
Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

Document Title Specification of CAN Trans-
ceiver Driver

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 071
Document Classification Standard

Document Version 1.3.0
Document Status Final
Part of Release 3.1
Revision 5

Document Change History
Date Version Changed by Change Description
15.09.2010 1.3.0 AUTOSAR

Administration
 Explanation added to chapter 7.4
 Updated CanTrcv150
 Legal disclaimer revised

23.06.2008 1.2.1 AUTOSAR
Administration

Legal disclaimer revised

05.12.2007 1.2.0 AUTOSAR
Administration

 Changed API name
CanIf_TrcvWakeupByBus to
CanIf_SetWakeupEvent

 New error code
CANTRCV_E_PARAM_TRCV_WAKEU
P_MODE has been added.

 Output parameter in the API’s
CanTrcv_GetOpMode,
CanTrcv_GetBusWuReason and
CanTrcv_GetVersionInfo is changed to
pointer type.

 API CanTrcv_CB_WakeupByBus has
been modified

 Document meta information extended
 Small layout adaptations made

1 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

30.01.2007 1.1.0 AUTOSAR
Administration

 CAN transceiver driver is below CAN
interface. All API access from higher
layers are routed through CAN inter-
face.

 One CAN transceiver driver used per
CAN transceiver hardware type. For dif-
ferent CAN transceiver hardware types
different CAN transceiver drivers are
used. One CAN transceiver driver sup-
ports all CAN transceiver hardware of
same type

 Legal disclaimer revised
 Release Notes added
 “Advice for users” revised
 “Revision Information” added

16.05.2006 1.0.0 AUTOSAR Ad-
ministration

Initial release

2 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary refer-
ence models, "use cases", and/or references to exemplary technical solutions, de-
vices, processes or software).

Any such exemplary items are contained in the Specification Documents for illustra-
tion purposes only, and they themselves are not part of the AUTOSAR Standard.
Neither their presence in such Specification Documents, nor any later documentation
of AUTOSAR conformance of products actually implementing such exemplary items,
imply that intellectual property rights covering such exemplary items are licensed un-
der the same rules as applicable to the AUTOSAR Standard.

3 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

Table of Content

1 Introduction.. 6

1.1 Goal of CAN transceiver driver... 6
1.2 Explicitly uncovered CAN transceiver functionality....................................... 7
1.3 System basis chips... 7
1.4 Single wire CAN transceivers according SAE J2411.................................... 7

2 Acronyms and abbreviations ... 8

3 Related documentation.. 9

3.1 Input documents... 9
3.2 Related standards and norms .. 9

4 Constraints and assumptions .. 10

4.1 Limitations .. 10
4.2 Applicability to car domains.. 10

5 Dependencies to other modules.. 11

5.1 File structure .. 11
5.1.1 Naming convention for transceiver driver implementation................... 11
5.1.2 Code file structure ... 11
5.1.3 Header file structure.. 12

6 Requirements Traceability... 13

7 Functional specification ... 18

7.1 CAN transceiver driver operation modes.. 18
7.1.1 Operation mode switching... 19

7.2 CAN transceiver hardware operation modes.. 19
7.2.1 Example for temporary “Go-To-Sleep” mode 19
7.2.2 Example for “PowerOn/ListenOnly” mode... 20

7.3 CAN transceiver wake up types ... 21
7.4 CAN transceiver wake up modes ... 21
7.5 Error classification .. 23
7.6 Error detection.. 23
7.7 Preconditions for driver initialization ... 24
7.8 Instance concept .. 24
7.9 Wait states ... 24

8 API specification.. 25

8.1 Imported types.. 25
8.2 Type definitions .. 25
8.3 Function definitions .. 26

8.3.1 CanTrcv_Init.. 26
8.3.2 CanTrcv_SetOpMode ... 27
8.3.3 CanTrcv_GetOpMode ... 29
8.3.4 CanTrcv_GetBusWuReason... 30
8.3.5 CanTrcv_GetVersionInfo... 31
8.3.6 CanTrcv_ SetWakeupMode .. 31

8.4 Scheduled functions ... 34
4 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver

- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

5 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

8.4.1 CanTrcv_MainFunction ... 34
8.5 Call-back notifications .. 34

8.5.1 CanTrcv_CB_WakeupByBus .. 34
8.6 Expected Interfaces.. 35

8.6.1 Mandatory Interfaces .. 35
8.6.2 Optional Interfaces .. 36
8.6.3 Configurable interfaces ... 36

9 Sequence diagram .. 37

9.1 Wake up with valid validation ... 37
9.2 Interaction with DIO module ... 38

10 Configuration specification... 39

10.1 How to read this chapter .. 39
10.1.1 Configuration class and configuration parameters 39
10.1.2 Variants... 39
10.1.3 Containers... 39

10.2 Containers and configuration parameters .. 41
10.2.1 Variants... 41
10.2.2 CanTrcv .. 41
10.2.3 CanTrcvGeneral.. 41
10.2.4 CanTrcvChannel ... 42
10.2.5 CanTrcvAccess ... 44
10.2.6 CanTrcvDioAccess.. 44
10.2.7 CanTrcvSpiSequence ... 45

10.3 Published Information... 47

11 Changes to Release 1 ... 48

12 Changes during TO SWS Improvement... 49

12.1 Deleted SWS Items.. 49
12.2 Replaced SWS Items ... 49
12.3 Changed SWS Items.. 49
12.4 Added SWS Items.. 49

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

1 Introduction

This specification specifies functionality, API and configuration of module CAN trans-
ceiver driver. The driver is responsible to handle the CAN transceiver hardware chips
on an ECU.

The CAN bus transceiver is a hardware device, which mainly transforms the logical
1/0 signals of the µC ports or the information given by SPI connection to the bus
compliant electrical voltage, current and timing.

Within an automotive environment, there are mainly three different CAN bus physics
used. These physics are ISO11898 for high-speed CAN (up to 1Mbd), ISO11519 for
low-speed CAN (up to 125kBd) and SAE J2411 for single-wire CAN.

In addition, the transceivers are often able to detect electrical malfunctions like wiring
issues, ground offsets or transmission of too long dominant signals. Depending on
the interface, they flag the detected error summarized by a single port pin or very de-
tailed via SPI.

Some transceivers also support power supply control and wake up via the bus. A lot
of different wake up/sleep and power supply concepts are usual on the market.

Latest developments are so called system basis chips (SBC) where not only the CAN
but also power supply control and advanced watchdogs are implemented in one
housing and are controlled via one interface (e.g. via SPI).

1.1 Goal of CAN transceiver driver

The target of this document is to specify interfaces and behavior which are applicable
to most current and future CAN transceiver hardware chips and for nearly all use
cases.

The CAN transceiver driver abstracts used CAN transceiver hardware. It offers a
hardware independent interface to the higher layers. It abstracts also from ECU lay-
out by using APIs of MCAL layer to access CAN transceiver hardware.

6 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

1.2 Explicitly uncovered CAN transceiver functionality

Some CAN bus transceivers offer additional functionality as, for example, ECU self
test or error detection capability for diagnostics.

ECU self test and error detection are not defined within AUTOSAR and requiring
such functionality in general would lock out most currently used transceiver hardware
chips. Therefore, features like “ground shift detection”, “selective wake up”, “slope
control” and others are not supported.

1.3 System basis chips

System basis chips (SBCs) are not supported by AUTOSAR.

1.4 Single wire CAN transceivers according SAE J2411

Single wire CAN according SAE J2411 is not supported by AUTOSAR.

7 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

2 Acronyms and abbreviations

Abbreviation Description
ComM Communication Manager

Dem Diagnostic Event Manager

Det Development Error Tracer

Dio Digital input output, one of the SPAL SW modules

EB Externally buffered channels. Buffers containing data to transfer are outside the
SPI Handler/Driver.

EcuM ECU State Manager

Frt Free Running Timer

IB Internally buffered channels. Buffers containing data to transfer are inside the SPI
Handler/Driver.

ISR Interrupt Service Routine

MCAL Micro Controller Abstraction Layer

Port Port, one of the SPAL SW modules

n/a Not applicable

SBC System Basis Chip; a device, which integrates e.g. CAN and/or LIN transceiver,
watchdog and power control.

SPAL Standard Peripheral Abstraction Layer

SPI

Channel

A channel is a software exchange medium for data that are defined with the same
criteria: configuration parameters, number of data elements with same size and
data pointers (source & destination) or location. See specification of SPI driver for
more details.

SPI

Job

A job is composed of one or several channels with the same chip select. A job is
considered to be atomic and therefore cannot be interrupted. A job has also an
assigned priority. See specification of SPI driver for more details.

SPI

Sequence

A sequence is a number of consecutive jobs to be transmitted. A sequence de-
pends on a static configuration. See specification of SPI driver for more details.

8 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

3 Related documentation

3.1 Input documents

[1] List of Basic Software Modules
 AUTOSAR_BasicSoftwareModules.pdf

[2] Layered Software Architecture
 AUTOSAR_LayeredSoftwareArchitectur.pdf

[3] Specification of ECU Configuration
 AUTOSAR_RS_ECU_Configuration.pdf

[4] General Requirements on Basic Software
 AUTOSAR_SRS_General.pdf

[5] Specification of Specification of CAN Interface
 AUTOSAR_SWS_CANInterface.pdf

[6] AUTOSAR Basic Software Module Description Template,

AUTOSAR_BSW_Module_Description.pdf

3.2 Related standards and norms

[7] ISO11898 – Road vehicles - Controller area network (CAN)

9 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

4 Constraints and assumptions

4.1 Limitations

CanTrcv098: The CAN bus transceiver hardware shall provide functionality and an
interface which can be mapped to the operation mode model of the AUTOSAR CAN
transceiver driver.

See also Chapter 7.1.

The used APIs of underlying drivers (SPI and DIO) shall be synchronous.

Implementiations of underlying drivers which does not support synchronous behav-
iour cannot be used together with CAN transceiver driver.

4.2 Applicability to car domains

This driver might be applicable in all car domains using CAN for communication.

