of
void.

Notes: The runnable entity name in the signature allows runnable context
specific optimizations.

The concept of InterRunnableVariables is explained in section
4.2.4.6. Further details about InterRunnableVariables with explicit
behavior are explained in Section 4.2.4.6.2.

5.6.24 Rte Enter

Purpose: Enter an exclusive area.

238 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Signature: [rte sws 1120]
void
Rte_Enter_<name>([IN Rte_Instance <instance>])

Where <name> is the exclusive area name.

Existence: [rte sws 1307] An Rte Enter API shall be created for each Exclu-
siveArea that is declared RunnableEntityCanEnterExclusiveArea.

Description: The Rte Enter API call is invoked by an AUTOSAR software-
component to define the start of an exclusive area.

Return Value: None.

Notes: The RTE is not required to support nested invocations of Rte Enter

for the same exclusive area.

[rte sws 1122] The RTE shall permit calls to Rte Enter and
Rte Exit to be nested as long as regions are exited in the reverse
order they were entered.

Within the AUTOSAR OS an attempt to lock a resource cannot fail
because the lock is already held. The lock attempt can only fail due
to configuration errors (e.g. caller not declared as accessing the re-
source) or invalid handle. Therefore the return type from this function
is void.

5.6.25 Rte Exit

Purpose: Leave an exclusive area.

Signature: [rte sws 1123]
void
Rte_Exit_<name>([IN Rte_Instance <instance>])

Where <name> is the exclusive area name.

Existence: [rte sws 1308] An Rte Exit API shall be created for each Exclu-
siveArea that is declared RunnableEntityCanEnterExclusiveArea.

Description: The Rte Exit API call is invoked by an AUTOSAR software-
component to define the end of an exclusive area.

Return Value: None.

Notes: The RTE is not required to support nested invocations of Rte Exit

for the same exclusive area.

Requirement rte sws 1122 permits calls to Rte Enter and Rte Exit

to be nested as long as regions are exited in the reverse order they
were entered.

239 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5.6.26 Rte Mode

Purpose: Provides the currently active mode of a mode port.

Signature: [rte sws 2628]
Rte_ModeType_<m>
Rte_Mode_<p>_<o>([IN Rte_Instance <instance>])

Where <m> is the ModeDeclarationGroup name, <p> is the port
name, and <o> the ModeDeclarationGroupPrototype name within the
sender-receiver interface categorizing the port.

Existence: [rte sws 2629] An Rte Mode API shall be created for each required
ModeDeclarationGroupPrototype and for each provided ModeDecla-
rationGroupPrototype.

Description: The Rte Mode API tells the AUTOSAR Software-Component which
mode of a ModeDeclarationGroup of a given port is currently ac-
tive. This is the information that the RTE uses for the ModeDis-
ablingDependencies. A new mode will not be indicated immedi-
ately after the reception of a mode switch notification from
a mode manager, see section 4.4.4.During mode transitions, i.e.
during the execution of runnables that are triggered on exiting one
mode or on entering the next mode, overlapping mode disablings
of two modes are active. In this case, the Rte Mode will return
RTE_TRANSITION_<ModeDeclarationGroup>.

The Rte Mode will return the same mode for all mode ports that
are connected to the same mode port of the mode manager (see
rte sws 2630).

Return Value: [rte sws 2660]The Rte Mode API shall return the following values:

• during mode transitions:
RTE_TRANSITION_<ModeDeclarationGroup>,

where <ModeDeclarationGroup> is the short name of the
ModeDeclarationGroup.

• else:
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>,

where <ModeDeclarationGroup> is the short name of the
ModeDeclarationGroup and <ModeDeclaration> is the short
name of the currently active ModeDeclaration

currently active mode of the given instance of a ModeDeclara-
tionGroupPrototype.

Notes: None.

240 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5.7 Runnable Entity Reference

An AUTOSAR component defines one or more “runnable entities”. A runnable entity
is a piece of code with a single entry point and an associate set of data. A software-
component description provides definitions for each runnable entity within the software-
component.

For components implemented using C or C++ the entry point of a runnable entity is
implemented by a function with global scope defined within a software-component’s
source code. The following sections consider the function signature and prototype.

5.7.1 Signature

The definition of all runnable entities, whatever the RTEEvent that triggers their exe-
cution, follows the same basic form.

[rte sws 1126]
<void|Std_ReturnType> <name>([IN Rte_Instance <instance>],

[role parameters])

Where <name> 3 is the symbol describing the runnable’s entry point rte sws in 0053.
The definition of the role parameters is defined in Section 5.7.3.

Section 5.2.6.4 contains details on a recommended naming conventions for runnable
entities based on the RTEEvent that triggers the runnable entity. The recommended
naming convention makes explicit the functions that implement runnable entities as well
as clearly associating the runnable entity and the applicable data element or operation.

5.7.2 Entry Point Prototype

The RTE determines the required role parameters, and hence the prototype of the
entry point, for a runnable entity based on information in the input information (see
Appendix B). The entry point defined in the component source must be compatible
with the parameters passed by the RTE when the runnable entity is triggered by the
RTE and therefore the RTE generator is required to emit a prototype for the function.

[rte sws 1132] The RTE generator shall emit a prototype for the runnable entity’s entry
point in the application header file.

The prototype for a function implementing the entry point of a runnable entity is emitted
for both “RTE Contract” and “RTE Generation” phases. The function name for the
prototype is the runnable entity’s entry point. The prototype of the entry point function
includes the runnable entity’s instance handle and its role parameters, see Figure 5.2.

3Runnable entities have two “names” associated with them in the Software-Component Template; the
runnable’s identifier and the entry point’s symbol. The identifier is used to reference the runnable entity
within the input data and the symbol used within code to identify the runnable’s implementation. In the
context of a prototype for a runnable entity, “name” is the runnable entity’s entry point symbol.

241 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 1016] The function implementing the entry point of a runnable entity shall
define an instance handle as the first formal parameter.

The RTE will ensure that when the runnable entity is triggered the instance handle pa-
rameter indicates the correct component instance. The remaining parameters passed
to the runnable entity depend on the RTEEvent that triggers execution of the runnable
entity.

5.7.3 Role Parameters

The role parameters are optional and their presence and types depend on the
RTEEvent that triggers the execution of the runnable entity. The role parameters that
are necessary for each triggering RTEEvent are defined in Section 5.7.5.

5.7.4 Return Value

A function in C or C++ is required to have a return type. The RTE only uses the function
return value to return application error codes of a server operation.

[rte sws 1130] A function implementing a runnable entity entry point shall only have
the return type Std_ReturnType, if the runnable entity represents a server operation
and the AUTOSAR interface description of that client server communication lists po-
tential application errors. All other functions implementing a runnable entity entry point
shall have a return type of void.

[rte sws ext 2704] Only the least significant six bit of the return value of a server
runnable shall be used by the application to indicate an error. The upper two bit shall
be zero. See also rte sws 2573.

5.7.5 Triggering Events

The RTE is the sole entity that can trigger the execution of a runnable entity. The RTE
triggers runnable entities in response to different RTEEvents.

The most basic RTEEvent that can trigger a runnable entity is the TimingEvent
that causes a runnable entity to be periodically triggered by the RTE. In contrast, the
remaining RTEEvents that can trigger runnable entities all occur as a result of com-
munication activity or as a result of mode switches.

The following subsections describe the conditions that can trigger execution of a runn-
able entity. For each triggering event the signature of the function (the “entry point”)
that implements the runnable entity is defined. The signature definition includes two
classes of parameters for each function;

242 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

1. The instance handle – the parameter type is always Rte_Instance.
(rte sws 1016)

2. The role parameters – used to pass information required by the runnable entity
as a consequence of the triggering condition. The presence (and number) of role
parameters depends solely on the triggering condition.

5.7.5.1 TimingEvent

Purpose: Trigger a runnable entity periodically at a rate defined within the
software-component description.

Signature: [rte sws 1131]
void <name>([IN Rte_Instance <instance>])

5.7.5.2 ModeSwitchEvent

Purpose: Trigger of a runnable entity as a result of a mode switch. See also
sections 4.4.4 and 4.4.5 for reference.

Signature: [rte sws 2512]
void <name>([IN Rte_Instance <instance>])

5.7.5.3 AsynchronousServerCallReturnsEvent

Purpose: Triggers a runnable entity used to “collect” the result and status infor-
mation of an asynchronous client-server operation.

Signature: [rte sws 1133]
void <name>([IN Rte_Instance <instance>])

Notes: The runnable entity triggered by an AsynchronousServerCallReturn-
sEvent RTEEvent should use the Rte Result API to actually receive
the result and the status of the server operation.

5.7.5.4 DataReceiveErrorEvent

Purpose: Triggers a runnable entity used to “collect” the error status of a data
element with “data” semantics (isQueued = false) on the receiver
side.

Signature: [rte sws 1359]
void <name>([IN Rte_Instance <instance>])

243 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Notes: The runnable entity triggered by a DataReceiveErrorEvent
RTEEvent should use the Rte IStatus API to actually read
the status.

5.7.5.5 OperationInvokedEvent

Purpose: An RTEEvent that causes the RTE to trigger a runnable entity whose
entry point provides an implementation for a client-server operation.
This event occurs in response to a received request from a client to
execute the operation.

Signature: [rte sws 1166]
<void|Std_ReturnType> <name>

([IN Rte_Instance <instance>],
[IN <portDefArg 1>, ...
IN <portDefArg n>],

[IN|INOUT|OUT] <param 1>, ...
[IN|INOUT|OUT] <param n>)

Where <portDefArg 1>, ..., <portDefArg n> represent the
port-defined argument values (see Section 4.3.2.4) and
<param 1>, ... <param n> indicates the operation IN, INOUT
and OUT parameters.

The data type of each port defined argument is taken from the soft-
ware component template, as defined in rte sws in 1361.

Note that the port-defined argument values are optional, depending
upon the server’s internal behavior.

The operation parameters <param 1>, ... <param n> are the
specified ArgumentPrototypes of the OperationPrototype that is as-
sociated with the OperationInvokedEvent. The operation parameters
are ordered according to the OperationPrototype’s ordered list of the
ArgumentPrototypes.

Return Value: If the AUTOSAR interface description of the client server communica-
tion lists possible error codes, these are returned by the function us-
ing the return type Std_ReturnType. If no error codes are defined
for this interface, the return type shall be void (see rte sws 1130).

This means that even if a runnable entity implementing a server ”only”
returns E_OK, application errors have to be defined. Else the return
types do not match.

244 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5.7.5.6 DataReceivedEvent

Purpose: A runnable entity triggered by the RTE to receive and process a signal
received on a sender-receiver interface.

Signature: [rte sws 1135]
void <name>([IN Rte_Instance <instance>])

Notes: The data or event is not passed as an additional parameter. Instead,
the previously described reception API should be used to access the
data/event. This approach permits the same signature for runnables
that are triggered by time (TimingEvent) or data reception.

Caution: For intra-ECU communication, the DataReceivedEvent is
fired after each completed write operation to the shared data. In
case of implicit access, write operation is considered to be completed
when the runnable ends. While for inter-ECU communication, the
DataReceivedEvent is fired by the RTE after a callback from COM
due to data reception. Over a physical network, ‘data’ is commonly
transmitted periodically and hence not only will the latency and jitter
of DataReceivedEvents vary depending on whether a configuration
uses intra or inter-ECU communication, but also the number and fre-
quency of these RTEEvents may change significantly. This means
that a TimingEvent should be used to periodically activation of a runn-
able rather than relying on the periodic transmission of data.

5.7.5.7 DataSendCompletedEvent

Purpose: A runnable entity triggered by the RTE to receive and process trans-
mit acknowledgment notifications.

Signature: [rte sws 1137]
void <name>([IN Rte_Instance <instance>])

Notes: The runnable entity triggered by a DataSendCompletedEvent
RTEEvent should use the Rte Feedback API to actually receive the
status of the acknowledgement.

5.7.6 Reentrancy

A runnable entity is declared within a software-component type. The RTE ensures
that concurrent activation of same instance of a runnable entity is only allowed if the
runnables attribute ”canBeInvokedConcurrently” is set to TRUE (see Section 4.2.5).

When a software-component is multiply instantiated each separate instance has its
own instance of the runnable entities in the software-component. Whilst instances of a

245 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

software-component are independent, the runnable entities instances share the same
code (rte sws 2017).

Example 5.21

Consider a component c1 with runnable entity re1 and entry point ep that
is instantiated twice on the same ECU.

The two instances of c1 each has a separate instance of re1. Software-
component instances are scheduled independently and therefore each in-
stance of re1 could be concurrently executing ep.

The potential for concurrent execution of runnable entities when multiple instances of
a software-component are created means that each entry point should be reentrant.

[rte sws 3749] The RTE has to reject configurations where multiple instantiation of an
AUTOSAR SW-Cs is requested and the associated attribute ”supportsMultipleInstanti-
ation” is not set to TRUE.

5.8 RTE Lifecycle API Reference

This section documents the API functions used to start and stop the RTE. RTE Lifecycle
API functions are not invoked from AUTOSAR software-components – instead they are
invoked from other basic software module(s).

5.8.1 Rte Start

Purpose: Initialize the RTE itself.

Signature: [rte sws 2569]
Std_ReturnType Rte_Start(void)

Existence: [rte sws 1309] The Rte Start API is always created.

Description: Rte Start is intended to allocate and initialise system resources and
communication resources used by the RTE.

[rte sws ext 2582] Rte Start shall be called only once by the EcuS-
tateManager after the basic software modules required by RTE are
initialized. These modules include:

• OS

• COM

• memory services

The Rte Start API shall not be invoked from AUTOSAR software
components.

246 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 2585] Rte Start shall return within finite execution time –
it must not enter an infinite loop.

Rte Start may be implemented as a function or a macro.

Return Value: If the allocation of a resource fails, Rte Start shall return with an
error.

• [rte sws 1261] RTE_E_OK – No error occurred.

• [rte sws 1262] RTE_E_LIMIT – An internal limit has been ex-
ceeded. The allocation of a required resource has failed.

Notes: Rte Start is declared in the lifecycle header file Rte_Main.h. The
initialization of AUTOSAR software-components takes place after the
termination of Rte Start and is triggered by a mode change event
on entering run state.

5.8.2 Rte Stop

Purpose: finalize the RTE itself

Signature: [rte sws 2570]
Std_ReturnType Rte_Stop(void)

Existence: [rte sws 1310] The Rte Stop API is always created.

Description: Rte Stop is used to finalize the RTE itself. This service releases all
system and communication resources allocated by the RTE.

[rte sws ext 2583] Rte Stop shall be called by the EcuStateMan-
ager before the basic software modules required by RTE are shut
down. These modules include:

• OS

• COM

• memory services

Rte Stop shall not be called by an AUTOSAR software component.

[rte sws 2584] Rte Stop shall return within finite execution time.

Rte Stop may be implemented as a function or a macro.

Return Value: • [rte sws 1259] RTE_E_OK – No error occurred.

• [rte sws 1260] RTE_E_LIMIT – a resource could not be re-
leased.

Notes: Rte Stop is declared in the lifecycle header file Rte_Main.h.

247 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5.9 RTE Call-backs Reference

This section documents the call-backs that are generated by the RTE that must be
invoked by other components, such as the communication service, and therefore must
have a well-defined name and semantics.

[rte sws 1165] A call-back implementation created by the RTE generator is not per-
mitted to block.

Requirement rte sws 1165 serves to constrain RTE implementations so that all imple-
mentations can work with all basic software.

5.9.1 RTE-COM Message Naming Conventions

The COM signals used for communication are defined in the meta-model (Section B).

[rte sws 3007] The RTE shall initiate an inter-ECU transmission using the COM
API with the handle id of the corresponding COM signal for primitive data element
rte sws in 0063.

[rte sws 3008] The RTE shall initiate an inter-ECU transmission using the COM API
with the handle id of the corresponding COM signal group for complex data element or
operation arguments rte sws in 0064.

5.9.2 Communication Service Call-backs

Purpose: Implement the call-back functions that AutoSAR COM invokes as a
result of inter-ECU communication, where:

• A data item/event is ready for reception by a receiver.

• A transmission acknowledgment shall be routed to a sender.

• An operation shall be invoked by a server.

