
Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

Document Title Specification of CAN Driver
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 011
Document Classification Standard

Document Version 2.4.0
Document Status Final
Part of Release 3.1
Revision 5

Document Change History
Date Version Changed by Change Description
20.09.2010 2.4.0 AUTOSAR

Administration
 Updated CAN271 and CAN234
 Legal disclaimer revised

28.01.2010 2.3.0 AUTOSAR
Administration

 Description of Multiplexed Transmit
Functionality improved.

 Reference to CanIf_SetWakeupEvent
replaced by EcuM_CheckWakeup.

 Added missing literal specification for
CanBusoffProcessing,
CanRxProcessing, CanTxProcessing,
CanWakeupProcessing

 SchM_Can.h included in File Structure
 Create new CAN artefacts with updated

BSW UML Model
 Legal disclaimer revised

23.06.2008 2.2.2 AUTOSAR
Administration

Legal disclaimer revised

24.01.2008 2.2.1 AUTOSAR
Administration

Table formatting corrected

1 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

30.11.2007 2.2.0 AUTOSAR
Administration

 Tables generated from UML-models,
 General improvements of requirements

in preparation of CT-development.
 Functions Can_MainFunction_Write,

Can_MainFunction_Read,
Can_MainFunction_BusOff and
Can_MainFunction_WakeUp changed
to scheduled functions

 Cycle Parameters added for new
scheduled functions

 Wakeup concept added (Chapter 7.7)
and addition of function
Can_Cbk_CheckWakeup

 Document meta information extended
 Small layout adaptations made

31.01.2007 2.1.0 AUTOSAR
Administration

 File structure reworked (chapter 5.2)
 Removed return value CAN_WAKEUP

in function Can_SetControllerMode
 Replaced by CAN_NOT_OK
 Renamed CanIf_ControllerWakeup to

CanIf_SetWakeupEvent
 Reworked development errors (chapter

7.10)
 Removed implementation specific

description in Can_Write
 Changed timing of cyclic functions to

"fixed cyclic"
 Reworked "Scope" for all configuration

variables (chapter 10.2)
 Legal disclaimer revised
 Release notes added
 “Advice for users” revised
 “Revision Information” added

21.04.2006 2.0.0 AUTOSAR
Administration

Document structure adapted to common
Release 2.0 SWS Template
 clarified development and production

error handling and function abortion
 multiplexed transmission and TX

cancellation
 version check
 configuration description according

template
 individual main functions for RX TX

and status

2 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

31.05.2005 1.0.0 AUTOSAR
Administration

Initial release

3 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).

Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary
items are licensed under the same rules as applicable to the AUTOSAR Standard.

4 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

Table of Content

1 Introduction and functional overview ... 8

2 Acronyms and abbreviations ... 9

2.1 Priority Inversion... 10
2.2 CAN Hardware Unit.. 11

3 Related documentation.. 13

3.1 Input documents... 13
3.2 Related standards and norms .. 14

4 Constraints and assumptions .. 15

4.1 Limitations .. 15
4.2 Applicability to car domains.. 15

5 Dependencies to other modules.. 16

5.1.1 Static Configuration... 16
5.1.2 Driver Services.. 16
5.1.3 System Services ... 16
5.1.4 Can module Users .. 17

5.2 File structure .. 17
5.2.1 Code file structure ... 17
5.2.2 Header file structure.. 17

6 Requirements traceability .. 19

7 Functional specification ... 25

7.1 Driver scope ... 25
7.2 Driver State Machine.. 26
7.3 CAN Controller State Machine ... 27

7.3.1 State Description... 27
7.3.2 State Transitions ... 28

7.4 Can module/Controller Initialization.. 31
7.5 L-PDU transmission ... 32

7.5.1 Priority Inversion ... 33
7.5.1.1 Multiplexed Transmission... 33
7.5.1.2 Transmit Cancellation .. 34

7.5.2 Transmit Data Consistency ... 35
7.6 L-PDU reception... 35

7.6.1 Receive Data Consistency .. 35
7.7 Wakeup concept... 36
7.8 Notification concept .. 36
7.9 Reentrancy issues.. 37
7.10 Error classification .. 37

7.10.1 Development Errors .. 38
7.10.2 Production Errors .. 38
7.10.3 Return Values ... 39

7.11 Error detection.. 39

5 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

7.12 Error notification ... 39
7.13 Version Check.. 40

8 API specification.. 41

8.1 Imported types.. 41
8.2 Type definitions .. 41

8.2.1 Can_ConfigType ... 41
8.2.2 Can_ControllerConfigType.. 41
8.2.3 Can_IdType... 42
8.2.4 Can_StateTransitionType ... 42
8.2.5 Can_ReturnType... 42

8.3 Function definitions .. 42
8.3.1 Services affecting the complete hardware unit.................................... 43

8.3.1.1 Can_Init.. 43
8.3.1.2 Can_GetVersionInfo .. 43

8.3.2 Services affecting one single CAN Controller...................................... 44
8.3.2.1 Can_InitController .. 44
8.3.2.2 Can_SetControllerMode... 45
8.3.2.3 Can_DisableControllerInterrupts.. 47
8.3.2.4 Can_EnableControllerInterrupts... 48
8.3.2.5 Can_Cbk_CheckWakeup... 49

8.3.3 Services affecting a Hardware Handle .. 49
8.3.3.1 Can_Write .. 49

8.4 Call-back notifications .. 51
8.5 Scheduled functions ... 51

8.5.1.1 Can_MainFunction_Write... 51
8.5.1.2 Can_MainFunction_Read .. 51
8.5.1.3 Can_MainFunction_BusOff .. 52
8.5.1.4 Can_MainFunction_Wakeup.. 52

8.6 Expected Interfaces.. 53
8.6.1 Mandatory Interfaces .. 53
8.6.2 Configurable interfaces ... 54

9 Sequence diagrams .. 55

9.1 Interaction between Can and CanIf module ... 55
9.2 Wakeup sequence.. 55

10 Configuration specification... 56

10.1 How to read this chapter .. 56
10.1.1 Configuration and configuration parameters 56
10.1.2 Variants... 57
10.1.3 Containers... 57

10.2 Containers and configuration parameters .. 58
10.2.1 Variants... 58
10.2.2 Can ... 62
10.2.3 CanGeneral... 62
10.2.4 CanController .. 65
10.2.5 CanHardwareObject.. 68
10.2.6 CanFilterMask ... 70
10.2.7 CanConfigSet.. 71

10.3 Published Information... 71
6 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

11 Changes to Release 2.1 .. 72

11.1 Deleted SWS Items.. 72
11.2 Replaced SWS Items ... 72
11.3 Changed SWS Items.. 72
11.4 Added SWS Items.. 72

12 Changes during SWS Improvements by Technical Office 74

12.1 Deleted SWS Items.. 74
12.2 Replaced SWS Items ... 74
12.3 Changed SWS Items.. 74
12.4 Added SWS Items.. 74

7 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

1 Introduction and functional overview

This specification specifies the functionality, API and the configuration of the
AUTOSAR Basic Software module CAN Driver (called “Can module” in this
document).

The Can module is part of the lowest layer, performs the hardware access and offers
a hardware independent API to the upper layer.
The only upper layer that has access to the Can module is the CanIf module (see
also BSW12092).

The Can module provides services for initiating transmissions and calls the callback
functions of the CanIf module for notifying events, independently from the hardware.

Furthermore, it provides services to control the behavior and state of the CAN
controllers that are belonging to the same CAN Hardware Unit.

Several CAN controllers can be controlled by a single Can module as long as they
belong to the same CAN Hardware Unit.

For a closer description of CAN controller and CAN Hardware Unit see chapter
Acronyms and abbreviations and a diagram in [5].

8 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

2 Acronyms and abbreviations

Abbreviation /
Acronym:

Description:

CAN controller A CAN controller serves exactly one physical channel.
CAN Hardware
Unit

A CAN Hardware unit may consist of one or multiple CAN controllers of
the same type and one, two or multiple CAN RAM areas. The CAN
hardware unit is located on-chip or as external device. The CAN
hardware unit is represented by one CAN driver. A CAN Hardware Unit
may consists of one or multiple CAN controllers of the same type and one
or multiple CAN RAM areas. The CAN Hardware Unit is either on-chip, or
an external device. The CAN Hardware Unit is represented by one CAN
driver.

CAN L-PDU Data Link Layer Protocol Data Unit. Consists of Identifier, DLC and Data
(SDU). (see [15])

CAN L-SDU Data Link Layer Service Data Unit. Data that is transported inside the L-
PDU. (see [15])

DLC Data Length Code (part of L-PDU that describes the SDU length)
Hardware Object A CAN hardware object is defined as a PDU buffer inside the CAN RAM

of the CAN hardware unit / CAN controller.A Hardware Object is defined
as L-PDU buffer inside the CAN RAM of the CAN Hardware Unit.

Hardware
Receive Handle
(HRH)

The Hardware Receive Handle (HRH) is defined and provided by the
CAN driver. Typically each HRH represents exactly one hardware object.
The HRH can be used to optimize software filtering.

Hardware
Transmit Handle
(HTH)

The Hardware Transmit Handle (HTH) is defined and provided by the
CAN driver. Typically each HTH represents one or several (only Release
2) hardware objects, that are configured as hardware transmit pool.

Inner Priority
Inversion

Transmission of a high-priority L-PDU is prevented by the presence of a
pending low-priority L-PDU in the same transmit hardware object.

ISR Interrupt Service Routine
L-PDU Handle

The L-PDU handle is defined and placed inside the CanIf module layer.
Typically each handle represents an L-PDU, which is a constant structure
with information for Tx/Rx processing.

MCAL Microcontroller Abstraction Layer
Outer Priority
Inversion

A time gap occurs between two consecutive transmit L-PDUs.
In this case a lower priority L-PDU from another node can prevent
sending the own higher priority L-PDU. Here the higher priority L-PDU
cannot participate in arbitration during network access because the lower
priority L-PDU already won the arbitration.

Physical Channel

A physical channel represents an interface from a CAN controller to the
CAN Network. Different physical channels of the CAN hardware unit may
access different networks.

Priority The Priority of a CAN L-PDU is represented by the CAN Identifier. The
lower the numerical value of the identifier, the higher the priority.

SFR Special Function Register. Hardware register that controls the controller
behavior.

SPAL Standard Peripheral Abstraction Layer

9 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

2.1 Priority Inversion

"If only a single transmit buffer is used inner priority inversion may occur. Because of
low priority a message stored in the buffer waits until the ”traffic on the bus calms
down”. During the waiting time this message could prevent a message of higher
priority generated by the same microcontroller from being transmitted over the bus."1

10 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

1 Picture and text by CiA (CAN in Automation)

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

"The problem of outer priority inversion may occur in some CAN implementations. Let
us assume that a CAN node wishes to transmit a package of consecutive messages
with high priority, which are stored in different message buffers. If the interframe
space between these messages on the CAN network is longer than the minimum
space defined by the CAN standard, a second node is able to start the transmission
of a lower priority message. The minimum interframe space is determined by the
Intermission field, which consists of 3 recessive bits. A message, pending during the
transmission of another message, is started during the Bus Idle period, at the earliest
in the bit following the Intermission field. The exception is that a node with a waiting
transmission message will interpret a dominant bit at the third bit of Intermission as
Start-of-Frame bit and starts transmission with the first identifier bit without first
transmitting an SOF bit. The internal processing time of a CAN module has to be
short enough to send out consecutive messages with the minimum interframe space
to avoid the outer priority inversion under all the scenarios mentioned."2

2.2 CAN Hardware Unit

The CAN Hardware Unit combines one or several CAN controllers, which may be
located on-chip or as external standalone devices of the same type, with common or
separate Hardware Objects.

Following figure shows a CAN Hardware Unit consisting of two CAN controllers
connected to two Physical Channels:

11 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

2 Text and image by CiA (CAN in Automation)

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

CAN Controller A

Tx A CAN

Message Obj cte
Mailbox A

Transceiver
A Rx A

CAN Controller B

Tx B

Rx B

CAN Controllers with MailboxesCAN Hardware Unit

CAN
Transceiver

B
Message Obj cte

Mailbox B

CAN
Bus A

CAN
Bus B

Physical Channel A

Physical Channel B

12 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

3 Related documentation

3.1 Input documents

[1] Layered Software Architecture
AUTOSAR_LayeredSoftwareArchitecture.pdf

[2] General Requirements on Basic Software Modules
 AUTOSAR_SRS_General.pdf

[3] General Requirements on SPAL
AUTOSAR_SRS_SPAL_General.pdf

[4] Requirements on CAN
 AUTOSAR_SRS_CAN.pdf

[5] Specification of CAN Interface
AUTOSAR_SWS_CANInterface.pdf]

[6] Specification of Development Error Tracer
AUTOSAR_SWS_DET.pdf

[7] Specification of ECU State Manager
AUTOSAR_SWS_ECU_StateManager.pdf

[8] Specification of MCU Driver
AUTOSAR_SWS_MCU_Driver.pdf

[9] Specification of Operating System
AUTOSAR_SWS_OS.pdf

[10] Specification of ECU Configuration
AUTOSAR_ECU_Configuration.pdf

[11] Specification of C Implementation Rules
AUTOSAR_SWS_C_ImplementationRules.pdf

[12] Specification of ECU State Manager
AUTOSAR_SWS_ECU_StateManager.pdf

[13] AUTOSAR Basic Software Module Description Template,
 AUTOSAR_BSW_Module_Description.pdf

13 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

3.2 Related standards and norms

[14] ISO11898 – Road vehicles - Controller area network (CAN)

[15] ISO-IEC 7498-1 – OSI Basic Reference Model

[16] HIS – Joint Subset of the MISRA C Guidelines

14 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

4 Constraints and assumptions

4.1 Limitations

A CAN controller always corresponds to one physical channel. It is allowed to
connect physical channels on bus side. Regardless the CanIf module will treat the
concerned CAN controllers separately.
The only exception is when the hardware supports the 'merging' of several controllers
to one. Then these 'merged' controllers are represented as one controller by the Can
module.

