
Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

1 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

Document Title Specification of Module Flash
Driver

Document Owner AUTOSAR GbR
Document Responsibility AUTOSAR GbR
Document Identification No 025
Document Classification Standard

Document Version 2.2.2
Document Status Final
Part of Release 3.1
Revision 0001

Document Change History
Date Version Changed by Change Description
23.06.2008 2.2.2 AUTOSAR

Administration
Legal disclaimer revised

23.01.2008 2.2.1 AUTOSAR
Administration

Table formatting corrected

11.12.2007 2.2.0 AUTOSAR
Administration

• NULL pointer check added to
Fls_Compare

• NULL pointer check detailed (in
general)

• Restriction removed to allow re-
initialization of module

• Tables in chapters 8 and 10 gener-
ated from UML model

• Document meta information ex-
tended

• Small layout adaptations made
14.02.2007 2.1.0 AUTOSAR

Administration
• File include structure updated
• Type usage corrected
• Compare Job results adapted
• API towards DEM corrected

• Legal disclaimer revised
• Release Notes added
• “Advice for users” revised
• “Revision Information” added

10.04.2006 2.0.0 AUTOSAR Admini-
stration

Document structure adapted to com-
mon Release 2.0 SWS Template
• new functionality: Read, Compare

and SetMode functions
• scalability: functionality can be con-

figured (on/off)
• adapted to new MemHwA architec-

ture

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

2 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

Document Change History
Date Version Changed by Change Description
10.07.2004 1.0.0 AUTOSAR Admini-

stration
Initial release

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

3 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

Page left intentionally blank

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

4 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

Disclaimer

This document of a specification as released by the AUTOSAR Development Part-
nership is intended for the purpose of information only. The commercial exploita-
tion of material contained in this specification requires membership of the AUTOSAR
Development Partnership or an agreement with the AUTOSAR Development Part-
nership. The AUTOSAR Development Partnership will not be liable for any use of this
specification. Following the completion of the development of the AUTOSAR specifi-
cations commercial exploitation licenses will be made available to end users by way
of written License Agreement only.

No part of this publication may be reproduced or utilized in any form or by any
means, electronic or mechanical, including photocopying and microfilm, without per-
mission in writing from the publisher." The word AUTOSAR and the AUTOSAR logo
are registered trademarks.

Copyright © 2004-2008 AUTOSAR Development Partnership. All rights reserved.

Advice to users of AUTOSAR Specification Documents:

AUTOSAR Specification Documents may contain exemplary items (exemplary refer-
ence models, "use cases", and/or references to exemplary technical solutions, de-
vices, processes or software).
Any such exemplary items are contained in the Specification Documents for illustra-
tion purposes only, and they themselves are not part of the AUTOSAR Standard.
Neither their presence in such Specification Documents, nor any later documentation
of AUTOSAR conformance of products actually implementing such exemplary items,
imply that intellectual property rights covering such exemplary items are licensed un-
der the same rules as applicable to the AUTOSAR Standard.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

5 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

Table of Contents

1 Introduction and functional overview ... 7

2 Acronyms and abbreviations ... 8

3 Related documentation.. 9

3.1 AUTOSAR deliverables.. 9
3.2 Related standards and norms .. 9

4 Constraints and assumptions .. 10

4.1 Limitations .. 10
4.2 Applicability to car domains.. 10

5 Dependencies to other modules.. 11

5.1 File structure .. 11
5.1.1 Code file structure ... 11
5.1.2 Header file structure.. 11

5.2 System clock .. 12
5.3 Communication or I/O drivers... 12

6 Requirements traceability .. 13

7 Functional specification ... 20

7.1 General design rules .. 20
7.2 Error classification .. 20
7.3 Error detection.. 21
7.4 Error notification ... 21
7.5 External flash driver.. 22
7.6 Loading, executing and removing the flash access code 22

8 API specification.. 24

8.1 Imported types.. 24
8.2 Type definitions .. 24

8.2.1 Fls_ConfigType ... 24
8.2.2 Fls_AddressType .. 24
8.2.3 Fls_LengthType .. 25

8.3 Function definitions .. 25
8.3.1 Fls_Init .. 25
8.3.2 Fls_Erase.. 26
8.3.3 Fls_Write ... 28
8.3.4 Fls_Cancel .. 29
8.3.5 Fls_GetStatus ... 30
8.3.6 Fls_GetJobResult.. 31
8.3.7 Fls_Read... 32
8.3.8 Fls_Compare... 33
8.3.9 Fls_SetMode... 34
8.3.10 Fls_GetVersionInfo ... 35

8.4 Call-back notifications .. 37

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

6 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

8.5 Scheduled functions ... 37
8.5.1 Fls_MainFunction.. 37

8.6 Expected Interfaces.. 39
8.6.1 Mandatory Interfaces .. 39
8.6.2 Optional Interfaces .. 40
8.6.3 Configurable interfaces ... 40

9 Sequence diagrams... 42

9.1 Initialization .. 42
9.2 Synchronous functions ... 42
9.3 Asynchronous functions ... 43
9.4 Canceling a running job.. 45

10 Configuration specification... 46

10.1 How to read this chapter .. 46
10.1.1 Configuration and configuration parameters 46
10.1.2 Containers... 46
10.1.3 Specification template for configuration parameters 47

10.2 Containers and configuration parameters .. 48
10.2.1 Variants... 48
10.2.2 Fls ... 49
10.2.3 FlsGeneral... 49
10.2.4 FlsConfigSet.. 52
10.2.5 FlsSectorList ... 55
10.2.6 FlsSector ... 55

10.3 Published Information... 56
10.3.1 FlsPublishedInformation.. 56

11 Changes to Release 1 ... 60

11.1 Deleted SWS Items.. 60
11.2 Replaced SWS Items ... 60
11.3 Changed SWS Items.. 60
11.4 Added SWS Items.. 61

12 Changes during SWS Improvements by Technical Office 62

12.1 Deleted SWS Items.. 62
12.2 Replaced SWS Items ... 62
12.3 Changed SWS Items.. 62
12.4 Added SWS Items.. 62

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

7 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

1 Introduction and functional overview

This document specifies the functionality, API and the configuration of the AUTOSAR
Basic Software module Flash Driver.

This specification is applicable to drivers for both internal and external flash memory.

The flash driver provides services for reading, writing and erasing flash memory and
a configuration interface for setting / resetting the write / erase protection if supported
by the underlying hardware.

In application mode of the ECU, the flash driver is only to be used by the Flash
EEPROM emulation module for writing data. It is not intended to write program code
to flash memory in application mode. This shall be done in boot mode which is out of
scope of AUTOSAR.

A driver for an internal flash memory accesses the microcontroller hardware directly
and is located in the Microcontroller Abstraction Layer. An external flash memory is
usually connected via the microcontroller’s data / address busses (memory mapped
access), the flash driver then uses the handlers / drivers for those busses to access
the external flash memory device. The driver for an external flash memory device is
located in the ECU Abstraction Layer.

FLS088: The functional requirements and the functional scope are the same for both
types of drivers. Hence the API is semantically identical.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

8 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

2 Acronyms and abbreviations

Abbreviation /
Acronym:

Description:

DET Development Error Tracer – module to which development errors are reported.
DEM Diagnostic Event Manager – module to which production relevant errors are re-

ported.
AC (Flash) access code – abbreviation introduced to keep the names of the configura-

tion parameters reasonably short.

Further definitions of terms used throughout this document

Term: Definition
Flash sector A flash sector is the smallest amount of flash memory that can be erased in one

pass. The size of the flash sector depends upon the flash technology and is there-
fore hardware dependent.

Flash page A flash page is the smallest amount of flash memory that can be programmed in
one pass. The size of the flash page depends upon the flash technology and is
therefore hardware dependent.

Flash access
code

Internal flash driver routines called by the main function (job processing function) to
erase or write the flash hardware.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

9 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

3 Related documentation

3.1 AUTOSAR deliverables

[1] List of Basic Software Modules,
https:/svn2.autosar.org/repos2/22_Releases
AUTOSAR_SoftwareModuleList.pdf

[2] Layered Software Architecture,
https:/svn2.autosar.org/repos2/22_Releases
AUTOSAR_LayeredSoftwareArchitecture.pdf

[3] General Requirements on Basic Software Modules,
https:/svn2.autosar.org/repos2/22_Releases
AUTOSAR_SRS_General.pdf

[4] General Requirements on SPAL,
https:/svn2.autosar.org/repos2/22_Releases
AUTOSAR_SRS_SPAL_General.pdf

[5] Requirements on Flash Driver
https:/svn2.autosar.org/repos2/22_Releases
AUTOSAR_SRS_Flash_Driver.pdf

Requirements on Memory Hardware Abstraction Layer,
https:/svn2.autosar.org/repos2/22_Releases

[6] AUTOSAR_SRS_MemHW_AbstractionLayer.pdf

[7] Specification of ECU Configuration
https:/svn2.autosar.org/repos2/22_Releases
AUTOSAR_ECU_Configuration.pdf

AUTOSAR Basic Software Module Description Template,
https:/svn2.autosar.org/repos2/22_Releases

[8] AUTOSAR_BSW_Module_Description.pdf

3.2 Related standards and norms

[9] HIS Flash Driver Specification
HIS flash driver v130.pdf on
http://www.automotive-his.de/download/

https://svn2.autosar.org/repos2/22_Releases�
https://svn2.autosar.org/repos2/22_Releases�
https://svn2.autosar.org/repos2/22_Releases�
https://svn2.autosar.org/repos2/22_Releases�
https://svn2.autosar.org/repos2/22_Releases�
https://svn2.autosar.org/repos2/22_Releases�
https://svn2.autosar.org/repos2/22_Releases�
https://svn2.autosar.org/repos2/22_Releases�
http://www.automotive-his.de/download/�

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

10 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

4 Constraints and assumptions

4.1 Limitations

• The flash driver only erases or programs complete flash sectors respectively
flash pages, i.e. it does not offer any kind of re-write strategy since it does not
use any internal buffers.

• The flash driver does not provide mechanisms for providing data integrity (e.g.
checksums, redundant storage, etc.).

4.2 Applicability to car domains

No restrictions.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

11 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

5 Dependencies to other modules

5.1 File structure

5.1.1 Code file structure

FLS159: The code file structure shall not be defined within this specification com-
pletely. At this point it shall be pointed out that the code-file structure shall include the
following files named:

- Fls_Lcfg.c – for link time configurable parameters and
- Fls_PBcfg.c – for post build time configurable parameters.

These files shall contain all link time and post-build time configurable parameters.

FLS179: Pre- and post-compile configuration parameters shall be located outside the
source code of the module to allow for automatic (tool based) configuration.

5.1.2 Header file structure

FLS107: The Fls module shall comply with the following file structure:

deployment SPAL File include structure

«source»
Std_Types.h

«source»
Platform_Types.h

«source»
Fls.h

«source»
Spal_xxx.c

«source»
Fls_Cfg.h

«source»
Fls_PBcfg.c

«source»
Fls_Lcfg.c

«source»
Compiler.h

«source»
Fls_Irq.c

«source»
Det.h

«source»
Dem.h

«source»
Fls_Cbk.h

«source»
Fls.c

«source»
SchM_Fls.h

«source»
MemMap.h

«source»
MemIf_Types.h

«source»
Spi.h

«source»
Fls_Ac.c

«include»

«include»

«include»

«include»

optional
«include» optional

«include»

«include»«include»

«include»

«include»

«include»

«include»

«include» «include»

«include»

optional
«include»

optinal
«include»

«include» «include»

«include»

«include»

Figure 1: File include structure

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

12 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

Note: The files shown in grey are optional and might not be present for all implemen-
tations and/or configurations of a specific implementation of the Fls module.