10 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

5 Dependencies to other modules

Module Dependencies
CanIf All CAN transceiver drivers are arranged below CanIf.

ComM ComM steers CAN transceiver driver communication modes via CanIf. Independent
steering of each single CAN transceiver channel.

Det Det gets development error information from CAN transceiver driver.

Dem Dem gets production error information from CAN transceiver driver.

Dio Dio module is used to access CAN transceiver hardware connected via ports.

EcuM EcuM gets wake up event information from CAN transceiver driver via CanIf.

Frt Free running timer

Icu Icu module performs CAN transceiver hardware interrupts and calls appropriate callback
function inside CAN transceiver driver.

SPI SPI module is used to access CAN transceiver hardware connected via SPI.

5.1 File structure

5.1.1 Naming convention for transceiver driver implementation

CanTrcv070: In case different CAN transceiver hardware chips are used in one
ECU, the function names of the different CAN transceiver drivers must be modified
such that no two functions with the same names are generated. It is the responsibility
of the user to take care that no two functions with the same names are configured.
The names may be extended with a vendor ID or a type ID. Any combination of these
extensions is possible.

5.1.2 Code file structure

CanTrcv064: The naming convention is applied to all files of the CanTrcv module.

CanTrcv065: The CanTrcv module consists of the following files:

File name Requirements Description
CanTrcv.c CanTrcv069 The implementation general c file. It does not contain

interrupt routines.

CanTrcv.h CanTrcv052 It contains only information relevant for other BSW mod-
ules (API). Differences in API depending in configuration
are encapsulated.

CanTrcv_Cbk.h CanTrcv071 CanTrcv_Cbk.h contains callback functions implemented
in CanTrcv.c and called by other modules.

CanTrcv_Cfg.h CanTrcv083 Pre compile time configuration parameter file. It’s gener-
ated by the configuration tool.

CanTrcv_Cfg.c CanTrcv062 Pre compile time configuration code file. It’s generated by
the configuration tool.

11 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

5.1.3 Header file structure

CanTrcv067:

CanTrcv_Cbk.h

CanIf.h

Dem.h

CanTrcv.c

In case connection via SPI

In case connection via Dio

Det.h

Spi.h

Dem_IntErrId.h

CanTrcv.h

CanTrcv_Cfg.c

ComStack_Types.h

CanTrcv_Cfg.h

Dio.h
Std_Types.h

CanIf_Cbk.h

CanTrcv068: For AUTOSAR standard data types, header file Std_Types.h is in-
cluded.

CanTrcv061: The name of the compiler specific header file is Compiler.h. All
mappings of not standardized keywords of compiler specific scope shall be placed
and organized in this compiler specific type and keyword header.

CanTrcv063: The name of the platform specific header file is Platform_Types.h.
All integer type definitions of target and compiler specific scope shall be placed and
organized in this single type header.

12 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

6 Requirements Traceability

Document: AUTOSAR requirements on Basic Software, general

Requirement Satisfied by
[BSW003] Version identification CanTrcv021
[BSW00300] Module naming convention. CanTrcv064
[BSW00301] Limit imported information CanTrcv067
[BSW00302] Limit exported information. CanTrcv052
[BSW00304] AUTOSAR integer data types not applicable

(general implementation requirement)
[BSW00305] Self-defined data types naming convention not applicable

(no self defined data types)
[BSW00306] Avoid direct use of compiler and platform spe-
cific keyword

not applicable
(general implementation requirement)

[BSW00307] Naming convention for global variables not applicable
(general implementation requirement)

[BSW00308] Definition of global data not applicable
(general implementation requirement)

[BSW00309] Global read only data with read only constraint not applicable
(general implementation requirement)

[BSW00310] API naming convention CanTrcv001, CanTrcv002, CanTrcv005,
CanTrcv007, CanTrcv008, CanTrcv009,
CanTrcv012, CanTrcv013

[BSW00312] Shared code shall be reentrant not applicable
(general implementation requirement)

[BSW00314] Separation of interrupt frames and services
routines

CanTrcv069

[BSW00318] Format of module version numbers CanTrcv021
[BSW00321] Enumeration of module version numbers

not applicable
(general implementation requirement)

[BSW00323] API parameter checking CanTrcv048
[BSW00325] Runtime of interrupt service routines not applicable

(CAN transceiver driver implements no
ISRs)

[BSW00326] Transition from ISRs to OS tasks not applicable
(no such transitions are performed)

[BSW00327] Error values naming convention CanTrcv050
[BSW00328] Avoid duplication of code not applicable

(general implementation requirement)
 [BSW00329] Avoidance of generic interfaces CanTrcv001, CanTrcv002, CanTrcv005,

CanTrcv007, CanTrcv008, CanTrcv009,
CanTrcv012, CanTrcv013

[BSW00330] Use of macros and inline functions not applicable
(general implementation requirement)

[BSW00331] Separation of error and status values not applicable
(no such values defined)

[BSW00333] Documentation of callback function context not applicable
(general documentation requirement)

[BSW00334] Provision of XML file not applicable
(general implementation requirement)

[BSW00335] Status values naming convention not applicable
[BSW00336] Shut down interface not applicable

(no need for such interfaces)
[BSW00337] Classification of errors CanTrcv057
[BSW00338] Detection and reporting of development errors CanTrcv040,CanTrcv090
[BSW00339] Reporting of production relevant error status CanTrcv024,CanTrcv058
[BSW00341] Mircocontroller compatibility documentation not applicable

13 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

(general documentation requirement)
[BSW00342] Use of source code and object code not applicable

(general implementation requirement)
[BSW00343] Specification and configuration of time CanTrcv090
[BSW00344] Reference to link time configuration not applicable

(only pre compile time configuration
supported)

[BSW00345] Pre compile time configuration CanTrcv062, CanTrcv083
[BSW00346] Basic set of module files CanTrcv065
[BSW00347] Naming separation of different instances of
BSW drivers

CanTrcv016, CanTrcv070

[BSW00348] Standard type header CanTrcv068
[BSW00350] Development error detection keyword CanTrcv023, CanTrcv090
[BSW00353] Platform specific type header CanTrcv063
[BSW00355] Do not redefine AUTOSAR integer data types not applicable

(general implementation requirement)
 [BSW00357] Standard API return type CanTrcv002
[BSW00358] Return type of init() functions CanTrcv001
[BSW00359] Return type of callback functions CanTrcv012
[BSW00360] Parameters of callback functions CanTrcv012
[BSW00361] Compiler specific language extension header CanTrcv061
[BSW00369] Do not return development error codes via
API

CanTrcv001, CanTrcv002, CanTrcv005,
CanTrcv007, CanTrcv008, CanTrcv009,
CanTrcv012, CanTrcv013

[BSW00370] Separation of callback interfaces from API CanTrcv071
[BSW00371] Do not pass function pointers via API CanTrcv001, CanTrcv002, CanTrcv005,

CanTrcv007, CanTrcv008, CanTrcv009,
CanTrcv012, CanTrcv013

[BSW00373] Main processing function naming convention CanTrcv013
[BSW00374] Module vendor identification CanTrcv021
[BSW00375] Notification of wake-up reason CanTrcv012
[BSW00376] Return type and parameters of main functions CanTrcv013
[BSW00377] Module specific API return types CanTrcv005, CanTrcv007
[BSW00378] AUTOSAR boolean type not applicable

(general implementation requirement)
[BSW00379] Module identification CanTrcv021
[BSW00380] Separate C file for configuration parameters CanTrcv062
[BSW00381] Separate configuration H file for pre compile
time parameters

CanTrcv083

[BSW00383] List dependencies of configuration elements not applicable
(general documentation requirement)

[BSW00384] List dependencies to other modules not applicable
(general documentation requirement)

[BSW00385] List possible error notifications CanTrcv050
[BSW00386] Configuration for detecting an error CanTrcv050
[BSW00387] Specify the configuration class of callbacks CanTrcv012
[BSW00388] Introduce containers CanTrcv090, CanTrcv091, CanTrcv092,

CanTrcv093, CanTrcv094, CanTrcv095
[BSW00389] Container shall have names CanTrcv090, CanTrcv091, CanTrcv092,

CanTrcv093, CanTrcv094, CanTrcv095
[BSW00390] Parameter content unique within the module CanTrcv090, CanTrcv091, CanTrcv092,

CanTrcv093, CanTrcv094, CanTrcv095
[BSW00391] Parameters shall have unique names CanTrcv090, CanTrcv091, CanTrcv092,

CanTrcv093, CanTrcv094, CanTrcv095
[BSW00392] Parameters shall have unique types CanTrcv090, CanTrcv091, CanTrcv092,

CanTrcv093, CanTrcv094, CanTrcv095
[BSW00393] Parameters shall have a range CanTrcv090, CanTrcv091, CanTrcv092,

CanTrcv093, CanTrcv094, CanTrcv095
[BSW00394] Specify the scope of the parameters CanTrcv090, CanTrcv091, CanTrcv092,

14 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

CanTrcv093, CanTrcv094, CanTrcv095
[BSW00395] List the required parameters (per parameter) CanTrcv091, CanTrcv092,

CanTrcv093, CanTrcv094, CanTrcv095
[BSW00396] Configuration classes CanTrcv017
[BSW00397] Pre compile time parameters CanTrcv062, CanTrcv083
[BSW00398] Link time parameters not applicable

(only pre compile time configuration
supported)

[BSW00399] Loadable post build time parameters not applicable
(only pre compile time configuration
supported)

[BSW004] Version check not applicable
(general implementation requirement)

[BSW00400] Selectable post build time parameters not applicable
(only pre compile time configuration
supported)

[BSW00401] Documentation of multiple instances of con-
figuration parameters

not applicable
(general documentation requirement)

[BSW00402] Published information CanTrcv021
[BSW00404] Reference to post build time configuration not applicable

(only pre compile time configuration
supported)

[BSW00405] Reference to multiple configuratin sets not applicable
(only pre compile time configuration
supported)

[BSW00406] Check module initialization CanTrcv002, CanTrcv005, CanTrcv007,
CanTrcv008, CanTrcv009, CanTrcv012,
CanTrcv013

