
Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Document Title Specification of CAN Interface
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 012
Document Classification Standard

Document Version 3.2.0
Document Status Final
Part of Release 3.1
Revision 5

Document Change History
Date Version Changed by Change Description
15.09.2010 3.2.0 AUTOSAR

Administration
 Removed appearance of

CANIF733_Conf in the document. Links
to CANIF733_Conf replaced by links to
CANIF246 which is the global
configuration container of
CANIF_PUBLIC_TXCONFIRM_POLLIN
G_SUPPORT

 Changed second parameter of
<User_RxIndication> from SduDataPtr to
PduInfoPtr within the whole document.

 Deleted SWS Items CANIF029,
CANIF129 and CANIF130

 [BSW01017] has been removed.
 Entered function

CanIf_GetTxConfirmationState
 Entered description and SWSItemIds

CANIF739 and CANIF740
 Legal disclaimer revised

28.01.2010 3.1.0 AUTOSAR
Administration

 Added: CANIF300, CANIF301,
CANIF_HRHRANGE_CANIDTYPE.

 changed description of function
parameter of <User_RxIndication>
(CanNm)

 Changed: CANIF038, 3rd and 4th
paragraph of chapter 7.19.1, Figure 13,
Figure 15. Deleted:
CANIF_WAKEUP_EVENT_API,
CANIF270, bullet point 4 of 2nd
paragraph of chapter 7.24, bullet point 4
of CANIF126.

 Legal disclaimer revised
23.06.2008 3.0.2 AUTOSAR

Administration
Legal disclaimer revised

1 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Document Change History
Date Version Changed by Change Description
29.01.2008 3.0.1 AUTOSAR

Administration
 Replaced chapter 10 content with

generated tables from AUTOSAR
MetaModel.

12.12.2007 3.0.0 AUTOSAR
Administration

 Interface abstraction: network related
interface changed into a controller related
one

 Wakeup mechanism completely
reworked, APIs added & changed for
Wakeup

 Initialization changed (flat initialization)
 Scheduled main functions skipped due to

changed BSW Scheduler responsibility
 Document meta information extended
 Small layout adaptations made

31.10.2007 2.1.0 AUTOSAR
Administration

 Header file structure changed
 Support of mixed mode operation

(StandardCAN & Extended CAN in
parallel on one network) added

 Support of CAN Transceiver according
AUTOSAR_WP1.1.2_SoftwareArchitect
ure.ppt

 API <User>_DlcErrorNotification deleted
 Pre-compile/Link-Time/Post-Built

definiton for configuration parameters
partly changed

 Re-entrant interface call allowed for
certain APIs

 Support of AUTOSAR BSW Scheduler
added

 Support of memory mapping added
 Configuration container structure

reworked
 Various of clarification extensions and

corrections
26.06.2006 2.0.0 AUTOSAR

Administration
Second Release

31.06.2005 1.0.0 AUTOSAR
Administration

Initial Release

2 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).

Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary
items are licensed under the same rules as applicable to the AUTOSAR Standard.

3 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Table of Contents

1 Introduction and functional overview ... 8

2 Acronyms and Abbreviations... 10

3 Related documentation.. 12

3.1 Input documents... 12
3.2 Related standards and norms .. 13

4 Constraints and assumptions .. 14

4.1 Limitations .. 14
4.2 Applicability to car domains.. 14

5 Dependencies to other modules.. 15

5.1 Upper Protocol Layers.. 16
5.2 Initialization: Ecu State Manager .. 16
5.3 Mode Control: CAN State Manager.. 16
5.4 Lower layers: CAN Driver... 16
5.5 Lower layers: CAN Transceiver Driver ... 17
5.6 Configuration.. 17
5.7 File structure .. 18

5.7.1 Code file structure ... 18
5.7.2 Header file structure.. 19

6 Requirements traceability .. 22

7 Functional specification ... 28

7.1 General functionality... 28
7.2 Hardware object handles.. 29
7.3 Static CAN L-PDU handles .. 30
7.4 Dynamic CAN transmit L-PDU handles.. 31
7.5 Physical channel view .. 31
7.6 CAN hardware unit ... 33
7.7 BasicCAN and FullCAN reception .. 34
7.8 Initialization .. 35
7.9 Transmit data flow.. 37
7.10 Transmit request .. 38
7.11 Transmit confirmation... 39

7.11.1 Confirmation after transmission... 39
7.11.2 Confirmation of transmit cancellation .. 39

7.12 Transmit buffering .. 40
7.12.1 General behavior... 40
7.12.2 Buffer characteristics... 42

7.12.2.1 Storage of L-PDUs in the transmit buffer 42
7.12.2.2 Storage of L-PDUs is prohibited... 42
7.12.2.3 Get L-PDU with the highest priority.. 42
7.12.2.4 Remove transmitted L-PDU ... 42
7.12.2.5 Initialization of transmit buffers... 42

7.12.3 Data integrity of transmit buffers .. 42
7.13 Transmit cancellation ... 43

4 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

7.13.1 Hardware transmit cancellation not supported or not used 43
7.13.2 Hardware transmit cancellation supported and used 43

7.14 Receive data flow... 45
7.14.1 Location of PDU data buffers .. 45
7.14.2 Receive data flow.. 46

7.15 Receive indication .. 48
7.16 Read received data .. 48
7.17 Read notification status .. 49
7.18 Data integrity .. 49
7.19 CAN Controller mode ... 50

7.19.1 General functionality ... 50
7.19.2 CAN Controller operation modes ... 51

7.19.2.1 CANIF_CS_UNINIT .. 52
7.19.2.2 CANIF_CS_STOPPED ... 52
7.19.2.3 CANIF_CS_STARTED.. 53
7.19.2.4 CANIF_CS_SLEEP.. 54
7.19.2.5 BUSOFF .. 55

7.19.3 Controller mode transitions ... 55
7.19.4 Wakeup and validated wakeup events.. 56

7.20 PDU channel mode control .. 58
7.20.1 PDU channel groups ... 58
7.20.2 PDU channel modes ... 58

7.20.2.1 OFFLINE Mode.. 59
7.20.2.2 ONLINE Mode.. 59
7.20.2.3 ONLINE/OFFLINE Mode for Tx/Rx path 59
7.20.2.4 OFFLINE ACTIVE Mode.. 60

7.21 Software receive filter... 60
7.21.1 Software filtering concept .. 61
7.21.2 Software filter algorithms... 62

7.22 DLC check.. 62
7.23 L-PDU dispatcher to upper layers .. 62
7.24 Polling mode .. 63
7.25 Multiple CAN Driver support ... 64

7.25.1 Transmit requests by using multiple CAN Drivers 65
7.25.2 Notification mechanism by using multiple CAN Drivers....................... 66
7.25.3 Mapping table for multiple CAN Driver handling.................................. 68

7.26 Error classification .. 69
7.27 Error detection.. 70
7.28 Error notification ... 70
7.29 Code version check.. 70

8 API specification.. 71

8.1 Imported types.. 71
8.1.1 Standard types .. 71
8.1.2 COM specific types ... 71
8.1.3 EcuM specific types .. 71
8.1.4 CAN specific types .. 71

8.2 Type definitions .. 71
8.2.1 CanIf_ConfigType ... 71
8.2.2 CanIf_ControllerConfigType.. 72

5 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

8.2.3 CanIf_ControllerModeType ... 72
8.2.4 CanIf_ChannelSetModeType.. 73
8.2.5 CanIf_ChannelGetModeType.. 73
8.2.6 CanIf_NotifStatusType .. 74
8.2.7 CanIf_TransceiverModeType.. 74
8.2.8 CanIf_TrcvWakeupReasonType ... 74
8.2.9 CanIf_TrcvWakeupModeType... 75

8.3 Function definitions .. 75
8.3.1 CanIf_Init... 75
8.3.2 CanIf_InitController ... 76
8.3.3 CanIf_SetControllerMode.. 76
8.3.4 CanIf_GetControllerMode ... 77
8.3.5 CanIf_Transmit.. 77
8.3.6 CanIf_ReadRxPduData... 78
8.3.7 CanIf_ReadTxNotifStatus ... 79
8.3.8 CanIf_ReadRxNotifStatus ... 80
8.3.9 CanIf_SetPduMode... 80
8.3.10 CanIf_GetPduMode .. 81
8.3.11 CanIf_GetVersionInfo.. 82
8.3.12 CanIf_SetDynamicTxId ... 82
8.3.13 CanIf_SetTransceiverMode .. 83
8.3.14 CanIf_GetTransceiverMode .. 83
8.3.15 CanIf_GetTrcvWakeupReason ... 84
8.3.16 CanIf_SetTransceiverWakeupMode ... 85
8.3.17 CanIf_CheckWakeup .. 86
8.3.18 CanIf_CheckValidation.. 87
8.3.19 CanIf_GetTxConfirmationState ... 87

8.4 Call-out notifications ... 88
8.4.1 CanIf_TxConfirmation ... 88
8.4.2 CanIf_RxIndication.. 89
8.4.3 CanIf_CancelTxConfirmation .. 90
8.4.4 CanIf_ControllerBusOff ... 91

8.5 Expected interfaces.. 92
8.5.1 Mandatory interfaces... 92
8.5.2 Optional interfaces .. 92
8.5.3 Configurable interfaces ... 93

8.5.3.1 <User_TxConfirmation> (PDU Router, CanNm, CanTp).............. 93
8.5.3.2 <User_RxIndication> (PDU Router)... 94
8.5.3.3 <User_RxIndication> (CanNm) .. 95
8.5.3.4 <User_RxIndication> (CanTp) ... 96
8.5.3.5 <User_ControllerBusOff> (CanSM) ... 96
8.5.3.6 <User_SetWakeupEvent> (EcuM) ... 97
8.5.3.7 <User_ValidationWakeupEvent> (EcuM)..................................... 98

9 Sequence diagrams .. 99

9.1 Transmit request (single CAN Driver)... 99
9.2 Transmit request (multiple CAN Drivers).. 100
9.3 Transmit confirmation (interrupt mode) .. 103
9.4 Transmit confirmation (polling mode) ... 104
9.5 Transmit confirmation (with buffering) .. 105

6 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

9.6 Transmit cancellation (with buffering)... 106
9.7 Receive indication (interrupt mode).. 108
9.8 Receive indication (polling mode) .. 110
9.9 Read received data .. 112
9.10 Start CAN network.. 114
9.11 Stop & sleep CAN network... 116
9.12 BusOff notification .. 118
9.13 BusOff recovery.. 119

10 Configuration specification... 122

10.1 How to read this chapter .. 122
10.1.1 Configuration and configuration parameters 122
10.1.2 Variants... 122
10.1.3 Containers... 122
10.1.4 Specification template for configuration parameters 123

10.2 Containers and configuration parameters .. 123
10.2.1 Variants... 126
10.2.2 CanIf ... 126
10.2.3 CanIfPrivateConfiguration ... 126
10.2.4 CanIfPublicConfiguration .. 127
10.2.5 CanIfInitConfiguration ... 129
10.2.6 CanIfTxPduConfig... 131
10.2.7 CanIfRxPduConfig .. 133
10.2.8 CanIfDispatchConfig ... 136
10.2.9 CanIfControllerConfig.. 137
10.2.10 CanIfInitControllerConfig ... 138
10.2.11 CanIfDriverConfig .. 139
10.2.12 CanIfTransceiverDrvConfig ... 140
10.2.13 CanIfInitHohConfig .. 141
10.2.14 CanIfHthConfig .. 142
10.2.15 CanIfHrhConfig.. 143
10.2.16 CanIfHrhRangeConfig ... 144

10.3 Published information... 145

11 Changes to release 2.1.. 146

11.1 Deleted SWS items .. 146
11.2 Replaced SWS items ... 146
11.3 Changed SWS items.. 146
11.4 Added SWS items .. 146

7 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

1 Introduction and functional overview

CANIF143: This specification describes the functionality, API and the configuration
for the AUTOSAR Basic Software module CAN Interface.

The CAN Interface is located between the low level CAN device drivers (CAN Driver
and Transceiver Driver) and the upper communication service layers (i.e. CAN State
Manager, CAN Network Management, CAN Transport Protocol, PDU Router). It
represents the interface to the services of the CAN Driver for the upper
communication layers.

The CAN Interface provides a unique interface to manage different CAN hardware
device types like CAN controllers and CAN transceivers used by the defined ECU
hardware layout. Thus multiple underlying internal and external CAN controllers/CAN
transceivers can be controlled by the CAN State Manager based on a physical CAN
channel related view.

Communication Services

Communication drivers

Communication Hardware Abstraction

Driver for ext.
CAN ASIC

PDU
Multi-
plexer CAN Transport

Protocol

PDU Router

DCM
Diagnostic

Com.
Manager

AUTOSAR
COM

 µC

CAN Interface

CAN driver SPI driver

External
CAN controller

SPI CAN

DIO driver

System
Services

C
om

m
un

ic
at

io
n

M
an

ag
er

CAN Transceiver
Driver

CAN Generic
NM

CAN
State

Manager

Generic NM
Interface / NM

GW

Figure 1 AUTOSAR CAN Layer Model (see [1])

8 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

The CAN Interface consists of all CAN hardware independent tasks, which belongs
to the CAN communication device drivers of the corresponding ECU. Those
functionality is implemented once in the CAN Interface, so that underlying CAN
device drivers only focus on access and control of the corresponding specific CAN
hardware device.

The CAN Interface fulfils main control flow and data flow requirements of the PDU
Router and upper layer communication modules of the AUTOSAR COM stack:
transmit request processing, transmit confirmation / receive indication / error
notification and start / stop of a CAN controller and thus waking up / participating on a
network. Its data processing and notification API to is based on CAN L-PDUs,
whereas die APIs for control and mode handling provides a CAN controller related
view.

In case of transmit requests the CAN Interface completes the L-PDU transmission
with corresponding parameters and relays the CAN L-PDU via the appropriate CAN
Driver to the CAN controller. At reception the CAN Interface distributes the received
L-PDUs to the upper layer. The assignment between receive L-PDU and upper layer
is statically configured. At transmit confirmation the CAN Interface is responsible for
the notification of upper layers about successful transmission.

The CAN Interface provides CAN communication abstracted access to the CAN
Driver and CAN Transceiver Driver services for control and supervision of the CAN
network. The CAN Interface forwards downwards the status change requests from
the CAN State Manager to the lower layer CAN device drivers, and upwards the CAN
Driver / CAN Transceiver Driver events are forwarded by the CAN Interface to e.g.
the corresponding NM module.

9 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the CAN
Interface Layer that are not included in the AUTOSAR glossary.

Acronym: Description:
Buffering Buffer for a single data unit, for example CAN ID, DLC and SDU, is

stored at a dedicated memory address in RAM.
CAN communication matrix Describes the complete CAN network:

 Participating nodes
 Definition of all CAN PDUs (identifier, DLC)
 Source and Sinks for PDUs

CAN controller A CAN controller is a CPU on-chip or external standalone hardware
device. One CAN controller is connected to one physical channel.

CAN device driver Generic term of CAN Driver and CAN Transceiver Driver.
CAN hardware unit A CAN Hardware unit may consist of one or multiple CAN controllers

of the same type and one, two or multiple CAN RAM areas. The CAN
hardware unit is located on-chip or as external device. The CAN
hardware unit is represented by one CAN Driver.

CAN L-PDU CAN Protocol Data Unit. Consists of an identifier, DLC and data
(SDU).

CAN L-SDU CAN Service Data Unit. Data that are transported inside the CAN L-
PDU.

FIFO First-In-First-Out
Hardware object A CAN hardware object is defined as a PDU buffer inside the CAN

RAM of the CAN hardware unit / CAN controller.
Hardware receive handle
(HRH)

The Hardware Receive Handle (HRH) is defined and provided by the
CAN Driver. Each HRH typically represents just one hardware object.
The HRH is used as a parameter by the CAN Interface Layer for i.e.
software filtering.

Hardware transmit handle
(HTH)

The Hardware Transmit Handle (HTH) is defined and provided by the
CAN Driver. Each HTH typically represents just one or multiple
hardware objects that are configured as hardware transmit buffer pool.

Inner priority inversion Transmission of a high-priority L-PDU is prevented by the presence of
a pending low-priority L-PDU in the same transmit hardware object.

L-PDU handle The L-PDU handle is defined as integer type and placed inside the
CAN Interface layer. Typically each handle represents an L-PDU,
which is a constant structure with information for Tx/Rx processing.

L-PDU channel group Group of CAN L-PDUs, which belong to just one underlying network.
Usually they are handled by one upper layer module.

Outer priority inversion A time gap occurs between two consecutive transmit L-PDUs.
In this case a lower priority L-PDU from another node can prevent
sending the own higher priority L-PDU. Here the higher priority L-PDU
cannot participate in arbitration during network access because the
lower priority L-PDU already won the arbitration.

Physical channel A physical channel represents an interface from a CAN controller to
the CAN Network. Different physical channels of the CAN hardware
unit may access different networks.

Abbreviation: Description:
BSW Basic Software
CANIF CAN Interface
DLC Data Length Code (part of CAN L-PDU that describes the SDU length)
DLL Data Link Layer
HOH CAN hardware object handle
HRH CAN hardware receive handle

10 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

HTH CAN hardware transmit handle
ISR Interrupt service routine
L-PDU Protocol Data Unit for the data link layer (DLL)
L-SDU Service Data Unit for the data link layer (DLL)
PDU Protocol Data Unit
SDU Service Data Unit

11 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

3 Related documentation

3.1 Input documents

[1] List of Basic Software Modules

AUTOSAR_BasicSoftwareModules.pdf

[2] Layered Software Architecture

AUTOSAR_LayeredSoftwareArchitecture.pdf

[3] General Requirements on Basic Software Modules

AUTOSAR_SRS_General.pdf

[4] Specification of Standard Types

AUTOSAR_SWS_StandardTypes.pdf

[5] Specification of Communication Stack Types

AUTOSAR_SWS_ComStackTypes.pdf

[6] Specification of ECU Configuration

AUTOSAR_ECU_Configuration.pdf

[7] Requirements on CAN

AUTOSAR_SRS_CAN.pdf

[8] Specification of CAN Driver

AUTOSAR_SWS_CAN_Driver.pdf

[9] Specification of CAN Transceiver Driver

AUTOSAR_SWS_CAN_TransceiverDriver.pdf

[10] Specification of CAN Transport Layer

AUTOSAR_SWS_CAN_TP.pdf

[11] Specification of CAN State Manager
AUTOSAR_SWS_CAN_StateManager.pdf

[12] Specification of CAN Network Management

AUTOSAR_SWS_CAN_NM.pdf

[13] Specification of Generic Network Management

AUTOSAR_SWS_Generic_NM.pdf

[14] Specification of Communication
AUTOSAR_SWS_COM.pdf

[15] Specification of ECU State Manager
AUTOSAR_SWS_ECU_StateManager.pdf

[16] Specification of BSW Scheduler

12 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

AUTOSAR_SWS_BSW_Scheduler.pdf

[17] AUTOSAR Basic Software Module Description Template,
AUTOSAR_BSW_Module_Description.pdf

3.2 Related standards and norms

[18] ISO11898 – Road vehicles - controller area network (CAN)

[19] ISO14229-1 Unified diagnostic services (UDS) - Part 1: Specification and

 Requirements (ISO DIS 26.05.2004)

[20] ISO15765-2 Diagnostics on controller area network (CAN) - Part 2: Network

layer services

[21] ISO15765-3 Diagnostics on controller area network (CAN) - Part 3:
 Implementation of unified diagnostic services (UDS on CAN)

13 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

4 Constraints and assumptions

4.1 Limitations

The CAN Interface can be used for CAN communication only and is specifically
designed to operate with one or multiple underlying CAN Drivers and CAN
Transceiver Drivers. Several CAN Driver modules covering different CAN hardware
units are represented by just one generic interface as specified in the CAN Driver
specification. As well in the same manner several CAN Transceiver Driver modules
covering different CAN transceiver devices are represented by just one generic
interface as specified in the CAN Transceiver Driver specification. Other protocols
than CAN (i.e. LIN or FlexRay) are not supported.

4.2 Applicability to car domains

The CAN Interface can be used for all domain applications always when the CAN
protocol is used.

14 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

5 Dependencies to other modules

This section describes the relations to other modules within the AUTOSAR basic
software architecture. It contains brief descriptions of configuration information and
services, which are required by the CAN Interface Layer from other modules.

cmp Can Stack

ComServices

ComDrivers

«module»
Can

Can

ComHwA

CanIf

CanIf «module»
CanTrcv

CanTrcv

Hardware

«Peripheral»
CanController

«module»
Com

«module»
PduR

CanTp «module»
CanTp

Com

CanTp_CbkPduR_CanIf

PduR_CanTp

PduR_Com

CanIf_Cbk CanTrcv_Cbk

Com_Cbk

«module»
CanSM

CanSM_Cbk

«realize»

«realize»

«use»
«use»

«realize»

«use»

«realize»

«realize»

«mandatory»

«realize»

«use»

«realize»

«realize»

«realize»

«use
optionally»

«realize»

«optional»

«realize»

«use
optionally»

«realize»

«mandatory»

«mandatory»

«realize»

«mandatory»

«use»

Figure 2 CANIF dependencies in AUTOSAR BSW

15 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

5.1

5.2

5.3

5.4

Upper Protocol Layers

CANIF193: Inside the AUTOSAR BSW architecture the upper layers of the CAN
Interface are represented by the PDU Router, CanNm, CanTp, CanSM and EcuM.

CANIF037: The AUTOSAR BSW architecture indicates, that the application data
buffers are located in the upper layer which they belong to. Direct access to these
buffers is prohibited. The buffer location is passed by the CAN Interface from or to
the CAN Driver during transmission and reception. During execution of these
transmission/reception indication services buffer location is passed. Data integrity is
guaranteed by used of lock mechanisms each time the buffer has been
accessed. See [7.18 Data integrity].

CANIF192: The API used by the CAN Interface consists of notification services as
basic agents for the transfer of CAN related data (i.e. CAN ID, CAN DLC) to the
target upper layer. The call parameters of these services points to the information
buffered in the CAN Driver or they refer directly to the CAN hardware.

Initialization: Ecu State Manager

CANIF283: The EcuM initializes the CanIf (refer to [15] Specification of ECU State
Manager).

Mode Control: CAN State Manager

CANIF299: The CanSM is responsible for mode control management of all
supported CAN controllers, for startup, wakeup and as well for sleep transitions.

Lower layers: CAN Driver

CANIF034: The main lower layer CAN device driver is represented by the CAN
Driver (see [8] Specification of CAN Driver). The CAN Interface has a close relation
to the CAN Driver as a result of its position in the AUTOSAR Basic Software
Architecture. Events detected and processed by the CAN Driver are forwarded to the
CAN Interface.

CANIF267: The CAN Interface passes operation mode requests of the CanSM to the
corresponding underlying CAN controllers. The CAN Driver provides a hardware
abstracted access to the CAN controller only, but control of operation modes is done
only in CanSM, neither in CAN Driver nor in CANIF.

CANIF191: The CAN Driver provides a normalized L-SDU to ensure hardware
independence of the CAN Interface. The pointer to this normalized L-SDU points
either to a temporary buffer (for e.g. data normalizing) or the CAN hardware

16 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

dependent to the CAN Driver. For the CAN Interface the kind of L-SDU buffer is
invisible.

CANIF038: The CAN Interface provides notification services used by the CAN Driver
in all notifications scenarios, for example: transmit confirmation, receive indication,
and BusOff notification.

CANIF106: In case of using multiple CAN Drivers serving different interrupt vectors
these call-out services mentioned above must be re-entrant, refer to [7.25 Multiple
CAN Driver support].

CANIF133: The call-out services called by the CAN Driver are declared and
implemented inside the CAN Interface. The call-out services called by the CAN
Interface are declared and placed inside the appropriate upper communication
service layer, for example PduR, CanNm, CanTp.

CANIF271: The number of configured CAN controllers does not necessarily belong
to the number of used CAN transceivers. In case multiple CAN controllers of a
different types operate on the same CAN network, one CAN transceiver and CAN
Transceiver Driver is sufficient, whereas dependent to the type of the CAN controller
devices one or two different CAN Drivers are needed (see 7.5 Physical channel
view).

5.5

5.6

Lower layers: CAN Transceiver Driver

CANIF266: The second available lower layer CAN device driver is represented by
the CAN Transceiver Driver (see [9] Specification of CAN Transceiver Driver).

CANIF268: Operation mode control of the CAN transceiver device is done by each
CAN transceiver driver itself. The CAN Interface just maps all APIs of several
underlying CAN Transceiver Drivers to a unique one, thus CanSM is able to trigger a
transition of the corresponding CAN transceiver modes. No control or handling
functionality belonging to CAN Transceiver Driver is done inside the CAN Interface.

CANIF277: The CAN Interface Layer maps the following services of all underlying
CAN Transceiver Drivers to one unique interface. These are further described in the
CAN Transceiver Driver SWS (see [9]Specification of CAN Transceiver Driver):

 Unique CAN Transceiver Driver mode request and read services to manage

the operation modes of each underlying CAN transceiver device.
 Read service for CAN transceiver wakeup reason support.
 Mode request service to enable/disable/clear wakeup event state of each used

CAN transceiver.

Configuration

17 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

CANIF035: The CAN Interface design is optimized to manage CAN protocol specific
capabilities and handling of the used underlying CAN controller.
The following standardized information is therefore retrieved from the CAN Driver
configuration:

 Number of CAN controllers. The number of CAN controllers is necessary for

dispatching of transmit and receive L-PDUs and for the control of the status of
the available CAN Drivers.

 Number of hardware object handles. To supervise transmit requests the CAN
Interface needs to know the number of HTHs and the assignments between
each HTH and the corresponding CAN controller.

 Range of received CAN IDs passing hardware acceptance filter for each
hardware object. The CAN Interface uses fixed assignments between HRHs
and L-PDUs to be received in the corresponding hardware object to conduct a
search algorithm (see 7.21 Software receive filter)

CANIF190: The CAN Interface Layer needs information about all used upper
communication service layers and L-PDUs to be dispatched. The following
information has to be set up at configuration time for integration of the CAN Interface
module inside the AUTOSAR COM stack:

 Transmitting upper layer module and transmit I-PDU for each transmit L-PDU.

=> Used for dispatching of transmit confirmation services.
 Receiving upper layer module and and receive I-PDU for each receive L-PDU.

=> Used for L-PDU dispatching during receive indication.

CANIF036: The CAN Interface Layer needs the description of the controller and the
own ECU, which is connected to one or multiple CAN networks. The following
information is therefore retrieved from the CAN communication matrix, part of the
AUTOSAR system configuration:

 All L-PDUs received on each physical channel of this ECU.

=> Used for software filtering and receive L-PDU dispatch
 All L-PDUs that shall be transmitted by each physical channel on this ECU.

=> Used for the transmit request and transmit L-PDU dispatch
 Properties of these L-PDUs (ID, DLC).

=> Used for software filtering, receive indication services, DLC check
 Transmitter for each transmit L-PDU (i.e. PduR, CanNm, CanTp).

=> Used for the transmit confirmation services
 Receiver for each receive L-PDU (i.e. PduR, CanNm, CanTp)

=> Used for the L-PDU dispatch
 Symbolic L-PDU name.

=> Used for the representation of Rx/Tx data buffer addresses

5.7

5.7.1

File structure

Code file structure

18 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface

- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

CANIF151: The code file structure shall not be defined within this specification
completely. Here it shall be pointed out that the code-file structure shall include the
following files named:
 CanIf_<X>.c – for implementation of the provided functionality. The

extensions <X> is optional for usage of multiple C-files.
 CanIf_Cfg.c – for pre-compile time configurable parameters and
 CanIf_Lcfg.c – for link time configurable parameters.
 CanIf_Pbcfg.c – for post build time configurable parameters.

All of these files shall contain all link time and post-build time configurable
parameters.

CANIF152: The API of all used underlying CAN Drivers must be known latest at link-
time.
The location of the API is provided for pre-compile time configuration either by using
of external declaration in includes of all CAN Drivers public header files can_<x>.h
or by the CanIf_Cfg.c.
The location of the API is provided for link time configuration by a set of function
pointers for each CAN Driver. The values for these pointers are given at link time.

CANIF149: Constants and functions used internally by the CAN Interface without
connection to the configuration files are declared in CanIf source file(s).

CANIF117: The include file structure can be constructed as shown in [CANIF141:].

5.7.2 Header file structure

CANIF116: The CAN Interface shall offer a header file CanIf.h, which includes all
types and interfaces. This header file only contains extern declarations of constants,
global data, type definitions and services that are specified in chapter [8 API
specification].

19 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

CANIF141:

 Std_Types.h

CanIf_Types.h

CanIf.h

CanIf.c

includes

CanIf_Cfg.h

Can_A.h CanIf_Cbk.h

includes

includes

includes includes
(optional)

CanIf_Cfg.c

Can_B.h

CAN Interface

Can_A.c

ComStack_Types.h

Can_B.c

includes

includes

includes
(optional)

includes

Dem.h

Dem_IntErrId.h
(Event Id Symbols)

includes

Det.h

includes (if development
error detection is turned on)

<Module>_CanIf.h

<Module>_Cbk.h

includes

includes

includes

MemMap.h

includes CanTrcv_A.h

CanTrcv_B.h

Figure 3 Code and include file structure

CANIF121: The CAN Interface shall offer a header file CanIf_Cbk.h, which
declares the call-out functions called by the CAN Driver.

CANIF122: The CAN Interface includes all necessary configuration data by the
header files
 CanIf.h – for declaration of the provided interface functions
 CanIf_Cbk.h – for declaration of the provided callout functions
 CanIf_Cfg.h – for pre-compile time configurable parameters and
 CanIf_Lcfg.h – for link build time configurable parameters
 CanIf_Pbcfg.h – for post build time configurable parameters

20 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

CANIF279: The CAN Interface shall include all headers files <Module.h> of those
modules, from which declarations of API services or type definitions are needed:
 Can_A.h/Can_B.h – for services and type definitions of the CAN Driver
 CanTrcv_A.h/CanTrcv_B.h. – for services and type definitions of the CAN

Transceiver Driver
 Dem.h – for services of the Diagnostic Event Manager (DEM)
 Det.h – for services of the Development Error Tracer (DET - optional)
 EcuM.h – for callout declarations of the ECU State Manager
 ComStack_Types.h for COM related type definitions
 Note: The following header files are indirectly included by

ComStack_Types.h:
o Std_Types.h – for AUTOSAR standard types
o Platform_Types.h – for platform specific types
o Compiler.h – for compiler specific language extensions

CANIF208: The CAN Interface shall include all headers files <Module>_CanIf.h
of those upper layer modules, from which declarations of only CAN Interface related
API services or type definitions are needed:
 PduR_CanIf.h – for services and callout declarations of the PDU Router

CANIF233: The CAN Interface shall include all header files <Module_Cbk.h>, in
which the callback functions called by the CAN Interface at the upper layers are
declared:
 CanSM_Cbk.h – for callout declarations of the CAN State Manager
 CanNm_Cbk.h – for callout declarations of the CanNm
 CanTp_Cbk.h – for callout declarations of the CanTp

CANIF280: The CAN Interface shall include all header files <Module_Cfg.h>,
which contains the confiuguration data used by the CAN Interface:
 Can_A_Cfg.h/Can_B_Cfg.h – for configuration data of the CAN Driver
 CanTrcv_A_Cfg.h/CanTrcv_B_Cfg.h. – for configuration data of the CAN

Transceiver Driver
 Pdur_Cfg.h – for PduR configuration data (e.g. PduR target PDU Ids)
 CanNm_Cfg.h – for CanNm configuration data (e.g. CanNm target PDU Ids)
 CanTp_Cfg.h – for CanTp configuration data (e.g. CanTp target PDU Ids)

CANIF150: The CAN Interface shall include the file Dem.h. By this way reporting
production errors as well as the required Event Id symbols are included. This
specification defines the name of the Event Id symbols (see CANIF207), which are
provided by XML to the DEM configuration tool. The DEM configuration tool assigns
ECU dependent values to the Event Id symbols and publishes the symbols in
Dem_IntErrId.h.

CANIF278: The CAN Interface shall include the file MemMap.h in case the mapping
of code and data to specific memory sections via memory mapping file is needed for
CAN Interface implementation.

21 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

6 Requirements traceability

Document: General Requirements on Basic Software Modules [3]

CANIF148:
Requirement Satisfied by
[BSW00344] Reference to link-time configuration CANIF228

[BSW00404] Reference to post build time
configuration

CANIF228

[BSW00405] Reference to multiple configuration
sets

CANIF002

[BSW00345] Pre-Build Configuration Fulfilled by configuration parameter definitions in
chapter 10.
The configuration parameters are described in a
general way.

[BSW159] Tool-based configuration CANIF104

[BSW167] Static configuration checking CANIF131

[BSW171] Configurability of optional functionality Fulfilled by configuration parameter definitions in
chapter 10.
The configuration parameters are described in a
general way.

[BSW170] Data for reconfiguration of SW-
components

Not applicable
(no interface to AUTOSAR SW Components)

[BSW00380] Separate C-Files for configuration
parameters

CANIF151

[BSW00419] Separate C-Files for pre-compile
time configuration parameters

CANIF151

[BSW00381] Separate configuration header file
for pre-compile time parameters

CANIF122

[BSW00412] Separate H-File for configuration
parameters

CANIF122

[BSW00383] List dependencies of configuration
files

CANIF141, CANIF066

[BSW00384] List dependencies to other modules CANIF193, CANIF034

[BSW00387] Specify the configuration class of
call-out function

Fulfilled by API definitions in chapter 8.