FLS073: Types and definitions common to several flash driver instances shall be
given in the header file MemIf_Types.h. Types and definitions specific for one flash
driver shall be given in the header file Fls.h. This file shall be included in the flash
driver’s implementation module Fls.c.

5.2 System clock

If the hardware of the internal flash memory depends on the system clock, changes
to the system clock (e.g. PLL on PLL off) may also affect the clock settings of the
flash memory hardware.

5.3 Communication or I/O drivers

If the flash memory is located in an external device, the access to this device shall be
enacted via the corresponding communication respectively I/O driver.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

13 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

6 Requirements traceability

Document: General Requirements on Basic Software Modules

Requirement Satisfied by
[BSW00344] Reference to link-time configuration Not applicable

(this module does not provide any link-time pa-
rameters)

[BSW00404] Reference to post build time
configuration

FLS014, FLS173, FLS174

[BSW00405] Reference to multiple configuration
sets

FLS014, FLS173, FLS174

[BSW00345] Pre-compile-time configuration FLS171, FLS172
[BSW159] Tool-based configuration FLS179
[BSW167] Static configuration checking FLS205, FLS206
[BSW171] Configurability of optional functionality FLS172, FLS183, FLS184, FLS185, FLS186,

FLS187, FLS188
[BSW170] Data for reconfiguration of AUTOSAR
SW-components

Not applicable
(this module does not depend on faults, signal
qualities, …)

[BSW00380] Separate C-File for configuration
parameters

FLS159, FLS179

[BSW00419] Separate C-Files for pre-compile
time configuration parameters

FLS179

[BSW00381] Separate configuration header file
for pre-compile time parameters

FLS107

[BSW00412] Separate H-File for configuration
parameters

FLS107

BSW00383] List dependencies of configuration
files

External flash driver

[BSW00384] List dependencies to other modules Chapter 5
[BSW00387] Specify the configuration class of
callback function

Not applicable
(this module does not provide any callback rou-
tines)

[BSW00388] Introduce containers Chapter 10.2
[BSW00389] Containers shall have names Chapter 10.2
[BSW00390] Parameter content shall be unique
within the module

Chapter 10.2

[BSW00391] Parameter shall have unique names Chapter 10.2
[BSW00392] Parameters shall have a type Chapter 10.2
[BSW00393] Parameters shall have a range Chapter 10.2
[BSW00394] Specify the scope of the parameters Chapter 10.2
BSW00395] List the required parameters (per
parameter)

Chapter 10.2

[BSW00396] Configuration classes Chapter 0
[BSW00397] Pre-compile-time parameters Chapter 10.2,
[BSW00398] Link-time parameters Not applicable

(this module does not provide any link-time pa-
rameters)

[BSW00399] Loadable Post-build time
parameters

Chapter 10.2.3

[BSW00400] Selectable Post-build time
parameters

Chapter 10.2.3

[BSW00402] Published information Chapter 10.3
[BSW00375] Notification of wake-up reason Not applicable

(this module does not wake up the ECU)
[BSW101] Initialization interface FLS014

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

14 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

Requirement Satisfied by
[BSW00416] Sequence of Initialization Not applicable

(requirement on system architecture, not on a
single module)

[BSW00406] Check module initialization FLS268
[BSW168] Diagnostic Interface of SW compo-
nents

Not applicable
(no use case)

[BSW00407] Function to read out published
parameters

Chapter 8.3.10

[BSW00423] Usage of SW-C template to
describe BSW modules with AUTOSAR
Interfaces

Not applicable
(this module does not provide an AUTOSAR
interface)

[BSW00424] BSW main processing function task
allocation

Not applicable
(requirement on system design, not on a single
module)

[BSW00425] Trigger conditions for schedulable
objects

Chapter 8.5

[BSW00426] Exclusive areas in BSW modules Not applicable
(this module does not provide any exclusive ar-
eas)

[BSW00427] ISR description for BSW modules Not applicable
(no ISR’s defined for this module, usage of inter-
rupts is implementation specific)

[BSW00428] Execution order dependencies of
main processing functions

Not applicable
(this module does provide only one main proc-
essing function)

[BSW00429] Restricted BSW OS functionality
access

Not applicable
(requirement on the implementation, not for the
specification)

[BSW00431] The BSW Scheduler module
implements task bodies

Not applicable
(requirement on the BSW scheduler module)

[BSW00432] Modules should have separate
main processing functions for read/receive and
write/transmit data path

See Chapter 8.5

[BSW00433] Calling of main processing functions Not applicable
(requirement on system design, not on a single
module)

[BSW00434] The Schedule Module shall provide
an API for exclusive areas

Not applicable
(this module does not provide any exclusive ar-
eas)

[BSW00336] Shutdown interface Not applicable
(no use case).

[BSW00337] Classification of errors FLS004, FLS007
[BSW00338] Detection and Reporting of
development errors

FLS077

[BSW00369] Do not return development error
codes via API

FLS267

[BSW00339] Reporting of production relevant
error status

Not applicable
(this module only provides production relevant
error events, no error status)

[BSW00421] Reporting of production relevant
error events

FLS006, FLS104 , FLS105 , FLS106, FLS154

[BSW00422] Debouncing of production relevant
error status

Not applicable
(requirement on the DEM)

[BSW00420] Production relevant error event rate
detection

Not applicable
(requirement on the DEM)

[BSW00417] Reporting of Error Events by Non-
Basic Software

Not applicable
(this is a BSW mdoule)

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

15 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

Requirement Satisfied by
[BSW00323] API parameter checking FLS015, FLS020, FLS021, FLS026, FLS027,

FLS097, FLS098
[BSW004] Version check FLS205, FLS206
[BSW00409] Header files for production code
error IDs

FLS160, FLS107

[BSW00385] List possible error notificatons FLS004, FLS007
[BSW00386] Configuration for detecting an error FLS077, FLS162, FLS163, FLS172
[BSW161] Microcontroller abstraction Not applicable

(requirement on AUTOSAR architecture, not a
single module)

[BSW162] ECU layout abstraction Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[BSW00324] Do not use HIS I/O Library Not applicable
(architecture decision)

[BSW005] No hard coded horizontal interfaces
within MCAL

Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[BSW00415] User dependent include files Not applicable
(only one user for this module)

[BSW164] Implementation of interrupt service
routines

FLS193

[BSW00325] Runtime of interrupt service rou-
tines

FLS193

[BSW00326] Transition from ISRs to OS tasks Not applicable
(requirement on implementatio, not on
specification)

[BSW00342] Usage of source code and object
code

Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[BSW00343] Specification and configuration of
time

FLS178

[BSW160] Human-readable configuration data Not applicable
(requirement on documentation, not on
specification)

[BSW007] HIS MISRA C Not applicable
(requirement on implementation, not on
specification)

[BSW00300] Module naming convention Not applicable
(requirement on implementation, not on
specification)

[BSW00413] Accessing instances of BSW
modules

Conflict: This is currently not reflected in the
driver’s specification.
This requirement will have impact on almost all
BSW modules, therefore it can not be
implemented within the Release 2.0 timeframe.

[BSW00347] Naming separation of different
instances of BSW drivers

Not applicable
(requirement on the implementation, not on the
specification)

[BSW00305] Self-defined data types naming
convention

Chapter 8.2

[BSW00307] Global variables naming convention Not applicable
(requirement on the implementation, not on the
specification)

[BSW00310] API naming convention Chapter 8.3
[BSW00373] Main processing function naming
convention

Chapter 8.5.1

[BSW00327] Error values naming convention FLS004, FLS007

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

16 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

Requirement Satisfied by
[BSW00335] Status values naming convention Chapter 8.1
[BSW00350] Development error detection key-
word

FLS077, FLS162, FLS172

[BSW00408] Configuration parameter naming
convention

Chapter 10.2

[BSW00410] Compiler switches shall have
defined values

Chapter 10.2

[BSW00411] Get version info keyword Chapter 10.2.3
[BSW00346] Basic set of module files FLS107
[BSW158] Separation of configuration from im-
plementation

FLS107

[BSW00314] Separation of interrupt frames and
service routines

Not applicable
(this module does not implement any ISRs)

[BSW00370] Separation of callback interface
from API

Not applicable
(this module does not provide any callback
routines)

[BSW00348] Standard type header Not applicable
(standard header files included via interface
header file)

[BSW00353] Platform specific type header Not applicable
(standard header files included via interface
header file)

[BSW00361] Compiler specific language exten-
sion header

Not applicable
(standard header files included via interface
header file)

[BSW00301] Limit imported information FLS107
[BSW00302] Limit exported information Not applicable

(requirement on the implementation, not on the
specification)

[BSW00328] Avoid duplication of code Not applicable
(requirement on the implementation, not on the
specification)

[BSW00312] Shared code shall be reentrant Not applicable
(requirement on the implementation, not on the
specification)

[BSW006] Platform independency Not applicable
(this is a module of the microcontroller
abstraction layer)

[BSW00357] Standard API return type Chapter 8.3.2, Chapter 8.3.3. Chapter 8.3.7,
Chapter 8.3.8

[BSW00377] Module specific API return types Chapter 8.3.5, Chapter 8.3.6
[BSW00304] AUTOSAR integer data types Not applicable

(requirement on implementation, not for
specification)

[BSW00355] Do not redefine AUTOSAR integer
data types

Not applicable
(requirement on implementation, not for
specification)

[BSW00378] AUTOSAR boolean type Not applicable
(requirement on implementation, not for
specification)

[BSW00306] Avoid direct use of compiler and
platform specific keywords

Not applicable
(requirement on implementation, not for
specification)

[BSW00308] Definition of global data Not applicable
(requirement on implementation, not for
specification)

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

17 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

Requirement Satisfied by
[BSW00309] Global data with read-only con-
straint

Not applicable
(requirement on implementation, not for
specification)

[BSW00371] Do not pass function pointers via
API

Not applicable
(no function pointers in this specification)

[BSW00358] Return type of init() functions Chapter 8.3.1
[BSW00414] Parameter of init function Chapter 8.3.1, FLS194
[BSW00376] Return type and parameters of main
processing functions

Chapter 8.5.1

[BSW00359] Return type of callback functions Not applicable
(this module does not provide any callback
routines)

[BSW00360] Parameters of callback functions Not applicable
(this module does not provide any callback
routines)

[BSW00329] Avoidance of generic interfaces Chapter 8.3
(explicit interfaces defined)

[BSW00330] Usage of macros / inline functions
instead of functions

Not applicable
 (requirement on implementation, not for
specification)

[BSW00331] Separation of error and status val-
ues

FLS004, FLS267

[BSW009] Module User Documentation Not applicable
(requirement on documentation, not on
specification)

[BSW00401] Documentation of multiple
instances of configuration parameters

Not applicable
(all configuration parameters are single instance
only)

[BSW172] Compatibility and documentation of
scheduling strategy

Not applicable
(no internal scheduling policy)

