
Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

Document Title Specification of LIN Driver
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 072
Document Classification Standard

Document Version 1.3.0
Document Status Final
Part of Release 3.1
Revision 5

Document Change History
Date Version Changed by Change Description
20.09.2010 1.3.0 AUTOSAR

Administration
 Add LIN184
 Legal disclaimer revised

23.06.2008 1.2.1 AUTOSAR
Administration

Legal disclaimer revised

11.12.2007 1.2.0 AUTOSAR
Administration

 Editorial Changes
 Tables generated in Chapter 8 and 10
 Document meta information extended
 Small layout adaptations made

30.01.2007 1.1.0 AUTOSAR
Administration

 Lin Transceiver Wake Up validation
function added

 Incorporate Feedback from Validator2
 Updated Chapter 10.2 according to the

Specification of ECU Configuration
Parameters

 Legal disclaimer revised
 Release Notes added
 “Advice for users” revised
 “Revision Information” added

11.05.2006 1.0.0 AUTOSAR
Administration

Initial release

1 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).

Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary
items are licensed under the same rules as applicable to the AUTOSAR Standard.

2 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

Table of Contents

1 Introduction and functional overview ... 6

1.1 Scope ... 6
1.2 Architectural overview .. 6

2 Acronyms, abbreviations and glossary .. 8

2.1 Acronyms and abbreviations .. 8
2.2 Glossary ... 8
2.3 LIN hardware unit classification.. 9

3 Related documentation.. 10

3.1 Input documents... 10
3.2 Related standards and norms .. 10

4 Constraints and assumptions .. 11

4.1 Limitations .. 11
4.2 Applicability to car domains.. 11

5 Dependencies to other modules.. 12

5.1 File structure .. 12
5.1.1 Code file structure... 12
5.1.2 Header file structure ... 12

6 Requirements traceability .. 14

7 Functional specification ... 20

7.1 General Requirements ... 20
7.2 Version Check.. 20

7.2.1 Requirements ... 20
7.3 LIN driver and Channel Initialization... 21

7.3.1 Background & Rationale ... 21
7.3.2 Requirements ... 21
7.3.3 State diagrams.. 22

7.4 Frame processing... 24
7.4.1 Background & Rationale ... 24
7.4.2 Requirements ... 25
7.4.3 Data Consistency.. 25
7.4.4 Data byte mapping.. 26

7.5 Sleep and wake-up functionality... 26
7.5.1 Background & Rationale ... 26
7.5.2 Requirements ... 26

7.6 Error classification .. 27
7.7 Error detection.. 28
7.8 Error notification ... 28

8 API specification.. 29

8.1 Imported types.. 29
8.2 Type definitions .. 29

8.2.1 Lin_ConfigType... 29

3 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

8.2.2 Lin_ChannelConfigType ... 29
8.2.3 Lin_FramePidType ... 29
8.2.4 Lin_FrameCsModelType .. 29
8.2.5 Lin_FrameResponseType .. 30
8.2.6 Lin_FrameDlType ... 30
8.2.7 Lin_PduType... 30
8.2.8 Lin_StatusType... 30

8.3 Function definitions .. 31
8.3.1 Services affecting the complete LIN hardware unit................................. 31

8.3.1.1 Lin_Init ... 31
8.3.1.2 Lin_WakeUpValidation... 32
8.3.1.3 Lin_GetVersionInfo .. 33

8.3.2 Services affecting a single LIN channel .. 34
8.3.2.1 Lin_InitChannel .. 34
8.3.2.2 Lin_DeInitChannel ... 35
8.3.2.3 Lin_SendHeader .. 35
8.3.2.4 Lin_SendResponse.. 36
8.3.2.5 Lin_GoToSleep .. 37
8.3.2.6 Lin_GoToSleepInternal .. 38
8.3.2.7 Lin_WakeUp .. 39
8.3.2.8 Lin_GetStatus .. 40

8.4 Call-back notifications .. 41
8.5 Scheduled functions ... 41
8.6 Expected Interfaces.. 41

8.6.1 Mandatory Interfaces .. 41
8.6.2 Optional Interfaces.. 42
8.6.3 Configurable interfaces... 42

9 Sequence diagrams .. 43

9.1 Receiving a LIN Frame... 43

10 Configuration specification... 45

10.1 How to read this chapter .. 45
10.1.1 Configuration and configuration parameters... 45
10.1.2 Variants .. 46
10.1.3 Containers .. 46

10.2 Containers and configuration parameters .. 46
10.2.1 Variants .. 47
10.2.2 Lin... 49
10.2.3 LinGeneral .. 49
10.2.4 LinChannel ... 50
10.2.5 LinGlobalConfig .. 52

10.3 Published Information... 53

11 Changes to Release 1 ... 54

12 Changes to Release 2.0 .. 55

12.1 Deleted SWS Items.. 55
12.2 Replaced SWS Items ... 55
12.3 Changed SWS Items.. 55
12.4 Added SWS Items.. 55

4 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

13 Changes to Release 2.1 .. 56

13.1 Deleted SWS Items.. 56
13.2 Replaced SWS Items ... 56
13.3 Changed SWS Items.. 56
13.4 Added SWS Items.. 56

14 Changes during SWS Improvements by Technical Office 57

14.1 Deleted SWS Items.. 57
14.2 Replaced SWS Items ... 57
14.3 Changed SWS Items.. 57
14.4 Added SWS Items.. 57

5 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

1 Introduction and functional overview

This specification specifies the functionality, API and the configuration of the
AUTOSAR Basic Software module LIN driver.

1.1 Scope

The base for this document is the LIN 2.0 specification [15]. It is assumed that the
reader is familiar with this specification. This document will not describe LIN 2.0
functionality again, but it will try to follow the same order as the LIN 2.0 specification.

The LIN driver applies to LIN 2.0 master nodes only. Operating as a slave node is out
of scope. The LIN master in AUTOSAR deviates from the LIN 2.0 specification as
described in this specification of LIN driver, but there will be no change in the
behavior on the LIN bus. It is the intention to be able to reuse all existing LIN slaves
together with the AUTOSAR LIN master (i.e. the LIN driver).

LIN063: It is intended to support the complete range of LIN hardware from a simple
SCI/UART to a complex LIN hardware controller. Using a SW-UART implementation
is out of the scope. For a closer description of the LIN hardware unit, see chapter 2.3.

1.2 Architectural overview

The LIN driver is part of the microcontroller abstraction layer (MCAL), performs the
hardware access and offers a hardware independent API to the upper layer. The only
upper layer, which has access to the LIN driver, is the LIN Interface.

A LIN driver can support more than one channel. This means that the LIN driver can
handle one or more LIN channels as long as they are belonging to the same LIN
hardware unit.

In the example below three different LIN drivers are connected to the LIN interface.
However, one LIN driver is the most common configuration.

6 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

Communication Hardware Abstraction

LIN interface
(„LIN Master Communication Stack“)

 LIN
Scheduler

LIN TP

I/O drivers

LIN driver
Vendor B

LIN driver
Vendor A

LIN driver
Vendor C

Figure 1-1: Overview LIN Software Architecture Layering

µC

LIN HW Unit
Type A

LIN Hardware Unit
Type C

LIN HW Unit
Type B

Frame
Processing

Frame
Processing

Frame
Processing

LIN HW Unit
Type B

Transceiver
IC

(e.g.: Enhanced
LIN-SCI/UART)

Transceiver
IC

(e.g.: Enhanced
LIN-SCI/UART)

Transceiver
IC

(e.g.: Standard
SCI/UART)

Transceiver
IC

(e.g.: Multi-channel
LIN Controller)

Transceiver
IC

7 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

2 Acronyms, abbreviations and glossary

2.1 Acronyms and abbreviations

Acronyms, abbreviations and definitions that have a local scope for the LIN driver
and therefore are not contained in the AUTOSAR glossary must appear here.

Acronym: Description:
DEM Diagnostic Event Manager
DET Development Error Tracer
ISR Interrupt Service Routine
LIN Local Interconnect Network (as defined by [15])
MCU Micro Controller Unit
PDU Protocol Data Unit. Consists of Identifier, data length and Data (SDU)
PID Protected ID (as defined by [15])
PLL Phase-Locked Loop
SCI Serial Communication Interface
SDU Service Data Unit. Data that is transported inside the PDU
SFR Special Function Register
SWS Software Specification
TP Transport Layer
UART Universal Asynchronous Receiver Transmitter

Abbreviation Description:
Id Identifier

2.2 Glossary

Besides AUTOSAR terminology this document also uses terms defined in the LIN 2.0
specification [15], e.g. LIN frame, header and message.

Glossary: Description:
enumeration This can be in “C” programming language an enum or a #define.

LIN channel The LIN channel entity interlinks the ECUs of a LIN cluster physically: An ECU is
part of a LIN cluster if it contains one LIN controller that is connected to one LIN
channel of the LIN cluster. An ECU is allowed to connect to a particular LIN cluster
through one channel only.

LIN cluster As defined by [15]: “A cluster is the LIN bus wire plus all the nodes.”
LIN controller A dedicated LIN hardware with a build Frame processing state machine. A

hardware which is capable to connect to several LIN clusters is treated as several
LIN controllers.

LIN frame As defined by [15]: “All information is sent packed as frames; a frame consist of the
header and a response.”

LIN frame
processor

Frame processing implies the complete LIN frame handling. Implementation could
be achieved as software emulated solution or with a dedicated LIN controller.

LIN hardware
unit

A LIN hardware unit may drive one or multiple LIN channels to control one or
multiple LIN clusters.

LIN header As defined by [15]: “A header is the first part of a frame; it is always sent by the
master.”

LIN node As defined by [15]: “Loosely speaking, a node is an ECU. However, a single ECU
may be connected to multiple LIN clusters.”

LIN response As defined by [15]: “A LIN frame consists of a header and a response. Also called a

8 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

Frame response.”

2.3 LIN hardware unit classification

The on-chip LIN hardware unit combines one or several LIN channels.

The following figure shows a classification of different LIN hardware types connected
to multiple LIN physical channels:

µCtr

Figure 2-1: LIN hardware unit classification

... ...

LIN Hardware Unit A

LIN Controller 1

LIN Controller 0

...
LIN Controller n

LIN Hardware Unit C
Enhanced SCI/UART 0

Enhanced SCI/UART 1

LIN Hardware Unit B
SCI/UART 0

SCI/UART 1

RxD 1

TxD 1 Transceiver
IC B

LIN cluster
B

RxD 1

TxD1 Transceiver
IC N+4

LIN cluster
N+4

RxD 0

TxD 0 Transceiver
IC N+3

LIN cluster
N+3

RxD 1

TxD 1 Transceiver
IC N+2

LIN cluster
N+2

RxD 0

TxD 0 Transceiver
IC N+1

LIN cluster
N+1

RxD n

TxD n Transceiver
IC N

LIN cluster
N

RxD 0

TxD 0 Transceiver
IC A

LIN cluster
A

9 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

3 Related documentation

3.1 Input documents

[1] List of Basic Software Modules

AUTOSAR_BasicSoftwareModules.pdf

[2] Layered Software Architecture
AUTOSAR_LayeredSoftwareArchitecture.pdf

[3] General Requirements on Basic Software Modules
AUTOSAR_SRS_General.pdf

[4] Specification of Standard Types
AUTOSAR_SWS_StandardTypes.pdf

[5] Specification of Development Error Tracer
AUTOSAR_SWS_DevelopmentErrorTracer.pdf

[6] General Requirements on SPAL
AUTOSAR_SRS_SPAL_General.pdf

[7] Requirements on LIN
AUTOSAR_SRS_LIN.pdf

[8] Specification of LIN Interface
AUTOSAR_SWS_LIN_Interface.pdf

[9] Specification of ECU Configuration
AUTOSAR_ECU_Configuration.pdf

[10] Specification of MCU driver
AUTOSAR_SWS_MCU_Driver.pdf

[11] Specification of Diagnostics Event Manager
AUTOSAR_SWS_DEM.pdf

[12] Specification of C Implementation Rules
AUTOSAR_SWS_C_ImplementationRules.pdf

[13] Specification of ECU State Manager
AUTOSAR_SWS_ECU_StateManager.pdf

[14] AUTOSAR Basic Software Module Description Template,
 AUTOSAR_BSW_Module_Description.pdf

3.2 Related standards and norms

[15] LIN Specification Package Revision 2.0, September 23, 2003

http://www.lin-subbus.org/

10 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

http://www.lin-subbus.org/

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

4 Constraints and assumptions

4.1 Limitations

Only one LIN channel of an ECU is allowed to connect to a particular LIN cluster.
Unless there are unused (not connected) channels in the ECU, the number of LIN
channels is equal to the number of LIN clusters.