[BSW00388] Introduce containers Fulfilled by configuration parameter definitions in
chapter 10.

[BSW00389] Containers shall have names Fulfilled by configuration parameter definitions in
chapter 10.

[BSW00390] Parameter content shall be unique
within the module

Fulfilled by configuration parameter definitions in
chapter 10.

[BSW00391] Parameter shall have unique names Fulfilled by configuration parameter definitions in
chapter 10.

[BSW00392] Parameters shall have a type Fulfilled by configuration parameter definitions in
chapter 10.

[BSW00393] Parameters shall have a range Fulfilled by configuration parameter definitions in
chapter 10.

[BSW00394] Specify the scope of the parameters Fulfilled by configuration parameter definitions in
chapter 10.

[BSW00395] List the required parameters (per
parameter)

Fulfilled by configuration parameter definitions in
chapter 10.

[BSW00396] Configuration classes Fulfilled by configuration parameter definitions in
chapter 10.

[BSW00397] Pre-compile-time parameters Fulfilled by configuration parameter definitions in
chapter 10.

[BSW00398] Link-time parameters Fulfilled by configuration parameter definitions in
chapter 10.

22 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

[BSW00399] Loadable Post-build time parameters Fulfilled by configuration parameter definitions in
chapter 10.

[BSW00400] Selectable Post-build time
parameters

Fulfilled by configuration parameter definitions in
chapter 10.

[BSW00402] Published information Fulfilled by sequence diagrams in
chapter 9.

[BSW00375] Notification of wake-up reason CANIF013

[BSW101] Initialization interface CANIF001

[BSW00416] Sequence of Initialization Not applicable
(no initialization dependencies for this module)

[BSW00406] Check module initialization Fulfilled by API definitions in chapter 8.
[BSW168] Diagnostic Interface of SW
components

Not applicable
(this module does not support a special diagnostic
interface)

[BSW00407] Function to read out published
parameters

CANIF158

[BSW00423] Usage of SW-C template to describe
BSW modules with AUTOSAR Interfaces

Not applicable
(this module does not provide an AUTOSAR
interface)

[BSW00424] BSW main processing function task
allocation

Not applicable
(requirement on system design, not on a single
module)

[BSW00425] Trigger conditions for schedulable
objects

Not applicable
(requirement on system configuration, not on a
single module)

[BSW00426] Exclusive areas in BSW modules Not applicable
(no exclusive areas specified for this module)

[BSW00427] ISR description for BSW modules Not applicable
(this module does not provide any ISRs)

[BSW00428] Execution order dependencies of
main processing functions

Fulfilled by description of scheduled functions in
chapter 8.5

[BSW00429] Restricted BSW OS functionality
access

Not applicable
(this module doesn’t use any OS objects or
services)

[BSW00431] The BSW Scheduler module
implements task bodies

Fulfilled by API definitions in chapter 8.

[BSW00432] Modules should have separate main
processing functions for read/receive and
write/transmit data path

CANIF128

[BSW00433] Calling of main processing functions Not applicable
(requirement on the BSW scheduler module)

[BSW00434] The Schedule Module shall provide
an API for exclusive areas

Not applicable
(requirement on the BSW scheduler module)

[BSW00336] Shutdown interface Not applicable
(architecture decision)

[BSW00337] Classification of errors CANIF017

[BSW00338] Detection and Reporting of
development errors

CANIF019

[BSW00369] Do not return development error
codes via API

CANIF018

[BSW00339] Reporting of production relevant
error status

CANIF020

[BSW00417] Reporting of Error Events by Non-
Basic Software

Not applicable
(this is a basic software module)

[BSW00323] API parameter checking CANIF022

[BSW004] Version check CANIF021

[BSW00409] Header files for production code
error IDs

CANIF153

[BSW00385] List possible error notifications CANIF207

23 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

[BSW00386] Configuration for detecting an error CANIF018, CANIF019, CANIF156

[BSW161] Microcontroller abstraction CANIF035, CANIF036, CANIF143

[BSW162] ECU layout abstraction CANIF035, CANIF036, CANIF143

[BSW005] No hard coded horizontal interfaces
within MCAL

CANIF133

[BSW00415] User dependent include files CANIF208

[BSW164] Implementation of interrupt service
routines

CANIF006, CANIF007

[BSW00325] Runtime of interrupt service routines CANIF098, CANIF135
The runtime is not totally under control of the CAN
Interface, because they are called to the upper
layers.

[BSW00326] Transition from ISRs to OS tasks Not applicable
(When a transition from ISR to OS task is done, it
will be defined in COM Stack SWS)

[BSW00342] Usage of source code and object
code

CANIF228 (post build configuration)

[BSW00343] Specification and configuration of
time

Not applicable
(no internal scheduling policy)

[BSW160] Human-readable configuration data Fulfilled by configuration parameter definitions in
chapter 10.
The configuration parameters are described in a
general way.

[BSW007] HIS MISRA C Not applicable
(requirement on implementation, not on
specification)

[BSW00300] Module naming convention Fulfilled by API definitions in chapter 8.
[BSW00413] Accessing instances of BSW
modules

Fulfilled by API definitions in chapter 8.

[BSW00347] Naming separation of different
instances of BSW drivers

CANIF028

[BSW00305] Self-defined data types naming
convention

Fulfilled by type definitions in chapter 8.2.

[BSW00307] Global variables naming convention Not applicable
(requirement on implementation, not on
specification)

[BSW00310] API naming convention Fulfilled by API definitions in chapter 8.
[BSW00373] Main processing function naming
convention

CANIF004

[BSW00327] Error values naming convention CANIF120

[BSW00335] Status values naming convention CANIF136, CANIF137, CANIF138

[BSW00350] Development error detection
keyword

CANIF019

[BSW00408] Configuration parameter naming
convention

Fulfilled by configuration parameter definitions in
chapter 10.

[BSW00410] Compiler switches shall have
defined values

Fulfilled by configuration parameter definitions in
chapter 10.

[BSW00411] Get version info keyword CANIF158

[BSW00346] Basic set of module files CANIF141

[BSW158] Separation of configuration from
implementation

CANIF141

[BSW00314] Separation of interrupt frames and
service routines

Not applicable
(this module does not provide any ISRs)

[BSW00370] Separation of call-out interface from
API

CANIF141

[BSW00435] Module Header File Structure for the
Basic Software Scheduler

CANIF241

[BSW00436] Module Header File Structure for the

24 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Basic Software Memory Mapping
[BSW00370] Separation of call-out interface from
API

CANIF141

[BSW00348] Standard type header CANIF142

[BSW00353] Platform specific type header CANIF142
(automatically included with Standard types)

[BSW00361] Compiler specific language
extension header

CANIF142
(automatically included with Standard types)

[BSW00301] Limit imported information CANIF141

[BSW00302] Limit exported information
[BSW00328] Avoid duplication of code Not applicable

(requirement on implementation, not on
specification)

[BSW00312] Shared code shall be reentrant CANIF065, CANIF077

[BSW006] Platform independency CANIF143

[BSW00357] Standard API return type Fulfilled by API definitions in chapter
8.32.

[BSW00377] Module Specific API return type CANIF136, CANIF137, CANIF138

[BSW00304] AUTOSAR integer data types Fulfilled by type and API definitions in chapter 8.1
and 8.2

[BSW00355] Do not redefine AUTOSAR integer
data types

Fulfilled by type and API definitions in chapter 8.1
and 8.2

[BSW00378] AUTOSAR Boolean type Not applicable
(no Boolean types used)

[BSW00306] Avoid direct use of compiler and
platform specific keywords

Not applicable
(requirement on implementation, not on
specification)

[BSW00308] Definition of global data Not applicable
(requirement on implementation, not on
specification)

[BSW00309] Global data with read-only constraint Not applicable
(requirement on implementation, not on
specification)

[BSW00371] Do not pass function pointers via API Fulfilled by API definitions in chapter 8.3

[BSW00358] Return type of init() functions CANIF001

[BSW00414] Parameter of init function CANIF001

[BSW00376] Return type and parameters of main
processing functions

CANIF004

[BSW00359] Return type of call-out functions Fulfilled by call-out APIs in chapter 8.4.
[BSW00360] Parameters of call-out functions Fulfilled by call-out APIs in chapter 8.4.
[BSW00329] Avoidance of generic interfaces No generic interface used

The content of functions might be configuration
dependent. The scope of function is always
defined

[BSW00330] Usage of macros instead of
functions

Not applicable
(requirement on implementation, not on
specification)

[BSW00331] Separation of error and status values CANIF120
CANIF136, CANIF137, CANIF138

[BSW009] Module User Documentation Fulfilled by the complete documentation.
[BSW00401] Documentation of multiple instances
of configuration parameters

Fulfilled by configuration parameter definitions in
chapter 10.

[BSW172] Compatibility and documentation of
scheduling strategy

Not applicable
(no internal scheduling policy)

BSW010] Memory resource documentation Not applicable
(requirement on implementation, not on
specification)

[BSW00333] Documentation of call-out function
context

Fulfilled by call-out APIs in chapter 8.4.

25 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

[BSW00374] Module vendor identification CANIF016

[BSW00379] Module identification CANIF016

[BSW003] Version identification CANIF016

[BSW00318] Format of module version CANIF016

[BSW00321] Enumeration of module version
numbers

CANIF016

[BSW00341] Microcontroller compatibility
documentation

Not applicable
(no microcontroller dependent module)

[BSW00334] Provision of XML file Not applicable
(requirement on implementation, not on
specification)

Document: Requirements on CAN [4]

Requirement Satisfied by
[BSW01033] Basic Software General
Requirements

CANIF148

[BSW01125] Data throughput read direction CANIF112

[BSW01126] Data throughput write direction CANIF161

[BSW01139] CAN Controller specific Initialization CANIF002

[BSW01129] Receive Data Interface for CAN
Interface and CAN Driver Module

CANIF196

[BSW01121] Interfaces of the CAN Interface
module

CANIF034, CANIF266

[BSW01014] Network configuration abstraction See all APIs in chapter
8.3 Function definitions

[BSW01001] HW independence CANIF023

[BSW01015] Network Database Information
Import

CANIF104

[BSW01016] Interface to CAN Driver configuration CANIF066

[BSW01018] Software Filter CANIF030

[BSW01019] DLC Check configuration CANIF031

[BSW01020] Tx Buffer configuration CANIF071

[BSW01021] CAN Interface Module Power-On
Initialization

CANIF001

[BSW01022] Dynamic selection of static
configuration sets

CANIF092

[BSW01023] Power-On Initialization Sequence CANIF032

[BSW01002] Rx PDU dispatching CANIF024

[BSW01003] Reception indication dispatcher CANIF012

[BSW01114] Data Consistency of transmit L-
PDUs

CANIF033

[BSW01004] Software Filtering for L-PDU
reception

CANIF025

[BSW01005] DLC check for L-PDU reception CANIF026

[BSW01006] Rx L-PDU enable/disable CANIF096

[BSW01007] Tx L-PDU dispatching CANIF028

[BSW01008] Transmission request service CANIF005

[BSW01009] Transmission confirmation service CANIF007

[BSW01011] Tx buffering CANIF068

[BSW01013] Tx L-PDU enable/disable service CANIF096

[BSW01027] CAN controller Mode Select service CANIF003

[BSW01028] CAN controller State Service CANIF093

[BSW01032] Wake-up Notification CANIF013

[BSW01061] Dynamic Tx Handles CANIF185

[BSW01024] DLC Error Notification Skipped to due bug #14340
[BSW01029] Bus-off notification CANIF014

26 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

[BSW01130] Read Status Interface of CAN
Interface

CANIF200

[BSW01131] Mixed mode of notification and
polling mechanism

CANIF197, CANIF203

[BSW01136] Notification of first received CAN
message

CANIF182

[BSW01129] Receive Data Interface for CAN
Interface

CANIF194

[BSW01140] Support of Standard and Extended
Identifiers

CANIF281

[BSW01141] Support of both Standard and
Extended Identifiers on one network (optional
feature)

CANIF243, CANIF261

27 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

7 Functional specification

7.1 General functionality

CANIF041: The services of the CAN Interface can be divided into the following main
groups:

 Initialization
 Transmit request services
 Transmit confirmation services
 Reception indication services
 Network mode control services
 PDU mode control services

 CANIF042: Possible applications:
1. Interrupt mode

The CAN Driver processes interrupts triggered by the CAN controller. The CAN
Interface, which is event based, is notified when the event occurs. In this case the
relevant CAN Interface services is called within the corresponding ISRs in the
CAN Driver.

2. Polling mode
 The CAN Driver is triggered by the BSW Scheduler and performs subsequent

processes (polling mode). In this case Can_MainFunction<Write/
Read/BusOff/Wakeup/Transceiver>() must be called periodically within a
defined time interval. The CAN Interface is notified by the CAN Driver about
events (reception, transmission, BusOff), that occurred in one of the CAN
controllers, equally to the interrupt driven operation. The CAN Driver is
responsible for the update of the corresponding information which belongs to the
occurred event in the CAN controller, for example reception of an L-PDU.

3. Mixed mode: interrupt and polling driven CAN Driver
 The functionality can be divided between interrupt driven and polling driven

operation mode depending on the used CAN controllers.
Examples: Polling driven FullCAN reception and interrupt driven BasicCAN
reception, polling driven transmit and interrupt driven reception, etc.

This specification describes an unique interface, which is valid for all three types of
operation modes. Summarized the CAN Interface works in the same why, either if
any events are processed on interrupt, task level or mixed. The only difference is the
call context and probably the way of interruption of the notifications: pre-emptive or
co-operative. All services are performed in accordance with the configuration.

The following paragraphs describe the functionality of the CAN Interface.

28 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

7.2 Hardware object handles

CANIF023: Hardware object handles (HOH) for transmission (HTH) as well as for
reception (HRH) represent an abstract reference to a CAN RAM structure that
contains CAN related parameters such as CAN ID, DLC and data. Based on this
CAN hardware buffer abstraction each hardware object is referenced in the CAN
Interface independent of the CAN hardware buffer layout. The HOH is used as a
parameter in the calls of the CAN Driver interface services and is provided by the
CAN Driver's configuration and used by the CAN Driver as identifier for
communication buffers of the CAN mailbox.
The CAN Interface acts only as user of the Hardware object handle but does not
interpret it on the basis of hardware specific information. The CAN Interface therefore
remains independent of hardware.

CANIF043: Each CAN controller can provide a pool of hardware objects in the CAN
mailbox. These can be logically linked to form one entire pool of hardware objects
(multiplexed hardware objects).

CANIF044: Two types of Hardware object handles are used in the CAN Interface to
enable access to the CAN Driver: Hardware Receive Handle (HRH) and Hardware
Transmit Handle (HTH).

CANIF291: The HRH represents a logical reception unit. This unit consists of just
one hardware object used for the reception. HRH, which is dependent on the settings
of the acceptance masks, is marked as a BasicCAN or a FullCAN receive unit which
determines the usage of software filtering. Each CanRxPduId is assigned to one
single HRH. Thus if multiple HRHs are used, each HRH belongs to a single or fixed
group of CanRxPduId.

CANIF292: The HTH represents a hardware objects configured for transmission
purposes and for the corresponding CAN controller. Each CanTxPduId is assigned to
one single HTH. Thus if multiple HTHs are used, each HTH belongs to a single or
fixed group of CanTxPduIds.

CANIF115: All HRH and HTH handles of one CAN Driver has an own numbering
area. The dedicated HRH and HTHs handles are derived from the configuration set
of the CAN Driver(s). The definition of HTH/HRH inside the numbering area and
hardware objects is up to the CAN Driver. It has to be ensured by configuration, that
no overlapping of several numbering areas of multiple CAN Drivers is allowed.

CANIF123: The HRH can be configured to receive
 one single CAN ID (FullCAN)
 a group of single CAN IDs (BasicCAN)
 a range/area of CAN IDs (BasicCAN) or
 all CAN IDs.

29 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

7.3 Static CAN L-PDU handles

CANIF045: The CAN Interface offers general access to the CAN L-PDU related data
for upper layers. This access is achieved by the L-PDU handle. The L-PDU handle
refers to data structures, which consists of attributes describing the L-PDU. There are
two kinds of attributes: CAN PCI and CAN Interface specific attributes.

CAN Interface specific attributes CAN Protocol Control Information (PCI)
Method of SW filtering CAN Identifier (ID)
Direction of L-PDU (Tx, Rx) Data Length Code (DLC)
Physical channel (refer to [7.20.1 PDU channel
groups])

Reference to the data (SDU)

HTH/HRH of the CAN controller
Target ID for the corresponding upper layer
Type of receive L-PDU (FullCAN, BasicCAN)

Table 1 Attributes used in CAN Interface

For the optimization of further processing a part of this information can be
represented by the L-PDU handle itself.

CANIF046: Each L-PDU and thus each L-PDU handle is dedicated to one CAN
controller only. This relation is used in order to ensure the correct dispatch at
transmission and reception. In this manner the CAN Interface is able to reconstruct
the CAN contoller from the L-PDU handle.

CANIF047: The CAN Interface supports activation and deactivation of all L-PDUs
belonging to one CAN network for transmission as well as for reception (CANIF027).
For L-PDU mode control refer to [7.20 PDU channel mode control].

CANIF048: Each L-PDU handle is associated with an upper layer in order to ensure
the correct dispatch service during reception, transmission confirmation and data
access.
Each upper layer can use the L-PDU handles to serve different CAN controllers
simultaneously.

CANIF236: According to the PDU architecture defined for the entire AUTOSAR
communication stack (see [2] Layered Software Architecture), the usage of L-PDUs
is split in two different ways:

a) For transmission request and transmission/reception polling API the upper
layer uses the CAN L-PDU Id defined by the CAN Interface as parameter.

b) For all call-out APIs, which are invoked by the CAN interface at the upper
layers, the CAN Interface passes the target PDU-Id defined by each upper
layer as parameter.

In principle: the caller must use the defined target PDU Id of the callee.

CANIF239: If power on initialization is not performed, no L-PDUs are transmitted and
DET is informed. Thus no uninitialized data can be transmitted on the network.

30 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

7.4

7.5

Dynamic CAN transmit L-PDU handles

CANIF185: Dynamic transmit L-PDUs make possible to reconfigure during runtime
the CAN identifier to be used for the corresponding L-PDU handle.

CANIF186: The maximum number of dynamic transmit L-PDU handles shall be set
pre-compile time by the configuration parameter
CANIF_NUMBER_OF_DYNAMIC_CANTXPDUIDS. This parameter can be updated
during post-build time.

CANIF187: The confirmation notification belongs to the L-PDU handle, thus it can not
be changed. The data length code (DLC) and the pointer to the data buffer is
determined by the upper layer during CanIf_Transmit().

CANIF188: The CAN identifier shall be reconfigured by
CanIf_SetDynamicTxId(). Most significant bit of CAN-ID must be set to one
while passing extended CAN-ID to support mixed mode of operation.

Hint:This function may not be interrupted by CanIf_Transmit() in case of the
same L-PDU handle is affected. This way ensures data integrity of the CAN identifier.
This has to be ensured by the upper layer of CanIf.

CANIF238: The CAN identifiers of the dynamic transmit CAN L-PDUs shall only be
initialized by CanIf_Init(). CanIf_InitController() has no effect on
dynamic transmit L-PDUs to avoid re-initialization of dynamic transmit L-PDUs’ CAN
identifiers by upper layer users.

Physical channel view

CANIF049: The CAN Interface API represents a view on all managed physical CAN
channels. Those are used by the CAN State Manager to provide a network view to
the COM Manager used to perform wakeup and sleep request for all physical
channels connected to a single network. A physical channel is linked with one CAN
controller and one CAN transceiver, whereas one or multiple physical channels may
be connected to a single network.

CANIF170: The CAN Interface passes status information provided by the CAN Driver
and CAN Transceiver Driver separately for each physical channel as status
information for the CAN State Manager (refer to 8.5.3 Configurable interfaces), which
has to manage the network specific operation mode.

CANIF272: During this notification process the CAN Interface passes the original
CAN controller or CAN Transceiver parameter to the CAN State Manager.

31 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

CAN Interface

CAN controller 0 CAN controller 1

CAN driver

CAN network A

CAN network B

Use Case: 1:1 relation between CAN
network and physical channel

CAN transceiver 0

CAN transceiver
driver 0

CAN Transceiver
Driver 1

CAN transceiver 1

Same types of
CAN controllers

Different types of
CAN transceivers

Only one CAN transceiver
driver is needed, of the
transceiver type is same.

CAN State Manager

CAN NM A COM Manager CAN NM B

Figure 4: Physical channel view definition example A

CANIF105: The CAN Interface supports multiple physical CAN channels. These
have to be distinguished by the CAN State Manager for network control. The CAN
Interface API provides request and read control for multiple underlying physical CAN
channels.

CANIF169: Moreover the CAN Interface does not consider dedicated types of CAN
physical layers (i.e. low-speed CAN or high-speed CAN), to which one or multiple
CAN controllers are connected.

32 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

CAN Interface

CAN controller 0 CAN controller 1

CAN driver 0

CAN network A
e.g CAN class C

Use Case: 1:n relation between CAN
network and physical channel

CAN transceiver 0

&

Tx Rx

CAN controller 2 CAN controller 3

CAN driver 1

CAN network B
e.g. CAN class B

CAN transceiver 1

&

TxRx

CAN driver 2

Same types of
CAN controllers

CAN transc.
driver 0

CAN transc.
driver 1

CAN State Manager

Physical channel view

Network view

CAN NM A CAN NM B COM Manager

Figure 5: Physical channel view definition example B

7.6 CAN hardware unit

CANIF209: The CAN hardware unit combines one or multiple CAN controllers of the
same type, which may be located on-chip or as external standalone devices. Each
CAN hardware unit is served by the corresponding CAN Driver.
If different types of CAN controllers are used, also different types of CAN Drivers
have to be applied with a unified API to the CAN Interface. The CAN Interface
collects information about the types and number of CAN controllers and their
hardware objects in its mapping tables at configuration time. This allows transparent
and hardware independent access to the CAN controller from upper layers
(CANIF023) (refer to [7.25 Multiple CAN Driver support]).

CANIF210: The following figure shows a CAN hardware unit consisting of two CAN
controllers of the same type connected to two physical channels:

33 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Hardware objects
of mailbox A

CAN
transc iver e

A
Tx A

Rx A

CAN controller
status machine B

Tx B

Rx B

Figure 6 Typical CAN hardware unit

7.7 BasicCAN and FullCAN reception

CANIF050: An appropriately configured hardware object for FullCAN operation only
enables transmission or reception of a single CAN ID. Accordingly BasicCAN
operation of one hardware object enables to send or receive a range of CAN IDs.

CANIF164: The hardware acceptance filter is a significant attribute to be configured
of each hardware object. It is used in combination with subsequent software filtering
at BasicCAN reception to filter out receive L-PDUs, which are not part in the list of
predefined receive L-PDUs of the local ECU. For FullCAN reception the hardware
acceptance filter must be configured for full match to the received CAN Identifier.

CANIF051: The CAN Interface distinguishes between BasicCAN and FullCAN
handling for activation of software filtering. Thus it derives the corresponding
configuration of the CAN hardware objects by CAN Driver's configuration setup. It
defines the number and order of transmit and receive hardware objects, configures
the hardware objects for optimal BasicCAN/FullCAN reception and transmission and
allows free setting of acceptance filters for each BasicCAN objects.

CAN
transc iver e

B
Hardware objects

of mailbox B

CAN
network

A

CAN controller
status machine A

CAN controllersCAN hardware unit

Physical channel A

CAN
network

B
Physical channel B

34 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

CANIF211: The main difference between BasicCAN and FullCAN operation is in the
need of a Software Filtering mechanism (CANIF025) at reception of incoming PDUs
over BasicCAN hardware objects. At this time the appropriate software filtering
algorithm is executed in dependence on whether a PDU reception took place in a
receive BasicCAN hardware object. At configuration time the relation between
FullCAN/BasicCAN reception and HRH is stored in the CAN Driver's public
configuration setup. The CAN Interface thus derives BasicCAN or FullCAN reception
strategy based on the HRH passed by the API call-out CanIf_RxIndication().

CANIF108: Using an appropriate hardware acceptance filter configuration allows
using BasicCAN receive objects for special upper layer use cases, i.e. diagnostic L-
PDU reception. In this case the CAN Interface detects a reception event in a
BasicCAN object configured for a special L-PDU or a range of special L-PDUs by the
HRH of the CanIf_RxIndication() call-out service. This functionality can only be
established, if the CAN controller mailbox is able to be configured appropriately.
Therefore this functionality depends on the CAN controller type and its configuration.

CANIF107: BasicCAN operation is optional due to it is not necessary, if there are
less receive L-PDUs than available receive FullCAN Objects.

CANIF165: Usage of multiple BasicCAN and FullCAN receive objects are supported,
if provided by the underlying CAN controllers. BasicCAN and FullCAN objects can be
used in parallel..

CANIF243: Basically the CAN Interface can be configured to support reception either
of 11 bit StandardCAN or 29 bit ExtendedCAN CAN identifiers on one network. While
passing CAN-ID to CAN Driver during CanIf_Transmit, most significant bit of the
extended CAN-ID shall be set to one to distinguish between standard and extended.

CANIF281: If needed, StandardCAN and ExtendedCAN shall be also supported as
mixed mode operation, whereas both identifier types can be used mixed at the same
time on the network. By that way, the BasicCAN/FullCAN hardware objects have to
be separately configured for either StandardCAN or ExtendedCAN operation. This is
an optional feature. This feature can be realized by different variants of
implementations, no configuration option is available.

CANIF261: To support the usage of cheap BasicCAN CAN controllers mixed mode
operation is supported also for a single receive BasicCAN hardware object. In that
case the software search algorithm (see 7.21 Software receive filter) must be able to
deal with both type of CAN identifiers.

7.8 Initialization

CANIF032: The CAN Interface provides different API services for both global and
controller specific CAN controller initialization. CAN controller specific initialization
way is necessary in order to ensure different startup behaviors of CAN controllers
that are connected to different CAN networks.

35 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

CANIF085: The initialization process is executed by the call of CanIf_Init() for
global initialization. During the initialization process the global variables and data
structures are initialized including flags and buffers only. The CAN Drivers and the
CAN Transceiver Drivers are initialized separately.

CANIF293: All CAN controllers and all the configured buffers in the CAN Interface of
all Tx/Rx L-PDUs can be (re-)initialized by the call of CanIf_InitController().
That means, that this call itself initiates also the controller specific initialization of
underlying CAN Drivers. Subsequently the CAN Interface calls the corresponding
CAN Driver initialization services.
The API service CanIf_InitController() makes it possible to change the
setup of all CAN controller of one CAN network after initialization. For those use
cases multiple CAN controller configurations have to be set up during configuration
time for each CAN controller.

CANIF086: The CAN Interface expects, that after Initialization of the CAN Driver the
CAN controller shall remain in STOPPED Mode. In this mode it is neither able to
transmit nor receive CAN L-PDUs.

CANIF092: Initialization processes shall only take place in STOPPED and UNINT
mode. UNINIT mode is left only if global initialization once after reset is requested,
whereas in STOPPED mode both initialization APIs for global initialization can be
used (refer to [7.19.2.1CANIF_CS_UNINIT]). If initialization is performed in
STARTED mode, the CAN Interface will perform the transition to STOPPED mode.

ad Activ ity Diagram

CAN_0

CAN_1

CanIf_Init

ConfigSet_CAN_0_1

ConfigSet_CAN_0_0

Call by
Application

ConfigSet_CAN_1_1

ConfigSet_CAN_1_0 Default Values

Init CAN_0

Init CAN_1

End of CanIf_Init

ConfigSet_CAN_1_2

Set default config set (e.g. CAN_0_0)

Set default config set (e.g. CAN_1_1)

Figure 7 Controller specific initialization of CAN Interface and CAN Driver

36 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

The figure above shows the relationship between configuration sets CAN_0/CAN_1
referring to different CAN Drivers and configuration sets CAN_0_0, CAN_0_1 and
CAN_1_0 CAN_1_1 referring to single CAN controllers.

7.9 Transmit data flow

CANIF160: The transmission API of the CAN Interface is based on L-PDU handles.
Each transmit request is initiated by the calling of the CAN Interface service
CanIf_Transmit(). The access to the L-PDU specific data is organized by
 transmit L-PDU Handle and
 a reference to a structure with PDU related data: SDU length and pointer to the

L-SDU.

ad Transmit data flow

Upper layers call CanIf_Transmit()CAN Interface

Call of Can_Write()

CAN Hardware is free?

Can_Write() and CanIf_Transmit() return

«datastore»

Copy data into
CAN hardware

Set transmit request in
CAN controller

«datastore»

Copy data into
transmit buffer

Can Interface

CAN Driver

CAN Controller

Buffer is free

[No]
[Yes]

Figure 8 Transmit data flow

CANIF161: The CAN Interface holds all information about hardware objects
configured for transmission purposes. It calls an interface service Can_Write(),
provided by the CAN Driver, with the transmit Hardware object handle as a

37 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

parameter. The requested CAN controller is identified by this handle. The
Can_Write() service carries out the hardware dependent operations and sets up
the transmit request in the CAN controller. If no free hardware objects are available
at time of the transmit request, the CAN Driver Can_Write() service returns
CAN_BUSY and the transmit request is inserted in the transmit buffer. If no resources
are available in the transmit buffer (refer to [7.12 Transmit buffering]) or the CAN
controller is in STOP mode, the transmit request CanIf_Transmit() returns
E_NOT_OK and the production error CANIF_E_FULL_TX_BUFFER respectively
CANIF_E_STOPPED is raised. In this case the upper layer is responsible for the
repeating of the transmit request.

CANIF162: A successful transmission will be indicated to the upper layer by call of
the appropriate upper layer confirmation call-out service
<User_TxConfirmation>().
The reference to the L-PDU specific data is organized via pointer on an L-PDU
structure used as a parameter. This structure contains L-PDU specific data like
L-SDU length and pointer on L-SDU buffer. This interface enables design with central
placed L-SDU buffers in the CAN Interface as well as with distributed placed L-PDU
buffers in the upper layers.

CANIF163: The CAN Interface temporarily stores L-PDUs to be transmitted only in
case of locked CAN controller hardware.

7.10 Transmit request

The transmit request API (CANIF005) is a common interface for upper layers to send
PDUs on the CAN network. The upper communication layers initiate the transmission
only via the CAN Interface services without direct access to the CAN Driver. The
initiated transmit request is successfully completed, if the CAN Driver could write the
L-PDU data into the CAN hardware.

CANIF082: If no hardware resources were available at the time of initiation, the state
of the transmit request obtains the state "pending" and the complete L-PDU including
the L-SDU is temporarily stored in the CAN Interface. When the previous
transmission is completed and hardware resources are released the subsequent
transmit requests are carried out. If no hardware and also no software buffers are
available the transmit request is rejected immediately (refer to [7.12 Transmit]).

The upper layer uses the CAN Interface service CanIf_Transmit() to initiate a
transmit request.

The CAN Interface offers two parameters inside the CanIf_Transmit() service
only to localize the L-SDU buffers in the upper layer and make them not global.
These are L-PDU Handle and pointer on the L-PDU Structure which contains all
related parameters like SDU length and pointer to the L-SDU buffer.

The CAN Interface performs following actions for L-PDU transmission:
 Request based transmit handling,

38 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

 CAN Driver and hardware object routing

The CanIf_Transmit() service returns E_NOT_OK, if previously the CAN Interface
was not initialized or the all transmit hardware objects contains pending transmit
requests and no transmit buffering was configured [7.12 Transmit buffering].

7.11

7.11.1

Transmit confirmation

Confirmation after transmission

The upper communication layer may be notified about the performed transmission
via the CAN Interface confirmation services after the successful completion of the
transmission (CANIF007). A previous transmit request is processed successfully, if at
least one remote ECU in the network acknowledges the transmitted CAN Frame in
the CAN acknowledge slot. The CAN Interface is notified by the CAN Driver by call of
CanIf_TxConfirmation(). The call-out service <User_TxConfirmation>()
implemented by the notified upper layer will subsequently be called by the CAN
Interface, if this service is enabled at configuration time for transmission confirmation.

CANIF053: An upper communication layer can be configured to process the
confirmations with a single or multiple call-out services for different L-PDUs or groups
of L-PDUs. All that services are called by the CAN Interface at confirmation of the
corresponding L-PDU transmission. The transmit L-PDU Handle enables the
dispatch between different confirmation services associated to the upper layer target.
This assignment is made statically during configuration.

CANIF109: A single transmit L-PDU can only be assigned to one single confirmation
call-out service Please refer to [10.2.8 CanInterfaceDispatcherConfiguration].

For L-PDU confirmation the CAN Interface Layer performs protocol dispatching for
the upper layers (CANIF028).

CANIF740: If CANIF_PUBLIC_TXCONFIRM_POLLING_SUPPORT (see CANIF246)
is enabled, the CanIf shall buffer the information about a received TxConfirmation per
CAN controller, if the controller is in state CANIF_CS_STARTED.

7.11.2 Confirmation of transmit cancellation

CANIF054: Some CAN controllers provide cancellation of the pending transmit
request inside its transmit object of the CAN controller. This is used to prevent inner
priority inversion. A pending transmit request within a hardware object is canceled
and exchanged by an L-PDU with higher priority. The CAN Driver detects a
successful transmit cancellation by a corresponding confirmation interrupt or polling
dependent on the used CAN controller. The CAN Interface is informed by the
callback notification service CanIf_CancelTxConfirmation() and stores the
aborted old L-PDU inside its transmit buffer as long it is free .