[BSW010] Memory resource documentation Not applicable
(requirement on documentation, not on
specification)

[BSW00333] Documentation of callback function
context

Not applicable
(requirement on documentation, not for
specifciation)

[BSW00374] Module vendor identification FLS178
[BSW00379] Module identification FLS178
[BSW003] Version identification FLS178
[BSW00318] Format of module version numbers FLS178
[BSW00321] Enumeration of module version
numbers

Not applicable
(requirement on implementation, not for
specification)

[BSW00341] Microcontroller compatibility docu-
mentation

Not applicable
(requirement on documentation, not on
specification)

[BSW00334] Provision of XML file Not applicable
(requirement on documentation, not on
specification)

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

18 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

Document: General Requirements on SPAL

Requirement Satisfied by
[BSW12263] Object code compatible configura-
tion concept

FLS173, FLS174

[BSW12056] Configuration of notification mecha-
nisms

FLS173, FLS174

[BSW12267] Configuration of wakeup sources Not applicable
(this module does not wake up the ECU / MCU)

[BSW12057] Driver module initialization FLS014
[BSW12163] Driver module de-initialization Not applicable

(no use case)
[BSW12125] Initialization of hardware resources FLS086
[BSW12461] Responsibility for register
initialization

FLS086

[BSW12462] Provide settings for register
initialization

Not applicable
(requirement on documentation not on specifica-
tion)

BSW12463] Combine and forward settings for
register initialization

Not applicable
(requirement on configuration, not on specifica-
tion)

[BSW12068] MCAL initialization sequence Not applicable
(not a requirement for this driver but for system
integration)

[BSW12069] Wake-up notification of ECU State
Manager

Not applicable
(the flash driver does not wake the ECU / MCU)

[BSW157] Notification mechanisms of drivers and
handlers

Chapter 8.3.5, Chapter 8.6.3, FLS164, FLS006

[BSW12169] Control of operation mode FLS155
[BSW12063] Raw value mode Not applicable

(the flash driver does not interpret the flash data)
[BSW12075] Use of application buffers FLS002, FLS003
[BSW12129] Resetting of interrupt flags FLS232, FLS233, FLS234
[BSW12064] Change of operation mode during
running operation

Not applicable
(the flash driver does not support different modes)

[BSW12448] Behavior after development error
detection

FLS015, FLS020, FLS021, FLS026, FLS027,
FLS097, FLS098

[BSW12067] Setting of wake-up conditions Not applicable
 (the flash driver does not wake the ECU / MCU)

[BSW12077] Non-blocking implementation Chapter 8.5.1
[BSW12078] Runtime and memory efficiency Not applicable

(requirement on implementation, not on specifica-
tion)

[BSW12092] Access to drivers Not applicable
(requirement on system design, not on a single
module)

[BSW12265] Configuration data shall be kept
constant

FLS191

[BSW12264] Specification of configuration items FLS172, FLS174

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

19 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

Document: Requirements on Flash Driver

Requirement Satisfied by
[BSW12132] Flash driver static configuration FLS048, FLS171
[BSW12133] Publication of flash properties FLS177, FLS178
[BSW12134] Flash read function FLS236, FLS237, FLS238, FLS239, FLS097,

FLS098
[BSW12135] Flash write function FLS223, FLS224, FLS225, FLS226, FLS026,

FLS027
[BSW12136] Flash erase function FLS218, FLS219, FLS220, FLS221, FLS020,

FLS021
BSW13301 Flash compare function FLS241, FLS242, FLS243, FLS244, FLS150,

FLS151., FLS152, FLS153, FLS186
[BSW12137] Flash cancel function FLS229, FLS230, FLS183
[BSW12138] Flash driver status function FLS034, FLS184
BSW13302 Flash driver mode selection function FLS155, FLS156, FLS187
[BSW12159] Flash address check FLS020, FLS021, FLS026, FLS027, FLS097,

FLS098
[BSW12158] Flash blank check FLS055
[BSW12141] Flash write verification FLS056
[BSW12160] Flash erase verification FLS022

[BSW12143] Flash driver job management FLS016, FLS268, FLS023, FLS030, FLS032,
FLS100

[BSW12144] Flash driver job processing function FLS037, FLS038, FLS039, See Chapter 8.5
BSW13303Job processing – normal mode FLS040
BSW13304 Job processing – fast mode FLS040
[BSW12193] Load flash access code to RAM on
job start

FLS140, FLS141

[BSW12194] Execute flash access code from
RAM

FLS212, FLS213

BSW13300 Remove flash access code from RAM FLS143
[BSW12147] Functional scope FLS088
[BSW12182] External flash driver static configura-
tion

FLS174

[BSW12107] Check Flash type FLS144
[BSW12145] Flash driver job processing execu-
tion time

FLS040, FLS176, FLS182

[BSW12083] Use HIS specification as basis Not applicable
(the module provides comparable functionality but
different API and different design rules)

[BSW12184] Limit read access blocking times FLS040
[BSW12148] Common Flash API FLS088
[BSW12149] Microcontroller independency Not applicable

(requirement on implementation, not on specifica-
tion)

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

20 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

7 Functional specification

7.1 General design rules

FLS001: The FLS module shall offer asynchronous services for operations on flash
memory (read/erase/write).

FLS002: The FLS module shall not buffer data. The FLS module shall use applica-
tion data buffers that are referenced by a pointer passed via the API.

FLS003: The FLS module shall not ensure data consistency of the given application
buffer.

It is the responsibility of the FLS module’s environment to ensure consistency of flash
data during a flash read or write operation.

FLS205: The FLS module shall check static configuration parameters statically (at
the latest during compile time) for correctness.

FLS206: The FLS module shall validate the version information in the FLS module
header and source files for consistency (e.g. by comparing the version information in
the module header and source files with a pre-processor macro).

FLS208: The FLS module shall combine all available flash memory areas into one
linear address space (denoted by the parameters FlsBaseAddress and FlsTotal-
Size).

FLS209: The FLS module shall map the address and length parameters for the read,
write, erase and compare functions as “virtual” addresses to the physical addresses
according to the physical structure of the flash memory areas.

As long as the restrictions regarding the alignment of those addresses are met it is
allowed that a read, write or erase job crosses the boundaries of a physical flash
memory area.

7.2 Error classification

FLS160: Values for production code Event Ids are assigned externally by the con-
figuration of the Dem. They are published in the file Dem_IntErrId.h and included
via Dem.h.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

21 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

FLS161: Development error values are of type uint8.

FLS004: The FLS module shall be able to detect the following errors and exceptions
depending on its configuration (development/production):
Type or error Relevance Related error code Value [hex]
API service called with wrong pa-
rameter

Development FLS_E_PARAM_CONFIG
FLS_E_PARAM_ADDRESS
FLS_E_PARAM_LENGTH
FLS_E_PARAM_DATA

0x01
0x02
0x03
0x04

API service called without module
initialization

Development FLS_E_UNINIT 0x05

API service called while driver still
busy

Development FLS_E_BUSY 0x06

Erase verification (blank check)
failed

Development FLS_E_VERIFY_ERASE_
FAILED

0x07

Write verification (compare) failed Development FLS_E_VERIFY_WRITE_
FAILED

0x08

Flash erase failed (HW) Production FLS_E_ERASE_FAILED Assigned by
DEM

Flash write failed (HW) Production FLS_E_WRITE_FAILED Assigned by
DEM

Flash read failed (HW) Production FLS_E_READ_FAILED Assigned by
DEM

Flash compare failed (HW) Production FLS_E_COMPARE_FAILE
D

Assigned by
DEM

Expected hardware ID not matched
(see [FLS144])

Production FLS_E_UNEXPECTED_FL
ASH_ID

Assigned by
DEM

7.3 Error detection

FLS077: The detection of development errors shall be configurable (on/off) at pre-
compile time. The switch FlsDevErrorDetect (see chapter 10) shall activate or
deactivate the detection of all development errors.

FLS162: If the FlsDevErrorDetect switch is enabled, API parameter checking is
enabled. The detailed description of the detected errors can be found in chapter 7.2
and chapter 8.3.

FLS163: The detection of production code errors cannot be switched off.

7.4 Error notification

FLS164: Detected development errors shall be reported to Det_ReportError ser-
vice of the Development Error Tracer (DET) if the pre-processor switch FlsDevEr-
rorDetect is set (see chapter 10).

FLS006: Production relevant errors shall be reported to the Diagnostic Event Man-
ager.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

22 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

FLS267: The error codes shall not be used as return values of the called function.

FLS007: Additional errors that are detected because of specific implementation
and/or specific hardware properties shall be added in the flash driver’s implementa-
tion documentation. The classification and enumeration shall be compatible with the
errors listed above [FLS004].

7.5 External flash driver

FLS144: During the initialization of the external flash driver, the FLS module shall
check the hardware ID of the external flash device against the corresponding pub-
lished parameter. If a hardware ID mismatch occurs, the FLS module shall report the
error code FLS_E_UNEXPECTED_FLASH_ID to the Diagnostic Event Manager (DEM), set
the FLS module status to FLS_E_UNINIT and shall not initialize itself.

A complete list of required parameters is specified in the SPI Handler/Driver Software
Specification (Chapter “Configuration Specification”, marked as “SPI User”).

7.6 Loading, executing and removing the flash access code

Technical background information: Flash technology or flash memory segmentation
may require that the routines that access the flash hardware (internal erase and write
routines) are executed from RAM because reading the flash - for instruction fetch
needed for code execution - is not allowed while programming the flash.

FLS137: The FLS module’s implementer shall place the code of the flash access
routines into a separate C-module Fls_ac.c.

FLS215: The FLS module’s flash access routines shall only disable interrupts and
wait for the completion of the erase / write command if necessary (that is if it has to
be ensured that no other code is executed in the meantime).

FLS211: The FLS module’s implementer shall keep the execution time for the flash
access code as short as possible.

FLS140: The FLS module’s erase routine shall load the flash access code for eras-
ing the flash memory to the location in RAM pointed to by the erase function pointer
contained in the flash drivers configuration set if the FLS module is configured to load
the flash access code to RAM on job start.

FLS141: The FLS module’s write routine shall load the flash access code for writing
the flash memory to the location in RAM pointed to by the write function pointer con-
tained in the flash drivers configuration set if the FLS module is configured to load the
flash access code to RAM on job start.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

23 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

FLS212: The FLS module’s main processing routine shall execute the flash access
code routines.

FLS213: The FLS module’s main processing routine shall access the flash access
code routines by means of the respective function pointer contained in the FLS mod-
ule’s configuration set (post-compile parameters) regardless whether the flash ac-
cess code routines have been loaded to RAM or whether they can be executed di-
rectly from (flash) ROM.

FLS143: After an erase or write job has been finished or cancelled, the FLS module’s
main processing routine shall unload (i.e. overwrite) the flash access code (internal
erase / write routines) from RAM if they have been loaded to RAM by the flash driver.

FLS214: The FLS module shall only load the access code to the RAM if the access
code cannot be executed out of flash ROM.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

24 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

8 API specification

8.1 Imported types

FLS248:

Header file Imported Type

MemIf_ModeType
MemIf_StatusType

MemIf_Types.h

MemIf_JobResultType
Dem_Types.h Dem_EventIdType

Std_ReturnType Std_Types.h
Std_VersionInfoType

8.2 Type definitions

8.2.1 Fls_ConfigType

Name: Fls_ConfigType
Type: Structure
Range: Hardware de-

pendend struc-
ture

Structure to hold the flash driver configuration set. The con-
tents of the initialisation data structure are specific to the flash
memory hardware.