CAN237: The Can module does not support CAN Remote Frames. The Can module
shall not process received remote frames.

4.2 Applicability to car domains

The Can module can be used for any application, where the CAN protocol is used.

15 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

5 Dependencies to other modules

5.1.1 Static Configuration

The configuration elements described in chapter 10 can be referenced by other BSW
modules for their configuration.

5.1.2 Driver Services

CAN238: f the CAN controller is on-chip, the Can module shall not use any service of
other drivers.

CAN239: The function Can_Init shall initialize all on-chip hardware resources that are
used by the CAN controller. The only exception to this is the digital I/O pin
configuration (of pins used by CAN), which is done by the port driver.

CAN240: The Mcu module (SPAL see [8]) shall configure register settings that are
'shared' with other modules

CAN241: The Can module’s environment shall make sure that the Mcu module is
inititalized before initializing the Can module.

CAN242: If an off-chip CAN controller is used3, the Can module shall use services of
other MCAL drivers (i.e. SPI).

CAN243: If the Can module uses services of other MCAL drivers (e.g. SPI), the Can
module’s environment shall make sure that these drivers are up and running before
initializing the Can module.

The sequence of initialization of different drivers is partly specified in [7].

CAN244: The Can module shall use the synchronous APIs of the underlying MCAL
drivers and shall not provide callback functions that can be called by the MCAL
drivers.

Thus the type of connection between µC and CAN Hardware Unit has only impact on
implementation and not on the API.

5.1.3 System Services

CAN280: In special hardware cases, the Can module shall poll for events of the
hardware.

CAN281: The Can module shall contain a timeout detection in case the hardware
doesn't react in the expected time (hardware error) to prevent endless loops. As long

16 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

3 In this case the CAN driver is not any more part of the µC abstraction layer but put part of the ECU
abstraction layer. Therefore it is (theoretically) allowed to use any µC abstraction layer driver it needs.

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

as the system service does not provide a free running timer this timeout shall be
realized with a fixed number of loops.4

Reason: The blocking time of the Can module function that is waiting for hardware
reaction shall be shorter than the CAN main function (i.e. Can_MainFunction_Read)
trigger period, so the CAN main functions can't be used for that purpose.

In case consistency concepts (resources/critical sections) are offered by the BSW
Module Scheduler, the according services will be used by the Can module.

5.1.4 Can module Users

CAN058: The Can module interacts among other modules (eg. Diagnostic Event
Manager (DEM), Development Error Tracer (DET)) with the CanIf module in a direct
way. This document never specifies the actual origin of a request or the actual
destination of a notification. The driver only sees the CanIf module as origin and
destination.

5.2 File structure

5.2.1 Code file structure

CAN078: The code file structure shall not be defined within this specification
completely. At this point it shall be pointed out that the code-file structure shall
include the following file named: Can_PBcfg.c. This file shall contain all post-build
time configurable parameters.
Can_Lcfg.c is not required because the Can module does not support link-time
configuration.

5.2.2 Header file structure

CAN034:

17 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

4In future specifications the System Services will provide two services with ticks of different
resolutions. These ticks will be used to prevent endless loops due to hardware malfunction.

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

ComStack_Types.h

CanIf_Cbk.h

Can.h

Can_Cfg.h

includes includes

Std_Types.h

Dem.h

Can.c Det.h

Spi.h

Includes

includes

includes

includes

includes

includes

includes

(if development
 error detection
is turned on)

MemMap.h

includes

SchM_Can.h

includes

Os.h Can_Irq.c

Dem_IntErrId.h
(Event Id Symbols)

includes

Figure 5-1: File structure for the Can module

CAN035: The module Can_Irq.c contains the implementation of interrupt frames
[BSW00314]. The implementation of the interrupt service routine shall be in Can.c

CAN036: The header file CanIf_Cbk.h contains the declarations of the callback
functions imported by the modules calling the callbacks.
The Can module does not provide callback functions (no Can_Cbk.h, see also
CAN244)

CAN043: The file Can.h contains the declaration of the Can module API

CAN037: The file Can.h only contains 'extern' declarations of constants, global data,
type definitions and services that are specified in the Can module SWS.
Constants, global data types and functions that are only used by the Can module
internally, are declared in Can.c

CAN404: The Can module shall include the header file SchM_Can.h in order to
access the module specific functionality provided by the BSW Scheduler.

18 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

6 Requirements traceability

Document: General requirements on Basic Software [2]

Requirement Satisfied by
[BSW00344] Reference to link-time configuration CAN021
[BSW00404] Reference to post build time
configuration

CAN021

[BSW00405] Reference to multiple configuration
sets

CAN021

[BSW00345] Pre-Build Configuration chapter 10
The configuration parameters are described in a
general way. they can be simply transformed into
#defines. Generated code will not contain those
defines. The code generator will process e.g. a
XML file“

[BSW159] Tool-based configuration CAN022
[BSW167] Static configuration checking CAN023, CAN024
[BSW171] Configurability of optional functionality CAN064, CAN095, CAN069
[BSW170] Data for reconfiguration of SW-
components

not applicable
(doesn't concern this document)

[BSW00380] C-Files for configuration parameters CAN078
[BSW00419] Separate C-Files for pre-compile
time configuration

CAN078

[BSW00381] Separate configuration header file
for pre-compile time parameters

CAN034

[BSW00412] Separate H-File for configuration
parameters

CAN034

[BSW00383] List dependencies of configuration
files

not applicable
(implementation specific documentation)

[BSW00384] List dependencies to other modules Chapter 5
[BSW00387] Specify the configuration class of
callback function

CAN234

[BSW00388] Introduce containers Chapter 10.2
[BSW00389] Containers shall have names Chapter 10.2
[BSW00390] Parameter content shall be unique
within the module

fulfilled by parameter definitions in Chapter 10.2

[BSW00391] Parameter shall have unique names fulfilled by parameter definitions in Chapter 10.2
[BSW00392] Parameters shall have a type fulfilled by parameter definitions in Chapter 10.2
[BSW00393] Parameters shall have a range fulfilled by parameter definitions in Chapter 10.2
[BSW00394] Specify the scope of the parameters fulfilled by parameter definitions in Chapter 10.2
[BSW00395] List the required parameters not applicable

(the parameters are defined in a way that their
values are independent from other settings. The
dependency is in the code generation
(implementation) not in the configuration
description -> hardware abstraction)

[BSW00396] Configuration classes fulfilled by parameter definitions in Chapter 10.2
[BSW00397] Pre-compile-time parameters Not applicable: this is not a requirement but a

definition of term.
[BSW00398] Link-time parameters Not applicable: this is not a requirement but a

definition of term.
[BSW00399] Loadable Post-build time parameters Not applicable: this is not a requirement but a

definition of term.
[BSW00400] Selectable Post-build time
parameters

Not applicable: this is not a requirement but a
definition of term.

[BSW00402] Published information CAN085
[BSW00375] Notification of wake-up reason CAN018

19 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

[BSW101] Initialization interface CAN250
[BSW168] Diagnostic Interface of SW
components

not applicable
(requirement for the diagnostic services, not for
the BSW module)

[BSW00416] Sequence of Initialization not applicable
(this is a general software integration requirement)

[BSW00406] Check module initialization CAN103, defined development error
CAN_E_UNINIT

[BSW00407] Function to read out published
parameters

CAN105, CAN106

[BSW00423] Usage of SW-C template to describe
BSW modules with AUTOSAR Interfaces

not applicable
(this module does not provide an AUTOSAR
interface)

[BSW00424] BSW main processing function task
allocation

not applicable
(requirement on system design, not on a single
module)

[BSW00425] Trigger conditions for schedulable
objects

not applicable
(trigger conditions are system configuration
specific.)

[BSW00426] Exclusive areas in BSW modules not applicable
(no exclusive areas defined)

[BSW00427] ISR description for BSW modules not applicable
(no ISR’s defined for this module, usage of
interrupts is implementation specific)

[BSW00428] Execution order dependencies of
main processing functions

CAN110

[BSW00429] Restricted BSW OS functionality
access

not applicable
(requirement on the implementation, not for the
specification)

[BSW00431] The BSW Scheduler module
implements task bodies

not applicable
(requirement on the BSW scheduler module)

[BSW00432] Modules should have separate main
processing functions for read/receive and
write/transmit data path

CAN031, CAN108, CAN109, CAN112

[BSW00433] Calling of main processing functions not applicable
(requirement on system design, not on a single
module)

[BSW00434] The Schedule Module shall provide
an API for exclusive areas

not applicable
(requirement on schedule module)

[BSW00336] Shutdown interface not applicable
[BSW00337] Classification of errors CAN026, CAN027, CAN028, CAN029
[BSW00338] Detection and Reporting of
development errors

CAN028, CAN027

[BSW00369] Do not return development error
codes via API

CAN089

[BSW00339] Reporting of production relevant
errors and exceptions

CAN029, CAN113

[BSW00421] Reporting of production relevant
error events

CAN029

[BSW00422] Debouncing of production relevant
error status

not applicable
(requirement on the DEM)

[BSW00420] Production relevant error event rate
detection

not applicable
(requirement on the DEM)

[BSW00417] Reporting of Error Events by Non-
Basic Software

not applicable
(this is a BSW mdoule)

[BSW00323] API parameter checking CAN026
[BSW004] Version check CAN111
[BSW00409] Header files for production code
error IDs

CAN081

20 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

[BSW00385] List possible error notifications CAN104
[BSW00386] Configuration for detecting an error CAN089
[BSW161] Microcontroller abstraction see Chapter 1
[BSW162] ECU layout abstraction not applicable

(done in CanIf module)
[BSW00324] Do not use HIS Library Fulfilled by the concept of Can module and CanIf

module

[BSW005] No hard coded horizontal interfaces
within MCAL

CAN238, CAN242

[BSW00415] User dependent include files not applicable
(only one user for this module)

[BSW166] BSW Module interfaces CAN043
[BSW164] Implementation of interrupt service
routines

CAN033

[BSW00325] Runtime of interrupt service routines not applicable
(The runtime is not under control of the Can
module, because callback functions are called.)

[BSW00326] Transition from ISRs to OS tasks not applicable.
When the transition from ISR to OS task is done
will be defined in COM Stack SWS

[BSW00342] Usage of source code and object
code

not applicable
(Only source code delivery is supported)

[BSW00343] Specification and configuration of
time

CAN063

[BSW160] Human-readable configuration data CAN047
[BSW007] HIS MISRA C CAN079
[BSW00300] Module naming convention is fulfilled, see function definitions in 8.3
[BSW00413] Accessing instances of BSW
modules

not applicable
(his requirement is fulfilled by the CanIf module
specification)

[BSW00347] Naming separation of drivers CAN077
[BSW00305] Self-defined data types naming
convention

is fulfilled, see type definitions in 8.2

[BSW00307] Global variables naming convention not applicable
(because no global variables are specified for Can
module)

[BSW00310] API naming convention is fulfilled, see function definitions in 8.3
[BSW00373] Main processing function naming
convention

CAN031

[BSW00327] Error values naming convention chapter 7.8
error names have been selected accordingly

[BSW00335] Status values naming convention chapter 7.1
is fulfilled by state description

[BSW00350] Development error detection
keyword

CAN064

[BSW00408] Configuration parameter naming
convention

fulfilled by parameter definitions in Chapter 10.2

[BSW00410] Compiler switches shall have
defined values

fulfilled by parameter definitions in Chapter 10.2

[BSW00411] Get version info keyword CAN106
[BSW00346] Basic set of module files CAN034
[BSW158] Separation of configuration from
implementation

CAN034

[BSW00314] Separation of interrupt frames and
service routines

CAN035

[BSW00370] Separation of callback interface from
API

CAN036

[BSW00435] Module Header File Structure for the
Basic Software Scheduler

CAN034, CAN404

21 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

[BSW00348] Standard type header CAN034
[BSW00353] Platform specific type header not applicable

(automatically included with Standard types)
[BSW00361] Compiler specific language
extension header

not applicable

[BSW00301] Limit imported information CAN034
[BSW00302] Limit exported information CAN037
[BSW00328] Avoid duplication of code Implementation requirement

Fulfilled e.g. by defining one Can module that
controls multiple channels

[BSW00312] Shared code shall be reentrant CAN214, CAN231, CAN232, CAN233
[BSW006] Platform independency see Chapter 1
[BSW00357] Standard API return type not used
[BSW00377] Module Specific API return type CAN039
[BSW00304] AUTOSAR integer data types standard integer data types are used
[BSW00355] Do not redefine AUTOSAR integer
data types

no redefined integer types in 8.2

[BSW00378] AUTOSAR boolean type not applicable
(not used)

[BSW00306] Avoid direct use of compiler and
platform specific keywords

CAN079

[BSW00308] Definition of global data CAN079
[BSW00309] Global data with read-only constraint CAN079
[BSW00371] Do not pass function pointers via API chapter 8.3

(function definitions)
[BSW00358] Return type of init() functions CAN223
[BSW00414] Parameter of init function CAN223
[BSW00376] Return type and parameters of main
processing functions

CAN031

[BSW00359] Return type of callback functions not applicable
(no callback functions implemented in Can
module)

[BSW00360] Parameters of callback functions no callbacks implemented in Can module
[BSW00329] Avoidance of generic interfaces No generic interface used.