[BSW00407] Function to read out published parameters CanTrcv008
[BSW00408] Configuration Parameter naming convention CanTrcv090, CanTrcv091, CanTrcv092

CanTrcv093, CanTrcv094, CanTrcv095
[BSW00409] Header files for production code error CanTrcv067
[BSW00410] Compiler switches shall have defined values not applicable

(general implementation requirement)
[BSW00411] Get version information keyword CanTrcv090
[BSW00412] Separate H file for configuration parameters CanTrcv083
[BSW00413] Accessing instances of BSW modules CanTrcv016
 [BSW00414] Parameters of init function CanTrcv001
[BSW00415] User dependent include files CanTrcv052
[BSW00416] Sequence of initialization not applicable

(this is out of CAN transceiver driver’s
scope)

[BSW00417] Preporting of error events by non basic soft-
ware

not applicable
(Requirement concerns application
components only)

[BSW00419] Separate C file for pre compile time configura-
tion parameters

CanTrcv062

[BSW00420] Production relevant error event rate detection not applicable
(it’s an Dem requirement)

[BSW00421] Reporting of production relevant error events CanTrcv058
[BSW00422] Debouncing of production relevant error status not applicable

(it’s an Dem requirement)
[BSW00423] Usage of SW C template to describe BSW
modules with AUTOSAR interfaces

not applicable
(general implementation requirement)

[BSW00424] BSW main processing function task allocation CanTrcv013
[BSW00425] Trigger condition for schedulable objects CanTrcv090
[BSW00426] Exclusive areas in BSW modules not applicable

(CAN transceiver driver is part of ECU
abstraction layer)

15 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

[BSW00427] ISR description for BSW modules not applicable
(No such areas or function in CAN tran-
sceiver driver)

[BSW00428] Execution order dependencies of main proc-
essing function

CanTrcv013

[BSW00429] Restricted BSW OS functionality access not applicable
(general implementation requirement)

[BSW00431] The BSW scheduler module implements task
bodies

not applicable
(requirement concerns BSW scheduler
module)

[BSW00432] Modules should have separate main process-
ing functions for read/receive and write/transmit data path

not applicable
(CAN transceiver driver does not por-
pagate data)

[BSW00433] Calling of main processing functions

not applicable
(requirement concerns BSW scheduler
module)

[BSW00434] The schedule module shall provide an API for
exclusive areas

not applicable
(requirement concerns BSW scheduler
module)

[BSW005] No hard coded horizontal interfaces within MCAL not applicable
(CAN transceiver driver is part of ECU
abstraction layer)

[BSW006] Platform independency not applicable
(general implementation requirement)

[BSW007] HIS Misra C not applicable
(general implementation requirement)

[BSW009] Module user documentation not applicable
(general documentation requirement)

[BSW010] Memory resource documentation not applicable
(general documentation requirement)

[BSW101] Initialization interface CanTrcv001
[BSW158] Separation of configuration from implementation CanTrcv065
[BSW159] Tool-based configuration
[BSW160] Human readable configuration data CanTrcv090, CanTrcv091, CanTrcv092

CanTrcv093, CanTrcv094, CanTrcv095
[BSW161] Microcontroller abstraction not applicable

(CAN transceiver driver is part of ECU
abstraction layer)

[BSW162] ECU layout abstraction
[BSW164] Implementation of interrupt service routines not applicable

(CAN transceiver driver implements no
ISRs)

[BSW167] Static configuration checking
[BSW168] Diagnostic Interface of SW components not applicable

(CAN transceiver driver has no such
needs)

[BSW170] Data for reconfiguration of AUTOSAR SW com-
ponents

[BSW171] Configurability of optional functionality CanTrcv012, CanTrcv013
[BSW172] Compatibility and documentation of scheduling
strategy

CanTrcv001, CanTrcv013, CanTrcv090
CanTrcv091, CanTrcv098, CanTrcv099

Document: AUTOSAR requirements on Basic Software, cluster CAN

Requirement Satisfied by
[BSW01090] Configuration Data for CAN Bus
Transceiver

CanTrcv090, CanTrcv091, CanTrcv092
CanTrcv093, CanTrcv094, CanTrcv095

[BSW01091] Support for more than one CAN
transceiver. Only pre-compile time configuration

CanTrcv002, CanTrcv005, CanTrcv007,
CanTrcv009, CanTrcv012, CanTrcv016,

16 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

allowed. CanTrcv017
[BSW01092] Configuration of bus operation
mode after initialization for each CAN bus trans-
ceiver

CanTrcv091

[BSW01095] Configuration “Notification for Wa-
keup by bus”

CanTrcv091

[BSW01096] API to initialize the CAN bus trans-
ceiver driver

CanTrcv001

[BSW01097] CAN bus transceiver driver API
shall be synchronous

CanTrcv001, CanTrcv002, CanTrcv005,
CanTrcv007, CanTrcv009, CanTrcv012,
CanTrcv013

[BSW01098] API to request operation mode
Standby

CanTrcv002, CanTrcv055

[BSW01099] API to request operation mode
Sleep

CanTrcv002, CanTrcv055

[BSW01100] API to request operation mode
Normal

CanTrcv002, CanTrcv055

[BSW01101] API to read out current operation
mode

CanTrcv005

[BSW01103] API to read out wake up reason CanTrcv007
[BSW01106] Wake up by bus notification to up-
per layer

CanTrcv066

[BSW01107] Support for wake up during sleep
transition

CanTrcv012

[BSW01109] CAN bus transceiver driver must
check transceiver control

CanTrcv001, CanTrcv002, CanTrcv005,
CanTrcv007, CanTrcv009, CanTrcv012,
CanTrcv013

[BSW01110] Handle timing requirements of tran-
sceiver

CanTrcv001, CanTrcv002, CanTrcv005,
CanTrcv007, CanTrcv009, CanTrcv012,
CanTrcv013

[BSW01115] Support API for enable/disable and
clear wake up event

CanTrcv009

[BSW01138] Wake up by bus callback for lower
layers

CanTrcv012

BSW01108] Safe system start up and shut down
for CAN bus transceiver driver

CanTrcv001, CanTrcv002

17 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

7 Functional specification

7.1 CAN transceiver driver operation modes

CanTrcv055: The CanTrcv module shall implement the state diagram shown below
independently for each configured channel.

POWER_ON

Power on Power off

NOT_ACTIVE

ACTIVE

CANTRCV_SLEEP CANTRCV_NORMAL

CANTRCV_STANDBY

Legend:

1a, 1b, 1c: CanTrcv_SetOpMode(CANIF_TRCV_MODE_NORMAL)
2a, 2b: CanTrcv_SetOpMode(CANIF_TRCV_MODE_STANDBY)
3a, 3b: CanTrcv_SetOpMode(CANIF_TRCV_MODE_SLEEP)

(3b) (1b)

(2b)

(1a)

(3a)

(1c)

(2a)

CanTrcv_Init()
[CFG3]

CanTrcv_Init()
[CFG1]

CanTrcv_Init()
[CFG2]

The main idea behind this diagram is to support a lot of up to now available CAN bus
transceivers in a common model view. Depending on the CAN transceiver hardware,
the model may have one or two states more than necessary for a given CAN trans-
ceiver hardware but this will clearly decouple the ComM and EcuM from the used
hardware.

The function CanTrcv_Init causes a state change to either CANTRCV_SLEEP,
CANTRCV_NORMAL or CANTRCV_STANDBY. This depends on the configuration
and is independently configurable for each channel.

18 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

State Description

POWER_ON ECU is fully powered.

NOT_ACTIVE State of CAN transceiver hardware depends on ECU hardware and on
Dio and Port driver configuration. CAN transceiver driver is not initial-
ized and therefore not active.

ACTIVE The function CanTrcv_Init has been called. It carries CAN trans-
ceiver driver to active state. Depending on configuration CAN trans-
ceiver driver enters state CANTRCV_SLEEP, CANTRCV_STANDBY or
CANTRCV_NORMAL.

CANTRCV_NORMAL Full bus communication. If CAN transceiver hardware controls ECU
power supply, ECU is fully powered. The CAN transceiver driver detects
no further wake up information.

CANTRCV_STANDBY No communication is possible. ECU is still powered if CAN transceiver
hardware controls ECU power supply. A transition to
CANTRCV_SLEEP is only valid from this mode. A wake up by bus or by
a local wake up event is possible.

CANTRCV_SLEEP No communication is possible. ECU may be unpowered depending on
responsibility to handle power supply. A wake up by bus or by a local
wake up event is possible.

If a CAN transceiver driver covers more than one CAN channel, all channels are ei-
ther in state NOT_ACTIVE or in state ACTIVE. In state ACTIVE each channel may
be in a different sub state.

7.1.1 Operation mode switching

A mode switch is requested with a call to the function CanTrcv_SetOpMode.

CanTrcv150 A mode switch request to the current mode is allowed and shall not lead
to an error, even if DET is enabled.

7.2 CAN transceiver hardware operation modes

The CAN transceiver hardware may support more mode transitions than shown in
the state diagram above. The dependencies and the recommended implementations
behaviour are explained in this chapter.

It is up to the implementation to decide which CAN transceiver hardware state is
covered by which CAN transceiver driver software state. An implementation has to
guarantee that the whole functionality of the described CAN transceiver driver soft-
ware state is realized by the implementation.

7.2.1 Example for temporary “Go-To-Sleep” mode

19 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

20 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

The mode often referred to as "Go-to-sleep” is a temporary mode when switching
from Normal to Sleep. The driver encapsulates such a temporary mode within one of
the CAN transceiver driver software states. In addition, the CAN transceiver driver
switches first from Normal to Standby and then with an additional API call from
Standby to Sleep.

7.2.2 Example for “PowerOn/ListenOnly” mode

The mode often refered to as “PowerOn“ or “ListenOnly” is a mode where the CAN
transceiver hardware is only able to receive messages but not able to send mes-
sages. Also, transmission of the acknowledge bit during reception of a message is
supressed. This mode is not supported because it is outside of the CAN standard
and not supported by all CAN transceiver hardware chips.