• The result of an operation is ready for reading by a client.

Signature: [rte sws 3000]

void <CallbackRoutineName> (void);

Where <CallbackRoutineName> is the name of the call-back func-
tion (refer to Section 5.9.3 for details on the naming convention).

Description: Prototypes for the call-back <CallbackRoutineName> provided by
AutoSAR COM.

Return Value: No return value : void

248 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5.9.3 Naming convention of CallbackRoutineName

In the following table, the naming convention of <CallBackRoutineName> are de-
fined:

Calling Situation callbackRoutineName Comments
A primitive data
item/event is ready
for reception by a
receiver.

[rte sws 3001]
Rte_COMCbk_<sn>

<sn> is the name of the COM sig-
nal. This callback function indicates
that the signal of the primitive data
item/event or the single argument of
an operation is ready for reception.

A transmission ac-
knowledgment of
a primitive data
item/event shall be
routed to a sender.

[rte sws 3002]
Rte_COMCbkTAck_<sn>

“TAck” is literal text indicating trans-
mission acknowledgment. This
callback function indicates that
the signal of the primitive data
item/event is already handed over
by COM to the PDU router.

A transmission error
notificatoin of a prim-
itive data item/event
shall be routed to a
sender.

[rte sws 3775]
Rte_COMCbkTErr_<sn>

“TErr” is literal text indicating trans-
mission error. This callback func-
tion indicates that an error occurred
when the signal of the primitive
data item/event was handed over
by COM to the PDU router.

A signal invalidation of
a primitive data item
shall be routed to a re-
ceiver.

[rte sws 2612]
Rte_COMCbkInv_<sn>

“Inv” is literal text indicating signal
invalidation. This callback function
indicates that COM has received a
signal and parsed it as “invalid”.

A signal of a primitive
data item is outdated.
No new data is avail-
able.

[rte sws 2610]
Rte_COMCbkTOut_<sn>

“TOut” is literal text indicating sig-
nal time out. This callback func-
tion indicates that the aliveTime-
out after the last successful recep-
tion of the signal of the primitive
data item/event has expired (data
element outdated).

A complex data
item/event or the
arguments of an op-
eration is ready for
reception by a receiver.

[rte sws 3004]
Rte_COMCbk_<sg>

<sg> is the name of the COM
signal group, which contains all
the signals of the complex data
item/event or an operation. This
callback function indicates that
the signals of the complex data
item/event or the arguments of an
operation are ready for reception.

A transmission ac-
knowledgment of
a complex data
item/event shall be
routed to a sender.

[rte sws 3005]
Rte_COMCbkTAck_<sg>

“TAck” is literal text indicating trans-
mission acknowledgment. This
callback function indicates that
the signals of the complex data
item/event is already handed over
by COM to the PDU router.

249 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Calling Situation callbackRoutineName Comments
A transmission error
notificatoin of a com-
plex data item/event
shall be routed to a
sender.

[rte sws 3776]
Rte_COMCbkTErr_<sg>

“TErr” is literal text indicating trans-
mission error. This callback func-
tion indicates that an error occurred
when the signal of the complex
data item/event was handed over
by COM to the PDU router.

A signal group invalida-
tion of a composite data
item shall be routed to a
receiver.

[rte sws 5065]
Rte_COMCbkInv_<sg>

“Inv” is literal text indicating signal
group invalidation. This callback
function indicates that COM has re-
ceived a signal group and parsed it
as “invalid”.

A signal group of a
complex data item is
outdated. No new data
is available.

[rte sws 2611]
Rte_COMCbkTOut_<sg>

“TOut” is literal text indicating sig-
nal time out. This callback function
indicates that the aliveTimeout af-
ter the last successful reception of
the signal group carrying the com-
plex data item has expierd (data
element outdated).

Table 5.7: RTE COM Callback Function Naming Conven-
tions

Where:
• <sn> is a COM signal name.
• <sg> is a COM signal group name.

5.10 VFB Tracing Reference

The RTE’s “VFB Tracing” functionality permits the monitoring of AUTOSAR signals as
they are sent and received across the VFB.

The RTE operates in at least two builds (some implementations may provide more than
two builds). One does not enable VFB tracing whereas the other can be configured to
trace some or all “interesting events”.

[rte sws 1327] The RTE generator shall support a build where no VFB events are
traced.

[rte sws 1328] The RTE generator shall support a build that traces (configured) VFB
events.

The RTE generator’s ‘trace’ build is enabled or disabled through definitions in the RTE
Configuration file rte sws 1322 and rte sws 1323. Note that this ‘trace’ build is intended
to enable tracing of software components and not the RTE itself.

250 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5.10.1 Prinicple of Operation

The “VFB Tracing” mechanism is designed to offer a lightweight means to monitor the
interactions of AUTOSAR software-components with the VFB.

The VFB tracing is implemented by a series of “hook” functions that are invoked auto-
matically by the generated RTE when “interesting events” occur. Each hook function
corresponds to a single event.

The supported trace events are defined in Section 5.10.2. A mechanism is described in
Section 5.10.3 for configuring which of the many potential trace events are of interest.

5.10.2 Trace Events

5.10.2.1 RTE API Trace Events

RTE API trace events occur when an AUTOSAR software-component interacts with the
generated RTE API. For implicit S/R communication, however, tracing is not supported.

5.10.2.1.1 RTE API Start

Description: RTE API Start is invoked by the RTE when an API call is made by a
component.

Signature: [rte sws 1238]
void Rte_<api>Hook_<c>_<ap>_Start

([const Rte_CDS_<c>>*,]<param>)

Where <api> is the RTE API Name (Write, Call, etc.), <c> is the
component type name and <ap> the access point name (e.g. port
and data element or operation name, exclusive area name, etc.).
The parameters of the API are the same as the corresponding
RTE API. As with the API itself, the instance handle is included if
and only if the software component’s SupportsMultipleInstantiation
(rte sws in 0004) attribute is set to true. Note that Rte_Instance
cannot be used directly, as there will be pointers to multiple compo-
nents’ structure types within the single VFB Tracing header file, and
Rte_Instance would therefore be ambiguous.

5.10.2.1.2 RTE API Return

Description: RTE API Return is a trace event that is invoked by the RTE just before
an API call returns control to a component.

Signature: [rte sws 1239]

251 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

void Rte_<api>Hook_<c>_<ap>_Return
([const Rte_CDS_<c>*,]<param>)

Where <api> is the RTE API Name (Write, Call, etc.), <c> is the
component type name and <ap> the access point name (e.g. port
and data element or operation name, exclusive area name, etc.). The
parameters of the API are the same as the corresponding RTE API
and contain the values of OUT and INOUT parameters on exit from
the function.

As with the API itself, the instance handle is included if and
only if the software component’s SupportsMultipleInstantiation
(rte sws in 0004) attribute is set to true. Note that Rte_Instance
cannot be used directly, as there will be pointers to multiple compo-
nents’ structure types within the single VFB Tracing header file, and
Rte_Instance would therefore be ambiguous.

5.10.2.2 COM Trace Events

COM trace events occur when the generated RTE interacts with the AUTOSAR com-
munication service.

5.10.2.2.1 Signal Transmission

Description: A trace event indicating a transmission request of an Inter-ECU sig-
nal or signal group by the RTE. Invoked by the RTE just before
Com_SendSignal or Com_UpdateShadowSignal is invoked.

Signature: [rte sws 1240]
void Rte_ComHook_<signalName>_SigTx(<data>)

Where <signalName> is the COM signal name and <data> a
pointer to the signal data to be transmitted.

5.10.2.2.2 Signal Reception

Description: A trace event indicating a successful attempt to read an Inter-
ECU signal by the RTE. Invoked by the RTE after return from
Com_ReceiveSignal or Com_ReceiveShadowSignal.

Signature: [rte sws 1241]
void Rte_ComHook_<signalName>_SigRx(<data>)

Where <signalName> is the COM signal name and <data> a
pointer to the signal data received.

252 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5.10.2.2.3 Signal Invalidation

Description: A trace event indicating a signal invalidation request of an Inter-ECU
signal or signal group by the RTE. Invoked by the RTE just before
Com_InvalidateSignal or Com_InvalidateShadowSignal is
invoked.

Signature: [rte sws 3814]
void Rte_ComHook_<signalName>_SigIv(void)

Where <signalName> is the COM signal name.

5.10.2.2.4 COM Callback

Description: A trace event indicating the start of a COM call-back. Invoked by
generated RTE code on entry to the COM call-back.

Signature: [rte sws 1242]
void Rte_ComHook<Event>_<signalName>(void)

Where <signalName> is the name of the COM signal or signal
group and <Event> indicates the callback type and can take the val-
ues “Inv” for an invalidation callback, “TOut” for a timeout callback,
“TAck” for a transmission acknowledgement callback, or “TErr” for a
transmission error callback.

5.10.2.3 OS Trace Events

OS trace events occur when the generated RTE interacts with the AUTOSAR operating
system.

5.10.2.3.1 Task Activate

Description: A trace event that is invoked by the RTE immediately prior to the
activation of a task containing runnable entities.

Signature: [rte sws 1243]
void Rte_Task_Activate(TaskType task)

Where task is the OS’s handle for the task.

253 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5.10.2.3.2 Task Dispatch

Description: A trace event that is invoked immediately an RTE generated task
(containing runnable entities) has commenced execution.

Signature: [rte sws 1244]
void Rte_Task_Dispatch(TaskType task)

Where task is the OS’s handle for the task.

5.10.2.3.3 Set OS Event

Description: A trace event invoked immediately before generated RTE code at-
tempts to set an OS Event.

Signature: [rte sws 1245]
void Rte_Task_SetEvent(TaskType task, EventMaskType ev)

Where task is the OS’s handle for the task for which the event is
being set and ev the OS event mask.

5.10.2.3.4 Wait OS Event

Description: Invoked immediately before generated RTE code attempts to wait on
an OS Event. This trace event does not indicate that the caller has
suspended execution since the OS call may immediately return if the
event was already set.

Signature: [rte sws 1246]
void Rte_Task_WaitEvent(TaskType task, EventMaskType ev)

Where task is the OS’s handle for the task (that is waiting for the
event) and ev the OS event mask.

5.10.2.3.5 Received OS Event

Description: Invoked immediately after generated RTE code returns from waiting
on an event.

Signature: [rte sws 1247]
void Rte_Task_WaitEventRet(TaskType task,

EventMaskType ev)

Where task is the OS’s handle for the task (that was waiting for an
event) and ev the event mask indicating the received event.

254 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Note that not all of the trace events listed above may be available for a given input
configuration. For example if a task is activated by a schedule table, it is activated by
the OS rather than by the RTE, hence no trace hook function for task activation can be
invoked by the RTE.

5.10.2.4 Runnable Entity Trace Events

Runnable entity trace events occur when a runnable entity is started.

5.10.2.4.1 Runnable Entity Invocation

Description: Event invoked by the RTE just before execution of runnable entry
starts via its entry point. This trace event occurs after any copies of
data elements are made to support the Rte IRead API Call.

Signature: [rte sws 1248]
void Rte_Runnable_<c>_<reName>_Start

([const RTE_CDS_<c>*])

Where <c> is the SW-C type name and reName the runnable entity
name. The instance handle is included if and only if the software com-
ponent’s SupportsMultipleInstantiation (rte sws in 0004) attribute is
set to true. Note that Rte_Instance cannot be used directly, as
there will be pointers to multiple components’ structure types within
the single VFB Tracing header file, and Rte_Instance would there-
fore be ambiguous.

5.10.2.4.2 Runnable Entity Termination

purpose: Event invoked by the RTE immediately execution returns to RTE code
from a runnable entity. This trace event occurs before any write-back
of data elements are made to support the Rte IWrite API Call.

Signature: [rte sws 1249]
void Rte_Runnable_<c>_<reName>_Return

([const Rte_CDS_<c>*])

Where <c> is the SW-C type name and reName the runnable entity
name. The instance handle is included if and only if the software com-
ponent’s SupportsMultipleInstantiation (rte sws in 0004) attribute is
set to true. Note that Rte_Instance cannot be used directly, as
there will be pointers to multiple components’ structure types within
the single VFB Tracing header file, and Rte_Instance would there-
fore be ambiguous.

255 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

5.10.3 Configuration

The VFB tracing mechanism works by the RTE invoking the tracepoint hook function
whenever the tracing event occurs.

The support trace events and their hook function name and signature are defined in
Section 5.10.2. There are many potential trace events and it is likely that only a few will
be of interest at any one time. Therefore The RTE generator supports a mechanism to
configure which trace events are of interest.

In order to minimise RTE Overheads, trace events that are not enabled should have
no run-time effect on the generated system. This if achieved through generated code
within the VFB Tracing Header File (see Section 5.3.5) and the user supplied definitions
from the RTE Configuration Header file (see Section 5.3.6).

The definition of trace event hook functions is contained within user code. If a defini-
tion is encapsulated within a #if block, as follows, the definition will automatically be
omitted when the trace event is disabled.

1 #if !defined(<trace event>)
2 void <trace event>(<params>)
3 {
4 /* Function definition */
5 }
6 #endif

The configuration of which individual trace events are enabled is entirely under the
control of the user via the definitions included in the RTE Configuration header file.

5.10.4 Interaction with Object-code Software-Components

VFB tracing is only available during the “RTE Generation” phase rte sws 1319 and
therefore hook functions never appear in an application header file created during “RTE
Contract” phase. However, object-code software-components are compiled against the
“RTE Contract” phase header and can therefore only trace events that are inserted into
the generated RTE. In particular they cannot trace events that require invocation of
hook functions to be inserted into the API mapping such as the Rte Pim API. However,
many trace events are applicable to object-code software-components including trace
events related to the explicit communication API, to task activity and for runnable entity
start and stop.

This approach means that the external interactions of the object-code software-
component can be monitored without requiring modification of the delivered object-
code and without revealing the internal activity of the software-component. The ap-
proach is therefore considered to be consistent with the desire for IP protection that
prompts delivery of a software-component as object-code.

256 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

6 RTE ECU Configuration

The RTE provides the glue layer between the application SW-Components and the
Basic Software thus enabling several application SW-Components to be integrated on
one ECU. The RTE layer is shown in figure 6.1.

Figure 6.1: ECU Architecture RTE

The RTE is included twice in the development methodology of SW-Components. In the
RTE Contract phase only the SW-Component description is used as an input. The
configuration parameters defined in this section are used for the RTE Generation
phase.

The overall structure of the RTE configuration parameters is shown in figure 6.2. It has
to be distinguished between the configuration parameters for the RTE generator and
the configuration parameters for the generated RTE itself.

Most of the information needed to generate an RTE is already available in the ECU ex-
tract of the System Description. From this extract also the links to the SW-Component
descriptions and ECU Resource description are available. So only additional informa-
tion not covered by the three aforementioned formats needs to be provided by the ECU
Configuration description.

To additionally allow the most flexibility and freedom in the implementations of the RTE,
only configuration parameters which are common to all implementations are standard-
ized in the ECU Configuration Parameter definition. Any additional configuration pa-
rameters which might be needed to configure a full functional RTE have to be specified
using the vendor specific parameter definition mechanism described in the ECU Con-
figuration specification document [7].

257 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Software Component template

Rte :ModuleDef

lowerMultiplicity = 0
upperMultiplicity = 1

RunnableEntityMapping :
ParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = *

RteGeneration :
ParamConfContainerDef

lowerMultiplicity = 1
upperMultiplici ty = 1

AUTOSARParameterDefinition :
EcuParameterDefinition

SwComponentInstance :
ParamConfContainerDef

lowerMultiplicity = 1
upperMultiplici ty = *

SoftwareComponentInstanceRef :
InstanceReferenceParamDef

lowerMultipl icity = 0
upperMultiplicity = 1
destinationContext = ComponentPrototype*
destinationType = ComponentPrototype

Identifiable

«atpPrototype»
ComponentPrototype

ComponentTypeCalibration :
ParamConfContainerDef

lowerMultiplicity = 0
upperMultiplici ty = *

Exclusiv eAreaImplementation :
ParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = *

NVRamAllocation :
ParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = *

Serv iceComponentPrototypeRef :
ForeignReferenceParamDef

lowerMultipl icity = 0
upperMultiplicity = 1
destinationType = ServiceComponentPrototype

Identifiable

«atpPrototype»
Serv iceComponentPrototype

+reference

+container

+subContainer

+subContainer

+reference

+container

+module

+subContainer

+container

Figure 6.2: RTE configuration overview

The configuration of the RTE is structured in the following groups:

• RteGeneration in section 6.1

• ImplementationSelection in section 6.2.1

• RunnableEntityMapping in section 6.2.2

• ExclusiveAreaImplementation in section 6.2.3

• NVRamAllocation in section 6.2.4

• CalprmComponentInstance in section 6.3

Module Name Rte
Module Description Configuration of the Rte (Runtime Environment) module.
Included Containers
Container Name Multiplicity Scope / Dependency
ComponentType
Calibration

0..* Specifies for each CalprmComponentType or
AtomicSoftwareComponentType whether
calibration is enabled.