Still content of functions might be configuration
dependent. Scope of function is always defined

[BSW00330] Usage of macros instead of
functions

CAN079

[BSW00331] Separation of error and status values CAN104, CAN039
[BSW00436] Module Header File Structure for the
Basic Software Memory Mapping

CAN034

[BSW009], [BSW00401], [BSW172], [BSW010],
[BSW00333], [BSW00374], [BSW00379],
[BSW003], [BSW00318], [BSW00321],
[BSW00341], [BSW00334]

Software Documentation Requirements are not
covered in the CAN driver SWS

Document: AUTOSAR requirements on Basic Software, cluster SPAL (general SPAL
requirements) [3]

Requirement Satisfied by
[BSW12263] Object code compatible
configuration concept

CAN021

[BSW12056] Configuration of notification
mechanisms

CAN234

[BSW12267] Configuration of wake-up sources CAN257, CAN258, CAN018
[BSW12057] Driver module initialization CAN154
[BSW12125] Initialization of hardware resources CAN053
[BSW12163] Driver module de-initialization not applicable

22 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

(decision in JointMM Meeting: no de-initialization
for drivers that don't need to store non volatile
information)

[BSW12058]] Individual initialization of overall
registers

CAN054

[BSW12059] General initialization of overall
registers

CAN055

[BSW12060] Responsibility for initialization of
one-time writable registers

CAN055

[BSW12062] Selection of static configuration sets CAN056
[BSW12068] MCAL initialization sequence not applicable

(requirement on station manager)
[BSW12069] Wake-up notification of ECU State
Manager

CAN018

[BSW157] Notification mechanisms of drivers and
handlers

CAN026, CAN028, CAN029, CAN031, CAN108,
CAN109, CAN112

[BSW12155] Prototypes of callback functions not applicable
(information has to be exchanged (see
[BSW00359], [BSW00360]))

[BSW12169] Control of operation mode CAN017
[BSW12063] Raw value mode CAN059, CAN060
[BSW12075] Use of application buffers CAN011
[BSW12129] Resetting of interrupt flags CAN033
[BSW12064] Change of operation mode during
running operation

not applicable

[BSW12448] Behavior after development error
detection

CAN091, CAN089

[BSW12067] Setting of wake-up conditions CAN257, CAN258, CAN018
[BSW12077] Non-blocking implementation CAN029
[BSW12078] Runtime and memory efficiency no effect on API definition

implementation requirement
[BSW12092] Access to drivers CAN058
[BSW12265] Configuration data shall be kept
constant

CAN021 (stored in ROM -> implicitly constant)

[BSW12264] Specification of configuration items done in chapter 10
[BSW12081] Use HIS requirements as input No requirement

This req. does not affect the HIS Can module

Document: AUTOSAR requirements on Basic Software, cluster CAN Driver [4]

Requirement Satisfied by
[BSW01125] Data throughput read direction not applicable

(requirement affects complete COM stack and will
not be broken down for the individual layers)

[BSW01126] Data throughput write direction not applicable
(requirement affects complete COM stack and will
not be broken down for the individual layers)

[BSW01139] CAN controller specific initialization CAN062
[BSW01033] Basic Software Modules
Requirements

see table above

[BSW01034] Hardware independent
implementation

see Chapter 1

[BSW01035] Multiple CAN controller support see Chapter 1
[BSW01036] CAN Identifier Length Configuration CAN065
[BSW01037] Hardware Filter Configuration CAN066, CAN325
[BSW01038] Bit Timing Configuration CAN005, CAN063, CAN073, CAN074, CAN075
[BSW01039] CAN Hardware Object Handle
definitions

CAN324

23 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

[BSW01040] HW Transmit Cancellation
configuration

CAN069

[BSW01058] Configuration of multiplexed
transmission

CAN095

[BSW01062] Configuration of polling mode CAN007
[BSW01135] Configuration of multiple TX
Hardware Objects

CAN100

[BSW01041] Can module Module Initialization CAN154
[BSW01042] Selection of static configuration sets CAN062
[BSW01043] Enable/disable Interrupts CAN049, CAN050
[BSW01059] Data Consistency CAN011, CAN012
[BSW01045] Reception Indication Service CAN013
[BSW01049] Dynamic transmission request
service

CAN212, CAN213, CAN214

[BSW01051] Transmit Confirmation CAN016
[BSW01053] CAN controller mode select CAN017
[BSW01054] Wake-up Notification CAN018
[BSW01132] Mixed mode for notification detection
on CAN HW

CAN099

[BSW01133] HW Transmit Cancellation Support CAN285, CAN286, CAN287, CAN288, CAN399,
CAN400

[BSW01134] Multiplexed Transmission CAN277, CAN401, CAN402, CAN403, CAN076
[BSW01055] Bus-off Notification CAN019
[BSW01060] no automatic bus-off recovery CAN020
[BSW01122] Support for wakeup during sleep
transition

CAN048

24 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

7 Functional specification

On L-PDU transmission, the Can module writes the L-PDU in an appropriate buffer
inside the CAN controller hardware.
See chapter 7.5 for closer description of L-PDU transmission.

On L-PDU reception, the Can module calls the RX indication callback function with
ID, DLC and pointer to L-SDU as parameter.
See chapter 7.6 for closer description of L-PDU reception.

The Can module provides an interface that serves as periodical processing function,
and which must be called by the CanIf module interface periodically.

Furthermore, the Can module provides services to control the state of the CAN
controllers. Bus-off and Wake-up events are notified by means of callback functions.

The Can module is a Basic Software Module that accesses hardware resources.
Therefore, it is designed to fulfill the requirements for Basic Software Modules
specified in AUTOSAR_SRS_SPAL (see [3]).

CAN033: The Can module shall implement the interrupt service routines for all CAN
Hardware Unit interrupts that are needed. The Can module shall disable all unused
interrupts in the CAN controller. The Can module shall reset the interrupt flag at the
end of the ISR (if not done automatically by hardware). The Can module shall not set
the configuration (i.e. priority) of the vector table entry.

CAN079: The Can module shall fulfill all design and implementation guidelines
described in [11].

7.1 Driver scope

One Can module provides access to one CAN Hardware Unit that may consist of
several CAN controllers.

CAN077: For CAN Hardware Units of different type, different Can modules shall be
implemented.

CAN284: In case several CAN Hardware Units (of same or different vendor) are
implemented in one ECU the function names, and global variables of the Can
modules shall be implemented such that no two functions with the same name are
generated.

The naming convention is as follows:

<Can module API name>_<vendorID>_<driver abbreviation>()

BSW00347 specifies the naming convention.
See [5] for description how several Can modules are handled by the CanIf module.

25 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

7.2 Driver State Machine

The Can module has a very simple state machine, which is shown in Figure 7.1.

CAN103: After power-up/reset, the Can module shall be in the state CAN_UNINIT.

Figure 7-1

CAN245: The function Can_Init shall initialize all CAN controllers according to their
configuration.

Each CAN controller must then be started separately by calling the function
Can_SetControllerMode(CAN_T_START).

CAN246: After initializing all controllers inside the HW Unit, the function Can_Init
shall change the module state to CAN_READY.

Implementation hint:
Hardware register settings that have impact on all CAN controllers inside the HW
Unit can only be set in the function Can_Init.

CAN247: The Can module’s environment shall call Can_Init at most once during
runtime.

CAN248: The function Can_Init shall report the error CAN_E_UNINIT, if Can_Init
was called prior to any Can module function.

Implementation hint:
The Can module must only implement a variable for the module state, when the
development error tracing is switched on. When the development error tracing is
switched off, the Can module does not need to implement this 'state machine',
because the state information is only needed to check if Can_Init was called prior to
any Can module function.

26 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

7.3 CAN Controller State Machine

Each CAN controller has a state machine implemented in hardware.
For each CAN controller a 'software' state machine is implemented in the CanIf
module. [5] shows the implemented software state machine. Any CAN hardware
access is encapsulated by functions of the Can module, but the Can module does
not memorize the state changes.

 During a transition phase the software controller state inside the CanIf module
may differ from the hardware state of the CAN controller.

The Can module offers the services Can_Init, Can_InitController and
Can_SetControllerMode.

These services perform the necessary register settings that cause the required
change of the hardware CAN controller state.

There are two possibilities for triggering these state changes by external events:
 Bus-off
 HW wakeup

These are indicated either by an interrupt or by a status bit that is polled in the
Can_MainFunction_BusOff or Can_MainFunction_Wakeup.

The Can module does the register settings that are necessary to fulfill the required
behavior (i.e. no hardware recovery in case of bus off).
Then it notifies the CanIf module with the corresponding callback function. The
software state is then changed inside this callback function.

 The Can module does not check for validity of state changes.
It is the task of the CanIf module to trigger only transitions that are allowed in the
current state. Only when development errors are enabled, does the Can module
check the transition and, in case of wrong implementation of the CanIf module, raise
the development error CAN_E_TRANSITION.

 The Can module does not check the actual state before it performs Can_Write or
raises callbacks.

 During a transition phase - where the software controller state inside the CanIf
module differs from the hardware state of the CAN controller – transmit might fail or
be delayed because the hardware CAN controller is not yet participating on the bus.
The Can module does not provide a notification for this case.

7.3.1 State Description

This chapter describes the required hardware behavior for the different SW states.
The software state machine itself is implemented and described in the CanIf module.
Please refer to [5] for the state diagram.

27 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

CANIF_CS_UNINIT

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

The CAN controller is not initialized. All registers belonging to the CAN module are in
reset state, CAN interrupts are disabled. The CAN Controller is not participating on
the CAN bus.

CANIF_CS_STOPPED

In this state the CAN Controller is initialized but does not participate on the bus. Also
error frames and acknowledges must not be sent.
(Example: For many controllers entering an 'initialization'-mode causes the controller
to be stopped.)

CANIF_CS_STARTED

The controller is in a normal operation mode with complete functionality, which
means it participates in the network. For many controllers leaving the 'initialization'-
mode causes the controller to be started.

CANIF_CS_SLEEP

The hardware settings only differ from CANIF_CS_STOPPED for CAN hardware that
support a sleep mode (wake-up over CAN bus directly supported by CAN hardware).

CAN257: When the CAN hardware supports sleep mode, when transitioning into
mode “CANIF_CS_SLEEP”, the Can module shall set the controller to a state from
which the hardware can be woken over CAN Bus.

CAN258: When the CAN hardware does not support sleep mode, the Can module
shall use the same hardware state for CANIF_CS_SLEEP as for
CANIF_CS_STOPPED.

7.3.2 State Transitions

A state transition is triggered by software with the function Can_SetControllerMode,
with the required transition as parameter. Except for CAN_T_SLEEP, this function is
non-blocking.
Some transitions are triggered by events on the bus (hardware). These transitions
cause a notification by means of a callback function.
Typically, for state transitions the CAN controller configuration is changed.
Plausibility checks for state transitions are only performed with development error
detection switched on. The behavior for invalid5 transitions in production code is
undefined.

Can_Init
 CANIF_CS_UNINIT -> CANIF_CS_STOPPED (for all controllers in HW unit)

28 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

5 Example for invalid transition: CAN_T_SLEEP when controller state is CAN_CS_STARTED

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

 software triggered by the function call Can_Init
 does configuration for all CAN controllers inside HW Unit

All control registers are set according to the static configuration.

CAN259: The function Can_Init shall set all CAN controllers in the state
CANIF_CS_STOPPED.

Can_InitController
 CANIF_CS_STOPPED -> CANIF_CS_STOPPED
 software triggered by the function call Can_InitController
 changes the CAN controller configuration

All control registers are set according to the static configurations that are not global
CAN HW Unit settings (See also Can_Init).