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

7.3 CAN transceiver wake up types

There are three different scenarios which are often called wake up:

Scenario 1:

 MCU is not powered.
 Parts of ECU including CAN transceiver hardware are powered.
 The considered CAN transceiver channel is in SLEEP mode.
 A wake up event on CAN is detected by CAN transceiver hardware.
 The CAN transceiver hardware causes powering of MCU.

In terms of AUTOSAR, this is kept as a cold start and NOT as a wake up.

Scenario 2:

 MCU is in low power mode.
 Parts of ECU including CAN transceiver hardware are powered.
 The considered CAN transceiver channel is in STANDBY mode.
 A wake up event on CAN is detected by CAN transceiver hardware.
 The CAN transceiver hardware causes a SW interrupt for waking up.

In terms of AUTOSAR, this is kept as a wake up of the CAN channel and of the
MCU.

Scenario 3:

 MCU is in full power mode.
 At least parts of ECU including CAN transceiver hardware are powered.
 The considered CAN transceiver channel is in STANDBY mode.
 A wake up event on CAN is detected by CAN transceiver hardware.
 The CAN transceiver hardware either causes a SW interrupt for waking up or

is polled cyclically for wake up events.

In terms of AUTOSAR, this is kept as a wake up of a CAN channel.

7.4 CAN transceiver wake up modes

CAN transceiver driver offers three wake up modes:

CanTrcv090: NO mode

In mode NO, no wake ups are generated by CAN transceiver driver. This
mode is supported by all CAN transceiver hardware types.

CanTrcv091: POLLING mode

21 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

22 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

In mode POLLING, wake ups generated by CAN transceiver driver may cause
CAN channel wake ups. In this mode, no MCU wake ups are possible. This
mode presumes a support by used CAN transceiver hardware type. Wake up
mode POLLING requires callback function CanTrcv_CB_WakeupByBus and
main function CanTrcv_Main to be present in source code and and main
function CanTrcv_Main to be called by CanIf.

CanTrcv092: ISR mode

In mode ISR, wake ups generated by CAN transceiver driver may cause CAN
channel wake ups and MCU wake ups. This mode pressumes a support by
used CAN transceiver hardware type. Wake up mode ISR requires callback
function CanTrcv_CB_WakeupByBus to be present in source code.

The selection of the wake up mode is done by the configuration parameter Can-
TrcvWakeUpSupport. The support of wake ups may be switched on and off for
each CAN transceiver channel individually by the configuration parameter Can-
TrcvWakeupByBusUsed.

Implementation Hint:

If a CAN transceiver needs a specific state transition (e.g. CANTRCV_SLEEP ->
CANTRCV_NORMAL) initiated by the software after detection of a wake-up, this may
be accomplished by the CanTrcv module, during the execution of
CanTrcv_CB_WakeupByBus. This behaviour is implementation specific.

It has to be assured by configuration of modules, which are involved in wake-up
process (EcuM, CanIf, ICU etc…) that CanTrcv_CB_WakeupByBus is called, when
a transceiver needs a specific state transition.

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

7.5 Error classification

Values for production code event IDs are assigned externally by the configuration of
the Dem. They are published in the file Dem_IntErrId.h and included via Dem.h.

CanTrcv057: Development error values are of type uint8.

CanTrcv050:

Type or error Relevance Related error code Value

[hex]
API called with wrong
parameter for CAN
network

Development CANTRCV_E_INVALID_CAN_NETWORK 1

API called with with
null pointer parameter

Development CANTRCV_E_PARAM_POINTER 2

API service used
without initialization

Development CANTRCV_E_UNINIT 11

API service called in
wrong transceiver
operation mode

Development CANTRCV_E_TRCV_NOT_STANDBY

CANTRCV_E_TRCV_NOT_NORMAL

21

22

API service called
with invalid parameter
for TrcvWakeupMode

Development CANTRCV_E_PARAM_TRCV_WAKEUP_MODE

23

No/incorrect commu-
nication to trans-
ceiver.

Production CANTRCV_E_NO_TRCV_CONTROL *

* Assignment is done in a header file of module Dem.

7.6 Error detection

CanTrcv023: The detection of all development errors is configurable (ON/OFF) at
pre compile time. The switch CanTrcvDevErrorDetect shall activate or deacti-
vate the detection of all development errors.

CanTrcv048: If the CanTrcvDevErrorDetect switch is enabled API parameter
checking is enabled. The detailed description of the detected errors can be found in
chapter 7.5.

CanTrcv058: The detection of production code errors cannot be switched off.

CanTrcv040: Detected development errors will be reported to the error hook of the
Development Error Tracer (Det) if the pre-processor switch CanTrcvDevErrorDe-
tect is set.

CanTrcv024: Production errors shall be reported to Diagnostic Event Manager
(Dem). Only error cases are reported to the Dem.

23 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver

- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

7.7 Preconditions for driver initialization

CanTrcv099: The environment of the CanTrcv module shall make sure that all nec-
essary BSW drivers (used by the CanTrcv module) have been initialized and are us-
able before CanTrcv_Init is called.

The CAN bus transceiver driver uses drivers for SPI, Dio and/or Icu to control the
CAN bus transceiver hardware. Thus, these drivers must be available and ready to
operate before the CAN bus transceiver driver is initialized.

The CAN transceiver driver may have timing requirements for the initialization se-
quence and the access to the transceiver device which must be fulfilled by these
used underlaying drivers.

The timing requirements might be that
1) The call of the CAN bus transceiver driver initialization has to be performed very

early after power up to be able to read all necessary information out of the trans-
ceiver hardware in time for all other users within the ECU.

2) The runtime of the used underlying services is very short and synchronous to en-
able the driver to keep his own timing requirements limited by the used hardware
device.

3) The runtime of the driver may be enlarged due to some hardware devices requir-
ing the port pin level to be valid for e.g. 50µs before changing it again to reach a
specific state (e.g. sleep).

7.8 Instance concept

CanTrcv016: For each different CAN transceiver hardware type, an ECU has one
CAN transceiver driver instance. One instance serves all CAN transceiver hardware
of same type.

7.9 Wait states

For changing operation modes, the CAN transceiver hardware may have to perform
wait states.

CanTrcv138: The module CanTrcv shall perform wait states by accessing the mod-
ule Frt.

The API of the Frt module is currently not specified. Thus, no closer description in
this specification is possible. Access to the Frt module is up to this future develop-
ment.

24 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

8 API specification

8.1 Imported types

In this chapter all types included from the following files are listed:

CanTrcv084:

Header file Imported Type
Dem_Types.h Dem_EventIdType

Spi_NumberOfDataType
Spi_SequenceType
Spi_DataType
Spi_ChannelType

Spi_Types.h

Spi_StatusType
Dio_LevelType
Dio_ChannelGroupType
Dio_ChannelType
Dio_PortType

Dio_Types.h

Dio_PortLevelType
CanIf_TransceiverModeType
CanIf_TrcvWakeupReasonType

CanIf_Types.h

CanIf_TrcvWakeupModeType
Std_ReturnType Std_Types.h
Std_VersionInfoType

8.2 Type definitions

CanTrcv does not define types.

25 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

8.3 Function definitions

8.3.1 CanTrcv_Init

CanTrcv001:

Service name: CanTrcv_Init
Syntax: void CanTrcv_Init(

)

Service ID[hex]: 0x00
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (in-
out):

None

Parameters (out): None
Return value: None
Description: Initializes the CanTrcv module.

CanTrcv100: The function CanTrcv_Init shall set the CAN transceiver hardware
to the state configured by the configuration parameter CanTrcvInitState.

Note that in the time span between power up and the call to CanTrcv_Init, the
CAN transceiver hardware may be in a different state. This depends on hardware
and SPAL driver configuration.

The initialization sequence after reset (e.g. power up) is a critical phase for the CAN
transceiver driver.

This API also validates whether there has been a wake up due to transceiver activity
and if TRUE, reporting will be done to CanIf by calling CanIf_setWakeupEvent, which
in turns reports to EcuM via API EcuM_SetWakeupEvent.

See also requirement CanTrcv099.

CanTrcv113: If there is no/incorrect communication towards the transceiver, the
function CanTrcv_Init shall report the production error
CANTRCV_E_NO_TRCV_CONTROL. For Eg., there are different transceiver types and
different access ways (port connection, SPI). This production error should be sig-
naled if you detect any miscommunication with your hardware. Depending on con-
nection type and depending on your transceiver hardware you may not run in situa-
tions where you have to signal this error.

26 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

8.3.2 CanTrcv_SetOpMode

CanTrcv002:

Service name: CanTrcv_SetOpMode
Syntax: Std_ReturnType CanTrcv_SetOpMode(

 CanIf_TransceiverModeType OpMode,
 uint8 CanNetwork
)

Service ID[hex]: 0x01
Sync/Async: Synchronous
Reentrancy: Non Reentrant

OpMode This parameter contains the desired operating mode
Parameters (in):

CanNetwork CAN network to which API call has to be applied.
Parameters (in-
out):

None

Parameters (out): None

Return value:

Std_ReturnType E_OK: will be returned if the transceiver state has been changed
to the requested mode.
E_NOT_OK: will be returned if the transceiver state change has
failed or the parameter is out of the allowed range. The previous
state has not been changed.

Description: Sets the mode of the channel CanNetwork to the value OpMode.

CanTrcv102: The function CanTrcv_SetOpMode shall switch the internal state of
channel CanNetwork to the value of the parameter OpMode which can be
CANTRCV_NORMAL, CANTRCV_STANDBY or CANTRCV_SLEEP.

CanTrcv103: The user of the CanTrcv module shall call the function
CanTrcv_SetOpMode with OpMode == CANTRCV_STANDBY or
CANTRCV_NORMAL, if the channel CanNetwork is in mode CANTRCV_NORMAL.

CanTrcv104: The user of the CanTrcv module shall only call the function
CanTrcv_SetOpMode with OpMode == CANTRCV_SLEEP or
CANTRCV_STANDBY, if the channel CanNetwork is in mode
CANTRCV_STANDBY.