39 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

For more details about transmission cancellation please refer to chapter [7.13
Transmit cancellation].

7.12

7.12.1

Transmit buffering

General behavior

CANIF103: The CAN Interface provides transmit buffers (located in global RAM) to
store whole L-PDUs, which are rejected by the CAN Driver at transmission request.
The CAN Driver can reject transmission requests, when no transmit hardware
resources (CAN RAM) are available within the corresponding CAN controller. No
hardware resources are available, if all hardware transmit objects are is use and the
priority of the new requested L-PDU is lower than all pending ones in the hardware
objects.

CANIF091: During the transmit confirmation the transmit buffer is analyzed handling
whether a pending transmit L-PDU is stored. The transmit confirmation handling is
executed either inside the confirmation interrupt service routine or at task level during
polling by Can_MainFunction_Transmit(). If pending transmit L-PDUs are
available in the transmit buffer, the CAN Interface initiates a new transmit request.
The CAN Driver writes it in the free hardware transmit object.

CANIF068: Generally the transmit buffer consists of single element L-PDU buffers.
Each L-PDU buffer (global RAM) is statically assigned to one transmit L-PDU handle
at configuration time. In this meaning the CAN Interface stores at maximum only just
one element per L-PDU in the transmit buffer. Consequently the recent transmit
request of a dedicated L-PDU overwrites old ones. This handling prevents, that
newer data stored in the transmit buffer may be overwritten from old ones.
f the order of various transmit requests of different L-PDUs shall be kept, transmit
requests of upper layers must be connected to previous transmit confirmation
notifications. That means, that a subsequent L-PDU is requested for transmission by
the upper layers only, if the transmit confirmation of the previous one was notified by
the CAN Interface.

Note: Additionally the order of transmit requests can vary depending on
 the number of configured hardware transmit objects and
 whether transmit cancellation is supported by the CAN controller or not to avoid

inner priority inversion (refer to [8]).

40 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

 L-PDU 1 L-PDU 2 L-PDU 3

Transmit requests to CAN
Driver in priority order

L-PDU buffer with
single elements

Figure 9 Overview about transmit buffer

CANIF071: The behavior of the transmit buffer differs according to the configuration
setup. The following configuration options are provided by the CAN Interface to be
able to fulfill all requirements mentioned above.

 Option A: no buffer. Transmit L-PDUs from failed transmit requests are lost. The

API CanIf_Transmit() returns the value E_NOT_OK.

 Option B: L-PDU buffering. One L-PDU per element is stored.

CANIF063: The number of all transmit buffers depends on the number of used
transmit L-PDUs defined in the CAN network description file for this ECU. RAM
optimization: in case of using several transmit L-PDUs it is recommended not to
reserve statically one buffer per L-PDU to save RAM. Thus the total amount of
elements is configurable. Are less buffer elements configured than available transmit
L-PDUs, the L-PDU oriented buffer elements are dynamically assigned during
runtime to the transmit L-PDU pending for transmission. Nevertheless only one
element per L-PDU can be stored in the buffers.

CANIF282: Dynamic transmit L-PDUs have to be buffered based on the currently
used CAN ID. No overwrite of pending dynamic transmit L-PDUs with the same L-
PDU IDs and different CAN IDs may occur.

41 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

7.12.2 Buffer characteristics

7.12.2.1 Storage of L-PDUs in the transmit buffer

CANIF113: The CAN Interface tries to store a new transmit L-PDU in the transmit
buffer only, if
 the CAN Driver return CAN_BUSY during a call of Can_Write() or
 a pending transmit request was successfully aborted

7.12.2.2 Storage of L-PDUs is prohibited

CANIF069: Whenever
 transmit cancellation is enabled (see chapter [7.13 Transmit cancellation]),
 the CAN Driver notifies the CAN Interface about an aborted Tx L-PDU and
 the same transmit L-PDU from another upper layer's transmit request is already
stored in the transmit buffer, the 'old' aborted transmit L-PDU is not stored in the
transmit buffer and therefore is lost. Aborted transmit L-PDUs are only stored in the
transmit buffer, if the corresponding L-PDU buffer is free. This behavior ensures, that
always the most recent data is stored in the transmit buffer.

7.12.2.3 Get L-PDU with the highest priority

CANIF070: The CAN Interface transmits L-PDUs stored in the transmit buffer in
priority order per each HTH.

7.12.2.4 Remove transmitted L-PDU

CANIF183: When the highest prior L-PDU stored in Tx buffer has to be transmitted
during execution of transmit confirmation and Can_Write() returns with success,
this L-PDU is removed immediately from the transmit buffer, before the transmit
confirmation returns. This behavior simplifies the choice of the new transmit L-PDU
stored in the transmit buffer.

7.12.2.5 Initialization of transmit buffers

CANIF184: At CanIf_Init()as well as in case of needed controller specific re-
initialization CanIf_InitController()during the BusOff recovery the initialization
of the transmit buffers is processed. This is necessary to prevent transmission of old
data after restart of the CAN controller.

7.12.3 Data integrity of transmit buffers

CANIF033: Access events to the transmit buffer like storing a new L-PDU or
removing transmitted L-PDU can occur preemptively. Therefore the access to buffers
for all transmit L-PDUs takes place in critical sections (refer to CANIF065).

42 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

CANIF076: If multiple CAN controllers are used, only the single buffer of the transmit
L-PDU to be stored must be locked, because all L-PDU buffers are organized
separately. This is valid for use cases with a single or multiple HTHs.

7.13

7.13.1

7.13.2

Transmit cancellation

CANIF083: All pending transmit requests are transmitted in priority order. The PDU
priority is implicitly defined by the CAN ID. Other priority definitions are prohibited to
avoid priority inversion at transmit request order. The abort of pending transmit L-
PDUs within the transmit hardware objects is necessary to avoid inner priority
inversion. The mechanism of the transmit processing differs, whether hardware
cancellation is supported or not.

Hardware transmit cancellation not supported or not used

CANIF175: The L-PDU request is stored in the temporary single element transmit
buffer, if the corresponding CAN hardware transmit buffers are busy. If a free
Hardware object is available, the L-PDU is directly transmitted using the
Can_Write() service of the CAN Driver.
Constraint: If all available hardware objects are busy and a L-PDU is pending for
transmission with a higher priority, this L-PDU is delayed until a hardware object is
released.

Hardware transmit cancellation supported and used

CANIF176: At time of a new transmit request the CAN Driver checks, whether a free
hardware object is available. If all hardware objects are in use, the CAN ID of the
requested L-PDU is compared with the CAN ID of all pending L-PDUs in the
hardware transmit objects. If the requested L-PDU has a higher priority than any
pending one, the transmission of lowest prioritized pending transmit L-PDU is
aborted and the new L-PDU is put in the hardware transmit object. The L-PDU to be
transmitted is stored in the transmit buffers. The CAN Driver confirms the transmit
cancellation by the callback service CanIf_CancelTxConfirmation() and
passes the old L-PDU back to the CAN Interface's transmit buffer. See UML diagram
in chapter [9.6].

CANIF114: In dependence of the used CAN controller and the traffic on the network
the cancellation of a pending transmit L-PDU inside a hardware object can occur
asynchronously. The transmit buffers are able to distinguish between aborted
transmit L-PDUs and new pending transmit L-PDUs. This is necessary to ensure to
keep the latest data of several pending transmit L-PDUs with the same L-PDU
handle (refer to CANIF113). In that way a successful cancelled L-PDU is lost, when
the L-PDU transmit buffer was already occupied by a new L-PDU of the same L-PDU
handle.

43 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

CANIF084: In case of a transmit confirmation or a transmit cancellation confirmation
from the CAN Driver the next stored transmit L-PDU with the highest priority is sent
out (see chapter [7.12 Transmit buffering]). Because of pre-emptive events of storing
and processing of pending transmit requests in the transmit confirmation context the
transmit request service is called re-entrant. Therefore the CAN Interface locks all
critical accesses by an internal semaphore mechanism or interrupt locks.

ad Transmit cancellation request

CAN Interface Upper layers call CanIf_Transmit()

Call of Can_Write()

CAN Driver

CAN Hardware is free?

CanIf_Transmit() returns with E_OK

«datastore»

Copy L-PDU into
CAN hardware

Set transmit request in
CAN controller

«datastore»

Copy L-PDU into
transmit buffer

Can Driver

CAN Controller

[No]
[Yes]

Compare priority of new L-PDU and
the pending ones in CAN Hardware

Request cancellation of
pending L-PDU with

lowest priority

CAN Interface

[Can_Write() returns with E_BUSY]

[New Tx L-PDU has higher priority than at
least one of the pending ones in the CAN
hardware]

[New Tx L-PDU has lower priority than all
of the pending ones in the CAN hardware]

Figure 10 Transmit cancellation request

In case hardware cancellation is supported and BasicCAN transmission is used inner
priority inversion can be avoided and response time predictability thus can be
increased. At FullCAN transmission hardware cancellation is not necessary to avoid
inner priority inversion. Please refer to the CAN Driver SWS for more details: [8]
Specification of CAN Driver.

CANIF177: Transmit cancellation can be enabled and disabled by configuration. This
feature can only be activated, as far as transmit buffers enabled. At configuration
time is must be prevented, that transmit cancellation can be enabled, whenever
transmit buffer configuration is disabled.

44 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

ad Transmit cancellation confirmation

Call
CanIf_TxCancelConfirmation()

Check, if there are pending Tx L-
PDUs of the same CanTxPduID as
the aborted one in the transmit
buffer waiting for transmission.

«datastore»

Copy data into

[Transmit CAN Interface
buffer is free]

transmit buffer

Call Can_Write()

Copy L-PDU data into free
CAN hardware object

Can_Write() and
CanIfTxCancelConfirmation()
returns

CAN Driver
Tx L-PDU of highest priority
(lowest CAN ID) is
transmitted out of the Tx
L-PDU buffer.

Cancelled
transmit L-PDU
is lost [Transmit buffer is full]

Figure 11 Transmit cancellation confirmation

7.14

7.14.1

Receive data flow

Location of PDU data buffers

CANIF057: According to the AUTOSAR Basic Software Architecture the SDU data
buffers are placed in the upper layer communication stacks, i.e. AUTOSAR COM,
CAN NM, CAN TP, DCM), where the corresponding data will be evaluated and
processed. This means, all transmit as well as all receive SDU buffers are located in
these upper layers.

45 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface

- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

7.14.2 Receive data flow

CANIF134: The usage of the hardware object handle as a parameter in the receive
indication call-out service CanIf_RxIndication()impacts the design of receive
data flow in the CAN Interface. The received data is hardware dependent (nibble and
byte ordering, access type) and allocated to the lowest layer in the communication
system – to the CAN Driver.
The hardware object handle serves as a link between the CAN Driver and the data
customer in the upper layer. The hardware object handle identifies one memory
hardware object, where a new CAN L-PDU was received. The target upper layer
memory buffer location is derived from the L-PDU Handle, when corresponding L-
PDU passed the software filtering, the L-PDU handle was identified and the DLC
Check was successfully carried out. In this way the hardware object handle from one
side and the L-PDU Handle from another provide a source and destination
information for the copying session.

CANIF098: Initially after detection of a reception event the CAN Driver stores the
incoming data in an own temporary buffer. If a separate L-SDU normalization is not
necessary according to the data structures of the used CAN controller, temporary
buffering can be omitted. Thus this feature is up to the CAN Driver. The CAN
interface is not able to recognize, whether the CAN Driver uses temporary buffering
or a direct hardware access.

CANIF112: The CAN hardware object of the CAN mailbox is locked (refer to
CANIF065) until the end of copy process to the temporary or upper layer buffer. The
hardware object will be immediately released after the receive indication call-out of
the CAN Interface returns to avoid loss of data.

CANIF135: In case temporary buffering is used the hardware object remains locked
until the data is read out and copied to the temporary buffer. Then the CAN controller
is able to perform the next occurred receive event. The pointer to this temporary
buffered L-SDU is used as a parameter in the call-out service <User_Rx
Indication>(). In this way the pointer on the received L-SDU reaches the data
customer in the upper layer. The indication service delivers the target L-PDU handle
as parameter. The destination memory buffer is reconstructed from the target L-PDU
handle and the communication layer starts data copy. The temporary buffer with the
currently received L-SDU is locked all time until the end of copying. After return of
CAN Interface's indication services the CAN Driver is responsible for unlocking.

CANIF146: In case no temporary buffer is used the hardware object remains locked
until the data is read out and the indication service returns. In this case the parameter
of the receive indication call-out refers to the locked CAN RAM with received data.

CANIF147: Both underlying components, CAN Driver and CAN Interface, access the
same temporary intermediate buffer, either the CAN RAM or the temporary buffer in
the CAN Driver. The CAN Driver may update the L-SDUs and the CAN Interface
service CanIf_RxIndication() is used to pass access location of the received
data to the upper layer. Before this notification is called, the CAN Driver is
responsible, that this temporary intermediate buffer (refer to [9.7 Receive indication
(interrupt mode)] and [9.8 Receive indication (polling mode)]) is locked.
46 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface

- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Receive InterruptCAN Controller

Call CanIf_RxIndication()

Data
normalization
necessary?

«datastore»
Temporary buffer in CAN

Driver

Rx L-PDU
received in
BasicCAN ?

Software fi ltering

DLC
Check
enabled ?

DLC
Check
failed
?

Call Dem_ReportErrorStatus() with
EventId == CANIF_E_INVALID_DLC

<User_RxIndication>() returns
CanIf_RxIndication() returns

CAN Driver

CAN Interface

Call <User_RxIndication>() to
upper layers

«datastore»
Copy data to L-PDU

buffer

Upper Layer

[Yes]

[No]

[Yes]

[No]

[Yes,
BasicCAN]

[L-PDU not passed]

[No]

[Yes]

[L-PDU
passed]

[No,
FullCAN]

Figure 12 Receive data flow

47 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

7.15 Receive indication

CANIF212: After successful reception of a new CAN L-PDU, which passed the
hardware acceptance filtering, it is evaluated for acceptance and prepared for later
access by the upper communication layers (CANIF012). Upper layers are notified
about this asynchronous event, if this CAN L-PDU is successfully detected and
accepted for further processing.
During the reception validation first of all the CAN ID of the received L-PDU is
compared with L-PDU IDs assigned for further processing in the local ECU. This
treatment is called Software Filtering and takes only place for BasicCAN reception
(refer to [7.7 BasicCAN and FullCAN reception]).
Afterwards DLC check is processed, if it was enabled during configuration. The DLC
Check compares the data length of the received L-PDU with the predefined
referenced data length. For further details please refer to chapter [7.22 DLC check].
If the L-PDU passes all validation mechanisms, it is dispatched and the
corresponding upper layer is notified. After notification the upper layer may access
the data in order to copy them into its own specified memory buffer.

CANIF055: In the event triggered approach all above described operations will be
initiated on receive interrupt level. If the basic software runs in polling mode the CAN
Driver polling process is responsible for recognizing of new events like reception.
After detection of a new reception event the CAN Interface takes the control over the
subsequent processing by call of the service CanIf_RxIndication(). In
dependence to the used notification method (interrupt/polling), the call context of the
receive indication can differ: the receive interrupt service itself or an activated task,
which calls the corresponding services.

CANIF159: The mentioned note CANIF053 in chapter [7.11 Transmit confirmation] is
significant for the receive indication processing too.

On L-PDU reception the CAN Interface Layer performs:
 Software Filtering (only BasicCAN),
 DLC check (optionally),
 Receive data dispatch and
 Protocol dispatching for upper layer receive indication.

CANIF056: The upper layers are notified by <User_RxIndication>(). Depending
on the different needs of provided information (i.e. AUTOSAR COM, CAN TP) the
provided parameters of the corresponding API call-out services can differ. Therefore
the CAN Interface can handle several different types of indication call-out services.
Please refer to [8.5 Expected interfaces].

CANIF110: A single receive L-PDU can only be assigned to a single indication call-
out service.

7.16 Read received data

CANIF196: The read received data API (CANIF194) is a common interface for upper
layers to read CAN L-PDUs previously received from the CAN network. The upper
communication layers initiate the receive request only via the CAN Interface services

48 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

without direct access to the CAN Driver. The initiated receive request is successfully
completed, if the CAN Interface write the received CAN L-PDU into the upper layer
buffer.

CANIF197: The API service CanIf_ReadRxPduData() makes possible to read out
data without dependence of reception event. When it is enabled at configuration,
necessarily no receive indication service for the same CAN L-PDU for data copy has
to be configured. If this indication notification is needed by the upper layer, it can be
enabled, too.
By this way the type of mechanism to receive CAN L-PDUs can be chosen at
configuration time according to the needs of the upper layer, where the
corresponding receive CAN L-PDU belongs to. For details please refer to [9.9 Read
received data].

CANIF198: Inside the CAN Interface a single static receive buffer is necessary for
each received CAN L-PDU. This buffer is reserved, if the receive request API is
enabled at pre-compile time configuration and the corresponding Rx buffer is enabled
for the receive L-PDU.

CANIF199: This buffer is filled after the L-PDU is successfully received after e.g.
passing the software filtering. During the call of CanIf_ReadRxPduData() the
receive buffer for BasicCAN L-PDUs is internally locked for access by the calling
upper layer.

7.17 Read notification status

CANIF200: In addition to the notification call-outs the API service
CanIf_ReadTxNotifStatus() is provided to read the transmit confirmation status
of any transmit CAN L-PDU. The API service CanIf_ReadRxNotifStatus() is
provided to read the receive indication status of any receive CAN L-PDU.

CANIF203: This API service can be enabled/disabled globally or per CAN L-PDU at
pre-compile time configuration.

CANIF204: If this API service is enabled, the CAN Interface sets the notification
status inside during call of CanIf_TxConfirmation() or CanIf_Rx
Indication()for all transmit and receive CAN L-PDUs.

CANIF205: The notification status is cleared after it is read by upper layer. That
means: when CanIf_Tx/RxReadNotifStatus()is called, the CAN L-PDU
notification status inside the CAN Interface is reset. This 'read-and-consume'
behavior ensures, that at least one successful transmit or receive event occurred
after last call of this service.

7.18 Data integrity

49 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

CANIF058: The CAN software stack determines which data coherency and
consistency strategy has to be used. The CAN Interface provides an automatic data
integrity mechanism, in which a read always returns the value written by the most
recent write. An attempt to update the data in the user memory buffers as well as in
the internal CAN Interface buffers shall be done with respect on possible changes
done in the context of an interrupt service routine or other preemptive events.
Preemptive events probably occur either from preemptive tasks, multiple CAN
interrupts, if multiple physical channels i.e. for gateways are used, or in case of other
peripherals or network systems interrupts, which have the needs to transmit and
receive CAN L-PDUs on the network.
Therefore the CAN Interface needs to guarantee internal data integrity.
For this purpose i.e. CAN controller interrupt locks may be used. If polling mode is
used also there can be a preempting process treatment that may interrupt the
subsequent running.

CANIF064: Handling of shared transmit and receive L-PDU buffers are critical issues
for the implementation of the CAN Interface. Therefore the CAN Interface must
ensure data integrity and thus use appropriate mechanisms for access to shared
resources like transmission/reception L-PDU buffers. Preemptive events, i.e.
transmission and reception event from other CAN controllers must be protected
against each other.

CANIF065: The CAN Interface may i.e. use the CAN Driver services to enable
(Can_EnableControllerInterrupts())and disable (Can_Disable-
ControllerInterrupts()) CAN interrupts and its notifications at entry and exit
of the critical sections separately for each CAN controller. If there are common
resources for multiple CAN controllers, the entire CAN Interrupts must be locked.
These sections must not take a long time in order to prevent serious performance
degradation. The copying of data, the change of static variables, counters and
semaphores shall thus be carried out in these critical sections. It is up to the
implementation to use appropriate mechanisms to guarantee data integrity,
interruptability and reentrancy.

CANIF077: The transmit request API CanIf_Transmit() must be able to operate
re-entrant to allow multiple transmit request calls caused by different preemptive
events of different L-PDU Handles. The CAN Driver transmit request API
Can_Write()operates re-entrant as well.

7.19

7.19.1

CAN Controller mode

General functionality

CANIF059: The CAN Interface provides services for controlling the communication
mode of all supported CAN controllers represented by the underlying CAN Drivers.

50 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

That means that all CAN controllers are controlled by the corresponding provided API
services to request and read the current controller mode.

Like the other CAN Driver services even the CAN controller status information are
accessible only via the CAN Interface services.
The CAN controller status may be changed at request of the upper layer by the
calling of CanIf_SetControllerMode() service. The request is validated and
passed by the CAN Interface by the CAN Driver API to the addressed CAN controller
The consistent management of all CAN controller connected at one CAN network us
the task of the CAN State Manager. By this way the CAN State Manager is
responsible to set all CAN controllers of one CAN network sequentially to sleep mode
or to wake them up.

Because of CDD, the names of the callback functions of the Communication Services
are configurable (see chapter 8.6.3). In the following paragraph the usual functions of
CanSm and EcuM are mentioned.

When the CAN controller signals a network event “BusOff”, the CanIf function
CanIf_ControllerBusOff() is called, which in turn notifies the CanSm via the
callback function CanSm_ControllerBusOff(ControllerId).
When a CAN controller signals the network event “wake-up”, first of all the function
EcuM_CheckWakeup(wakeupSource) of the Integration Code is called, which in
turn calls the CanIf function CanIf_CheckWakeup(wakeupSource). Then the
CanIf checks, if wakeupSource is a CAN controller or a CAN transceiver. The wake-
up source then is checked by an appropriate function, if it has been the real wake-up
source (see CANIF181, CANIF285, necessary for multiple sources defined by
wakeupSource e.g. shared interrupt). If this check was positive for a wake-up
source, then the EcuM is notified by callback function
EcuM_SetWakeupEvent(sources).
When a wake-up event (detected by EcuM_SetWakeupEvent(sources)) shall be
validated, the activates corresponding CAN controller and CAN transceiver and calls
afterwards CanIf service CanIf_CheckValidation(WakeupSource). If the wake-
up is valid (see CANIF182, CANIF286), service
EcuM_ValidateWakeupEvent(WakeupSource) of EcuM is called.
The Communication Service which is called belongs to this service defined during
configuration (see CANIF250). In this way the EcuM module as well as the CanSm
module are able to control the system behaviour concerning the BusOff recovery or
wake-up procedure.

7.19.2 CAN Controller operation modes

The CAN Interface stores the operation mode of the CAN controllers according to
successful mode transitions after Can_SetControllerMode(). According to the
requested operation mode by the CAN State Manager the CAN Interface translates
them into the right order of mode transitions for the CAN controller.

51 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

CANIF081: The needed network related state machine is implemented in the CAN
State Manager. Refer to [11] Specification of CAN State Manager. The CAN Interface
only stores the requested mode and executes the requested transition.

7.19.2.1 CANIF_CS_UNINIT

CANIF213: The CAN Interface is not initialized. The Ecu State Manager (EcuM) has
to consider, that also the CAN driver(s) and CAN Controller(s) shall also not be
initialized.

7.19.2.2 CANIF_CS_STOPPED

PowerOff

CANIF_CS_UNINT

PowerOn Reset

History

CANIF_CS_STOPPED

CanIf_Init()

CanIf_SetControllerMode
[CANIF_CS_STOPPED]

+ do / CanIf_SetControllerMode(Controller, CAN_T_STOPPED)
+ on event / Wakeup over CAN network

Action: The CAN controller device is HALTED. The CAN
controller is not able to receive or to transmit CAN L-PDUs on the
network.

Precondition: the CAN transceiver must remain in normal mode.
It can be set in standby/sleep mode only after stop of the CAN
controller.

Figure 13 Activities of STOPPED mode transition

CANIF214: The CAN Interface suppresses subsequent transmit requests to the CAN
Driver because the CAN controller shall be prevented from sending CAN L-PDUs. If
the used CAN controller provides a STOPPED mode, it will be used.
CanIf_Transmit() returns E_NOT_OK. The PDU Mode is set to CANIF_OFFLINE
(refer to [7.20 PDU channel mode control]). All pending transmit requests are

52 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

canceled. All contents of transmit buffers are deleted. In the mode
CANIF_CS_STOPPED no CAN L-PDUs can be received.

CANIF298: STOPPED Mode is entered automatically for that CAN controller, where
a BusOff event has been signaled by the corresponding CAN Driver.

The paragraph below reflects 4 main important uses cases described below for
transition to CANIF_CS_STOPPED mode. Concerning each use case the occurred
event at the CAN Interface (call of it's API) and the subsequent required action is
explained:
Use Case Initialization:
Event: CanIf_Init()
Action: Internal initialization of the CAN Interface.

Use Case STOP Network:
Event: CanIf_SetControllerMode(Controller, CANIF_CS_STOPPED)
Action: Can_SetControllerMode(Controller, CAN_T_STOPPED)

Use Case WAKEUP Network:
Event: CanIf_SetControllerMode(Controller, CANIF_CS_STARTED)
Action: Can_SetControllerMode(Controller, CAN_T_WAKEUP).

Use Case BusOFF:
Event: CAN controller went BusOFF
Action: CAN Driver ensures, that CAN controller is STOPPED

7.19.2.3 CANIF_CS_STARTED

stm Mode CANIF_CS_STARTED

History

CANIF_CS_STARTED

CanIf_SetControllerMode
[CANIF_CS_STARTED]

+ do / Can_SetControllerMode(Controller, CAN_T_STARTED)

Action: CAN Controller device is started and is able to receive
and transmit CAN PDUs on the network.

Precondition: the CAN transceiver has to be set in normal mode.
CAN Driver and CAN Interface are already initialized.

Figure 14 Activities of STARTED mode transition

53 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

CANIF215: The controller is fully operational at the CAN network; all transmit
requests thus are passed to the CAN Driver. CAN L-PDUs can be received and are
notified to upper layers. The PDU mode is set to CANIF_ONLINE.
To start a network following API call event and subsequent action of the CAN
Interface is required to perform the transition to CANIF_CS_STARTED mode:

Use Case START Network:
Event: CanIf_SetControllerMode(Controller, CANIF_CS_STARTED)
Action: Can_SetControllerMode(Controller, CAN_T_STARTED)

7.19.2.4 CANIF_CS_SLEEP

CANIF_CS_SLEEP

+ do / CanIf_SetControllerMode(Conrtoller, CANIF_CS_SLEEP)

CanIf_SetControllerMode
[CANIF_CS_SLEEP]

History

Action: The CAN controller device is set to sleep mode. Afterwards the
CAN controller is able to wakeup the CPU, if dominat bits are detected
on the RX line.

Precondition: the CAN transceiver has to be set low power mode and it
has to provide a fall ing edge to dominat level at RX line.

CANIF_CS_STOPPED

+ do / CanIf_SetControllerMode(Controller, CAN_T_STOPPED)
+ on event / Wakeup over CAN network

CanIf_ControllerWakeup() [On Event]
/Wakeup over CAN network

Figure 15 Activities of SLEEP transition

CANIF216: The CAN controller is set to SLEEP mode and its own wakeup interrupts
are enabled, if supported. As long as wakeup functionality is not provided by the CAN
controller, the CAN Driver encapsulates it.

54 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

To set network to SLEEP following API call event and subsequent action of the CAN
Interface is required to perform the transition to CANIF_CS_SLEEP mode:

Use Case SLEEP Network:
Event: CanIf_SetControllerMode(Controller, CANIF_CS_SLEEP)
Action: Can_SetControllerMode(Controller, CAN_T_SLEEP).

7.19.2.5 BUSOFF

BusOff is a transition from STARTED to STOPPED mode.

stm Event BUSOFF

BUSOFF

+ entry / BusOff event, call of CanIf_ControllerBusOff()
+ do / CanSM_ControllerBusOff()

BusOff is a transitional state.

Event: CAN controller goes automatically BusOff, if the
internal TxError counter exceeds 255. The CAN controller
notiifies the CAN driver about the BusOff event.

Action: the CAN controller has to be restarted and is back
online after 128x11 recessive bits received on the network.

BusOff Event in CAN Hardware

[CanIf_ControllerBusOff()]

Figure 16 Activities of BUSOFF transition

CANIF739: If CANIF_PUBLIC_TXCONFIRM_POLLING_SUPPORT (see
CANIF246) is enabled, the CanIf shall clear the information about a TxConfirmation
(see CANIF740), when callback CanIf_ControllerBusOff(Controller) is
called.

Controller mode transitions 7.19.3

CANIF078: The API for state change requests to the CAN controller behaves in a
synchronous manner without any asynchronous notification via call-out services. The
real transition to the requested mode occurs asynchronously based on setting of
transition requests in the CAN controller hardware, i.e. request for sleep transition
CANIF_CS_SLEEP. After successful change to SLEEP mode the CAN Driver service

55 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Can_SetControllerMode() and as well the CAN Interface
CanIf_SetControllerMode()returns with E_OK. In case of an unsuccessful
mode transition the CAN Interface returns E_NOT_OK. Mode transitions
CANIF_CS_STARTED and CANIF_CS_STOPPED are treated synchronously as well.
This synchronous behavior makes it possible for i.e. the CAN State Manager to
handle the mode transitions of the CAN networks.

CANIF093: The current CAN Interface operation mode can be polled from upper
layers by CanIf_GetControllerMode().

CANIF079: Sleep and Wakeup mode is not supported by all types of CAN
controllers.These modes are encapsulated by the CAN Driver by providing hardware
independent operation modes over its interface, which has to be managed by the
CAN Interface. Whereas the transitions to STARTED and STOPPED mode returns
synchronously without subsequent check, only during the request to sleep transition
the CAN Driver checks the underlying CAN controller, whether the sleep request was
executed successfully or not. In this case transition request returns immediately,
whereas the sleep transition of the CAN controller is delayed. The transition to sleep
mode is aborted after a fixed time the transition was not successful. The CAN Driver
may release directly a wakeup interrupt during the transition request, when CAN L-
PDUs are transmitted or received at the same time.

This treatment guarantees, that the CAN State Manager is informed immediately
about the transition to SLEEP mode for handling the CAN Transceiver and enabling
the wakeup interrupt.

CANIF080: After transition to STARTED mode CANIF_CS_STARTED all transmission
and reception events are processed. After request of STOPPED mode
CANIF_CS_STOPPED the CAN Interface suppresses all following transmission
requests and no reception events are further processed.

CANIF089: The CAN Interface distinguishes between internal initiated CAN
controller wake up request (internal request) and network wake up request (external
request). The first one is an internal synchronous request; the second is a CAN
controller event. Only network initiated wakeups are notified by the wakeup
notification as far as it is supported by the used CAN controllers.

CANIF090: If the physical ECU belongs to multiple networks, each CAN network
must be controlled by its own station management (CAN State Manager) and/or
network management (CAN NM).

7.19.4 Wakeup and validated wakeup events

CANIF227: If the ECU shall support wakeup over CAN network, regardless of the
used wakeup method (directly about CAN controller or CAN transceiver), the CAN
Driver and the corresponding CAN controller has to be set to SLEEP mode. Only this
mode ensures that the CAN controller is stopped, thus the wakeup interrupt can be
enabled.

56 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

CANIF180: The CAN Interface supports wakeup notification only, if
 underlying CAN controller provide wakeup support and wakeup is enabled by

CAN Driver configuration.
 underlying CAN transceiver provide wakeup support and wakeup is enabled

by CAN Transceiver Driver configuration.
 the CAN Interface is in the mode CANIF_CS_SLEEP.

CANIF181: If wakeup support is enabled, CAN Interface is notified by the ECU
firmware about a general CAN wakeup event by the call-out service
CanIf_CheckWakeup(). Is API is invoked in interrupt as well as in polling mode.

CANIF285: The CAN Interface queries at all CAN Drivers or CAN Transceivers
according to the configuration, which exact CAN hardware device caused the
wakeup event over CAN.
The corresponding device driver returns to the CAN Interface and provides the
requested wakeup device information. For details see respective UML diagram in the
chapter “CAN Wakeup Sequences” of document [15] Specification of ECU State
Manager.

CANIF231: After notification of a wakeup event the CAN Interface shall not start the
CAN controller automatically. The CAN State Manager must set the CAN Interface
from STOPPED into STARTED mode for the corresponding CAN controller. This is
required, because wakeup validation can take place only in STARTED mode to be
able to detect the first received CAN message after a wakeup event.

CANIF232: After a wakeup event occurred, the CAN Interface stores this wakeup
event until the wakeup event is validated. During validation of the wakeup event and
also during re-initialization of the CAN Interface all temporarily stored wakeup events
are reset.
Attention: the CAN Interface notifies the upper layers about received messages after
transition to CANIF_CS_STARTED. The CAN Interface does not wait for processing
notifications until a wakeup event was successfully validated.

CANIF226: Validation wakeup only takes place, if
 wakeup support is enabled.
 the CAN Interface is in the mode CANIF_CS_STARTED.

CANIF286: After CAN Interface has been notified by an wakeup event, it enables the
detection for CAN wakeup validation. Therefore the CAN Interface stores a
successful validation, whenever the indication callback is called by the CAN Driver to
notify about the first CAN L-PDU successful received after the wakeup event
occurred.

CANIF182: The CAN Interface notifies the ECU State Manager about a validated
wakeup event by call of <User_ValidationWakeupEvent>() during call of
CanIf_CheckValidation(). For details see respective UML diagram in the
chapter “CAN Wakeup Sequences” of document [15] Specification of ECU State
Manager.