CAN256: The Can module’s environment shall only call Can_InitController when the
CAN controller is in state CANIF_CS_STOPPED.

CAN260: The function Can_InitController shall maintain the CAN controller in the
state CANIF_CS_STOPPED. The function Can_InitController shall ensure that any
settings that will cause the CAN controller to participate in the network are not set.

Can_SetControllerMode(CAN_T_START)
 CANIF_CS_STOPPED -> CANIF_CS_STARTED
 software triggered

CAN261: The function Can_SetControllerMode(CAN_T_START) shall set the
hardware registers in a way that makes the CAN controller participating on the
network.

CAN262: The function Can_SetControllerMode(CAN_T_START) shall be non-
blocking and shall not wait until the CAN controller is fully operational.

Transmit requests that are initiated before the CAN controller is operational may
either be delayed or get lost. The only indicator for operability is the reception of TX
confirmations or RX indications.
 The sending entities might get a confirmation timeout and need to be able to cope
with that.

Can_SetControllerMode(CAN_T_STOP)
 CANIF_CS_STARTED -> CANIF_CS_STOPPED
 software triggered

CAN263: The function Can_SetControllerMode(CAN_T_STOP) shall set the bits
inside the CAN hardware such that the CAN controller stops participating on the
network.

29 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

CAN264: The function Can_SetControllerMode(CAN_T_STOP) shall be non-
blocking and shall not wait until the CAN controller is really switched off.

CAN282: The function Can_SetControllerMode(CAN_T_STOP) shall cancel pending
messages.

CAN283: The function Can_SetControllerMode(CAN_T_STOP) shall not call a
cancellation notification.

Hint: Even if pending messages are cancelled by the function
Can_SetControllerMode(CAN_T_STOP), there are hardware restrictions and racing
problems. So it cannot be guaranteed if the cancelled messages are still processed
by the hardware or not.

Can_SetControllerMode(CAN_T_SLEEP)
 CANIF_CS_STOPPED -> CANIF_CS_SLEEP
 software triggered

CAN265: The function Can_SetControllerMode(CAN_T_SLEEP) shall put the
controller into sleep mode.

CAN266: If the CAN HW does support a sleep mode, the function
Can_SetControllerMode(CAN_T_SLEEP) shall be blocking and shall only return
when it is assured that the CAN hardware is wakeable.

CAN290: If the CAN HW does not support a sleep mode, the function
Can_SetControllerMode(CAN_T_SLEEP) shall have no effect (as the controller is
already in stopped state).

Can_SetControllerMode(CAN_T_WAKEUP)
 CANIF_CS_SLEEP -> CANIF_CS_STOPPED
 software triggered

CAN267: If the CAN HW does not support a sleep mode, the function
Can_SetControllerMode(CAN_T_WAKEUP) shall have no effect (as the controller is
already in stopped state).

CAN268: The function Can_SetControllerMode(CAN_T_WAKEUP) shall be non-
blocking.

Hardware Wakeup (triggered by wake-up event from CAN bus)
 CANIF_CS_SLEEP -> CANIF_CS_STOPPED
 triggered by incoming L-PDUs

This state transition will only occur when sleep mode is supported by hardware.

30 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

CAN270: On hardware wakeup (triggered by a wake-up event from CAN bus), the
Can module shall transition into the state CAN_IF_CS_STOPPED.

CAN271: On hardware wakeup (triggered by a wake-up event from CAN bus), the
Can module shall call the function EcuM_CheckWakeup either in interrupt context or
in the context of Can_MainFunction_Wakeup.

CAN269: The Can module shall not further process the L-PDU that caused a wake-
up.

CAN048: In case of a CAN bus wake-up during sleep transition, the function
Can_SetControllerMode(CAN_T_WAKEUP) shall return CAN_NOT_OK.

Bus-Off (triggered by state change of CAN controller)

CAN020:
 CANIF_CS_STARTED -> CANIF_CS_STOPPED
 triggered by hardware if the CAN controller reaches bus-off state
 The CanIf module is notified with the callback function CanIf_ControllerBusOff

after stopped state is reached.

CAN272: After bus-off detection, the Can module shall transition to the state
CANIF_CS_STOPPED and shall ensure that the CAN controller doesn't participate
on the network anymore.

CAN273: After bus-off detection, the Can module shall cancel still pending messages
without raising a cancellation notification.

CAN274: The Can module shall disable or suppress automatic bus-off recovery

7.4 Can module/Controller Initialization

CAN249: The CanIf module shall initialize the Can module during startup phase by
calling the function Can_Init before using any other functions of the Can module.

CAN250: The function Can_Init shall initialize:
 static variables, including flags,
 Common setting for the complete CAN HW unit
 CAN controller specific settings for each CAN controller

CAN053: registers of CAN controller Hardware resources that are not used.

CAN054: registers that contain ‘overall’ settings also relevant for other driver
modules (i.e. SPAL) in a way that other modules are not affected (BSW12058).
Can_Init shall perform write access to these registers in an atomic manner.

31 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

CAN055: registers that contain ‘overall’ settings also relevant for other driver
modules that cannot be separated from each other (these are initialized by a system
module of the microcontroller abstraction layer) (BSW12059).

CAN056: Post-Build configuration elements that are marked as 'multiple' ('M' or 'x')
in chapter 10 can be selected by passing the pointer 'Config' to the init function of the
module.

CAN023: The consistency of the configuration must be checked by the configuration
tool(s).

CAN062: The function Can_InitController shall re-initialize the CAN controller and the
controller specific settings.

The CanIf module must first set the CAN controller in CANIF_CS_STOPPED state.
Then it may call Can_InitController.

CAN255: The function Can_InitController shall only affect register areas that contain
specific configuration for a single CAN controller.

CAN021: The desired CAN controller configuration can be selected with the
parameter Config.

CAN291: Config is a pointer into an array of hardware specific data structure stored
in ROM.The different controller configuration sets are located as data structures in
ROM.

The possible values for Config are provided by the configuration description (see
chapter 10).
The Can module configuration defines the global CAN HW Unit settings and
references to the default CAN controller configuration sets.

7.5 L-PDU transmission

On L-PDU transmission, the Can module converts the L-PDU contents ID and DLC
to a hardware specific format (if necessary) and triggers the transmission.

CAN059: Data mapping by CAN to memory is defined in a way that the CAN data
byte which is sent out first is array element 0, the CAN data byte which is sent out
last is array element 7.

If the presentation inside the CAN Hardware buffer differs from AUTOSAR definition,
the Can module must provide an adapted SDU-Buffer for the upper layers.

CAN100: Several TX hardware objects with unique HTHs may be configured. The
CanIf module provides the HTH as parameter of the TX request. See Figure 7-2 for a
possible configuration.

32 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

Message Objects of CAN Hardware

Figure 7-2: Example of assignment of HTHs and HRHs to the Hardware Objects. The numbering
of HTHs and HRHs are implementation specific. The chosen numbering is only an example.

CAN276: The function Can_Write shall store the swPduHandle that is given inside
the parameter PduInfo until the Can module calls the CanIf_TXConfirmation for this
request where the swPduHandle is given as parameter.

The feature of CAN276 is used to reduce time for searching in the CanIf module
implementation.

7.5.1 Priority Inversion

To prevent priority inversion two mechanisms are necessary: multiplexed transmit
and hardware cancellation (see chapter 2.1).

7.5.1.1 Multiplexed Transmission

CAN277: The Can module shall allow that the functionality “Multiplexed
Transmission” is statically configurable (ON | OFF) at pre-compile time.

CAN401: Several transmit hardware objects shall be assigned by one HTH to
represent one transmit entity to the upper layer.

CAN402: The Can module shall support multiplexed transmission mechanisms for
devices where either
- Multiple transmit hardware objects, which are grouped to a transmit entity can be

filled over the same register set, and the microcontroller stores the L-PDU into a
free buffer autonomously,

or
- The Hardware provides registers or functions to identify a free transmit hardware

object within a transmit entity.

HRH = 0

HRH = 1

unused

HRH = 2

HRH = 3

unused

HTH = 4

HTH = 5

ID DLC SDU

ID DLC SDU

ID DLC SDU

ID DLC SDU

ID DLC SDU

ID DLC SDU

ID DLC SDU

ID DLC SDU

33 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

CAN403: The Can module shall support multiplexed transmission for devices, which
send L-PDUs in order of L-PDU priority.

CAN076: The Can module shall NOT support software emulation for the
transmission in order of LPDU-priority.

Message Objects of CAN Hardware

Figure 7-3: Example of assignment of HTHs and HRHs to the Hardware Objects with
multiplexed transmission. The numbering of HTHs and HRHs are implementation specific. The

chosen numbering is only an example.

7.5.1.2 Transmit Cancellation

CAN278: The Can module shall allow that the functionality “Transmit Cancellation” is
statically configurable (ON | OFF) at pre-compile time.

The complete cancellation sequence is described in the CanIf module [5].

CAN285: Transmit cancellation may only be used when transmit buffers are enabled
inside the CanIf module.

CAN286: The Can module shall initiate a cancellation, when the hardware transmit
object assigned by a HTH is busy and an L-PDU with the identical or higher priority is
requested to be transmitted.

The following two items are valid, in case multiplexed transmission functionality is
enabled and several hardware transmit objects are assigned by one HTH:

CAN399: The Can module shall initiate a cancellation of the L-PDU with the lowest
priority, when all hardware transmit objects assigned by the HTH are busy and an L-
PDU with a higher priority is requested to be transmitted.

HRH = 0

HRH = 1

unused

HRH = 2

HRH = 3

ID DLC SDU

ID DLC SDU

ID DLC SDU

ID DLC SDU

ID DLC SDU

SDUDLCID

SDUDLCID HTH = 4

ID DLC SDU

34 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

CAN400: The Can module shall initiate a cancellation, when one of the hardware
transmit objects assigned by the HTH is busy and an L-PDU with identical priority is
requested to be transmitted.

The incoming request is also rejected because the cancellation is asynchronous.

CAN287: The Can module shall raise a notification when the cancellation was
successful by calling the function CanIf_CancelTxConfirmation.

CAN288: The TX request for the new L-PDU shall be repeated by the CanIf module,
inside the notification function CanIf_CancelTxConfirmation.

Implementation note:
For sequence relevant streams the sender must assure that the next transmit request
for the same CAN ID is only initiated after the last request was confirmed.

7.5.2 Transmit Data Consistency

CAN011: The Can module shall directly copy the data from the upper layer buffers. It
is the responsibility of the upper layer to keep the buffer consistent until return of
function call (Can_Write).

7.6 L-PDU reception

CAN279: On L-PDU reception, the Can module shall call the RX indication callback
function with ID, DLC and pointer to the L-SDU buffer as parameter. If necessary,
the Can module shall convert the ID and DLC to a standardized format (i.e. MSB that
marks extended identifiers).

CAN060: Data mapping by CAN to memory is defined in a way that the CAN data
byte which is sent out first is array element 0, the CAN data byte which is sent out
last is array element 7.
If the presentation inside the CAN Hardware buffer differs from AUTOSAR definition,
the Can module must provide an adapted SDU-Buffer for the upper layers.

7.6.1 Receive Data Consistency

CAN299: The Can module shall copy the L-SDU in a shadow buffer after reception, if
the RX buffer cannot be protected (locked) by CAN Hardware against overwriting by
a newly received message.

CAN300: The Can module shall copy the L-SDU in a shadow buffer, if the CAN
Hardware is not globally accessible.

The complete RX processing (including copying to destination layer, e.g. COM) is
done in the context of the RX interrupt or in the context of the
Can_MainFunction_Read.

35 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

CAN012: heguarantee that neither the ISRs nor the function
Can_MainFunction_Read can be interrupted by itself. The CAN hardware (or
shadow) buffer is always consistent, because it is written and read in sequence in
exactly one function that is never interrupted by itself.

If the hardware can't be configured to lock the RX hardware object after reception
(hardware feature) it could happen that the Hardware buffer is overwritten by a newly
arrived message.

CAN301: The configuration check shall assure that the interrupt latency or
Can_MainFunction_Read call period can't exceed the time for the reception of one L-
PDU.

7.7 Wakeup concept

The Can module handles wakeups that can be detected by the Can controller itself
and not via the Can transceiver. There are two possible scenarios: wakeup by
interrupt and wakeup by polling.

For wakeup by interrupt, an ISR of the Can module is called when the hardware
detects the wakeup.
CAN364: If the ISR for wakeup events is called, it shall call EcuM_CheckWakeup in
turn. The parameter passed to EcuM_CheckWakeup shall be the ID of the wakeup
source referenced by the CanWakeupSourceRef configuration parameter.

The ECU State Manager will then set up the MCU and call the Can module back via
the Can Interface, resulting in a call to Can_Cbk_CheckWakeup.

When wakeup events are detected by polling, the ECU State Manager will cyclically
call Can_Cbk_CheckWakeup via the Can Interface as before. In both cases,
Can_Cbk_CheckWakeup will check if there was a wakeup detected by a Can
controller and return the result. The Can Interface will then inform the ECU State
Manager of the wakeup event.