This API is applicable to each transceiver with each value for parameter
CanTrcv_SetOpMode regardless of whether the transceiver hardware supports
these modes or not. This is to simplify the view of the CanIf to the assigned bus.

CanTrcv105: If the requested mode is not supported by the underlying transceiver
hardware, the function CanTrcv_SetOpMode shall return E_NOT_OK.

The number of supported busses is set up in the configuration phase.

CanTrcv114: If there is no/incorrect communication to the transceiver, the function
CanTrcv_SetOpMode shall report production error
CANTRCV_E_NO_TRCV_CONTROL and return E_NOT_OK.

27 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

CanTrcv120: If development error detection for the module CanTrcv is enabled: If
the function CanTrcv_SetOpMode is called with OpMode == CANTRCV_ STAND-

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

BY and the channel CanNetwork is not in mode CANTRCV_NORMAL or
CANTRCV_ STANDBY, the function CanTrcv_SetOpMode shall raise the develop-
ment error CANTRCV_E_TRCV_NOT_NORMAL and return E_NOT_OK.

CanTrcv121: If development error detection for the module CanTrcv is enabled: If
the function CanTrcv_SetOpMode is called with OpMode == CANTRCV_ SLEEP
and the channel CanNetwork is not in mode CANTRCV_STANDBY or CANTRCV_
SLEEP, the function CanTrcv_SetOpMode shall raise the development error
CANTRCV_E_TRCV_NOT_STANDBY and return E_NOT_OK.

CanTrcv122: If development error detection for the module CanTrcv is enabled: If
called before the CanTrcv module has been initialized, the function
CanTrcv_SetOpMode shall raise the development error CANTRCV_E_UNINIT and
return E_NOT_OK.

CanTrcv123: If development error detection for the module CanTrcv is enabled: If
called with an invalid network number CanNetwork, the function
CanTrcv_SetOpMode shall raise the development error
CANTRCV_E_INVALID_CAN_NETWORK and return E_NOT_OK.

CanTrcv087: If development error detection for the module CanTrcv is enabled: If
called with an invalid TrcvWakeupMode, the function CanTrcv_SetOpMode shall
raise the development error CANTRCV_E_PARAM_TRCV_WAKEUP_MODE
and return E_NOT_OK.

28 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

8.3.3 CanTrcv_GetOpMode

CanTrcv005:

Service name: CanTrcv_GetOpMode
Syntax: CanTrcv_OpModeType CanTrcv_GetOpMode(

 CanIf_TransceiverModeType OpMode,
 uint8 CanNetwork
)

Service ID[hex]: 0x02
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): CanNetwork CAN network to which API call has to be applied.
Parameters (in-
out):

None

Parameters (out): OpMode Pointer to operation mode of the bus the API is applied to.

Return value:
CanTrcv_OpModeTypeE_OK: will be returned if the operation mode was detected.

E_NOT_OK: will be returned if the operation mode was not
detected.

Description: Gets the mode of the channel CanNetwork and returns it in OpMode.

CanTrcv106: The function CanTrcv_GetOpMode shall return the actual state of the
CAN transceiver driver in the parameter OpMode.

See function CanTrcv_Init for the provided state after the CAN transceiver driver
initialization till the first operation mode change request.

The number of supported busses is statically set in the configuration phase.

CanTrcv115: If there is no/incorrect communication to the transceiver, the function
CanTrcv_GetOpMode shall report the production error
CANTRCV_E_NO_TRCV_CONTROL and return E_NOT_OK.

CanTrcv124: If development error detection for the module CanTrcv is enabled: If
called before the CanTrcv module has been initialized, the function
CanTrcv_GetOpMode shall raise the development error CANTRCV_E_UNINIT and
return E_NOT_OK.

CanTrcv129: If development error detection for the module CanTrcv is enabled: If
called with an invalid network number CanNetwork, the function
CanTrcv_GetOpMode shall raise the development error
CANTRCV_E_INVALID_CAN_NETWORK and return E_NOT_OK.

CanTrcv132:If development error detection for the module CanTrcv is enabled: If
called with OpMode==NULL, the function CanTrcv_GetOpMode shall raise the de-
velopment error CANTRCV_E_PARAM_POINTER and return E_NOT_OK.

CanTrcv088: If development error detection for the module CanTrcv is enabled: If
called with an invalid TrcvWakeupMode, the function CanTrcv_SetOpMode shall
raise the development error CANTRCV_E_PARAM_TRCV_WAKEUP_MODE
and return E_NOT_OK.

29 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver

- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

8.3.4 CanTrcv_GetBusWuReason

CanTrcv007:

Service name: CanTrcv_GetBusWuReason
Syntax: Std_ReturnType CanTrcv_GetBusWuReason(

 uint8 CanNetwork,
 CanIf_TrcvWakeupReasonType Reason
)

Service ID[hex]: 0x03
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): CanNetwork CAN network to which API call has to be applied.
Parameters (in-
out):

None

Parameters (out): Reason Pointer to wake up reason of the bus the API is applied to.

Return value:
Std_ReturnType E_OK: will be returned if the wake up reason was detected.

E_NOT_OK: will be returned if the wake up reason was not de-
tected.

Description: Gets the wakup reason for the channel CanNetwork and returns it in reason.

CanTrcv107: The function CanTrcv_GetBusWuReason shall return the reason for
the wake up that the CAN transceiver has detected in the parameter Reason

The ability to detect and differentiate the possible wake up reasons depends strongly
on the CAN transceiver hardware.

Be aware if more than one bus is available, each bus may report a different wake up
reason. E.g. if an ECU has CAN, a wake up by CAN may occur and the incoming
data may cause an internal wake up for another CAN bus.
The CAN transceiver driver has a “per bus” view and does not vote the more impor-
tant reason or sequence internally. The same may be true if e.g. one transceiver con-
trols the power supply and the other is just powered or un-powered.

The number of supported busses is statically set in the configuration phase.

CanTrcv116: If there is no/incorrect communication to the transceiver, the function
CanTrcv_GetBusWuReason shall report the production error
CANTRCV_E_NO_TRCV_CONTROL and return E_NOT_OK.

CanTrcv125: If development error detection for the module CanTrcv is enabled: If
called before the CanTrcv module has been initialized, the function
CanTrcv_GetBusWuReason shall raise development error CANTRCV_E_UNINIT
and return E_NOT_OK.

CanTrcv130: If development error detection for the module CanTrcv is enabled: If
called with an invalid network number CanNetwork, the function
CanTrcv_GetBusWuReason shall raise development error
CANTRCV_E_INVALID_CAN_NETWORK and return E_NOT_OK.

30 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

CanTrcv133: If development error detection for the module CanTrcv is enabled: If
called with Reason==NULL, the function CanTrcv_GetBusWuReason shall raise the
development error CANTRCV_E_PARAM_POINTER and return E_NOT_OK.

8.3.5 CanTrcv_GetVersionInfo

CanTrcv008:

Service name: CanTrcv_GetVersionInfo
Syntax: void CanTrcv_GetVersionInfo(

 Std_VersionInfoType Versioninfo
)

Service ID[hex]: 0x04
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (in-
out):

None

Parameters (out): Versioninfo Pointer to version information of this module.
Return value: None
Description: Gets the version of the module and returns it in VersionInfo.

CanTrcv108: The function CanTrcv_GetVersionInfo shall return the version in-
formation of this module. The version information includes:

- Module Id
- Vendor Id
- Vendor specific version numbers

CanTrcv109: The function CanTrcv_GetVersionInfo shall be pre-compile time
configurable On/Off by the configuration parameter CanTrcvGetVersionInfo.

CanTrcv110: If source code for caller and callee of this function is available, the
CanTrcv module should realize this function as a macro defined in the module’s
header file.

CanTrcv126: If development error detection for the module CanTrcv is enabled: If
called before the CanTrcv has been initialized, the function
CanTrcv_GetVersionInfo shall raise the development error
CANTRCV_E_UNINIT.

CanTrcv134: If development error detection for the module CanTrcv is enabled: If
called with VersionInfo==NULL, the function CanTrcv_GetVersionInfo shall raise
development error CANTRCV_E_PARAM_POINTER and return E_NOT_OK.

8.3.6 CanTrcv_ SetWakeupMode

CanTrcv009:

31 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

Service name: CanTrcv_SetWakeupMode
Syntax: Std_ReturnType CanTrcv_SetWakeupMode(

 CanIf_TrcvWakeupModeType TrcvWakeupMode,
 uint8 CanNetwork
)

Service ID[hex]: 0x05
Sync/Async: Synchronous
Reentrancy: Non Reentrant

TrcvWakeupModeRequested transceiver wakeup reason
Parameters (in):

CanNetwork CAN network to which API call has to be applied.
Parameters (in-
out):

None

Parameters (out): None

Return value:

Std_ReturnType E_OK: Will be returned, if the wakeup state has been changed
to the requested mode.
E_NOT_OK: Will be returned, if the wakeup state change has
failed or the parameter is out of the allowed range. The previous
state has not been changed.

Description: Enables, disables or clears wake-up events of the channel CanNetwork.

CanTrcv111: If the function CanTrcv_SetWakeupMode is called with TrcvWa-
kupMode==CANIF_TRCV_WU_ENABLE and if the CanTrcv module has a stored
wakeup event pending for the addressed bus, the CanTrcv module shall execute the
notification within the API call or immediately after (depending on the implementa-
tion).

CanTrcv093: Disabled: If the function CanTrcv_SetWakeupMode is called with
TrcvWakeupMode==CANIF_TRCV_WU_DISABLE, then the notifications for wakeup
events are disabled on the addressed network. It is required by the transceiver de-
vice and the underlying communication driver to detect the wakeup events and store
it internally in order to raise the event when the wakeup notification is enabled again.

CanTrcv094: Clear: If the function CanTrcv_SetWakeupMode is called with
TrcvWakeupMode==CANIF_TRCV_WU_CLEAR, then a stored wakeup event is
cleared on the addressed network. Clearing of wakeup events have to be used when
the wake up notification is disabled to clear all stored wake up events under control
of the higher layer.