Description: A pointer to such a structure is provided to the flash driver initialization routine for
configuration of the driver and flash memory hardware.

8.2.2 Fls_AddressType

Name: Fls_AddressType
Type: uint8,uint16,uint32
Range: 8 / 16 / 32

bits
Size depends on target platform and flash device.

Description: Used as address offset from the configured flash base address to access a certain
flash memory area.

FLS216: The type Fls_AddressType shall have 0 as lower limit for each flash de-
vice.

FLS217: The FLS module shall add a device specific base address to the address
type Fls_AddressType if necessary.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

25 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

8.2.3 Fls_LengthType

Name: Fls_LengthType
Type: uint8,uint16,uint32
Range: Same as

Fls_AddressType
Shall be the same type as Fls_AddressType because of
arithmetic operations. Size depends on target platform and
flash device.

Description: Specifies the number of bytes to read/write/erase/compare.

8.3 Function definitions

8.3.1 Fls_Init

FLS249:

Service name: Fls_Init
Syntax: void Fls_Init(

 const Fls_ConfigType* ConfigPtr
)

Service ID[hex]: 0x00
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): ConfigPtr Pointer to flash driver configuration set.
Parameters (in-
out):

None

Parameters (out): None
Return value: None
Description: Initializes the Flash Driver.

FLS014: The function Fls_Init shall initialize the FLS module (software) and all
flash memory relevant registers (hardware) with parameters provided in the given
configuration set.

FLS191: The function Fls_Init shall store the pointer to the given configuration set
in a local variable in order to allow the FLS module access to the configuration set
contents during runtime.

FLS086: The function Fls_Init shall initialize all FLS module global variables and
those controller registers that are needed for controlling the flash device and that do
not influence or depend on other (hardware) modules. Registers that can influence or
depend on other modules shall be initialized by a common system module.

FLS015: If development error detection for the module Fls is enabled: the function
Fls_Init shall check the (hardware specific) contents of the given configuration set
for being within the allowed range. If this is not the case, it shall raise the develop-
ment error FLS_E_PARAM_CONFIG.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

26 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

FLS016: The function Fls_Init shall set the FLS module state to MEMIF_IDLE
and the flash job result to MEMIF_JOB_OK after having finished the FLS module ini-
tialization.

FLS268: If development error detection for the module Fls is enabled: the function
Fls_Init shall check that the FLS module is currently not busy (FLS module state
is not MEMIF_BUSY). If this check fails, the function Fls_Init shall raise the devel-
opment error FLS_E_BUSY.

FLS048: If supported by hardware, the function Fls_Init shall set the flash mem-
ory erase/write protection as provided in the configuration set.

FLS271: If not applicable (i.e. for configuration variant PC), a NULL pointer shall be
passed to the initialization routine. In this case the check for this NULL pointer shall
be omitted.

8.3.2 Fls_Erase

FLS250:

Service name: Fls_Erase
Syntax: Std_ReturnType Fls_Erase(

 Fls_AddressType TargetAddress,
 Fls_LengthType Length
)

Service ID[hex]: 0x01
Sync/Async: Asynchronous
Reentrancy: Non Reentrant

TargetAddress Target address in flash memory. This address offset will be
added to the flash memory base address.
Min.: 0
Max.: FLS_SIZE - 1 Parameters (in):

Length Number of bytes to erase
Min.: 1
Max.: FLS_SIZE - TargetAddress

Parameters (in-
out):

None

Parameters (out): None

Return value: Std_ReturnType E_OK: erase command has been accepted
E_NOT_OK: erase command has not been accepted

Description: Erases flash sector(s).

FLS218: The job of the function Fls_Erase shall erase one or more complete flash
sectors.

FLS219: The function Fls_Erase shall copy the given parameters to FLS module
internal variables, initiate an erase job, set the FLS module status to MEMIF_BUSY,
set the job result to MEMIF_JOB_PENDING and return with E_OK.

FLS220: The FLS module shall execute the job of the function Fls_Erase asyn-
chronously within the FLS module’s main function.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

27 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

FLS221: The job of the function Fls_Erase shall erase a flash memory block start-
ing from FlsBaseAddress + TargetAddress of size Length.

Note: Length will be rounded up to the next full sector boundary since only complete
flash sectors can be erased.

FLS020: If development error detection for the module Fls is enabled: the function
Fls_Erase shall check that the erase start address (FlsBaseAddress + Targe-
tAddress) is aligned to a flash sector boundary and that it lies within the specified
lower and upper flash address boundaries. If this check fails, the function
Fls_Erase shall reject the erase request, raise the development error
FLS_E_PARAM_ADDRESS and return with E_NOT_OK.

FLS021: If development error detection for the module Fls is enabled: the function
Fls_Erase shall check that the erase length is greater than 0 and that the erase
end address (erase start address + length) is aligned to a flash sector boundary and
that it lies within the specified upper flash address boundary. If this check fails, the
function Fls_Erase shall reject the erase request, raise the development error
FLS_E_PARAM_LENGTH and return with E_NOT_OK.

FLS065: If development error detection for the module Fls is enabled: the function
Fls_Erase shall check that the FLS module has been initialized. If this check fails,
the function Fls_Erase shall reject the erase request, raise the development error
FLS_E_UNINIT and return with E_NOT_OK.

FLS023: If development error detection for the module Fls is enabled: the function
Fls_Erase shall check that the FLS module is currently not busy. If this check fails,
the function Fls_Erase shall reject the erase request, raise the development error
FLS_E_BUSY and return with E_NOT_OK.

FLS145: If possible, e.g. with interrupt controlled implementations, the FLS module
shall start the first round of the erase job directly within the function Fls_Erase to
reduce overall runtime.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

28 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

8.3.3 Fls_Write

FLS251:

Service name: Fls_Write
Syntax: Std_ReturnType Fls_Write(

 Fls_AddressType TargetAddress,
 const uint8* SourceAddressPtr,
 Fls_LengthType Length
)

Service ID[hex]: 0x02
Sync/Async: Asynchronous
Reentrancy: Non Reentrant

TargetAddress Target address in flash memory. This address offset will be
added to the flash memory base address.
Min.: 0
Max.: FLS_SIZE - 1

SourceAddressPtr Pointer to source data buffer Parameters (in):

Length Number of bytes to write
Min.: 1
Max.: FLS_SIZE - TargetAddress

Parameters (in-
out):

None

Parameters (out): None

Return value: Std_ReturnType E_OK: write command has been accepted
E_NOT_OK: write command has not been accepted

Description: Writes one or more complete flash pages.

FLS223: The job of the function Fls_Write shall write one or more complete flash
pages to the flash device.

FLS224: The function Fls_Write shall copy the given parameters to Fls module
internal variables, initiate a write job, set the FLS module status to MEMIF_BUSY, set
the job result to MEMIF_JOB_PENDING and return with E_OK.

FLS225: The FLS module shall execute the write job of the function Fls_Write
asynchronously within the FLS module’s main function.

FLS226: The job of the function Fls_Write shall program a flash memory block
with data provided via SourceAddressPtr starting from FlsBaseAddress +
TargetAddress of size Length.

FLS026: If development error detection for the module Fls is enabled: the function
Fls_Write shall check that the write start address (FlsBaseAddress + Targe-
tAddress) is aligned to a flash page boundary and that it lies within the specified
lower and upper flash address boundaries. If this check fails, the function
Fls_Write shall reject the write request, raise the development error
FLS_E_PARAM_ADDRESS and return with E_NOT_OK.

FLS027: If development error detection for the module Fls is enabled: the function
Fls_Write shall check that the write length is greater than 0, that the write end ad-
dress (write start address + length) is aligned to a flash page boundary and that it lies

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

29 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

within the specified upper flash address boundary. If this check fails, the function
Fls_Write shall reject the write request, raise the development error
FLS_E_PARAM_LENGTH and return with E_NOT_OK.

FLS066: If development error detection for the module Fls is enabled: the function
Fls_Write shall check that the FLS module has been initialized. If this check fails,
the function Fls_Write shall reject the write request, raise the development error
FLS_E_UNINIT and return with E_NOT_OK.

FLS030: If development error detection for the module Fls is enabled: the function
Fls_Write shall check that the FLS module is currently not busy. If this check fails,
the function Fls_Write shall reject the write request, raise the development error
FLS_E_BUSY and return with E_NOT_OK.

FLS157: If development error detection for the module Fls is enabled: the function
Fls_Write shall check the given data buffer pointer for not being a null pointer. If
the data buffer pointer is a null pointer, the function Fls_Write shall reject the write
request, raise the development error FLS_E_PARAM_DATA and return with
E_NOT_OK.

FLS146: If possible, e.g. with interrupt controlled implementations, the FLS module
shall start the first round of the write job directly within the function Fls_Write to
reduce overall runtime.

8.3.4 Fls_Cancel

FLS252:

Service name: Fls_Cancel
Syntax: void Fls_Cancel(

)

Service ID[hex]: 0x03
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (in-
out):

None

Parameters (out): None
Return value: None
Description: Cancels an ongoing job.

FLS229: The function Fls_Cancel shall cancel an ongoing flash read, write, erase
or compare job.

FLS230: The function Fls_Cancel shall abort a running job synchronously so that
directly after returning from this function a new job can be started.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

30 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

FLS032: The function Fls_Cancel shall reset the FLS module’s internal job proc-
essing variables (like address, length and data pointer) and set the FLS module state
to FLS_IDLE.

FLS033: The function Fls_Cancel shall set the job result to
MEMIF_JOB_CANCELED if the job result currently has the value
MEMIF_JOB_PENDING. Otherwise the function Fls_Cancel shall leave the job re-
sult unchanged.

FLS147: If configured, the function Fls_Cancel shall call the error notification func-
tion to inform the caller about the cancellation of a job.

The FLS module’s states and data of the affected flash memory cells are undefined
when canceling an ongoing job with the function Fls_Cancel.

FLS183: The function Fls_Cancel shall be pre-compile time configurable On/Off
by the configuration parameter FlsCancelApi.

8.3.5 Fls_GetStatus

FLS253:

Service name: Fls_GetStatus
Syntax: MemIf_StatusType Fls_GetStatus(

)

Service ID[hex]: 0x04
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters (in-
out):

None

Parameters (out): None
Return value: MemIf_StatusType --
Description: Returns the driver state.

FLS034: The function Fls_GetStatus shall return the FLS module state synchro-
nously.

FLS184: The function Fls_GetStatus shall be pre-compile time configurable
On/Off by the configuration parameter FlsGetStatusApi.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

31 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

8.3.6 Fls_GetJobResult

FLS254:

Service name: Fls_GetJobResult
Syntax: MemIf_JobResultType Fls_GetJobResult(

)

Service ID[hex]: 0x05
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters (in-
out):

None

Parameters (out): None
Return value: MemIf_JobResultType --
Description: Returns the result of the last job.

FLS035: The function Fls_GetJobResult shall return the result of the last job syn-
chronously.