RteGeneration 1 This container holds the parameters for the
configuration of the RTE Generation.

258 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Container Name Multiplicity Scope / Dependency
SwComponentInstance 1..* Representation of one SW-Component instance

located on the to be configured ECU. All
subcontainer configuration aspects are in relation
to this SW-Component instance.

The SwComponentInstance can be either an
ApplicationSoftwareComponenInstance or a
ServiceComponentInstance.

259 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

6.1 RTE Generation Parameters

The parameters in the container RteGeneration are used to configure the RTE gen-
erator. They all need to be defined during pre-compile time.

Rte :ModuleDef

lowerMultiplicity = 0
upperMultiplicity = 1

RteGenerationMode :
EnumerationParamDef

COMPATIBILITY_MODE :
EnumerationLiteralDef

VENDOR_MODE :
EnumerationLiteralDef

RteGeneration :
ParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 1

RteVfbTrace :IntegerParamDef

RteVfbTraceFunction :
FunctionNameDef

lowerMultiplicity = 0
upperMultiplici ty = *

RteMeasurementSupport :
BooleanParamDef

RteCalibrationSupport :
EnumerationParamDef

NONE :
EnumerationLiteralDef

SINGLE_POINTERED :
EnumerationLiteralDef

DOUBLE_POINTERED :
EnumerationLiteralDef

INITIALIZED_RAM :
EnumerationLiteralDef

RteOptimizationMode :
EnumerationParamDef

RUNTIME :
EnumerationLiteralDef

MEMORY :
EnumerationLiteralDef

+li teral

+li teral
+parameter

+li teral

+li teral

+container

+li teral

+li teral

+parameter

+parameter

+li teral

+parameter

+parameter

+parameter

+li teral

Figure 6.3: RTE generation parameters

RteGeneration

SWS Item
Container Name RteGeneration
Description This container holds the parameters for the configuration of the RTE

Generation.
Configuration Parameters

260 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Name RteCalibrationSupport
Description The RTE generator shall have the option to switch off support for

calibration for generated RTE code. This option shall influence
complete RTE code at once.

Multiplicity 1
Type EnumerationParamDef
Range DOUBLE POINTERED

INITIALIZED RAM
NONE
SINGLE POINTERED

Configuration Class Pre-compile time X All Variants
Link time –
Post-build time –

Scope / Dependency

Name RteGenerationMode
Description Switch between the two available generation modes of the RTE

generator.
Multiplicity 1
Type EnumerationParamDef
Range COMPATIBILITY MODE

VENDOR MODE
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteMeasurementSupport
Description The RTE generator shall have the option to switch off support for

measurement for generated RTE code. This option shall influence
complete RTE code at once.

Multiplicity 1
Type BooleanParamDef
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteOptimizationMode
Description Switch between the two available optimization modes of the RTE

generator.
Multiplicity 1
Type EnumerationParamDef
Range MEMORY

RUNTIME
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

261 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Name RteVfbTrace {RTE VFB TRACE}
Description The RTE generator shall globally enable VFB tracing when

RTE VFB TRACE is defined in the RTE configuration header file as a
non-zero integer.
The RTE generator shall globally disable VFB tracing when
RTE VFB TRACE is defined in the RTE configuration header file as 0.

Multiplicity 1
Type IntegerParamDef
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteVfbTraceFunction
Description The RTE generator shall enable VFB tracing for a given hook function

when there is a #define in the RTE configuration header file for the
hook function name and tracing is globally enabled.
Example: #define Rte WriteHook i1 p1 a Start

Multiplicity 0..*
Type FunctionNameDef
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency
No Included Containers

262 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

6.2 Handling of Software Component instances

When entities of Software Components are to be configured there is the need to ac-
tually address the instances of the AtomicSoftwareComponentType. AUTOSAR
defines the instance reference as the mechanism to allow this addressing.

The special semantics of the InstanceReferenceDef1 does allow to address
each ”instance” of that ComponentPrototype in the Software Component tem-
plate. Since the whole vehicle is described as one top-level composition
using the Software Component template [17], each actual instance of any
AtomicSoftwareComponentType from the VFB view can be addressed using this
mechanism.

Since the Service Components are not part of the VFB they can not be referenced
using the SoftwareComponentInstanceRef. Service Components are referenced
using the foreign reference ServiceComponentPrototypeRef.

In figure 6.2 the container SwComponentInstance is shown which contains the
instance reference SoftwareComponentInstanceRef and the foreign reference
ServiceComponentPrototypeRef. These references are used to unambiguously
identify each instance of a AtomicSoftwareComponentType within the ECU.

SwComponentInstance

SWS Item
Container Name SwComponentInstance
Description Representation of one SW-Component instance located on the to be

configured ECU. All subcontainer configuration aspects are in relation
to this SW-Component instance.

The SwComponentInstance can be either an
ApplicationSoftwareComponenInstance or a
ServiceComponentInstance.

Configuration Parameters

Name ImplementationRef
Description The Implementation which is assiged to the ComponentPrototype.
Multiplicity 0..1
Type Foreign reference to SwcImplementation
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

1The InstanceReferenceDef is based on the <<instanceRef>> mechanism introduced in the
”Template UML Profile and Modeling Guide” document [16].

263 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Name ServiceComponentPrototypeRef
Description Reference to the ServiceComponentPrototype representing an

particular service on this ECU.

If ServiceComponentPrototypeRef is specified there shall not be the
SoftwareComponentInstanceRef specified.

Multiplicity 0..1
Type Foreign reference to ServiceComponentPrototype
Configuration Class Pre-compile time –

Link time –
Post-build time –

Scope / Dependency

Name SoftwareComponentInstanceRef
Description Reference to a SW-Component ComponentPrototype.

If SoftwareComponentInstanceRef is specified there shall not be the
ServiceComponentPrototypeRef specified.

Semantic Constraint:
Only ComponentPrototypes which have an
AtomicSoftwareComponentType as <<isOfType>> shall be
referenced here.

Multiplicity 0..1
Type Instance reference to ComponentPrototype context: Component

Prototype*
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency
Included Containers
Container Name Multiplicity Scope / Depedency
ExclusiveArea
Implementation

0..*

NVRamAllocation 0..*
RunnableEntityMapping 0..*

The container SwComponentInstance collects all the configuration information re-
lated to one specific instance of a AtomicSoftwareComponentType. The individual
aspects will be described in the next sections.

6.2.1 Selection of SW-Component Implementation

During the system development there is no need to select the actual implementation
which will be later integrated on one ECU. Therefore the ECU Extract of System De-
scription may not contain the selection information yet.

In the SW-Component template an SwcImplementation is always associated – via
an InternalBehavior – with an AtomicSoftwareComponentType.

264 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

In theory it is possible to have different SwcImplementation (and implicitly dif-
ferent InternalBehavior) provided for each instance of an AtomicSoftware-
ComponentType. This is currently not supported by the RTE, so the following re-
striction applies:

For each ComponentPrototype of the same AtomicSoftwareComponentType
the identical SwcImplementation and InternalBehavior shall be configured.

The mapping of SwcImplementation to ComponentPrototype done using the two
references SoftwareComponentInstanceRef and ImplementationRef (see fig-
ure 6.4).

SWComponentTemplate

AtomicSoftwareComponentType
ARElement

InternalBehav ior

+ supportsMultipleInstantiation: Boolean

ImplementationRef :
ForeignReferenceParamDef

lowerMultiplicity = 0
upperMultipl icity = 1
destinationType = SwcImplementation

ARElement

«atpType»
ComponentType

Identifiable

«atpPrototype»
ComponentPrototype

SwComponentInstance :
ParamConfContainerDef

lowerMultiplicity = 1
upperMultipl icity = *

SoftwareComponentInstanceRef :
InstanceReferenceParamDef

lowerMultiplicity = 0
upperMultiplicity = 1
destinationContext = ComponentPrototype*
destinationType = ComponentPrototype

Implementation

SwcImplementation

+ requiredRTEVendor: String [0..1]
*

+behavior

1*

+component

1

*
«isOfType»

+type 1

+reference
+reference

Figure 6.4: Selection of the Implementation for an AtomicSoftwareComponentType

6.2.2 Runnable Entity to task mapping

One of the major fragments of the RTE configuration is the mapping of SW-
Component’s RunnableEntitys to OS Tasks. The parameters defined to achieve
this are shown in figure 6.5.

The mapping is based on the RTEEvent because it is the source of the activation. For
each RunnableEntity which belongs to a SW-Component instance mapped on the
ECU there needs to be a mapping container specifying how this RunnableEntity
should be handled. If the RunnableEntity is a server-runnable and shall be ex-
ecuted in the context of the caller (i.e. using a direct function call) the element
RunnableEntityMapping still shall be provided to indicate that this RTEEvent has
been considered in the mapping, but no further parameters or references are required
(e.g. MappedToTaskRef can be left out).

265 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Software Component template

RunnableEntityMapping :
ParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

RTEEv entRef :
ForeignReferenceParamDef

destinationType = RTEEvent

ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean
+ minimumStartInterval: Float
+ symbol: String

PositionInTask :
IntegerParamDef

lowerMultiplici ty = 0
upperMultiplicity = 1

OsTask :
ParamConfContainerDef

lowerMultiplicity = 0
upperMultiplici ty = *

MappedToTaskRef :
ReferenceParamDef

lowerMultiplici ty = 0
upperMultiplicity = 1

Identi fiable

RTEEvent

Identi fiable

WaitPoint

+ timeout: Float

UsedOsEventRef :
ReferenceParamDef

lowerMultiplici ty = 0
upperMultiplicity = 1

OsEv ent :
ParamConfContainerDef

lowerMultiplici ty = 0
upperMultiplicity = *

ActivationOffset :
FloatParamDef

lowerMultiplici ty = 0
upperMultiplicity = 1

SwComponentInstance :
ParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

+parameter

*

+trigger

1

+waitPoint *

+runnable
+startOnEvent 0..1

+subContainer

+reference
+destination

+reference

+parameter

+reference +destination

Figure 6.5: RTE runnable entity to task mapping

One major constraint is posed by the canBeInvocedConcurrently attribute of each
RunnableEntity because data consistency issues have to be considered.

The MappedToTaskRef OsTask is part of the ECU Configuration description, so a
plain ReferenceDef can be used to establish the link.

Another important parameter is the PositionInTask which provides an order
of RunnableEntitys within the associated OsTask. When the task is exe-
cuted periodically the PositionInTask parameter defines the order of execution
within the test. When the task is used to define a context for event activated
RunnableEntitys the PositionInTask parameter defines the order of evaluation
which actual RunnableEntity shall be executed. Thus providing means to define
a deterministic delay between the beginning of execution of the task and the actual
execution of the RunnableEntity’s code.

When an OsEvent is used to activate the OsTask the reference UsedOsEventRef
specifies which OsEvent is used.

266 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

RunnableEntityMapping

SWS Item
Container Name RunnableEntityMapping
Description Maps a RunnableEntity onto one OS Task based on the activating

RTEEvent.
Even if a RunnableEntity is executed in the caller’s context this
RunnableEntityMapping shall be specified, but no MappedToTask and
PositionInTask elements given.

Configuration Parameters

Name ActivationOffset
Description Activation offset in seconds.
Multiplicity 0..1
Type FloatParamDef
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name MappedToTaskRef
Description Reference to the OsTask the RunnableEntity is mapped to.

If no reference to the OsTask is specified the RunnableEntity is
executed in the context of the caller.

Multiplicity 0..1
Type Reference to OsTask
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name PositionInTask
Description Each RunnableEntities mapped to an OsTask has a specific position

within the task execution.
For periodic activation this is the order of execution.
For event driver activation this is the order of evaluation which actual
RunnableEntity has to be executed.

Multiplicity 0..1
Type IntegerParamDef
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

267 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Name RTEEventRef
Description Reference to the description of the RTEEvent which is pointing to the

RunnableEntity being mapped. This allows a fine grained mapping of
RunnableEntites based on the activating RTEEvent.

Multiplicity 1
Type Foreign reference to RTEEvent
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name UsedOsEventRef
Description If an OsEvent is used to activate the RunnableEntity it shall be

referenced here.
Multiplicity 0..1
Type Reference to OsEvent
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency
No Included Containers

There are some constraints which do apply when actually mapping the
RunnableEntity to an OsTask:

[rte sws 5082] The following restrictions apply to RTEEvents which are used to ac-
tivate RunnableEntity. OsEvents that are used to wakeUpFromWaitPoint shall
not be included in the mapping.

When a wakeUpFromWaitPoint is occurring the RunnableEntity resumes its ex-
ecution in the context of the originally activated OsTask.

[rte sws 5083] If the canBeInvokedConcurrently (rte sws in 0072) flag of the
RunnableEntity is false all mappings of that RunnableEntity have to point to
the same OsTask.

6.2.3 Exclusive Area implementation

The RTE Generator can be configured to implement a different data consistency mech-
anism for each ExclusiveArea defined for a SW-Component.

In figure 6.6 the configuration of the actually selected data consistency mechanism is
shown.

268 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Software Component template

SwComponentInstance :
ParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

(from RTE)

SoftwareComponentInstanceRef :
InstanceReferenceParamDef

lowerMultiplici ty = 0
upperMultiplicity = 1
destinationContext = ComponentPrototype*
destinationType = ComponentPrototype

(from RTE)

Identi fiable

«atpPrototype»
Composition::

ComponentPrototype

Exclusiv eAreaImplementation :
ParamConfContainerDef

lowerMultiplici ty = 0
upperMultiplicity = *

Identifiable

InternalBehav ior::Exclusiv eArea

ARElement

SwcInternalBehav ior::InternalBehav ior

+ supportsMultipleInstantiation: Boolean

Exclusiv eAreaImplMechanism :
EnumerationParamDef

INTERRUPT_BLOCKING :
EnumerationLiteralDef

OS_RESOURCE :EnumerationLiteralDef

NON_PREEMPTIVE_TASK :
EnumerationLiteralDef

COOPERATIVE_RUNNABLE_PLACEMENT :
EnumerationLiteralDef

Exclusiv eAreaRef :
ForeignReferenceParamDef

destinationType = ExclusiveArea

+reference

+literal

+literal

+literal

+literal

+parameter

+exclusiveArea *

+subContainer

+reference

Figure 6.6: Configuration of the ExclusiveArea implementation

ExclusiveAreaImplementation

SWS Item
Container Name ExclusiveAreaImplementation
Description Specifies the implementation to be used for the data consistency of this

ExclusiveArea.
Configuration Parameters

Name ExclusiveAreaImplMechanism
Description To be used implementation mechanism for the specified ExclusiveArea.
Multiplicity 1
Type EnumerationParamDef
Range COOPERATIVE RUNNAB

LE PLACEMENT
INTERRUPT BLOCKING
NON PREEMPTIVE TAS
K
OS RESOURCE

Configuration Class Pre-compile time X All Variants
Link time –
Post-build time –

Scope / Dependency

269 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Name ExclusiveAreaRef
Description Reference to the ExclusiveArea.
Multiplicity 1
Type Foreign reference to ExclusiveArea
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency
No Included Containers

6.2.4 NVRam Allocation

The configuration of the NVRam access does involve several templates, because it
closes the gap between the SW-Components, the Services and the BSW Modules.

In figure 6.7 the related information from the SW-Component template is shown.