Driver scope

LIN045: One LIN driver provides access to one LIN hardware unit type (simple UART
or dedicated LIN hardware) that may consist of several LIN channels. For different
LIN hardware units a separate LIN driver needs to be implemented. It is up to the
implementer to adapt the driver to the different instances of similar LIN channels.

LIN177: In case several LIN driver instances (of same or different vendor) are
implemented in one ECU the file names, API names, and published parameters must
be modified such that no two definitions with the same name are generated. The
name shall be extended according to BSW00347 with a Vendor Id (in case of several
LIN drivers from different vendors) and a vendor specific name (in case of different
hardware units are implemented by one Vendor). Any combination of these
extensions is possible.

The LIN Interface is responsible for calling the correct function. The necessary
information shall be given in an XML file during configuration. See [8] for description
how the LIN Interface handles several LIN drivers.

4.2 Applicability to car domains

This specification is applicable to all car domains, where LIN is used.

11 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

5 Dependencies to other modules

Module MCU [10]
The hardware of the internal LIN hardware unit depends on the system clock,
prescaler(s) and PLL. Hence, the length of the LIN bit timing depends on the clock
settings made in module MCU.

The LIN driver module will not take care of setting the registers that configure the
clock, prescaler(s) and PLL (e.g. PLL on PLL off) in its init functions. The MCU
module must do this.

Module Port
The Port driver configures the port pins used for the LIN driver as input or output.
Hence, the Port driver has to be initialized prior to the use of LIN functions.
Otherwise, LIN driver functions will exhibit undefined behavior.

Module DET (Development Error Tracer) [5]
In development mode, the Lin module reports development error through the
Det_ReportError function of module DET.

Module DEM (Diagnostic Event Manager) [11]
The Lin module reports production errors to the Diagnostic Event Manager

OS (Operating System)
The LIN driver uses interrupts and therefore there is a dependency on the OS, which
configures the interrupt sources.

LIN driver Users
The LIN Interface (specified by [8]) is the only user of the LIN driver services.

5.1 File structure

5.1.1 Code file structure

LIN064: The code file structure shall not be defined within this specification
completely. At this point it shall be pointed out that the code-file structure shall
include the following files named:

 Lin_Lcfg.c – for link time configurable parameters and
 Lin_PBcfg.c – for post build time configurable parameters.

These files shall contain all link time and post-build time configurable
parameters.

5.1.2 Header file structure

LIN075: The include file structure shall be as follows:

12 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

Lin.h Lin_Irq.c Lin_Cfg.h

Lin.c Lin_PBcfg.c

Det.h LinIf_Cbk.h Dem.h

includes MemMap.h

includes

includes
includes includes

includes includes

includes

includes

includes

Dem_IntErrId.h

ComStack_Types.h

Figure 5-1: Header File structure for the LIN driver

 Lin.c shall include Lin.h
 Lin.c shall include MemMap.h
 Lin.h shall include Lin_Cfg.h
 Lin.h shall include ComStack_Types.h

LIN023: The module Lin_Irq.c contains the implementation of interrupt frames.
The implementation of the interrupt service routine shall be in Lin.c

LIN042: The header file LinIf_Cbk.h contains the declarations of the callback
functions imported by the modules calling the callbacks. The LIN driver itself does not
provide callback functions (no Lin_Cbk.h)

LIN054: The file Lin.h only contains external declarations of constants, global data,
type definitions and services that are specified in the LIN driver SWS.
Constants, global data types and functions that are only used by LIN driver internally,
are declared in Lin.c

LIN065: The module shall include the Dem.h file. By this inclusion the APIs to report
errors as well as the required Event Id symbols are included.
This specification defines the name of the Event Id symbols which are provided by
XML to the DEM configuration tool. The DEM configuration tool assigns ECU
dependent values to the Event Id symbols and publishes the symbols in
Dem_IntErrId.h.

13 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

6 Requirements traceability

Document: AUTOSAR requirements on Basic Software, general [3]

Requirement Satisfied by

[BSW003] Version identification
Software Documentation
Requirements are not covered in the
LIN driver SWS

[BSW00300] Module naming convention
Fulfilled by the function name
definitions in Chapter 8.3

[BSW00301] Limit imported information See Chapter 5.1.2
[BSW00302] Limit exported information LIN054
[BSW00304] AUTOSAR integer data types LIN047, Chapter 8.2 and Chapter 10.3

[BSW00305] Self-defined data types naming convention
Fulfilled by the function name
definitions in Chapter 8.2

[BSW00306] Avoid direct use of compiler and platform
specific keywords

LIN055

[BSW00307] Global variables naming convention
Not applicable
(requirement on implementation)

[BSW00308] Definition of global data LIN055
[BSW00309] Global data with read-only constraint LIN055
[BSW00310] API naming convention See Chapter 5.1.2
[BSW00312] Shared code shall be reentrant Not applicable
[BSW00314] Separation of interrupt frames and service
routines

LIN023

[BSW00318] Format of module version numbers LIN002
[BSW00321] Enumeration of module version numbers LIN002
[BSW00323] API parameter checking LIN048, LIN049

[BSW00325] Runtime of interrupt service routines
Not applicable
(requirement on implementation)

[BSW00326] Transition from ISRs to OS tasks
Not applicable
(requirement on implementation)

[BSW00327] Error values naming convention LIN048

[BSW00328] Avoid duplication of code

Not applicable
(requirement on implementation,
fulfilled e.g. by defining a LIN driver
that controls multiple channels)

[BSW00329] Avoidance of generic interfaces
Not applicable
(no generic interfaces specified within
this SWS)

[BSW00330] Usage of macros / inline functions instead of
functions

Not applicable
(requirement on implementation)

[BSW00331] Separation of error and status values Not applicable

[BSW00333] Documentation of callback function context
Software Documentation
Requirements are not covered in the
LIN driver SWS

[BSW00334] Provision of XML file
Software Documentation
Requirements are not covered in the
LIN driver SWS

[BSW00335] Status values naming convention
Fulfilled by the state diagram
description in chapter 7.3.3

[BSW00336] Shutdown interface Not applicable
[BSW00337] Classification of errors LIN048
[BSW00338] Detection and Reporting of development errors LIN049, LIN052
[BSW00339] Reporting of production relevant error status Not applicable

[BSW00341] Microcontroller compatibility documentation
Software Documentation
Requirements are not covered in the
LIN driver SWS

14 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

[BSW00342] Usage of source code and object code
Not applicable
(requirement on implementation)

[BSW00343] Specification and configuration of time Not applicable
[BSW00344] Reference to link-time configuration LIN013
[BSW00345] Pre-compile-time configuration See Chapter10
[BSW00346] Basic set of module files See Chapter 5.1.2
[BSW00347] Naming separation of different instances of BSW
drivers

LIN045

[BSW00348] Standard type header See Chapter 5.1.2
[BSW00350] Development error detection keyword LIN066

[BSW00353] Platform specific type header
Not applicable
(automatically included with standard
types)

[BSW00355] Do not redefine AUTOSAR integer data types
no redefined integer types in Chapter
8.2 and Chapter 10.3

[BSW00357] Standard API return type
Not applicable
(this type is not used within this SWS)

[BSW00358] Return type of init() functions fulfilled by 8.3.1.1

[BSW00359] Return type of callback functions
Not applicable
(no callback function specified)

[BSW00360] Parameters of callback functions
Not applicable
(no callback function specified)

[BSW00361] Compiler specific language extension header
Not applicable
(automatically included with standard
types)

[BSW00369] Do not return development error codes via API LIN059
[BSW00370] Separation of callback interface from API LIN042

[BSW00371] Do not pass function pointers via API
Fulfilled by the function definitions in
Chapter 8.3

[BSW00373] Main processing function naming convention
Not applicable
(no main processing function
specified)

[BSW00374] Module vendor identification LIN002
[BSW00375] Notification of wake-up reason LIN041

[BSW00376] Return type and parameters of main processing
functions

Not applicable
(no main processing function
specified)

[BSW00377] Module specific API return types See 8.2.8
[BSW00378] AUTOSAR boolean type Not applicable (not used)
[BSW00379] Module identification LIN002
[BSW00380] Separate C-File for configuration parameters LIN064
[BSW00381] Separate configuration header file for pre-
compile time parameters

See Chapter 5.1.2

[BSW00383] List dependencies of configuration files Not applicable
(implementation specific
documentation)

[BSW00384] List dependencies to other modules See Chapter 5
[BSW00385] List possible error notificatons LIN048
[BSW00386] Configuration for detecting an error See Chapter 7.6
[BSW00387] Specify the configuration class of callback
function

Chapter 8.6.3

[BSW00388] Introduce containers See Chapter 10.2
[BSW00389] Containers shall have names See Chapter 10.2
[BSW00390] Parameter content shall be unique within the
module

See Chapter 8

[BSW00391] Parameter shall have unique names fulfilled by parameter definitions in
Chapter 10.2

[BSW00392] Parameters shall have a type fulfilled by parameter definitions in
Chapter 10.2

15 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

[BSW00393] Parameters shall have a range fulfilled by parameter definitions in
Chapter 10.2

[BSW00394] Specify the scope of the parameters fulfilled by parameter definitions in
Chapter 10.2

[BSW00395] List the required parameters (per parameter) Not applicable
(parameters are defined in a way that
their values are independent from
other settings. The dependency is in
the code generation (implementation)
not in the configuration description ->
hardware abstraction)

[BSW00396] Configuration classes fulfilled by parameter definitions in
Chapter 10.2

[BSW00397] Pre-compile-time parameters Not applicable
(this is not a requirement, but a
definition of a technical term)

[BSW00398] Link-time parameters Not applicable
(this is not a requirement, but a
definition of a technical term)

[BSW00399] Loadable Post-build time parameters Not applicable
(this is not a requirement, but a
definition of a technical term)

[BSW004] Version check LIN062
[BSW00400] Selectable Post-build time parameters Not applicable

(this is not a requirement, but a
definition of a technical term)

[BSW00401] Documentation of multiple instances of
configuration parameters

Software Documentation
Requirements are not covered in the
LIN driver SWS

[BSW00402] Published information LIN002
[BSW00404] Reference to post build time configuration LIN013
[BSW00405] Reference to multiple configuration sets LIN011, LIN012, LIN013
[BSW00406] Check module initialization LIN006
[BSW00407] Function to read out published parameters LIN001
[BSW00408] Configuration parameter naming convention fulfilled by Chapter 10.2
[BSW00409] Header files for production code error IDs LIN065, LIN046
[BSW00410] Compiler switches shall have specified values fulfilled by Chapter 10.2
[BSW00411] Get version info keyword LIN066 and 8.3.1.3
[BSW00412] Separate H-File for configuration parameters See Chapter 5.1.2
[BSW00413] Accessing instances of BSW modules Not applicable