57 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

7.20 PDU channel mode control

7.20.1 PDU channel groups

CANIF060: Each L-PDU is assigned to one dedicated physical CAN channel
connected to one CAN controller and one CAN network. By this way all L-PDUs
belonging to one physical channel can be controlled on the view of handling logically
single L-PDU channel groups. Those logical groups represent all L-PDUs of one
ECU connected to one underlying CAN network.
The figure below shows one possible usage of L-PDU channel group and its relation
to the upper layers and/or networks:

CANIF088: An L-PDU can only be assigned to one channel group.

CANIF217: Typical users like PDU Router or the network management are
responsible for controlling the PDU operation modes.

CAN NM A

Channel
Network 0
TxPath

Channel
Network 0
RxPath

CAN Interface

CAN controller/
transceiver 0

CAN controller/
transceiver 1

CAN device drivers

Network A

Network B

CAN NM B

Channel
Network 1
TxPath

Channel
Network 1
RxPath

Figure 17 Channel L-PDU groups

7.20.2 PDU channel modes

CANIF027: The CAN Interface provides services to prevent the processing of
 all transmit L-PDUs of the own ECU belonging to one logical channel,
 all receive L-PDUs of the own ECU belonging to one logical channel,

58 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

 all transmit and receive L-PDUs of the own ECU belonging to one logical
channel

 even all L-PDUs.

Every PDU mode change can be requested for transmission and reception path
separately or commonly. A change of the channel mode has only an effect during the
network mode CANIF_CS_STARTED (refer to [0:]). The change of the channel mode
is performed but in STOP, SLEEP or UNINIT state no L-PDUs are transmitted nor
received since the CAN controller is not in STARTED mode.

7.20.2.1 OFFLINE Mode

CANIF073: In offline mode all L-PDUs of the corresponding channel are prevented
for transmission and reception. Thus at transmission no transmit requests are passed
to the CAN Driver and no transmit confirmation notifications are processed. At
reception no receive indications to upper layers are executed. The transmit buffers
are cleared. Transmit requests return E_NOT_OK. The transmit path as well the
receive path is offline. This is the default channel mode after initialization.

CANIF118: The BusOff notification is automatically and thus implicitly suppressed
due to in OFFLINE mode no L-PDUs can be transmitted and thus the CAN controller
is not able to go in BusOff mode (CAN specification). If pending L-PDUs in the CAN
hardware are transmitted after change to OFFLINE mode and BusOff occurs, the
BusOff notification is not suppressed. The wakeup notification is not affected
concerning mode changes between ONLINE/OFFLINE.

7.20.2.2 ONLINE Mode

CANIF074: Probably appearing confirmations from previous transmit requests to the
CAN Driver released in Tx online mode are not suppressed by the CAN Interface.

CANIF075: The online mode enables the reception and/or the transmission path to
the CAN Driver. It re-activates the assignment of transmit and receive PDUs to a
defined physical channel. The online mode cancels the lock made by offline mode
call. Every change back to offline mode clears the transmit buffers. The appropriate
CAN Interface service is called CanIf_SetPduMode().

7.20.2.3 ONLINE/OFFLINE Mode for Tx/Rx path

CANIF096: The Tx/Rx online mode and the Tx/Rx offline mode only offers the
possibility to change the channel mode on the Rx/Tx paths separately. This modes
behave the same like online/offline, but only for the transmit L-PDUs or the receive L-
PDUs of the corresponding channel.

CANIF095: The CAN Interface provides information about the status of
'online'/'offline' service when required via the service CanIf_GetPduMode().

59 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface

- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

OFFLINE

ONLINE

Passive

Active

Figure 18 PDU channel mode control
7.20.2.4 OFFLINE ACTIVE Mode

CANIF072: The CAN Interface provides simulation of successful transmission by the
offline active mode. This mode only affects the transmission path. By this mode
confirmation handling is performed synchronously at the end of the transmit request,
but no transmit request is passed to the CAN Driver. On logical view the offline active
mode is a sub-mode of the offline mode, whereas it can be enabled in online as well
as in offline mode.
The offline active mode is enabled by call of CanIf_SetPduMode (CANIF_
SET_TX_OFFLINE_ACTIVE). This mode can be left by CANIF_SET_TX_ONLINE or
CANIF_SET_TX_OFFLINE.

This functionality is useful realizing special operating modes (i.e. diagnosis passive
mode) to avoid bus traffic without impact to the notification mechanism and thus is
typically used for diagnostic usage.
Note: During the Tx Offline Active mode the upper layer has to handle the execution
of the confirmations. The confirmation handling is executed immediately at the end of
the transmit request.

The figure above shows a diagram with possible L-PDU channel modes. Each L-
PDU channel can be offline (no transmission) or online (activated transmission). A
simulation of the successful sending (transmit confirmation) is supported in the offline
mode and called offline active mode. The default state of L-PDU channel in offline
mode thus is passive. No simulation of the successful transmission takes place.

7.21 Software receive filter

CANIF025: Not all L-PDUs, which may pass the hardware acceptance filter and
therefore are successful received in BasicCAN hardware objects, are defined as
receive L-PDUs and thus needed from the corresponding ECU. These L-PDUs are
filtered out and further software processing is prohibited.

60 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

CANIF094: Certain software filter algorithms are provided to optimize software filter
runtime. The approach of software filter mechanisms is to find out the corresponding
L-PDU handle from the HRH and CAN ID currently being processed. After the L-PDU
handle is found it enables upper layers to access L-PDU information directly.

7.21.1 Software filtering concept

CANIF234: The configuration tool handles the information about hardware
acceptance filter settings. The most important settings are the number of the L-PDU
hardware objects and their range. The outlet range defines, which receive L-PDUs
belongs to each hardware receive object. The following definitions are possible:

 a single receive L-PDU (FullCAN reception),

 a list of receive L-PDUs or

 one or multiple ranges of receive L-PDUs can be linked to a hardware receive
object (BasicCAN reception).

CANIF237: For definition of range reception it is necessary to define at least one Rx
L-PDU with the CAN Id inside the defined range. The range is defined by its upper
and lower limit CAN Id.

CANIF300: A range of CAN Ids which shall pass the software receive filter shall be
defined by its upper limit (see CANIF_HRHRANGE_UPPER_CANID) and lower limit
(see CANIF_HRHRANGE_LOWER_CANID) CAN Id.

CANIF301: Each configurable range of CAN Ids (see CANIF300), which shall pass
the software receive filter, shall be configurable either for STANDARD or EXTENDED
CAN Ids via CANIF_HRHRANGE_CANIDTYPE.

CANIF030: Receive L-PDUs are provided as constant structures statically generated
from the communication matrix. They are arranged according to the corresponding
hardware acceptance filter, so that there is one single list of receive CAN Identifiers
for every hardware receive object (HRH). The corresponding list can be derived by
the HRH, if multiple BasicCAN objects are used.
The subsequent filtering is the search through one list of multiple CAN Identifiers by
comparing them with the new received CAN Identifier. In case of a hit the receive L-
PDU handle is derived from the found CAN Identifier.

Rcv Handle Nr.
CAN Id

DLC
Upper Layer ID

*destination
list end flag=0

Rcv Handle Nr.
CAN Id

DLC
Upper Layer ID

*destination
list end flag=0

Hardware
Receive Handle

Rcv Handle Nr. Rcv Handle Nr. Rcv Handle Nr. Rcv Handle Nr. Rcv Handle Nr. Rcv Handle Nr.
CAN Id CAN Id CAN Id CAN Id CAN Id CAN Id

DLC DLC DLC DLC DLC DLC
Upper Layer ID Upper Layer ID Upper Layer ID Upper Layer ID Upper Layer ID Upper Layer ID

*destination *destination *destination *destination *destination *destination
list end flag=1 list end flag=1 list end flag=0 list end flag=0 list end flag=0 list end flag=1

Figure 19 Software filtering example

61 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

7.21.2

7.22

Software filter algorithms

CANIF097: The choice of suitable software search algorithms it is up to the
implementation. According to the wide range of possible receive BasicCAN
operations it is recommended to offer several search algorithms like linear search,
table search and/or hash search variants to provide the most optimal solution for
most use cases.

DLC check

CANIF026: The DLC of the received L-PDU is compared with the expected, statically
configured DLC for the received L-PDU. The statically defined DLC value shall be
derived from the size of used bytes inside this L-PDU. The DLC value may not be
necessarily that DLC value defined in the CAN communication matrix and used by
the sender of this CAN L-PDU. All CAN L-PDUs with a DLC equal or greater then the
expected DLC will be accepted.

CANIF297: The number of bytes that are later on copied corresponds to the
expected DLC of the received L-PDU, not to the current received DLC.

CANIF296: All upper protocol layers, which operate with a dynamic length and
managing the own data buffer for receive data, the DLC check shall be disabled by
setting DLC to NULL. In that case the DLC check always passes.
CANIF262: Also in case of DLC check is disabled, the data length passed the
indication notification to the upper layers, which copies the data to its own buffer
always shall correspond to the current received DLC value and not to the predefined
expected DLC. By this way always the current received data are copied although the
DLC check is disabled by setting the expected DLC value to NULL.

CANIF166: The expected DLC may be defined for one specific L-PDU or a group of
PDUs.

CANIF168: If the DLC check fails, only the DEM shall be notified. Other upper layers
are not informed. No receive indication is executed.

CANIF746: If the DLC Check is enabled and CanIf_RxIndication receives a PDU with
CanDlc smaller than the configured CanIfCanRxPduDlc, the CanIf shall notify the
DEM and not execute any receive execution functions.

CANIF031: The DLC Check shall be enabled or disabled globally by CAN Interface
configuration for all used CAN Driver.

7.23 L-PDU dispatcher to upper layers

CANIF024: Upper Communication Layers use the unified interface of the CAN
Interface for transmission and reception.

62 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

At reception side each L-PDU handle belongs to one single upper layer as
destination for the corresponding receive L-PDU or group of such L-PDUs. This
relation is assigned statically at configuration time. The task of the L-PDU dispatcher
inside of the CAN Interface is to find out the customer for a received L-PDU and to
dispatch the indications towards the found upper layer.
At transmission side the L-PDU dispatcher has to find out the corresponding Tx
confirmation call-out service of the target upper layer.
Receive Indication as well as transmit confirmation notifications are processed via
the corresponding call-out services. These call-out services may exist several times
with different names defined in the notified upper layer modules. Thus every upper
layer module receiving CAN L-PDUs can be notified by its own indication service, for
example <User_RxIndication>().These services are statically configured,
depending on the layers that have to be served.

7.24 Polling mode

The polling mode provides handling of transmit, receive and error events occurred in
the CAN hardware without the usage of hardware interrupts. Thus the CAN Interface
and the CAN Driver provides services for detection and execution corresponding
hardware events.
The CAN Interface API's characteristic and syntax does not change in polling mode.
By this way upper layers are abstracted from the strategy to detect hardware events.
If different CAN Drivers are in use, the calling rates shall be harmonized during
configuration setup and system integration.

These services are able to detect new events that occurred in the CAN Hardware
since its last call. The CAN Interface notification services for forwarding of detected
events by the CAN Driver are the same like for interrupt operation:

 Receive service – detects new PDU reception events and calls

CanIf_RxIndication().
 Transmit service – controls new confirmations and calls

CanIf_TxConfirmation().
 Error service – detects errors occurred during PDU processing (BusOff) and

calls CanIf_ControllerBusOff().

Please refer to chapter [8.4] for further details to these notification callbacks.

The calling context of the notification callbacks differs between interrupt and polling
mode. Whereas in interrupt mode the notifications are performed on interrupt level,
these are invoked on task level in polling mode.
If any access to the CAN controller's mailbox is blocked, subsequent transmit
buffering takes place (refer [7.12 Transmit buffering]).

The Polling and Interrupt mode can be configured for each underlying CAN
controller.

63 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

7.25 Multiple CAN Driver support

CANIF028: A specific mapping is needed in the CAN Interface to cover multiple CAN
Drivers to provide a common interface to upper layers. Thus the CAN Interface must
dispatch all actions up-down to the APIs of the corresponding target CAN Driver and
underlying CAN controller(s) and as well the way down-up by providing multiple call-
out notifications on the CAN Interface for multiple CAN Drivers.

CANIF124: The naming convention is as follows:

<CAN Driver module name>_<vendorID>_<Vendor specific API name><driver
abbreviation>()
BSW00347 specifies the naming convention.

CANIF224: The naming conventions can be used only in that case, if multiple
different CAN controller types on one ECU have to be supported. If only one
controller type is used, the original naming conventions without any <driver

abbreviation> extensions are sufficient.

sd Tx Request (Multiple CAN Driv ers - simplified)

Generic
Elements::CanIf User

CanIf::CanIf Can_A :Can «peripheral»

CanControl ler A
:CanController

Can_B :Can «peripheral»

CanController B
:CanController

alt CAN Controller A/B

[CAN Controller A used]

[CAN Controller B used]

Here the name of the called
function has to be extended to
distinguish the two Can drivers,
i ..e. Can_Write_A(...)

Std_ReturnType= CanIf_Transmit(CanTxPduId,PduInfoPtr)

Can_ReturnType= Can_Write(Hth,PduInfo)

Copy L-PDU in CAN
Hardware A

Copy L-PDU in CAN
Hardware A

Can_Write

CanIf_Transmit

Here the name of the called
function has to be extended to
distinguish the two Can drivers,
i ..e. Can_Write_B(...)Std_ReturnType= CanIf_Transmit(CanTxPduId,PduInfoPtr)

Can_ReturnType= Can_Write(Hth,PduInfo)

Copy L-PDU in CAN
Hardware B

Copy L-PDU in CAN
Hardware B

Can_Write

CanIf_Transmit

Figure 20 Transmission request with multiple CAN Drivers - simplified

64 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

CANIF235: The support for multiple CAN Drivers can be enabled and disabled by
the configuration parameter CANIF_MULTIPLE_DRIVER_SUPPORT.

7.25.1 Transmit requests by using multiple CAN Drivers

CANIF125: Each transmit L-PDU handle affords deriving the corresponding CAN
controller and implicitly the CAN Driver serving the affected hardware unit. Resolving
of these dependencies is possible because of the construction of the CAN controller
handle: it combines CAN Driver handle and the corresponding CAN controller in the
hardware unit.

At configuration time a mapping table per used CAN Driver with references (function
pointers) on its API services for the CAN Interface shall be provided. The CAN
Interface needs only to select the corresponding CAN Driver in order to call the
correct API service. The sequence diagram below demonstrates two transmit
requests directed to the different CAN Drivers. For an example refer to [7.25.3
Mapping table for multiple CAN Driver handling] below.

A CAN controller handle will be mapped to the CAN controller local logical name
(index) and then to the CAN controller handle dedicated to each CAN controller. This
mapping is done during configuration phase.

Note: This is only an example. Finally it is up to the implementation to access the
correct APIs of the underlying CAN Drivers.

Example:

Operations called Description
CanIf_Transmit
(

Upper layer initiates a transmit request. The PDU ID is used for tracing the
requested CAN controller and then to serving the hardware unit.

 PduId_1,
The number of the hardware unit is relevant for the dispatch as it is used as
index for the array with pointer to functions. At first the number of the PDU
group will be extracted from the PduId_1. Each PDU group refers to a
network and thus as well the hardware unit number and the CAN controller
number.

 *PduInfoPtr_1
)

The hardware unit number points on an instance of the CAN Driver in the
table. This table, created at configuration time, contains all API services
configured for the used hardware unit(s). One of these services is the
requested transmit service.

Can_Write_A Request for transmission to the CAN_Driver_A serving i.e. CAN controller
#1 within the "A" hardware unit. (

 Hth,

 *PduInfoPtr_1
)

Hardware request All L-PDU data will be set in Hardware of i.e. CAN controller #0 within
hardware unit "A" and the transmit request enabled.

65 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Operations called Description
CanIf_Transmit
(
 PduId_2,
 *PduInfoPtr_2
)

Upper layer initiates transmit request. The parameter transmit handle leads
to another CAN controller and then to another hardware unit.

The number of the hardware unit is relevant for the dispatch as it is used as
index for the array with pointer to functions. At first the number of the PDU
group will be extracted from the PduId_2. Each PDU group refers to a
network and thus as well to the hardware unit number and to the CAN
controller number.

The hardware unit number points on an instance of the CAN Driver in the
table. This table, created at configuration time, contains all API services
configured for the used hardware unit(s). One of these services is the
requested transmit service.

Can_Write_B
(
 Hth,
 *PduInfoPtr_2

)

Request for transmission to the CAN_Driver_B serving i.e. CAN controller
#1 within the "B" hardware unit.

Hardware request All L-PDU data will be set in the Hardware of i.e. the CAN controller #1
within hardware unit "B" and the transmit request enabled.

7.25.2 Notification mechanism by using multiple CAN Drivers

CANIF126: Every notification call-out service invoked by the CAN Drivers at the CAN
Interface exists multiple times, if multiple CAN Drivers are used in a single ECU. This
means, that each used CAN Driver calls 'it's own' call-out service at the CAN
Interface. The CAN interface must provide all call-out service unique for each
underlying CAN Driver. Thus the HRH parameter is unique at the scope of each CAN
Driver. Following call-out/callback services are affected:

 CanIf_TxConfirmation
 CanIf_RxIndication
 CanIf_ControllerBusOff
 CanIf_CancelTxConfirmation

CANIF127: Example: on reception side the corresponding call-out routine of the CAN
Driver being triggered by the reception events is called at the CAN Interface. If the
CAN Interface underlies two CAN Drivers, two CanIf_RxIndication() routines
has to be provided. At configuration time the relation between call-out service and
used CAN Driver has to be set up.

66 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

sd RxIndication (Multiple CAN Driv ers - simplified)

Generic
Elements::CanIf User

«module»

CanIf::CanIf

Can_A :Can «Peripheral»

Hardware::CanController

Can_B :Can

Naming Convention:
CanIf_RxIndication_A

Receive Interrupt

CanIf_RxIndication(Hrh,CanId,CanDlc,CanSduPtr)

Exemplary call:
parameters differ for
User=CanTp

Received L-PDU
validation check (SW
Filtering, DLC Check)

<User_RxIndication>(CanRxPduId,PduInfoPtr)

Copy Data

Copy Data

<User_RxIndication>

CanIf_RxIndication

Receive Interrupt

Naming Convention:
CanIf_RxIndication_B Receive Interrupt

CanIf_RxIndication(Hrh,CanId,CanDlc,CanSduPtr)

Received L-PDU validation check (SW Filtering, DLC Check)

<User_RxIndication>(CanRxPduId,PduInfoPtr)

Copy data

Copy data

<User_RxIndication>

CanIf_RxIndication

Receive Interrupt

Figure 21 Receive interrupt with multiple CAN Drivers - simplified

Operations called Description
Receive Interrupt The CAN controller 1 signals a successful reception and triggers a

receive interrupt. The ISR of CAN Driver A is invoked.
CanIf_RxIndication_A
(Hrh_3, CanId_1,
CanDlc_8,
*CanSduPtr_1)

The reception is indicated to the CAN Interface by calling of
CanIf_RxIndication_A(). The HRH specifies the CAN RAM
hardware object and the corresponding CAN controller (Hrh_3),
which contains the received L-PDU. The temporary buffer is
referenced to the CAN Interface by *CanSduPtr_1.

Validation check
(SW Filtering, DLC Check)

The Software Filtering checks, whether the received L-PDU will be
processed on a local ECU. If not, the received L-PDU is not indicated
to upper layers. Further processing is suppressed.
If the L-PDU is found, the DLC of the received L-PDU is compared
with the expected, statically configured one for the received L-PDU.

67 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Operations called Description
<User_RxIndication>
(CanRxPduId,
*PduInfoPtr)

The corresponding receive indication service of the upper layer is
called. This signals a successful reception to the target upper layer.
The parameter CanRxPduId specifies the L-PDU, the second
parameter is the reference on the temporary buffer within the L-SDU.

Receive Interrupt The CAN controller 2 signals a successful reception and triggers a
receive interrupt. The ISR of CAN Driver B is invoked.

CanIf_RxIndication_B
(Hrh_3, CanId_5,
CanDlc_8,
*CanSduPtr_2)

The reception is indicated to the CAN Interface by calling of
CanIf_RxIndication_B(). The HRH specifies the CAN RAM
hardware object and the corresponding CAN controller (Hrh_3),
which contains the received L-PDU. The temporary buffer is
referenced to the CAN Interface by *CanSduPtr_2.

Validation check
(SW Filtering, DLC Check)

The Software Filtering checks, whether the received L-PDU will be
processed on a local ECU. If not, the received L-PDU is not indicated
to upper layers. Further processing is suppressed.
If the L-PDU is found, the DLC of the received L-PDU is compared
with the expected, statically configured one for the received L-PDU.

<User_RxIndication>
(CanRxPduId,
*PduInfoPtr)

The corresponding receive indication service of the upper layer is
called. This signals a successful reception to the target upper layer.
The parameter CanRxPduId specifies the L-PDU, the second
parameter is the reference on the temporary buffer within the L-SDU.

7.25.3 Mapping table for multiple CAN Driver handling

CANIF062: A table with addresses to all CAN Driver API services is the basis to
provide a unique driver interface to the CAN Interface. This table makes the
assignment from two different driver interfaces to one single driver interface (with
prefix (Can_).
In case of L-PDU handle based APIs, the corresponding CAN Driver has to be
derived from the L-PDU handle. Afterwards the CAN Driver number is used as an
index for the table with function pointers. The parameters have correspondingly to be
translated: i.e. L-PDU handle => HTH/HRH, CanId, Dlc.

CAN Driver BCAN Driver A Controller: 0
HTH: 0..1

Controller: 0..1
HTH: 0..3

Mapping Table with CAN Driver(s) API References

CAN Interface

CanIf_InitController (Network=0)

Can_Write_A (HTH=5,..)

CanIf_Transmit (CanTxPduId=7,..)

Can_Write_B (HTH=5,..)

CanIf_Transmit (CanTxPduId=22,..)

CanIf_InitController (Network=1)

Can_Init_B (Controller=0)Can_Init_A (Controller=0)

Figure 22 HTH Assignment with multiple CAN Drivers

68 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Each CAN Driver supports a certain number of underlying CAN controllers and a
fixed number of HTHs. Each CAN Driver has got an own numbering area, which
starts always at 0 for controller and HTH.

7.26 Error classification

CANIF017: This chapter lists and classifies all errors that can be detected within this
software module. Each error shall be classified according to relevance (development
/ production) and related error code. For development errors, a value shall be
defined.

CANIF153: Values for production code Event Ids are assigned externally by the
configuration of the Dem. They are published in the file Dem_IntErrId.h and
included via Dem.h.

CANIF154: Development error values are of type uint8.

CANIF120: The naming of errors has to be compliant to BSW000327.

CANIF207:
Type or error Relevance Related error code Value

10 CANIF_E_PARAM_CANID API service called with invalid
parameter

Development
11 CANIF_E_PARAM_DLC
12 CANIF_E_PARAM_HRH
13 CANIF_E_PARAM_CHANNEL
14
15

CANIF_E_PARAM_CONTROLLER
CANIF_E_PARAM_WAKEUPSOURCE
CANIF_E_PARAM_POINTER 20 API service called with invalid

pointer
Development

API service used without
module initialization

Development CANIF_E_UNINIT 30

Requested API operation is
not supported

Development CANIF_E_NOK_NOSUPPORT 40

API service called with invalid
transceiver parameter

Production CANIF_TRCV_E_TRANSCEIVER Assigned
by DEM

API service called with invalid
parameter for CAN
transceiver operation mode

Development CANIF_TRCV_E_TRCV_NOT_STAN
DBY

60

API service called with invalid
parameter for CAN
transceiver operation mode

Development CANIF_TRCV_E_TRCV_NOT_NORM
AL

70

Transmit PDU ID invalid Development CANIF_E_INVALID_TXPDUID 80
Receive PDU ID invalid Development CANIF_E_INVALID_RXPDUID 90
Failed DLC Check Production CANIF_E_INVALID_DLC Assigned

by DEM
CAN Interface is in
STOPPED mode

Production CANIF_E_STOPPED Assigned
by DEM

Transmit buffers full Production CANIF_E_FULL_TX_BUFFER Assigned
by DEM

69 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

7.27

7.28

Error detection

CANIF018: The detection of development errors is configurable (ON / OFF) at pre-
compile time. The switch CANIF_DEV_ERROR_DETECT (see chapter [10
Configuration specification]) shall activate or deactivate the detection of all
development errors.

CANIF019: If the CANIF_DEV_ERROR_DETECT switch is enabled API checking is
enabled. The detailed description of the detected errors can be found in chapter [7.26
Error classification] and chapter [8 API specification].

CANIF155: The detection of production code errors cannot be switched off.

CANIF295: When requested API operations are not supported, those errors are
recognized as development error by CANIF_E_NOK_NOSUPPORT.

Error notification

CANIF156: Detected development errors shall be reported to Det_ReportError
service of the Development Error Tracer (DET), if the pre-processor switch
CANIF_DEV_ERROR_DETECT is set (see chapter 10).

CANIF020: Production errors shall be reported to the Diagnostic Event Manger
(DEM). They shall not be used as the return value of the called function.

CANIF223: For all defined production errors it is only required to report the event,
when an error or diagnostic relevant event (e.g. state changes, no L-PDU events)
occurs. Any status has not to be reported.

CANIF119: Additional errors that are detected because of specific implementation
and/or specific hardware properties shall be added in the CAN Interface specific
implementation specification. The classification and enumeration shall be compatible
to the errors listed above.

7.29 Code version check

CANIF021: The CAN Interface files checks the consistency between the header, C
and configuration files during compilation according to BSW004. This is to guarantee
the consistency of the files and the code generator to the same release.

70 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

8 API specification

8.1

8.1.1

8.1.2

8.1.3

Imported types

CANIF142:

Standard types

In this chapter all used types included from the Std_Types.h are listed:

 Std_ReturnType
 Std_VersionInfoType

COM specific types

In this chapter all used types included from the ComStackTypes.h are listed:

 PduIdType
 PduLengthType
 PduInfoType

EcuM specific types

The following type of the EcuM shall be used:

 EcuM_WakeupSourceType

CAN specific types 8.1.4

8.2

8.2.1

The following type of the CAN Driver shall be used:

 Can_IdType
 Can_PduType

Type definitions

CanIf_ConfigType

CANIF144:

struct Type:
Implementation
Specific

The contents of the initialization data structure are CAN
Interface specific.

Range:

Description: This type of the external data structure shall contain the post build initialization
data for the CAN Interface for all underlying CAN Drivers.

71 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

The definition of CAN Interface public parameters shall contain:

 Number of transmit L-PDUs
 Number of receive L-PDUs
 Number of dynamic transmit L-PDU handles

The definition for each L-PDU handles shall contain:

 Handle for transmit L-PDUs
 Handle for receive L-PDUs
 Name for transmit L-PDUs
 Name for receive L-PDUs
 CAN Identifier for static and dynamic transmit L-PDUs
 CAN Identifier for receive L-PDUs
 DLC for transmit L-PDUs
 DLC for receive L-PDUs
 Data buffer for receive L-PDUs in case of polling mode
 Network towards each L-PDU belongs to.
 Transmit L-PDU handle type

8.2.2 CanIf_ControllerConfigType

CANIF145:
Type: Struct
Range: Implementation

Specific
The contents of the initialization data structure are CAN
Interface specific for initialization of all CAN controllers
related to the CAN network.

Description: This type of the external data structure shall contain the post build initialization
data for the CAN Interface for all underlying CAN Drivers.

The definition of CAN Interface public parameters shall contain:

 Number of transmit L-PDUs
 Number of receive L-PDUs
 Number of dynamic transmit L-PDU handles

The definition for each L-PDU handles shall contain:

 Handle for transmit L-PDUs
 Handle for receive L-PDUs
 Name for transmit L-PDUs
 Name for receive L-PDUs
 CAN Identifier for transmit L-PDUs
 CAN Identifier for receive L-PDUs
 DLC for transmit L-PDUs
 DLC for receive L-PDUs
 Data buffer for receive L-PDUs in case of polling mode
 Network towards each L-PDU belongs to.
 Transmit L-PDU handle type

Attention: dynamic transmit L-PDUs are not part of this type definition.

8.2.3 CanIf_ControllerModeType

CANIF136:
Type: Enumeration

72 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

CANIF_CS_UNINIT = 0 UNINIT mode. Default mode of the CAN Driver and
all CAN controllers connected to one CAN network
after power on.

CANIF_CS_STOPPED STOPPED mode. At least one of all CAN controllers
connected to one CAN network is halted and does not
operate on the network.

CANIF_CS_STARTED STARTED mode. All CAN controllers connected to
one CAN network are started by the CAN Driver and
in full-operational mode.

Range:

CANIF_CS_SLEEP SLEEP mode. At least one of all CAN controllers
connected to one CAN network are set into the
SLEEP mode and can be woken up by request of the
CAN Driver or by a network event (must be supported
by CAN hardware)

Operating modes of the CAN network and CAN Driver Description:

8.2.4 CanIf_ChannelSetModeType

CANIF137:
Type: Enumeration

CANIF_SET_OFFLINE = 0 Channel shall be set to the offline mode
=> no transmission and reception

CANIF_SET_RX_OFFLINE Receive path of the corresponding channel
shall be disabled

CANIF_SET_RX_ONLINE Receive path of the corresponding channel
shall be enabled

CANIF_SET_TX_OFFLINE Transmit path of the corresponding channel
shall be disabled

CANIF_SET_TX_ONLINE Transmit path of the corresponding channel
shall be enabled

CANIF_SET_ONLINE Channel shall be set to online mode
=> full operation mode

Range:

CANIF_SET_TX_OFFLINE_ACTIV
E

Transmit path of the corresponding channel
shall be set to the offline active mode
=> notifications are processed but transmit
requests are blocked.

Description: Request for PDU channel group. The request type of the channel defines it's
transmit or receive activity. Communication direction (transmission and/or
reception) of the channel can be controlled separately or together by upper
layers.

8.2.5 CanIf_ChannelGetModeType

CANIF138:
Type: Enumeration

CANIF_GET_OFFLINE = 0 Channel is in the offline mode
=> no transmission and reception

CANIF_GET_RX_ONLINE Receive path of the corresponding channel
is enabled and transmit path is disabled.

CANIF_GET_TX_ONLINE Transmit path of the corresponding channel
is enabled and receive path is disabled.

Range:

CANIF_GET_ONLINE Channel is in the online mode
=> full operation mode

73 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

CANIF_GET_OFFLINE_ACTIVE Transmit path of the corresponding channel
is in the offline active mode
=> transmit notifications are processed but
transmit requests are blocked.
The receive path is disabled.

CANIF_GET_OFFLINE_ACTIVE_R
X_ONLINE

Transmit path of the corresponding channel
is in the offline active mode
=> transmit notifications are processed but
transmit requests are blocked.
The receive path is enabled.

Status of the PDU channel group. Current mode of the channel defines its
transmit or receive activity. Communication direction (transmission and/or
reception) of the channel can be controlled separately or together by upper
layers.

Description:

8.2.6 CanIf_NotifStatusType

CANIF201:

typedef enum Type:
CANIF_NO_NOTIFICATION = 0 No transmit or receive event occurred for

the requested L-PDU.
Range:

CANIF_TX_RX_NOTIFICATION The requested Rx/Tx CAN L-PDU was
successfully transmitted or received.

Return value of CAN L-PDU notification status. Description:

8.2.7 CanIf_TransceiverModeType

CANIF263:
Type: Enumeration

CANIF_TRCV_MODE_NORMAL = 0 Transceiver mode NORMAL
CANIF_TRCV_MODE_STANDBY Transceiver mode STANDBY

CANIF_TRCV_MODE_SLEEP Transceiver mode SLEEP
Description: Operating modes of the CAN Transceiver Driver.

8.2.8

CanIf_TrcvWakeupReasonType

CANIF264:
Type: Enumeration

CANIF_TRCV_WU_ERROR = 0 Due to an error wake up reason was not
detected. This value may only be reported
when error was reported to DEM before.

CANIF_TRCV_WU_NOT_SUPPORTED The transceiver does not support any
information for the wake up reason.

CANIF_TRCV_WU_BY_BUS The transceiver has detected, that the
network has caused the wake up of the
ECU.

CANIF_TRCV_WU_INTERNALLY The transceiver has detected, that the
network has woken up by the ECU via a
request to NORMAL mode.

Range:

CANIF_TRCV_WU_RESET The transceiver has detected, that the
“wake up” is due to an ECU reset.

74 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

CANIF_TRCV_WU_POWER_ON The transceiver has detected, that the
“wake up” is due to an ECU reset after
power on.

Description: This type shall be used to specify the wake up reason detected by the CAN
transceiver in detail.

8.2.9 CanIf_TrcvWakeupModeType

CANIF275:
Type: Enumeration

CANIF_TRCV_WU_ENABLE = 0 The notification for wakeup events is
enabled on the addressed network.

CANIF_TRCV_WU_DISABLE The notification for wakeup events is
disabled on the addressed network.

Range:

CANIF_TRCV_WU_CLEAR A stored wakeup event is cleared on the
addressed network.

Description: This type shall be used to specify the wake up reason detected by the CAN
transceiver in detail.

8.3 Function definitions

8.3.1 CanIf_Init

Service name: CanIf_Init
Syntax: void CanIf_Init

(
 const CanIf_ConfigType *ConfigPtr
)

Service ID: 0x01

Sync/Async: Synchronous

Reentrancy: Non re-entrant

 ConfigPtr Pointer to configuration parameter set, used e.g. for post
build parameters

Parameters (out): --

Return value: --

Description: CANIF001: This service initializes internal and external interfaces of the CAN
Interface for the further processing. All underlying CAN controllers and CAN
transceivers still remain not operational.
This service is called only ECU State Manager (EcuM).