Software Component template

ARElement

SwcInternalBehav ior::InternalBehav ior

+ supportsMultipleInstantiation: Boolean

Serv iceMapping::SwcNv BlockNeeds
DataPrototype

Characteristic::
CalprmElementPrototype

«atpPrototype»
Components::

RPortPrototype

Identifiable

PerInstanceMemory::
PerInstanceMemory

+ type: String
+ typeDefinition: String

«atpPrototyp...
Components::

PPortPrototype

Identifiable

«atpPrototype»
Components::PortPrototype

Identifiable

Serv iceNeeds::
Serv iceNeeds

Serv iceNeeds::Nv BlockNeeds

+ nDataSets: Int
+ readonly: Boolean
+ reliabili ty: NvBlockNeedsReliabili tyEnum
+ resistantToChangedSw: Boolean
+ restoreAtStart: Boolean
+ writeOnlyOnce: Boolean
+ writingFrequency: Int
+ writingPriori ty: NvBlockNeedsWritingPriorityEnum

+perInstanceMemory *

+sharedCalprm 0..* +perInstanceCalprm 0..*

+mirrorBlock 0..1

+defaultBlock

0..1

+serviceNeeds

0..*

Figure 6.7: SW-Component information of NVRam Service needs

In figure 6.8 the ECU Configuration part of the NVRam allocation is shown. It re-
lates the SW-Components NVRAMMapping information with the NVRam Managers
NvmBlockDescriptor and the linker symbols of the RAM and ROM sections to be
used.

NVRamAllocation

SWS Item
Container Name NVRamAllocation
Description Specifies the relationship between the SW-Components

NVRAMMapping / NVRAM needs and the NvM module configuration.
Configuration Parameters

270 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Software Component template

NVRamAllocation :
ParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

Nv mBlockDescriptor :
ParamConfContainerDef

lowerMultiplici ty = 1
upperMultiplicity = 65536

(from Nvm)

NvmBlockRef :
SymbolicNameReferenceParamDef

SwNv RamMappingReference :
InstanceReferenceParamDef

destinationContext = ComponentPrototype*
destinationType = NVRAMMapping

RamBlockLocationSymbol :
LinkerSymbolDef

lowerMultiplicity = 0
upperMultiplici ty = 1

RomBlockLocationSymbol :
LinkerSymbolDef

lowerMultiplicity = 0
upperMultiplici ty = 1

Nv mNv ramBlockIdentifier :
IntegerParamDef

min = 0
symbolicNameValue = true

(from Nvm)

Nv mRamBlockDataAddress :
StringParamDef

(from Nvm)

Nv mRomBlockDataAddress :
StringParamDef

(from Nvm)

NvBlockNeeds

Serv iceMapping::SwcNv BlockNeeds

Identifiable

PerInstanceMemory::
PerInstanceMemory

+ type: String
+ typeDefinition: String

+reference

+parameter

+parameter

+reference +destination

+parameter

+mirrorBlock 0..1

+parameter

+parameter

Figure 6.8: ECU Configuration of the NVRam Service

Name NvmBlockRef
Description Reference to the used NvM block for storage of the NVRAMMapping

information.
Multiplicity 1
Type Symbolic name reference to NvmBlockDescriptor
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RamBlockLocationSymbol
Description This is the name of the linker object name where the NVRam Block will

be mirrored by the Nvm.
This symbol will be resolved into the parameter
”NvmRamBlockDataAddress” from the ”NvmBlockDescriptor”.

Multiplicity 0..1
Type LinkerSymbolDef
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

271 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Name RomBlockLocationSymbol
Description This is the name of the linker object name where the NVRom Block will

be accessed by the Nvm.
This symbol will be resolved into the parameter
”NvmRomBlockDataAddress” from the ”NvmBlockDescriptor”.

Multiplicity 0..1
Type LinkerSymbolDef
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name SwNvRamMappingReference
Description Reference to the NVRAMMapping instance to be configured.
Multiplicity 1
Type Instance reference to NVRAMMapping context: ComponentPrototype*
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency
No Included Containers

6.3 Component Type Calibration

In the SW-Component template two places may provide calibration data: the
CalprmComponentType and the AtomicSoftwareComponentType (or more pre-
cisely the subclasses of AtomicSoftwareComponentType). Whether the calibration
is enabled for a specific ComponentType can be configured as shown in figure 6.9.

Software Component template

CalibrationSupportEnabled :
BooleanParamDef

ComponentTypeCalibration :
ParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

ComponentTypeRef :
ForeignReferenceParamDef

destinationType = ComponentType

«atpType»
CalprmComponentType

Rte :ModuleDef

lowerMultipl icity = 0
upperMultiplicity = 1

AtomicSoftwareComponentType

ARElement

«atpType»
ComponentType

+reference

+container

+parameter

Figure 6.9: Configuration of the calibration for the CalprmComponentType

The foreign reference ComponentTypeRef identifies the ComponentType (which is
limited to CalprmComponentType and AtomicSoftwareComponentType). The

272 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

boolean parameter CalibrationSupportEnabled specifies whether calibration
shall be enabled for the specified ComponentType.

ComponentTypeCalibration

SWS Item
Container Name ComponentTypeCalibration
Description Specifies for each CalprmComponentType or

AtomicSoftwareComponentType whether calibration is enabled.
Configuration Parameters

Name CalibrationSupportEnabled
Description Enables calibration support for the specified CalprmComponentType or

AtomicSoftwareComponentType.
Multiplicity 1
Type BooleanParamDef
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name ComponentTypeRef
Description Reference to the CalprmComponentType or

AtomicSoftwareComponentType.
Multiplicity 1
Type Foreign reference to ComponentType
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency
No Included Containers

6.4 Communication infrastructure

The configuration of the communication infrastructure (interaction of the RTE with the
Com-Stack) is entirely predetermined by the ECU Extract provided as an input. The
required input can be found in the AUTOSAR System Template [14] sections ”Data
Mapping” and ”Communication”.

In case the RTE does utilize the Com module for intra-ECU communication it is up to
the vendor-specific configuration of the RTE to ensure configuration consistency.

273 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

A Metamodel Restrictions

This chapter lists all the restrictions to the AUTOSAR meta-model this version of the
AUTOSAR RTE specification document relies on. The RTE generator shall reject con-
figuration where any of the specified restrictions are violated.

A.1 Restriction concerning WaitPoint

1. [rte sws 1358] An error shall be raised if runnable entity has WaitPoint con-
nected to any of the following RTEEvents:

• OperationInvokedEvent

• ModeSwitchEvent

• TimingEvent

• ExternalEvent

• DataReceiveErrorEvent

The runnable can only be started with these events.

Rational: For OperationInvokedEvents, ModeSwitchEvents and TimingEvents
it suffices to allow the activation of a runnable entity. ExternalEvents are not
supported by the RTE SWS of AUTOSAR Release 2.1.

A.2 Restriction concerning RTEEvent

1. [rte sws 3526] The RTE generator shall reject configurations in which a runn-
able entity which is triggered by the RTEEvent OperationInvokedEvent shall be
triggered by another RTEEvent too, except if this other RTEEvent is an Opera-
tionInvokedEvent with compatible operations.

Rationale: The signature of the runnable entity is dependent on its connected
RTEEvent.

2. [rte sws 3010] One runnable entity shall only be resumed by one single RTE-
Event on its WaitPoint. The RTE doesn’t support the WaitPoint of one runnable
entity connected to several RTEEvents.

Rationale: The WaitPoint of the runnable entity is caused by calling of the RTE
API. One runnable entity can only call one RTE API at a time, and so it can only
wait for one RTEEvent.

3. [rte sws 7007] The RTE generator shall reject configurations where RTEEvent
instances starting the same runnable entity using implicit data access that are
mapped to different OS tasks where one of them might preempt the other.

274 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Rationale: Buffers used for implicit communication shall be consistent during the
whole task execution. If it is guaranteed that one task does not preeempt the
other, direct acesses to the same copy buffer from different tasks are possible.

A.3 Restriction concerning isQueued attribute of DataElement-
Prototype

1. [rte sws 3012] Access with DataReadAccess is only allowed for DataElement-
Prototypes with their isQueued attribute set to false.

Rationale: By access with DataReadAccess always the last value of the DataEle-
mentPrototype will be read in the runnable. There is no meaning to provide a
queue of values by DataReadAccess.

2. [rte sws 3018] RTE does not support receiving with WaitPoint for DataElement-
Prototypes with their isQueued attribute set to false.

Rationale: ”isQueued=false” indicates that the receiver shall not wait for the
DataElementPrototype.

3. All the DataSendPoints refering to one DataElementPrototype through one PPort-
Prototype are considered to have the same behavior by sending and acknowledg-
ment reception. A DataSendCompletedEvent that references a single DataSend-
Point is considered equivalent for all DataSendPoints for the same DataElement-
Prototype instance.

Rationale: The API RTESend/RTEWrite is dependent on the port name and the
DataElementPrototype name, not on the DataSendPoints. For each combination
of one DataElementPrototype and one port only one API will be generated and
implemented for sending or acknowledgement reception.

A.4 Restriction concerning ServerCallPoint

1. [rte sws 3014] All the ServerCallPoints referring to one OperationPrototype
through one RPortPrototype are considered to have the same behavior by calling
service. The RTE generator shall reject configuration where this is violated.

Rationale: The API RTECall is dependent on the port name and the operation
name, not on the ServerCallPoints. For each combination of one operation and
one port only one API will be generated and implemented for calling a service. It
is e.g. not possible to have different timeout values specified for different Server-
CallPoints of the same OperationPrototype. It is also not allowed to specify both,
a synchronous and an asynchronous server call point for the same OperationPro-
totype instance.

275 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

2. [rte sws 3605] If usage of the indirect API is specified for port prototypes of a
software component that all require the same client/server interface, each op-
eration of the client/server interface has to be invoked either by all clients syn-
chronously or by all clients asynchronously.

Rationale: The signature of Rte Call and the existence of Rte Result depend on
the kind of invocation.

A.5 Restriction concerning multiple instantiation of software
components

1. [rte sws 3015] The RTE only supports multiple objects instantiated from a single
AUTOSAR software component by code sharing, the RTE doesn’t support code
duplication.

Rationale: For AUTOSAR release 2 it was decided to solely concentrate on code
sharing and not to support code duplication.

2. [rte sws 7101] The RTE does not support configurations in which a PortAPI-
Option with enableTakeAddress = TRUE is defined by a software-component
supporting multiple instantiation.

Rationale: The main focus of the feature for AUTOSAR release 3 was support
for configuration of AUTOSAR Services which are limited to single instances.

A.6 Restriction concerning runnable entity

1. [rte sws 3016] The RTE only supports runnable entity of category 1 and 2, the
RTE doesn’t support runnable entity of category 3.

Rationale: For AUTOSAR release 2 it was decided only to support runnable
entity of category 1 and 2, not to support runnable entity of category 3.

2. [rte sws 3527] The RTE does NOT support multiple Runnable Entities sharing
the same entry point (symbol attribute of RunnableEntity).

Rationale: The handle to data shared by DataReadAccess and DataWriteAc-
cess has to be coded in the runnable code. An alternative would be an additional
parameter to the runnable (a runnable handle) to provide this indirection informa-
tion.

A.7 Restrictions concerning runnables with dependencies on
modes

1. Operations may not be disabled by a ModeDisablingDependency.

276 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

[rte sws 2706] RTE shall reject configurations that contain OperationInvokedE-
vents with a ModeDisablingDependency.

Rationale: It is a preferable implementation, if the server responds with an ex-
plicit application error, when the server operation is not supported in a mode.
To implement the disabling of operations would require a high amount of book
keeping even for internal client server communication to prevent that the unique
request response mapping gets lost.

2. [rte sws 2500] Only a category 1 runnable may be triggered by

• a ModeSwitchEvent

• an RteEvent with a mode disabling dependency

The RTE generator shall reject configurations with category 2 or 3 runnables con-
nected to ModeSwitchEvents and RteEvents with mode disabling dependencies.

Rationale: The above runnables are executed or terminated on the transitions
between different modes. To execute the mode switch withing finite time, also
these runnables have to be executed within finite execution time.

3. All OnEntry runnables and OnExit runnables of the same mode
machine instance should be mapped to the same task.

[rte sws 2662] The RTE generator shall reject configurations with OnEntry or
OnExit runnables of the same mode machine instance that are mapped to
different tasks.

Rationale: This restriction simplifies the implementation of the semantics of a
mode switch.

4. To guarantee that all mode disabling dependent runnables of a mode
machine instance have terminated before before the start of the OnExit
runnables of the transition, the mode disabling dependent runnables
should run with higher or equal priority.

[rte sws 2663] The RTE generator shall reject configurations with mode
disabling dependent runnables that are mapped to a task with lower
priority than the task that contains the OnEntry runnables and OnExit
runnables of that mode machine instance.

5. [rte sws 2664] The RTE generator shall reject configurations of a task with
OnExit runnables mapped behind OnEntry runnables of the same mode
machine instance.

Rationale: This restriction simplifies the implementation of the semantics of a
mode switch.

6. If a mode is used to trigger a runnable for entering or leaving the mode, but
this runnable has a mode disabling dependency on the same mode, the mode

277 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

disabling dependency inhibits the activation of the runnable on the transition (see
section 4.4.4.

To prevent such a misleading configuration, it is strongly recommended not to
configure a mode disabling dependency for an OnEntry runnable or OnExit
runnable, using the same mode.

A.8 Restriction concerning InterRunnableVariables

1. [rte sws 3518] The usage of InterRunnableVariables with implicit behavior shall
be valid for category 1a and 1b Runnable entities only.

Rationale: The update of InterRunnableVariables with implicit behavior done
during a Runnable execution shall be made available to other Runnables after
the Runnable execution has terminated (see rte sws 3584). This limitation is not
valid for InterRunnableVariables with explicit behavior.

Runnable termination is not guaranteed for Runnables of category 2 or 3.

2. [rte sws 3588] InterRunnableVariables don’t support complex data types.

Rationale: If InterRunnableVariables would support complex data types, a refer-
ence would have to be passed for read access. Afterwards Runnable code will
access the complex data type via the reference. But RTE is only able to protect
(for data consistency purposes) the delivery of the reference, not the access to
the referenced data later on. In those cases, when complex data has to be used
for Intra AUTOSAR SW-C communication it must be sufficient to apply Exclu-
siveAreas (see section 4.2.4.5 and API in section 5.6.24 and 5.6.25) to force the
RTE guaranteeing data consistency.

3. [rte sws 3591] InterRunnableVariables don’t support the AUTOSAR primitive
type string

Rationale: In those cases when a string is used for Intra AUTOSAR SW-C com-
munication it should be sufficient to apply ExclusiveAreas (see section 4.2.4.5
and API in section 5.6.24 and 5.6.25) to force the RTE guaranteeing data consis-
tency.

The mass of InterRunnableVariables is expected to be of other primitive types
than stings. Support for strings might be added in a later release together with
support of complex data. Both require reference passing. Also see rte sws 3588.

A.9 Restriction concerning InternalBehavior

1. [rte sws 5034] There shall only be one InternalBehavior provided for each Atom-
icSoftwareComponentType.

278 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Rationale: For the generation of the application header file not only the Atomic-
SoftwareComponentType but also the InternalBehavior is relevant. In case two
implementation for the same AtomicSoftwareComponentType – but different In-
ternalBehavior – are mapped to the same ECU two application header files for
the same AtomicSoftwareComponentType would be required. In this document
release the application header file is defined based on the AtomicSoftwareCom-
ponentType, therefore it is not allowed to specify different InternalBehavior addi-
tionally.

In a future release the application header file shall be based on the InternalBe-
havior, then this restriction is not valid anymore.

A.10 Restriction concerning Initial Value

1. [rte sws 4525] Each instance within one ECU of a data element that is con-
nected to the same sender is imposed to use identical init values.

Rationale: In the meta model init values are specified in the data receiver com
spec. Since a separate data receiver com spec exists for each port that catego-
rizes a specific interface, it would be (theoretically) possible to define a different
init value for a certain data element in each port. But COM allows only one init
value per signal.

A.11 Restriction concerning PerInstanceMemory

1. [rte sws 3790] The <typeDefinition> attribute of a PerInstanceMemory is
not allowed to contain a function pointer.

Rationale: Using the typedefinition typedef <typedefinition> <typename>
does not work for function pointers.