CanTrcv095: The implementation can either enable or disable interrupt source for the
wake up and also it may clear wake up events from the last communication cycle. If
the interrupt is level triggered, a pending interrupt is automatically stored and raised
after enabling the notification again. It is very important not to lose wake up events
during the disabled period.

The number of supported busses is statically set in the configuration phase.

CanTrcv117: If there is no/incorrect communication to the transceiver, the function
CanTrcv_SetWakupMode shall report the production error
CANTRCV_E_NO_TRCV_CONTROL and return E_NOT_OK.

CanTrcv127: If development error detection for the module CanTrcv is enabled: If
called before the CanTrcv has been initialized, the function
32 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver

- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

33 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

CanTrcv_SetWakeupMode shall raise development error CANTRCV_E_UNINIT and
return E_NOT_OK.

CanTrcv131: If development error detection for the module CanTrcv is enabled: If
called with an invalid network number CanNetwork, the function
CanTrcv_SetWakeupMode shall raise development error
CANTRCV_E_INVALID_CAN_NETWORK and return E_NOT_OK.

CanTrcv089: If development error detection for the module CanTrcv is enabled: If
called with an invalid TrcvWakeupMode, the function CanTrcv_SetOpMode shall
raise the development error CANTRCV_E_PARAM_TRCV_WAKEUP_MODE
and return E_NOT_OK.

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

8.4 Scheduled functions

This chaper lists all functions provided by the CanTrcv module and called directly by
the Basic Software Module Scheduler.

8.4.1 CanTrcv_MainFunction

CanTrcv013:

Service name: CanTrcv_MainFunction
Syntax: void CanTrcv_MainFunction(

)

Service ID[hex]: 0x06
Timing: FIXED_CYCLIC
Description: Service to scan all busses for wake up events and perform these event.

The CAN bus transceiver driver may have cyclic jobs like polling for wake up events
(if configured).

CanTrcv112: The CanTrcv_MainFunction shall scan all busses in STANDBY and
SLEEP for wake up events and shall perform these events by calling the appropriate
callback function.

According to [BSW00424], main processing functions shall be allocated by basic
tasks. No special call order to be kept. Function is called within Ca-
nIf_MainFunction_Wakeup.

See configuration parameter CanTrcvWakeUpSupport.

CanTrcv128: If development error detection for the module CanTrcv is enabled: If
called before the CanTrcv has been initialized, the function
CanTrcv_MainFunction shall raise development error CANTRCV_E_UNINIT.

8.5 Call-back notifications

This chapter lists all functions provided by the CanTrcv module for lower layer mod-
ules.

CanTrcv139: The CanTrcv module shall provide function prototypes of the callback
functions in the file CanTrcv_Cbk.h.

8.5.1 CanTrcv_CB_WakeupByBus

CanTrcv012:

Service name: CanTrcv_CB_WakeupByBus
Syntax: Std_ReturnType CanTrcv_CB_WakeupByBus(

 uint8 CanNetwork

34 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

)
Service ID[hex]: 0x07
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): CanNetwork CAN network to which API call has to be applied.
Parameters (in-
out):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK when a valid interrupt is detected

E_NOT_OK when a no interrupt is detected
Description: Service is called by underlying CANIF in case a wake up interrupt is detected.

This API is called by the underlying SPAL CANIF in case a wake up interrupt is de-
tected. The API validates wake up reason in terms whether it is a wake up or not.

Wake up by bus is always asynchronous to the transition to sleep and standby. In the
worst case, wake up occurs during transition to sleep. In such a case, the driver shall
create a wake up by bus notification immediately after the API calls to enter standby
or sleep has finished. The EcuM must be able to handle the wake up event immedi-
ately after requesting the standby or sleep mode.

See configuration parameter CanTrcvWakeUpSupport.

The call context of this API is expected to be within the ISR handler of the underlying
driver.

CanTrcv137: The function CanTrcv_CB_WakeUpByBus shall be callable in interrupt
context.

CanTrcv135: If development error detection for the module CanTrcv is enabled: If
called before the CanTrcv has been initialized, the function
CanTrcv_CB_WakeUpByBus shall raise the development error
CANTRCV_E_UNINIT.

CanTrcv136: If development error detection for the module CanTrcv is enabled: If
called with an invalid parameter CanNetwork, the function
CanTrcv_CB_WakeUpByBus shall raise the development error
CANTRCV_E_INVALID_CAN_NETWORK.

8.6 Expected Interfaces

This chapter lists all functions the module CanTrcv requires from other modules.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module.

CanTrcv085:
35 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver

- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

API function Description
Dem_ReportErrorStatus Reports errors to the DEM.

8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

CanTrcv066: CanIf_SetWakeupEvent: Called in operation modes such as sleep
and standby. Not called if call to CanTrcv_Goto_NormalMode has caused wake
up.CanIf_SetWakeupEvent is called in case of a mode change notification of the
CAN transceiver.

CanTrcv086:

API function Description
Spi_SetupEB Service to setup the buffers and the length of data for the EB SPI Han-

dler/Driver Channel specified.
Dio_ReadChannelGroup This Service reads a subset of the adjoining bits of a port.
Dio_ReadChannel Returns the value of the specified DIO channel.
Dio_WritePort Service to set a value of the port.
Spi_ReadIB Service for reading synchronously one or more data from an IB SPI

Handler/Driver Channel specified by parameter.
Dio_WriteChannel Service to set a level of a channel.
Spi_SyncTransmit Service to transmit data on the SPI bus
Det_ReportError Service to report development errors.
Spi_WriteIB Service for writing one or more data to an IB SPI Handler/Driver Chan-

nel specified by parameter.
Dio_ReadPort Returns the level of all channels of that port.
Spi_GetStatus Service returns the SPI Handler/Driver software module status.
Dio_WriteChannelGroup Service to set a subset of the adjoining bits of a port to a specified level.

1. The interfaces of the SPI module are used by the CanTrcv module if there are

instances of the container CanTrcvSpiSequence.

2. The interfaces of the DIO module are used by the CanTrcv module if there are
instances of the container CanTransceiverDIOAccess.

After finalization of the specification of the Frt module, the used Frt interfaces will be
added. They will be used to perform wait states which are necessary for some trans-
ceiver types to perform.

8.6.3 Configurable interfaces

There are no configurable interfaces for CAN transceiver driver.

36 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

9 Sequence diagram

The focus of the following diagrams is on the interaction between the CAN trans-
ceiver driver and the BSW modules CanIf, ComM, EcuM, Icu and Dio. Depending on
the CAN transceiver hardware, one or more calls to Dio_WriteChannels may be
necessary.

Depending on the transceiver hardware, there may be wait states for some transi-
tions necessary. For these wait states, a call to the Frt module will be performed. Due
to the hardware dependency, these calls are not shown in the following sequence
charts.

9.1 Wake up with valid validation

For all wakeup related sequence diagrams please refer to chapter 9 of ECU State
Manager.

37 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

9.2 Interaction with DIO module

sd CanTrcv_DIO Interaction

IoHwA::IoHwAb «Peripheral»

Hardware::CAN
Transceiver Hardware

Icu::Icu«module»

Dio::Dio

«module»

CanTrcv::CanTrcv

CanIf::CanIfComM::ComMEcuM::EcuM

CanIf_SetTransceiverMode
CanTrcv_SetOpMode

Dio_WriteChannel

Dio_WriteChannel

Dio_WriteChannel(ChannelId,Level)

Std_ReturnType

CanIf_SetTransceiverMode

CanTrcv_SetOpMode(Sleep) :

CanIf_SetTransceiverMode(sleep)

CanTrcv_SetOpMode

Dio_WriteChannel

Dio_WriteChannel

set/reset HW ports
Dio_WriteChannel(ChannelId,Level)

CanTrcv_SetOpMode(standbyl) :
Std_ReturnType

CanIf_SetTransceiverMode(standby)
stop CAN Communication

start CAN Communication

CanIf_SetTransceiverMode

Dio_WriteChannel

Dio_WriteChannel
set/reset HW ports

Dio_WriteChannel(ChannelId,Level)

 CanTrcv_SetOpMode(Normal)
:Std_ReturnType

CanIf_SetTransceiverMode(normal)

ComM_EcuM_WakeUpIndication(Channel)
ComM_EcuM_WakeUpIndication

Stop & Sleep CAN Network
ref

Start CAN Network
ref

CanTrcv_SetOpMode

set/reset HW ports

Dio_WriteChannel(ChannelId,Level)

wake up again
possible. It's ready to
transmitting or receiving
SLEEP mode. No
hardware is now in
CAN transceiver

Comment:

wake up again.
possible. It's ready to
transmitting or receiving
STANDBY mode. No
hardware is now in
CAN transceiver

Comment:

set/reset HW ports

Dio_WriteChannel(ChannelId,Level)

ready to operate.
NORMAL mode. It's
hardware is now in
CAN transceiver

Comment:

set/reset HW ports

Dio_WriteChannel(ChannelId,Level)

Comments:

Status: proposed

set/reset HW ports

38 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

10 Configuration specification

In general this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
CanTrcv.

Chapter 0 specifies published information of the module CanTrcv.

10.1 How to read this chapter

In addition to this section, it is highly recommended to read the documents:

- AUTOSAR Layered Software Architecture [2]
- AUTOSAR ECU Configuration Specification [3]

This document describes the AUTOSAR configuration methodology and the
AUTOSAR configuration metamodel in detail.

The following is only a short survey of the topic and it will not replace the ECU Con-
figuration Specification document.

10.1.1 Configuration class and configuration parameters

Configuration parameters define the variability of the generic part(s) of an implemen-
tation of a module. This means that only generic or configurable module implementa-
tion can be adapted to the environment (software/hardware) in use during system
and/or ECU configuration.

The configuration of parameters can be achieved at different times during the soft-
ware process: before compile time, before link time or after build time. In the follow-
ing, the term “configuration class” (of a parameter) shall be used in order to refer to a
specific configuration point in time.