(this requirement has to fulfilled by the
LIN Interface

[BSW00414] Parameter of init function fulfilled by 8.3.1.1

[BSW00415] User dependent include files
Not applicable
(only one user for this module)

[BSW00416] Sequence of Initialization Not applicable
(this is a general software integration
requirement)

[BSW00417] Reporting of Error Events by Non-Basic
Software

Not applicable
(LIN driver is a Basic Software
Module)

[BSW00419] Separate C-Files for pre-compile time
configuration parameters

LIN064

[BSW00420] Production relevant error event rate detection Not applicable
(requirement on the DEM)

[BSW00421] Reporting of production relevant error events LIN058
[BSW00422] Debouncing of production relevant error status Not applicable

(requirement on the DEM)

16 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

[BSW00423] Usage of SW-C template to describe BSW
modules with AUTOSAR Interfaces

Not applicable
(this module does not provide an
AUTOSAR interface)

[BSW00424] BSW main processing function task allocation Not applicable
(requirement on system design, not on
a single module)

[BSW00425] Trigger conditions for schedulable objects Not applicable
(trigger conditions are system
configuration specific)

[BSW00426] Exclusive areas in BSW modules Not applicable
[BSW00427] ISR description for BSW modules Not applicable

(no ISR defined for this module, usage
of interrupts are implementation
specific)

[BSW00428] Execution order dependencies of main
processing functions

Not applicable
(LIN driver does not contain any main
processing functions)

[BSW00429] Restricted BSW OS functionality access Not applicable
(implementation requirement, not for
the specification)

[BSW00431] The BSW Scheduler module implements task
bodies

Not applicable
(applies only to BSW scheduler
module)

[BSW00432] Modules should have separate main processing
functions for read/receive and write/transmit data path

Not applicable
(no main processing function
specified)

[BSW00433] Calling of main processing functions Not applicable
(requirement on system design, not on
a single module)

[BSW00434] The Schedule Module shall provide an API for
exclusive areas

Not applicable
(applies only to BSW scheduler
module)

[BSW005] No hard coded horizontal interfaces within MCAL
Not applicable
(fulfilled by the AUTOSAR
architectural concept)

[BSW006] Platform independency LIN003

[BSW007] HIS MISRA C
Not applicable
(requirement on implementation)

[BSW009] Module User Documentation
Software Documentation
Requirements are not covered in the
LIN driver SWS

[BSW010] Memory resource documentation
Software Documentation
Requirements are not covered in the
LIN driver SWS

[BSW101] Initialization interface LIN006
[BSW158] Separation of configuration from implementation See Chapter 5.1.2
[BSW159] Tool-based configuration LIN029
[BSW160] Human-readable configuration data LIN031
[BSW161] Microcontroller abstraction LIN003

[BSW162] ECU layout abstraction
Not applicable
(fulfilled by the AUTOSAR
architectural concept)

[BSW164] Implementation of interrupt service routines LIN155
[BSW167] Static configuration checking LIN039
[BSW168] Diagnostic Interface of SW components Not applicable

(LIN driver doesn’t offer a diagnostic
interface)

[BSW170] Data for reconfiguration of AUTOSAR SW-
Components

See Chapter10

17 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

[BSW171] Configurability of optional functionality LIN066, LIN067

[BSW172] Compatibility and documentation of scheduling
strategy

Software Documentation
Requirements are not covered in the
LIN driver SWS

Document: AUTOSAR requirements on Basic Software, Cluster: SPAL general [6]

Requirement Satisfied by
[BSW12263] Object code compatible configuration concept LIN013
[BSW12056] Configuration of notification mechanisms Not applicable
[BSW12267] Configuration of wake-up sources Not applicable
[BSW12057] driver module initialization LIN006
[BSW12125] Initialization of hardware resources LIN006, LIN007
[BSW12163] driver module deinitialization LIN009
[BSW12461] Responsibility for register initialization LIN008
[BSW12462] Provide settings for register initialization See Chapter 10.3
[BSW12463] Combine and forward settings for register
initialization

Not applicable
(applies only for configurator)

[BSW12068] MCAL initialization sequence Not applicable
[BSW12069] Wake-up notification of ECU State Manager LIN041
[BSW157] Notification mechanisms of drivers and handlers LIN022, LIN052, LIN053
[BSW12169] Control of operation mode LIN032
[BSW12063] Raw value mode LIN016, LIN025
[BSW12075] Use of application buffers Not applicable

(LIN driver does not feature random
streaming capability)

[BSW12129] Resetting of interrupt flags LIN157
[BSW12064] Change of operation mode during running
operation

LIN032

[BSW12448] Behavior after development error detection LIN052, LIN059
[BSW12067] Setting of wake-up conditions LIN032
[BSW12077] Non-blocking implementation LIN027, LIN028.

[BSW12078] Runtime and memory efficiency
Not applicable because this is a non-
functional requirement

[BSW12092] Access to drivers
Not applicable because this is a non-
functional requirement

[BSW12265] Configuration data shall be kept constant
LIN013 (stored in ROM implicitly
constant)

[BSW12264] Specification of configuration items See Chapter10

Document: AUTOSAR requirements on Basic Software, Cluster: LIN [7]

Requirement Satisfied by
[BSW01501] Usage of LIN 2.0 specification LIN005, LIN070LIN016
[BSW01504] Usage of AUTOSAR architecture only in LIN
master nodes

LIN005LIN070

[BSW01522] Consistent data transfer LIN025, LIN053, LIN060
[BSW01560] Support for wake-up during transition to sleep-
mode

LIN033, LIN034, LIN035

[BSW01567] Compatibility to LIN 2.0 protocol specification Not applicable for the LIN driver
[BSW01551] Multiple LIN channel support for interface Not applicable for the LIN driver
[BSW01568] Hardware independence Not applicable for the LIN driver
[BSW01569] LIN Interface initialization Not applicable for the LIN driver
[BSW01570] Selection of static configuration sets Not applicable for the LIN driver
[BSW01564] Schedule Table Manager Not applicable for the LIN driver
18 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

[BSW01546] Schedule Table Handler Not applicable for the LIN driver
[BSW01561] Main function Not applicable for the LIN driver
[BSW01549] Timer service for Scheduling Not applicable for the LIN driver
[BSW01571] Transmission request service Not applicable for the LIN driver
[BSW01514] Wake-up notification support Not applicable for the LIN driver
[BSW01515] API to wake-up by upper layer to LIN Interface Not applicable for the LIN driver
[BSW01502] RX indication and TX confirmation call-backs Not applicable for the LIN driver
[BSW01558] Check successful communication Not applicable for the LIN driver
[BSW01527] Notification for missing or erroneous receive
LIN-PDU

Not applicable for the LIN driver

[BSW01523] API to send the LIN to sleep-mode Not applicable for the LIN driver
[BSW01565] Compatibility to LIN 2.0 protocol specification LIN005, LIN016
[BSW01553] Basic Software SPAL General Requirements LIN004
[BSW01552] Hardware abstraction LIN LIN003
[BSW01503] Frame based API for send and received data LIN024, LIN025
[BSW01555] LIN Interface shall poll the LIN driver for
transmit/receive notifications

LIN024

[BSW01547] Support of standard UART and LIN optimized
HW

LIN063

[BSW01572] LIN driver initialization LIN009, LIN011
[BSW01573] Selection of static configuration sets LIN011, LIN012
[BSW01563] Wake-up Notification LIN041
[BSW01556] Multiple LIN channel support for driver LIN007, LIN008, LIN009
[BSW01566] Transition to sleep-mode LIN033, LIN034, LIN035, LIN073
[BSW01524] Support of reduced power operation mode LIN032
[BSW01526] Error notification LIN052, LIN053
[BSW01533] Compatibility to TP of LIN 2.0 specification Not applicable for the LIN driver
[BSW01540] LIN Transport Layer Initialization Not applicable for the LIN driver
[BSW01545] LIN Transport Layer Availability Not applicable for the LIN driver
[BSW01534] Concurrent connection configuration Not applicable for the LIN driver
[BSW01574] Multiple Transport Layer instances Not applicable for the LIN driver
[BSW01539] Transport connection properties Not applicable for the LIN driver
[BSW01544] Error handling Not applicable for the LIN driver

19 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

7 Functional specification

The LIN driver module is required to manage the hardware dependent aspects of
communication via any LIN cluster attached to the node the driver resides in.

This includes accepting header data for transmission onto the bus, response frame
data to transmit, the retrieval of header information and of response frame data
intended for the node.

The need for sleep mode management of both the node and of the cluster exists.
This implies the ability to detect and generate a ‘wake-up’ pulse as defined in the
LIN2.0 specification. If the underlying hardware supports a low-power mode then
entering and exiting from that state is included.

7.1 General Requirements

The Lin module is a Basic Software Module that has direct access to hardware
resources.

LIN004: The Lin module shall fulfill the requirements for Basic Software Modules as
specified in [6].

LIN005: The Lin module shall conform to the LIN 2.0 Protocol Specification as
specified in [15]. This applies to LIN 2.0 Master nodes only.

Operating as a slave node is out of scope for this AUTOSAR LIN driver specification.

LIN055: The Lin module shall fulfill all design and implementation guidelines as
described in [12].

LIN155: The Lin module shall implement the ISRs for all LIN hardware unit interrupts
that are needed.

LIN156: The Lin module shall ensure that all unused interrupts are disabled.

LIN157: The Lin module shall reset the interrupt flag at the end of the ISR (if not
done automatically by hardware).

LIN158: The Lin module shall not configure the interrupt (i.e. priority) nor set the
vector table entry.

7.2 Version Check

7.2.1 Requirements

20 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

LIN062: The Lin module shall avoid the integration of incompatible files by the
following pre-processor checks:

For included header files:
 <MODULENAME>_AR_MAJOR_VERSION
 <MODULENAME>_AR_MINOR_VERSION

shall be identical.
For the module internal c and h files:
 LIN_SW_MAJOR_VERSION
 LIN_SW_MINOR_VERSION
 LIN_AR_MAJOR_VERSION
 LIN_AR_MINOR_VERSION
 LIN_AR_PATCH_VERSION

shall be identical.

7.3 LIN driver and Channel Initialization

7.3.1 Background & Rationale

Before communication can be started on a LIN bus, both the LIN driver and the
relevant LIN channel must be initialized.

The driver initialization (Lin_Init) handles all aspects of initialization that are of
relevance to all channels present in the LIN hardware unit. This may include any
static variables or hardware register settings common to all LIN channels that are
available.

Each channel must also be initialized according to the configuration supplied. This
will include (but is not limited to) the baud rate over the bus. For this purpose, the LIN
driver provides a LIN channel specific initialization function (Lin_InitChannel).

There must be at least one statically defined configuration set available for the LIN
driver. When the LIN interface invokes the initialization functions, it has to provide
channel specific pointers to the configuration that it wishes to use.

The LIN driver also provides a function to ‘disable’ each LIN channel separately (
Lin_DeInitChannel).

7.3.2 Requirements

The Lin module shall not initialize or configure LIN channels, which are not used.

LIN011: The Lin module’s configuration shall include a data communication rate set
as defined by static configuration data (Lin_ChannelConfigType).