A.12 Restriction concerning unconnected r-port

1. [rte sws 3019] If strict checking has been enabled (see rte sws 5099) there shall
not be unconnected r-port. The RTE generator shall in this case reject the con-
figuration with unconnected r-port.

Rationale: Unconnected r-port is considered as wrong configuration of the sys-
tem.

1. [rte sws 2750] The RTE Generator shall reject configurations where
an r-port typed with a CalprmInterface is not connected and an
initValue of a ParameterRequireComSpec is not provided for each
CalprmElementPrototype of this CalprmInterface.

279 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

A.13 Restrictions regarding n:1 sender-receiver communication

1. [rte sws 2670] RTE shall not support connections with multiple senders (n:1
communication) of mode switch notifications connected to the same re-
ceiver. The RTE generator shall reject configurations with multiple senders of
mode switch notifications connected to the same receiver.

Rationale: No use case is known to justify the required complexity.

A.14 Restrictions regarding Measurement and Calibration

1. [rte sws 3951] RTE does not support measurement of queued communication.

Rationale: Measurement of queued communication is not supported yet. Rea-
sons are:

• A queue can be empty. What’s to measure then? Data interpretation is
ambiguous.

• Which of the queue entries the measurement data has to be taken from
(first pending entry, last entry, an intermediate one, mean value, min. or
max. value)? Needs might differ out of user view? Data interpretation is
ambiguous.

• Compared e.g. to sender-receiver last-is-best approach only inefficient so-
lutions are possible because implementation of queues entails storage of
information dynamically at different memory locations. So always additional
copies are required.

2. [rte sws 3970] The RTE generator shall reject configurations containing require
ports attached to CalprmComponentTypes.

Rationale: Require ports on CalprmComponentTypes don’t make sense. Cal-
prmComponentTypes only have to provide calibration parameters to other Com-
ponent types.

A.15 Restriction concerning ExclusiveAreaImplMechanism

1. [rte sws 3811] If an exclusive area’s configuration value for ExclusiveAreaIm-
plMechanism is InterruptBlocking, OsResource, or NonPreemptiveTasks, no
runnable entity shall contain any waitpoint inside this exclusive area.

Please note that a waitpoint can either be a modelling waitpoint e. g. a waitpoint in
the SW-C description caused by the usage of a blocking API (e. g. Rte Receive)
or an implementation waitpoint caused by a special implementation to fullfill the
requirements of the ECU configuration, e. g. the runnable-to-task mapping.

280 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Rationale: The operating system has the limitation that a WaitEvent call is not
allowed with disabled interrupts. Therefore the implementation mechanism Inter-
ruptBlocking cannot be used if the exclusive area contains a waitpoint.

Further the operating system has the limitation that an OS waitpoint cannot be en-
tered with occupied OS Resources. This implies that the implementation mecha-
nism OsResource cannot be used if the exclusive area contains a waitpoint.

A runnable entity containg a waitpoint cannot be mapped to a non-preemptive
task, because the waitpoint is a rescheduling point. Therefore the implementation
mechanism NonPreemptiveTasks cannot be used if the runnable entity using the
exclusive area contains a waitpoint.

281 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

B Required Input Information

This chapter lists all the input information necessary for the RTE generator in a tabular
form. The meanings of the individual field entries are described in the following table:

Requirement ID Unique ID of the RTE SWS input requirement.

Object identifier
Unique identifier in the RTE SWS representing the metamodel object.
It is used like a variable in the RTE SWS standing for the content of an
instance of the described metamodel object.

Object informa-
tion

Necessary object information required for RTE generation in terms of a
short description.

Description
Description of the required object information in more detail. It may
contain a listing of the possible values of the required input information
and constraints.

Rationale
Reason why the described metamodel object is needed as an input to
the RTE generation.

Template meta-
model path

Metamodel path of the object in an AUTOSAR template, e. g. ”AU-
TOSAR Software Component Template”[17] or ”System Template” [14].

Required by
Lists all RTE SWS requirements that depend on the existence of the
described metamodel object.

Contract phase
Specifies whether the input information is already required for the con-
tract phase.

”M2” in the template metamodel path means ”metamodel” level (see ”AUTOSAR Tem-
plate Modeling Guide” [16]). This document is especially important to understand
the specific semantics of the AUTOSAR metamodel (like the semantics of the ”in-
stanceRef” and ”isOfType” associations).

In certain cases, some attributes of a class are not given directly in the class-table,
if they are inherited from the base classes. For example, attribute ”Identifier” of class
”ComponentType” is not included in the class-table, because it is inherited from the
base class ”ARElement”, which again inherits the attribute from its base class ”Identifi-
able”.

B.1 SWC and instance

Requirement ID [rte sws in 0001]
Object identifier SwcTypeName
Object informa-
tion

Name of each SWC type

Description
Defines the name of the software component type. Shall be unique
within the ECU.

Rationale
To define the API mapping in the Application Header File. Define the
Component Data Structure in the generated RTE.

282 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::Components
::ComponentType::Identifier

Required by
rte sws 1003 rte sws 1143 rte sws 1155 rte sws 1348 rte sws 3714
rte sws 3731

Contract phase Yes

Requirement ID [rte sws in 0002]
Object identifier SwcImplementationLanguage
Object informa-
tion

Implementation language of each SWC

Description
For the implementation language of software components currently only
C/C++ are supported.

Rationale To define the using of C linkage in the Application Header File
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::Implementation
::programmingLanguage

Required by rte sws 1011
Contract phase No

Requirement ID [rte sws in 0003]
Object identifier SwcSourceCodeDelivery
Object informa-
tion

Source Code availability of the SWC

Description Whether or not the source code is available for a SWC

Rationale
To decide if the Application Header File can be optimized again by RTE-
Gen phase.

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::Implementation
::Code::type

Required by rte sws 1216
Contract phase No

Requirement ID [rte sws in 0004]
Object identifier supportsMultipleInstantiation
Object informa-
tion

Multi-Instantiation of the SWC

Description Whether the SWC can be multiply instantiated
Rationale To define the API mapping in the Application Header File.
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::InternalBehavior
::supportsMultipleInstantiation

Required by rte sws 2008 rte sws 2009 rte sws 3706 rte sws 3707
Contract phase Yes

Requirement ID [rte sws in 0009]

283 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Object identifier PerInstanceMemoryName
Object informa-
tion

Name of each PerInstanceMemory when attribute supportsMultipleIn-
stantiation==TRUE

Description The name of a PerInstanceMemory shall be unique within the SWC.

Rationale
To define the name of the PerInstanceMemory handle and the API map-
ping in the Application Header File and allocate the PerInstanceMemory
in the generated rte.c.

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::InternalBehavior
::PerInstanceMemory::Identifier

Required by rte sws 1118 rte sws 2305 rte sws 2301
Contract phase Yes

Requirement ID [rte sws in 0071]
Object identifier PerInstanceMemoryType
Object informa-
tion

Name of the type of each PerInstanceMemory when attribute support-
sMultipleInstantiation==TRUE

Description The type name of a PerInstanceMemory.

Rationale
To define the type of the PerInstanceMemory handle in the Application
Header File and allocate the PerInstanceMemory in the generated rte.c.

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::InternalBehavior
::PerInstanceMemory::type

Required by rte sws 1118 rte sws 2303 rte sws 2302
Contract phase Yes

Requirement ID [rte sws in 0068]
Object identifier PerInstanceMemoryTypeDef
Object informa-
tion

Type definition of each PerInstanceMemory when attribute supports-
MultipleInstantiation==TRUE

Description The type definition of a PerInstanceMemory shall be in valid c-syntax.

Rationale
To define the type of the PerInstanceMemory in the Application Header
File.

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::InternalBehavior
::PerInstanceMemory::typeDefinition

Required by rte sws 1118 rte sws 2304
Contract phase Yes

Requirement ID [rte sws in 5061]
Object identifier RamBlockLocationSymbol
Object informa-
tion

Name of the PerInstanceMemory symbol name to be generated

Description
When instantiating the PerInstanceMemory for the usage as a Ram-
Block for the NvRam Manager the RTE generator shall use this speci-
fied name. The name has to be unique for the whole ECU.

284 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Rationale
The name of the PerInstanceMemory instance has to be available for
the configuration of the NvRam Manager.

Template meta-
model path

M1::AUTOSAR Descriptions::ECUCParameterDefinition::RTE::NVRa-
mAllocation::RamBlockLocationSymbol

Required by rte sws 5062
Contract phase No

Requirement ID [rte sws in 3750]
Object identifier RequiredRteOperatingMode
Object informa-
tion

Required RTE Operating Mode

Description
An AUTOSAR software component shall indicate its required operating
mode.

Rationale Based on this attribute the RTE Generator can perform optimizations.
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::InternalBehavior
::Implementation::RTEVendor

Required by rte sws 1234
Contract phase No

Requirement ID [rte sws in 5013]
Object identifier Constants
Object informa-
tion

Published Constants

Description
Each constant defined in the SW-Component description will be ac-
cessed and published.

Rationale
The Application Header File shall make visible the constants encoun-
tered in the input using the appropriate AUTOSAR data-types.

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::Datatype::Con-
stants::Constant

Required by
Contract phase Yes

Requirement ID [rte sws in 5046]
Object identifier EcuAbstractionSWComponent
Object informa-
tion

Reference to the SW-Component which represents the EcuAbstraction

Description
With this reference to the local EcuAbstraction it is possible to distin-
guish between the EcuAbstraction and other kinds of SW-Components.

Rationale
The RTE needs to make sure that no communication to an remote
EcuAbstraction is configured. Therefore a reference to the local EcuAb-
straction needs to be provided.

Template meta-
model path

285 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Required by rte sws 2051
Contract phase No

B.2 Runnable entity and task

Requirement ID [rte sws in 0012]
Object identifier RunnableEntityName
Object informa-
tion

Name of each runnable entity

Description Shall be unique within the SWC
Rationale To define the API in the Application Header File.
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::InternalBehavior
::RunnableEntity::Identifier

Required by rte sws 3733 rte sws 3741 rte sws 3744
Contract phase Yes

Requirement ID [rte sws in 0013]
Object identifier RunnableEntityToTaskMapping
Object informa-
tion

Mapping of runnables to OS tasks

Description Defines the mapping of the Runnbale Entity instances to OS Tasks.
Rationale Generate the task body content.
Template meta-
model path

M1::AUTOSAR Descriptions::ECUCParameterDefinition::RTE::Tasks
::RunnableEntityMapping

Required by rte sws 2204 rte sws 2251
Contract phase No

Requirement ID [rte sws in 5012]
Object identifier TaskBodyName
Object informa-
tion

Name of the generated task body

Description
The names of the generated task bodies have to be unique on one
ECU. The name is the shortName of the corresponding OsTask.

Rationale Generate the C module containing the task body.
Template meta-
model path

M1::AUTOSAR Descriptions::ECUCParameterDefinition::Services::OS
::OsTask::shortName

Required by rte sws 1257 rte sws 2251 rte sws 4014
Contract phase No

Requirement ID [rte sws in 0040]
Object identifier OSObjects

286 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Object informa-
tion

ECU configuration parameters of the AUTOSAR OS

Description
The RTE generator needs access to the ECU-Configuration parameters
of the AUTOSAR OS.

Rationale Determine the type of a task
Template meta-
model path

M1::AUTOSAR Descriptions::ECUCParameterDefinition::Services::OS
::OsTask

Required by rte sws 2251 rte sws 4014
Contract phase No

Requirement ID [rte sws in 0014]
Object identifier RunnableEntitySequence
Object informa-
tion

Sequences of Runnable Entities in each OS task

Description
Defines the sequence the Runnable Entites are called within one task
body.

Rationale Generate the task body content.
Template meta-
model path

M1::AUTOSAR Descriptions::ECUCParameterDefinition::RTE::Tasks
::PositionInTask

Required by rte sws 2207
Contract phase No

Requirement ID [rte sws in 0053]
Object identifier EntryPointSymbol
Object informa-
tion

Symbol describing a runnable’s entry point

Description
A runnable is represented as a function in C/C++ code. This symbol
represents the entry point of the function.

Rationale
The entry point symbol is considered to be the API name of the runn-
able.

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::InternalBehavior
::RunnableEntity::symbol

Required by
rte sws 1126 rte sws 1131 rte sws 1133 rte sws 1135 rte sws 1137
rte sws 1166 rte sws 2512

Contract phase Yes

Requirement ID [rte sws in 0015]
Object identifier OsTaskPriority
Object informa-
tion

Priority of each OS task

Description Provide the priority of each OS Task.

287 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Rationale
The ECU Configuration has to ensure that a server runnable of a syn-
chronous C/S call that cannot be invoked as a direct function call is
mapped to a task with a higher priority than the calling client runnable

Template meta-
model path

M1::AUTOSAR Descriptions::ECUCParameterDefinition::Services::OS
::OsTask::OsTaskPriority

Required by rte sws 2251 rte sws 4014
Contract phase No

Requirement ID [rte sws in 5070]
Object identifier ActivationOffset
Object informa-
tion

Activation Offset in seconds

Description
Provides the input which activation offset shall be configured for this
runnable entity mapping.

Rationale
The RTE shall respect the configured activation offset of runnable enti-
ties mapped within one OS task.

Template meta-
model path

M1::AUTOSAR Descriptions::ECUCParameterDefinition::RTE
::RunnableTaskMapping::ActivationOffset

Required by rte sws 7000
Contract phase No

Requirement ID [rte sws in 0039]
Object identifier OsEvent
Object informa-
tion

Name of the OSEvent

Description The OSEvent to which the RTEEvent is assigned

Rationale
For the RTEEvents which are implemented with OSEvents the name of
the OSEvents shall be defined.

Template meta-
model path

M1::AUTOSAR Descriptions::ECUCParameterDefinition::RTE::Tasks
::RunnableEntityMapping::UsedOsEventRef

Required by rte sws 2251 rte sws 4014
Contract phase No

Requirement ID [rte sws in 5016]
Object identifier ExclusiveAreaName
Object informa-
tion

Name of the exclusive area

Description The Internal Behavior does provide the list of defined exclusive areas.
Rationale Define the name of the handle for the exclusive area.
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::InternalBehavior
::ExclusiveArea::ExclusiveArea::Identifier

Required by rte sws 3739
Contract phase No

288 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Requirement ID [rte sws in 5017]
Object identifier InterRunnableVariableName
Object informa-
tion

Name of the Interrunnable Variable

Description
The Internal Behavior does provide this list of defined inter runnable
variables.

Rationale Generate the Application Header File for exclusive are access.
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::InternalBehavior
::InterRunnableVariable::Identifier

Required by
rte sws 1120 rte sws 1123 rte sws 3550 rte sws 3553 rte sws 3560
rte sws 3565

Contract phase Yes

Requirement ID [rte sws in 0070]
Object identifier RTEEvent
Object informa-
tion

RTE Event

Description The RTE Event which triggers the runnable entity
Rationale Define the trigger conditions of the runnable entities
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::InternalBehavior
::RTEEvents

Required by rte sws 2203
Contract phase Yes

Requirement ID [rte sws in 0072]
Object identifier RunnableEntityInvokedConcurrently
Object informa-
tion

the attribute canBeInvokedConcurrently of Runnable Entity

Description whether the runnable entity can be invoked concurrently
Rationale for task mapping
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::InternalBehavior
::RunnableEntity::canBeInvokedConcurrently

Required by rte sws 3523
Contract phase Yes

Requirement ID [rte sws in 0073]
Object identifier DataReadAccess
Object informa-
tion

the attribute dataReadAccess of Runnable Entity

Description the implicit read access of a RunnableEntity to a DataElement

Rationale
Defines the data read access behavior of a RunnableEntity. It is neces-
sary for API definition.

289 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::InternalBehavior
::RunnableEntity::dataReadAccess

Required by rte sws 6000 rte sws 6001 rte sws 6004 rte sws 6011
Contract phase Yes

Requirement ID [rte sws in 0074]
Object identifier DataReceivePoint
Object informa-
tion

the attribute dataReceivePoint of Runnable Entity

Description the explicit read access of a RunnableEntity to a DataElement

Rationale
Defines the data read access behavior of a RunnableEntity. It is neces-
sary for API definition.