10.1.2 Variants

Variants describe sets of configuration parameters. E.g., variant 1: only pre-compile
time configuration parameters; variant 2: mix of pre-compile- and post build time-
configuration parameters. In one variant a parameter can only be of one configura-
tion class.

Each Variant must have a unique name which could be referenced to in later chap-
ters. The maximum number of allowed variants is 3.

10.1.3 Containers

Containers structure the set of configuration parameters. This means:

39 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

 all configuration parameters are kept in containers.
 (sub-) containers can reference (sub-) containers. It is possible to assign a

multiplicity to these references. The multiplicity then defines the possible num-
ber of instances of the contained parameters.

Configuration parameters shall be clustered into a container whenever

 the configuration parameters logically belong together
(e.g. general parameters which are valid for the entire module NVRAM man-
ager)

 the configuration parameters need to be instantiated
(e.g. parameters of the memory block specification of the NVRAM manager –
those parameters must be instantiated for each memory block)

40 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed mean-
ings of the parameters are described in preeding hapters.

10.2.1 Variants

Variant 1: Only pre compile time parameters.
Variant 2: Mix of pre compile- and link time parameters.
Variant 3: Mix of pre compile-, link time and post build time parameters.

CanTrcv017: Only pre compile time configuration is allowed. Thus only Variant1 is
allowed.

10.2.2 CanTrcv
Module Name CanTrcv
Module Description Configuration of the CanTrcv (CAN Transceiver driver) module.

Included Containers
Container Name MultiplicityScope / Dependency

CanTrcvChannel 1..*
Container gives CAN transceiver driver information about a
single CAN transceiver channel. Any CAN transceiver driver
has such CAN transceiver channels.

CanTrcvGeneral 1 Container gives CAN transceiver driver basic information.

10.2.3 CanTrcvGeneral
SWS Item CanTrcv090 :
Container Name CanTrcvGeneral{CanTransceiverDriverBasic}
Description Container gives CAN transceiver driver basic information.
Configuration Parameters

SWS Item CanTrcv107 :
N ame CanTrcvWakeUpSupport {CANTRCV_GENERAL_WAKE_UP_SUPPORT}
Description Informs whether wake up is supported by ISR, by polling or whether it is not

supported. In case no wake up is supported by CAN transceiver hardware set-
ting has to be always NO. Only in case wake up is supported by polling main
function CanTrcv_main has to be present in source code and called by CanIf.
Only in case wake up is supported by ISR callback function
CanTrcv_CB_WakeupByBus has to be present in source code. In case of sup-
port for wake up either by ISR or by polling wake up ability may be switched on
or off for each channel of one CAN transceiver channel independently by Can-
TrcvWakeupByBusUsed.

Multiplicity 1
Type EnumerationParamDef

CANTRCV_WAKEUP_ BY_ISR Wake up by interrupt
CAVTRCV_WAKEUP_BY_POLLING Wake up by polling

Range

CANTRCV_WAKEUP_NOT_SUPPORTEDWake up is not supported
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Module

dependency: CanTrcvWakeupByBusUsed

41 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver

- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

SWS Item CanTrcv106 :
N ame CanTrcvGetVersionInfo {CANTRCV_GET_VERSION_INFO}
Description Switches version information API on and off. If switched off, function need

not be present in compiled code.
Multiplicity 1
Type BooleanParamDef
Default value false

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Module

SWS Item CanTrcv140 :
N ame CanTrcvIndex
Description Specifies the InstanceId of this module instance. If only one instance is

present it shall have the Id 0.
Multiplicity 1
Type IntegerParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item CanTrcv105 :
N ame CanTrcvDevErrorDetect {CANTRCV_DEV_ERROR_DETECT }
Description Switches development error detection and notification on and off. If

switched on, #define CANTRCV_DEV _ERROR_DETECT ON shall be
generated. If switched off, #define CANTRCV_DEV_ERROR _DETECT
OFF shall be generated. Define shall be part of file CanTrcv_Cfg.h.

Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Module

No Included Containers

10.2.4 CanTrcvChannel
SWS Item CanTrcv091
Container Name CanTrcvChannel{CanTranceiverChannels}

Description
Container gives CAN transceiver driver information about a single CAN
transceiver channel. Any CAN transceiver driver has such CAN transceiver
channels.

Configuration Parameters

SWS Item CanTrcv098
N ame CanTrcvInitState {CANTRCV_INIT_STATE}
Description State of CAN transceiver after call to CanTrcv_Init.
Multiplicity 1
Type EnumerationParamDef

CANTRCV_OP_MODE_STANDBYStandby operation mode Range

CANTRCV_OP_MODE_SLEEP Sleep operation mode
42 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver

- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

CANTRCV_OP_MODE_NORMAL Normal operation mode
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Instance

SWS Item CanTrcv099
N ame CanTrcvMaxBaudrate {CANTRCV_MAX_BAUDRATE}
Description Max baudrate for transceiver hardware type. Only used for validation pur-

poses. Value shall be configured by configuration tool based on trans-
ceiver hardware type.

Multiplicity 1
Type IntegerParamDef
Range 0 .. 1000

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Instance

SWS Item CanTrcv097
N ame CanTrcvControlsPowerSupply

{CANTRCV_CONTROLS_POWER_SUPPLY}
Description Is ECU power supply controlled by this transceiver? TRUE = Controlled by

transceiver. FALSE = Not controlled by transceiver.
Multiplicity 1
Type BooleanParamDef

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Instance

SWS Item CanTrcv096
N ame CanTrcvChannelUsed {CANTRCV_CHANNEL_USED}
Description Shall the related CAN transceiver channel be used?
Multiplicity 1
Type BooleanParamDef

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Instance

SWS Item CanTrcv100
N ame CanTrcvWakeupByBusUsed {CANTRCV_WAKEUP_BY_BUS_USED}
Description Is wake up by bus supported? If CAN transceiver hardware does not sup-

port wake up by bus value is always FALSE. If CAN transceiver hardware
supports wake up by bus value is TRUE or FALSE depending whether it is
used or not. TRUE = Is used. FALSE = Is not used.

Multiplicity 1
Type BooleanParamDef

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Instance

dependency: CanTrcvWakeUpSupport

43 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

SWS Item CanTrcv140
N ame CanTrcvChannelId {CANTRCV_CHANNEL_ID}
Description Unique identifier of the CAN Transceiver Channel.
Multiplicity 1
Type IntegerParamDef (Symbolic Name generated for this parameter)

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

SWS Item CanTrcv141
N ame CanTrcvWakeupSourceRef {CANTRCV_WAKEUP_SOURCE_REF}
Description Reference to a wakeup source in the EcuM configuration. This reference is

only needed if CanTrcvWakeupByBusUsed is true. Implementation Type:
reference to EcuM_WakeupSourceType

Multiplicity 1
Type Reference to EcuMWakeupSource

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: CanTrcvWakeupByBusUsed

Included Containers
Container Name Multiplicity Scope / Dependency
CanTrcvAccess 1..* --

10.2.5 CanTrcvAccess
SWS Item CanTrcv101 :
Choice Container Name CanTrcvAccess
Description --

Container Choices
Container Name MultiplicityScope / Dependency

CanTrcvDioAccess 0..1

Container gives CAN transceiver driver information about ac-
cessing ports and port pins. In addition relation between CAN
transceiver hardware pin names and Dio port access informa-
tion is given. If a CAN transceiver hardware has no Dio inter-
face, there is no instance of this container.

CanTrcvSpiSequence 0..1

Container gives CAN transceiver driver information about one
SPI sequence. One SPI sequence used by CAN transceiver
driver is in exclusive use for it. No other driver is allowed to
access this sequence. CAN transceiver driver may use one
sequence to access n CAN transceiver hardwares chips of the
same type or n sequences are used to access one single CAN
transceiver hardware chip. If a CAN transceiver hardware has
no SPI interface, there is no instance of this container.

10.2.6 CanTrcvDioAccess
SWS Item CanTrcv094 :
Container Name CanTrcvDioAccess{CanTransceiverDioAccess}

Description

Container gives CAN transceiver driver information about accessing ports
and port pins. In addition relation between CAN transceiver hardware pin
names and Dio port access information is given. If a CAN transceiver
hardware has no Dio interface, there is no instance of this container.

44 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

Configuration Parameters

SWS Item CanTrcv103 :
N ame CanTrcvHardwareInterfaceName

{CANTRCV_HARDWARE_INTERFACE_NAME}
Description CAN transceiver hardware interface name. It is typically the name of a pin.

From a Dio point of view it is either a port, a single channel or a channel
group. Depending on this fact either
CANTRCV_DIO_PORT_SYMBOLIC_NAME or
CANTRCV_DIO_CHANNEL_SYMBOLIC_NAME or
CANTRCV_DIO_CHANNEL_GROUP_SYMBOLIC_NAME shall reference
a Dio configuration. The CAN transceiver driver implementation description
shall list up this name for the appropriate CAN transceiver hardware.

Multiplicity 1
Type StringParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Instance

SWS Item CanTrcv102 :
N ame CanTrcvDioSymNameRef
Description Choice Reference to a DIO Port, DIO Channel or DIO Channel Group. This

reference replaces the CANTRCV_DIO_PORT_SYM_NAME,
CANTRCV_DIO_CHANNEL_SYM_NAME and
CANTRCV_DIO_GROUP_SYM_NAME references in the Can Trcv SWS.

Multiplicity 1
Type Choice Reference to DioChannel,DioChannelGroup,DioPort

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

No Included Containers

10.2.7 CanTrcvSpiSequence
SWS Item CanTrcv092 :
Container Name CanTrcvSpiSequence{CanTransceiverSPISequences}

Description

Container gives CAN transceiver driver information about one SPI se-
quence. One SPI sequence used by CAN transceiver driver is in exclusive
use for it. No other driver is allowed to access this sequence. CAN trans-
ceiver driver may use one sequence to access n CAN transceiver hard-
wares chips of the same type or n sequences are used to access one sin-
gle CAN transceiver hardware chip. If a CAN transceiver hardware has no
SPI interface, there is no instance of this container.