LIN012: The Lin module shall allow the environment to select between different static
configuration data at runtime(Lin_InitChannel).

21 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

LIN013: The Lin module’s configuration data, intended for hardware registers, shall
be stored as hardware specific data structures in ROM (Lin_ConfigType,
Lin_ChannelConfigType).

LIN014: Each LIN PID shall be associated with a checksum model (either ‘enhanced’
where the PID is included in the checksum, or ‘classic’ where only the response data
is check-summed) (Lin_PduType).

LIN015: Each LIN PID shall be associated with a response data length in bytes (
Lin_PduType).

7.3.3 State diagrams

The LIN driver has a state machine that is shown in Figure 7-1.

stm Lin

Reset

LIN_UNINIT

LIN_INIT

Lin_Init

for each channel

LIN_CH_UNINIT

LIN_CH_OPERATIONAL LIN_CH_SLEEP

Lin_InitChannelLin_DeInitChannel

Lin_GoToSleep

Lin_GoToSleepInternal

Wake-Up by Slave (optional)

Lin_WakeUp

22 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

Figure 7-1: LIN driver states

Module State Meaning / Activities in the state
LIN_UNINIT The state LIN_UNINIT means that the Lin module has not

been initialized yet and cannot be used.
LIN_INIT The LIN_INIT state indicates that the LIN driver has

been initialized, making each available channel ready for
service.

Channel State Meaning / Activities in the state
LIN_CH_UNINIT When a channel is in state LIN_CH_UNINIT, the LIN

driver is initialized but the LIN channel is not initialized.
LIN_CH_OPERATIONAL The individual channel has been initialized (using at least

one statically configured data set) and is able to
participate in the LIN cluster.

LIN_CH_SLEEP The detection of a ‘wake-up’ pulse is enabled. The LIN
hardware is into a low power mode if such a mode is
provided by the hardware.

LIN145: Reset -> LIN_UNINIT: After reset, the Lin module shall set its state to
LIN_UNINIT.

LIN146: LIN_UNINIT -> LIN_INIT: The Lin module shall transition from LIN_UNINIT
to LIN_INIT when the function Lin_Init is called.

The LIN module’s environment shall call the function Lin_Init only once during
runtime.

LIN171: On entering the state LIN_INIT, the Lin module shall set each channel into
state LIN_CH_UNINIT.

The LIN module’s environment must initialize each LIN channel separately by calling
the function Lin_InitChannel.

LIN147: LIN_CH_UNINIT -> LIN_CH_OPERATIONAL: The function
Lin_InitChannel shall set the LIN channel state of the referenced channel to
LIN_CH_OPERATIONAL.

LIN172: LIN_CH_OPERATIONAL -> LIN_CH_SLEEP: If a go to sleep is requested
by the LIN interface (Lin_GoToSleep), the Lin module shall ensure that the rest of
the LIN cluster goes to sleep also. This is achieved by issuing a go-to-sleep-
command on the bus before entering the LIN_CH_SLEEP state.

LIN173: LIN_CH_SLEEP -> LIN_CH_OPERATIONAL through Wake-Up by Slave:
if a LIN channel is in the state LIN_CH_SLEEP and upon detection of a valid wake-
up pulse onto the bus, the Lin module shall put the LIN channel into the state
23 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

LIN_CH_OPERATIONAL. The LIN 2.0 specification describes this ‘wake-up’ as a
dominant state on the bus lasting between 250µs and 5ms. The activity during
LIN_CH_SLEEP is to detect a dominant pulse, which shall be handled as valid wake-
up request after 150 µs at the last. If such a wake-up was received from the bus, the
master node has to begin communication to determine why the wake-up occurred.
The form and content of this communication is outside the scope of the LIN driver
specification.

A wake-up may also be directly requested from a higher layer in the AUTOSAR
architecture (the LIN Interface layer will directly communicate this to the driver).

LIN174: LIN_CH_SLEEP -> LIN_CH_OPERATIONAL through Lin_Wakeup: If a
LIN channel is in the state LIN_CH_SLEEP, the function Lin_Wakeup shall put the
LIN channel into the state LIN_CH_OPERATIONAL. In this case, the LIN driver shall
ensure that the rest of the cluster is awake. This is achieved by issuing a wake-up
request, forcing the bus to the dominant state for 250 μs to 5 ms.

LIN184: A mode switch request to the current mode is allowed and shall not lead to
an error, even if DET is enabled.

7.4 Frame processing

7.4.1 Background & Rationale

From the point of view of the LIN driver module, transmissions are composed of two
actions; the transmission of the LIN header, and the transmission of the response.
Only the LIN master node transmits the LIN header, but either the master or one of
the slaves may transmit the response [15].

The driver must also be able to access data concerning the checksum model and
data length for each LIN PID. LIN2.0 has a different checksum model compared to
LIN1.3, but the LIN2.0 master must be able to communicate with both LIN1.3 and
LIN2.0 slaves.

The checksum is a part of the response, and may or may not include the PID
depending upon the checksum model for the PID in question. The LIN ID’s 60 (0x3c)
to 63 (0x3f) must always use the classic (response data only) checksum model [15].

The LIN driver module works with LIN frames as its basic building block. This means
that the LIN interface layer requests a particular frame to be sent during one of its
scheduler time-slots. Any response from the frame should be available latest before
the next frame will be sent.

In the case that the master is also responsible for sending the frame response, an
indication (PduInfoPtr->Drc=LIN_MASTER_RESPONSE) will be given at the same
time as the request to send the header. The transmission of the response itself has
to be triggered subsequently by another function call.

24 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

The LIN driver module must be able to retrieve data from the response and make it
available to the LIN interface module. It must retrieve all data from the response
without blocking.

7.4.2 Requirements

LIN016: The LIN driver shall interpret the supplied identifier as PID. The identifier is
then transmitted as-supplied within the LIN header (Lin_SendHeader).

LIN017: The LIN driver shall be able to send a LIN header. This is composed of the
break field, synch byte field, and protected identifier byte field as detailed in [15]
(Lin_SendHeader).

LIN018: The LIN driver shall be able to send a LIN header and response.

LIN019: The LIN driver shall be able to calculate either a ‘classic’ or an ‘enhanced’
checksum depending upon the checksum model for the current LIN PDU.

LIN021: The LIN driver shall abort the current frame transmission if a new frame
transmission is requested by the LIN interface (Lin_SendHeader), also if an
ongoing transmission may be still in progress or unsuccessfully completed.

LIN022: The function Lin_GetStatus shall return the status of the current frame
transmission request.

LIN024: The LIN driver shall make received data available to the LIN interface
module. After successful reception of a whole LIN frame, the received data shall be
prepared for function call of the LIN interface (Lin_GetStatus).

LIN025: The LIN driver shall send response data as provided by the LIN interface
module (Lin_SendResponse).

LIN026: If the LIN hardware unit cannot queue the bytes for transmission or
reception (e.g. simple UART implementation), the LIN driver shall provide a
temporary communication buffer.

LIN027: The LIN driver shall initiate transmission without blocking, including the
check of the next byte transmission only upon successful reception of the previous
one (receive-back).

LIN028: The LIN driver shall receive data without blocking.

7.4.3 Data Consistency

Transmit Data Consistency:

LIN053: The LIN driver shall directly copy the data from the upper layer buffers. It is
the responsibility of the upper layer to keep the buffer consistent until return of
function call.

25 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

Receive Data Consistency:

LIN060: The complete LIN frame receive processing (including copying to destination
layer) can be implemented in various solutions, for instance with ISR or with the
Lin_GetStatus function. Whether with ISR or with Lin_GetStatus function, in any case
the received data shall be consistent until either next LIN frame has been received
successfully or LIN channel state has changed.

As long as it is guaranteed that neither the ISRs nor Lin_GetStatus can be
interrupted by itself, the LIN hardware (or shadow) buffer is always consistent,
because it is written and read in sequence in exactly one function that is never
interrupted by itself.

LIN102: For the LIN response reception the bytes of the SDU buffer shall be
allocated in increasingly consecutive address order. The LIN frame data length
information defines the minimum SDU buffer length.

7.4.4 Data byte mapping

LIN096: Data mapping between memory and the LIN frame is defined in a way that
the array element 0 is containing the LSB (the data byte to send/receive first) and the
array element (n-1) is containing the MSB (the data byte to send/receive last).

7.5 Sleep and wake-up functionality

7.5.1 Background & Rationale

The master node can be awakened either by a wake-up signal generated by one of
the slaves, or by a request from the higher layer (LIN interface). The LIN interface
controls the message schedule table and so must be able to instruct the LIN driver to
put the hardware unit to sleep, or to wake it up.

For this purpose, the LIN driver provides functions to put the LIN channel into its
LIN_CH_SLEEP state (Lin_GoToSleep/Lin_GoToSleepInternal).

Upon sleep or wake-up the master must communicate the status change with the
rest of the network.

7.5.2 Requirements

LIN032: When the LIN channel is requested to enter sleep mode it shall perform the
transition to low-power mode of the LIN hardware unit (if available) (
Lin_GoToSleep/Lin_GoToSleepInternal).

LIN033: Each LIN channel shall be able to accept a sleep request independently of
the other channel states (Lin_GoToSleep/Lin_GoToSleepInternal).
26 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

LIN035: The LIN channel shall activate the wake-up detection as soon as possible
after completion of the go-to-sleep-command when the LIN bus becomes idle.

LIN037: When a LIN channel is in LIN_CH_SLEEP state, the LIN hardware unit shall
monitor the bus for a wake-up request on that channel.

LIN040: If a wake-up request was received, the LIN driver shall change state to
LIN_CH_OPERATIONAL for the channel that received the wake-up pulse.

LIN041: If a wake-up request was received, the LIN driver shall notify via a callback
within interrupt context the upper layer (LIN interface) immediately. This notification
must identify the channel from where the wake-up was detected.

LIN043: If the LIN driver receives a wake-up request from the LIN interface, the
requested channel shall send a wake-up pulse to the bus (Lin_WakeUp) and the
wake-up detection of bus wake-up events has to be disabled.

The function Lin_GetStatus returns the current state of a given LIN channel.

7.6 Error classification

The error classification depends on the time of error occurrence according to product
life cycle:

 Development Errors

Those errors shall be detected and fixed during development phase. In most
cases, those errors are software errors. The detection of errors that shall only
occur during development can be switched off for production code (by static
configuration namely pre-processor switches).

 Production Errors

Those errors are hardware errors and software exceptions that cannot be avoided
and are also expected to occur in production code.

LIN046: Values for production code Event Ids are assigned externally by the
configuration of the DEM. They are published in the file Dem_IntErrId.h and included
via Dem.h.

LIN047: Development error values are of type uint8.

LIN048: The following errors and exceptions shall be detectable by the LIN driver
depending on its build version (development/production mode)

27 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

Type or error Relevance Related error code Value [hex]

API service used without
module initialization

Development LIN_E_UNINIT
LIN_E_CHANNEL_UNINIT

0x00
0x01

API service used with an
invalid or inactive channel
parameter

Development LIN_E_INVALID_CHANNEL 0x02

API service called with invalid
configuration pointer

Development LIN_E_INVALID_POINTER 0x03

Invalid state transition for the
current state

Development LIN_E_STATE_TRANSITION 0x04

Timeout caused by hardware
error

Production LIN_E_TIMEOUT Assigned
by DEM

7.7 Error detection

LIN049: The detection of development errors is configurable (ON/OFF) at pre-
compile time. The switch LinDevErrorDetect (see chapter 10) shall activate or
deactivate the detection of all development errors.