The wakeup validation to prevent false wakeup events, will be done by the ECU
State Manager and the Can Interface afterwards and without any help from the Can
module.

For a general description of the wakeup mechanisms and wakeup sequence
diagrams refer to Specification of ECU State Manager [12].

7.8 Notification concept

The Can module offers only an event triggered notification interface to the CanIf
module. Each notification is represented by a callback function.

CAN099: The hardware events may be detected by an interrupt or by polling status
flags of the hardware objects. The configuration possibilities regarding polling is

36 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

hardware dependent (i.e. which events can be polled, which events need to be
polled), and not restricted by this standard.

CAN007: It shall be possible to configure the driver such that no interrupts at all are
used (complete polling).

The configuration of what is and is not polled by the Can module is internal to the
driver, and not visible outside the module. The polling is done inside the CAN main
functions (Can_MainFunction_xxx). Also the polled events are notified by the
appropriate callback function. Then the call context is not the ISR but the CAN main
function. The implementation of all callback functions shall be done as if the call
context was the ISR.

For further details see also description of the CAN main functions
Can_MainFunction_Read, Can_MainFunction_Write, Can_MainFunction_BusOff and
Can_MainFunction_Wakeup.

7.9 Reentrancy issues

A routine must satisfy the following conditions to be reentrant:
1. It uses all shared variables in an atomic way, unless each is allocated to a

specific instance of the function.
2. It does not call non-reentrant functions.
3. It does not use the hardware in a non-atomic way.

Transmit requests are simply forwarded by the CanIf module inside the function
CanIf_Transmit.
The function CanIf_Transmit is re-entrant. Therefore the function Can_Write needs to
be implemented thread-safe (for example by using mutexes):
Further (preemptive) calls will return with CAN_BUSY when the write can't be
performed re-entrant. (example: write to different hardware TX Handles allowed,
write to same TX Handles not allowed)
In case of CAN_BUSY the CanIf module queues that request. (same behavior as if
all hardware objects are busy).

Can_EnableCanInterrupts and Can_DisableCanInterrupts may be called inside re-
entrant functions. Therefore these functions also need to be reentrant.

All other services don't need to be implemented as reentrant functions.

The CAN main functions (i.e. Can_MainFunction Read) shall not be interrupted by
themselves. This must be ensured by the calling CanIf module. Therefore these CAN
main functions are not reentrant.

7.10 Error classification

CAN104: The Can module shall be able to detect the following errors and exceptions
depending on its configuration (development/production)
37 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

Type or error Relevance Related error code Value

[hex]
API Service called with
wrong parameter

Development CAN_E_PARAM_POINTER
CAN_E_PARAM_HANDLE
CAN_E_PARAM_DLC
CAN_E_PARAM_CONTROLLER

0x01
0x02
0x03
0x04

API Service used
without initialization

Development CAN_E_UNINIT 0x05

Invalid transition for the
current mode

Development CAN_E_TRANSITION 0x06

Timeout caused by
hardware error

Production CAN_E_TIMEOUT Assigned by
DEM

7.10.1 Development Errors

CAN026: shall indicate errors that are caused by erroneous usage of the Can
module API. This covers API parameter checks and call sequence errors.

CAN028: call the Development Error Tracer when DET is switched on and the Can
module detects an error.

CAN091: After return of the DET the Can module’s function that raised the
development error shall return immediately.

CAN089: The Can module’s environment shall indicate development errors only in
the return values of a function of the Can module when DET is switched on and the
function provides a return value. The returned value is CAN_NOT_OK.

CAN080: Development error values are of type uint8.

7.10.2 Production Errors

CAN029: call the central error function of the Diagnostic Event Manager if the Can
module detects hardware errors or failures.
The Syntax for the function call is Dem_ReportErrorStatus(EventId, EventStatus).
The only error that is reported to DEM by the Can module is CAN_E_TIMEOUT.

Depending on the CAN hardware, a change of setting may take over only after a
delay.

CAN295: In that case, the Can module shall poll a flag of the CAN status register
until the flag signals that the change takes affect and then return.

CAN296: This polling shall take only a (configurable) limited time and thus number of
poll cycles is limited.

CAN297: When this time is elapsed the Can module shall raise the error code
CAN_E_TIMOUT.

38 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

CAN298: In case of a CAN_E_TIMEOUT error the COM Stack must be re-initialized
or the COM functionality must be switched off.

CAN081: Values for production code Event Ids are assigned externally by the
configuration of the Dem. They are published in the file Dem_IntErrId.h and included
via Dem.h.

CAN092: After return of DEM the function of the Can module that raised the
production error shall return immediately.

CAN093: The function of the Can module which provides a return value and which
raised a production error shall return with CAN_NOT_OK.

7.10.3 Return Values

CAN_BUSY is reported via return value of the function Can_Write. The CanIf module
reacts according the sequence diagrams specified for the CanIf module.

CAN_NOT_OK is reported via return value in case of a wakeup during transition to
sleep mode

Bus-off and Wake-up events are forwarded via notification callback functions.

7.11 Error detection

CAN082: The detection of development errors is configurable (ON / OFF) at pre-
compile time. The switch CanDevErrorDetection (see chapter 10) shall activate or
deactivate the detection of all development errors.

CAN083: If the CanDevErrorDetection switch is enabled API parameter checking is
enabled. The detailed description of the detected errors can be found in chapter 7.10.

CAN084: The detection of production code errors cannot be switched off.

7.12 Error notification

CAN027: Detected development errors shall be reported to the Det_ReportError
service of the Development Error Tracer (DET) if the pre-processor switch
CanDevErrorDetection is set (see chapter 10). No code for catching
development errors shall be generated, when development errors are switched off.

39 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

7.13 Version Check

CAN111: Can.c shall check if the correct version of Can.h is included. This shall be
done by a preprocessor check of the version numbers
CAN_SW_MAJOR_VERSION, CAN_SW_MINOR_VERSION and
CAN_SW_PATCH_VERSION.

40 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

8 API specification

The prefix of the function names may be changed in an implementation with several
Can modules as described in CANIF124 in [5].

8.1 Imported types

In this chapter all types included from the following files are listed:

CAN222:

Header file Imported Type
Dem_Types.h Dem_EventIdType
CanIf_Types.h CanIf_WakeupSourceType

Std_VersionInfoType Std_Types.h
Std_ReturnType

ComStack_Types.h PduIdType

8.2 Type definitions

8.2.1 Can_ConfigType

Name: Can_ConfigType
Type: Structure

Implementation specific. Range:
This is the type of the external data structure containing the overall initialization
data for the CAN driver and SFR settings affecting all controllers. Furthermore it
contains pointers to controller configuration structures. The contents of the
initialization data structure are CAN hardware specific.

Description:

8.2.2 Can_ControllerConfigType

Name: Can_ControllerConfigType

Structure Type:
Implementation specific. Range:
This is the type of the external data structure containing the overall initialization
data for one CAN controller. The contents of the initialization data structure are
CAN hardware specific.

Description:

Can_PduType
Name: Can_PduType
Type: Structure

uint8* sdu --
Can_IdType id --

Element:

PduIdType swPduHandle

41 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

uint8 length --
Description: This type is used to provide ID, DLC and SDU from CAN interface to CAN driver.

8.2.3 Can_IdType

Name: Can_IdType

uint32,uint16 Type:
0...0xFFFFFFFF for Extended IDs Range:
0...0x7FF for Standard IDs
Represents the Identifier of an L-PDU. For extended IDs the most significant bit is
set.

Description:

8.2.4 Can_StateTransitionType

Name: Can_StateTransitionType

Enumeration Type:
CAN_T_START --
CAN_T_STOP --
CAN_T_SLEEP --

Range:

CAN_T_WAKEUP --
Description: State transitions that are used by the function CAN_SetControllerMode

8.2.5 Can_ReturnType

CAN039:

Name: Can_ReturnType

Enumeration Type:
CAN_OK success
CAN_NOT_OK error occured or wakeup event occurred during sleep

transition

Range:

CAN_BUSY transmit request could not be processed because no transmit
object was available

Description: Return values of CAN driver API .

8.3 Function definitions

This is a list of functions provided for upper layer modules.

42 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

8.3.1 Services affecting the complete hardware unit

8.3.1.1 Can_Init

CAN223:
Can_Init Service name:
void Can_Init(
 const Can_ConfigType* Config
)

Syntax:

0x00 Service ID[hex]:
Synchronous Sync/Async:
Non Reentrant Reentrancy:

Parameters (in): Config Pointer to driver configuration.
Parameters
(inout):

None

Parameters (out): None
Return value: None

This function initializes the module. Description:

Symbolic names of the available configuration sets are provided by the configuration
description of the Can module. See chapter 10 about configuration description.

CAN176: The function Can_Init shall raise the error CAN_E_TIMEOUT if the
initialization could not be performed (indicates defective hardware).

CAN174: If development error detection for the Can module is enabled: The function
Can_Init shall raise the error CAN_E_TRANSITION if the driver is not in 'uninitialized'
state.

CAN175: If development error detection for the Can module is enabled: The function
Can_Init shall raise the error CAN_E_PARAM_POINTER if a NULL pointer was given
as config parameter.

8.3.1.2 Can_GetVersionInfo

CAN224:

Can_GetVersionInfo Service name:
void Can_GetVersionInfo(
 Std_VersionInfoType* versioninfo
)

Syntax:

0x07 Service ID[hex]:
Synchronous Sync/Async:
Non Reentrant Reentrancy:
None Parameters (in):
None Parameters

(inout):
Parameters (out): versioninfo Pointer to where to store the version information of this module.
Return value: None
Description: This function returns the version information of this module.

43 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

CAN105: The function Can_GetVersionInfo shall return the version information of
this module. The version information includes:

- Module Id
- Vendor Id
- Vendor specific version numbers (BSW00407).

CAN251: If source code for caller and callee is available, the function
Can_GetVersionInfo should be realized as a macro, defined in the Can module’s
header file.

CAN177: If development error detection for the Can module is enabled: The function
Can_GetVersionInfo shall raise the error CAN_E_PARAM_POINTER if the
parameter versionInfo is a null pointer.

CAN252: The function Can_GetGetVersionInfo shall be pre compile time
configurable On/Off by the configuration parameter: CanVersionInfoApi.

8.3.2 Services affecting one single CAN Controller

8.3.2.1 Can_InitController

CAN229:

Can_InitController Service name:
void Can_InitController(
 uint8 Controller,
 const Can_ControllerConfigType* Config
)

Syntax:

0x02 Service ID[hex]:
Synchronous Sync/Async:

Reentrancy: Non Reentrant
Controller CAN controller to be initialized

Parameters (in):
Config Pointer to controller configuration.
None Parameters

(inout):
Parameters (out): None

None Return value:
This function initializes only CAN controller specific settings. Description:

The function Can_InitController re-initializes the CAN controller and the controller
specific settings (see CAN062).

Different sets of static configuration may have been configured. The parameter
*Config points to the hardware specific structure that describes the configuration (see
CAN291).

Global CAN Hardware Unit settings must not be changed. Only a subset of
parameters may be changed during runtime (see chapter 10). For further
explanation, see also chapter 7.3
44 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

The CAN controller must be in state CANIF_CS_STOPPED when this function is
called (see CAN256 and CAN260).

The CAN controller is in state CANIF_CS_STOPPED after (re-)initialization (see
CAN259).

Symbolic names of the available configuration sets are provided by the configuration
description of the Can module. See chapter 10 about configuration description.

CAN192: The function Can_InitController shall raise the error CAN_E_TIMEOUT if
the initialization could not be performed (indicates defective hardware).

CAN187: If development error detection for the Can module is enabled: The function
Can_InitController shall raise the error CAN_E_UNINIT if the driver is not yet
initialized.

CAN188: If development error detection for the Can module is enabled: The function
Can_InitController shall raise the error CAN_E_PARAM_POINTER if the parameter
Config is an null pointer.

CAN189: If development error detection for the Can module is enabled: The function
Can_InitController shall raise the error CAN_E_PARAM_CONTROLLER if the
parameter Controller is out of range.

CAN190: If development error detection for the Can module is enabled: if the
controller is not in state CANIF_CS_STOPPED , the function Can_InitController shall
raise the error CAN_E_TRANSITION.

8.3.2.2 Can_SetControllerMode

CAN230:

Can_SetControllerMode Service name:
Can_ReturnType Can_SetControllerMode(
 uint8 Controller,
 Can_StateTransitionType Transition
)

Syntax:

0x03 Service ID[hex]:
Asynchronous Sync/Async:

Reentrancy: Non Reentrant
Controller CAN controller for which the status shall be changed

Parameters (in):
Transition --
None Parameters

(inout):
Parameters (out): None

Return value:
Can_ReturnType CAN_OK: transition initiated

CAN_NOT_OK: development or production or a wakeup during
transition to 'sleep' occured

Description: This function performs software triggered state transitions of the CAN controller
State machine.