Configuration Parameters

SWS Item CanTrcv104 :
N ame CanTrcvSpiSequenceName {CANTRCV_SPI_SEQUENCE_NAME}
Description Reference to a Spi sequence configuration container.
Multiplicity 1
Type Reference to SpiSequence

Pre-compile time X All Variants ConfigurationClass
Link time --

45 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

Post-build time --
Scope / Dependency scope: Instance

dependency: SpiSequence

No Included Containers

46 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

10.3 Published Information

Published information contains data defined by the implementer of the SW module
that does not change when the module is adapted (i.e. configured) to the actual
HW/SW environment. It thus contains version and manufacturer information.

The standard common published information like

vendorId (<Module>_VENDOR_ID),
moduleId (<Module>_MODULE_ID),
arMajorVersion (<Module>_AR_MAJOR_VERSION),
arMinorVersion (<Module>_ AR_MINOR_VERSION),
arPatchVersion (<Module>_ AR_PATCH_VERSION),
swMajorVersion (<Module>_SW_MAJOR_VERSION),
swMinorVersion (<Module>_ SW_MINOR_VERSION),
swPatchVersion (<Module>_ SW_PATCH_VERSION),
vendorApiInfix (<Module>_VENDOR_API_INFIX)

is provided in the BSW Module Description Template (see 3 Figure 4.1 and Figure
7.1).

Additional published parameters are listed below if applicable for this module.

47 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

11 Changes to Release 1

CAN Transceiver Driver was not part of AUTOSAR release 1. Thus this chapter is not
applicable for AUTOSAR release 2.

48 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

12 Changes during TO SWS Improvement

12.1 Deleted SWS Items

SWS Item Rationale
CanTrcv042 not a requirement but a general description of the goal of the module
CanTrcv056 not a requirement but an example
CanTrcv073 redundant with CanTrcv040
CanTrcv034 should not be required specifically for this module
CanTrcv035 should not be required specifically for this module
CanTrcv080 should not be required specifically for this module
CanTrcv060 Reference does not exist.

12.2 Replaced SWS Items

NONE

12.3 Changed SWS Items

Many requirements have been changed to improve understanding without changing
the technical contents.
SWS Item Rationale

CanTrcv100
Added additional checks to validate whether there has been a wake up due
to transceiver activity and if true report this to the EcuM.

CanTrcv067
CanTrcv066

Changed API name CanIf_TrcvWakeupByBus to CanIf_SetWakeupEvent
and rephrased the sentence.

CanTrcv005
CanTrcv007
CanTrcv008

Output parameter in the API’s CanTrcv_GetOpMode,
CanTrcv_GetBusWuReason and CanTrcv_GetVersionInfo
 is changed to pointer type.

CanTrcv70 Rephrased the requirement.
CanTrcv105 Changed the requirement to return E_NOT_OK.
CanTrcv012 Modified the API CanTrcv_CB_WakeupByBus.

12.4 Added SWS Items

SWS Item Rationale
CanTrcv100 Gave explicit id’s to requirements out of CanTrcv_Init table
CanTrcv113 Gave explicit id’s to requirements out of CanTrcv_Init table
CanTrcv102 Gave explicit id’s to requirements out of CanTrcv_SetOpMode table
CanTrcv103 Gave explicit id’s to requirements out of CanTrcv_SetOpMode table
CanTrcv104 Gave explicit id’s to requirements out of CanTrcv_SetOpMode table
CanTrcv105 Gave explicit id’s to requirements out of CanTrcv_SetOpMode table
CanTrcv114 Gave explicit id’s to requirements out of CanTrcv_SetOpMode table
CanTrcv120 Gave explicit id’s to requirements out of CanTrcv_SetOpMode table
CanTrcv121 Gave explicit id’s to requirements out of CanTrcv_SetOpMode table
CanTrcv122 Gave explicit id’s to requirements out of CanTrcv_SetOpMode table
CanTrcv123 Gave explicit id’s to requirements out of CanTrcv_SetOpMode table
CanTrcv106 Gave explicit id’s to requirements out of CanTrcv_GetOpMode table
CanTrcv115 Gave explicit id’s to requirements out of CanTrcv_GetOpMode table
CanTrcv124 Gave explicit id’s to requirements out of CanTrcv_GetOpMode table
CanTrcv129 Gave explicit id’s to requirements out of CanTrcv_GetOpMode table
CanTrcv132 Gave explicit id’s to requirements out of CanTrcv_GetOpMode table

49 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V1.3.0

R3.1 Rev 5

50 of 50 Document ID 071: AUTOSAR_SWS_CAN_TransceiverDriver
- AUTOSAR confidential -

CanTrcv107 Gave explicit id’s to requirements out of CanTrcv_GetBusWuReason table
CanTrcv116 Gave explicit id’s to requirements out of CanTrcv_GetBusWuReason table
CanTrcv125 Gave explicit id’s to requirements out of CanTrcv_GetBusWuReason table
CanTrcv130 Gave explicit id’s to requirements out of CanTrcv_GetBusWuReason table
CanTrcv133 Gave explicit id’s to requirements out of CanTrcv_GetBusWuReason table
CanTrcv108 Gave explicit id’s to requirements out of CanTrcv_GetVersionInfo table
CanTrcv109 Gave explicit id’s to requirements out of CanTrcv_GetVersionInfo table
CanTrcv110 Gave explicit id’s to requirements out of CanTrcv_GetVersionInfo table
CanTrcv126 Gave explicit id’s to requirements out of CanTrcv_GetVersionInfo table
CanTrcv134 Gave explicit id’s to requirements out of CanTrcv_GetVersionInfo table
CanTrcv111 Gave explicit id’s to requirements out of CanTrcv_SetWakeupMode table
CanTrcv117 Gave explicit id’s to requirements out of CanTrcv_SetWakeupMode table
CanTrcv127 Gave explicit id’s to requirements out of CanTrcv_SetWakeupMode table
CanTrcv131 Gave explicit id’s to requirements out of CanTrcv_SetWakeupMode table
CanTrcv112 Gave explicit id’s to requirements out of CanTrcv_MainFunction table
CanTrcv128 Gave explicit id’s to requirements out of CanTrcv_MainFunction table
CanTrcv139 Gave explicit id to requirement
CanTrcv87 Gave explicit id to requirement
CanTrcv88 Gave explicit id to requirement
CanTrcv89 Gave explicit id to requirement
CanTrcv135 Gave explicit id’s to requirements out of CanTrcv_CB_WakeupByBus table
CanTrcv136 Gave explicit id’s to requirements out of CanTrcv_CB_WakeupByBus table
CanTrcv137 Gave explicit id’s to requirements out of CanTrcv_CB_WakeupByBus table
CanTrcv084 UML Model linking of imported types
CanTrcv001 UML Model linking of CanTrcv_Init
CanTrcv002 UML Model linking of CanTrcv_SetOpMode
CanTrcv005 UML Model linking of CanTrcv_GetOpMode
CanTrcv007 UML Model linking of CanTrcv_GetBusWuReason
CanTrcv008 UML Model linking of CanTrcv_GetVersionInfo
CanTrcv009 UML Model linking of CanTrcv_SetWakeupMode
CanTrcv012 UML Model linking of CanTrcv_CB_WakeupByBus
CanTrcv013 UML Model linking of CanTrcv_MainFunction
CanTrcv085 UML Model linking of mandatory interfaces
CanTrcv086 UML Model linking of optional interfaces
CanTrcv90 Gave explicit id to requirement
CanTrcv91 Gave explicit id to requirement
CanTrcv92 Gave explicit id to requirement
CanTrcv93 Gave explicit id to requirement
CanTrcv94 Gave explicit id to requirement
CanTrcv95 Gave explicit id to requirement
CanTrcv142 Unique identifier of the CAN Transceiver Channel added.
CanTrcv141 CanTrcvWakeup structure added.

	1 Introduction
	1.1 Goal of CAN transceiver driver
	1.2 Explicitly uncovered CAN transceiver functionality
	1.3 System basis chips
	1.4 Single wire CAN transceivers according SAE J2411

	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Naming convention for transceiver driver implementation
	5.1.2 Code file structure
	5.1.3 Header file structure

	6 Requirements Traceability
	7 Functional specification
	7.1 CAN transceiver driver operation modes
	7.1.1 Operation mode switching

	7.2 CAN transceiver hardware operation modes
	7.2.1 Example for temporary “Go-To-Sleep” mode
	7.2.2 Example for “PowerOn/ListenOnly” mode

	7.3 CAN transceiver wake up types
	7.4 CAN transceiver wake up modes
	7.5 Error classification
	7.6 Error detection
	7.7 Preconditions for driver initialization
	7.8 Instance concept
	7.9 Wait states

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Function definitions
	8.3.1 CanTrcv_Init
	8.3.2 CanTrcv_SetOpMode
	8.3.3 CanTrcv_GetOpMode
	8.3.4 CanTrcv_GetBusWuReason
	8.3.5 CanTrcv_GetVersionInfo
	8.3.6 CanTrcv_ SetWakeupMode

	8.4 Scheduled functions
	8.4.1 CanTrcv_MainFunction

	8.5 Call-back notifications
	8.5.1 CanTrcv_CB_WakeupByBus

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagram
	9.1 Wake up with valid validation
	9.2 Interaction with DIO module

	10 Configuration specification
	10.1 How to read this chapter
	10.1.1 Configuration class and configuration parameters
	10.1.2 Variants
	10.1.3 Containers

	10.2 Containers and configuration parameters
	10.2.1 Variants
	CanTrcv
	 CanTrcvGeneral
	10.2.4 CanTrcvChannel
	10.2.5 CanTrcvAccess
	CanTrcvSpiSequence

	10.3 Published Information

	11 Changes to Release 1
	12 Changes during TO SWS Improvement
	12.1 Deleted SWS Items
	12.2 Replaced SWS Items
	12.3 Changed SWS Items
	12.4 Added SWS Items