FLS036: The erase, write, read and compare functions shall share the same job re-
sult, i.e. only the result of the last job can be queried. The FLS module shall overwrite
the job result with MEMIF_JOB_PENDING if the FLS module has accepted a new
job.

FLS185: The function Fls_GetJobResult shall be pre-compile time configurable
On/Off by the configuration parameter FlsGetJobResultApi.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

32 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

8.3.7 Fls_Read

FLS256:

Service name: Fls_Read
Syntax: Std_ReturnType Fls_Read(

 Fls_AddressType SourceAddress,
 uint8* TargetAddressPtr,
 Fls_LengthType Length
)

Service ID[hex]: 0x07
Sync/Async: Asynchronous
Reentrancy: Non Reentrant

SourceAddress Source address in flash memory. This address offset will be
added to the flash memory base address.
Min.: 0
Max.: FLS_SIZE - 1 Parameters (in):

Length Number of bytes to read
Min.: 1
Max.: FLS_SIZE - SourceAddress

Parameters (in-
out):

None

Parameters (out): TargetAddressPtr Pointer to target data buffer

Return value: Std_ReturnType E_OK: read command has been accepted
E_NOT_OK: read command has not been accepted

Description: Reads from flash memory.

FLS236: The function Fls_Read shall read from flash memory.

FLS237: The function Fls_Read shall copy the given parameters to FLS module
internal variables, initiate a read job, set the FLS module status to MEMIF_BUSY, set
the FLS module job result to MEMIF_JOB_PENDING and return with E_OK.

FLS238: The FLS module shall execute the read job of the function Fls_Read asyn-
chronously within the FLS module’s main function.

FLS239: The read job of the function Fls_Read shall copy a continuous flash mem-
ory block starting from FlsBaseAddress + SourceAddress of size Length to the
buffer pointed to by TargetAddressPtr.

FLS097: If development error detection for the module Fls is enabled: the function
Fls_Read shall check that the read start address (FlsBaseAddress + SourceAd-
dress) lies within the specified lower and upper flash address boundaries. If this
check fails, the function Fls_Read shall reject the read job, raise development error
FLS_E_PARAM_ADDRESS and return with E_NOT_OK.

FLS098: If development error detection for the module Fls is enabled: the function
Fls_Read shall check that the read length is greater than 0 and that the read end
address (read start address + length) lies within the specified upper flash address
boundary. If this check fails, the function Fls_Read shall reject the read job, raise
the development error FLS_E_PARAM_LENGTH and return with E_NOT_OK.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

33 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

FLS099: If development error detection for the module Fls is enabled: the function
Fls_Read shall check that the driver has been initialized. If this check fails, the func-
tion Fls_Read shall reject the read request, raise the development error
FLS_E_UNINIT and return with E_NOT_OK.

FLS100: If development error detection for the module Fls is enabled: the function
Fls_Read shall check that the driver is currently not busy. If this check fails, the
function Fls_Read shall reject the read request, raise the development error
FLS_E_BUSY and return with E_NOT_OK.

FLS158: If development error detection for the module Fls is enabled: the function
Fls_Read shall check the given data buffer pointer for not being a null pointer. If the
data buffer pointer is a null pointer, the function Fls_Read shall reject the read re-
quest, raise the development error FLS_E_PARAM_DATA and return with E_NOT_OK.

FLS240: The FLS module’s environment shall only call the function Fls_Read after
the FLS module has been initialized.

8.3.8 Fls_Compare

FLS257:

Service name: Fls_Compare
Syntax: Std_ReturnType Fls_Compare(

 Fls_AddressType SourceAddress,
 const uint8* TargetAddressPtr,
 Fls_LengthType Length
)

Service ID[hex]: 0x08
Sync/Async: Asynchronous
Reentrancy: Non Reentrant

SourceAddress Source address in flash memory. This address offset will be
added to the flash memory base address.
Min.: 0
Max.: FLS_SIZE - 1

TargetAddressPtr Pointer to target data buffer Parameters (in):

Length Number of bytes to compare
Min.: 1
Max.: FLS_SIZE - SourceAddress

Parameters (in-
out):

None

Parameters (out): None

Return value: Std_ReturnType E_OK: compare command has been accepted
E_NOT_OK: compare command has not been accepted

Description: Compares the contents of an area of flash memory with that of an application data
buffer.

FLS241: The function Fls_Compare shall compare the contents of an area of flash
memory with that of an application data buffer.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

34 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

FLS242: The function Fls_Compare shall copy the given parameters to Fls module
internal variables, initiate a compare job, set the status to MEMIF_BUSY, set the job
result to MEMIF_JOB_PENDING and return with E_OK.

FLS243: The FLS module shall execute the job of the function Fls_Compare asyn-
chronously within the FLS module’s main function.

FLS244: The job of the function Fls_Compare shall compare a continuous flash
memory block starting from FlsBaseAddress + SourceAddress of size Length
with the buffer pointed to by TargetAddressPtr.

FLS150: If development error detection for the module Fls is enabled: the function
Fls_Compare shall check that the compare start address (FlsBaseAddress +
SourceAddress) lies within the specified lower and upper flash address bounda-
ries. If this check fails, the function Fls_Compare shall reject the compare job, raise
the development error FLS_E_PARAM_ADDRESS and return with E_NOT_OK.

FLS151: If If development error detection for the module Fls is enabled: the function
Fls_Compare shall check that the given length is greater than 0 and that the com-
pare end address (compare start address + length) lies within the specified upper
flash address boundary. If this check fails, the function Fls_Compare shall reject the
compare job, raise the development error FLS_E_PARAM_LENGTH and return with
E_NOT_OK.

FLS152: If development error detection for the module Fls is enabled: the function
Fls_Compare shall check that the driver has been initialized. If this check fails, the
function Fls_Compare shall reject the compare job, raise the development error
FLS_E_UNINIT and return with E_NOT_OK.

FLS153: If development error detection for the module Fls is enabled: the function
Fls_Compare shall check that the driver is currently not busy. If this check fails, the
function Fls_Compare shall reject the compare job, raise the development error
FLS_E_BUSY and return with E_NOT_OK.

FLS273: If development error detection for the module Fls is enabled: the function
Fls_Compare shall check the given data buffer pointer for not being a null pointer.
If the data buffer pointer is a null pointer, the function Fls_Compare shall reject the
request, raise the development error FLS_E_PARAM_DATA and return with
E_NOT_OK.

FLS186: The function Fls_Compare shall be pre-compile time configurable On/Off
by the configuration parameter FlsCompareApi.

8.3.9 Fls_SetMode

FLS258:

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

35 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

Service name: Fls_SetMode
Syntax: void Fls_SetMode(

 MemIf_ModeType Mode
)

Service ID[hex]: 0x09
Sync/Async: Synchronous
Reentrancy: Non Reentrant

Parameters (in): Mode MEMIF_MODE_SLOW: Slow read access / normal SPI access.
MEMIF_MODE_FAST: Fast read access / SPI burst access.

Parameters (in-
out):

None

Parameters (out): None
Return value: None
Description: Sets the flash driver’s operation mode.

FLS155: The function Fls_SetMode shall set the FLS module’s operation mode to
the given “Mode” parameter.

FLS156: If development error detection for the module Fls is enabled: the function
Fls_SetMode shall check that the FLS module is currently not busy. If this check
fails, the function Fls_SetMode shall reject the set mode request and raise the de-
velopment error code FLS_E_BUSY.

FLS187: The function Fls_SetMode shall be pre-compile time configurable
On/Off by the configuration parameter FlsSetModeApi.

8.3.10 Fls_GetVersionInfo

FLS259:

Service name: Fls_GetVersionInfo
Syntax: void Fls_GetVersionInfo(

 Std_VersionInfoType* VersioninfoPtr
)

Service ID[hex]: 0x10
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (in-
out):

None

Parameters (out): VersioninfoPtr Pointer to where to store the version information of this module.
Return value: None
Description: Returns the version information of this module.

FLS165: The function Fls_GetVersionInfo shall return the version information
of the FLS module. The version information includes:

- Module Id
- Vendor Id
- Vendor specific version numbers (BSW00407).

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

36 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

FLS166: The function Fls_GetVersionInfo shall be pre-compile time configur-
able On/Off by the configuration parameter FlsVersionInfoApi.

FLS247: If source code for caller and callee of the function Fls_GetVersionInfo
is available, the FLS module should realize this function as a macro. The FLS mod-
ule should define this macro in the module’s header file.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

37 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

8.4 Call-back notifications

This chaper lists all functions provided by the Fls module to lower layer modules.

FLS193: Depending on implementation, callback routines provided and/or invoked by
the FLS module may be called on interrupt level. The module providing those rou-
tines has therefore to make sure that their runtime is reasonably short, i.e. since call-
backs may be propagated upward through several software layers.

8.5 Scheduled functions

This chapter lists all functions provided by the Fls module and called directly by the
Basic Software Module Scheduler.

FLS269: The Fls module shall provide only one scheduled function. Reading from /
writing to flash memory cannot usually be done simultaneously and the overhead for
synchronizing two scheduled functions would outweigh the benefits.

8.5.1 Fls_MainFunction

FLS255:

Service name: Fls_MainFunction
Syntax: void Fls_MainFunction(

)

Service ID[hex]: 0x06
Timing: FIXED_CYCLIC
Description: Performs the processing of jobs.

FLS037: The function Fls_MainFunction shall perform the processing of the flash
read, write, erase and compare jobs.

FLS266: The function Fls_MainFunction shall accept only one read, write, erase or
compare job at a time.

FLS038: When a job has been initiated, the FLS module’s environment shall call the
function Fls_MainFunction cyclically until the job is finished.

Note: The function Fls_MainFunction may also be called cyclically if no job is cur-
rently pending.

FLS039: The function Fls_MainFunction shall return without any action if no job
is pending.

FLS040: The function Fls_MainFunction shall only process as much data in one
call cycle as statically configured for the current job type (read, write, erase or com-
pare) and the current FLS module’s operating mode (normal, fast).

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

38 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

FLS104: The function Fls_MainFunction shall set the job result to
MEMIF_JOB_FAILED and report the error code FLS_E_ERASE_FAILED to the DEM
if a flash erase job fails due to a hardware error.

FLS105: The function Fls_MainFunction shall set the job result to
MEMIF_JOB_FAILED and report the error code FLS_E_WRITE_FAILED to the DEM
if a flash write job fails due to a hardware error.

FLS106: The function Fls_MainFunction shall set the job result to
MEMIF_JOB_FAILED and report the error code FLS_E_READ_FAILED to the DEM if
a flash read job fails due to a hardware error.

FLS154: The function Fls_MainFunction shall set the job result to
MEMIF_JOB_FAILED and report the error code FLS_E_COMPARE_FAILED to the
DEM if a flash compare job fails due to a hardware error.

FLS200: The function Fls_MainFunction shall set the job result to
MEMIF_BLOCK_INCONSISTENT if the compared data from a flash compare job are
not equal.

FLS022: If development error detection for the module Fls is enabled:: After a flash
block has been erased, the function Fls_MainFunction shall compare the con-
tents of the addressed memory area against the value of an erased flash cell to
check that the block has been completely erased. If this check fails, the function
Fls_MainFunction shall set the FLS module’s job result to MEMIF_JOB_FAILED
and raise development error FLS_E_VERIFY_ERASE_FAILED.