45 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

CAN017: The function Can_SetControllerMode shall perform software triggered state
transitions of the CAN controller State machine. See also [BSW12169]

Refer to CAN048 for the case of a wakeup event from CAN bus occurred during
sleep transition.

CAN294: The function Can_SetControllerMode shall disable the wake-up interrupt,
while checking the wake-up status.

For all state changes except the change to state CANIF_CS_SLEEP, the function
does not wait until the state change has really performed. Anyway, this function is
asynchronous because the actual result may occur later. However, neither callback
nor notification will report the actual state change afterwards.

CAN196: The function Can_SetControllerMode shall enable interrupts that are
needed in the new state. Enabling of CAN interrupts shall not be executed, when
CAN interrupts have been disabled by function CAN_DisableControllerInterrupts.

CAN197: The function Can_SetControllerMode shall disable interrupts that are not
allowed in the new state. Disabling of CAN interrupts shall not be executed, when
CAN interrupts have been disabled by function CAN_DisableControllerInterrupts.

CAN201: The function Can_SetControllerMode shall raise the error
CAN_E_TIMEOUT if the initialization could not be performed (indicates defective
hardware, not for sleep transition).

Caveat:
The behavior of the transmit operation is undefined when the 'software' state in the
CanIf module is already CANIF_CS_STARTED, but the CAN controller is not yet in
operational mode.

The CanIf module must ensure that the function is not called before the previous call
of Can_SetControllerMode returned.

The CanIf module is responsible not to initiate invalid transitions.

CAN198: If development error detection for the Can module is enabled: if the module
is not yet initialized, the function Can_SetControllerMode shall raise development
error CAN_E_UNINIT and return CAN_NOT_OK.

CAN199: If development error detection for the Can module is enabled: if the
parameter Controller is out of range, the function Can_SetControllerMode shall
raise development error CAN_E_PARAM_CONTROLLER and return
CAN_NOT_OK.

CAN200: If development error detection for the Can module is enabled: if an invalid
transition has been requested, the function Can_SetControllerMode shall raise the
error CAN_E_TRANSITION and return CAN_NOT_OK.

46 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

8.3.2.3 Can_DisableControllerInterrupts

CAN231:

Can_DisableControllerInterrupts Service name:
void Can_DisableControllerInterrupts(
 uint8 Controller
)

Syntax:

0x04 Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:

Parameters (in): Controller CAN controller for which interrupts shall be disabled.
Parameters
(inout):

None

Parameters (out): None
Return value: None

This function disables all interrupts for this CAN controller. Description:

CAN049: The function Can_DisableControllerInterrupts shall disable all interrupts for
this CAN controller only at the first call of this function.

CAN202: When Can_DisableControllerInterrupts has been called several times,
Can_EnableControllerInterrupts must be called as many times before the interrupts
are re-enabled.

Implementation note:
The function Can_DisableControllerInterrupts can increase a counter on every
execution that indicates how many Can_EnableControllerInterrupts need to be called
before the interrupts will be enabled (incremental disable).

CAN204: The Can module shall track all individual enabling and disabling of
interrupts in other functions (i.e. Can_SetControllerMode) , so that the correct
interrupt enable state can be restored.

Implementation example:
- in 'interrupts enabled mode': For each interrupt state change does not only modify
the interrupt enable bit, but also a software flag.
- in 'interrupts disabled mode': only the software flag is modified.
- Can_DisableControllerInterrupts and Can_EnableControllerInterrupts do not modify
the software flags.
- Can_EnableControllerInterrupts reads the software flags to re-enable the correct
interrupts.

CAN292: The function Can_DisableControllerInterrupts shall raise the production
error CAN_E_TIMEOUT if the disabling of the interrupts could not be performed
(indicates defective hardware).

47 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

CAN205: If development error detection for the Can module is enabled: The function
Can_DisableControllerInterrupts shall raise the error CAN_E_UNINIT if the driver not
yet initialized.

CAN206: If development error detection for the Can module is enabled: The function
Can_DisableControllerInterrupts shall raise the error
CAN_E_PARAM_CONTROLLER if the parameter Controller is out of range.

8.3.2.4 Can_EnableControllerInterrupts

CAN232:

Can_EnableControllerInterrupts Service name:
void Can_EnableControllerInterrupts(
 uint8 Controller
)

Syntax:

0x05 Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:

Parameters (in): Controller CAN controller for which interrupts shall be re-enabled
Parameters
(inout):

None

Parameters (out): None
Return value: None

This function enables all allowed interrupts. Description:

CAN050: The function Can_EnableControllerInterrupts shall enable all interrupts that
must be enabled according the current software status.

CAN202 applies to this function.

CAN208: The function Can_EnableControllerInterrupts shall perform no action when
Can_DisableControllerInterrupts has not been called before.

See also implementation example for Can_DisableControllerInterrupts.

CAN293: The function Can_EnableControllerInterrupts shall raise the production
error CAN_E_TIMEOUT if the enabling of the interrupts could not be performed
(indicates defective hardware).

CAN209: If development error detection for the Can module is enabled: The function
Can_EnableControllerInterrupts shall raise the error CAN_E_UNINIT if the driver not
yet initialized.

CAN210: If development error detection for the Can module is enabled: The function
Can_EnableControllerInterrupts shall raise the error
CAN_E_PARAM_CONTROLLER if the parameter Controller is out of range.

48 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

8.3.2.5 Can_Cbk_CheckWakeup

CAN360:
Can_Cbk_CheckWakeup Service name:
Std_ReturnType Can_Cbk_CheckWakeup(
 uint8 Controller
)

Syntax:

0x0b Service ID[hex]:
Synchronous Sync/Async:
Non Reentrant Reentrancy:

Parameters (in): Controller Controller to be checked for a wakeup.
Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: A wakeup was detected for the given controller.

E_NOT_OK: No wakeup was detected for the given controller.
Description: This function checks if a wakeup has occurred for the given controller.

CAN361: The function Can_Cbk_CheckWakeup shall check if the requested CAN
controller has detected a wakeup. If a wakeup event was successfully detected, the
function shall return E_OK, otherwise E_NOT_OK.

CAN362: If development error detection for the Can module is enabled: The function
Can_Cbk_CheckWakeup shall raise the error CAN_E_UNINIT if the driver is not yet
initialized.

CAN363: If development error detection for the Can module is enabled: The function
Can_Cbk_CheckWakeup shall raise the error CAN_E_PARAM_CONTROLLER if the
parameter Controller is out of range.

8.3.3 Services affecting a Hardware Handle

8.3.3.1 Can_Write

CAN233:

Can_Write Service name:
Can_ReturnType Can_Write(
 uint8 Hth,
 const Can_PduType* PduInfo
)

Syntax:

0x06 Service ID[hex]:
Synchronous Sync/Async:

Reentrancy: Reentrant (thread-safe)
Hth information which HW-transmit handle shall be used for transmit.

Implicitly this is also the information about the controller to use
because the Hth numbers are unique inside one hardware unit. Parameters (in):

PduInfo Pointer to SDU user memory, DLC and Identifier.
Parameters
(inout):

None

49 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

Parameters (out): None

Return value:

Can_ReturnType CAN_OK: Write command has been accepted
CAN_NOT_OK: development error occured
CAN_BUSY: No TX hardware buffer available or preemptive call
of Can_Write that can't be implemented reentrant

Description: --

The function Can_Write first checks if the hardware transmit object that is identified
by the HTH is free and if another Can_Write is ongoing for the same HTH.

CAN212: The function Can_Write shall perform following actions if the hardware
transmit object is free:
 The mutex for that HTH is set to 'signaled'
 the ID, DLC and SDU are put in a format appropriate for the hardware (if

necessary) and copied in the appropriate hardware registers/buffers.
 All necessary control operations to initiate the transmit are done
 The mutex for that HTH is released
 The function returns with CAN_OK

CAN213: The function Can_Write shall perform no actions if the hardware transmit
object is busy with another transmit request for an L-PDU that has higher priority than
that for the current request:
 The transmission of the L-PDU with higher priority shall not be cancelled and the

function Can_Write is left without any actions.
 The function Can_Write shall return CAN_BUSY

CAN215: The function Can_Write shall perform following actions if the hardware
transmit object is busy with another transmit request for an L-PDU that has lower or
identical priority than that for the current request:
 The transmission of the L-PDU with lower or identical priority shall be cancelled

(asynchronously) in case transmit cancellation functionality is enabled. Compare
to chapter 7.5.1.2.

 The function CAN_Write shall return CAN_BUSY

CAN214: The function Can_Write shall return CAN_BUSY if a preemptive call of
Can_Write has been issued, that could not be handled reentrant (i.e. a call with the
same HTH).

CAN275: The function Can_Write shall be non-blocking.

CAN216: If development error detection for the Can module is enabled: The function
Can_Write shall raise the error CAN_E_UNINIT if the driver not yet initialized.

CAN217: If development error detection for the Can module is enabled: The function
Can_Write shall raise the error CAN_E_PARAM_HANDLE if the parameter Hth is
not a configured Hardware Transmit Handle.

CAN218: If development error detection for the Can module is enabled: The function
Can_Write shall raise the error CAN_E_PARAM_DLC if the length is more than 8
byte.

50 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

CAN219: If development error detection for the Can module is enabled: The function
Can_Write shall raise the error CAN_E_PARAM_POINTER if the parameter
PduInfo or the SDU pointer inside PduInfo is a null-pointer.

8.4 Call-back notifications

The Can module does not provide callback functions.
Only synchronous MCAL API may be used for external CAN controllers.

8.5 Scheduled functions

These functions are directly called by Basic Software Scheduler. The following
functions shall have no return value and no parameter. All functions shall be non-
reentrant.

CAN110: There is no requirement regarding the execution order of the CAN main
processing functions.

8.5.1.1 Can_MainFunction_Write

CAN225:

Can_MainFunction_Write Service name:
void Can_MainFunction_Write(

)

Syntax:

0x01 Service ID[hex]:
FIXED_CYCLIC Timing:
This function performs the polling of TX confirmation and TX cancellation
confirmation when CAN_TX_PROCESSING is set to POLLING.

Description:

CAN031: The function Can_MainFunction_Write shall perform the polling of TX
confirmation and TX cancellation confirmation when CanTxProcessing is set to
POLLING.

CAN178: The Can module may implement the function Can_MainFunction_Write as
empty define in case no polling at all is used.

CAN179: If development error detection for the module Can is enabled: The function
Can_MainFunction_Write shall raise the error CAN_E_UNINIT if the driver is not yet
initialized.

8.5.1.2 Can_MainFunction_Read

CAN226:

51 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

Can_MainFunction_Read Service name:
void Can_MainFunction_Read(

)

Syntax:

0x08 Service ID[hex]:
FIXED_CYCLIC Timing:
This function performs the polling of RX indications when
CAN_RX_PROCESSING is set to POLLING.

Description:

CAN108: The function Can_MainFunction_Read shall perform the polling of RX
indications when CanRxProcessing is set to POLLING.

CAN180: The Can module may implement the function Can_MainFunction_Read as
empty define in case no polling at all is used.

CAN181: If development error detection for the Can module is enabled: The function
Can_MainFunction_Read shall raise the error CAN_E_UNINIT if the driver not yet
initialized.

8.5.1.3 Can_MainFunction_BusOff

CAN227:

Can_MainFunction_BusOff Service name:
void Can_MainFunction_BusOff(

)

Syntax:

0x09 Service ID[hex]:
FIXED_CYCLIC Timing:
This function performs the polling of bus-off events that are configured statically as
'to be polled'.

Description:

CAN109: The function Can_MainFunction_BusOff shall perform the polling of bus-off
events that are configured statically as 'to be polled'.

CAN183: The Can module may implement the function Can_MainFunction_BusOff
as empty define in case no polling at all is used.

CAN184: If development error detection for the Can module is enabled: The function
Can_MainFunction_BusOff shall raise the error CAN_E_UNINIT if the driver not yet
initialized.

8.5.1.4 Can_MainFunction_Wakeup

CAN228:

Can_MainFunction_Wakeup Service name:
Syntax: void Can_MainFunction_Wakeup(

)

52 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

0x0a Service ID[hex]:
FIXED_CYCLIC Timing:
This function performs the polling of wake-up events that are configured statically
as 'to be polled'.

Description:

CAN112: The function Can_MainFunction_Wakeup shall perform the polling of wake-
up events that are configured statically as 'to be polled'.

CAN185: The Can module may implement the function Can_MainFunction_Wakeup
as empty define in case no polling at all is used.

CAN186: If development error detection for the Can module is enabled: The function
Can_MainFunction_Wakeup shall raise the error CAN_E_UNINIT if the driver not yet
initialized.

8.6 Expected Interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module. All callback functions that are called by the Can module are implemented
in the CanIf module. These callback functions are not configurable.