If a NULL pointer is passed for *ConfigPtr to this function the default
configuration shall be used.
In case only one configuration setup is used, a NULL pointer is sufficient to
choose the one static existing configuration setup.

Development errors:
- Invalid values of *ConfigPtr will be reported to the development error tracer

(CANIF_E_PARAM_POINTER) only for post built use cases.
Caveats: --

Configuration: --

75 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

8.3.2 CanIf_InitController

Service name: CanIf_InitController
Syntax: void CanIf_InitController

(
 uint8 Controller,
 uint8 ConfigurationIndex
)

Service ID: 0x02

Sync/Async: Synchronous

Reentrancy: Non re-entrant

Controller CAN controller requested for initialization Parameters (in):

ConfigurationIndex Index to controller related configuration setup

Parameters (out): --

Return value: --

Description: CANIF002: This service initializes in the CAN Interface the configured buffers of all
Tx/Rx L-PDUs of the corresponding CAN controller. Different sets of static
configuration may have been configured. A logical number is assigned to each set
statically.
The parameter ConfigurationIndex selects the configuration set that is used for
initialization. The CAN controller still remains not operational and neither sends nor
receives CAN L-PDUs.

CANIF022: Development errors:
- Invalid values of Controller or ConfigurationIndex will be reported to the

development error tracer (CANIF_E_PARAM_CONTROLLER or
CANIF_E_PARAM_POINTER) only for post built use cases.

- If the CAN Interface was not initialized before invoking of CanIf_Init(), the
call of this function will be reported to the development error tracer
(CANIF_E_UNINIT). No initialization will be executed.

Caveats: CAN identifiers of dynamic transmit L-PDUs are not initialized by invoking this API.

Configuration: ID of the CAN controller is published inside the configuration description of the CAN
Interface. At configuration time the relation has to be set up between the CAN
Interface configuration set and the available corresponding CAN controller
configuration sets by the CAN Driver configuration.

8.3.3 CanIf_SetControllerMode

Service name: CanIf_SetControllerMode
Syntax: Std_ReturnType CanIf_SetControllerMode

(
 uint8 Controller,
 CanIf_ControllerModeType ControllerMode
)

Service ID: 0x03

Sync/Async: Asynchronous

Reentrancy: Non re-entrant

Controller CAN controller requested for mode transition Parameters (in):

ControllerMode Requested mode transition

Parameters (out): --

E_OK Network mode request has been accepted Return value:

E_NOT_OK Network mode request has not been accepted

76 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

CANIF003: This service calls the corresponding CAN Driver service for changing
of the CAN controller mode. It initiates a transition to the requested CAN
controller mode of one or multiple CAN controllers.

Description:

This service calls Can_SetControllerMode(Controller, Transition)
for the requested CAN controller.

Development errors:
- If the CAN Interface was not initialized before, the call of this function will be

reported to the development error tracer (CANIF_E_UNINIT). The function
returns with E_NOT_OK.

- Invalid values of Controller will be reported to the development error tracer
(CANIF_E_PARAM_CONTROLLER) only for post built use cases.

Re-entrant calls of this API are allowed only for different controller Identifiers. Caveats:
The CAN Driver must be initialized after Power ON.
The CAN Interface must be initialized after Power ON.
ID of the CAN controller is published inside the configuration description of the
CAN Interface.

Configuration:

8.3.4 CanIf_GetControllerMode

CanIf_GetControllerMode Service name:
Std_ReturnType CanIf_GetControllerMode Syntax:
(
 uint8 Controller,
 CanIf_ControllerModeType *ControllerModePtr
)
0x04 Service ID:

Synchronous Sync/Async:

Non re-entrant Reentrancy:

Controller CAN controller requested for current operation
mode

Parameters (in):

CanIf_ControllerModePtr Pointer to a memory location, where the current
mode of the CAN network will be stored.

Parameters (out):

E_OK Controller mode request has been accepted Return value:

E_NOT_OK Controller mode request has not been accepted

CANIF229: Service reports about the current status of the requested CAN
controller.

Description:

Development errors:
- Invalid values of Controller will be reported to the development error tracer

(CANIF_E_PARAM_CONTROLLER).
- If the CAN Interface was not initialized before, the call of this function will be

reported to the development error tracer (CANIF_E_UNINIT). The function
returns with E_NOT_OK.

Caveats: The CAN Driver must be initialized after Power ON.
The CAN Interface must be initialized after Power ON.

Configuration: ID of the CAN controller is published inside the configuration description of the
CAN Interface Layer.

8.3.5 CanIf_Transmit

Service name: CanIf_Transmit

77 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Std_ReturnType CanIf_Transmit Syntax:
(
 PduIdType CanTxPduId,
 const PduInfoType *PduInfoPtr
)

Service ID: 0x05

Sync/Async: Synchronous

Reentrancy: Re-entrant

CanTxPduId L-PDU handle of CAN L-PDU to be transmitted.
This handle specifies the corresponding CAN L-PDU ID
and implicitly the CAN Driver instance as well as the
corresponding CAN controller device.

Parameters (in)

PduInfoPtr Pointer to a structure with CAN L-PDU related data: DLC
and pointer to CAN L-SDU buffer

Parameters (out): --

E_OK Transmit request has been accepted Return value:

E_NOT_OK Transmit request has not been accepted

CANIF005: This service initiates a request for transmission of the CAN L-PDU
specified by the CanTxPduId and CAN related data in the L-PDU structure. The
corresponding CAN controller and HTH have to be resolved by the CanTxPduId.

Description:

A transmit request has not been accepted, if the controller mode is not STARTED
and/or the channel mode at least for the transmit path is not online or offline
active.
One call of this function results in one call of Can_Write(Hth, *PduInfo).

Development errors:
- Invalid values of CanTxPduId or PduInfoPtr will be reported to the

development error tracer (CANIF_E_INVALID_TXPDUID or
CANIF_E_PARAM_POINTER).

- If the CAN Interface was not initialized before, the call of this function will be
reported to the development error tracer (CANIF_E_UNINIT). The function
returns with E_NOT_OK.

During the call of this API the buffer of PduInfoPtr is controlled by the CAN
Interface may not be accessed for read/write from another call context. After
return of this call the ownership changes to the upper layer.

Caveats:

The CAN Interface must be initialized after Power ON.
Configuration: --

8.3.6 CanIf_ReadRxPduData

Service name: CanIf_ReadRxPduData
Syntax: Std_ReturnType CanIf_ReadRxPduData

(
 PduIdType CanRxPduId,
 PduInfoType *PduInfoPtr
)

Service ID: 0x06

Sync/Async: Synchronous

Reentrancy: Non re-entrant

CanRxPduId Receive L-PDU handle of CAN L-PDU. Parameters (in)
This handle specifies the corresponding CAN L-PDU ID
and implicitly the CAN Driver instance as well as the
corresponding CAN controller device.

PduInfoPtr Parameters (out): Pointer to a structure with CAN L-PDU related data: DLC

78 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

and pointer to CAN L-SDU buffer

E_OK Request for L-PDU data has been accepted Return value:

E_NOT_OK No valid data has been received.

Description: CANIF194: This service provides the CAN DLC and the received data of the
requested CanRxPduId to the calling upper layer.
A request has not been accepted, if the network mode is not STARTED and/or
the channel mode at least for the receive path online or offline active.

Development errors:
- Invalid values of CanRxPduId or PduInfoPtr will be reported to the

development error tracer (CANIF_E_INVALID_RXPDUID or
CANIF_E_PARAM_POINTER).

- If the CAN Interface was not initialized before, the call of this function will be
reported to the development error tracer (CANIF_E_UNINIT). The function
returns with E_NOT_OK.

Caveats: During the call of this API the buffer of PduInfoPtr is controlled by the CAN
Interface may not be accessed for read/write from another call context. After
return of this call the ownership changes to the upper layer.
This API must not be used for CanRxPduIds, which are defined to receive
multiple CAN-Ids (range reception).
The CAN Interface must be initialized after Power ON.

Configuration: This API can be enabled or disabled at pre-compile time configuration by the
configuration parameter CANIF_READRXPDU_DATA_API.

8.3.7 CanIf_ReadTxNotifStatus

CanIf_ ReadTxNotifStatus Service name:
Syntax: CanIf_NotifStatusType CanIf_ReadTxNotifStatus

(
 PduIdType CanTxPduId
)

Service ID: 0x07

Sync/Async: Synchronous

Non re-entrant Reentrancy:

CanTxPduId L-PDU handle of CAN L-PDU to be transmitted. Parameters (in)
This handle specifies the corresponding CAN L-
PDU ID and implicitly the CAN Driver instance as
well as the corresponding CAN controller device.

Parameters (out): --

Return value: CanIf_NotifStatusType Current notification status of the corresponding
CAN L-PDU.

CANIF202: This service provides the status of the static or dynamic CAN Tx L-
PDU requested by CanTxPduId. This API service notifies the upper layer about
any transmit confirmation event to the corresponding requested CAN L-PDU.
During this call the CAN Tx L-PDU notification status is reset inside the CAN
Interface.

Description:

Development errors:
- Invalid values of CanTxPduId will be reported to the development error tracer

(CANIF_E_INVALID_TXPDUID). Error cases:
 CanTxPduId is out of range or
 no status information was configured for this CAN Tx L-PDU.

- If the CAN Interface was not initialized before, the call of this function will be
reported to the development error tracer (CANIF_E_UNINIT). The function
returns with E_NOT_OK.

79 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Caveats: The CAN Interface must be initialized after Power ON.

Configuration: This API can be enabled or disabled at pre-compile time configuration globally by
the parameter CANIF_READTXPDU_NOTIFY_STATUS_API.

8.3.8 CanIf_ReadRxNotifStatus

Service name: CanIf_ ReadRxNotifStatus
Syntax: CanIf_NotifStatusType CanIf_ReadRxNotifStatus

(
 PduIdType CanRxPduId
)

Service ID: 0x08

Synchronous Sync/Async:

Non re-entrant Reentrancy:

CanRxPduId L-PDU handle of CAN L-PDU to be received. Parameters (in)
This handle specifies the corresponding CAN L-
PDU ID and implicitly the CAN Driver instance as
well as the corresponding CAN controller device.

Parameters (out): --

Return value: CanIf_NotifStatusType Current notification status of the corresponding
CAN Rx L-PDU.

CANIF230: This service provides the status of the CAN Rx L-PDU requested by
CanRxPduId. This API service notifies the upper layer about any receive
indication event to the corresponding requested CAN L-PDU.
During this call the CAN Rx L-PDU notification status is reset inside the CAN
Interface.

Description:

Development errors:
- Invalid values of CanRxPduId will be reported to the development error

tracer (CANIF_E_INVALID_RXPDUID). Error cases:
 CanRxPduId is out of range or
 Status for CanRxPduId was requested whereas

CANIF_READRXPDU_DATA_API is disabled
 no status information was configured for this CAN Rx L-PDU.

- If the CAN Interface was not initialized before, the call of this function will be
reported to the development error tracer (CANIF_E_UNINIT). The function
returns with E_NOT_OK.

Caveats: This API must not be used for CanRxPduIds, which are defined to receive
multiple CAN-Ids (range reception).
The CAN Interface must be initialized after Power ON.

Configuration: This API can be enabled or disabled at pre-compile time configuration globally by
the parameter CANIF_READRXPDU_NOTIFY_STATUS_API.

8.3.9 CanIf_SetPduMode

Service name: CanIf_SetPduMode
Syntax: Std_ReturnType CanIf_SetPduMode

(
 uint8 Controller,
 CanIf_ChannelSetModeType PduModeRequest
)

Service ID: 0x09

Sync/Async: Synchronous

80 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Reentrancy: Non re-entrant

Controller All PDUs of the own ECU connected to the
corresponding physical CAN controller are addressed.

Parameters (in)

PduModeRequest Requested PDU mode change (see
CanIf_ChannelSetModeType)

Parameters (out): --

E_OK Request for mode transition has been accepted Return value:

E_NOT_OK Request for mode transition has not been accepted

Description: CANIF008: This service sets the requested mode at all L-PDUs of the predefined
logical PDU channel. This channel parameter can be derived from Controller.

Development errors:
- Invalid values of Controller will be reported to the development error

tracer (CANIF_E_PARAM_CONTROLLLER).
- If the CAN Interface was not initialized before, the call of this function will be

reported to the development error tracer (CANIF_E_UNINIT). The function
returns with E_NOT_OK.

Caveats: Re-entrant calls of this API are allowed only for different channel Identifiers.
The CAN Interface must be initialized after Power ON.

Configuration: The channel mode is configurable by CANIF_CANTXPDUID_CONTROLLER/
CANIF_CANRXPDUID_CONTROLLER.

8.3.10 CanIf_GetPduMode

Service name: CanIf_GetPduMode

 Std_ReturnType CanIf_GetPduMode Syntax:
(
 uint8 Controller,
 CanIf_PduGetModeType *PduModePtr
)

Service ID: 0x0A

Sync/Async: Synchronous

Reentrancy: Non re-entrant

Controller All PDUs of the own ECU connected to the
corresponding physical CAN controller are
addressed.

Parameters (in)

Parameters (out): PduModePtr Pointer to a memory location, where the current
mode of the logical PDU channel will be stored.

E_OK Pdu mode request has been accepted Return value:

E_NOT_OK Pdu request has not been accepted

CANIF009: This service reports the current mode of the requested Pdu channel

Description:

Development errors:
- Invalid values of Controller will be reported to the development error

tracer (CANIF_E_PARAM_CONTROLLER).
- If the CAN Interface was not initialized before, the call of this function will be

reported to the development error tracer (CANIF_E_UNINIT). The function
returns with E_NOT_OK.

Caveats: The CAN Interface must be initialized after Power ON.

Configuration: --

81 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

8.3.11 CanIf_GetVersionInfo

Service name: CanIf_GetVersionInfo
Syntax: void CanIf_GetVersionInfo

(
 Std_VersionInfoType *VersionInfo
)

Service ID [hex]: 0x0B

Synchronous Sync/Async:

Non re-entrant Reentrancy:

-- Parameters (in):

Parameters (out): VersionInfo Pointer to where to store the version information of this
module.

Return value: --

Description: CANIF158: This service returns the version information of this module. The
version information includes:

- Module Id
- Vendor Id
- Vendor specific version numbers (BSW00407).

If source code for caller and callee of this function is available this function should
be realized as a macro. The macro should be defined in the modules header file.

Caveats: --

Configuration: This function shall be pre compile time configurable On/Off by the configuration
parameter CANIF_VERSION_INFO_API.

8.3.12 CanIf_SetDynamicTxId

Service name: CanIf_SetDynamicTxId
Syntax: void CanIf_SetDynamicTxId

(
 PduIdType CanTxPduId,
 Can_IdType CanId
)

Service ID [hex]: 0x0C

Sync/Async: Synchronous

Reentrancy: Non re-entrant

CanTxPduId L-PDU handle of CAN L-PDU for transmission.
This ID specifies the corresponding CAN L-PDU ID and
implicitly the CAN Driver instance as well as the
corresponding CAN controller device.

Parameters (in):

CanId Standard/Extended CAN ID of CAN L-PDU that shall be
transmitted

Parameters (out): --

Return value: --

Description: CANIF189: This service reconfigures the corresponding CAN identifier of the
requested CAN L-PDU.

Development errors:
- Invalid values of CanTxPduId and CanId will be reported to the development

error tracer (CANIF_E_INVALID_TXPDUID or CANIF_E_PARAM_CANID)

82 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

- If the CAN Interface was not initialized before, the call of this function will be
reported to the development error tracer (CANIF_E_UNINIT). No

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

reconfiguration of Tx CanId will be executed.

Caveats: The CAN Interface must be initialized after Power ON.
This function may not be interrupted by CanIf_Transmit(), if the same L-PDU
ID is handled.

Configuration: This function shall be pre compile time configurable On/Off by the configuration
parameter CANIF_SETDYNAMICTXID_API.

8.3.13 CanIf_SetTransceiverMode

Service name: CanIf_SetTransceiverMode
Syntax: Std_ReturnType CanIf_SetTransceiverMode

(
 uint8 Transceiver,
 CanIf_TransceiverModeType TransceiverMode
)

Service ID [hex]: 0x0D

Behavior: Synchronous

Reentrancy: Non re-entrant

Transceiver CAN transceivers requested for mode transition Parameters (in):

TransceiverMode Requested mode transition

Parameters (out): --

E_OK Will be returned, if the transceiver state has been
changed to the requested mode.

Return value:

E_NOT_OK Will be returned, if the transceiver state change has
failed or the parameter is out of the allowed range. The
previous state has not been changed.

Description: CANIF287: This API requests actual state of CAN Transceiver Driver. For more
details, please refer to the [9] Specification of CAN Transceiver Driver.

This service calls CanTrcv_SetOpMode (Transceiver, *OpMode) for the
corresponding requested CAN transceiver.

Development errors:
- Invalid values of transceiver or transceiver mode will be reported to

the development error tracer (CANIF_TRCV_E_TRANSCEIVER,
CANIF_TRCV_E_TRCV_NOT_STANDBY or
CANIF_TRCV_E_TRCV_NOT_NORMAL)

- If the CAN Interface was not initialized before, the call of this function will be
reported to the development error tracer (CANIF_E_UNINIT). The function
returns with E_NOT_OK.

This API shall be applicable to all CAN transceivers with all values independent, if
the transceiver hardware supports these modes or not. This is to ease up the view
of the Can Interface to the assigned physical CAN channel. If the mode is not
supported, the return value shall be E_OK.

Caveats:

Configuration: The number of supported transceiver types for each network is set up in the
configuration phase. If no transceiver is used, this API shall not be provided.

8.3.14 CanIf_GetTransceiverMode

CanIf_GetTransceiverMode Service name:
Syntax: Std_ReturnType CanIf_GetTransceiverMode

(
 uint8 Transceiver,

83 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

 CanIf_TransceiverModeType *TransceiverModePtr
)

Service ID [hex]: 0x0E

Behavior: Synchronous

Reentrancy: Non re-entrant

Transceiver CAN transceivers requested for mode
transition

Parameters (in):

Parameters (out): TransceiverModePtr Requested mode transition

E_OK Transceiver mode request has been
accepted

Return value:

E_NOT_OK Transceiver mode request has not been
accepted

CANIF288: This API returns actual state of CAN Transceiver Driver. For more
details, please refer to the [9] Specification of CAN Transceiver Driver.

Description:

This service calls CanTrcv_GetOpMode (Transceiver, *OpMode) for the
corresponding requested CAN transceiver.

Development errors:
- Invalid values of transceiver will be reported to the development error

tracer (CANIF_TRCV_E_TRANSCEIVER)
- If the CAN Interface was not initialized before, the call of this function will be

reported to the development error tracer (CANIF_E_UNINIT). The function
returns with E_NOT_OK.

Caveats: See CanIf_Init() for the provided state after the CAN Transceiver Driver
initialization till the first operation mode change request.

Configuration: The number of supported transceiver types for each network is set up in the
configuration phase. If no transceiver is used, this API shall not be provided.

8.3.15 CanIf_GetTrcvWakeupReason

CanIf_GetTrcvWakeupReason Service name:
Syntax: Std_ReturnType CanIf_GetTrcvWakeupReason

(
 uint8 Transceiver
 CanIf_TrcvWakeupReasonType *TrcvWuReasonPtr
)

Service ID [hex]: 0x0F

Behavior: Synchronous

Reentrancy: Non re-entrant

Transceiver The handle identifies the CAN transceiver to which
the API call has to be applied.

Parameters (in):

Parameters (out): TrcvWuReasonPtr Requested transceiver wakeup reason

E_OK Transceiver mode request has been accepted Return value:

E_NOT_OK Transceiver mode request has not been accepted

CANIF289: This API returns the reason for the wake up that the CAN transceiver
has detected. The ability to detect and differentiate the possible wakeup reasons
depends strongly on the CAN transceiver hardware. For more details, please
refer to the [9] Specification of CAN Transceiver Driver.

Description:

This service calls CanTrcv_GetBusWuReason (Transceiver, Reason) for
the corresponding requested CAN transceiver.

Development errors:

84 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

- CANIF_TRCV_E_TRCV_NOT_STANDBY
- If the CAN Interface was not initialized before, the call of this function will be

reported to the development error tracer (CANIF_E_UNINIT). The function
returns with E_NOT_OK.

Caveats: Please be aware, that if more than one network is available, each network may
report a different wake up reason. E.g. if an ECU has CAN, a wake up by CAN
may occur and the incoming data may cause an internal wake up for another
CAN network.
This API has a “per network” view and does not vote the more important reason
or sequence internally. The same may be true if e.g. one transceiver controls the
power supply and the other is just powered or un-powered. Then one may be
able to return CANIF_TRCV_WU_POWER_ON, whereas the other may state e.g.
CANIF_TRCV_WU_RESET.
It is up to the EcuM to decide, how to handle that wake up information.

Configuration: The number of supported transceiver types for each network is set up in the
configuration phase. If no transceiver is used, this API shall not be provided.

8.3.16 CanIf_SetTransceiverWakeupMode

Service name: CanIf_SetTransceiverWakeupMode

Syntax: Std_ReturnType CanIf_SetTransceiverWakeupMode

(
 uint8 Transceiver
 CanIf_TrcvWakeupModeType TrcvWakeupMode
)

Service ID [hex]: 0x10

Behavior: Synchronous

Non re-entrant Reentrancy:

Transceiver The handle identifies the CAN transceiver to which the API
call has to be applied.

Parameters (in):

TrcvWakeupMode Requested transceiver wakeup reason

Parameters (out): --

E_OK Will be returned, if the wakeup state has been changed to
the requested mode.

Return value:

E_NOT_OK Will be returned, if the wakeup state change has failed or
the parameter is out of the allowed range. The previous
state has not been changed.

Description: CANIF290: This API enables, disables and clears the notification for wakeup
events on the addressed network. For more details, please refer to the [9]
Specification of CAN Transceiver Driver.

This service calls CanTrcv_SetWakeupMode (Transceiver,
TrcvWakeupMode) for the corresponding requested CAN transceiver.

Enabled: if the CAN Transceiver Driver has a stored wakeup event pending for
the addressed network, the notification is executed within the API call or
immediately after (depending on the implementation).

Disabled: Ii it is required by the transceiver device and the underlying
communication, the driver has to detect the wakeup events nevertheless and
stores it internally to raise the event, when the wakeup notification is enabled
again.

Clear: Clearing of wakeup events have to be used, when the wake up notification
is disabled to clear all stored wake up events under control of the higher layer.

85 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Development errors:
CANTRCV_E_UNINIT: not yet initialized
The implementation may be e.g. disabling the interrupt source for the wake up. If
the interrupt is level triggered a pending interrupt is automatically stored and
raised after enabling the notification again.
It is very important not to lose wake up events during the disabled period.

Caveats:

Configuration: The number of supported transceiver types for each network is set up in the
configuration phase. If no transceiover is used, this API shall not be provided.

8.3.17 CanIf_CheckWakeup

Service name: CanIf_CheckWakeup
Syntax: Std_ReturnType CanIf_CheckWakeup

(
 EcuM_WakeupSourceType WakeupSource
)

Service ID: 0x11

Sync/Async: Synchronous

Re-entrant Reentrancy:

WakeupSource Source device, who initiated the wakeup event: CAN
controller or CAN transceiver

Parameters (out): --

E_OK Will be returned, if the check wakeup request has been
accepted.

Return value:

E_NOT_OK Will be returned, if the check wakeup request has not
been accepted.

CANIF219: This Service checks, whether an underlying CAN driver or CAN
Transceiver driver already signals an wakeup event by the CAN network

Description:

This service shall evaluate the WakeupSource parameter to get the information,
which dedicate wakeup source needs to be checked, either a CAN transceiver or
controller device. Depending on this information the function
CanIf_CheckWakeup shall either call the function Can_Cbk_CheckWakeup()
or CanTrcv_CB_WakeupByBus() with the parameter addressing the correct
hardware device causing the wakeup event.

If one of these called functions has detected a wakeup by CAN (return value
E_OK), the service CanIf_CheckWakeup() shall call the API
EcuM_SetWakeupEvent() for the respective Wakeup Source.

This service is called by the ECU Firmware. In dependence of the parameter
value the CAN Interface notifies the CAN Driver or the CAN Transceiver Driver
about the wakeup event. This service is implemented by the CAN Interface. It is
called in case of a mode change notification of the CAN controller or the CAN
transceiver.

Development errors:
- Invalid values of WakeupSource will be reported to the development error

tracer (CANIF_E_PARAM_WAKEUPSOURCE).
- If the CAN Interface was not initialized before, the call of this function will be

reported to the development error tracer (CANIF_E_UNINIT). The function
returns with E_NOT_OK.

Caveats: The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).

86 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

The CAN Interface must be initialized after Power ON.
This call-out service is re-entrant for multiple CAN controller usage.

Configuration: This wake up service is configurable by CANIF_WAKEUP_SUPPORT, which
depends on the used CAN controller type and the used wakeup strategy. This
callback may not be supported, if no wakeup shall be used.

8.3.18 CanIf_CheckValidation

Service name: CanIf_CheckValidation

Syntax: Std_ReturnType CanIf_CheckValidation

(
 EcuM_WakeupSourceType WakeupSource
)

Service ID: 0x12

Sync/Async: Synchronous

Reentrancy: Re-entrant

WakeupSource Source device, who initiated the wakeup event has to be
validated: CAN controller or CAN transceiver

Parameters (in):

Parameters (out): --

E_OK Will be returned, if the check validation request has been
accepted.

Return value:

E_NOT_OK Will be returned, if the check validation request has not
been accepted.

CANIF178: This service is performed to validate a previous wakeup event. This
service is called by the ECU Firmware. The CAN Interface checks inside this
service, whether a L-PDU was successful received inn the meantime.
CANIF179: The validation call return, whether the first CAN L-PDU reception
event after a wakeup event has been occurred on the corresponding CAN
network. In that case EcuM_ValidateWakeupEvent() is called within the
validation result.

Description:

For different upper layer users different service names shall be used. This type of
indication call-out service is mainly designed for the ECU State Manager module.

Development errors:
- Invalid values of WakeupSource will be reported to the development error

tracer (CANIF_E_PARAM_WAKEUPSOURCE).
- If the CAN Interface was not initialized before, the call of this function will be

reported to the development error tracer (CANIF_E_UNINIT).). The function
returns with E_NOT_OK.

Caveats: The CAN Driver must be initialized after Power ON.
The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).
This call-out service is re-entrant for multiple CAN controller/CAN network usage.
The responsible layers for the copying of the data are statically configurable. If no
validation is needed, this API can be omitted by disable of
CANIF_WAKEUP_VALIDATION.
The wakeup validation API name for validated wakeup events belonging to the
EcuM module must be configured to EcuM_ValidateWakeupEvent().

Configuration:

8.3.19 CanIf_GetTxConfirmationState
CANIF734:

87 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Service name: CanIf_GetTxConfirmationState
Syntax: CanIf_NotifStatusType CanIf_GetTxConfirmationState(

 uint8 CanController
)

Service ID[hex]: 0x19
Sync/Async: Synchronous
Reentrancy: Reentrant (Not for the same controller)

Parameters (in):
CanController Abstracted CanIf ControllerId which is assigned to a

CAN controller
None Parameters

(inout):
None Parameters (out):

Return value:
CanIf_NotifStatusType Combined TX confirmation status for all TX PDUs of

the CAN controller
Description: This service reports, if any TX confirmation has been done for the whole CAN

controller since the last CAN controller start.

CANIF735: If the CAN Interface module was not initialized before calling
CanIf_GetTxConfirmationState() and if development error detection is
enabled (i.e. CANIF_DEV_ERROR_DETECT equals ON), then the service CanIf_
GetTxConfirmationState() shall report development error code
CANIF_E_UNINIT to the Det_ReportError service of the DET module.

CANIF736: If parameter ControllerId of CanIf_GetTxConfirmationState()
has an invalid value and if development error detection is enabled (i.e.
CANIF_DEV_ERROR_DETECT equals ON), then the function
CanIf_GetTxConfirmationState() shall report development error code
CANIF_E_PARAM_CONTROLLERID to the Det_ReportError service of the DET
module.

CANIF737: Caveats of CanIf_GetTxConfirmationState():

 The call context is either on task level (polling mode).
 The CanIf must be initialized after Power ON.

CANIF738: Configuration of CanIf_GetTxConfirmationState(): If BusOff
Recovery of CanSm doesn’t need the status of the Tx confirmations (see CANIF740),
this API can be omitted by disabling of
CANIF_PUBLIC_TXCONFIRM_POLLING_SUPPORT (see CANIF246).

8.4

8.4.1

Call-out notifications

This is a list of functions provided for other modules. The function prototypes of the
callback functions shall be provided in the file canif_cbk.h.

CanIf_TxConfirmation

CanIf_TxConfirmation Service name:
Syntax: void CanIf_TxConfirmation

88 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

(
 PduIdType CanTxPduId
)
0x13 Service ID:

Synchronous Sync/Async:

Re-entrant Reentrancy:

CanTxPduId L-PDU handle of CAN L-PDU successfully transmitted. Parameters (in):
This ID specifies the corresponding CAN L-PDU ID and
implicitly the CAN Driver instance as well as the
corresponding CAN controller device.

Parameters (out): --

Return value: --

Description: CANIF007: This service is implemented in the CAN Interface and called by the
CAN Driver after the CAN L-PDU has been transmitted on the CAN network.
Within this service, the CAN Driver passes back the CanTxPduId to the CAN
Interface, which it got from Can_Write(Hth, *PduInfo).

This call-out service is implemented as many times as underlying CAN Drivers
are used. In that case one transmit confirmation call-out is assigned to one
underlying CAN Driver.
Then following naming convention has to be considered:
CanIf_TxConfirmation_<CAN_Driver>.
For further details please refer to chapter [7.25 Multiple CAN Driver support].

Development errors:
- Invalid values of CanTxPduId will be reported to the development error

tracer (CANIF_E_PARAM_LPDU).
- If the CAN Interface was not initialized before, the call of this function will be

reported to the development error tracer (CANIF_E_UNINIT). No Tx
confirmation handling will be executed.

Caveats: The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).
This call-out service is re-entrant for multiple CAN controller usage.
The CAN Interface must be initialized after Power ON.

Configuration: Transmit confirmation can be enabled or disabled by configuration. It is always
enabled, if transmit buffers are used.

8.4.2 CanIf_RxIndication

Service name: CanIf_RxIndication
Syntax: void CanIf_RxIndication

(
 uint8 Hrh,
 Can_IdType CanId,
 uint8 CanDlc,
 const uint8 *CanSduPtr
)

Service ID: 0x14

Synchronous Sync/Async:

Re-entrant Reentrancy:

Hrh ID of the corresponding hardware object

Parameters (in):

Range:
 0..(total number of

Hardware Receive Handles – 1)

89 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

CanId Standard/Extended CAN ID of CAN L-PDU that has been
successfully received

CanDlc Data length code (length of CAN L-PDU payload)

*CanSduPtr Pointer to received L-SDU (payload)

Parameters (out): --

Return value: --

Description: CANIF006: This service is implemented in the CAN Interface and called by the
CAN Driver after a CAN L-PDU has been received. Within this service, the CAN
Interface translates the CanId into the configured target PDU ID and routes this
indication to the configured upper layer target service(s).

This call-out service is implemented as many times as underlying CAN Drivers
are used. In that case one receive indication call-out is assigned to one
underlying CAN Driver.
Then following naming convention has to be considered:
CanIf_RxIndication_<CAN_Driver>.
For further details please refer to chapter [7.25 Multiple CAN Driver support].

Development errors:
- Invalid values of Hrh, CanId, CanDlc or *CanSduPtr will be reported to

the development error tracer (CANIF_E_PARAM_HRH, CANIF_E_
PARAM_CANID, CANIF_E_PARAM_DLC or CANIF_E_PARAM_POINTER).

- If the CAN Interface was not initialized before, the call of this function will be
reported to the development error tracer (CANIF_E_UNINIT). No Rx
indication handling will be executed.

The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).

Caveats:

This call-out service is re-entrant for multiple CAN controller usage.
The CAN Interface must be initialized after Power ON.

Configuration: CAN L-PDUs have to be assigned to the corresponding receive indication
service.

8.4.3 CanIf_CancelTxConfirmation

Service name: CanIf_ CancelTxConfirmation
Syntax: void CanIf_CancelTxConfirmation

(
 const Can_PduType *PduInfoPtr
)

Service ID: 0x15

Sync/Async: Synchronous

Re-entrant Reentrancy:

*PduInfoPtr Pointer to a structure with CAN L-PDU related data: L-
PDU handle of the successfully aborted CAN L-PDU,
CAN identifier, DLC and pointer to CAN L-SDU buffer.

Parameters (in)

Parameters (out): --

Return value: --

Description: CANIF101: This service is implemented in the CAN Interface and called by the
CAN Driver after a previous request for cancellation of a pending L-PDU transmit
request was successfully performed.

This callback service is implemented as many times as underlying CAN Drivers
are used. In that case one cancel transmit confirmation callback is assigned to
one underlying CAN Driver.

90 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Then following naming convention has to be considered:
CanIf_CancelTxConfirmation_<CAN_Driver>.
For further details please refer to chapter [7.25 Multiple CAN Driver support].

Development errors:
- Invalid values of CanTxPduId will be reported to the development error

tracer (CANIF_E_PARAM_LPDU).
- If the CAN Interface was not initialized before, the call of this function will be

reported to the development error tracer (CANIF_E_UNINIT). No Tx
cancellation handling will be executed.