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::InternalBehavior
::RunnableEntity::dataReceivePoint

Required by rte sws 6011
Contract phase Yes

Requirement ID [rte sws in 0075]
Object identifier DataSendPoint
Object informa-
tion

the attribute dataSendPoint of Runnable Entity

Description the explicit write access of a RunnableEntity to a DataElement

Rationale
Defines the data write access behavior of a RunnableEntity. It is nec-
essary for API definition.

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::InternalBehavior
::RunnableEntity::dataSendPoint

Required by rte sws 6011 rte sws 6016
Contract phase Yes

Requirement ID [rte sws in 0076]
Object identifier DataWriteAcess
Object informa-
tion

the attribute dataWriteAcess of Runnable Entity

Description the implicit write access of a RunnableEntity to a DataElement

Rationale
Defines the data write access behavior of a RunnableEntity. It is nec-
essary for API definition.

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::InternalBehavior
::RunnableEntity::dataWriteAcess

Required by rte sws 6011 rte sws 3570 rte sws 3571
Contract phase Yes

Requirement ID [rte sws in 0079]

290 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Object identifier ServerCallPoint
Object informa-
tion

the attribute serverCallPoint of Runnable Entity

Description The RunnableEntity has a serverCallPoint to the referenced operation
Rationale References the operation that the RunnableEntity can call.
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::InternalBehavior
::RunnableEntity::serverCallPoint

Required by rte sws 1293 rte sws 1294
Contract phase No

Requirement ID [rte sws in 0081]
Object identifier WaitPoint
Object informa-
tion

the attribute waitPoint of Runnable Entity

Description The RunnableEntity has a waitPoint to the referenced RTEEvent
Rationale References the RTEEvent that the RunnableEntity can wait for.
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::InternalBehavior
::RunnableEntity::waitPoint

Required by rte sws 1290
Contract phase No

Requirement ID [rte sws in 2700]
Object identifier minimum start interval
Object informa-
tion

minimum start interval of a runnable

Description
the minimum start interval of a runnable gives the minimum interval
between two starts of a runnable. minimum start interval 0: no start
interval monitoring

Rationale Required to prevent a high activation frequency
Template meta-
model path

tbd

Required by rte sws 2697
Contract phase No

B.3 Port and interface

Requirement ID [rte sws in 0018]
Object identifier PortName
Object informa-
tion

Name of the port

Description Shall be unique within the SWC
Rationale To identify different port prototype for API generation

291 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::Components
::PortPrototype::Identifier

Required by
rte sws 1071 rte sws 1072 rte sws 1206 rte sws 1083 rte sws 1091
rte sws 1092 rte sws 1102 rte sws 1111 rte sws 3741 rte sws 3744

Contract phase Yes

Requirement ID [rte sws in 0019]
Object identifier RPort/PPort
Object informa-
tion

Type of the port

Description r- or p- port

Rationale
To indicate whether the port is provided or required port for configura-
tion checking

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::Components
::PortPrototype

Required by rte sws 5508
Contract phase Yes

Requirement ID [rte sws in 1352]
Object identifier InterfaceName
Object informa-
tion

Name of the interface

Description Shall be unique within the system

Rationale
To ensure unique names for those things that are related to a particular
interface rather than the ports that are characterized by the interface

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::PortInterface
::Identifier

Required by rte sws 2576
Contract phase Yes

Requirement ID [rte sws in 0069]
Object identifier InterfaceIsService
Object informa-
tion

isService attribute of the PortInterface

Description Whether port provides or requires the interface is a service port

Rationale
To distinguish the communication with normal SWC and the communi-
cation with Basic-SW services.

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::PortInterface::is-
Service

Required by rte sws 2100
Contract phase Yes

292 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Requirement ID [rte sws in 0020]
Object identifier DataElementName
Object informa-
tion

Name of the data element

Description Shall be unique within the SWC
Rationale To identify different data element prototype for API generation
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::PortInterface
::DataElementPrototype::Identifier

Required by
rte sws 1071 rte sws 1072 rte sws 1206 rte sws 1083 rte sws 1091
rte sws 1092 rte sws 3741 rte sws 3744

Contract phase Yes

Requirement ID [rte sws in 0060]
Object identifier DataElementDatatype
Object informa-
tion

Data type of the data element

Description Contains the information like upper/lower-limit for integer and real type
Rationale For API generation
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::Datatype
::Datatypes

Required by
rte sws 1071 rte sws 1072 rte sws 1206 rte sws 1083 rte sws 1091
rte sws 1092 rte sws 3741 rte sws 3744

Contract phase Yes

Requirement ID [rte sws in 0045]
Object identifier DataElementIsQueued
Object informa-
tion

Specifies whether the data element is queued or not. VFB attribute:
INFORMATION TYPE

Description

Qualifies whether the content of the data element is queued. If it is
queued then the data element has event semantics - i.e. data elements
are stored in a queue and all data elements are processed in first in first
out order. If it is not queued then the last is best semantics applies.

Rationale For configuration checking and API generation
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::PortInterface
::DataElementPrototype::isQueued

Required by rte sws 1071 rte sws 1072 rte sws 5033
Contract phase Yes

Requirement ID [rte sws in 0058]
Object identifier OperationName
Object informa-
tion

Name of the operation

Description Shall be unique within the SWC

293 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Rationale To identify different operation prototype for API generation
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::PortInterface
::OperationPrototype::Identifier

Required by rte sws 1102 rte sws 1111
Contract phase Yes

Requirement ID [rte sws in 0059]
Object identifier ArgumentName
Object informa-
tion

Name of the argument of the operation

Description Shall be unique within the operation
Rationale For API generation
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::PortInterface
::OperationPrototype::ArgumentPrototype::Identifier

Required by rte sws 1102 rte sws 1111
Contract phase Yes

Requirement ID [rte sws in 0061]
Object identifier ArgumentDirection
Object informa-
tion

Direction of the argument of the operation

Description In/Out/Inout
Rationale For API generation
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::PortInterface
::OperationPrototype::ArgumentPrototype::Direction

Required by rte sws 1102 rte sws 1111
Contract phase Yes

Requirement ID [rte sws in 0021]
Object identifier AssemblyConnectorPrototype
Object informa-
tion

Connection of communication partners (ports)

Description Refers to one p-port and one r-port
Rationale For API implementation
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::Composition::As-
semblyConnectorPrototype

Required by rte sws 2200
Contract phase No

Requirement ID [rte sws in 0055]
Object identifier SInitValue

294 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Object informa-
tion

Initial value of a data element prototype (isQueued = false) on the
sender side. VFB attribute on sender side: INIT VALUE.

Description
Refers to a constant value. Only the ComSpec of an AtomicSoftware-
ComponentType PortPrototype shall be considered.

Rationale To prevent calculation based on invalid values
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::Communication
::DataSenderComSpec::InitValue

Required by rte sws 6009 rte sws 6010
Contract phase No

Requirement ID [rte sws in 0062]
Object identifier RInitValue
Object informa-
tion

Initial value of a data element prototype (isQueued = false) on the
sender side. VFB attribute on receiver side: INIT VALUE

Description
Refers to a constant value. Only the ComSpec of an AtomicSoftware-
ComponentType PortPrototype shall be considered.

Rationale To prevent calculation based on invalid values
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::Communication
::DataReceiverComSpec::InitValue

Required by rte sws 6010
Contract phase No

Requirement ID [rte sws in 0023]
Object identifier ServerRunnable
Object informa-
tion

for each operation the connected runnable entity

Description
Refers to the runnable entity which shall be activated when the Opera-
tionInvokedEvent is triggered

Rationale For invocation of the server runnable
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::InternalBehavior
::RTEEvents::OperationInvokedEvent::RunnableEntityRef

Required by rte sws 1166
Contract phase No

Requirement ID [rte sws in 2574]
Object identifier ApplicationErrorValues
Object informa-
tion

Application Error Value definition for each operation

Description
The definition of the Application Error Values used in exchange be-
tween SW-Components (with symbolic name and value)

Rationale
Application Errors shall be defined in the Application Header File. For
definition of Rte StatusType.

295 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::VFBErrors::Appli-
cationError

Required by rte sws 2573 rte sws 2575 rte sws 2576
Contract phase Yes

Requirement ID [rte sws in 5023]
Object identifier CanInvalidate
Object informa-
tion

Can the sender invalidate the data element

Description
When specified the sender of a data element can set the value to the
invalid value defined in the data semantics. Only the ComSpec of an
AtomicSoftwareComponentType PortPrototype shall be considered.

Rationale For API generation of data element invalidation
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::Communication
::DataSenderComSpec::canInvalidate

Required by rte sws 5024
Contract phase Yes

Requirement ID [rte sws in 5031]
Object identifier InvalidValue
Object informa-
tion

Invalid value

Description The value to be used when invalidating a data element.

Rationale
The value to be used for the invalid data indication must be the same
for all partners in the communication.

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::Datatype
::Datatypes::PrimitiveType::SwDataDefProps::invalidValue

Required by rte sws 3802 rte sws 5025
Contract phase Yes

Requirement ID [rte sws in 5050]
Object identifier handleInvalid
Object informa-
tion

handleInvalid [keep ; replace]

Description
Specifies at the UnqueuedReceiverComSpec whether an received in-
valid value shall be kept or replaced. Only the ComSpec of an Atomic-
SoftwareComponentType PortPrototype shall be considered.

Rationale
The receiver RTE / COM needs to be configures what to do when an
invalid value is received.

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::Communication
::UnqueuedReceiverComSpec::handleInvalid

Required by rte sws 5032 rte sws 5026 rte sws 5048 rte sws 5030 rte sws 5049
Contract phase No

296 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Requirement ID [rte sws in 3777]
Object identifier TransmissionAcknowledgementRequest
Object informa-
tion

Request a transmission acknowledgment

Description Requests acknowledgments that data has been sent successfully.

Rationale
The sender of a data element can request an acknowledgment for suc-
cessful or erroneous transmission using this attribute

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::Communication
::TransmissionAcknowledgementRequest

Required by rte sws 5504 rte sws 5506 rte sws 3754 rte sws 3755
Contract phase Yes

Requirement ID [rte sws in 1361]
Object identifier PortDefinedArgumentType
Object informa-
tion

Data type of port-defined argument

Description The data type that the server runnable entity requires to be passed.
Rationale To enable correct function prototypes to be emitted
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::InternalBehavior
::PortAPIOptions::type

Required by rte sws 1166
Contract phase Yes

Requirement ID [rte sws in 1362]
Object identifier PortDefinedArgumentValue
Object informa-
tion

Value of port-defined argument

Description
Value to pass for a specific port-defined argument for a specific server
SWC (instance).

Rationale
To enable correct values to be passed as the port-defined arguments
for invocation of server runnables.

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::Internal-Behavior
::PortAPIOptions::value

Required by rte sws 1360
Contract phase No

Requirement ID [rte sws in 3798]
Object identifier indirectAPI
Object informa-
tion

Selection of indirect API

Description
If indirectAPI = true the indirect API shall be generated for the refer-
enced port prototype.

297 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Rationale
To avoid generating unnecessary entries of the component data struc-
ture.

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::Internal-Behavior
::PortAPIOptions::indirectAPI

Required by rte sws 3799 rte sws 3601 rte sws 2613 rte sws 2615 rte sws 1355
Contract phase Yes

Requirement ID [rte sws in 7102]
Object identifier enableTakeAddress
Object informa-
tion

API reference for derivation of a pointer

Description
If enableTakeAddress = true the software-component is able to use the
API reference for deriving a pointer to an object.

Rationale
To guarantee that a pointer to an object for the port API can be derived
if required by the implementation of a software-component.

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::Internal-Behavior
::PortAPIOptions::enableTakeAddress

Required by rte sws 7100 rte sws 7101
Contract phase Yes

Requirement ID [rte sws in 1361]
Object identifier PortDefinedArgumentType
Object informa-
tion

Data type of port-defined argument

Description The data type that the server runnable entity requires to be passed.
Rationale To enable correct function prototypes to be emitted
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::InternalBehavior
::PortArgument::type

Required by rte sws 1166
Contract phase Yes

Requirement ID [rte sws in 1362]
Object identifier PortDefinedArgumentValue
Object informa-
tion

Value of port-defined argument

Description
Value to pass for a specific port-defined argument for a specific server
SWC (instance).

Rationale
To enable correct values to be passed as the port-defined arguments
for invocation of server runnables.

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::Internal-Behavior
::PortArgument::value

Required by rte sws 1360
Contract phase No

298 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

B.4 Communication

Requirement ID [rte sws in 0067]
Object identifier AliveTimeout
Object informa-
tion

The minimum time period for the reception of the data element (is-
Queued = false). VFB attribute: LIVELIHOOD

Description
When specified the receiver can monitor the time-out and inform a time-
out to the software component. Only the ComSpec of an AtomicSoft-
wareComponentType PortPrototype shall be considered.

Rationale For API generation of the time-out notification
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::Communication
::DataReceiverComSpec::aliveTimeout

Required by rte sws 5020 rte sws 5021 rte sws 5022
Contract phase Yes

Requirement ID [rte sws in 0066]
Object identifier RFiltering
Object informa-
tion

The filter mechanism on the receiver side. SWCT attribute: filter

Description of class DataFilter

Rationale
For API implementation to filter the data element according to certain
mechanism on the receiver side

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::Communication
::Filter::DataFilter

Required by rte sws 5503
Contract phase No

Requirement ID [rte sws in 0029]
Object identifier QueuedRecieverComSpec.QueueLength
Object informa-
tion

The length of the queue of the received data element (isQueued = true)

Description
of type Integer. Only the ComSpec of an AtomicSoftwareComponent-
Type PortPrototype shall be considered.

Rationale For configuration of the queue
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::Communication
::QueuedRecieverComSpec::QueueLength

Required by rte sws 2521
Contract phase No

Requirement ID [rte sws in 2701]
Object identifier ServerComSpec.QueueLength
Object informa-
tion

The length of the queue of requests to a serialised server operation

299 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Description
of type Integer. Only the ComSpec of an AtomicSoftwareComponent-
Type PortPrototype shall be considered.

Rationale For configuration of the queue
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::Communication
::ServerComSpec::queueLength

Required by rte sws 2529 rte sws 2530 rte sws 2699
Contract phase No

Requirement ID [rte sws in 0063]
Object identifier SignalMappingP
Object informa-
tion

Mapping of primitive data element to COM signal(s)

Description
refers to data element instance and the COM signal(s) - the COM signal
is the interface of COM to RTE.

Rationale For API implementation by invocation of COM API
Template meta-
model path

M2::AUTOSAR Templates::SystemTemplate::DataMapping::Sender-
ReceiverToSignalMapping

Required by rte sws 3007 rte sws 4504 rte sws 4505
Contract phase No

Requirement ID [rte sws in 0064]
Object identifier SignalMappingC
Object informa-
tion

Mapping of complex data element to COM signal group(s)

Description
refers to data element instance and the COM signal group(s) - the COM
signal group is the interface of COM to RTE.

Rationale For API implementation by invocation of COM API
Template meta-
model path

M2::AUTOSAR Templates::SystemTemplate::DataMapping::Sender-
ReceiverToSignalGroupMapping

Required by rte sws 3008 rte sws 4506 rte sws 4507 rte sws 4508 rte sws 2557
Contract phase No

Requirement ID [rte sws in 5068]
Object identifier OperationMapping
Object informa-
tion

Mapping of ClientServer operations to SignalGroups

Description
Specifies how the individual operation arguments are mapped on Sys-
temSignals and SystemSignalGroups.

Rationale For API implementation by invocation of COM API
Template meta-
model path

M2::AUTOSAR Templates::SystemTemplate::DataMapping
::ClientServerToSignalGroupMapping

Required by rte sws 5055
Contract phase No

300 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Requirement ID [rte sws in 5069]
Object identifier ClientServerProtocollMapping
Object informa-
tion

Mapping of the ClientServer call/response to SignalGroups

Description
Specifies how the client server call/response is mapped on SystemSig-
nals and SystemSignalGroups.

Rationale For API implementation by invocation of COM API
Template meta-
model path

M2::AUTOSAR Templates::SystemTemplate::DataMapping
::ClientServerToSignalGroupMapping

Required by
rte sws 5054 rte sws 5055 rte sws 6028 rte sws 5056 rte sws 5057
rte sws 5058 rte sws 5059

Contract phase No

Requirement ID [rte sws in 5079]
Object identifier ComSignalHandleId
Object informa-
tion

Reference from ComSignal to signal instance.