CAN234:

API function Description
Dem_ReportErrorStatus Reports errors to the DEM.
CanIf_CheckValidation --
CanIf_Cbk_CheckTransceiverWakeup --
CanIf_Cbk_CheckControllerWakeup --
CanIf_CancelTxConfirmation --
CanIf_RxIndication --
CanIf_ControllerBusOff --
CanIf_TxConfirmation --

Optional Interfaces

This chapter defines all interfaces that are required to fulfill an optional functionality of
the module.

CAN235:

API function Description
Det_ReportError Service to report development errors.
EcuM_CheckWakeup This callout is called by the EcuM to poll a wakeup source. It shall also

be called by the ISR of a wakeup source to set up the PLL and check
other wakeup sources that may be connected to the same interrupt.

53 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

8.6.2 Configurable interfaces

There is no configurable target for the Can module. The Can module always reports
to CanIf module.

54 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

9 Sequence diagrams

9.1 Interaction between Can and CanIf module

For sequence diagrams see the CanIf module Specification [5].
There are described the complete sequences for Transmission, Reception and Error
Handling.

9.2 Wakeup sequence

For Wakeup sequence diagrams refer to Specification of ECU State Manager [12].

55 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

10 Configuration specification

This chapter defines configuration parameters and their clustering into containers. In
order to support the specification Chapter 10.1 describes fundamentals. It also
specifies a template (table) you shall use for the parameter specification. We intend
to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the Can
module.

Chapter 10.3 specifies published information of the Can module.

10.1 How to read this chapter

In addition to this section, it is highly recommended to read the documents:
- AUTOSAR Layered Software Architecture [1]
- AUTOSAR ECU Configuration Specification [10]

This document describes the AUTOSAR configuration methodology and the
AUTOSAR configuration metamodel in detail.

The following is only a short survey of the topic and it will not replace the ECU
Configuration Specification document.

10.1.1 Configuration and configuration parameters

Configuration parameters define the variability of the generic part(s) of an
implementation of a module. This means that only generic or configurable module
implementation can be adapted to the environment (software/hardware) in use during
system and/or ECU configuration.

The configuration of parameters can be achieved at different times during the
software process: before compile time, before link time or after build time. In the
following, the term “configuration class” (of a parameter) shall be used in order to
refer to a specific configuration point in time.

In the below given tables the configuration class per configuration parameter is
specified. In fact, it is important to distinguish between the configuration-classes,
because they will result in different implementations and design processes.

Label Description
x The configuration parameter shall be of configuration class Pre-compile time.
-- The configuration parameter shall never be of configuration class Pre-compile time.

Link time - specifies whether the configuration parameter shall be

of configuration class Link time or not

Label Description
x The configuration parameter shall be of configuration class Link time.

56 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

-- The configuration parameter shall never be of configuration class Link time.

Post Build - specifies whether the configuration parameter shall be

of configuration class Post Build or not

Label Description

x
The configuration parameter shall be of configuration class Post Build and no specific
implementation is required.
Loadable - the configuration parameter shall be of configuration class Post Build and
only one configuration parameter set resides in the ECU.

L

Multiple - the configuration parameter shall be of configuration class Post Build and is
selected out of a set of multiple parameters by passing a dedicated pointer to the init
function of the module.

M

-- The configuration parameter shall never be of configuration class Post Build.

10.1.2 Variants

Variants describe sets of configuration parameters. E.g., VariantPC: only pre-compile
time configuration parameters; VariantPB: mix of pre-compile- and post build time-
configuration parameters. In one variant a parameter can only be of one
configuration class.

10.1.3 Containers

Containers structure the set of configuration parameters. This means:

- all configuration parameters are kept in containers.
- (sub-) containers can reference (sub-) containers. It is possible to assign a

multiplicity to these references. The multiplicity then defines the possible
number of instances of the contained parameters.

57 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed
meanings of the parameters describe Chapters 7 and Chapter 8.

The described parameters are input for the Can module configurator.

CAN022: The code configurator of the Can module is CAN controller specific. If the
CAN controller is sited on-chip, the code generation tool for the Can module is
µController specific.
If the CAN controller is an external device the generation tool must not be µController
specific.

CAN047: The configuration data shall be human readable.

CAN024: The valid values that can be configured are hardware dependent.
Therefore the rules and constraints can't be given in the standard. The configuration
tool is responsible to do a static configuration checking, also regarding dependencies
between modules (i.e. Port driver, MCU driver etc.)

10.2.1 Variants

The Can module provides two variants of configuration sets:
CAN220:VariantPC: all variables are pre-compile time configurable
CAN221:VariantPB: (Mix of precompile and Post Build multiple selectable
configurable configurations

58 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5
object Can

Can :ModuleDef

lowerMultipl icity = 0
upperMultipl icity = *

CanFilterMask :
ParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

CanHardwareObject :
ParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

CanController :
ParamConfContainerDef

lowerMultiplicity = 1
upperMultipl icity = *

CanGeneral :
ParamConfContainerDef

lowerMultipl icity = 1
upperMultipl icity = 1

CanFilterMaskRef :
ReferenceParamDef

CanControllerRef :
ReferenceParamDef

+container

CanConfigSet :ParamConfContainerDef

multipleConfigurationContainer = true

+container +subContainer
+subContainer

+destination +reference

+subContainer

+reference

+destination

Figure 10-1: Can Module Configuration Layout

object CanController

CanController :ParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

CanControllerActiv ation :
BooleanParamDef

CanControllerTimeQuanta :
FloatParamDef

CanControllerBaudRate :
IntegerParamDef

CanControllerSeg1 :
IntegerParamDef

CanControllerSeg2 :
IntegerParamDef

C mDefanControllerId :IntegerPara

symbolicNameValue = true
lowerMultiplicity = 1
upperMultiplicity = 1

EcuMWakeupSource :

Can onfContainerDefFilterMask :ParamC

lowerMultiplicity = 0
upperMultiplicity = *

Can :ModuleDef

lowerMultiplicity = 0
upperMultiplicity = *

CanRxProcessing :
Deriv edEnumerationParamDef

INTERRUPT :
EnumerationLiteralDef

POLLING :EnumerationLiteralDef

CanTxProcessing :
Deriv edEnumerationParamDef

CanWakeupProcessing :
Deriv edEnumerationParamDef

CanBusoffProcessing :
Deriv edEnumerationParamDef

CanControllerPropSeg :
IntegerParamDef

CanConfigSet :ParamConfContainerDef

multipleConfigurationContainer = true

ParamConfContainerDef
+container

lowerMultiplicity = 1
upperMultiplicity = *

CanCpuClockRef :
ReferenceParamDef

McuClockReferencePoint :
ParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

(from MCU)

CanWakeupSourceRef :
ReferenceParamDef

lowerMultiplicity = 0
upperMultiplicity = 1

(from EcuM)+parameter+parameter +parameter+parameter +destination
+parameter

+subContainer

+reference

+parameter

+reference

+destination+parameter +parameter +subContainer+parameter +parameter +parameter

+literal

+literal

+literal
+literal

+literal+literal
+literal

+literal

Figure 10-2: Can Controller Configuration Layout

59 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

object CanDrv General

CanGeneral :
ParamConfContainerDef

Can :ModuleDef

lowerMultiplicity = 0
upperMultiplicity = *

lowerMultiplicity = 1
upperMultiplicity = 1

CanHardwareCancellation :
BooleanParamDef

CanTimeoutDurationFactor :
IntegerParamDef

CanMultiplexedTransmission :
BooleanParamDef

CanDevErrorDetection :
BooleanParamDef

CanVersionInfoApi :BooleanParamDef

CanWakeupSupport :
BooleanParamDef

+container

CanIndex :IntegerParamDef

CanMainFunctionReadPeriod :
FloatParamDef

CanMainFunctionWritePeriod :
FloatParamDef

CanMainFunctionBusoffPeriod :
FloatParamDef

CanMainFunctionWakeupPeriod :
FloatParamDef

+parameter
+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

Figure 10-3: Can General Configuration Layout

60 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

object CanFilterMask

CanFilterMask :ParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

CanFilterMaskValue :
IntegerParamDef

CanController :
ParamConfContainerDef

lowerMultiplicity = 1
upperMultipl icity = *

+subContainer

+parameter

Figure 10-4: Can Filter Mask Configuration Layout

61 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

object CanHardwareObject

CanHardwareObject :ParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

CanObjectType :EnumerationParamDef

CanIdValue :
IntegerParamDef

CanIdType :EnumerationParamDef

TRANSMIT :
EnumerationLiteralDef

RECEIVE :
EnumerationLiteralDef

Can :ModuleDef

CanObjectId :IntegerParamDef

symbolicNameValue = true
lowerMultiplicity = 1
upperMultiplicity = 1

STANDARD :
EnumerationLiteralDef

EXTENDED :
EnumerationLiteralDef

MIXED :
EnumerationLiteralDef

CanFilterMaskRef :
ReferenceParamDef

CanFilterMask :
ParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

lowerMultiplicity = 0
upperMultiplicity = *

CanControllerRef :
ReferenceParamDef

CanController :
ParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

CanConfigSet :ParamConfContainerDef

multipleConfigurationContainer = true
CanHandleType :

EnumerationParamDef

BASIC :
EnumerationLiteralDef

FULL :
EnumerationLiteralDef

+literal +literal +literal +literal

+container

+parameter +parameter+parameter

+subContainer

+reference +parameter+reference
+parameter

+literal

+literal

+literal

+destination

+subContainer

+destination

Figure 10-5: Can Hardware Object Configuration Layout

10.2.2 Can

Can Module Name
This container holds the configuration of a single CAN Driver. Module Description

Included Containers
Container Name MultiplicityScope / Dependency
CanConfigSet 1 This is the multiple configuration set container for CAN Driver

CanGeneral 1
This container contains the parameters related each CAN
Driver Unit.

10.2.3 CanGeneral

SWS Item CAN328 :
Container Name CanGeneral{CanDriverGeneralConfiguration}

62 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

This container contains the parameters related each CAN Driver Unit. Description
Configuration Parameters

SWS Item CAN064 :
N CanDevErrorDetection {CAN_DEV_ERROR_DETECT} ame

Switches the Development Error Detection and Notification ON or OFF. Description
1 Multiplicity

Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Can module

SWS Item CAN069 :
N ame CanHardwareCancellation {CAN_HW_TRANSMIT_CANCELLATION}

Specifies if hardware cancellation shall be supported.ON or OFF Description
1 Multiplicity

Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Can module, CanIf module

dependency: CanIf module is configured to support hardware cancellation

SWS Item CAN320 :
N ame CanIndex

Specifies the InstanceId of this module instance. If only one instance is
present it shall have the Id 0.

Description

1 Multiplicity
Type IntegerParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item CAN355 :
N ame CanMainFunctionBusoffPeriod

This parameter describes the period for cyclic call to
Can_MainFunction_Busoff. Unit is seconds.

Description

1 Multiplicity
Type FloatParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item CAN356 :
N ame CanMainFunctionReadPeriod

This parameter describes the period for cyclic call to
Can_MainFunction_Read. Unit is seconds.

Description

Multiplicity 1

63 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

Type FloatParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item CAN357 :
N ame CanMainFunctionWakeupPeriod

This parameter describes the period for cyclic call to
Can_MainFunction_Wakeup. Unit is seconds.

Description

1 Multiplicity
Type FloatParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item CAN358 :
N ame CanMainFunctionWritePeriod

This parameter describes the period for cyclic call to
Can_MainFunction_Write. Unit is seconds.

Description

1 Multiplicity
Type FloatParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item CAN095 :
N ame CanMultiplexedTransmission {CAN_MULTIPLEXED_TRANSMISSION}

Specifies if multiplexed transmission shall be supported.ON or OFF Description
1 Multiplicity

Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Can module, CanIf module

dependency: CAN Hardware Unit supports multiplexed transmission

SWS Item CAN113 :
N ame CanTimeoutDurationFactor {CAN_TIMEOUT_DURATION}

Specifies the maximum number of loops for blocking function until a
timeout is raised in short term wait loops.

Description

1 Multiplicity
Type IntegerParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Can module

64 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

SWS Item CAN106 :
N ame CanVersionInfoApi {CAN_VERSION_INFO_API}

Switches the Can_GetVersionInfo() API ON or OFF. Description
1 Multiplicity

Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Can module

SWS Item CAN330 :
N ame CanWakeupSupport {CAN_WAKEUP_SUPPORT}

CAN driver support for wakeup over CAN Bus. Description
1 Multiplicity

Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Can module

dependency: CAN Hardware Unit supports wakeup over CAN

No Included Containers

10.2.4 CanController

SWS Item CAN354 :
CanController{CanController} Container Name
This container contains the configuration parameters of the CAN
controller(s).

Description

Configuration Parameters

SWS Item CAN314 :
N CanBusoffProcessing {CAN_BUSOFF_PROCESSING} ame

Enables / disables API Can_MainFunction_BusOff() for handling busoff
events in polling mode.

Description

1 Multiplicity
Type EnumerationParamDef

INTERRUPT Interrupt Mode of operation. Range
POLLING Polling Mode of operation.