Caveats: The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).
The CAN Interface must be initialized after Power ON.

Configuration: This function shall be pre compile time configurable On/Off by the configuration
parameter CANIF_TRANSMIT_CANCELLATION.

8.4.4 CanIf_ControllerBusOff

Service name: CanIf_ControllerBusOff
Syntax: void CanIf_ControllerBusOff

(
 uint8 Controller
)

Service ID: 0x16

Sync/Async: Synchronous

Re-entrant Reentrancy:

Controller CAN controller, where a BusOff occurred. Parameters (in):

Parameters (out): --

Return value: --

Description: CANIF218: This service indicates a CAN controller BusOff event referring to the
corresponding CAN controller. (CANIF014)
This call-out service is called by the CAN Driver and implemented in the CAN
Interface. It is called in case of a mode change notification of the CAN Driver.

This call-out service is implemented as many times as underlying CAN Drivers
are used. In that case one BusOff notification is assigned to one underlying CAN
Driver.
Then following naming convention has to be considered:
CanIf_ControllerBusOff_<CAN_Driver>.
For further details please refer to chapter [7.25 Multiple CAN Driver support].

Development errors:
- Invalid values of controller will be reported to the development error

tracer (CANIF_E_PARAM_CONTROLLER).
- If the CAN Interface was not initialized before, the call of this function will be

reported to the development error tracer (CANIF_E_UNINIT). No BusOff
notification will be executed.

Caveats: The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).
The CAN Interface must be initialized after Power ON.
This call-out service is re-entrant for multiple CAN controller usage.

Configuration: ID of the CAN controller is published inside the configuration description of the
CAN Interface.

91 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface

- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

8.5

8.5.1

Expected interfaces

In this chapter all interfaces required from other modules are listed.

Mandatory interfaces

CANIF040: This chapter defines all interfaces which are required to fulfill the core
functionality of the module.

API function Module Description
Can_InitController CAN Driver Service for CAN controller specific

initialization of the CAN Hardware
unit.

Can_SetControllerMode CAN Driver Service to initiate state transitions of
the corresponding CAN controller.

Can_DisableControllerInterrupts CAN Driver Service for disabling the interrupts of
the CAN corresponding controller.

Can_EnableControllerInterrupts CAN Driver Service for enabling the interrupts of
the CAN corresponding controller.

Can_Cbk_CheckWakeup CAN Driver Service to evaluate CAN controller
device, which caused a wakeup

Can_Write CAN Driver Service for transmitting CAN L-
PDUs.

CanTrcv_CB_WakeupByBus Can Transceiver
Driver

Service to evaluate CAN transceiver
device, which caused a wakeup

CanSM_ControllerBusOff CAN Station
Manager

Service to notify CanSM about an
BusOff event

Dem_ReportErrorStatus DEM Reporting of production errors.
Function can also be used before
DEM is initialized.

8.5.2 Optional interfaces

CANIF294: This chapter defines all interfaces which are required to fulfill an optional
functionality of the module.

API function Module Description Configuration parameter

(description see chapter
10)

CanTrcv_SetOpMode CanTrcv Service to initiate state
transitions of the corresponding
CAN transceiver.

Configuration parameters in
container
CanInterfaceTransceiverDrive
rConfiguration

CanTrcv_GetOpMode CanTrcv Service to read the current
state of the corresponding CAN
transceiver.

Configuration parameters in
container
CanInterfaceTransceiverDrive
rConfiguration

CanTrcv_GetBusWuR
eason

CanTrcv Service to read the last wakeup
reason of the corresponding
CAN transceiver.

Configuration parameters in
container
CanInterfaceTransceiverDrive
rConfiguration

CanTrcv_SetWakeup
Mode

CanTrcv Service to initiate wakeup mode
of the corresponding CAN
transceiver.

Configuration parameters in
container
CanInterfaceTransceiverDrive

92 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

rConfiguration
CanTrcv_CheckWake
up

CanTrcv Service to evaluate CAN
transceiver device, which
caused a wakeup

Configuration parameters in
container
CanInterfaceTransceiverDrive
rConfiguration

Det_ReportError Det Development error notification CANIF_DEV_ERROR_DETECT

8.5.3 Configurable interfaces

In this chapter all interfaces are listed, where the target function of any upper layer to
be called has to be set up by configuration. These call-out services are specified and
implemented in the upper communication modules, which use the CAN Interface
according to the AUTOSAR BSW architecture. The specific call-out notification is
specified in the corresponding SWS document (see chapter [3 Related
documentation]).

As far the interface name is not specified to be mandatory, no call-out is performed, if
no API name is configured. This chapter describes only the content of notification of
the call-out, the call context inside the CAN Interface and exact time by the call
event.

<User_NotificationName> - This condition is applied for such interface services
which will be implemented in the upper layer ('user') and called by the CAN Interface.
This condition displays the symbolic name of the functional group in a call-out service
in the corresponding upper layer. Each upper layer can define no, one or several call-
out services for the same functionality (i.e. transmit confirmation). The dispatch is
ensured by the L-PDU ID.

8.5.3.1 <User_TxConfirmation> (PDU Router, CanNm, CanTp)

Service name: <User_TxConfirmation>
Syntax: void <User_TxConfirmation>

(
 PduIdType Can<User>TxPduId
)
0x17 Service ID:

Synchronous Sync/Async:

Re-entrant Reentrancy:

Can<User>PduId Target PDU ID of CAN L-PDU transmitted successfully. Parameters (in)
This handle specifies the corresponding CAN L-PDU ID
and implicitly the CAN Driver instance as well as the
corresponding CAN controller device.
Range: 0..(maximum number of PDU IDs received) – 1

-- Parameters(out):

Return value: --

Description: CANIF011: This service confirms a previous successfully processed CAN
transmit request.

This call-out service is called by the CAN Interface and implemented by the
corresponding upper layer. It is called in case of a transmit confirmation of the
CAN Driver.

93 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

This type of confirmation call-out service is mainly designed for the PDU Router,
CanNm and CanTp module.
The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).

Caveats:

This call-out service is re-entrant for multiple CAN controller/CAN network usage.
Configuration: This call-out service has to be configured by CANIF_USER_TX_CONFIRMATION.

If no upper layers are configured, no confirmation is executed.

If CANIF_TX_USER_TYPE is set to PduR, CanNm or CanTp, the corresponding
Tx confirmation call-out service defined and implemented in the corresponding
upper layer module will be called. In this case CANIF_USER_TX_CONFIRMATION
can be ignored.

8.5.3.2 <User_RxIndication> (PDU Router)

Service name: <User_RxIndication>
Syntax: void <User_RxIndication>

(
 PduIdType Can<User>RxPduId,
 const PduInfoType *PduInfoPtr
)

Service ID: 0x18

Sync/Async: Synchronous

Reentrancy: Re-entrant

Can<User>RxPduId Target PDU ID of CAN L-PDU that has been received.
This handle identifies the data that has been received.
Range: 0..(maximum number of PDU IDs received by
this upper layer) – 1

Parameters (in)

PduInfoPtr Contains the length (SduLength) of the received I-PDU
and a pointer to a buffer (SduDataPtr) containing the I-
PDU.

Parameters (out): --

Return value: --

Description: CANIF012: This service indicates a successful reception of an L-PDU to e.g. the
PDU Router after passing all filters and validation checks.

This call-out service is called by the CAN Interface and implemented by the
configured upper layer (PDU Router). It is called in case of a receive indication
event (i.e. ISR is triggered) of the CAN Driver. The data shall be copied by the
corresponding upper layer via *PduInfoPtr. In this case the L-PDU buffers are
not global and distributed in the corresponding upper layer.

This type of indication call-out service is mainly designed for the PDU Router
module.

Caveats: Until this service returns the CAN Interface will not access *PduInfoPtr. The
*PduInfoPtr is only valid and can be used by upper layers until the indication
returns. CAN Interface guarantees that the number of configured bytes for this
CanRxPduId is valid.

The CAN Driver must be initialized after Power ON.
The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).This call-out service is re-entrant for multiple CAN controller/CAN
network usage.

Configuration: This call-out service has to be configured by CANIF_USER_RX_INDICATION.

94 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

If no upper layers are configured, no indication is executed.

If CANIF_RX_USER_TYPE is set to PduR, the corresponding Rx indication call-out
service PduR_CanIfRxIndication()defined and implemented in the
corresponding PduR module will be called. In this case
CANIF_USER_RX_INDICATION can be ignored.

8.5.3.3 <User_RxIndication> (CanNm)

Service name: <User_RxIndication>
Syntax: void <User_RxIndication>

(
 PduIdType Can<User>RxPduId,
 const PduInfoType *PduInfoPtr
)

Service ID: 0x19

Sync/Async: Synchronous

Reentrancy: Re-entrant

Can<User>RxPduId Target PDU ID of CAN L-PDU that has been received.
This handle identifies the data that has been received.

Range: 0..(maximum number of PDU IDs received) – 1

PduInfoPtr Contains the length (SduLength) of the received I-PDU
and a pointer to a buffer (SduDataPtr) containing the I-
PDU.

Parameters (out): --

Return value: --

CANIF221: This service indicates a successful reception of a received L-PDU to
the upper layer after passing all filters and validation checks.

Description:

This call-out service is called by the CAN Interface and implemented by the
configured upper layer (CanNm). It is called in case of a receive indication event
(i.e. ISR is triggered) of the CAN Driver. The data is copied by the corresponding
upper layer via *PduInfoPtr. In this case the L-PDU buffers are not global and
distributed in the corresponding upper layer.

This type of indication call-out service is mainly designed for the CanNm module.

Caveats: Until this service returns the CAN Interface will not access *PduInfoPtr. The
*PduInfoPtr is only valid and can be used by upper layers until the indication
returns. CAN Interface guarantees that the number of configured bytes for this
Can<User>RxPduId is valid.

The CAN Driver must be initialized after Power ON.
The call context is either on interrupt level (interrupt mode) or on task level
(polling mode). This call-out service is re-entrant for multiple CAN controller/CAN
network usage.

Configuration: This call-out service has to be configured by CANIF_USER_RX_INDICATION.
This call-out service is mandatory

If CANIF_RX_USER_TYPE is set to CanNm, the corresponding Rx indication call-
out service CanNm_RxIndication()defined and implemented in the
corresponding CanNm module will be called. In this case
CANIF_USER_RX_INDICATION can be ignored.

95 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface

- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

8.5.3.4 <User_RxIndication> (CanTp)

Service name: <User_RxIndication>
Syntax: void <User_RxIndication>

(
 PduIdType Can<User>RxPduId,
 const PduInfoType *PduInfoPtr
)

Service ID [hex]: 0x1A

Sync/Async: Synchronous

Reentrancy: Re-entrant

Can<User>RxPduId Target PDU handle of CAN L-PDU that has been
received. Identifies the data that has been received.
Range: 0..(maximum number of PDU IDs received) – 1

Parameters (in):

PduInfoPtr Pointer to structure with received L-SDU (payload) and
data length (DLC).

Parameters (out): --

Return value: --

Description: CANIF195: This function is called by the CAN Interface after a successful
reception of a receive CAN L-PDU belonging to e.g. the CanTp.

This call-out service is called by the Can Interface and implemented the
configured upper layer (CanTp). It shall be called in case of a receive indication of
CAN Driver. The data shall be copied by the corresponding upper layer via the
PDU structure *PduInfoPtr. In this case the L-PDU buffers are not global and
distributed in the e.g. CAN Transport Layer.

This type of indication call-out service is mainly designed for the CanTp module.

Caveats: Until this service returns the CAN Interface will not access *PduInfoPtr. The
*PduInfoPtr is only valid and can be used by upper layers until the indication
returns. CAN Interface guarantees that the number of configured bytes for this
Can<User>RxPduId is valid.

The CAN Driver must be initialized after Power ON.
The call context is either on interrupt level (interrupt mode) or on task level
(polling mode). This call-out service is re-entrant for multiple CAN controller/CAN
network usage.

Configuration: This call-out service has to be configured by CANIF_USER_RX_INDICATION. If
no upper layers are configured, no indication is executed.

If CANIF_RX_USER_TYPE is set to CanTp, the corresponding Rx indication call-
out service CanTp_RxIndication()defined and implemented in the
corresponding CanTp module will be called. In this case
CANIF_USER_RX_INDICATION can be ignored.

8.5.3.5 <User_ControllerBusOff> (CanSM)

Service name: <User_ControllerBusOff>
Syntax: void <User_ControllerBusOff>

(
 uint8 Controller
)

Service ID: 0x1B

Sync/Async: Synchronous

96 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Reentrancy: Re-entrant

Controller CAN network, where at least at one CAN controller a
BusOff occurred.

Parameters (in):

Parameters (out): --

Return value: --

Description: CANIF014: This service indicates a BusOff event at the notified CAN controller
device.
This call-out service is called by the CAN Interface and implemented by the CAN
State Manager as CanSM_ControllerBusOff() ([11] Specification of CAN
State Manager) or any other upper layer. It is called in case of a BusOff
notification CanIf_ControllerBusOff() of the CAN Driver.
For different upper layer users different service names shall be used. This type of
indication call-out service is mainly designed for the Communication Manager
module.

Caveats: The CAN Driver must be initialized after Power ON.
The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).
This call-out service is re-entrant for multiple CAN controller/CAN network usage.
Before re-initialization/restart during BusOff recovery is executed this call-out
service is performed only once in case of multiple BusOff events at CAN
controllers of the corresponding CAN network.

Configuration: ID of the CAN network is published inside the configuration description of the
CAN Interface. This call-out service is mandatory and configured by CANIF_USER
BUSOFF_NOTIFICATION.
If the controller BusOff notification API name for BusOff events belonging to the
CanSM module, it has to be configured to CanSM_ControllerBusOff().

8.5.3.6 <User_SetWakeupEvent> (EcuM)

Service name: <User_SetWakeupEvent>
Syntax: void <User_SetWakeupEvent>

(
 EcuM_WakeupSourceType CanWakupEvents
)

Service ID: 0x1C

Sync/Async: Synchronous

Reentrancy: Re-entrant

CanWakupEvents Events to be validated. Every CAN network can be a
separate wakeup source.

Parameters (in):

Parameters (out): --

Return value: --

Description: CANIF013: Service indicates a wake up event initiated from the CAN network
and detected by the CAN Driver ro CAN Transceiver Driver.
This call-out service is called by the CAN Interface and implemented by the upper
layer (EcuM_SetWakeupEvent() in ECU State Manager).
It is called only during call of CanIf_CheckWakeup().
For different upper layer users different service names shall be used. This type of
indication call-out service is mainly designed for the ECU State Manager module.
The CAN Driver must be initialized after Power ON. Caveats:
The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).
This call-out service is re-entrant for multiple CAN controller/CAN network usage.
Before re-initialization/restart is executed this call-out service is performed only
once in case of multiple wakeup events at CAN controllers of the corresponding
CAN network.

97 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Configuration: The responsible layers for the copying of the data are statically configurable. If no
upper layer call-out is configured no notification is configured by
CANIF_WAKEUP_SUPPORT.
If the wakeup notification API name for wakeup events over CAN belonging to the
EcuM module, it has to be configured to EcuM_SetWakeupEvent().

8.5.3.7 <User_ValidationWakeupEvent> (EcuM)

Service name: <User_ValidationWakeupEvent>
Syntax: void <User_ValidationWakeupEvent>

(
 EcuM_WakeupSourceType CanWakeupEvents
)

Service ID: 0x1D

Sync/Async: Synchronous

Reentrancy: Re-entrant

CanWakeupEvents Validated CAN wakeup events. Every CAN network can
be a separate wakeup source.

Parameters (in):

Parameters (out): --

Return value: --

Description: CANIF178: This notification is performed, when a previous wakeup event has
been validated. This call-out service is called by the CAN Interface and
implemented by the upper layer (EcuM_ValidateWakeupEvent() in ECU
State Manager).
CANIF179: The validation call-out is performed, only during call of
CanIf_CheckValidation() and whenever the first CAN L-PDU reception
event after a wakeup event has been occurred on the corresponding CAN
network.
For different upper layer users different service names shall be used. This type of
indication call-out service is mainly designed for the ECU State Manager module.

Caveats: The CAN Driver must be initialized after Power ON.
The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).
This call-out service is re-entrant for multiple CAN controller/CAN network usage.
The responsible layers for the copying of the data are statically configurable. If no
upper layer call-out is configured by CANIF WAKEUP_VALIDATION_, no
notification is performed.
If the wakeup validation API name for validated wakeup events belonging to the
EcuM module, it has to be configured to EcuM_ValidateWakeupEvent().

Configuration:

98 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

9 Sequence diagrams

The following sequence diagrams show the interaction between the CAN Interface
and the CAN Driver.

9.1 Transmit request (single CAN Driver)

sd Tx Request (Single CAN Driver)

CanIf::CanIf ComDrivers::Can «peripheral»

Hardware::CanController

Generic
Elements::User

Std_ReturnType:= CanIf_Transmit(CanTxPduId,PduInfoPtr)

Can_ReturnType:= Can_Write(Hth,PduInfo)

alt CAN Controller

Copy L-PDU into CAN Hardware[CAN controller hardware object is free]

[CAN controller hardware object is busy]

Copy L-PDU into CAN Hardware

Can_Write

Can_Write

ENTER CRITICAL
SECTION

Insert L-PDU in transmit buffer

LEAVE CRITICAL
SECTION

CanIf_Transmit

Figure 23 Transmission request with a single CAN Driver

99 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Activity Description
Transmission request The upper layer initiates a transmit request via the service

CanIf_Transmit(). The parameter CanTxPduId
identifies the requested L-PDU. The service performs
following steps:
- validation of the input parameter
- definition of the CAN controller to be used
The second parameter *PduInfoPtr is a pointer on the
structure with transmit L-PDU related data such as
CanSduLength and *CanSduPtr.

Start transmission CanIf_Transmit() requests a transmission and calls the
CAN Driver service Can_Write() with corresponding
processing of the HTH.

Hardware request Can_Write()writes all L-PDU data in the CAN Hardware
(if it is free) and sets the hardware request for transmission.

E_OK from Can_Write service Can_Write() returns E_OK to CanIf_Transmit().
If the CAN Driver detects, there are no free hardware
objects available, it returns CAN_E_BUSY to the CAN
Interface.

E_BUSY from Can_Write service

The L-PDU of the rejected transmit request will be inserted
in the transmit buffer of the CAN Interface until the next
transmit confirmation.

Copying into the buffer

E_OK from CAN Interface CanIf_Transmit() returns E_OK to the upper layer.

9.2 Transmit request (multiple CAN Drivers)

100 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

sd Tx Request (Multiple CAN Driv ers)

Can_B :CanCanIf::CanIfGeneric
Elements::User

alt CAN Controller A/B

[CAN Control ler A used]

[CAN Control ler B used]

alt CAN Controller B hardware status

[CAN Conroller hardware object is free]

[CAN controller hardware object is busy]

alt CAN Controller A hardware status

[CAN controller hardware object is free]

[CAN controller hardware object in busy]

Here the name of the called function has to be
extended to distinguish the two Can drivers, i..e.
Can_Write_A(...)

Can_A :Can

Here the name of the called function has to be
extended to distinguish the two Can drivers, i..e.
Can_Write_B(...)

«peripheral»

CanController B
:CanController

«peripheral»

CanController A
:CanController

Std_ReturnType:= CanIf_Transmit(CanTxPduId,PduInfoPtr)

Can_ReturnType:= Can_Write(Hth,PduInfo)

Copy L-PDU in CAN
Hardware A

Copy L-PDU in CAN
Hardware A

Can_Write

Can_Write

ENTER CRITICAL
SECTION

Insert L-PDU in transmit buffer

LEAVE CRITICAL
SECTION

CanIf_Transmit

Std_ReturnType:= CanIf_Transmit(CanTxPduId,PduInfoPtr)

Can_ReturnType:= Can_Write(Hth,PduInfo)

Copy L-PDU in CAN
Hardware B

Copy L-PDU in CAN
Hardware B

Can_Write

Can_Write

ENTER CRITICAL
SECTION

Insert L-PDU in transmit buffer

LEAVE CRITICAL
SECTION

CanIf_Transmit

Figure 24 Transmission request with multiple CAN Drivers

101 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

First transmit request:

Activity Description

The upper layer initiates a transmit request via the service
CanIf_Transmit(). The parameter CanTxPduId
identifies the requested L-PDU. The service performs
following steps:
- validation of the input parameter

Transmission
request A

- definition of the CAN controller to be used (here: A)
The second parameter *PduInfoPtr is a pointer on the
structure with transmit L-PDU related data such as
CanSduLength and *CanSduPtr.

Start transmission CanIf_Transmit() requests a transmission and calls the
CAN Driver A service Can_Write_A() with corresponding
processing of the HTH.

Hardware request Can_Write_A()writes all L-PDU data in the CAN
Hardware A (if it is free) and sets the hardware request for
transmission.

E_OK from Can_Write service Can_Write_A() returns E_OK to
CanIf_Transmit().
If the CAN Driver A detects, there are no free hardware
objects available, it returns CAN_E_BUSY to the CAN
Interface.

E_BUSY from Can_Write service

Copying into the buffer The L-PDU of the rejected transmit request will be inserted
in the transmit buffers of the CAN Interface until the next
transmit confirmation.

E_OK from CAN Interface CanIf_Transmit() returns E_OK to the upper layer.

Second transmit request:

Activity Description
Transmission
request B

The upper layer initiates a transmit request via the service
CanIf_Transmit(). The parameter CanTxPduId
identifies the requested L-PDU. The service performs
following steps:
- validation of the input parameter
- definition of the CAN controller to be used (here: B)
The second parameter *PduInfoPtr is a pointer on the
structure with receive L-PDU related data such as
CanSduLength and *CanSduPtr.

Start transmission CanIf_Transmit() starts a transmission and calls the
CAN Driver A service Can_Write_B() with corresponding
processing of the HTH.

Hardware request Can_Write_B()writes all L-PDU data in the CAN
Hardware B (if it is free) and sets the hardware request for
transmission.

E_OK from Can_Write service Can_Write_B() returns E_OK to CanIf_Transmit().
If the CAN Driver B detects, there are no free hardware
objects available, it returns CAN_E_BUSY to the CAN
Interface.

E_BUSY from Can_Write service

The L-PDU of the rejected transmit request will be inserted
in the transmit buffers of the CAN Interface until the next
transmit confirmation.

Copying into the buffer

E_OK from CAN Interface CanIf_Transmit() returns E_OK to the upper layer.

102 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface

- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

9.3 Transmit confirmation (interrupt mode)

sd TxConfirmation (Interrupt)

CanIf::CanIf ComDriv ers::Can «peripheral»

Hardware::CanController

Generic
Elements::User

Transmit Interrupt

CanIf_TxConfirmation(CanTxPduId)

<user_TxConfirmation>(CanTxPduId)

<user_TxConfirmation>
CanIf_TxConfirmation

Transmit Interrupt

Figure 25 Transmit confirmation interrupt driven

Activity Description

The acknowledged CAN frame signals a successful
transmission to the receiving CAN controller and triggers
the transmit interrupt.

Transmit interrupt

Confirmation to the CAN Interface CAN Driver calls the service CanIf_TxConfirmation().
The parameter CanTxPduId specifies the CAN L-PDU
previously sent by Can_Write().
The CAN diver must store the all in HTHs pending L-PDU
Ids in an array organized per HTH to avoid new search of
the L-PDU ID for call of CanIf_TxConfirmation().
Calling of the corresponding upper layer confirmation
service <User_TxConfirmation>(). It signals a
successful L-PDU transmission to the upper layer.

Confirmation to upper layer

103 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

9.4 Transmit confirmation (polling mode)

sd TxConfirmation (Polling)

Generic
Elements::CanIf User

BSW Scheduler

CanIf::CanIf «module»

Can::Can

«Peripheral»

Hardware::CanController

loop Cyclic Task of Interface

alt Pending Tx confirmation

[Tx confirmation is pending]

[No Tx confirmation is pending]

Can_MainFunction_Write()

Check for pending TX
confirmations()

Check for pending TX
confirmations()

CanIf_TxConfirmation(PduIdType)

<CanIfUser_TxConfirmation>(PduIdType)

<CanIfUser_TxConfirmation>()

CanIf_TxConfirmation()

Can_MainFunction_Write()

Figure 26 Transmit confirmation polling driven

Activity Description
Cyclic Task
CAN Driver

The service Can_MainFunction_Write()is called
by the BSW Scheduler.

Check for pending transmit
confirmations

Can_MainFunction_Write()checks the underlying
CAN controller(s) about pending transmit confirmations of
previously succeeded transmit events.
The acknowledged CAN frame signals a successful
transmission to the sending CAN controller.

Transmit Confirmation

Confirmation to CAN Interface CAN Driver calls the service CanIf_TxConfirmation()
The parameter CanTxPduId specifies the CAN L-PDU
previously sent by Can_Write().
The CAN diver must store the all in HTHs pending L-PDU
Ids in an array organized per HTH to avoid new search of
the L-PDU ID for call of CanIf_TxConfirmation().
Calling of the corresponding upper layer confirmation
service <User_TxConfirmation>(). It signals a
successful L-PDU transmission to the upper layer.

Confirmation to upper layer

104 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

9.5 Transmit confirmation (with buffering)

sd TxConfirmation (Buffering)

CanIf::CanIf Can::Can «Peripheral»

Hardware::CanController

Generic
Elements::User

Transmit Confirmation Interrupt

CanIf_TxConfirmation(CanTxPduId)

ENTER CRITICAL SECTION /
LEAVE CRITICAL SECTION:

This can either be a
semaphore mechanism using
OS services, OS resources or
interrupt locks.

ENTER
CRITICAL
SECTION

check transmit
buffers for other
pending L-PDU

alt Transmit Buffering

[Buffer is filled]

[Buffer is empty]

Can_ReturnType:= Can_Write(Hth,PduInfo) Write L-PDU into CAN
Hardware

Write L-PDU into CAN
Hardware

Can_Write

Remove L-PDU successfully
requested for transmission
from transmit buffer

LEAVE
CRITICAL
SECTION

<user_TxConfirmation>(CanTxPduId)

<user_TxConfirmation>

CanIf_TxConfirmation
Transmit Confirmation Interrupt

Figure 27 Transmit confirmation with buffering

105 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Activity Description

The acknowledged CAN frame signals a successful
transmission to the receiving CAN controller and triggers
the transmit interrupt.

Transmit interrupt

Confirmation to CAN Interface CAN Driver calls the service CanIf_TxConfirmation().
The parameter CanTxPduId specifies the CAN L-PDU
previously transmitted by Can_Write().
The CAN diver must store the all in HTHs pending L-PDU
Ids in an array organized per HTH to avoid new search of
the L-PDU ID for call of CanIf_TxConfirmation().
Protect transmit buffers from being corrupted. This can be
done using interrupt locks, OS resources or semaphores.

ENTER CRITICAL SESSION

The transmit buffers of the CAN Interface checked, whether
a pending L-PDU is stored or not.

Check of transmit buffers

In case of pending L-PDUs in the transmit buffers the
highest priority order the latest L-PDU is requested for
transmission by Can_Write(). It signals a successful L-
PDU transmission to the upper layer. Thus Can_Write()
can be called re-entrant.

Transmit request passed to the CAN
Driver

The L-PDU pending for transmission is removed from the
transmission buffers by the CAN Interface.

Remove transmitted L-PDU from
transmit buffers

End of protection segment. LEAVE CRITICAL SESSION
Calling of the corresponding upper layer confirmation
service <User_TxConfirmation>(). It signals a
successful L-PDU transmission to the upper layer.

Confirmation to the upper layer

9.6 Transmit cancellation (with buffering)

106 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

sd Transmit Cancellation with Buffering

CanIf::CanIfGeneric
Elements::User

Can::Can «Peripheral»

Hardware::CanController

alt CAN Controller mailbox

[CAN hardware transmit object is free]

[CAN hardware transmit object is not free]

alt Check priority of pending Tx L-PDUs

[New Tx L-PDU has lower priority than all of the pending ones in the CAN hardware]

[New Tx L-PDU has higher priority than one of the pending ones in the CAN hardware]

Nothing to do

ENTER CRITICAL SECTION /
LEAVE CRITICAL SECTION:

This can either be a semaphore
mechanism using OS services,
OS resources or interrupt locks.

ATTENTION:

Tx L-PDU is written in the Tx L-PDU
buffer independent, if the L-PDU buffer

The CAN Driver stores
the L-PDU ID in a
corresponding array

is free or not.
If the L-PDU buffer is not free, old data
is overwritten by fresh one.

Std_ReturnType=
CanIf_Transmit(CanTxPduId,
PduInfoPtr)

Can_ReturnType=
Can_Write(Hth,PduInfo)

Search free hardware object

Search free hardware object

Copy L-PDU into CAN Hardware

Copy L-PDU into CAN Hardware

Can_Write

Compare Priority of new L-PDU
and pending ones in CAN
Hardware

Request Cancellation of pending L-PDU
with lower priority

Can_Write

ENTER
CRITICAL
SECTION

Insert Tx L-PDU in
transmit buffer

LEAVE
CRITICAL
SECTION

CanIf_Transmit

Confirmation of cancelled transmit L-PDU

CanIf_CancelTxConfirmation(*PduInfoPtr)

ENTER
CRITICAL
SECTION

Check if there are pending Tx L-PDUs of the same
CanTxPduId as the aborted one in the transmit buffer
waiting for transmission

alt State of Tx L-PDU

[Tx L-PDU is already buffered, buffer is full]

[Tx L-PDU is already buffered, buffer is free]

ATTENTION:

If the Tx L-PDU is already buffered
in the CAN Interface, the cancelled
one must be thrown away
otherwise new data can be
overwritten by old one.

Nothing to do

Insert Tx L-PDU in
transmit buffer

LEAVE
Tx L-PDU of highest
priority (lowest CAN ID)
is transmitted out of the
Tx L-PDU buffer

CRITICAL
SECTION

Can_ReturnType= Can_Write(Hth,PduInfo)

Copy L-PDU into free CAN
hardware object

Copy L-PDU into free CAN
hardware object

Can_Write

CanIf_CancelTxConfirmation

Confirmation of cancelled transmit L-PDU

Figure 28 Transmit cancellation

Activity Description
Transmission request The upper layer initiates a transmit request via the service

107 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

CanIf_Transmit(). The parameter CanTxPduId identifies the
requested L-PDU. The service performs following steps:
- validation of the input parameter
- definition of the CAN controller to be used
The second parameter *PduInfoPtr is a pointer on the structure
with transmit L-PDU related data such as CanSduLength and
*CanSduPtr.

Start transmission CanIf_Transmit() requests a transmission and calls the CAN
Driver service Can_Write() with corresponding processing of
the HTH.

Hardware request Can_Write()writes all L-PDU data in the CAN Hardware (if it is
free) and sets the hardware request for transmission.

E_OK from Can_Write service Can_Write() returns E_OK to CanIf_Transmit().
If the CAN Driver detects, there are no free hardware objects
available and the new transmit L-PDU has lower priority than all of
the pending ones in the CAN hardware, it returns CAN_E_BUSY to
the CAN Interface.

E_BUSY from Can_Write
service without transmit abort

If the CAN Driver detects, there are no free hardware objects
available and the new transmit L-PDU has higher priority than all
of the pending ones in the CAN hardware, it requested transmit
abort of the pending L-PDU in the CAN hardware with the lowest
priority and returns CAN_E_BUSY to the CAN Interface.

E_BUSY from Can_Write
service with transmit abort

The CAN Interface stores the rejected L-PDU in the transmit
buffers.

Transmit buffer

E_OK from CAN Interface CanIf_Transmit() returns E_OK to the upper layer.

Cancellation confirmation notification:

Activity Description

The CAN controller signals a successful aborted CAN L-PDU. The
CAN Driver detects the abort confirmation event either by interrupt
or polling.

Transmit cancellation
confirmation interrupt

Confirmation to CAN
Interface

CAN Driver calls service CanIf_CancelTxConfirmation().
The parameter CanTxPduId specifies the CAN L-PDU successfully
aborted by the CAN Driver.
The CAN diver must store the all in HTHs pending L-PDU Ids in an
array organized per HTH to avoid new search of the L-PDU ID for
call of CanIf_CancelTxConfirmation().
Protect transmit buffers from being corrupted. This can be done
using interrupt locks, OS resources or semaphores.

ENTER CRITICAL SESSION

The transmit buffers of the CAN Interface checked, whether a
pending L-PDU of the same CanTxPduId is stored or not. If yes,
the cancelled L-PDU is lost. If not, the cancelled L-PDU is stored
in the transmit buffer.

Check of transmit buffers

Pending L-PDUs in the transmit buffers with the highest priority
order is requested for transmission by Can_Write(). It signals a
successful L-PDU transmission to the upper layer. Thus
Can_Write() calls can occur re-entrant.

Transmit request passed to
the CAN Driver

The L-PDU pending for transmission is removed from the
transmission buffers by the CAN Interface.