LIN050: If the LinDevErrorDetect switch is enabled API parameter checking is
enabled.

LIN051: The detection of production code errors cannot be switched off.

LIN097: If a change to the LIN hardware control registers results in the need to wait
for a status change, this shall be protected by a configurable time out mechanism
(LinTimeoutDuration). If such a time out is detected the LIN_E_TIMEOUT, error
shall be raised to the DEM. This situation should only arise in the event of a LIN
hardware unit fault, and should be communicated to the rest of the system.

A LIN_E_TIMEOUT will affect the complete LIN stack in a way that the LIN driver
must be re-initialized or the LIN functionality must be switched off.

7.8 Error notification

LIN052: Detected development errors shall be reported to the Det_ReportError
service of the Development Error Tracer (DET) if the pre-processor switch
LinDevErrorDetect is set (see chapter 10).

LIN058: Production errors shall be reported to Diagnostic Event Manager (DEM) by
calling the function Dem_ReportErrorStatus. The only production error that can
be reported by the LIN driver is the LIN_E_TIMEOUT error.

28 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

8 API specification

8.1 Imported types

In this chapter all types included from other modules are listed:

Header file Imported Type
Dem_Types.h Dem_EventIdType
EcuM_Types.h EcuM_WakeupSourceType

Std_VersionInfoType Std_Types.h
Std_ReturnType

8.2 Type definitions

8.2.1 Lin_ConfigType

Lin_ConfigType Name:
Type: Structure
Range: Hardware and

Implementation
dependent
structure

The contents of the initialization data structure are LIN
hardware specific

Description: This is the type of the external data structure containing the overall initialization
data for the LIN driver and SFR settings affecting all LIN channels. A pointer to
such a structure is provided to the LIN driver initialization routine for configuration
of the driver and LIN hardware unit.

8.2.2 Lin_ChannelConfigType

Lin_ChannelConfigType Name:
Type: Structure
Range: Hardware and

Implementation
dependent
structure

The contents of the initialization data structure are LIN
hardware specific

Description: This is the type of the external data structure containing the overall initialization
data for one LIN Channel. A pointer to such a structure is provided to the LIN
channel initialization routine for configuration of the LIN hardware channel.

8.2.3 Lin_FramePidType

Lin_FramePidType Name:
Type: uint8
Range: 0...0xFE The LIN identifier (0…0x3F) together with its two parity bits.
Description: Represents all valid protected Identifier used by Lin_SendHeader().

8.2.4 Lin_FrameCsModelType

29 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

Lin_FrameCsModelType Name:
Type: Enumeration

LIN_ENHANCED_CSEnhanced checksum model Range:
LIN_CLASSIC_CS Classic checksum model

Description: This type is used to specify the Checksum model to be used for the LIN Frame.

8.2.5 Lin_FrameResponseType

Lin_FrameResponseType Name:
Type: Enumeration

LIN_MASTER_RESPONSEResponse is generated from this (master) node
LIN_SLAVE_RESPONSE Response is generated from a remote slave node

Range:

LIN_SLAVE_TO_SLAVE Response is generated from one slave to another slave,
for the master the response will be anonymous, it does not
have to receive the response.

Description: This type is used to specify whether the frame processor is required to transmit the
response part of the LIN frame.

8.2.6 Lin_FrameDlType

Lin_FrameDIType Name:
Type: uint8
Range: 1...8 Data length of a LIN Frame
Description: This type is used to specify the number of SDU data bytes to copy.

8.2.7 Lin_PduType

Lin_PduType Name:
Type: Structure

Lin_FrameCsModelType Cs --
Lin_FramePidType Pid --
uint8* SduPtr --
Lin_FrameDIType DI --

Element:

Lin_FrameResponseTypeDrc --
Description: This Type is used to provide PID, checksum model, data length and SDU pointer

from the LIN Interface to the LIN driver.

8.2.8 Lin_StatusType

Lin_StatusType Name:
Type: Enumeration

LIN_NOT_OK LIN frame operation return value.
Development or production error occurred

LIN_TX_OK LIN frame operation return value.
Successful transmission.

LIN_TX_BUSY LIN frame operation return value.
Ongoing transmission (Header or Response).

Range:

LIN_TX_HEADER_ERRORLIN frame operation return value.
Erroneous header transmission such as:
- Mismatch between sent and read back data
- Identifier parity error or
- Physical bus error

30 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

LIN_TX_ERROR LIN frame operation return value.
Erroneous response transmission such as:
- Mismatch between sent and read back data
- Physical bus error

LIN_RX_OK LIN frame operation return value.
Reception of correct response.

LIN_RX_BUSY LIN frame operation return value. Ongoing reception: at
least one response byte has been received, but the
checksum byte has not been received.

LIN_RX_ERROR LIN frame operation return value.
Erroneous response reception such as:
- Framing error
- Overrun error
- Checksum error or
- Short response

LIN_RX_NO_RESPONSE LIN frame operation return value.
No response byte has been received so far.

LIN_CH_UNINIT LIN channel state return value.
LIN channel not initialized.

LIN_CH_OPERATIONAL LIN channel state return value.
Normal operation; the related LIN channel is ready to
transmit next header. No data from previous frame
available (e.g. after initialization)

LIN_CH_SLEEP LIN channel state return value.
Sleep mode operation; in this mode wake-up detection
from slave nodes is enabled.

Description: LIN operation states for a LIN channel or frame, as returned by the API service
Lin_GetStatus().

LIN101: Lin_StatusType: The LIN channel state return value
LIN_CH_OPERATIONAL and all LIN frame operation return values can be indicated
only, if the LIN channel state-machine is in state LIN_CH_OPERATIONAL.

8.3 Function definitions

This is a list of functions provided for upper layer modules.

8.3.1 Services affecting the complete LIN hardware unit

8.3.1.1 Lin_Init

LIN006:

Lin_Init Service name:
Syntax: void Lin_Init(

 const Lin_ConfigType* Config
)

Service ID[hex]: 0x00
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): Config Pointer to LIN driver configuration set.
Parameters
(inout):

None

Parameters (out): None

31 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

Return value: None
Description: Initializes the LIN module.

LIN084: The function Lin_Init shall initialize the Lin module, i.e. static variables,
including flags and LIN HW Unit global hardware settings.

Different sets of static configuration may have been configured.

LIN150: The function Lin_Init shall initialize the module according to the
configuration set pointed to by the parameter Config.

LIN008: The function Lin_Init shall invoke initializations for relevant hardware register
settings common to all channels available on the LIN hardware unit.

LIN106: The Lin module’s environment shall not call any function of the Lin module
before having called Lin_Init.

LIN099: If development error detection for the Lin module is enabled: the function
Lin_Init shall check the parameter Config for being within the allowed range. If Config
is not in the allowed range, the function Lin_Init shall raise the development error
LIN_E_INVALID_POINTER.

LIN105: If development error detection for the Lin module is enabled: the function
Lin_Init shall check the Lin driver for being in the state LIN_UNINIT. If the Lin driver is
not in the state LIN_UNINIT, the function Lin_Init shall raise the development error
LIN_E_STATE_TRANSITION.

8.3.1.2 Lin_WakeUpValidation

LIN160:
Service name: Lin_WakeupValidation
Syntax: void Lin_WakeupValidation(

)

Service ID[hex]: 0x0a
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: Identifies LIN channels.

After a wake up caused by LIN bus Transceiver the function Lin_WakeUpValidation
will be called by the LIN Interface module to identify the corresponding LIN channel
(e.g. in case of multiple transceivers are physically connected to one MCU wake up
pin).

32 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

LIN098: The function Lin_WakeUpValidation shall evaluate each connected LIN
channel inside the LIN Driver implementation individually. When a wake-up event on
an individual channel (e.g. RxD pin has constant low level) is detected, the function
Lin_WakeUpValidation shall notify the ECU State Manager module immediately via
the EcuM_SetWakeupEvent call-back function.

LIN107: If development error detection for the LIN module is enabled: if the function
Lin_WakeUpValidation is called before the LIN module was initialized, the function
Lin_WakeUpValidation shall raise the development error LIN_E_UNINIT.

LIN108: If development error detection for the LIN module is enabled: the function
Lin_WakeUpValidation shall raise the development error LIN_E_CHANNEL_UNINIT
if no LIN Channel of the LIN driver has been initialized.

LIN109: If development error detection for the LIN module is enabled: the function
Lin_WakeupValidation shall raise the development error
LIN_E_STATE_TRANSITION if no LIN channel of the driver is in the LIN_CH_SLEEP
state.

8.3.1.3 Lin_GetVersionInfo

LIN161:
Service name: Lin_GetVersionInfo
Syntax: void Lin_GetVersionInfo(

 Std_VersionInfoType* versioninfo
)

Service ID[hex]: 0x01
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters
(inout):

None

Parameters (out): versioninfo Pointer to where is stored the version information of this module.
Return value: None
Description: Returns the version information of this module.

LIN001: The function Lin_GetVersionInfo shall return the version information of the
LIN module. The version information includes:

- Module Id
- Vendor Id
- Vendor specific version numbers (BSW00407).

LIN110: If source code for caller and callee of Lin_GetVersionInfo is available, the
LIN module should realize Lin_GetVersionInfo as a macro, defined in the module’s
header file.

LIN111: The function Lin_GetVersionInfo shall be pre compile time configurable
On/Off by the configuration parameter: LinVersionInfoApi.

33 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

8.3.2 Services affecting a single LIN channel

8.3.2.1 Lin_InitChannel

LIN007:

Lin_InitChannel Service name:
Syntax: void Lin_InitChannel(

 uint8 Channel,
 const Lin_ChannelConfigType* Config
)

Service ID[hex]: 0x02
Sync/Async: Synchronous
Reentrancy: Non Reentrant

Channel LIN channel to be initialized
Parameters (in):

Config Pointer to LIN channel configuration set
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: (Re-)initializes a LIN channel.

LIN112: The function Lin_InitChannel shall (re-)initialize a LIN channel. Different sets
of static configuration may have been configured. The parameter Config is a pointer
to the configuration set of a LIN channel.

LIN113: The function Lin_InitChannel shall initialize only LIN channel specific
settings. Hardware register settings that have impact on all LIN channels inside the
HW unit shall not be changed.

LIN151: The Lin module’s environment shall call the function Lin_InitChannel before
calling any other LIN channel related function (e.g. Lin_SendHeader,
Lin_SendResponse).

Symbolic names of the available configuration sets are provided by the configuration
description of the LIN driver. See chapter 10 about configuration description.

LIN100: If development error detection for the Lin module is enabled: the function
Lin_InitChannel shall check the parameter Config for being within the allowed range.
If Config is not in the allowed range, the function Lin_InitChannel shall raise the
development error LIN_E_INVALID_POINTER.

LIN114: If development error detection for the LIN module is enabled: if the function
Lin_InitChannel is called before the LIN module was initialized, the function
Lin_InitChannel shall raise the development error LIN_E_UNINIT.

LIN115: If development error detection for the LIN module is enabled: the function
Lin_InitChannel shall raise the development error LIN_E_INVALID_CHANNEL if the
channel parameter is invalid.

34 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

8.3.2.2 Lin_DeInitChannel

LIN009:

Lin_DeInitChannel Service name:
Syntax: void Lin_DeInitChannel(

 uint8 Channel
)

Service ID[hex]: 0x03
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): Channel LIN channel to be de-initialized
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: De-Inits a LIN channel.

LIN086: The function Lin_DeInitChannel shall reset all LIN module global variables
and all SFRs that are used by the LIN channel to their default reset value.