FLS055: If development error detection for the module Fls is enabled:: Before writing
a flash block, the function Fls_MainFunction shall compare the contents of the
addressed memory area against the value of an erased flash cell to check that the
block has been completely erased. If this check fails, the function
Fls_MainFunction shall set the FLS module’s job result to MEMIF_JOB_FAILED
and raise development error FLS_E_VERIFY_ERASE_FAILED.

FLS056: If development error detection for the module Fls is enabled:: After writing a
flash block, the function Fls_MainFunction shall compare the contents of the re-
programmed memory area against the contents of the provided application buffer to
check that the block has been completely reprogrammed. If this check fails, the func-
tion Fls_MainFunction shall set the FLS module’s job result to
MEMIF_JOB_FAILED and raise the development error
FLS_E_VERIFY_WRITE_FAILED.

FLS052: After a read, erase, write or compare job has been finished, the function
Fls_MainFunction shall set the FLS module’s job result to MEMIF_JOB_OK if it is
currently in state MEMIF_JOB_PENDING. Otherwise, it shall leave the result un-
changed. Furthermore, the function Fls_MainFunction shall set the FLS module’s
state to MEMIF_IDLE and call the job end notification function if configured [FLS173].

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

39 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

FLS232: The configuration parameter FlsUseInterrupts shall switch between
interrupt and polling controlled job processing if this is supported by the flash memory
hardware.

FLS233: The FLS module’s implementer shall locate the interrupt service routine in
Fls_Irq.c.

FLS234: If interrupt controlled job processing is supported and enabled with the con-
figuration parameter FlsUseInterrupts, the interrupt service routine shall reset
the interrupt flag, check for errors reported by the underlying hardware, reload the
hardware finite state machine for the next round of the pending job or call the appro-
priate notification routine if the job is finished or aborted.

FLS235: The function Fls_MainFunction shall process jobs without hardware in-
terrupt support (e.g. read jobs).

FLS272: If development error detection for the module Fls is enabled: the function
Fls_MainFunction shall provide a timeout monitoring for the currently running job,
that is it shall supervise the deadline of the read / compare / erase or write job.

FLS117: If development error detection for the module Fls is enabled: the function
Fls_MainFunction shall check that the FLS module has been initialized. If this
check fails, the function Fls_MainFunction shall raise the development error
FLS_E_UNINIT.

FLS196: The function Fls_MainFunction shall at the most issue one sector erase
command (to the hardware) in each cycle.

Note: The requirement above shall ensure that maximum one sector is erased se-
quentially within one cycle of the driver’s main function. If the hardware is capable of
erasing more than one sector in parallel, this shall not be restricted by this specifica-
tion.

8.6 Expected Interfaces

This chapter lists all functions the Fls module requires from other modules.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module.

FLS260:

API function Description
Dem_ReportErrorStatus Reports errors to the DEM.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

40 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

Note: If the flash device is connected via SPI, also the SPI interfaces are required to
fulfill the modules core functionality. Which interfaces are needed exactly shall not be
detailed further in this specification.

8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

FLS261:

API function Description
Det_ReportError Service to report development errors.

8.6.3 Configurable interfaces

In this chapter, all interfaces are listed for which the target function can be config-
ured. The target function is usually a call-back function. The names of these kind of
interfaces is not fixed because they are configurable.

FLS109: The job processing callback notifications shall be configurable as function
pointers within the initialization data structure (Fls_ConfigType).

FLS110: The callback notifications shall have no parameters and no return value.

FLS111: If a job processing callback notification is configured as null pointer, the cor-
responding callback routine shall not be executed.

FLS262:

Service name: Fee_JobEndNotification
Syntax: void Fee_JobEndNotification(

)

Sync/Async: Synchronous
Reentrancy: Don't care
Parameters (in): None
Parameters (in-
out):

None

Parameters (out): None
Return value: None
Description: This callback function is called when a job has been completed with a positive

result.

FLS167: The FLS module shall call the callback function
Fee_JobEndNotification when the module has completed a job with a positive
result:

• Read job finished & OK
• Write job finished & OK

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

41 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

• Erase job finished & OK
• Compare job finished & memory blocks are the same

FLS263:

Service name: Fee_JobErrorNotification
Syntax: void Fee_JobErrorNotification(

)

Sync/Async: Synchronous
Reentrancy: Don't care
Parameters (in): None
Parameters (in-
out):

None

Parameters (out): None
Return value: None
Description: This callback function is called when a job has been cancelled or finished with

negative result.

FLS168: The FLS module shall call the callback function
Fee_JobErrorNotification when the module has cancelled or finished a job
with a negative result:

• Read job aborted or failed
• Write job aborted or failed
• Erase job aborted or failed
• Compare job aborted or failed
• Compare job finished and memory blocks differ

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

42 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

9 Sequence diagrams

9.1 Initialization

sd Flash Driver Initialization

EcuM::EcuM

Status: Proposed (by TO as per SWS Fls Driver 2.0.3)

Description:

Comments:

«module»
Fls::Fls

Fls_Init(ConfigPtr)

Fls_Init

Figure 2: Flash driver initialization sequence

9.2 Synchronous functions

The following sequence diagram shows the function Fls_GetJobResult as an ex-
ample for the synchronous functions of this module. The same sequence applies also
to the functions Fls_GetStatus and Fls_SetMode.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

43 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

sd Flash GetJobResult

«module»
NvM::NvM

«module»
MemIf::MemIf

Fee::Fee «module»
Fls::Fls

Status: Proposed (by T O as per SWS Fls Driver 2.0.3)

Description:

Comments:

MemIf_GetJobResul t(DeviceIndex) :MemIf_JobResul tType

Fee_GetJobResult() :MemIf_JobResultT ype

Fls_GetJobResul t(retrun) :MemIf_JobResul tType

Fls_GetJobResul t

Fee_GetJobResult

MemIf_GetJobResul t

Figure 3: Fls_GetJobResult

9.3 Asynchronous functions

The following sequence diagram shows the flash write function (with the configura-
tion option FlsAcLoadOnJobStart set) as an example for the asynchronous func-
tions of this module. The same sequence applies to the erase, read and compare
jobs, with the only difference that for the read and compare jobs no flash access
code needs to be loaded to / unloaded from RAM.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

44 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

sd Write Sequence

BSW Task (OS
task or cyclic call)

«module»
MemIf::MemIf

Fee::Fee «module»
Fls::Fls

«module»
NvM::NvM

loop Fls_MainFunction

Status: Proposed (by TO as per SWS Fls Driver 2.0.3)

Description:

Comments:

MemIf_Write(DeviceIndex,BlockNumber,DataBufferPtr) :
Std_ReturnType

Fee_Write(BlockNumber,DataBufferPtr) :
Std_ReturnType

Fls_Write(return,T argetAddress,SourceAddressPtr,Length)
:Std_ReturnType Load flash access

code to RAM

Fls_Write

Fee_Wri te

MemIf_Write

Fls_MainFunction()

Fls_MainFunction

Fls_MainFunction()

Unload flash
access code from
RAM

Fee_JobEndNoti fication()

NvM_JobEndNoti fication()

NvM_JobEndNoti fication

Fee_JobEndNoti fication

Fls_MainFunction

Figure 4: Flash write sequence, flash access code loaded on job start

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

45 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

9.4 Canceling a running job

sd Cancelling a running flash job

«module»
NvM::NvM

«module»
MemIf::MemIf

Fee::Fee «module»
Fls::Fls

Status: Proposed (by TO as per SWS Fls Driver 2.0.3)

Description:

Comments:

MemIf_Cancel(DeviceIndex)

Fee_Cancel()

Fls_Cancel()

Fee_JobErrorNoti fication()

NvM_JobErrorNoti fication()

NvM_JobErrorNoti fication

Fee_JobErrorNoti fication

Fls_Cancel

Fee_Cancel

MemIf_Cancel

Figure 5: Canceling a running flash job

FLS049: The FLS module’s environment shall not call the function Fls_Cancel dur-
ing a running Fls_MainFunction invocation.

This can be achieved by one of the following scheduling configurations:

• Possibility 1: The job functions of the NVRAM manager and the flash driver
are synchronized (e.g. called sequentially within one task)

• Possibility 2: The task that calls the Fls_MainFunction function can not be
preempted by another task.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

46 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into
containers. In order to support the specification Chapter 10.1 describes fundamen-
tals. It also specifies a template (table) you shall use for the parameter specification.
We intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
Flash Driver.

Chapter 10.3 specifies published information of the module <Module Name>.

10.1 How to read this chapter

In addition to this section, it is highly recommended to read the documents:

- AUTOSAR Layered Software Architecture [2]
- AUTOSAR ECU Configuration Specification [7]

This document describes the AUTOSAR configuration methodology and the
AUTOSAR configuration metamodel in detail.

The following is only a short survey of the topic and it will not replace the ECU Con-
figuration Specification document.

10.1.1 Configuration and configuration parameters

Configuration parameters define the variability of the generic part(s) of an implemen-
tation of a module. This means that only generic or configurable module implementa-
tion can be adapted to the environment (software/hardware) in use during system
and/or ECU configuration.

The configuration of parameters can be achieved at different times during the soft-
ware process: before compile time, before link time or after build time. In the follow-
ing, the term “configuration class” (of a parameter) shall be used in order to refer to a
specific configuration point in time.

10.1.2 Containers

Containers structure the set of configuration parameters. This means:

- all configuration parameters are kept in containers.
- (sub-) containers can reference (sub-) containers. It is possible to assign a

multiplicity to these references. The multiplicity then defines the possible num-
ber of instances of the contained parameters.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

47 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

10.1.3 Specification template for configuration parameters

The following tables consist of three sections:

- the general section
- the configuration parameter section
- the section of included/referenced containers

Pre-compile time - specifies whether the configuration parameter shall be

of configuration class Pre-compile time or not

Label Description
x The configuration parameter shall be of configuration class Pre-compile time.
-- The configuration parameter shall never be of configuration class Pre-compile time.

Link time - specifies whether the configuration parameter shall be

of configuration class Link time or not

Label Description
x The configuration parameter shall be of configuration class Link time.
-- The configuration parameter shall never be of configuration class Link time.

Post Build - specifies whether the configuration parameter shall be

of configuration class Post Build or not

Label Description

x The configuration parameter shall be of configuration class Post Build and no specific
implementation is required.

L Loadable – the configuration parameter shall be of configuration class Post Build and only
one configuration parameter set resides in the ECU.

M
Multiple – the configuration parameter shall be of configuration class Post Build and is
selected out of a set of multiple parameters by passing a dedicated pointer to the init func-
tion of the module.

-- The configuration parameter shall never be of configuration class Post Build.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

48 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed mean-
ings of the parameters describe Chapters 10.2 and Chapter 10.3.

10.2.1 Variants

FLS203: Variant PC: Only pre-compile time parameters

FLS204: Variant PB: FlsConfigSet (see FLS174) as post build time configurable

FLS194: The initialization function of the FLS module shall always have a pointer as
a parameter, even though for Variant PC no configuration set shall be given. Instead
a null pointer shall be passed to the initialization function. This means that in contra-
diction to BSW00414, only one interface for initialization shall be implemented and it
shall not depend on the modules configuration which interface the calling software
module shall use.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

49 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

10.2.2 Fls
Module Name Fls

Module Description

Configuration of the Fls (internal or external flash driver) module. Its multi-
plicity describes the number of flash drivers present, so there will be one
container for each flash driver in the ECUC template. When no flash driver
is present then the multiplicity is 0.