Remove transmitted L-PDU
from transmit buffers

End of protection segment. LEAVE CRITICAL SESSION
The cancellation confirmation call-out returns. Cancellation confirmation

finished

9.7 Receive indication (interrupt mode)

108 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

sd RxIndication (Interrupt)

Generic
Elements::CanIf User

«module»

CanIf::CanIf

«module»

Can::Can

«Peripheral»

Hardware::CanControl ler

Receive Interrupt

Invalidation of hardware object

Invalidation of hardware object

alt Temporary buffer usage

[Temp. buffer used = Data normalization necessary]

[Temp. buffer not used = Data normalization not necessary]

Copy received L-PDU into temporary buffer

Copy received L-PDU into temporary buffer

CanIf_RxIndication(Hrh,CanId,CanDlc,CanSduPtr)

Software fi l tering (optional) and L-DLC check and software
fi ltering are only performed, i f
enabled (configuration)

PDU assignment

[CAN L-PDU ID was found]: DLC
Check (optional)

Exemplary call:
parameters differ for
User=CanTp

<User_RxIndication>(CanRxPduId,PduInfoPtr)

alt Temporary buffer usage

[Temp. buffer used = Data normalization necessary]

[Temp. buffer not used = Data normalization not necessary]

Copy Data

Copy Data

Copy Data

Copy Data

<User_RxIndication>

CanIf_RxIndication

Validation of hardware object

Validation of hardware object

Receive Interrupt

Figure 29 Receive indication interrupt driven

109 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Activity Description

The CAN controller signals a successful reception and
triggers a receive interrupt.

Receive Interrupt

The CPU (CAN Driver) get exclusive access rights to the
CAN mailbox or at least to the corresponding hardware
object, where new data were received.

Invalidation of CAN hardware object,
provide CPU access to CAN mailbox

The L-SDU is normalized and is buffered in the temporary
buffer located in the CAN Driver. Each CAN Driver owns a
temporary buffer for every physical channel only if
normalizing of the data is necessary.

Buffering, normalizing

The reception is indicated to the CAN Interface by calling of
CanIf_RxIndication(). The HRH specifies the CAN
RAM hardware object and the corresponding CAN
controller, which contains the received L-PDU. The
temporary buffer is referenced to the CAN Interface by
*CanSduPtr.

Indication to
CAN Interface

The Software Filtering checks, whether the received L-PDU
will be processed on a local ECU. If not, the received L-
PDU is not indicated to upper layers. Further processing is
suppressed.

Software Filtering

If the L-PDU is found, the DLC of the received L-PDU is
compared with the expected, statically configured one for
the received L-PDU.

DLC check

The corresponding receive indication service of the upper
layer is called. This signals a successful reception to the
target upper layer. The parameter CanPduId specifies the
L-PDU, the second parameter is the reference on the
temporary buffer within the L-SDU.

Receive Indication to the upper layer

During is execution of this service the CAN hardware
buffers must be unlocked for CPU access/locked for CAN
controller access.
The CAN controller get back exclusive access rights to the
CAN mailbox or at least to the corresponding hardware
object, where new data were already being copied into the
upper layer buffer.

Validation of CAN hardware object,
allow access of CAN controller to
CAN mailbox

9.8 Receive indication (polling mode)

110 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

sd RxIndication (Polling)

Generic
Elements::CanIf User

BSW Scheduler

«Peripheral»

Hardware::CanControl ler

«module»

Can::Can

«module»

CanIf::CanIf

loop Cyclic Task of Interface

Can_MainFunction_Read()

Check for pending Rx indication

Check for pending Rx indication

alt Pending Rx indication

Invalidation of hardware object[Rx indication pending]

[No Rx indication pending]

Invalidation of hardware object

alt Temporary buffer usage

[Temp. buffer used = Data normalization necessary]

[Temp. buffer not used = Data normalization not necessary]

Copy received L-PDU into temporary buffer

Copy received L-PDU into temporary buffer

CanIf_RxIndication(Hrh,CanId,CanDlc,CanSduPtr)

Software fi ltering (optional) and L-PDU
DLC check and software
fi ltering are only performed, i f
enbaled (configuration)

assignment

[CAN L-PDU ID was found]:
DLC Check (optional)

<User_RxIndication>(CanRxPduId, PduInfoPtr)

Exemplary call: parameters
differ for User=CanTp

alt Temporary buffer usage

[Temp. buffer used = Data normalization necessary]

[Temp. buffer not used = Data normalization not necessary]

Copy data

Copy data

Copy data

Copy data

<User_RxIndication>

CanIf_RxIndication

Validation of hardware object

Validation of hardware object

Can_MainFunction_Read()

Figure 30 Receive indication polling driven

Activity Description
Cyclic Task
CAN Driver

The service Can_MainFunction_Read()is called by the
BSW Scheduler.

Check for new received L-PDU Can_MainFunction_Read()checks the underlying CAN
controller(s) about new received L-PDUs.

Invalidation of CAN hardware object,
provide CPU access to CAN mailbox

In case of a new receive event the CPU (CAN Driver) get
exclusive access rights to the CAN mailbox or at least to
the corresponding hardware object, where new data were
received.

111 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

In case of a new receive event the L-SDU is normalized
and is buffered in the temporary buffer located in the CAN
Driver. Each CAN Driver owns such a temporary buffer for
every physical channel only if normalizing of the data is
necessary.

Buffering, normalizing

The reception is indicated to the CAN Interface by calling of
CanIf_RxIndication(). The HRH specifies the CAN
RAM hardware object and the corresponding CAN
controller, which contains the received L-PDU. The
temporary buffer is referenced to the CAN Interface by
*CanSduPtr.

Indication to
CAN Interface

The Software Filtering checks, whether the received L-PDU
will be processed on a local ECU. If not, the received L-
PDU is not indicated to upper layers. Further processing is
suppressed.

Software Filtering

If the L-PDU is found, the DLC of the received L-PDU is
compared with the expected, statically configured one for
the received L-PDU.

DLC check

Receive Indication to the upper layer If configured, the corresponding receive indication service
of the upper layer is called. This signals a successful
reception to the target upper layer. The parameter
CanPduId specifies the L-PDU, the second parameter is
the reference on the temporary buffer within the L-SDU.
During is execution of this service the CAN hardware
buffers must be unlocked for CPU access/locked for CAN
controller access.

Validation of CAN hardware object,
allow access of CAN controller to
CAN mailbox

The CAN controller get back exclusive access rights to the
CAN mailbox or at least to the corresponding hardware
object, where new data were already being copied into the
upper layer buffer.

9.9 Read received data

112 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

sd Read received data

Generic
Elements::CanIf User

CanIf::CanIf «module»

Can::Can

«Peripheral»

Hardware::CanController

Receive Interrupt()

Invalidation of hardware object()

Invalidation of hardware object()

CanIf_RxIndication(uint8, Can_IdType, uint8, const
uint8*)

Here no
temporary buffer
in CAN driver is
used.

[L-PDU reception in BasicCAN]:Software
filtering and L-PDU assignment()

[CAN L-PDU ID was found]:DLC
Check()

Copy data to CANIF receive L-PDU buffer()

Notification is only
performed, if enabled
(configured)

Exemplary call:
parameters differ for
User=CanTp

Copy data to CANIF receive L-PDU buffer()

Set Indication Flag()

<CanIfUser_RxIndication>(PduIdType, const
uint8*)

<CanIfUser_RxIndication>()

CanIf_RxIndication()

Validation of hardware object()

Validation of hardware object()

Receive Interrupt()

CanIf_ReadRxNotifStatus(PduIdType) :
CanIf_NotifStatusType

Read Indication flag()

For transmit CAN L-PDUs, the service
CanIf_ReadNotifStatus returns the
Confirmation flag status

Reset Indication flag()

CanIf_ReadRxNotifStatus()

CanIf_ReadRxPduData(PduIdType, PduInfoType**) :
Std_ReturnType

ENTER
CRITICAL
SECTION()

Read data from
CANIF Rx buffer()

LEAVE
CRITICAL
SECTION()

CanIf_ReadRxPduData()

Figure 31 Read received data

Activity Description
Receive Interrupt The CAN controller signals a successful reception and

triggers a receive interrupt.

113 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

The CPU (CAN Driver) get exclusive access rights to the
CAN mailbox or at least to the corresponding hardware
object, where new data were received.

Invalidation of CAN hardware object,
provide CPU access to CAN mailbox

Buffering, normalizing The L-SDU is normalized and is buffered in the temporary
buffer located in the CAN Driver. Each CAN Driver owns a
temporary buffer for every physical channel only if
normalizing of the data is necessary.

Indication to
CAN Interface

The reception is indicated to the CAN Interface by calling of
CanIf_RxIndication(). The HRH specifies the CAN
RAM hardware object and the corresponding CAN
controller, which contains the received L-PDU. The
temporary buffer is referenced to the CAN Interface by
*CanSduPtr.
The Software Filtering checks, whether the received L-PDU
will be processed on a local ECU. If not, the received L-
PDU is not indicated to upper layers. Further processing is
suppressed.

Software Filtering

If the L-PDU is found, the DLC of the received L-PDU is
compared with the expected, statically configured one for
the received L-PDU.

DLC check

The data is copied out of the CAN hardware into the
receive CAN L-PDU buffers in the CAN Interface. During
access the CAN hardware buffers must be unlocked for
CPU access/locked fro CAN controller access.

Copy data

Set indication status flag for the received L-PDU in the
CAN Interface.

Indication Flag

The corresponding receive indication service of the upper
layer is called. This signals a successful reception to the
target upper layer. The parameter CanPduId specifies the
L-PDU, the second parameter is the reference on the
temporary buffer within the L-SDU.

Receive Indication to the upper layer

The CAN controller get back exclusive access rights to the
CAN mailbox or at least to the corresponding hardware
object, where new data were already being copied into the
upper layer buffer.

Validation of CAN hardware object,
allow access of CAN controller to
CAN mailbox

Times later the upper layer can read the indication status
by call of CanIf_ReadRxNotifStatus(). This service
can also be used for transmit L-PDUs. Then it return the
confirmation status.

Read indication status

Reset indication status Before CanIf_ReadRxNotifStatus() returns, the
indication status is reset.
Times later the upper layer can read the received data by
call of CanIf_ReadRxNotifStatus().

Read received data

9.10 Start CAN network

114 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

sd Start CAN Network

CanIf::CanIf ComDriv ers::Can «peripheral»

Hardware::CanController

Generic
Elements::User

In this mode this API is not allowed to be used.
A development error shall be raised!

Std_ReturnType:= CanIf_SetControllerMode(Controller:
=CanNetwork,DeviceMode:=CANIF_CS_STARTED)

alt CanIf Controller Mode

[CANIF_CS_SLEEP] Can_ReturnType:= Can_SetControllerMode(Controller,Transition:
=CAN_T_STOP)

Disable Wakeup interrupt, if
supported

Set CAN Controller to STOPPED mode, if
necessary

Set CAN Controller to STOPPED mode, if
necessary

Can_SetControllerMode

Change to
CANIF_CS_STOPPED

[CANIF_CS_STOPPED]

[CANIF_CS_UNINIT]

[CANIF_CS_STARTED]

Can_ReturnType:= Can_SetControllerMode(Controller,Transition:
=CAN_T_START)

Start CAN Controller

Start CAN Controller

Can_SetControllerMode

Change to
CANIF_CS_STARTED

CanIf_SetControllerMode

Figure 32 Start CAN network
Activity Description
The upper layer initiates STARTED
of the desired CAN controller

The upper layer calls CanIf_SetControllerMode
(Controller, CANIF_CS_STARTED) to request
STARTED mode for the requested CAN network.
The CAN Interface determines the current operation mode
for the corresponding requested CAN controller(s).

CAN Interface checks current
operation mode

In case of SLEEP the CAN Driver is requested for
STOPPED mode by call of Can_SetControllerMode
(Controller, CAN_T_STOPPED).

Operation mode is SLEEP

CAN controller is requested for STOPPED mode. CAN controller is set to STOPPED
The CAN Interface's state machine changes to STOPPED
state.

CAN Interface is set to STOPPED

Operation mode is UNINIT In case of UNINIT an development error shall be raised! In
this mode this API is not allowed to be used!

115 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

The CAN Interface requests the CAN Driver to initiate a
transition to STARTED by Can_SetControllerMode
(Controller, CAN_T_STARTED).

CAN controller is requested for
STARTED mode transition

The CAN Driver requests CAN controller for STARTED
mode.

CAN controller is set to STARTED
mode

Inside this call the CAN Driver remains until either the sleep
transition was successful or the hardware loop timer
elapses.

CAN Driver checks if transition was
successful

After successful transition the CAN Interface changes the
corresponding CAN controller mode to STARTED mode.

CAN Interface's corresponding CAN
controller is set to STARTED

9.11 Stop & sleep CAN network

116 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

sd Stop & Sleep CAN Network

Generic
Elements::CanIf User

CanIf::CanIf Can::Can «Peripheral»

Hardware::CanController

alt CanIf Controller Mode

[CANIF_CS_STARTED]

[CANIF_CS_STOPPED]

[CANIF_CS_UNINIT]

[CANIF_CS_SLEEP]

In this mode this API is not allowed to be
used. A development error shall be raised!

Loop stops, if
- either the transition to
SLEEP mode was
successfull
- or the hardware loop timer
expires

loop Check CAN Controller

Std_ReturnType= CanIf_SetControllerMode(CanNetwork,ControllerMode:=CANIF_CS_SLEEP)

Can_ReturnType= Can_SetControllerMode(CanNetwork,Transition:=CAN_T_STOP)

Set CAN Controller to STOPPED mode

Set CAN Controller to STOPPED mode

Can_SetControllerMode

Change to
CANIF_CS_STOPPED

Can_ReturnType= Can_SetControllerMode(CanNetwork,Transition:=CAN_T_SLEEP)

Set CAN Controller to SLEEP mode

Set CAN Controller to SLEEP mode

Check CAN Controller, whether transition was successful

Check CAN Controller, whether transition was successful

Enable Wakeup interrupt, if
supported

Can_SetControllerMode

Change to
CANIF_CS_SLEEP

CanIf_SetControllerMode

Figure 33 Stop CAN network

117 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Activity Description
The upper layer initiates SLEEP of
the desired CAN controller

The upper layer calls CanIf_SetControllerMode
(Controller, CANIF_CS_SLEEP) to request SLEEP
mode for the requested CAN network.
The CAN Interface determines the current operation mode
for the corresponding requested CAN network.

CAN Interface checks current
operation mode

In case of STARTED the CAN Driver is requested for
STOPPED mode by call of Can_SetControllerMode
(Controller, CAN_T_STOPPED).

Operation mode is STARTED

CAN controller is requested for STOPPED mode. CAN controller is set to STOPPED
The CAN Interface's state machine changes to STOPPED
state.

CAN Interface is set to STOPPED

In case of UNINIT an development error shall be raised! In
this mode this API is not allowed to be used!

Operation mode is UNINIT

The CAN Interface requests the CAN Driver to initiate
SLEEP transition by Can_SetControllerMode
(Controller, CAN_T_SLEEP).

CAN Driver is requested to initiate
SLEEP mode transition

The CAN Driver sets CAN controller in SLEEP mode. CAN controller is set to SLEEP
mode

Inside this call the CAN Driver stays until either the sleep
transition was successful or the hardware loop timer
elapses.

CAN Driver checks if transition was
successful

After successful transition to SLEEP the CAN Driver
enables the wakeup interrupt, if provided by the CAN
Driver.

Wakeup interrupt is enabled

The CAN Interface's state machine for the requested CAN
controller changes to SLEEP state.

CAN Interface changes to SLEEP
mode

9.12 BusOff notification

118 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

sd BusOff Notification

CanIf::CanIf ComDriv ers::Can «peripheral»

Hardware::CanController

Generic
Elements::User

BusOff Detection

Set CAN Controller to STOPPED
mode, if necessary

Set CAN Controller to STOPPED
mode, if necessary

CanIf_ControllerBusOff(Controller)

Change to
CANIF_CS_STOPPED

Transmit queues being
reset to avoid
transmission of old
L-PDUs after CAN
controller restart

Reset transmit
queue

<User_ControllerBusOff>(CanNetwork)

<User_ControllerBusOff>

CanIf_ControllerBusOff

BusOff Detection

Figure 34 BusOff notification

Activity Description

The CAN controller signals a BusOff event. BusOff detection interrupt
CAN controller is set to STOPPED mode by the CAN
Driver, if necessary.

Stop CAN controller

BusOff is notified to the CAN Interface by calling of
CanIf_ControllerBusOff()

BusOff indication to CAN Interface

BusOff is notified to the upper layer by calling of
<User_ControllerBusOff>()

BusOff indication to upper layer
(CanSM)

9.13 BusOff recovery

119 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

sd BusOff Recov ery

«peripheral»

Hardware::CanController

ComDriv ers::CanCanIf::CanIfGeneric
Elements::User

opt if CAN Controller is STOPPED

Transmit queues being
reset to avoid
transmission of old
L-PDUs after CAN
controller restart

opt if CAN Controller is BUSOFF

Processing of
CAN controller
reset depends on
the used CAN
controller device.

BusOff Detection

Set CAN Controller to STOPPED mode, if
necessary

Set CAN Controller to STOPPED mode, if
necessary

CanIf_ControllerBusOff(Controller)

Change to
CANIF_CS_STOPPED

Reset transmit
queue

<User_ControllerBusOff>(CanNetwork)

<User_ControllerBusOff>

CanIf_ControllerBusOff

BusOff Detection

Std_ReturnType:= CanIf_SetControllerMode(Controller,DeviceMode)

Can_ReturnType:= Can_SetControllerMode(Controller,Transition)

Reset CAN Controller, if
necessary

Reset CAN Controller, if
necessary

Start CAN Controller

Start CAN Controller

Can_SetControllerMode

CanIf_SetControllerMode

Figure 35 BusOff recovery

120 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Description

BusOff detection interrupt The CAN controller signals a BusOff event.
Stop CAN controller CAN controller is set to STOPPED mode by the CAN

Driver, if necessary
BusOff indication to CAN Interface BusOff is notified to the CAN Interface by calling of

CanIf_ControllerBusOff().The transmit buffers
inside the CAN Interface will be reset.

BusOff indication to upper layer BusOff is notified to the upper layer by calling of
<User_ControllerBusOff>()
After a time specified by the BusOff Recovery algorithm the
Recovery process itself in initiated by
CanIf_SetControllerMode
(Controller, CANIF_CS_STARTED).

Upper Layer (CanSM) initiates
BusOff Recovery

If necessary the CAN Driver resets the CAN controller by
Can_InitController(Controller,
ConfigurationIndex).

Reset of CAN controller

The driver restarts the CAN controller by call of
Can_SetControllerMode (Controller,
CAN_T_STARTED).

Restart of CAN controller

121 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into
containers. In order to support the specification chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
CAN Interface.

Chapter 10.3 specifies published information of the module CAN Interface.

10.1 How to read this chapter

In addition to this section, it is highly recommended to read the documents:

- [2] Layered Software Architecture
- [6] Specification of ECU Configuration

This document describes the AUTOSAR configuration methodology and the
AUTOSAR configuration meta model in detail.

The following is only a short survey of the topic and it will not replace the ECU
Configuration Specification document.

10.1.1

10.1.3

Configuration and configuration parameters

Configuration parameters define the variability of the generic part(s) of an
implementation of a module. This means that only generic or configurable module
implementation can be adapted to the environment (software/hardware) in use during
system and/or ECU configuration.

The configuration of parameters can be achieved at different times during the
software process: before compile time, before link time or after build time. In the
following, the term “configuration class” (of a parameter) shall be used in order to
refer to a specific configuration point in time.

10.1.2 Variants

Variants describe sets of configuration parameters. E.g., variant 1: only pre-compile
time configuration parameters; variant 2: mix of pre-compile- and post build time-
configuration parameters. In one variant a parameter can only be of one
configuration class.

Containers

Containers structure the set of configuration parameters. This means:

- all configuration parameters are kept in containers.

122 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

- (sub-) containers can reference (sub-) containers. It is possible to assign a
multiplicity to these references. The multiplicity then defines the possible
number of instances of the contained parameters.

10.1.4 Specification template for configuration parameters

The following tables consist of three sections:

- the general section
- the configuration parameter section
- the section of included/referenced containers

Pre-compile time - specifies whether the configuration parameter shall be

of configuration class Pre-compile time or not

Label Description
x The configuration parameter shall be of configuration class Pre-compile time.
-- The configuration parameter shall never be of configuration class Pre-compile time.

Link time - specifies whether the configuration parameter shall be

of configuration class Link time or not

Label Description
x The configuration parameter shall be of configuration class Link time.
-- The configuration parameter shall never be of configuration class Link time.

Post Build - specifies whether the configuration parameter shall be

of configuration class Post Build or not

Label Description
The configuration parameter shall be of configuration class Post Build and no specific
implementation is required.

x

Loadable - the configuration parameter shall be of configuration class Post Build and only
one configuration parameter set resides in the ECU.

L

Multiple - the configuration parameter shall be of configuration class Post Build and is
selected out of a set of multiple parameters by passing a dedicated pointer to the init
function of the module.

M

-- The configuration parameter shall never be of configuration class Post Build.

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed
meanings of the parameters describe chapter [7 Functional specification] and chapter
[8 API specification].

CANIF104: The listed configuration items can be derived from a network description
database, which is based on the EcuConfigurationTemplate. The configuration tool
shall extract all information to configure the CAN Interface.

123 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

CANIF131: The consistency of the configuration must be checked by the
configuration tool at configuration time. Configuration rules and constraints for
plausibility checks shall be performed during configuration time, where possible.

CANIF066: The CAN Interface has access to the CAN Driver configuration data. All
public CAN Driver configuration data are described in [8] Specification of CAN Driver.

CANIF132: These dependencies between CAN Driver and CAN Interface
configuration must be provided at configuration time by the configuration tools.

124 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Figure 36 Overview about CAN Interface configuration containers

125 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

10.2.1

10.2.2

Variants

CANIF228:
VARIANT-PRE-COMPILE: Only pre compile time parameters.
VARIANT-LINK-TIME: Mix of pre compile- and link time parameters.
VARIANT-POST-BUILD: Mix of pre compile-, link time and post build time
parameters.

CANIF240: For post build time parameters the type “x” was chosen to allow both
variants of implementations with either loadable (“L”) or multiple (“M”) types of post
built parameters.

CanIf
Module Name CanIf

This container includes all necessary configuration sub-containers
according the CAN Interface configuration structure.

Module Description

Included Containers
Container Name MultiplicityScope / Dependency

CanIfControllerConfig 1..* This container contains the configuration (parameters) of all
addressed CAN controllers by each underlying CAN driver.
Callout functions with respect to the upper layers. This callout
functions defined in this container are common to all
configured underlying CAN Drivers / CAN Transceiver Drivers.

0..1 CanIfDispatchConfig

Configuration parameters for all the underlying CAN drivers
are aggregated under this container. 1..* CanIfDriverConfig

This container contains the init parameters of the CAN
Interface. 1..* CanIfInitConfiguration

1 This container contains the private configuration (parameters)
of the CAN Interface.

CanIfPrivateConfiguration

This container contains the public configuration (parameters)
of the CAN Interface. 1 CanIfPublicConfiguration

This container contains the configuration (parameters) of all
addressed CAN transceivers by each underlying CAN
Transceiver Driver.

1..* CanIfTransceiverDrvConfig

10.2.3 CanIfPrivateConfiguration

CANIF245 : SWS Item
CanIfPrivateConfiguration{CanInterfacePrivateConfiguration } Container Name

Description
This container contains the private configuration (parameters) of the CAN
Interface.

Configuration Parameters

SWS Item --
N ame CanIfDlcCheck {CANIF_DLC_CHECK}
Description Selects whether the DLC check is supported. True: Enabled False:

Disabled
1 Multiplicity

Type BooleanParamDef
Default value true

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --

126 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Scope / Dependency scope: Module

SWS Item --
N ame CanIfNumberOfTxBuffers {CANIF_NUMBER_OF_TXBUFFERS}

Defined the number of L-PDU elements for the transmit buffering. The Tx
L-PDU buffers shall be used to store an L-PDU once for each different L-
PDU handle. Range: 0..max. number of Tx L-PDUs to be used. Default
Value: NUMBER_OF_TX_PDUS

Description

1 Multiplicity
Type IntegerParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency scope: Module

SWS Item --
N ame CanIfSoftwareFilterType {CANIF_SOFTWARE_FILTER_TYPE}
Description Selects the desired software filter mechanism for reception only. Each

implemented software filtering method is identified by this enumeration
number. Range: Types implemented software filtering methods

Multiplicity 1
Type EnumerationParamDef

BINARY Selects Binary Filter method.
INDEX Selects Index Filter method.
LINEAR Selects Linear Filter method.

Range

TABLE Selects Table Filter method.
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Module

dependency: BasicCAN reception must be enabled by CANIF_HRH_TYPE for
at least one HRH.

No Included Containers

10.2.4 CanIfPublicConfiguration
SWS Item CANIF246 :
Container Name CanIfPublicConfiguration{CanInterfacePublicConfiguration }

Description
This container contains the public configuration (parameters) of the CAN
Interface.

Configuration Parameters

-- SWS Item
CanIfDevErrorDetect {CANIF_DEV_ERROR_DETECT} N ame

Description Enables and disables the development error detection and notification
mechanism.
True: Enabled False: Disabled

Multiplicity 1
Type BooleanParamDef
Default value true

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --

127 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Scope / Dependency scope: Module

SWS Item --
N CanIfMultipleDriverSupport {CANIF_MULTIPLE_DRIVER_SUPPORT} ame
Description Selects support for multiple CAN Drivers.

True: Enabled False: Disabled
Multiplicity 1
Type BooleanParamDef
Default value true

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

SWS Item --
N CanIfNumberOfCanHwUnits {CANIF_NUMBER_OF_CAN_HW_UNITS} ame
Description Number of served CAN hardware units.

Range: 1..max. number of underlying supported CAN Hardware units
Multiplicity 1
Type IntegerParamDef
Default value 1

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME, VARIANT-POST-

BUILD

ConfigurationClass

Post-build time --
scope: ECU Scope / Dependency

SWS Item --
N ame CanIfPublicTxConfirmPollingSupport

{CANIF_PUBLIC_TXCONFIRM_POLLING_SUPPORT}
Description Configuration parameter to enable/disable the API to poll for Tx

Confirmation state.
Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: CanIf Module

dependency: CAN State Manager module

SWS Item --
N ame CanIfReadRxPduDataApi {CANIF_READRXPDU_DATA_API}
Description Enables / Disables the API CanIf_ReadRxPduData() for reading received

L-PDU data.
True: Enabled False: Disabled

Multiplicity 1
Type BooleanParamDef

false Default value
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
scope: ECU Scope / Dependency

-- SWS Item

N ame CanIfReadRxPduNotifyStatusApi

128 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

{CANIF_READRXPDU_NOTIF_STATUS_API}
Description Enables and disables the API for reading the received L-PDU data.

True: Enabled False: Disabled
Multiplicity 1
Type BooleanParamDef
Default value false

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
scope: ECU Scope / Dependency

SWS Item --
N CanIfReadTxPduNotifyStatusApi

{CANIF_READTXPDU_NOTIF_STATUS_API}
ame

Enables and disables the API for reading the notification status of transmit
and receive L-PDUs.

Description

True: Enabled False: Disabled
Multiplicity 1
Type BooleanParamDef

false Default value
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
scope: ECU Scope / Dependency

SWS Item --
N CanIfSetDynamicTxIdApi {CANIF_SETDYNAMICTXID_API} ame

Enables and disables the API for reconfiguration of the CAN Identifier for
each Transmit L-PDU.

Description

True: Enabled False: Disabled
Multiplicity 1
Type BooleanParamDef

false Default value
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
scope: ECU Scope / Dependency

SWS Item --
N CanIfVersionInfoApi {CANIF_VERSION_INFO_API} ame

Enables and disables the API for reading the version information about the
CAN Interface.

Description

True: Enabled False: Disabled
Multiplicity 1
Type BooleanParamDef

true Default value
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --

 Scope / Dependency

No Included Containers

10.2.5 CanIfInitConfiguration
SWS Item CANIF247 :
129 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface

- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Container Name
CanIfInitConfiguration{CanInterfaceInitConfiguration} [Multi Config
Container]

Description This container contains the init parameters of the CAN Interface.
Configuration Parameters

SWS Item --

CanIfConfigSet {CANIF_CONFIGSET} N ame
Selects the CAN Interface specific configuration setup. This type of the
external data structure shall contain the post build initialization data for the
CAN Interface for all underlying CAN Dirvers. constant to
CanIf_ConfigType

Description

Multiplicity 1
Type StringParamDef
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

ConfigurationClass

X VARIANT-POST-BUILD Post-build time
scope: Module Scope / Dependency

SWS Item --
N CanIfNumberOfCanRxPduIds {CANIF_NUMBER_OF_CANRXPDUIDS} ame
Description Total number of CanRxPduIds to be handled. Range: 0..max number of

defined CanRxPduIds
Multiplicity 1
Type IntegerParamDef
Default value --

X Pre-compile time VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
scope: ECU Scope / Dependency

SWS Item --
N CanIfNumberOfCanTXPduIds {CANIF_NUMBER_OF_CANTXPDUIDS} ame
Description Total number of CanTxPduIds to be handled. Range: 0..max number of

defined CanTxPduIds
Multiplicity 1
Type IntegerParamDef
Default value --

X Pre-compile time VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
scope: ECU Scope / Dependency

SWS Item --
N CanIfNumberOfDynamicCanTXPduIds

{CANIF_NUMBER_OF_DYNAMIC_CANTXPDUIDS}
ame

Description Total number of dynamic CanTxPduIds to be handled. Range: 0..max.
nember of defined CanTxPduIds

Multiplicity 1
Type IntegerParamDef
Default value --

X Pre-compile time VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: ECU

130 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Included Containers
Container Name MultiplicityScope / Dependency

CanIfInitControllerConfig 0..* This container contains the references to the configuration
setup of each underlying CAN driver.

CanIfInitHohConfig 0..* This container contains the references to the configuration
setup of each underlying CAN Driver.

0..*

This container contains the configuration (parameters) of each
receive CAN L-PDU. The SHORT-NAME of
"CanIfRxPduConfig" container itself represents the symolic
name of Receive L-PDU.

CanIfRxPduConfig

0..*

This container contains the configuration (parameters) of each
transmit CAN L-PDU. The SHORT-NAME of
"CanIfTxPduConfig" container represents the symolic name of
Transmit L-PDU.

CanIfTxPduConfig

10.2.6 CanIfTxPduConfig
SWS Item CANIF248 :
Container Name CanIfTxPduConfig{CanInterfaceTxPduConfiguration}

Description
This container contains the configuration (parameters) of each transmit
CAN L-PDU. The SHORT-NAME of "CanIfTxPduConfig" container
represents the symolic name of Transmit L-PDU.

Configuration Parameters

SWS Item --
N CanIfCanTxPduId {CANIF_CANTXPDUID} ame

ECU wide unique, symbolic handle for transmit CAN L-PDU. The
CanIfCanTxPduId is configurable at pre-compile and post-built time.
Range: 0..max. number of CantTxPduIds

Description

Multiplicity 1
Type IntegerParamDef (Symbolic Name generated for this parameter)
Default value --

X Pre-compile time VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
scope: ECU Scope / Dependency

SWS Item --
N CanIfCanTxPduIdCanId {CANIF_CANTXPDUID_CANID} ame
Description CAN Identifier of transmit CAN L-PDUs used by the CAN Driver for CAN L-

PDU transmission. Range: 11 Bit For Standard CAN Identifier ... 29 Bit For
Extended CAN identifier

Multiplicity 1
Type IntegerParamDef
Default value --

X Pre-compile time VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
scope: Network Scope / Dependency

SWS Item --
N CanIfCanTxPduIdDlc {CANIF_CANTXPDUID_DLC} ame
Description Data length code (in bytes) of transmit CAN L-PDUs used by the CAN

Driver for CAN L-PDU transmission. The data area size of a CAN L-Pdu
can have a range from 0 to 8 bytes.

131 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Multiplicity 1
Type IntegerParamDef
Range 0 .. 8

-- Default value
X VARIANT-PRE-COMPILE Pre-compile time

Link time X VARIANT-LINK-TIME
ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: Network

dependency: CanIfNumberOfTxBuffers

SWS Item --
N CanIfCanTxPduType {CANIF_CANTXPDUID_TYPE} ame
Description Defines the type of each transmit CAN L-PDU.
Multiplicity 1

EnumerationParamDef Type
DYNAMIC CAN ID is defined at runtime. Range

STATIC CAN ID is defined at compile-time.
Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: ECU

SWS Item --
N CanIfReadTxPduNotifyStatus {CANIF_READTXPDU_NOTIFY_STATUS} ame
Description Enables and disables transmit confirmation for each transmit CAN L-PDU

for reading its notification status. True: Enabled False: Disabled
Multiplicity 1
Type BooleanParamDef
Default value false

X Pre-compile time VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
scope: Module
dependency: CANIF_READTXPDU_NOTIFY_STATUS_API must be
enabled.

Scope / Dependency

SWS Item --
N CanIfTxPduIdCanIdType {CANIF_CANIFTXPDUID_CANIDTYPE} ame
Description CAN Identifier of transmit CAN L-PDUs used by the CAN Driver for CAN L-

PDU transmission.
Multiplicity 1

EnumerationParamDef Type
EXTENDED_CAN The CANID is of type Extended (29 bits) Range
STANDARD_CAN The CANID is of type Standard (11 bits)
Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: Network

SWS Item --
N CanIfTxUserType {CANIF_TX_USER_TYPE} ame
Description This parameter defines the type of the transmit confirmation call-out called to

the corresponding upper layer the used TargetTxPduId belongs to.
Multiplicity 1
Type EnumerationParamDef
132 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface

- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

CAN_NM CAN NM
CAN_TP CAN TP

Range

PDUR PDU Router
Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
scope: ECU Scope / Dependency

SWS Item --
N CanIfUserTxConfirmation {CANIF_USER TX_CONFIRMATION} ame
Description Name of target confirmation services to target upper layers (PduR, CanNm

and CanTp. If parameter is not configured then no call-out function is
provided by the upper layer for this Tx L-PDU.