LIN152: The function Lin_DeInitChannel shall not change hardware register settings
that have impact on other LIN channels.

LIN178: The function Lin_DeInitChannel shall only be executable when the LIN
channel state-machine is in state LIN_CH_OPERATIONAL.

LIN116: If development error detection for the LIN module is enabled: the function
Lin_DeInitChannel shall raise the development error LIN_E_INVALID_CHANNEL if
the channel parameter is invalid.

8.3.2.3 Lin_SendHeader

LIN164:
Service name: Lin_SendHeader
Syntax: Std_ReturnType Lin_SendHeader(

 uint8 Channel,
 Lin_PduType* PduInfoPtr
)

Service ID[hex]: 0x04
Sync/Async: Synchronous
Reentrancy: Non Reentrant

Channel LIN channel to be addressed
Parameters (in): PduInfoPtr Pointer to PDU containing the PID, Checksum model, Response

type, Dl and SDU data pointer
Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: send command has been accepted

E_NOT_OK: send command has not been accepted,
development or production error occurred

Description: Sends a LIN header.

LIN087: The function Lin_SendHeader shall send the header part (Break Field,
Synch Byte Field and PID Field) of a LIN frame on the addressed LIN channel.

35 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

In case of receiving data the LIN Interface has to wait for the corresponding response
part of the LIN frame by polling with the function Lin_GetStatus() after using the
function Lin_SendHeader().

LIN122: The Lin module’s environment shall only call Lin_SendHeader on a Channel
which is in state LIN_CH_OPERATIONAL.

LIN117: If development error detection for the LIN module is enabled: if the function
Lin_SendHeader is called before the LIN module was initialized, the function
Lin_SendHeader shall raise the development error LIN_E_UNINIT and return with
E_NOT_OK.

LIN118: If development error detection for the LIN module is enabled: if the channel
Channel is not initialized, the function Lin_SendHeader shall raise the development
error LIN_E_CHANNEL_UNINIT and return with E_NOT_OK.

LIN119: If development error detection for the LIN module is enabled: if the channel
parameter is invalid, the function Lin_SendHeader shall raise the development error
LIN_E_INVALID_CHANNEL and return with E_NOT_OK.

LIN120: If development error detection for the LIN module is enabled: the function
Lin_SendHeader shall check the parameter PduInfoPtr for not being a NULL pointer.
If PduInfoPtr is a NULL pointer, the function Lin_SendHeader shall raise the
development error LIN_E_INVALID_POINTER and return with E_NOT_OK.

LIN121: If development error detection for the LIN module is enabled: if the LIN
channel state-machine is in the state LIN_CH_SLEEP, the function Lin_SendHeader
shall raise the development error LIN_E_STATE_TRANSITION and return with
E_NOT_OK.

8.3.2.4 Lin_SendResponse

LIN165:
Service name: Lin_SendResponse
Syntax: Std_ReturnType Lin_SendResponse(

 uint8 Channel,
 Lin_PduType* PduInfoPtr
)

Service ID[hex]: 0x05
Sync/Async: Synchronous
Reentrancy: Non Reentrant

Channel LIN channel to be addressed
Parameters (in): PduInfoPtr Pointer to PDU containing the PID, Checksum model, Response

type, Dl and SDU data pointer
Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: send command has been accepted

E_NOT_OK: send command has not been accepted,
development or production error occurred

Description: Sends a LIN response.

36 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

LIN088: The function Lin_SendResponse shall send a complete LIN response part of
a LIN frame on the addressed LIN channel.

LIN128: The function Lin_ SendResponse shall only be executable when the LIN
channel state-machine is in state LIN_CH_OPERATIONAL.

LIN153: The function Lin_ SendResponse shall only be executable when the prior
LIN channel function call for the addressed LIN channel was the Lin_SendHeader
function.

LIN123: If development error detection for the LIN module is enabled: if the function
Lin_SendResponse is called before the LIN module was initialized, the function
Lin_SendResponse shall raise the development error LIN_E_UNINIT and return
E_NOT_OK.

LIN124: If development error detection for the LIN module is enabled: if the channel
Channel is not initialized, the function Lin_SendResponse shall raise the
development error LIN_E_CHANNEL_UNINIT and return E_NOT_OK.

LIN125: If development error detection for the LIN module is enabled: if the channel
parameter is invalid, the function Lin_SendResponse shall raise the development
error LIN_E_INVALID_CHANNEL and return E_NOT_OK.

LIN126: If development error detection for the LIN module is enabled: the function
Lin_SendResponse shall check the parameter PduInfoPtr for not being a NULL
pointer. If PduInfoPtr is a NULL pointer, the function Lin_SendResponse shall raise
the development error LIN_E_INVALID_POINTER and return E_NOT_OK.

LIN127: If development error detection for the LIN module is enabled: if the LIN
channel state-machine is in the state LIN_CH_SLEEP, the function
Lin_SendResponse shall raise the development error LIN_E_STATE_TRANSITION
and return E_NOT_OK.

8.3.2.5 Lin_GoToSleep

LIN166:
Service name: Lin_GoToSleep
Syntax: Std_ReturnType Lin_GoToSleep(

 uint8 Channel
)

Service ID[hex]: 0x06
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): Channel LIN channel to be addressed
Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: Sleep command has been accepted

E_NOT_OK: Sleep command has not been accepted,
development or production error occurred

Description: The service instructs the driver to transmit a go-to-sleep-command on the
addressed LIN channel.

37 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

LIN089: The function Lin_GoToSleep shall send a go-to-sleep-command on the
addressed LIN channel.

LIN073: The function Lin_GoToSleep shall set the channel state to LIN_CH_SLEEP,
enable the wake-up detection and optionally set the LIN hardware unit to reduced
power operation mode (if supported by HW), even in case of an erroneous
transmission of the go-to-sleep-command.

LIN034: The LIN channel shall enter LIN_CH_SLEEP state upon completion of the
go-to-sleep-command, even in case of an erroneous transmission.

LIN074: The function Lin_GoToSleep shall terminate ongoing frame transmission of
prior transmission requests, even if the transmission is unsuccessfully completed.

LIN129: If development error detection for the LIN module is enabled: if the function
Lin_GoToSleep is called before the LIN module was initialized, the function
Lin_GoToSleep shall raise the development error LIN_E_UNINIT.

LIN130: If development error detection for the LIN module is enabled: the function
Lin_GoToSleep shall raise the development error LIN_E_CHANNEL_UNINIT if the
channel Channel is not initialized.

LIN131: If development error detection for the LIN module is enabled: the function
Lin_GoToSleep shall raise the development error LIN_E_INVALID_CHANNEL if the
channel parameter is invalid.

LIN132: If development error detection for the LIN module is enabled: the function
Lin_GoToSleep shall raise the development error LIN_E_STATE_TRANSITION if the
LIN channel state-machine is in the state LIN_CH_SLEEP.

8.3.2.6 Lin_GoToSleepInternal

LIN167:
Service name: Lin_GoToSleepInternal
Syntax: Std_ReturnType Lin_GoToSleepInternal(

 uint8 Channel
)

Service ID[hex]: 0x09
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): Channel LIN channel to be addressed
Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: Command has been accepted

E_NOT_OK: Command has not been accepted,
development or production error occurred

Description: Sets the channel state to LIN_CH_SLEEP, enables the wake-up detection and
optionally sets the LIN hardware unit.

38 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

LIN095: The function Lin_GoToSleepInternal shall set the channel state to
LIN_CH_SLEEP, enable the wake-up detection and optionally set the LIN hardware
unit to reduced power operation mode (if supported by HW).

LIN133: If development error detection for the LIN module is enabled: if the function
Lin_GoToSleepInternal is called before the LIN module was initialized, the function
Lin_GoToSleepInternal shall raise the development error LIN_E_UNINIT.

LIN134: If development error detection for the LIN module is enabled: the function
Lin_GoToSleepInternal shall raise the development error LIN_E_CHANNEL_UNINIT
if the channel Channel is not initialized.

LIN135: If development error detection for the LIN module is enabled: the function
Lin_GoToSleepInternal shall raise the development error
LIN_E_INVALID_CHANNEL if the channel parameter is invalid.

LIN136: If development error detection for the LIN module is enabled: the function
Lin_GoToSleepInternal shall raise the development error
LIN_E_STATE_TRANSITION if the LIN channel state-machine is in the state
LIN_CH_SLEEP.

8.3.2.7 Lin_WakeUp

LIN169:

Lin_WakeUp Service name:
Syntax: Std_ReturnType Lin_WakeUp(

 uint8 Channel
)

Service ID[hex]: 0x07
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): Channel LIN channel to be addressed
Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: Wake-up request has been accepted

E_NOT_OK: Wake-up request has not been accepted,
development or production error occurred

Description: Generates a wake up pulse.

LIN090: The function Lin_WakeUp shall generate a wake up pulse on the addressed
LIN channel.

LIN154: The Lin driver’s environment shall only call Lin_Wakeup when the LIN
channel is in state LIN_CH_SLEEP.

LIN137: If development error detection for the LIN module is enabled: if the function
Lin_WakeUp is called before the LIN module was initialized, the function
Lin_WakeUp shall raise the development error LIN_E_UNINIT.

39 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

LIN138: If development error detection for the LIN module is enabled: the function
Lin_WakeUp shall raise the development error LIN_E_CHANNEL_UNINIT if the
channel Channel is not initialized.

LIN139: If development error detection for the LIN module is enabled: the function
Lin_WakeUp shall raise the development error LIN_E_INVALID_CHANNEL if the
channel parameter is invalid or the channel is inactive.

LIN140: If development error detection for the LIN module is enabled: the function
Lin_WakeUp shall raise the development error LIN_E_STATE_TRANSITION if the
LIN channel state-machine is not in the state LIN_CH_SLEEP.

8.3.2.8 Lin_GetStatus

LIN168:
Service name: Lin_GetStatus
Syntax: Lin_StatusType Lin_GetStatus(

 uint8 Channel,
 uint8** Lin_SduPtr
)

Service ID[hex]: 0x08
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): Channel LIN channel to be checked
Parameters
(inout):

None

Parameters (out):
Lin_SduPtr Pointer to pointer to a shadow buffer or memory mapped LIN

Hardware receive buffer where the current SDU is stored.

Return value:

Lin_StatusType LIN_NOT_OK: Development or production error occurred
LIN_TX_OK: Successful transmission
LIN_TX_BUSY: Ongoing transmission (Header or Response)
LIN_TX_HEADER_ERROR: Erroneous header transmission such
as:
- Mismatch between sent and read back data
- Identifier parity error or Physical bus error
LIN_TX_ERROR: Erroneous response transmission such as:
- Mismatch between sent and read back data Physical bus error
LIN_RX_OK: Reception of correct response
LIN_RX_BUSY: Ongoing reception: at least one response byte
has been received, but the checksum byte has not been received
LIN_RX_ERROR: Erroneous response reception such as:
- Framing error
- Overrun error
- Checksum error or Short response
LIN_RX_NO_RESPONSE: No response byte has been received
so far
LIN_CH_UNINIT: LIN channel not initialized
LIN_CH_OPERATIONAL: Normal operation; the related LIN
channel is ready to transmit next header. No data from previous
frame available (e.g. after initialization)
LIN_CH_SLEEP: Sleep mode operation; in this mode wake-up
detection from slave nodes is enabled.

Description: Gets the status of the LIN driver.

40 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

LIN091: The function Lin_GetStatus shall return the current transmission, reception
or operation status of the LIN driver.