Description
Reference to the ISignalToIPduMapping that contains an ISignal (Sys-
tem Template) which this ComSignal represents.

Rationale
To extract the HandleId which needs to be used for interaction between
Rte and Com

Template meta-
model path

M1::AUTOSAR Descriptions::ECUCParameterDefinition::COM-Stack
::Com::SystemTemplateSystemSignalRef

Required by rte sws 4504 rte sws 4505
Contract phase No

Requirement ID [rte sws in 5080]
Object identifier ComSignalGroupHandleId
Object informa-
tion

Reference from ComSignalGroup to signal instance.

Description
Reference to the ISignalToIPduMapping that contains an ISignal (Sys-
temTemplate) which this ComSignalGroup represents.

Rationale
To extract the HandleId which needs to be used for interaction between
Rte and Com

Template meta-
model path

M1::AUTOSAR Descriptions::ECUCParameterDefinition::COM-Stack
::Com::SystemTemplateSystemSignalRef

Required by rte sws 4506 rte sws 4507 rte sws 4508 rte sws 2557 rte sws 5081
Contract phase No

B.5 Data consistency

Requirement ID [rte sws in 3597]
Object identifier ExclusiveAreaImplMechanism

301 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Object informa-
tion

ExclusiveArea data consistency mechanism

Description
Parameter specifying the data consistency mechanism to be applied to
an ExclusiveArea

Rationale
Influence RTE behavior allowing specific optimizations in view of usage
of ECU resources

Template meta-
model path

M1::AUTOSAR Descriptions::ECUCParameterDefinition::RTE::Data-
Consistency::ExclusiveAreaImplMechanism

Required by rte sws 3503 rte sws 3504 rte sws 3595 rte sws 3596
Contract phase No

Requirement ID [rte sws in 0077]
Object identifier RunnableEntityRunsInExclusiveArea
Object informa-
tion

the attribute insideExclusiveArea of Runnable Entity

Description The RunnableEntity is inside the referenced ExclusiveArea

Rationale
Defines the exclusive area the RunnableEntity is in. It is necessary for
consistency mechanisms.

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::InternalBehavior
::RunnableEntity::insideExclusiveArea

Required by rte sws 3500
Contract phase No

Requirement ID [rte sws in 3017]
Object identifier IrvCommAppr
Object informa-
tion

Communication approach of InterRunnableVariable

Description Whether the access to the InterRunnableVariable is explicit or implicit
Rationale For generation of the API for accessing the InterRunnableVariable.
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::InternalBehavior
::InterRunnableVariable::communicationApproach

Required by rte sws 3580
Contract phase Yes

Requirement ID [rte sws in 0078]
Object identifier ReadVariable
Object informa-
tion

the attribute readVariable of Runnable Entity

Description
Inter-runnable variables to which this RunnableEntity has implicit read
access.

Rationale It is necessary for consistency mechanisms.
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::InternalBehavior
::RunnableEntity::readVariable

302 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Required by rte sws 1303
Contract phase Yes

Requirement ID [rte sws in 0082]
Object identifier WriteVariable
Object informa-
tion

the attribute writeVariable of Runnable Entity

Description
Inter-runnable variables to which this RunnableEntity has implicit write
access.

Rationale It is necessary for consistency mechanisms.
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::InternalBehavior
::RunnableEntity::writeVariable

Required by rte sws 1304
Contract phase Yes

Requirement ID [rte sws in 0080]
Object identifier RunnableEntityCanEnterExclusiveArea
Object informa-
tion

the attribute usesExclusiveArea of Runnable Entity

Description The RunnableEntity can enter and exit the referenced exclusive area
Rationale It is necessary for the data consistency mechanism.
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::InternalBehavior
::RunnableEntity::usesExclusiveArea

Required by rte sws 1307 rte sws 1308
Contract phase No

B.6 RTE configuration

Requirement ID [rte sws in 0037]
Object identifier CompatibilityMode
Object informa-
tion

RTE generation compatibility mode

Description
RTE generation mode that ensures RTE API compatibility on object
code level.

Rationale The compatibility mode shall be supported by all RTE generators
Template meta-
model path

M1::AUTOSAR Descriptions::ECUCParameterDefinition::RTE::Gener-
ationParameters::RteGenerationMode::CompatibilityMode

Required by rte sws 1151
Contract phase Yes

Requirement ID [rte sws in 0038]
Object identifier VendorMode

303 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Object informa-
tion

RTE generation vendor mode

Description
RTE generation mode that provides an vendor-specific optimized RTE
implementation

Rationale
An RTE generator may optionally support vendor mode. RTE gener-
ators from different vendors are unlikely to be compatible when run in
the vendor mode

Template meta-
model path

M1::AUTOSAR Descriptions::ECUCParameterDefinition::RTE::Gener-
ationParameters::RteGenerationMode::VendorMode

Required by rte sws 1152
Contract phase Yes

Requirement ID [rte sws in 5018]
Object identifier RteVfbTrace
Object informa-
tion

Enable VFB tracing

Description
RTE generator will generate code to trace the communication on certain
VFB communication

Rationale The RTE generator shall be able to enable/disable VFB tracing.
Template meta-
model path

M1::AUTOSAR Descriptions::ECUCParameterDefinition::RTE::Gener-
ationParameters::RteVfbTrace

Required by rte sws 1322 rte sws 1323 rte sws 1327 rte sws 1328
Contract phase No

Requirement ID [rte sws in 5019]
Object identifier RteVfbTraceFunction
Object informa-
tion

VFB tracing hook functions

Description
RTE generator will generate VFB tracing calls only for the defined com-
munications.

Rationale To be able to select which communication should be traced.
Template meta-
model path

M1::AUTOSAR Descriptions::ECUCParameterDefinition::RTE::Gener-
ationParameters::RteVfbTraceFunction

Required by rte sws 1324 rte sws 1325
Contract phase No

Requirement ID [rte sws in 5060]
Object identifier RteOptimizationMode
Object informa-
tion

Rte Generator optimization mode

Description RTE Generator will optimize for Memory or Runtime

304 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Rationale
During RTE Generation several decisions have to be taken which influ-
ence the memory and runtime consumption of the generated RTE. This
switch forces the RTE Generator to apply one optimization direction.

Template meta-
model path

M1::AUTOSAR Descriptions::ECUCParameterDefinition::RTE::Gener-
ationParameters::RteOptimizationMode

Required by rte sws 5053
Contract phase No

B.7 Measurement and calibration

Requirement ID [rte sws in 3944]
Object identifier MeasurementSupport
Object informa-
tion

Measurement support enabling

Description
The RTE generator shall have the option to switch measurement sup-
port on and off

Rationale
Measurement is mainly needed for development and when enabled pro-
hibits some RAM usage optimization

Template meta-
model path

M1::AUTOSAR Descriptions::ECUCParameterDefinition::RTE::Gener-
ationParameters::RteMeasurementSupport

Required by rte sws 3903
Contract phase No

Requirement ID [rte sws in 3945]
Object identifier CalibrationSupport
Object informa-
tion

Calibration support enabling

Description
The RTE generator shall support data emulation without SW support
and several methods of data emulation with SW support

Rationale
Data emulation without SW support is used when special calibration
support HW is present. Without HW support different project needs
require different data emulation with SW support methods

Template meta-
model path

M1::AUTOSAR Descriptions::ECUCParameterDefinition::RTE::Gener-
ationParameters::RteCalibrationSupport

Required by rte sws 3942 rte sws 3910 rte sws 3943
Contract phase No

Requirement ID [rte sws in 3946]
Object identifier ComponentCalibrationSupport
Object informa-
tion

Granularity of calibration support per CalprmComponent instance

Description
Separate calibration support enabling for each CalprmComponentType
instance and AUTOSAR SWC

305 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Rationale
Project specific needs exist what to calibrate. Partial enabling saves
resources for data emulation with SW support

Template meta-
model path

M1::AUTOSAR Descriptions::ECUCParameterDefinition::RTE::Com-
ponentTypeCalibration::CalibrationSupportEnabled

Required by rte sws 3905 rte sws 3906
Contract phase No

Requirement ID [rte sws in 5048]
Object identifier swAddrMethod
Object informa-
tion

CalibrationCategory

Description
The RTE generator shall separate calibration parameters from Calprm-
ComponentPrototypes respectively AUTOSAR SW-Cs depending on
the CalprmElementPrototype property swAddrMethod.

Rationale
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::Datatype
::Datatypes::DataPrototype::SWDataDefProps::swAddrMethod

Required by rte sws 3907
Contract phase No

B.8 Mode management

Requirement ID [rte sws in 2688]
Object identifier ModeDeclarationGroup

Description
The ModeDeclarationGroup provides an abstract definition of a mode
machine (state machine) of non-overlapping modes. It contains Mod-
eDeclarations that represent the modes.

Rationale
The ModeDeclarationGroup is needed for the type definitions required
to represent the modes of a mode machine.

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::ModeDeclaration
::ModeDeclarationGroup

Required by rte sws 2542, rte sws 2627, rte sws 2659
Contract phase YES

Requirement ID [rte sws in 2689]
Object identifier ModeDeclaration

Description
The ModeDeclaration represents one mode of a ModeDeclaration-
Group.

Rationale
The ModeDeclarations are needed to define ModeDisablingDepen-
dencies and ModeSwitchEvents. RTE uses the short name of Mod-
eDeclarations for the symbol definition to identify the modes.

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::ModeDeclaration
::ModeDeclaration

306 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Required by
rte sws 2542, rte sws 2567, rte sws 2546, rte sws 2558,
rte sws 2631, rte sws 2660

Contract phase YES

Requirement ID [rte sws in 2690]
Object identifier initialMode

Description
The initialMode is a reference of the ModeDeclarationGroup to it’s
inital mode.

Rationale
The initialMode is needed to define the mode of each rte sws mode
machine instance after startup of the RTE.

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::ModeDeclaration
::ModeDeclarationGroup.initialMode

Required by rte sws 2544
Contract phase No

Requirement ID [rte sws in 2691]
Object identifier ModeDeclarationGroupPrototype

Description

A ModeDeclarationGroupPrototype is used in sender receiver
interfaces. All connected ports of compatible interfaces with
the same ModeDeclarationGroupPrototype instantiate a mode
machine instance.

Rationale
The ModeDeclarationGroupPrototype is needed for the instantiation
of mode machines and for the communication using mode ports.

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::PortInterface
::ModeDeclarationGroupPrototype

Required by rte sws 2630, rte sws 2549, rte sws 2546
Contract phase YES

Requirement ID [rte sws in 2692]
Object identifier ModeSwitchEvent

Description
The ModeSwitchEvent describes the event of entering or leaving a
mode.

Rationale

The ModeSwitchEvent is needed to describe the triggering of a runn-
able by a mode switch. The ModeSwitchEvent requires the attribute
activation to define, if the event is triggered on entering or leaving the
mode and the reference startOnEvent to define the runnable, it trig-
gers.

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::InternalBehavior
::RteEvents::ModeSwitchEvent

Required by rte sws 2562, rte sws 2564
Contract phase No

Requirement ID [rte sws in 0036]

307 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Object identifier ModeDisablingDependency
Object informa-
tion

Dependency between modes and disabling of RTEEvents.

Description

The ModeDisablingDependency describes the mode disabling of
an RTEEvent as a trigger for a runnable. It belongs to an RTEEvent
and requires a reference dependentOnMode to the instance of a Mod-
eDeclaration which shall result in the disabling.

Rationale
The existence of a ModeDisablingDependency shall prevent the RTE
to start a runnable by the corresponding event in the referenced mode

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::ModeDeclaration
::ModeDisablingDependency

Required by rte sws 2503, rte sws 2661, rte sws 2663
Contract phase No

Requirement ID [rte sws in 2693]
Object identifier ModeSwitchComSpec.queueLength
Object informa-
tion

The ModeSwitchComSpec.queueLength is an attribute of the Mod-
eSwitchComSpec of a provide mode port.

Description

The ModeSwitchComSpec.queueLength defines the size of the in-
put queue of mode switch notifications to a mode machine. Only the
ComSpec of an AtomicSoftwareComponentType PortPrototype shall be
considered.

Rationale Needed to configure RTE’s queues for mode switches.
Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::Communication
::ModeSwitchComSpec.queueLength

Required by
rte sws 2667, rte sws 2668, rte sws 2624, rte sws 2675,
rte sws 2672

Contract phase No

Requirement ID [rte sws in 2694]
Object identifier ModeSwitchedAckRequest
Object informa-
tion

The ModeSwitchedAckRequest is an element of the are attributes of
the ModeSwitchComSpec of a provide mode port.

Description

The ModeSwitchedAckRequest indicates that the mode manager
needs a feedback of the completion of the notified mode switches.
ModeSwitchedAckRequest contains an attribute timeout for the feed-
back. timeout = 0 configures no timeout.

Rationale
Needed for the configuration of the Rte Feedback API and of the Mod-
eSwitchedAckEvent

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::Communication
::ModeSwitchedAckRequest

Required by rte sws 2587
Contract phase Yes

308 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Requirement ID [rte sws in 2695]
Object identifier ModeSwitchedAckEvent

Description

The ModeSwitchedAckEvent represents an event that is available to
the mode manager after the completion of a mode switch. It contains a
reference ‘eventSource’ to reference the ModeSwitchPoint to which the
acknowledgement belongs. It can be used with a WaitPoint to generate
a blocking Rte Feedback API or with a startOnEvent reference to
trigger a runnable.

Rationale
Needed to trigger the reception of a mode switch completion acknow-
ledgement by the mode manager.

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::InternalBehavior
::RteEvents::ModeSwitchedAckEvent

Required by rte sws 2587
Contract phase No

Requirement ID [rte sws in 2696]
Object identifier ModeSwitchPoint

Description
A ModeSwitchPoint represents the position within the mode manager
where the mode switch is initiated.

Rationale
The ModeSwitchPoint is required to define the runnable, that may use
the Rte Switch API.

Template meta-
model path

M2::AUTOSAR Templates::SWComponentTemplate::InternalBehavior
::ModeDeclarationGroup::ModeSwitchPoint

Required by rte sws
Contract phase YES/No

309 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

C External Requirements
[rte sws ext 2054] The RTE-Generator expects only one instance of the ECU Ab-
straction.

[rte sws ext 7001] The runnables worst case execution time shall be less than
the GCD of all runnables period and offset in activation offset context for runnables.

[rte sws ext 2559] The RTE configurator shall have access to the schedule ta-
ble configuration (see also rte sws 4014)

[rte sws ext 2542] Whenever any runnable entity is running, there shall always
be exactly one mode or one mode transition active of each ModeDeclarationGroup.

[rte sws ext 2507] The mode switch shall be notified to the mode user (and
RTE) locally on each ECU.

[rte sws ext 3813] The indirect API may only be used for a port if explicit data
access to this port is specified via DataSendPoints and DataReceivePoints.

[rte sws ext 2680] The Rte Send/Rte Write APIs may only be used by the runnable
that contains the corresponding DataSendPoint

[rte sws ext 2681] The Rte Switch API may only be used by the runnable that
contains the corresponding ModeSwitchPoint

[rte sws ext 2682] The Rte Invalidate API may only be used by the runnable
that contains the corresponding DataSendPoint

[rte sws ext 2687] A blocking Rte Feedback API may only be used by the runnable
that contains the corresponding WaitPoint

[rte sws ext 2683] The Rte Read API may only be used by the runnable that
contains the corresponding DataReceivePoint

[rte sws ext 2684] The Rte Receive API may only be used by the runnable
that contains the corresponding DataReceivePoint

[rte sws ext 2685] The Rte Call API may only be used by the runnable that
contains the corresponding ServerCallPoint

[rte sws ext 2686] The blocking Rte Result API may only be used by the runnable
that contains the corresponding WaitPint

[rte sws ext 2601] The Rte IStatus API shall only be used by a RunnableEn-
tity that either has a DataReadAccess refering to the DataElementPrototype or is

310 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

triggered by a DataReceiveErrorEvent refering to the DataElementPrototype.