Multiplicity 0..1
Type FunctionNameDef
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME, VARIANT-POST-

BUILD

ConfigurationClass

-- Post-build time
scope: ECU Scope / Dependency

SWS Item --
N CanIfCanTxPduHthRef {CANIF_HTH_REF_ID} ame
Description Handle, that defines the hardware object or the pool of hardware objects

configured for transmission. The parameter refers HTH Id, to which the L-
PDU belongs to.

Multiplicity 0..*
Reference to CanIfHthConfig Type

X VARIANT-PRE-COMPILE Pre-compile time
Link time X VARIANT-LINK-TIME

ConfigurationClass

Post-build time X VARIANT-POST-BUILD

 Scope / Dependency

SWS Item --
N PduIdRef ame
Description Reference to the "global" Pdu structure to allow harmonization of handle

IDs in the COM-Stack.
Multiplicity 1

Reference to Pdu Type
X VARIANT-PRE-COMPILE Pre-compile time

Link time --
ConfigurationClass

Post-build time --

 Scope / Dependency

No Included Containers

10.2.7 CanIfRxPduConfig
SWS Item CANIF249 :
Container Name CanIfRxPduConfig{CanInterfaceRxPduConfiguration}

Description
This container contains the configuration (parameters) of each receive
CAN L-PDU. The SHORT-NAME of "CanIfRxPduConfig" container itself
represents the symolic name of Receive L-PDU.

Configuration Parameters
133 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface

- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

SWS Item --

CanIfCanRxPduCanId {CANIF_CANRXPDUID_CANID} N ame
CAN Identifier of Receive CAN L-PDUs used by the CAN Interface. Exa:
Software Filtering. Range: 11 Bit For Standard CAN Identifier ... 29 Bit For
Extended CAN identifier

Description

Multiplicity 1
Type IntegerParamDef
Default value --

X Pre-compile time VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
scope: Network Scope / Dependency

SWS Item --
N CanIfCanRxPduDlc {CANIF_CANRXPDUID_DLC} ame
Description Data Length code of received CAN L-PDUs used by the CAN Interface.

Exa: DLC check. The data area size of a CAN L-PDU can have a range
from 0 to 8 bytes.

Multiplicity 1
Type IntegerParamDef
Range 0 .. 8

-- Default value
X VARIANT-PRE-COMPILE Pre-compile time

Link time X VARIANT-LINK-TIME
ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: Network

SWS Item --
N CanIfCanRxPduId {CANIF_CANRXPDUID} ame
Description ECU wide unique, symbolic handle for receive CAN L-PDU. The

CanRxPduId is configurable at pre-compile and post-built time. It shall fulfill
ANSI/AUTOSAR definitions for constant defines. Range: 0..max. number
of defined CanRxPduIds

Multiplicity 1
Type IntegerParamDef (Symbolic Name generated for this parameter)
Default value --

X Pre-compile time VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
scope: ECU Scope / Dependency

SWS Item --
N CanIfReadRxPduData {CANIF_READRXPDU_DATA} ame
Description Enables and disables the Rx buffering for reading of received L-PDU data.

True: Enabled False: Disabled
Multiplicity 1
Type BooleanParamDef
Default value false

X Pre-compile time VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
scope: ECU
dependency: CANIF_CANPDUID_READDATA_API must be enabled.

Scope / Dependency

134 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

SWS Item --
N CanIfReadRxPduNotifyStatus {CANIF_READRXPDU_NOTIFY_STATUS} ame
Description Enables and disables receive indication for each receive CAN L-PDU for

reading its' notification status. True: Enabled False: Disabled
Multiplicity 1
Type BooleanParamDef
Default value false

X Pre-compile time VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
scope: Module
dependency: CANIF_READRXPDU_NOTIFY_STATUS_API must be
enabled.

Scope / Dependency

SWS Item --
N CanIfRxPduIdCanIdType {CANIF_CANRXPDUID_CANIDTYPE} ame
Description CAN Identtifier of receive CAN L-PDUs used by the CAN Driver for CAN L-

PDU reception.
Multiplicity 1

EnumerationParamDef Type
EXTENDED_CAN The CANID is of type Extended (29 bits) Range

STANDARD_CAN The CANID is of type Standard (11 bits)
Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: Network

SWS Item --
N CanIfRxUserType {CANIF_RX_USER_TYPE} ame
Description This parameter defines the type of the receive indication call-outs called to

the corresponding upper layer the used TargetRxPduId belongs to.
Multiplicity 1

EnumerationParamDef Type
CAN_NM CAN NM
CAN_TP CAN TP

Range

PDUR PDU Router
Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
scope: ECU Scope / Dependency

SWS Item --
N CanIfUserRxIndication {CANIF_USER_RX_INDICATION} ame
Description Name of target indication services to target upper layers (PduRouter,

CanNm, CanTp and ComplexDeviceDrivers). If parameter is 0 no call-out
function is configured.

Multiplicity 1
Type FunctionNameDef
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME, VARIANT-POST-

BUILD

ConfigurationClass

-- Post-build time
scope: ECU Scope / Dependency

135 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

SWS Item --
N CanIfCanRxPduHrhRef {CANIF_HRH_REF_ID} ame
Description The HRH to which Rx L-PDU belongs to, is referred through this

parameter.
Multiplicity 0..*

Reference to CanIfHrhConfig Type
X VARIANT-PRE-COMPILE Pre-compile time

Link time X VARIANT-LINK-TIME
ConfigurationClass

Post-build time X VARIANT-POST-BUILD
scope: Module
dependency: This information has to be derived from the CAN Driver
configuration.

Scope / Dependency

SWS Item --
N PduIdRef ame
Description Reference to the "global" Pdu structure to allow harmonization of handle

IDs in the COM-Stack.
Multiplicity 1

Reference to Pdu Type
X All Variants Pre-compile time

Link time --
ConfigurationClass

Post-build time --

 Scope / Dependency

No Included Containers

10.2.8 CanIfDispatchConfig
SWS Item CANIF250 :
Container Name CanIfDispatchConfig{CanInterfaceDispatcherConfiguration }

Description
Callout functions with respect to the upper layers. This callout functions
defined in this container are common to all configured underlying CAN
Drivers / CAN Transceiver Drivers.

Configuration Parameters

SWS Item --

CanIfBusOffNotification {CANIF_USER_BUSOFF_NOTIFICATION} N ame
Name of target BusOff notification services to target upper layers
(PduRouter, CanNm, CanTp and ComplexDeviceDrivers).

Description

Multiplicity 1
Type FunctionNameDef
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME, VARIANT-POST-

BUILD

ConfigurationClass

-- Post-build time
scope: ECU
dependency: Any notification call-out to upper layers must be configured.

Scope / Dependency

SWS Item --
N CanIfWakeupNotification {CANIF_USER_WAKEUP_NOTIFICATION} ame
Description Name of target wakeup notification services to target upper layers

(PduRouter, CanNm, CanTp and ComplexDeviceDrivers). If parameter is 0
136 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface

- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

no call-out function is configured.
Multiplicity 0..1
Type FunctionNameDef
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME, VARIANT-POST-

BUILD

ConfigurationClass

-- Post-build time
scope: ECU
dependency: Only if supported by CAN controller and enabled by CAN
Driver configuration.

Scope / Dependency

SWS Item --
N CanIfWakeupValidNotification

{CANIF_USER_WAKEUP_VALIDATION_NOTIFICATION}
ame

Description Name of target wakeup validation notification services to target upper
layers (ECU State Manager). If parameter is 0 no call-out function is
configured.

Multiplicity 0..1
Type FunctionNameDef
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME, VARIANT-POST-

BUILD

ConfigurationClass

-- Post-build time
scope: ECU
dependency: Only if supported by CAN controller and enabled by CAN
Driver configuration.

Scope / Dependency

No Included Containers

10.2.9 CanIfControllerConfig
SWS Item --
Container Name CanIfControllerConfig{CanInterfaceControllerConfiguration}

Description
This container contains the configuration (parameters) of all addressed
CAN controllers by each underlying CAN driver.

Configuration Parameters

SWS Item --

CanIfWakeupSupport {CANIF_WAKEUP_SUPPORT} N ame
Enables wakeup support and defines the source device of a wakeup event. Description

Multiplicity 1
Type EnumerationParamDef

CONTROLLER Wakeup by CAN Controller is supported
NO_WAKEUP No wakeup is supported

Range

TRANSCEIVER Wakeup by CAN Transceiver is supported
Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME, VARIANT-POST-BUILD

ConfigurationClass

Post-build time --
scope: Network Scope / Dependency

SWS Item --
N CanIfControllerIdRef ame
Description Logical handle of the underlying CAN controller to be served by the CAN

137 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Interface. Range: 0..max. number of underlying supported
Multiplicity 0..*

Reference to CanController Type
X VARIANT-PRE-COMPILE Pre-compile time

Link time X VARIANT-LINK-TIME, VARIANT-POST-
BUILD

ConfigurationClass

Post-build time --
scope: ECU Scope / Dependency

SWS Item --
N CanIfDriverNameRef {CANIF_DRIVER_REF_NAME} ame
Description Refers to the CAN Driver Name to which the controller belongs to. This

parameter refers to CanIfDriverConfig container.
Multiplicity 1

Reference to CanIfDriverConfig Type
X VARIANT-PRE-COMPILE Pre-compile time

Link time X VARIANT-LINK-TIME, VARIANT-POST-
BUILD

ConfigurationClass

Post-build time --

 Scope / Dependency

SWS Item --
N CanIfInitControllerRef ame
Description Reference to the Init Controller Configuration.
Multiplicity 1

Reference to CanIfInitControllerConfig Type
X VARIANT-PRE-COMPILE Pre-compile time

Link time X VARIANT-LINK-TIME, VARIANT-POST-
BUILD

ConfigurationClass

Post-build time --

 Scope / Dependency

No Included Containers

10.2.10 CanIfInitControllerConfig
SWS Item CANIF252 :
Container Name CanIfInitControllerConfig{CanInterfaceInitControllerConfiguration}

Description
This container contains the references to the configuration setup of each
underlying CAN driver.

Configuration Parameters

SWS Item --

CanIfControllerRefConfigSet {CANIF_CONTROLLER_REF_CONFIGSET} N ame
References the corresponding CAN Controller configuration setup of the
corresponding CAN Driver.

Description

Multiplicity 1
Type Reference to CanController

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

ConfigurationClass

Post-build time X VARIANT-POST-BUILD

 Scope / Dependency

No Included Containers

138 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

10.2.11 CanIfDriverConfig
SWS Item CANIF253 :
Container Name CanIfDriverConfig{CanInterfaceDriverConfiguration}

Description
Configuration parameters for all the underlying CAN drivers are
aggregated under this container.

Configuration Parameters

SWS Item --

CanIfBusoffNotification {CANIF_BUSOFF_NOTIFICATION} N ame
Selects whether BusOff indication notification is supported. True: Enabled
False: Disabled

Description

Multiplicity 1
Type BooleanParamDef
Default value true

X Pre-compile time VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME, VARIANT-POST-

BUILD

ConfigurationClass

Post-build time --
scope: ECU Scope / Dependency

SWS Item --
N CanIfReceiveIndication {CANIF_RECEIVE_INDICATION} ame
Description Selects whether receive indication notification is supported. True: Enabled

False: Disabled
Multiplicity 1
Type BooleanParamDef
Default value --

X Pre-compile time VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME, VARIANT-POST-

BUILD

ConfigurationClass

Post-build time --
scope: ECU Scope / Dependency

SWS Item --
N CanIfTransmitCancellation {CANIF_TRANSMIT_CANCELLATION} ame
Description Selects whether transmit cancellation is supported. True: Enabled False:

Disabled
Multiplicity 1
Type BooleanParamDef
Default value --

X Pre-compile time All Variants
Link time --

ConfigurationClass

Post-build time --
scope: Module
dependency: CANIF_TRANSMIT_BUFFER must be enabled

Scope / Dependency

SWS Item --
N CanIfTxConfirmation {CANIF_TRANSMIT_CONFIRMATION} ame
Description Selects whether transmit confirmation notification is supported.
Multiplicity 1
Type BooleanParamDef
Default value --

X ConfigurationClass Pre-compile time VARIANT-PRE-COMPILE

139 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Link time X VARIANT-LINK-TIME, VARIANT-POST-
BUILD

Post-build time --
scope: Module Scope / Dependency

SWS Item --
N CanIfWakeupNotification {CANIF_DRIVER_WAKEUP_NOTIFICATION} ame
Description Selects whether wakeup indication notification is supported. True: Enabled

False: Disabled
Multiplicity 1
Type BooleanParamDef
Default value true

X Pre-compile time VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME, VARIANT-POST-

BUILD

ConfigurationClass

Post-build time --
scope: ECU Scope / Dependency

SWS Item --
N CanIfDriverNameRef {CANIF_DRIVER_VENDOR_ID} ame
Description CAN Interface Driver Reference. This reference can be used to get any

information (Ex. Driver Name, Vendor ID) from the CAN driver. The CAN
Driver name can be derived from the ShortName of the CAN driver
module.

Multiplicity 1
Reference to CanGeneral Type

X All Variants Pre-compile time
Link time --

ConfigurationClass

Post-build time --

 Scope / Dependency

SWS Item --
N CanIfInitHohConfigRef ame
Description Reference to the Init Hoh Configuration
Multiplicity 1

Reference to CanIfInitHohConfig Type
X VARIANT-PRE-COMPILE Pre-compile time

Link time X VARIANT-LINK-TIME, VARIANT-POST-
BUILD

ConfigurationClass

Post-build time --

 Scope / Dependency

No Included Containers

10.2.12 CanIfTransceiverDrvConfig
SWS Item CANIF273 :
Container Name CanIfTransceiverDrvConfig{CanInterfaceTransceiverDriverConfiguration}

Description
This container contains the configuration (parameters) of all addressed
CAN transceivers by each underlying CAN Transceiver Driver.

Configuration Parameters

SWS Item --
N ame CanIfTrcvWakeupNotification

140 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

{CANIF_TRANSCEIVER_WAKEUP_NOTIFICATION}
Selects whether wakeup indication notification is supported. True: Enabled
False: Disabled

Description

Multiplicity 1
Type BooleanParamDef
Default value false

X Pre-compile time VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME, VARIANT-POST-

BUILD

ConfigurationClass

Post-build time --
scope: ECU Scope / Dependency

SWS Item --
N CanIfTrcvIdRef ame
Description Logical handle of the underlying CAN transceiver to be served by the CAN

Interface.
Multiplicity 0..*

Reference to CanTrcvChannel Type
X VARIANT-PRE-COMPILE Pre-compile time

Link time X VARIANT-LINK-TIME, VARIANT-POST-
BUILD

ConfigurationClass

Post-build time --
scope: ECU Scope / Dependency

No Included Containers

10.2.13 CanIfInitHohConfig
SWS Item CANIF257 :
Container Name CanIfInitHohConfig

Description
This container contains the references to the configuration setup of each
underlying CAN Driver.

Configuration Parameters

SWS Item --

CanIfRefConfigSet {CANIF_REF_CONFIGSET} N ame
Selects the CAN Interface specific configuration setup. This type of
external data structure shall contain the post build initialization data for the
CAN Interface for all underlying CAN Drivers.

Description

Multiplicity 1
Type Reference to CanConfigSet

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
scope: Module Scope / Dependency

Included Containers
Container Name MultiplicityScope / Dependency

CanIfHrhConfig 0..* This container contains configuration parameters for each
hardware receive object (HRH).

CanIfHthConfig 0..* This container contains parameters related to each HTH.

141 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

10.2.14 CanIfHthConfig
SWS Item CANIF258 :

CanIfHthConfig{CanInterfaceHthConfiguration} Container Name
This container contains parameters related to each HTH. Description

Configuration Parameters

SWS Item --
N CanIfHthType {CANIF_HTH_TYPE} ame

Transmission method of the corresponding HTH. Description
Multiplicity 1
Type EnumerationParamDef

BASIC_CAN For a BasicCAN HTH buffers have to be reserved
for buffering Tx L-PDUs. The size of Tx Queue is
specified in parameter CanIfNumberOfTxBuffers.

Range

FULL_CAN The HTH is of type Full CAN. At the maximum
only one Tx L-PDU should be assigned to this type
of HTH.

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME, VARIANT-POST-BUILD

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: This information has to be derived from the CAN Driver
configuration

SWS Item --
N CanIfCanControllerIdRef {CANIF_CONTROLLER_REF_ID} ame
Description Reference to controller Id to which the HTH belongs to. A controller can

contain one or more HTHs.
Multiplicity 1

Reference to CanIfControllerConfig Type
X VARIANT-PRE-COMPILE Pre-compile time

Link time X VARIANT-LINK-TIME, VARIANT-POST-
BUILD

ConfigurationClass

-- Post-build time

 Scope / Dependency

-- SWS Item
CanIfHthIdSymRef {CANIF_HTH_REF_ID} N ame
The parameter refers to a particular HTH object in the CAN Driver Module
configuration. The HTH id is unique in a given CAN Driver. The HTH Ids
are defined in the CAN Driver Module and hence it is derived from CAN
Driver Configuration.

Description

1 Multiplicity
Reference to CanHardwareObject Type
Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME, VARIANT-POST-

BUILD

ConfigurationClass

Post-build time --
Scope / Dependency

No Included Containers

142 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

10.2.15 CanIfHrhConfig
SWS Item CANIF259 :
Container Name CanIfHrhConfig{CanInterfaceHrhConfiguration}

Description
This container contains configuration parameters for each hardware
receive object (HRH).

Configuration Parameters

SWS Item --
N ame CanIfHrhType {CANIF_HRH_TYPE}

Defines the HRH type i.e, whether its a BasicCan or FullCan. If BasicCan is
configured, software filtering is enabled.

Description

1 Multiplicity
EnumerationParamDef Type
BASIC_CAN HRH is of type Basic CAN. More than one Rx L-

PDUs can be assigned to same BasicCAN HRH.
Range

FULL_CAN HRH is of type Full CAN. At the maximum only
one Rx L-PDU can be assigned to FullCAN type
of HRH.

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME, VARIANT-POST-BUILD

ConfigurationClass

Post-build time --

 Scope / Dependency

SWS Item --
N CanIfSoftwareFilterHrh {CANIF_SOFTWARE_FILTER_HRH} ame
Description Selects the hardware receive objects by using the HRH range/list from

CAN Driver configuration to define, for which HRH a software filtering has
to be performed at during receive processing. True: Software filtering is
enabled False: Software filtering is enabled

Multiplicity 1
BooleanParamDef Type

Default value true
Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME, VARIANT-POST-

BUILD

ConfigurationClass

Post-build time --
scope: Module Scope / Dependency

SWS Item --
N CanIfCanControllerHrhIdRef {CANIF_CONTROLLER_REF_ID} ame
Description Reference to controller Id to which the HRH belongs to. A controller can

contain one or more HRHs.
Multiplicity 1

Reference to CanIfControllerConfig Type
X Pre-compile time VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME, VARIANT-POST-
BUILD

ConfigurationClass

Post-build time --

 Scope / Dependency

SWS Item --
N ame CanIfHrhIdSymRef {CANIF_HRH_REF_ID}
Description The parameter refers to a particular HRH object in the CAN Driver Module

configuration. The HRH id is unique in a given CAN Driver. The HRH Ids

143 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

are defined in the CAN Driver Module and hence it is derived from CAN
Driver Configuration.

Multiplicity 1
Type Reference to CanHardwareObject

X VARIANT-PRE-COMPILE Pre-compile time
X Link time VARIANT-LINK-TIME

ConfigurationClass

X VARIANT-POST-BUILD Post-build time

 Scope / Dependency

Included Containers
Container Name MultiplicityScope / Dependency

Defines the parameters required for configuraing multiple
CANID ranges for a given same HRH. 0..* CanIfHrhRangeConfig

10.2.16 CanIfHrhRangeConfig
SWS Item --
Container Name CanIfHrhRangeConfig{CanInterfaceHrhRangeConfiguration }

Description
Defines the parameters required for configuraing multiple CANID ranges
for a given same HRH.

Configuration Parameters

SWS Item --
N ame CanIfRxPduLowerCanId {CANIF_HRHRANGE_LOWER_CANID}
Description Lower CAN Identifier of a receive CAN L-PDU for identifier range

definition, in which all CAN Ids shall pass the software filtering.
Multiplicity 0..1
Type IntegerParamDef
Range 0 .. 2147483647
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

ConfigurationClass

X VARIANT-POST-BUILD Post-build time
scope: Module Scope / Dependency

SWS Item --
N ame CanIfRxPduRangeCanIdType {CANIF_HRHRANGE_CANIDTYPE}
Description Specifies whether a configured Range of CAN Ids shall only consider

standard CAN Ids or extended CAN Ids.
Multiplicity 1
Type EnumerationParamDef

EXTENDED All the CANIDs are of type extended only (29 bit). Range
STANDARD All the CANIDs are of type standard only (11bit).

X Pre-compile time VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: Module

SWS Item --

CanIfRxPduUpperCanId {CANIF_HRHRANGE_UPPER_CANID} N ame
Description Upper CAN Identifier of a receive CAN L-PDU for identifier range

definition, in which all CAN Ids shall pass the software filtering.
Multiplicity 1
Type IntegerParamDef

144 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

Range 0 .. 2147483647
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: Module

No Included Containers

10.3 Published information

CANIF016: Published information contains data defined by the implementer of the
SW module that does not change when the module is adapted (i.e. configured) to the
actual HW/SW environment. It thus contains version and manufacturer information.

The following table lists configuration parameters that are published to be used in
other BSW modules.
The standard common published information like

vendorId (<Module>_VENDOR_ID),
moduleId (<Module>_MODULE_ID),
arMajorVersion (<Module>_AR_MAJOR_VERSION),
arMinorVersion (<Module>_ AR_MINOR_VERSION),
arPatchVersion (<Module>_ AR_PATCH_VERSION),
swMajorVersion (<Module>_SW_MAJOR_VERSION),
swMinorVersion (<Module>_ SW_MINOR_VERSION),
swPatchVersion (<Module>_ SW_PATCH_VERSION),
vendorApiInfix (<Module>_VENDOR_API_INFIX)

is provided in the BSW Module Description Template (see [17] Figure 4.1 and Figure
7.1).

Additional published parameters are listed below if applicable for this module.

145 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

11 Changes to release 2.1

11.1 Deleted SWS items

SWS Item Rationale
CANIF029 #44290: deleted, since chapter 7.24 “Polling mode” is only informal
CANIF039 CAN Driver requirement
CANIF061 Only requirement ID deleted; text is just a hint
CANIF067 Network view now is provided by CAN State Manager
CANIF128 No scheduled wakeup API anymore
CANIF129 #44290: deleted, since chapter 7.24 “Polling mode” is only informal
CANIF130 #44290: deleted, since chapter 7.24 “Polling mode” is only informal

No scheduled API anymore CANIF241
No scheduled API anymore CANIF242

CANIF265 CanIf_WakeupSourceType deleted
Can Transceiver Driver API invoked by CanIf (Polling is now done by BSW
Scheduler)

CANIF269

CANIF270 No callback function call by lower layers e.g. transceiver driver anymore
CANIF271 Network abstraction
CANIF272 Network abstraction
CANIF273 Network abstraction
CANIF274 Network abstraction

11.2 Replaced SWS items

SWS Item of Release 2 replaced by SWS Item Rationale

11.3 Changed SWS items

SWS Item Rationale
CANIF026 Description improved for dynamic DLC usage
CANIF044 CANIF044 splitted into CANIF 044, CANIF291 and CANIF292
CANIF085 CAN Controller specific initialization is splitted up to CANIF293

11.4 Added SWS items

SWS Item Rationale
CANIF283 Dependencies to EcuM described
CANIF284 Dependencies to BSW Scheduler described

CANIF285
Polling CAN device driver according refined wakeup detection and
notification concept

146 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

Specification of CAN Interface
 V3.2.0

R3.1 Rev 5

147 of 147 Document ID 012: AUTOSAR_SWS_CAN_Interface
- AUTOSAR confidential -

CANIF286 Added for refined wakeup validation concept
CANIF287 Added for CanIf_SetTransceiverMode
CANIF288 Added for CanIf_GetTransceiverMode
CANIF289 Added for CanIf_GetTrcvWakeupReason
CANIF290 Added for CanIf_SetTransceiverWakeupMode
CANIF291 Splitted from CANIF044, HTH definition
CANIF292 Splitted from CANIF044, HRH definition
CANIF293 Splitted CANIF085, multiple CAN Controller in initialization
CANIF294 Optional interfaces
CANIF295 Added error classification
CANIF296 DLC check behavior with DLC=NULL
CANIF297 Number of bytes to be copied after DLC check
CANIF298 Change to STOPPED Mode in case of BusOff
CANIF299 Dependency to CanSM described.
CANIF734 Parameter for enabling/disabling the TxConfirmationState polling function;

#44977
CANIF735 Parameter for enabling/disabling the TxConfirmationState polling function;

#44977
CANIF736 Parameter for enabling/disabling the TxConfirmationState polling function;

#44977
CANIF737 Parameter for enabling/disabling the TxConfirmationState polling function;

#44977
CANIF738 Parameter for enabling/disabling the TxConfirmationState polling function;

#44977
CANIF739 Parameter for enabling/disabling the TxConfirmationState polling function;

#44977
CANIF740 Parameter for enabling/disabling the TxConfirmationState polling function;

#44977
CANIF746 PDU routing for PDUs with DLC smaller/larger than statically configured

	1 0BIntroduction and functional overview
	2 1BAcronyms and Abbreviations
	3 2BRelated documentation
	3.1 11BInput documents
	3.2 12BRelated standards and norms

	4 3BConstraints and assumptions
	4.1 13BLimitations
	4.2 14BApplicability to car domains

	5 4BDependencies to other modules
	5.1 15BUpper Protocol Layers
	5.2 16BInitialization: Ecu State Manager
	5.3 17BMode Control: CAN State Manager
	5.4 18BLower layers: CAN Driver
	5.5 19BLower layers: CAN Transceiver Driver
	5.6 20BConfiguration
	5.7 21BFile structure
	5.7.1 76BCode file structure
	5.7.2 77BHeader file structure

	6 5BRequirements traceability
	7 6BFunctional specification
	7.1 22BGeneral functionality
	7.2 23BHardware object handles
	7.3 24BStatic CAN L-PDU handles
	7.4 25BDynamic CAN transmit L-PDU handles
	7.5 26BPhysical channel view
	7.6 27BCAN hardware unit
	7.7 28BBasicCAN and FullCAN reception
	7.8 29BInitialization
	7.9 30BTransmit data flow
	7.10 31BTransmit request
	7.11 32BTransmit confirmation
	7.11.1 78BConfirmation after transmission
	7.11.2 79BConfirmation of transmit cancellation

	7.12 33BTransmit buffering
	7.12.1 80BGeneral behavior
	7.12.2 81BBuffer characteristics
	7.12.2.1 156BStorage of L-PDUs in the transmit buffer
	7.12.2.2 157BStorage of L-PDUs is prohibited
	7.12.2.3 158BGet L-PDU with the highest priority
	7.12.2.4 159BRemove transmitted L-PDU
	7.12.2.5 160BInitialization of transmit buffers

	7.12.3 82B Data integrity of transmit buffers

	7.13 34BTransmit cancellation
	7.13.1 83BHardware transmit cancellation not supported or not used
	7.13.2 84BHardware transmit cancellation supported and used

	7.14 35BReceive data flow
	7.14.1 85BLocation of PDU data buffers
	7.14.2 86BReceive data flow

	7.15 36BReceive indication
	7.16 37BRead received data
	7.17 38BRead notification status
	7.18 39BData integrity
	7.19 40BCAN Controller mode
	7.19.1 87BGeneral functionality
	7.19.2 88B CAN Controller operation modes
	7.19.2.1 161B CANIF_CS_UNINIT
	7.19.2.2 162B CANIF_CS_STOPPED
	7.19.2.3 163B CANIF_CS_STARTED
	7.19.2.4 164BCANIF_CS_SLEEP
	7.19.2.5 165BBUSOFF

	7.19.3 89BController mode transitions
	7.19.4 90BWakeup and validated wakeup events

	7.20 41BPDU channel mode control
	7.20.1 91BPDU channel groups
	7.20.2 92BPDU channel modes
	7.20.2.1 166BOFFLINE Mode
	7.20.2.2 167BONLINE Mode
	7.20.2.3 168BONLINE/OFFLINE Mode for Tx/Rx path
	7.20.2.4 169BOFFLINE ACTIVE Mode

	7.21 42BSoftware receive filter
	7.21.1 93BSoftware filtering concept
	7.21.2 94BSoftware filter algorithms

	7.22 43BDLC check
	7.23 44BL-PDU dispatcher to upper layers
	7.24 45BPolling mode
	7.25 46BMultiple CAN Driver support
	7.25.1 95BTransmit requests by using multiple CAN Drivers
	7.25.2 96BNotification mechanism by using multiple CAN Drivers
	7.25.3 97BMapping table for multiple CAN Driver handling

	7.26 47BError classification
	7.27 48BError detection
	7.28 49BError notification
	7.29 50BCode version check

	8 7BAPI specification
	8.1 51BImported types
	8.1.1 98BStandard types
	8.1.2 99BCOM specific types
	8.1.3 100BEcuM specific types
	8.1.4 101BCAN specific types

	8.2 52BType definitions
	8.2.1 102BCanIf_ConfigType
	8.2.2 103BCanIf_ControllerConfigType
	8.2.3 104BCanIf_ControllerModeType
	8.2.4 105BCanIf_ChannelSetModeType
	8.2.5 106BCanIf_ChannelGetModeType
	8.2.6 107BCanIf_NotifStatusType
	8.2.7 108BCanIf_TransceiverModeType
	8.2.8 109BCanIf_TrcvWakeupReasonType
	8.2.9 110BCanIf_TrcvWakeupModeType

	8.3 53BFunction definitions
	8.3.1 111BCanIf_Init
	8.3.2 112BCanIf_InitController
	8.3.3 113BCanIf_SetControllerMode
	8.3.4 114BCanIf_GetControllerMode
	8.3.5 115BCanIf_Transmit
	8.3.6 116BCanIf_ReadRxPduData
	8.3.7 117BCanIf_ReadTxNotifStatus
	8.3.8 118BCanIf_ReadRxNotifStatus
	8.3.9 119BCanIf_SetPduMode
	8.3.10 120BCanIf_GetPduMode
	8.3.11 121BCanIf_GetVersionInfo
	8.3.12 122BCanIf_SetDynamicTxId
	8.3.13 123BCanIf_SetTransceiverMode
	8.3.14 124BCanIf_GetTransceiverMode
	8.3.15 125BCanIf_GetTrcvWakeupReason
	8.3.16 126BCanIf_SetTransceiverWakeupMode
	8.3.17 127BCanIf_CheckWakeup
	8.3.18 128BCanIf_CheckValidation
	8.3.19 CanIf_GetTxConfirmationState

	8.4 54BCall-out notifications
	8.4.1 129BCanIf_TxConfirmation
	8.4.2 130BCanIf_RxIndication
	8.4.3 131BCanIf_CancelTxConfirmation
	8.4.4 132BCanIf_ControllerBusOff

	8.5 55BExpected interfaces
	8.5.1 133BMandatory interfaces
	8.5.2 134BOptional interfaces
	8.5.3 135BConfigurable interfaces
	8.5.3.1 170B<User_TxConfirmation> (PDU Router, CanNm, CanTp)
	8.5.3.2 171B<User_RxIndication> (PDU Router)
	8.5.3.3 172B<User_RxIndication> (CanNm)
	8.5.3.4 173B<User_RxIndication> (CanTp)
	8.5.3.5 174B<User_ControllerBusOff> (CanSM)
	8.5.3.6 175B<User_SetWakeupEvent> (EcuM)
	8.5.3.7 176B<User_ValidationWakeupEvent> (EcuM)

	9 8BSequence diagrams
	9.1 56BTransmit request (single CAN Driver)
	9.2 57BTransmit request (multiple CAN Drivers)
	9.3 58BTransmit confirmation (interrupt mode)
	9.4 59BTransmit confirmation (polling mode)
	9.5 60BTransmit confirmation (with buffering)
	9.6 61BTransmit cancellation (with buffering)
	9.7 62BReceive indication (interrupt mode)
	9.8 63BReceive indication (polling mode)
	9.9 64BRead received data
	9.10 65BStart CAN network
	9.11 66BStop & sleep CAN network
	9.12 67BBusOff notification
	9.13 68BBusOff recovery

	10 9BConfiguration specification
	10.1 69BHow to read this chapter
	10.1.1 136BConfiguration and configuration parameters
	10.1.2 137BVariants
	10.1.3 138BContainers
	10.1.4 139BSpecification template for configuration parameters

	10.2 70BContainers and configuration parameters
	10.2.1 140BVariants
	CanIf
	CanIfPrivateConfiguration
	CanIfPublicConfiguration
	CanIfInitConfiguration
	CanIfTxPduConfig
	CanIfRxPduConfig
	CanIfDispatchConfig
	CanIfControllerConfig
	CanIfInitControllerConfig
	CanIfDriverConfig
	CanIfTransceiverDrvConfig
	CanIfInitHohConfig
	CanIfHthConfig
	CanIfHrhConfig
	CanIfHrhRangeConfig

	10.3 Published information

	11 10BChanges to release 2.1
	11.1 72BDeleted SWS items
	11.2 73BReplaced SWS items
	11.3 74BChanged SWS items
	11.4 75BAdded SWS items