Included Containers
Container Name MultiplicityScope / Dependency

FlsConfigSet 1..* Container for runtime configuration parameters of the flash
driver. Implementation Type: Fls_ConfigType.

FlsGeneral 1 Container for general parameters of the flash driver. These
parameters are always pre-compile.

FlsPublishedInformation 1
Additional published parameters not covered by CommonPub-
lishedInformation container. Note that these parameters do not
have any configuration class setting, since they are published
information.

The table above specifies parameters that shall be configured during system genera-
tion. These parameters shall be located in the file Fls_Cfg.h. Further hardware or
implementation specific parameters can be added if necessary.

10.2.3 FlsGeneral
SWS Item FLS172 :
Container Name FlsGeneral{Fls_ModuleConfiguration}

Description Container for general parameters of the flash driver. These parameters are
always pre-compile.

Configuration Parameters

SWS Item FLS284 :
Name FlsAcLoadOnJobStart {FLS_AC_LOAD_ON_JOB_START}
Description The flash driver shall load the flash access code to RAM whenever an

erase or write job is started and unload (overwrite) it after that job has
been finished or canceled. true: Flash access code loaded on job start /
unloaded on job end or error. false: Flash access code not loaded to /
unloaded from RAM at all.

Multiplicity 1
Type BooleanParamDef
Default value false

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item FLS169 :
Name FlsBaseAddress {FLS_BASE_ADDRESS}
Description The flash memory start address (see also FLS118). FLS169: This parame-

ter defines the lower boundary for read / write / erase and compare jobs.
Multiplicity 1
Type IntegerParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

50 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

Scope / Dependency scope: module

SWS Item FLS285 :
Name FlsCancelApi {FLS_CANCEL_API}
Description Compile switch to enable and disable the Fls_Cancel function. true: API

supported / function provided. false: API not supported / function not pro-
vided

Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item FLS286 :
Name FlsCompareApi {FLS_COMPARE_API}
Description Compile switch to enable and disable the Fls_Compare function. true: API

supported / function provided. false: API not supported / function not pro-
vided

Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item FLS287 :
Name FlsDevErrorDetect {FLS_DEV_ERROR_DETECT}
Description Pre-processor switch to enable and disable development error detection

(see FLS077). true: Development error detection enabled. false: Develop-
ment error detection disabled.

Multiplicity 1
Type BooleanParamDef
Default value true

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item FLS288 :
Name FlsDriverIndex
Description Index of the driver, used by FEE.
Multiplicity 1
Type IntegerParamDef (Symbolic Name generated for this parameter)
Range 0 .. 254
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item FLS289 :

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

51 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

Name FlsGetJobResultApi {FLS_GET_JOB_RESULT_API}
Description Compile switch to enable and disable the Fls_GetJobResult function. true:

API supported / function provided. false: API not supported / function not
provided

Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item FLS290 :
Name FlsGetStatusApi {FLS_GET_STATUS_API}
Description Compile switch to enable and disable the Fls_GetStatus function. true: API

supported / function provided. false: API not supported / function not pro-
vided

Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item FLS291 :
Name FlsSetModeApi {FLS_SET_MODE_API}
Description Compile switch to enable and disable the Fls_SetMode function. true: API

supported / function provided. false: API not supported / function not pro-
vided

Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item FLS170 :
Name FlsTotalSize {FLS_TOTAL_SIZE}
Description The total amount of flash memory in bytes (see also FLS118). FLS170:

This parameter in conjunction with FLS_BASE_ADDRESS defines the
upper boundary for read / write / erase and compare jobs.

Multiplicity 1
Type IntegerParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item FLS292 :
Name FlsUseInterrupts {FLS_USE_INTERRUPTS}
Description Job processing triggered by hardware interrupt. true: Job processing trig-

gered by interrupt (hardware controlled). false: Job processing not trig-

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

52 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

gered by interrupt (software controlled)
Multiplicity 1
Type BooleanParamDef
Default value false

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

dependency: Only available if supported by underlying flash hardware

SWS Item FLS293 :
Name FlsVersionInfoApi {FLS_VERSION_INFO_API}
Description Pre-processor switch to enable / disable the API to read out the modules

version information. true: Version info API enabled. false: Version info API
disabled.

Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

No Included Containers

10.2.4 FlsConfigSet
SWS Item FLS174 :
Container Name FlsConfigSet{Fls_ConfigSet} [Multi Config Container]

Description Container for runtime configuration parameters of the flash driver. Imple-
mentation Type: Fls_ConfigType.

Configuration Parameters

SWS Item FLS270 :
Name FlsAcErase {FLS_AC_ERASE}
Description Address offset in RAM to which the erase flash access code shall be

loaded. Used as function pointer to access the erase flash access code.
Multiplicity 1
Type FunctionNameDef
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: module

SWS Item FLS271 :
Name FlsAcWrite {FLS_AC_WRITE}
Description Address offset in RAM to which the write flash access code shall be

loaded. Used as function pointer to access the write flash access code.
Multiplicity 1
Type FunctionNameDef
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

53 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

Scope / Dependency

SWS Item FLS272 :
Name FlsCallCycle {FLS_CALL_CYCLE}
Description Cycle time of calls of the flash driver's main function.
Multiplicity 1
Type FloatParamDef
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: module

dependency: Only relevant if deadline monitoring for internal functionality
has to be done in software (e.g. erase / write timings)

SWS Item FLS273 :
Name FlsJobEndNotification {FLS_JOB_END_NOTIFICATION}
Description Mapped to the job end notification routine provided by some upper layer

module, typically the Fee module.
Multiplicity 1
Type FunctionNameDef
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: module

SWS Item FLS274 :
Name FlsJobErrorNotification {FLS_JOB_ERROR_NOTIFICATION}
Description Mapped to the job error notification routine provided by some upper layer

module, typically the Fee module.
Multiplicity 1
Type FunctionNameDef
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: module

SWS Item FLS275 :
Name FlsMaxReadFastMode {FLS_MAX_READ_FAST_MODE}
Description The maximum number of bytes to read or compare in one cycle of the

flash driver's job processing function in fast mode.
Multiplicity 1
Type IntegerParamDef
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: module

dependency: The minimum number might depend on the underlying flash
device or communication driver, e.g. if the access to an external flash de-
vice is done via SPI and the minimum transfer size on SPI is four bytes.

SWS Item FLS276 :

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

54 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

Name FlsMaxReadNormalMode {FLS_MAX_READ_NORMAL_MODE}
Description The maximum number of bytes to read or compare in one cycle of the

flash driver's job processing function in normal mode.
Multiplicity 1
Type IntegerParamDef
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: module

dependency: The minimum number might depend on the underlying flash
device or communication driver, e.g. if the access to an external flash de-
vice is done via SPI and the minimum transfer size on SPI is four bytes.

SWS Item FLS277 :
Name FlsMaxWriteFastMode {FLS_MAX_WRITE_FAST_MODE}
Description The maximum number of bytes to write in one cycle of the flash driver's job

processing function in fast mode.
Multiplicity 1
Type IntegerParamDef
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: module

dependency: FLS182: This value has to correspond to the settings in
FLS_PAGE_LIST. The minimum number is defined by the size of one flash
page and therefore depends on the underlying flash device.

SWS Item FLS278 :
Name FlsMaxWriteNormalMode {FLS_MAX_WRITE_NORMAL_MODE}
Description The maximum number of bytes to write in one cycle of the flash driver's job

processing function in normal mode.
Multiplicity 1
Type IntegerParamDef
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: module

dependency: FLS176: This value has to correspond to the settings in
FLS_PAGE_LIST. The minimum number is defined by the size of one flash
page and therefore depends on the underlying flash device.

SWS Item FLS279 :
Name FlsProtection {FLS_PROTECTION}
Description Erase/write protection settings. Only relevant if supported by hardware.
Multiplicity 1
Type IntegerParamDef
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: module

dependency: Only relevant if supported by hardware.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

55 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

Included Containers
Container Name Multiplicity Scope / Dependency
FlsSectorList 1 List of flashable sectors and pages.

FLS173: The table above specifies the parameters that shall be located in an exter-
nal data structure of type Fls_ConfigType. The organization and location of this
data structure shall be up to the implementer. The type declaration shall be located in
the file Fls.h. Further hardware or implementation specific parameters can be
added if necessary.

10.2.5 FlsSectorList
SWS Item FLS201 :
Container Name FlsSectorList{Fls_SectorList}
Description List of flashable sectors and pages.
Configuration Parameters

Included Containers
Container Name Multiplicity Scope / Dependency
FlsSector 1..* Configuration description of a flashable sector

10.2.6 FlsSector
SWS Item FLS202 :
Container Name FlsSector{Fls_Sector}
Description Configuration description of a flashable sector
Configuration Parameters

SWS Item FLS280 :
Name FlsNumberOfSectors {FLS_NUMBER_OF_SECTORS}
Description Number of continuous sectors with the above characteristics.
Multiplicity 1
Type IntegerParamDef
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: module

SWS Item FLS281 :
Name FlsPageSize {FLS_PAGE_SIZE}
Description Size of one page of this sector. Implementation Type: Fls_LengthType.
Multiplicity 1
Type IntegerParamDef
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: module

dependency: The sector size has to be an integer multiple of the page
size.

SWS Item FLS282 :
Name FlsSectorSize {FLS_SECTOR_SIZE}
Description Size of this sector. Implementation Type: Fls_LengthType.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

56 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

Multiplicity 1
Type IntegerParamDef
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: module

dependency: The sector size has to be an integer multiple of the page
size.

SWS Item FLS283 :
Name FlsSectorStartaddress {FLS_SECTOR_STARTADDRESS}
Description Start address of this sector. Implementation Type: Fls_AddressType.
Multiplicity 1
Type IntegerParamDef
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: module

No Included Containers

10.3 Published Information

Published information contains data defined by the implementer of the SW module
that does not change when the module is adapted (i.e. configured) to the actual
HW/SW environment. It thus contains version and manufacturer information.

FLS177: The following table specifies the information that shall be published in the
module’s description file. Further hardware or implementation specific information
can be added if necessary.

The standard common published information like

• vendorId FLS_VENDOR_ID),
• moduleId (FLS_MODULE_ID),
• arMajorVersion FLS_AR_MAJOR_VERSION),
• arMinorVersion (FLS_ AR_MINOR_VERSION),
• arPatchVersion (FLS_ AR_PATCH_VERSION),
• swMajorVersion (FLS_SW_MAJOR_VERSION),
• swMinorVersion (FLS_ SW_MINOR_VERSION),
• swPatchVersion (FLS_ SW_PATCH_VERSION),
• vendorApiInfix (FLS_VENDOR_API_INFIX)

is provided in the BSW Module Description Template (see 0, Figure 4.1 and Figure
7.1). Additional published parameters are listed below if applicable for this module.

10.3.1 FlsPublishedInformation
SWS Item FLS178 :

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

57 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

Container Name FlsPublishedInformation

Description
Additional published parameters not covered by CommonPublishedInfor-
mation container. Note that these parameters do not have any configura-
tion class setting, since they are published information.