LIN092: If a SDU has been successfully received, the function Lin_GetStatus shall
store the SDU in a shadow buffer or memory mapped LIN Hardware receive buffer
referenced by Lin_SduPtr. The buffer will only be valid and must be read until the
next Lin_SendHeader function call.

LIN141: If development error detection for the LIN module is enabled: if the function
Lin_GetStatus is called before the LIN module was initialized, the function
Lin_GetStatus shall raise the development error LIN_E_UNINIT and return
LIN_NOT_OK.

LIN142: If development error detection for the LIN module is enabled: if the channel
Channel is not initialized, the function Lin_GetStatus shall raise the development
error LIN_E_CHANNEL_UNINIT and return LIN_NOT_OK.

LIN143: If development error detection for the LIN module is enabled: if the channel
parameter is invalid or the channel is inactive, the function Lin_GetStatus shall raise
the development error LIN_E_INVALID_CHANNEL and return LIN_NOT_OK.

LIN144: If development error detection for the LIN module is enabled: the function
Lin_GetStatus shall check the parameter Lin_SduPtr for not being a NULL pointer. If
Lin_SduPtr is a NULL pointer, the function Lin_GetStatus shall raise the development
error LIN_E_INVALID_POINTER and return LIN_NOT_OK.

8.4 Call-back notifications

There are no callback functions within the LIN driver.
The callback notifications are implemented in the LIN interface

8.5 Scheduled functions

There are no scheduled functions within the LIN driver

8.6 Expected Interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module.

API function Description
EcuM_SetWakeupEvent Sets the wakeup event.
Dem_ReportErrorStatus Reports errors to the DEM.

41 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

API function Description
EcuM_CheckWakeup This callout is called by the EcuM to poll a wakeup source. It shall also

be called by the ISR of a wakeup source to set up the PLL and check
other wakeup sources that may be connected to the same interrupt.

Det_ReportError Service to report development errors.

LIN176: The Lin module shall invoke the callback function EcuM_CheckWakeup
from within the wake-up ISR of the corresponding LIN channel OR from within the
function Lin_WakeUpValidation when a valid LIN wake-up pulse has been detected.

Restrictions:
- A wake-up ISR can only be raised if supported by the LIN hardware.

8.6.3 Configurable interfaces

There is no configurable target for the LIN driver. The LIN driver always reports to
LIN interface.

All callback functions that are called by the LIN driver are implemented in the LIN
Interface. These callback functions are not configurable.

42 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

9 Sequence diagrams

Complete sequence diagrams for transmission, reception and error handling can be
found in the LIN Interface Specification [8].

9.1 Receiving a LIN Frame

43 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

sd LinReceiveFrame

«Peripheral»

Hardware::LinController/UART

Generic
Elements::User

«module»

Lin::Lin

alt Hardware support

[Hardware LIN Controller]

[Simple UART]

Lin_GetStatus(return,Channel,Lin_SduPtr) :Lin_StatusType

[If HW Buffer is not accessible from
COM]: Copy Data from Hardware to
frame buffer in RAM

Lin_GetStatus

loop Per receiv ed byte

Interrupt

Copy byte from UART
Hardware to buffer

[Complete frame for this ECU
has been received]: Set flag

Interrupt

Lin_GetStatus(return,Channel,Lin_SduPtr) :Lin_StatusType

Check
Flag

Lin_GetStatus

Status: proposed by TO as per SWS Lin 1.0.8

Use case description:
LIN receive frame in polling mode (LIN interface in R5a mode)

Case 1: intell igent Hardware LIN controller
LIN Controller
- When a complete LIN frame has been received, a HW status register flag is set.

LIN Driver
- does nothing in case of reception

Case 2: simple UART
UART
- notifies the LIN driver with an interrupt for each byte that has been received.

LIN Driver
- copies each received byte from UART hardware to a buffer
- after the last byte of a LIN frame has been received, it sets a flag.

Comments:
This is the only use case where interrupts can be avoided in case there is a LIN controller in hardware.
For UART, there are stil l interrupts (per byte), but they are not propagated to an upper layer.

This sequence diagram is used as reference in other diagrams. It shall be integrated there and will be deleted here.

Figure 9-1: LIN Frame Receiving Sequence Chart

44 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into
containers. In order to support the specification Chapter 10.1 describes
fundamentals.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
LIN driver.

Chapter 10.3 specifies published information of the module LIN driver.

10.1 How to read this chapter

In addition to this section, it is highly recommended to read the documents:

- AUTOSAR Layered Software Architecture [2]
- AUTOSAR ECU Configuration Specification [9]

This document describes the AUTOSAR configuration methodology and the
AUTOSAR configuration metamodel in detail.

The following is only a short survey of the topic and it will not replace the ECU
Configuration Specification document.

10.1.1 Configuration and configuration parameters

Configuration parameters define the variability of the generic part(s) of an
implementation of a module. This means that only generic or configurable module
implementation can be adapted to the environment (software/hardware) in use during
system and/or ECU configuration.

The configuration of parameters can be achieved at different times during the
software process: before compile time, before link time or after build time. In the
following, the term “configuration class” (of a parameter) shall be used in order to
refer to a specific configuration point in time.

In the following tables the configuration class per configuration parameter is
specified. In fact, it is important to distinguish between the configuration-classes,
because they will result in different implementations and design processes.

Pre-compile time - specifies whether the configuration parameter shall be

of configuration class Pre-compile time or not

Label Description
X The configuration parameter shall be of configuration class Pre-compile time.
-- The configuration parameter shall never be of configuration class Pre-compile time.

Link time - specifies whether the configuration parameter shall be

of configuration class Link time or not

45 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

Label Description
X The configuration parameter shall be of configuration class Link time.
-- The configuration parameter shall never be of configuration class Link time.

Post Build - specifies whether the configuration parameter shall be

of configuration class Post Build or not

Label Description

X
The configuration parameter shall be of configuration class Post Build and no specific
implementation is required.

L
Loadable - the configuration parameter shall be of configuration class Post Build and only
one configuration parameter set resides in the ECU.

M
Multiple - the configuration parameter shall be of configuration class Post Build and is
selected out of a set of multiple parameters by passing a dedicated pointer to the init
function of the module.

-- The configuration parameter shall never be of configuration class Post Build.

10.1.2 Variants

Variants describe sets of configuration parameters. E.g., Variant 1: only pre-compile
time configuration parameters; Variant 2: mix of pre-compile- and post build time-
configuration parameters. In one variant a parameter can only be of one
configuration class.

10.1.3 Containers

Containers structure the set of configuration parameters. This means:

- all configuration parameters are kept in containers.
- (sub-) containers can reference (sub-) containers. It is possible to assign a

multiplicity to these references. The multiplicity then defines the possible
number of instances of the contained parameters.

Configuration parameters will be clustered into one container whenever

- the configuration parameters logically belong together
(e.g., general parameters which are valid for the entire module)

- the configuration parameters need to be instantiated
(e.g., parameters of a LIN cluster – those parameters must be instantiated for
each LIN channel separately)

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters.

The described parameters are input for the LIN driver configurator.

LIN029: The code configurator of the LIN driver is LIN hardware Unit specific.

46 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

LIN031: The configuration data shall have a symbolic format that is human readable
and understandable.

LIN039: Values that can be configured are hardware dependent. Therefore, the rules
and constraints cannot be given in the standard. The configuration tool is responsible
to do a static configuration checking, also regarding dependencies between modules
(e.g. Port driver, MCU driver etc.)

Figure 10-1: Configuration structure for the LIN driver

10.2.1 Variants

Two configuration variants are defined for the LIN driver.

LIN103: Variant 1: Pre-compile Configuration

47 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

In the pre-compile configuration all parameters below that are marked as Pre-compile
configurable shall be configurable in a pre-compile manner, for example as #defines.
The module is most likely delivered as source code.

LIN104: Variant 2: Mix of pre-compile and post build time-configuration for multiple
selectable configuration sets

This configuration includes all configuration options of the “Pre-compile
Configuration”. Additionally all parameters defined below as post build configurable
shall be configurable post build for example by flashing configuration data. The
module is most likely delivered as object code.

48 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

10.2.2 Lin
Lin Module Name

Module Description Configuration of the Lin (LIN driver) module.

Included Containers
Container Name MultiplicityScope / Dependency

LinGeneral 1 --
This container contains the global configuration
parameter of the Lin driver. This container is a
MultipleConfigurationContainer, i.e. this container
and its sub-containers exit once per configuration
set.

LinGlobalConfig 1

10.2.3 LinGeneral
LIN177 : SWS Item

Container Name LinGeneral
Description --
Configuration Parameters

LIN066 : SWS Item

N ame LinDevErrorDetect {LIN_DEV_ERROR_DETECT}
Description Switches the Development Error Detection and Notification

ON or OFF.
Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item --
N ame LinIndex {LIN179}
Description Specifies the InstanceId of this module instance. If only one

instance is present it shall have the Id 0.
Multiplicity 1
Type IntegerParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item LIN093 :
N ame LinTimeoutDuration {LIN_TIMEOUT_DURATION}
Description Specifies the maximum number of loops for blocking function

49 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

until a timeout is raised in short term wait loops
Multiplicity 1
Type IntegerParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item LIN067 :
N ame LinVersionInfoApi {LIN_VERSION_INFO_API}
Description Switches the Lin_GetVersionInfo function ON or OFF.
Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

No Included Containers

10.2.4 LinChannel
SWS Item LIN069 :
Container Name LinChannel

Description
This container contains the configuration (parameters) of the
LIN Controller(s).

Configuration Parameters

SWS Item LIN180 :
N ame LinChannelBaudRate {LIN_CHANNEL_BAUD_RATE}
Description Specifies the baud rate of the LIN channel
Multiplicity 1
Type IntegerParamDef
Range 1000 .. 20000
Default value --

X VARIANT-PRE-COMPILE Pre-compile time

Link time --
ConfigurationClass

Post-build time M VARIANT-POST-BUILD
Scope / Dependency

SWS Item LIN181 :
N ame LinChannelId
Description Identifies the LIN channel. Replaces

LIN_CHANNEL_INDEX_NAME from the LIN SWS.
Multiplicity 1

50 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

Type IntegerParamDef (Symbolic Name generated for this
parameter)
-- Default value

X All Variants Pre-compile time

Link time --
ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item LIN182 :
N ame LinChannelWakeUpSupport

{LIN_CHANNEL_WAKE_UP_SUPPORT}
Description Specifies if the LIN hardware channel supports wake up

functionality
Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item --
N ame LinChannelEcuMWakeUpSource
Description This parameter contains a reference to the Wakeup Source

for this controller as defined in the ECU State Manager.
Implementation Type: reference to
EcuM_WakeupSourceType

Multiplicity 0..1
Type Reference to EcuMWakeupSource

Pre-compile time --
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item LIN094 :
N ame LinClockRef {LIN_CLOCK_SRC_REFERENCE}
Description Reference to the LIN clock source configuration, which is set

in the MCU driver configuration.
Multiplicity 1
Type Reference to McuClockReferencePoint

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency

No Included Containers

51 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

10.2.5 LinGlobalConfig
LIN178 : SWS Item

Container Name LinGlobalConfig [Multi Config Container]

Description

This container contains the global configuration parameter of
the Lin driver. This container is a
MultipleConfigurationContainer, i.e. this container and its sub-
containers exit once per configuration set.

Configuration Parameters

Included Containers
Container Name MultiplicityScope / Dependency

This container contains the configuration
(parameters) of the LIN Controller(s).