[rte sws ext 2704] Only the least significant six bit of the return value of a server
runnable shall be used by the application to indicate an error. The upper two bit shall
be zero.

[rte sws ext 2582] Rte Start shall be called only once by the EcuStateMan-
ager after the basic software modules required by RTE are initialized.

[rte sws ext 2583] Rte Stop shall be called by the EcuStateManager before the
basic software modules required by RTE are shut down.

311 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

D MISRA C Compliance

In general, all RTE code, whether generated or not, shall conform to the HIS subset of
the MISRA C standard rte sws 1168 [18]. This chapter lists all the MISRA C rules of
the HIS subset that may be violated by the generated RTE.

The MISRA C standard was defined with having mainly hand-written code in mind. Part
of the MISRA C rules only apply to hand-written code, they do not make much sense
in the context of automatic code generation. Additonally, there are some rules that are
violated because of technical reasons, mainly to reduce RTE overhead.

The rules listed in this chapter are expected to be violated by RTE code. Violations to
the rules listed here do not need to be documented as non-compliant to MISRA C in
the generated code itself.

MISRA rule 11

Description

Identifiers (internal and external) shall not rely on significance of more than
31 characters. Furthermore the compiler/linker shall be checked to ensure
that 31 character significance and case sensitivity are supported for exter-
nal identifiers.

Violations
The defined RTE naming convention may result in identifiers with more than
31 characters. The compliance to this rule is under user’s control.

MISRA rule 23
Description All declarations at file scope should be static where possible.

Violations
E.g. for the purpose of monitoring during calibration or debugging it may be
necessary to use non-static declarations at file scope.

MISRA rule 42

Description
The comma operator shall not be used, except in the control expression of
a for loop.

Violations
Function-like macros may have to use the comma operator. Function-like
macros are required for efficiency reasons [BSW00330].

MISRA rule 45
Description Type casting from any type to or from pointers shall not be used.

Violations
For the implementation of exclusive areas (rte sws 3740, Section 5.4.2.4)
casting between pointer types is needed.

MISRA rule 54

Description
A null statement shall only occur on a line by itself, and shall not have any
other text on the same line.

Violations
In an optimized RTE, API calls may result in a null statement. Therefore the
compliance to this rule cannot be guaranteed.

312 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

E Interfaces of COM used by the RTE

The specification of the RTE requires the usage of the following COM API functions
and COM callback functions.

COM API function Context
Com_SendSignal to transmit a data element of primitive type using COM.
Com_ReceiveSignal to retrieve the new value of a data element of primitive

type from COM.
Com_UpdateShadowSignal to update a primitive element of a data element of com-

plex type in preparation for sending the complex type us-
ing COM.

Com_SendSignalGroup to initiate sending of a data element of complex type us-
ing COM.

Com_ReceiveSignalGroup to retrieve the new value of a data element of complex
type from COM.

Com_ReceiveShadowSignal to retrieve the new value of a primitive element of a data
element of complex type from COM.

Com_InvalidateSignal to invalidate a data element of primitive type using COM.
Com_InvalidateSignalGroup to invalidate a whole signal group using COM.

Table E.1: COM API functions used by the RTE

Callback function Configuration Usage
Rte_COMCbk_<sn> COM_NOTIFICATION_SIGNAL

of COM_SIGNAL
Notification of data reception
of a data element of primitive
type

Rte_COMCbkInv_<sn> COM_RX_DATA_INVALID_-
INDICATION_FUNCTION of
COM_RX_DATA_INVALID of
COM_SIGNAL

Notification of reception of an
invalidated signal

Rte_COMCbkInv_<sg> COM_RX_DATA_INVALID_-
INDICATION_FUNCTION of
COM_RX_DATA_INVALID of
COM_SIGNAL_GROUP

Notification of reception of an
invalidated signal group

Rte_COMCbkTOut_<sn> COM_NOTIFICATION_ERROR of
COM_SIGNAL

Notification of a deadline
monitoring violation for a
data element of primitive type
(only present if aliveTimeout
is present)

Rte_COMCbk_<sg> COM_NOTIFICATION_SIGNAL
of COM_SIGNAL_GROUP

Notification of data reception
of a data element of complex
type

313 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

Specification of RTE
V2.3.0

R3.1 Rev 5

Callback function Configuration Usage
Rte_COMCbkTOut_<sg> COM_NOTIFICATION_ERROR of

COM_SIGNAL_GROUP
Notification of a deadline
monitoring violation for a data
element of complex type (only
present if aliveTimeout is
present)

Table E.2: COM Callback functions provided by the RTE for
signal reception

Callback function Configuration Usage
Rte_COMCbkTAck_<sn> COM_NOTIFICATION_SIGNAL

of COM_SIGNAL
Notification of successful
transmission of a data ele-
ment of primitive type (only
present if acknowledgement
request is specified)

Rte_COMCbkTErr_<sn> COM_NOTIFICATION_ERROR of
COM_SIGNAL

Notification of a transmission
error of a data element of
primitive type (only present if
acknowledgement request is
specified)

Rte_COMCbkTAck_<sg> COM_NOTIFICATION_SIGNAL
of COM_SIGNAL_GROUP

Notification of successful
transmission of a data ele-
ment of complex type (only
present if acknowledgement
request is specified)

Rte_COMCbkTErr_<sg> COM_NOTIFICATION_ERROR of
COM_SIGNAL_GROUP

Notification of a transmission
error of a data element of
complex type (only present if
acknowledgement request is
specified)

Table E.3: COM Callback functions provided by the RTE for
signal transmission

314 of 314
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR SWS RTE

	1 Introduction
	1.1 Scope
	1.2 Dependency to other AUTOSAR specifications
	1.3 Acronyms and Abbreviations
	1.4 Technical Terms
	1.5 Document Conventions
	1.6 Requirements Traceability

	2 RTE Overview
	2.1 The RTE in the Context of AUTOSAR
	2.2 AUTOSAR Concepts
	2.2.1 AUTOSAR Software-components
	2.2.2 Basic Software Modules
	2.2.3 Communication
	2.2.3.1 Communication Models
	2.2.3.2 Communication Modes
	2.2.3.3 Static Communication
	2.2.3.4 Multiplicity

	2.2.4 Concurrency

	2.3 The RTE Generator
	2.4 Design Decisions

	3 RTE Generation Process
	3.1 RTE Contract Phase
	3.2 RTE Configuration Editing
	3.3 RTE Generation Phase
	3.4 RTE Configuration and OS Interaction

	4 RTE Functional Specification
	4.1 Architectural concepts
	4.1.1 Scope
	4.1.2 RTE and AUTOSAR Software-Components
	4.1.2.1 Structure of SW-Components
	4.1.2.2 Ports, Interfaces and Connections
	4.1.2.3 Internal Behavior
	4.1.2.4 Implementation

	4.1.3 Instantiation
	4.1.3.1 Scope and background
	4.1.3.2 Concepts of instantiation
	4.1.3.3 Single instantiation
	4.1.3.4 Multiple instantiation

	4.1.4 RTE and AUTOSAR Services
	4.1.5 RTE and ECU Abstraction
	4.1.6 RTE and Complex Device Driver

	4.2 RTE Implementation Aspects
	4.2.1 Scope
	4.2.2 OS
	4.2.2.1 OS Objects
	4.2.2.2 Runnable Entities
	4.2.2.3 RTE Events
	4.2.2.4 Mapping of runnable entities to tasks
	4.2.2.5 Activation Offset for runnable
	4.2.2.6 Activation and Start of Runnable Entities

	4.2.3 Interrupt decoupling and notifications
	4.2.3.1 Basic notification principles
	4.2.3.2 Interrupts
	4.2.3.3 Decoupling interrupts on RTE level
	4.2.3.4 RTE and interrupt categories

	4.2.4 Data Consistency
	4.2.4.1 General
	4.2.4.2 Communications to look at
	4.2.4.3 Concepts
	4.2.4.4 Mechanisms to guarantee data consistency
	4.2.4.5 Exclusive Areas
	4.2.4.6 InterRunnableVariables

	4.2.5 Multiple trigger of Runnables
	4.2.6 Measurement and Calibration
	4.2.6.1 General
	4.2.6.2 Measurement
	4.2.6.3 Calibration

	4.3 Communication Models
	4.3.1 Sender-Receiver
	4.3.1.1 Introduction
	4.3.1.2 Receive Modes
	4.3.1.3 Multiple Data Elements
	4.3.1.4 Multiple Receivers and Senders
	4.3.1.5 Implicit and Explicit Data Reception and Transmission
	4.3.1.6 Transmission Acknowledgement
	4.3.1.7 Communication Time-out
	4.3.1.8 Data Element Invalidation
	4.3.1.9 Filters
	4.3.1.10 Buffering
	4.3.1.11 Operation

	4.3.2 Client-Server
	4.3.2.1 Introduction
	4.3.2.2 Multiplicity
	4.3.2.3 Communication Time-out
	4.3.2.4 Port-Defined argument values
	4.3.2.5 Buffering
	4.3.2.6 Inter ECU Response to Request Mapping
	4.3.2.7 Operation

	4.3.3 SWC internal communication
	4.3.3.1 InterRunnableVariables

	4.4 Modes
	4.4.1 Mode User
	4.4.2 Mode Manager
	4.4.3 Refinement of the semantics of ModeDeclarations and ModeDeclarationGroups
	4.4.4 Order of actions taken by the RTE upon interception of a mode switch notification
	4.4.5 Notification of mode switches

	4.5 Initialization and Finalization
	4.5.1 Initialization and Finalization of the RTE
	4.5.2 Initialization and Finalization of AUTOSAR Software-Components

	4.6 RTE Functionality Levels

	5 RTE Reference
	5.1 Scope
	5.1.1 Programming Languages
	5.1.2 Generator Principles
	5.1.2.1 Operating Modes
	5.1.2.2 Optimization Modes

	5.1.3 Generator external configuration switches

	5.2 API Principles
	5.2.1 RTE Namespace
	5.2.2 Direct API
	5.2.3 Indirect API
	5.2.3.1 Accessing Port Handles

	5.2.4 DataReadAccess and DataWriteAccess
	5.2.5 PerInstanceMemory
	5.2.6 API Mapping
	5.2.6.1 ``RTE Contract'' Phase
	5.2.6.2 ``RTE Generation'' Phase
	5.2.6.3 Function Elidation
	5.2.6.4 API Naming Conventions
	5.2.6.5 API Parameters
	5.2.6.6 Error Handling
	5.2.6.7 Success Feedback

	5.2.7 Unconnected Ports
	5.2.7.1 Data Elements
	5.2.7.2 Mode Ports
	5.2.7.3 Client-Server

	5.2.8 Non-identical ports

	5.3 RTE Modules
	5.3.1 RTE Header File
	5.3.2 Lifecycle Header File
	5.3.3 Application Header File
	5.3.3.1 File Name
	5.3.3.2 Scope
	5.3.3.3 File Contents

	5.3.4 AUTOSAR Types Header File
	5.3.4.1 File Contents
	5.3.4.2 Primitive AUTOSAR Data Types
	5.3.4.3 Complex AUTOSAR Data Types
	5.3.4.4 C/C++

	5.3.5 VFB Tracing Header File
	5.3.5.1 C/C++
	5.3.5.2 File Contents

	5.3.6 RTE Configuration Header File
	5.3.6.1 C/C++
	5.3.6.2 File Contents

	5.3.7 Generated RTE
	5.3.7.1 Header File Usage
	5.3.7.2 C/C++
	5.3.7.3 File Contents
	5.3.7.4 Reentrancy

	5.4 RTE Data Structures
	5.4.1 Instance Handle
	5.4.2 Component Data Structure
	5.4.2.1 Data Handles Section
	5.4.2.2 Per-instance Memory Handles Section
	5.4.2.3 Inter Runnable Variable Handles Section
	5.4.2.4 Exclusive-area handles Section
	5.4.2.5 Port API Section
	5.4.2.6 Calibration Parameter Handles Section
	5.4.2.7 Inter Runnable Variable API Section
	5.4.2.8 Vendor Specific Section

	5.5 API Data Types
	5.5.1 Std_ReturnType
	5.5.1.1 Infrastructure Errors
	5.5.1.2 Application Errors
	5.5.1.3 Predefined Error Codes

	5.5.2 Rte_Instance
	5.5.3 RTE Modes
	5.5.4 Enumeration Data Types
	5.5.5 Range Data Types

	5.6 API Reference
	5.6.1 Rte_Ports
	5.6.2 Rte_NPorts
	5.6.3 Rte_Port
	5.6.4 Rte_Send/Rte_Write
	5.6.5 Rte_Switch
	5.6.6 Rte_Invalidate
	5.6.7 Rte_Feedback
	5.6.8 Rte_Read
	5.6.9 Rte_Receive
	5.6.10 Rte_Call
	5.6.11 Rte_Result
	5.6.12 Rte_Pim
	5.6.13 Rte_CData
	5.6.14 Rte_Calprm
	5.6.15 Rte_IRead
	5.6.16 Rte_IWrite
	5.6.17 Rte_IWriteRef
	5.6.18 Rte_IInvalidate
	5.6.19 Rte_IStatus
	5.6.20 Rte_IrvIRead
	5.6.21 Rte_IrvIWrite
	5.6.22 Rte_IrvRead
	5.6.23 Rte_IrvWrite
	5.6.24 Rte_Enter
	5.6.25 Rte_Exit
	5.6.26 Rte_Mode

	5.7 Runnable Entity Reference
	5.7.1 Signature
	5.7.2 Entry Point Prototype
	5.7.3 Role Parameters
	5.7.4 Return Value
	5.7.5 Triggering Events
	5.7.5.1 TimingEvent
	5.7.5.2 ModeSwitchEvent
	5.7.5.3 AsynchronousServerCallReturnsEvent
	5.7.5.4 DataReceiveErrorEvent
	5.7.5.5 OperationInvokedEvent
	5.7.5.6 DataReceivedEvent
	5.7.5.7 DataSendCompletedEvent

	5.7.6 Reentrancy

	5.8 RTE Lifecycle API Reference
	5.8.1 Rte_Start
	5.8.2 Rte_Stop

	5.9 RTE Call-backs Reference
	5.9.1 RTE-COM Message Naming Conventions
	5.9.2 Communication Service Call-backs
	5.9.3 Naming convention of CallbackRoutineName

	5.10 VFB Tracing Reference
	5.10.1 Prinicple of Operation
	5.10.2 Trace Events
	5.10.2.1 RTE API Trace Events
	5.10.2.2 COM Trace Events
	5.10.2.3 OS Trace Events
	5.10.2.4 Runnable Entity Trace Events

	5.10.3 Configuration
	5.10.4 Interaction with Object-code Software-Components

	6 RTE ECU Configuration
	6.1 RTE Generation Parameters
	6.2 Handling of Software Component instances
	6.2.1 Selection of SW-Component Implementation
	6.2.2 Runnable Entity to task mapping
	6.2.3 Exclusive Area implementation
	6.2.4 NVRam Allocation

	6.3 Component Type Calibration
	6.4 Communication infrastructure

	A Metamodel Restrictions
	A.1 Restriction concerning WaitPoint
	A.2 Restriction concerning RTEEvent
	A.3 Restriction concerning isQueued attribute of DataElementPrototype
	A.4 Restriction concerning ServerCallPoint
	A.5 Restriction concerning multiple instantiation of software components
	A.6 Restriction concerning runnable entity
	A.7 Restrictions concerning runnables with dependencies on modes
	A.8 Restriction concerning InterRunnableVariables
	A.9 Restriction concerning InternalBehavior
	A.10 Restriction concerning Initial Value
	A.11 Restriction concerning PerInstanceMemory
	A.12 Restriction concerning unconnected r-port
	A.13 Restrictions regarding n:1 sender-receiver communication
	A.14 Restrictions regarding Measurement and Calibration
	A.15 Restriction concerning ExclusiveAreaImplMechanism

	B Required Input Information
	B.1 SWC and instance
	B.2 Runnable entity and task
	B.3 Port and interface
	B.4 Communication
	B.5 Data consistency
	B.6 RTE configuration
	B.7 Measurement and calibration
	B.8 Mode management

	C External Requirements
	D MISRA C Compliance
	E Interfaces of COM used by the RTE