Configuration Parameters

SWS Item FLS294 :
Name FlsAcLocationErase {FLS_AC_LOCATION_ERASE}
Description Position in RAM, to which the erase flash access code has to be loaded.

Only relevant if the erase flash access code is not position independent. If
this information is not provided it is assumed that the erase flash access
code is position independent and that therefore the RAM position can be
freely configured.

Multiplicity 1
Type IntegerParamDef
Default value --
ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

SWS Item FLS295 :
Name FlsAcLocationWrite {FLS_AC_LOCATION_WRITE}
Description Position in RAM, to which the write flash access code has to be loaded.

Only relevant if the write flash access code is not position independent. If
this information is not provided it is assumed that the write flash access
code is position independent and that therefore the RAM position can be
freely configured.

Multiplicity 1
Type IntegerParamDef
Default value --
ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

SWS Item FLS296 :
Name FlsAcSizeErase {FLS_AC_SIZE_ERASE}
Description Number of bytes in RAM needed for the erase flash access code.
Multiplicity 1
Type IntegerParamDef
Default value --
ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

SWS Item FLS297 :
Name FlsAcSizeWrite {FLS_AC_SIZE_WRITE}
Description Number of bytes in RAM needed for the write flash access code.
Multiplicity 1
Type IntegerParamDef
Default value --
ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

SWS Item FLS298 :
Name FlsEraseTime {FLS_ERASE_TIME}
Description Maximum time to erase one complete flash sector.
Multiplicity 1
Type FloatParamDef

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

58 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

Default value --
ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

SWS Item FLS299 :
Name FlsErasedValue {FLS_ERASED_VALUE}
Description The contents of an erased flash memory cell.
Multiplicity 1
Type IntegerParamDef
Default value --
ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

SWS Item FLS300 :
Name FlsExpectedHwId {FLS_EXPECTED_HW_ID}
Description Unique identifier of the hardware device that is expected by this driver (the

device for which this driver has been implemented). Only relevant for ex-
ternal flash drivers.

Multiplicity 1
Type StringParamDef
Default value --
ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

SWS Item FLS198 :
Name FlsSpecifiedEraseCycles {FLS_SPECIFIED_ERASE_CYCLES}
Description Number of erase cycles specified for the flash device (usually given in the

device data sheet). FLS198: If the number of specified erase cycles de-
pends on the operating environment (temperature, voltage, ...) during re-
programming of the flash device, the minimum number for which a data
retention of at least 15 years over the temperature range from -40°C ..
+125°C can be guaranteed shall be given. Note: If there are different num-
bers of specified erase cycles for different flash sectors of the device this
parameter has to be extended to a parameter list (similar to the sector list
above).

Multiplicity 1
Type IntegerParamDef
Default value --
ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

SWS Item FLS301 :
Name FlsWriteTime {FLS_WRITE_TIME}
Description Maximum time to program one complete flash page.
Multiplicity 1
Type FloatParamDef
Default value --
ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

No Included Containers

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

59 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

FLS177: The following table specifies the information that shall be published in the
module’s description file. Further hardware or implementation specific information
can be added if necessary.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

60 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

11 Changes to Release 1

11.1 Deleted SWS Items

SWS Item Rationale
FLS074 New SWS template (didn’t fit with new document structure)
FLS045 New SWS template (didn’t fit with new document structure)
FLS115 New SWS template (didn’t fit with new document structure)

11.2 Replaced SWS Items

SWS Item of Release 1 replaced by

SWS Item
Rationale

FLS112 FLS167 New SWS template (copy-paste didn’t work on
the tags)

FLS113 FLS168 New SWS template (copy-paste didn’t work on
the tags)

FLS043 FLS169 New SWS template (copy-paste didn’t work on
the tags)

FLS044 FLS170 New SWS template (copy-paste didn’t work on
the tags)

FLS085 FLS171 New SWS template (copy-paste didn’t work on
the tags)

FLS103 FLS173 New SWS template (copy-paste didn’t work on
the tags)

FLS050 FLS175 New SWS template (copy-paste didn’t work on
the tags)

FLS051 FLS176 New SWS template (copy-paste didn’t work on
the tags)

FLS119 FLS177 New SWS template (copy-paste didn’t work on
the tags)

FLS106 FLS179 New SWS template (copy-paste didn’t work on
the tags)

11.3 Changed SWS Items

SWS Item Rationale
FLS077 New SWS template
FLS016, FLS017,
FLS018, FLS024,
FLS033, FLS036.
FLS104, FLS105,
FLS106, FLS022,
FLS055, FLS056.
FLS052, FLS095

New memory hardware abstraction architecture (reference to memory ab-
straction interface instead of flash interface)

FLS031, FlS036,
FLS037, FLS040,
FLS052

Added functionality (Read, Compare, SetMode functions)

FLS015 Null pointer check removed (see FLS194)
FLS018, FLS024 Replaced MEMIF_E_BUSY with MEMIF_BUSY

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

61 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

11.4 Added SWS Items

SWS Item Rationale
FLS145, FLS146 Bugzilla entry #4873
FLS147 Bugzilla entry #4507
FLS148, FLS149,
FLS150, FLS151,
FLS152, FLS153,
FLS154, FLS155,
FLS156, FLS181,
FLS182

RfC #6793: Same functionality as EEPROM driver. Compare and SetMode
functions added to the flash driver.

FLS157, FLS158 Bugzilla entry #4621
FLS159, FLS160,
FLS161, FLS162,
FLS163, FLS164,
FLS167, FLS168,
FLS172, FLS174,
FLS178

New SWS template

FLS165, FLS166 New SWS template: GetVersionInfo function
FLS183, FLS184,
FLS185, FLS186,
FLS187, FLS188

RfC #6798: Scalability of flash driver

FLS190 BSW00432
FLS191 BSW12265
FLS193 To resolve review issue for BSW00325
FLS194 Added because of BSW00414
FLS195 RfC12405: Clarification of RAM loading and blocking

FLS196 RfC11088: Clarification on number of sectors to erase per main function
cycle

FLS197 RfC11609: Definition of missing Fls_AddressType and Fls_LengthType.
FLS198 RfC11579: Added missing published parameter FlsSpecifiedEraseCycles.
FLS200 RfC11758: Added specific result for compare job if blocks differ
FLS201, FLS202 RfC 13177: Configuration description of flash sector list added.

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

62 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

12 Changes during SWS Improvements by Technical Office

12.1 Deleted SWS Items

SWS Item Rationale
FLS189 No requirement, just information.
FLS190 No requirement, just information.
FLS017 RfC 20566: Allow for re-initialization of flash driver.

12.2 Replaced SWS Items

SWS Item of Release 1 replaced by

SWS Item
Rationale

FLS053 FLS205, FLS206 Made requirement atomic.
FLS118 FLS207, FLS208,

FLS209
Made requirement atomic.

FLS139 FLS210, FLS211 Made requirement atomic.
FLS142 FLS212, FLS213 Made requirement atomic.
FLS195 FLS214, FLS215 Made requirement atomic.
FLS197 FLS216, FLS217 Made requirement atomic.
FLS018 FLS218, FLS219 Made requirement atomic.
FLS019 FLS220, FLS221 Made requirement atomic.
FLS024 FLS223, FLS224 Made requirement atomic.
FLS025 FLS225, FLS226 Made requirement atomic.
FLS031 FLS229, FLS230 Made requirement atomic.
FLS072 FLS232, FLS233,

FLS234, FLS235
Made requirement atomic.

FLS095 FLS236, FLS237 Made requirement atomic.
FLS096 FLS238, FLS239 Made requirement atomic.
FLS148 FLS241, FLS242 Made requirement atomic.
FLS149 FLS243, FLS244 Made requirement atomic.

12.3 Changed SWS Items

Many requirements have been changed to improve understandability without chang-
ing the technical contents.

12.4 Added SWS Items

SWS Item Rationale
FLS203 Each variant gets an individual requirement ID.
FLS204 Each variant gets an individual requirement ID.
FLS222 Caveat Fls_Erase
FLS227 Caveat Fls_Write
FLS228 Caveat Fls_Write
FLS231 Caveat Fls_Cancel
FLS240 Caveat Fls_Read
FLS245 Caveat Fls_Compare
FLS246 Caveat Fls_SetMode
FLS247 Caveat Fls_GetVersionInfo
FLS248 UML Model linking of imported types
FLS249 UML Model linking of Fls_Init

Specification of Module Flash Driver
 V2.2.2

R3.1 Rev 0001

63 of 63 Document ID 025: AUTOSAR_SWS_FlashDriver
- AUTOSAR confidential -

FLS250 UML Model linking of Fls_Erase
FLS251 UML Model linking of Fls_Write
FLS252 UML Model linking of Fls_Cancel
FLS253 UML Model linking of Fls_GetStatus
FLS254 UML Model linking of Fls_GetJobResult
FLS255 UML Model linking of Fls_MainFunction
FLS256 UML Model linking of Fls_Read
FLS257 UML Model linking of Fls_Compare
FLS258 UML Model linking of Fls_SetMode
FLS259 UML Model linking of Fls_GetVersionInfo
FLS260 UML Model linking of mandatory interfaces
FLS261 UML Model linking of optional interfaces
FLS262 UML Model linking of Fee_JobEndNotification
FLS263 UML Model linking of Fee_JobErrorNotification
FLS273 RfC 20461: Null-pointer check for data buffer pointer In Fls_Compare

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 AUTOSAR deliverables
	3.2 Related standards and norms

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure

	5.2 System clock
	5.3 Communication or I/O drivers

	6 Requirements traceability
	7 Functional specification
	7.1 General design rules
	7.2 Error classification
	7.3 Error detection
	7.4 Error notification
	7.5 External flash driver
	7.6 Loading, executing and removing the flash access code

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Fls_ConfigType
	8.2.2 Fls_AddressType
	8.2.3 Fls_LengthType

	8.3 Function definitions
	8.3.1 Fls_Init
	8.3.2 Fls_Erase
	8.3.3 Fls_Write
	8.3.4 Fls_Cancel
	8.3.5 Fls_GetStatus
	8.3.6 Fls_GetJobResult
	8.3.7 Fls_Read
	8.3.8 Fls_Compare
	8.3.9 Fls_SetMode
	8.3.10 Fls_GetVersionInfo

	8.4 Call-back notifications
	8.5 Scheduled functions
	8.5.1 Fls_MainFunction

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	9.1 Initialization
	9.2 Synchronous functions
	9.3 Asynchronous functions
	9.4 Canceling a running job

	10 Configuration specification
	10.1 How to read this chapter
	10.1.1 Configuration and configuration parameters
	10.1.2 Containers
	10.1.3 Specification template for configuration parameters

	10.2 Containers and configuration parameters
	10.2.1 Variants
	10.2.2 Fls
	10.2.3 FlsGeneral
	10.2.4 FlsConfigSet
	10.2.5 FlsSectorList
	10.2.6 FlsSector

	10.3 Published Information
	10.3.1 FlsPublishedInformation

	11 Changes to Release 1
	11.1 Deleted SWS Items
	11.2 Replaced SWS Items
	11.3 Changed SWS Items
	11.4 Added SWS Items

	12 Changes during SWS Improvements by Technical Office
	12.1 Deleted SWS Items
	12.2 Replaced SWS Items
	12.3 Changed SWS Items
	12.4 Added SWS Items