LinChannel 1..*

52 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

10.3 Published Information

Published information contains data defined by the implementer of the SW module
that does not change when the module is adapted (i.e. configured) to the actual
HW/SW environment. It thus contains version and manufacturer information.

The standard common published information like

vendorId (<Module>_VENDOR_ID),
moduleId (<Module>_MODULE_ID),
arMajorVersion (<Module>_AR_MAJOR_VERSION),
arMinorVersion (<Module>_ AR_MINOR_VERSION),
arPatchVersion (<Module>_ AR_PATCH_VERSION),
swMajorVersion (<Module>_SW_MAJOR_VERSION),
swMinorVersion (<Module>_ SW_MINOR_VERSION),
swPatchVersion (<Module>_ SW_PATCH_VERSION),
vendorApiInfix (<Module>_VENDOR_API_INFIX)

is provided in the BSW Module Description Template (see [14] Figure 4.1 and Figure
7.1).

Additional published parameters are listed below if applicable for this module.

53 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

11 Changes to Release 1

Not applicable, the LIN driver was not part of AUTOSAR release 1

54 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

12 Changes to Release 2.0

12.1 Deleted SWS Items

SWS Item Rationale
LIN020 Bug 12871
LIN036 Bug 13955
LIN038 Bug 12328

12.2 Replaced SWS Items

SWS Item of Release 1 replaced by

SWS Item
Rationale

-- -- --

12.3 Changed SWS Items

SWS Item Rationale
LIN010 Bug 12425
LIN021 Bug 12265, Bug 15051
LIN045 Bug 13154
LIN069 Bug 13967

12.4 Added SWS Items

SWS Item Rationale
LIN074 Bug 12235
LIN075 Bug 12010
LIN092 Bug 15471
LIN093 Bug 15062
LIN094 Bug 12666
LIN095 Bug 12872
LIN096 Bug 14471
LIN097 Bug 15062
LIN098 Bug 14805

55 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

http://www.autosar.org/bugzilla/show_bug.cgi?id=12871
http://www.autosar.org/bugzilla/show_bug.cgi?id=13955
http://www.autosar.org/bugzilla/show_bug.cgi?id=12328
http://www.autosar.org/bugzilla/show_bug.cgi?id=12425
http://www.autosar.org/bugzilla/show_bug.cgi?id=12265
http://www.autosar.org/bugzilla/show_bug.cgi?id=15051
http://www.autosar.org/bugzilla/show_bug.cgi?id=13154
http://www.autosar.org/bugzilla/show_bug.cgi?id=13967
http://www.autosar.org/bugzilla/show_bug.cgi?id=12235
http://www.autosar.org/bugzilla/show_bug.cgi?id=12010
http://www.autosar.org/bugzilla/show_bug.cgi?id=15471
http://www.autosar.org/bugzilla/show_bug.cgi?id=15062
http://www.autosar.org/bugzilla/show_bug.cgi?id=12666
http://www.autosar.org/bugzilla/show_bug.cgi?id=12872
http://www.autosar.org/bugzilla/show_bug.cgi?id=14471
http://www.autosar.org/bugzilla/show_bug.cgi?id=15062
http://www.autosar.org/bugzilla/show_bug.cgi?id=14805

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

13 Changes to Release 2.1

13.1 Deleted SWS Items

SWS Item Rationale
LIN056, LIN010,
LIN059

Bug 19541

13.2 Replaced SWS Items

SWS Item of Release
2.1

replaced by
SWS Item

Rationale

-- -- --

13.3 Changed SWS Items

SWS Item Rationale
LIN043 Bug 18736
LIN032, LIN060 Bug 19541
Figure 10-1 Bug 18844
LIN168 Bug 18826
Figure 5-1 Bug 21329
LIN098, LIN176 Bug 22238

13.4 Added SWS Items

SWS Item Rationale
LIN099, LIN100 Bug 17494
LIN101 Bug 17591
LIN102 Bug 17751
LIN177 Bug 19541

56 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

http://www.autosar.org/bugzilla/show_bug.cgi?id=19541
http://www.autosar.org/bugzilla/show_bug.cgi?id=18736
http://www.autosar.org/bugzilla/show_bug.cgi?id=19541
http://www.autosar.org/bugzilla/show_bug.cgi?id=18844
http://www.autosar.org/bugzilla/show_bug.cgi?id=18826
http://www.autosar.org/bugzilla/show_bug.cgi?id=21329
http://www.autosar.org/bugzilla/show_bug.cgi?id=17494
http://www.autosar.org/bugzilla/show_bug.cgi?id=17591
http://www.autosar.org/bugzilla/show_bug.cgi?id=17751
http://www.autosar.org/bugzilla/show_bug.cgi?id=19541

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

14 Changes during SWS Improvements by Technical
Office

14.1 Deleted SWS Items

SWS Item Rationale
LIN070 Covered by LIN005
LIN071 No requirement, just information
LIN072 No requirement, just information
LIN003 No requirement on SWS documentation, just information
LIN076 No requirement, just description
LIN077 No requirement, just description
LIN078 No requirement, just description
LIN079 No requirement, just description
LIN080 No requirement, just description
LIN081 No requirement, just description
LIN082 No requirement, just description
LIN083 No requirement, just description
LIN061 Requirement on other module
LIN030 Redundant with LIN166, LIN167
LIN044 Redundant with LIN168

14.2 Replaced SWS Items

SWS Item Replaced by

Rationale

LIN085 LIN112, LIN113 Made requirement atomic
LIN057 LIN155, LIN156,

LIN157, LIN158
Made requirement atomic

14.3 Changed SWS Items

Many requirements have been changed to improve understandability without
changing the technical contents.

14.4 Added SWS Items

SWS Item Rationale
LIN103 Definition of configuration variant needs an id
LIN104 Definition of configuration variant needs an id
LIN105 Requirement Lin_Init
LIN106 Caveat Lin_Init
LIN107 Requirement Lin_WakeupValidation
LIN108 Requirement Lin_WakeupValidation
LIN109 Requirement Lin_WakeupValidation
LIN110 Hint Lin_GetVersionInfo
LIN111 Configuration Lin_GetVersionInfo
LIN114 Requirement Lin_InitChannel
LIN115 Requirement Lin_InitChannel
LIN116 Requirement Lin_DeInitChannel
LIN117 Requirement Lin_SendHeader
LIN118 Requirement Lin_SendHeader

57 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

Specification of LIN Driver
 V1.3.0

R3.1 Rev 5

58 of 58 Document ID 072: AUTOSAR_SWS_LIN_Driver
 - AUTOSAR confidential -

SWS Item Rationale
LIN119 Requirement Lin_SendHeader
LIN120 Requirement Lin_SendHeader
LIN121 Requirement Lin_SendHeader
LIN122 Requirement Lin_SendHeader
LIN123 Requirement Lin_SendResponse
LIN124 Requirement Lin_SendResponse
LIN125 Requirement Lin_SendResponse
LIN126 Requirement Lin_SendResponse
LIN127 Requirement Lin_SendResponse
LIN128 Requirement Lin_SendResponse
LIN129 Requirement Lin_GoToSleep
LIN130 Requirement Lin_GoToSleep
LIN131 Requirement Lin_GoToSleep
LIN132 Requirement Lin_GoToSleep
LIN133 Requirement Lin_GoToSleepInternal
LIN134 Requirement Lin_GoToSleepInternal
LIN135 Requirement Lin_GoToSleepInternal
LIN136 Requirement Lin_GoToSleepInternal
LIN137 Requirement Lin_WakeUp
LIN138 Requirement Lin_WakeUp
LIN139 Requirement Lin_WakeUp
LIN140 Requirement Lin_WakeUp
LIN141 Requirement Lin_GetStatus
LIN142 Requirement Lin_GetStatus
LIN143 Requirement Lin_GetStatus
LIN144 Requirement Lin_GetStatus
LIN145 Definition module state
LIN146 Definition module state
LIN147 Definition module state
LIN150 Gave id to a requirement in the table Lin_Init
LIN151 Gave id to caveat from Lin_ChannelInit
LIN152 Requirement from table Lin_ChannelDeInit
LIN153 Requirement from table Lin_SendResponse
LIN154 Caveat from Lin_Wakeup
LIN160 ID for Lin_WakeupValidation
LIN161 ID for Lin_GetVersionInfo
LIN164 ID for Lin_SendHeader
LIN165 ID for Lin_SendResponse
LIN166 ID for Lin_GoToSleep
LIN167 ID for Lin_GoToSleepInternal
LIN168 ID for Lin_GetStatus
LIN169 ID for Lin_WakeUp
LIN171 Description of the FSM
LIN172 Description of the FSM
LIN173 Description of the FSM
LIN174 Description of the FSM
LIN176 Description of the callback
LIN184 No error in case a mode is requested where the transceiver is already in

	1 Introduction and functional overview
	1.1 Scope
	1.2 Architectural overview

	2 Acronyms, abbreviations and glossary
	2.1 Acronyms and abbreviations
	2.2 Glossary
	2.3 LIN hardware unit classification

	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure

	6 Requirements traceability
	7 Functional specification
	7.1 General Requirements
	7.2 Version Check
	7.2.1 Requirements

	7.3 LIN driver and Channel Initialization
	7.3.1 Background & Rationale
	7.3.2 Requirements
	7.3.3 State diagrams

	7.4 Frame processing
	7.4.1 Background & Rationale
	7.4.2 Requirements
	7.4.3 Data Consistency
	7.4.4 Data byte mapping

	7.5 Sleep and wake-up functionality
	7.5.1 Background & Rationale
	7.5.2 Requirements

	7.6 Error classification
	7.7 Error detection
	7.8 Error notification

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Lin_ConfigType
	8.2.2 Lin_ChannelConfigType
	8.2.3 Lin_FramePidType
	8.2.4 Lin_FrameCsModelType
	8.2.5 Lin_FrameResponseType
	8.2.6 Lin_FrameDlType
	8.2.7 Lin_PduType
	8.2.8 Lin_StatusType

	8.3 Function definitions
	8.3.1 Services affecting the complete LIN hardware unit
	8.3.1.1 Lin_Init
	8.3.1.2 Lin_WakeUpValidation
	8.3.1.3 Lin_GetVersionInfo

	8.3.2 Services affecting a single LIN channel
	8.3.2.1 Lin_InitChannel
	8.3.2.2 Lin_DeInitChannel
	8.3.2.3 Lin_SendHeader
	8.3.2.4 Lin_SendResponse
	8.3.2.5 Lin_GoToSleep
	8.3.2.6 Lin_GoToSleepInternal
	8.3.2.7 Lin_WakeUp
	8.3.2.8 Lin_GetStatus

	8.4 Call-back notifications
	8.5 Scheduled functions
	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	9.1 Receiving a LIN Frame

	10 Configuration specification
	10.1 How to read this chapter
	10.1.1 Configuration and configuration parameters
	10.1.2 Variants
	10.1.3 Containers

	10.2 Containers and configuration parameters
	10.2.1 Variants
	LinChannel
	LinGlobalConfig

	10.3 Published Information

	11 Changes to Release 1
	12 Changes to Release 2.0
	12.1 Deleted SWS Items
	12.2 Replaced SWS Items
	12.3 Changed SWS Items
	12.4 Added SWS Items

	13 Changes to Release 2.1
	13.1 Deleted SWS Items
	13.2 Replaced SWS Items
	13.3 Changed SWS Items
	13.4 Added SWS Items

	14 Changes during SWS Improvements by Technical Office
	14.1 Deleted SWS Items
	14.2 Replaced SWS Items
	14.3 Changed SWS Items
	14.4 Added SWS Items