X All Variants Pre-compile time
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Can module, CanIf module

dependency: CANIF_POLLING_BUSOFF

SWS Item CAN315 :
N ame CanControllerActivation {CAN_CONTROLLER_ACTIVATION}

Defines if a CAN controller is used in the configuration. Description
1 Multiplicity

Type BooleanParamDef
-- Default value

ConfigurationClass Pre-compile time X All Variants

65 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

Link time --
Post-build time --

Scope / Dependency scope: Can module

SWS Item CAN005 :
N ame CanControllerBaudRate {CAN_CONTROLLER_BAUD_RATE}

Specifies the buadrate of the controller in kbps. Description
1 Multiplicity

Type IntegerParamDef
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: Can module

SWS Item CAN316 :
N ame CanControllerId {CAN_DRIVER_CONTROLLER_ID}

This parameter provides the controller ID which is unique in a given CAN
Driver. The value for this parameter starts with 0 and continue without any
gaps.

Description

1 Multiplicity
Type IntegerParamDef (Symbolic Name generated for this parameter)
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item CAN073 :
N ame CanControllerPropSeg {CAN_CONTROLLER_PROP_SEG}

Specifies propagation delay in time quantas. Description
1 Multiplicity

Type IntegerParamDef
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: Can module

SWS Item CAN074 :
N ame CanControllerSeg1 {CAN_CONTROLLER_PHASE_SEG1}

Specifies phase segment 1 in time quantas. Description
1 Multiplicity

Type IntegerParamDef
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: Can module

SWS Item CAN075 :
N ame CanControllerSeg2 {CAN_CONTROLLER_PHASE_SEG2}

Specifies phase segment 2 in time quantas. Description
1 Multiplicity

Type IntegerParamDef

66 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

Default value --
Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: Can module

SWS Item CAN063 :
N ame CanControllerTimeQuanta {CAN_CONTROLLER_TIME_QUANTA}

Specifies the time quanta for the controller. The calculation of the resulting
prescaler value depending on module clocking and time quanta shall be
done offline

Description

Hardware specific.
Multiplicity 1
Type FloatParamDef
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency

SWS Item CAN317 :
N ame CanRxProcessing {CAN_RX_PROCESSING}

Enables / disables API Can_MainFunction_Read() for handling PDU
reception events in polling mode.

Description

1 Multiplicity
Type EnumerationParamDef

INTERRUPT Interrupt Mode of operation. Range
POLLING Polling Mode of operation.

X All Variants Pre-compile time
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Can module, CanIf module

dependency: CANIF_POLLING_RECEIVE

SWS Item CAN318 :
N ame CanTxProcessing {CAN_TX_PROCESSING}

Enables / disables API Can_MainFunction_Write() for handling PDU
transmission events in polling mode.

Description

1 Multiplicity
Type EnumerationParamDef

INTERRUPT Interrupt Mode of operation. Range
POLLING Polling Mode of operation.

X All Variants Pre-compile time
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Can module, CanIf module

dependency: CANIF_POLLING_TRANSMIT

SWS Item CAN319 :
N ame CanWakeupProcessing {CAN_WAKEUP_PROCESSING}

Enables / disables API Can_MainFunction_Wakeup() for handling wakeup
events in polling mode.

Description

1 Multiplicity
Type EnumerationParamDef

INTERRUPT Interrupt Mode of operation. Range
POLLING Polling Mode of operation.

67 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

X All Variants Pre-compile time
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Can module, CanIf module

dependency: CANIF_POLLING_WAKEUP

SWS Item CAN313 :
N ame CanCpuClockRef {CAN_CPU_CLOCK_REFERENCE}

Reference to the CPU clock configuration, which is set in the MCU driver
configuration

Description

1 Multiplicity
Type Reference to McuClockReferencePoint

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item CAN359 :
N ame CanWakeupSourceRef

This parameter contains a reference to the Wakeup Source for this
controller as defined in the ECU State Manager.

Description

Implementation Type: reference to EcuM_WakeupSourceType
Multiplicity 0..1
Type Reference to EcuMWakeupSource

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Can module

Included Containers
Container Name MultiplicityScope / Dependency

CanFilterMask 0..* This container contains the configuration (parameters) of the
CAN Filter Mask(s).

10.2.5 CanHardwareObject

SWS Item CAN324 :
Container Name CanHardwareObject{CanHardwareObject}

This container contains the configuration (parameters) of CAN Hardware
Objects.

Description

Configuration Parameters

SWS Item CAN324 :
N CanHandleType {CAN_HANDLE_TYPE} ame

Specifies the type (Full-CAN or Basic-CAN) of a hardware object. Description
1 Multiplicity

Type EnumerationParamDef
BASIC For several L-PDUs are hadled by the hardware objectRange
FULL For only one L-PDU (identifier) is handled by the

hardware object
X VARIANT-PRE-COMPILE Pre-compile time

Link time --
ConfigurationClass

Post-build time X VARIANT-POST-BUILD
68 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

Scope / Dependency scope: CanIf module
dependency: This configuration element is used as information for the CAN
Interface only. The relevant CAN driver configuration is done with the filter
mask and identifier.

SWS Item CAN065 :
N ame CanIdType {CAN_ID_TYPE}

Specifies whether the IdValue is of type Description
 - standard identifier
 - extended identifier
 - mixed mode
ImplementationType: Can_IdType

Multiplicity 1
Type EnumerationParamDef

EXTENDED All the CANIDs are of type extended only (29 bit).
MIXED The type of CANIDs can be both Standard or

Extended.

Range

STANDARD All the CANIDs are of type standard only (11bit).
X VARIANT-PRE-COMPILE Pre-compile time

Link time --
ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: Can module, CanIf module

SWS Item CAN325 :
N ame CanIdValue {CAN_ID_VALUE}

Specifies (together with the filter mask) the identifiers range that passes
the hardware filter.

Description

1 Multiplicity
Type IntegerParamDef
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: Can module, CanIf module

SWS Item CAN326 :
N ame CanObjectId {CAN_OBJECT_HANDLE_ID}

Holds the handle ID of HRH or HTH. The value of this parameter is unique
in a given CAN Driver, and it should start with 0 and continue without any
gaps.

Description

The HRH and HTH Ids are defined under two different name-spaces.
Example: HRH0-0, HRH1-1, HTH0-2, HTH1-3

Multiplicity 1
Type IntegerParamDef (Symbolic Name generated for this parameter)
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: Can module, CanIf module

SWS Item CAN327 :
N ame CanObjectType {CAN_OBJECT_TYPE}

Specifies if the HardwareObject is used as Transmit or as Receive object Description
1 Multiplicity

Type EnumerationParamDef
Range RECEIVE Receive HOH

69 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

TRANSMIT Transmit HOH
X VARIANT-PRE-COMPILE Pre-compile time

Link time --
ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: Can module, CanIf module

SWS Item CAN322 :
N ame CanControllerRef {CAN_CONTROLLER_REFERENCE }

Reference to CAN Controller to which the HOH is associated to. Description
1 Multiplicity

Type Reference to CanController
Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency

SWS Item CAN321 :
N ame CanFilterMaskRef {CAN_MASK_REFERENCE}

Reference to the filter mask that is used for hardware filtering togerther
with the CAN_ID_VALUE

Description

1 Multiplicity
Type Reference to CanFilterMask

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency

No Included Containers

10.2.6 CanFilterMask

SWS Item CAN351 :
CanFilterMask{CanFilterMask} Container Name
This container contains the configuration (parameters) of the CAN Filter
Mask(s).

Description

Configuration Parameters

SWS Item CAN066 :
N CanFilterMaskValue {CAN_FILTER_MASK_VALUE} ame

Describes a mask for hardware-based filtering of CAN identifiers Description
It shall be distinguished between - Standard identifier mask - Extended
identifier mask.

Multiplicity 1
Type IntegerParamDef
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: Can module, CanIf module

dependency: The filter mask settings must be known by the CanIf
configuraton for optimization of the SW filters.

No Included Containers

70 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

10.2.7 CanConfigSet

CAN343 : SWS Item
CanConfigSet [Multi Config Container] Container Name
This is the multiple configuration set container for CAN Driver Description

Configuration Parameters

Included Containers
Container Name MultiplicityScope / Dependency

This container contains the configuration parameters of the
CAN controller(s). 1..* CanController

1..* CanHardwareObject
This container contains the configuration (parameters) of CAN
Hardware Objects.

10.3 Published Information

The following published information contains data defined by the implementer of the
SW module that does not change when the module is adapted (i.e. configured) to the
actual HW/SW environment. It thus contains version and manufacturer information.

The standard common published information like

vendorId (<Module>_VENDOR_ID),
moduleId (<Module>_MODULE_ID),
arMajorVersion (<Module>_AR_MAJOR_VERSION),
arMinorVersion (<Module>_ AR_MINOR_VERSION),
arPatchVersion (<Module>_ AR_PATCH_VERSION),
swMajorVersion (<Module>_SW_MAJOR_VERSION),
swMinorVersion (<Module>_ SW_MINOR_VERSION),
swPatchVersion (<Module>_ SW_PATCH_VERSION),
vendorApiInfix (<Module>_VENDOR_API_INFIX)

is provided in the BSW Module Description Template (see [13] Figure 4.1 and Figure
7.1).

Additional published parameters are listed below if applicable for this module.

71 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

11 Changes to Release 2.1

11.1 Deleted SWS Items

SWS Item Rationale
CAN057 No requirement: ID removed, text kept
CAN038 No requirement: ID removed, text kept
CAN090 No requirement: ID removed, text kept

Redundant requirement removed, requirement is already described in
CAN176

CAN173

Redundant requirement removed, requirement is already described in
CAN234

CAN102

Redundant requirement removed, requirement is already described in
CAN048

CAN193

11.2 Replaced SWS Items

SWS Item of Release 1 replaced by
SWS Item

Rationale

CAN097 CAN285, CAN286,
CAN287, CAN288

Made requirement atomic

CAN067 CAN324 Gave new ID, because CAN067 was already in
use.

CAN067 CAN325 Gave new ID, because CAN067 was already in
use.

11.3 Changed SWS Items

SWS Item Rationale
CAN225 Function changed to scheduled function
CAN226 Function changed to scheduled function
CAN227 Function changed to scheduled function
CAN228 Function changed to scheduled function
CAN325 Limitation to Rx objects removed

11.4 Added SWS Items

SWS Item Rationale
CAN280 Gave ID to existing requirement
CAN281 Gave ID to existing requirement
CAN282 Gave ID to existing requirement
CAN283 Gave ID to existing requirement
CAN284 Gave ID to existing requirement
CAN290 Gave ID to existing requirement
CAN291 Gave ID to existing requirement
CAN292 Requirement for the function Can_DisableControllerInterrupts
CAN293 Requirement for the function Can_EnableControllerInterrupts
CAN294 Gave ID to existing requirement

72 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

CAN295 Gave ID to existing requirement
CAN296 Gave ID to existing requirement
CAN297 Gave ID to existing requirement
CAN298 Gave ID to existing requirement
CAN299 Gave ID to existing requirement
CAN300 Gave ID to existing requirement
CAN301 Gave ID to existing requirement
CAN355 Addition of parameter for cyclic call of scheduled function
CAN356 Addition of parameter for cyclic call of scheduled function
CAN357 Addition of parameter for cyclic call of scheduled function
CAN358 Addition of parameter for cyclic call of scheduled function
CAN359 Addition of parameter for wakeup source id
CAN360 UML model linking of Can_Cbk_CheckWakeup
CAN361 Requirement for the function Can_Cbk_CheckWakeup
CAN362 Requirement for the function Can_Cbk_CheckWakeup
CAN363 Requirement for the function Can_Cbk_CheckWakeup
CAN364 Requirement for wakeup ISR

73 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

12 Changes during SWS Improvements by Technical
Office

12.1 Deleted SWS Items

SWS Item Rationale
CAN001 No requirement: ID removed, text kept
CAN003 No requirement: ID removed, text kept

12.2 Replaced SWS Items

SWS Item of
Release 1

replaced by
SWS Item

Rationale

CAN008 CAN173, CAN174,
CAN176

Made requirement atomic

CAN015 CAN212, CAN213,
CAN214, CAN215,
CAN216, CAN217,
CAN218, CAN219

Made requirement atomic

CAN046 CAN238, CAN239,
CAN240, CAN241

Made requirement atomic

CAN094 CAN242, CAN243,
CAN244

Made requirement atomic

CAN052 CAN257, CAN258 Made requirement atomic
CAN114 CAN277, CAN278 Made requirement atomic
CAN101 CAN402, CAN403 Made requirement atomic and improved

description of Multiplexed Transmission.

12.3 Changed SWS Items

Many requirements have been changed to improve understandability without
changing the technical contents.

SWS Item Rationale
CAN215, CAN286 Improve description of Cancel Transmit functionality
CAN076 Improve description of Multiplexed Transmission
CAN034 SchM_Can.h added to support requirement BSW00435.

API CanIf_SetWakeupEvent replaced by EcuM_CheckWakeup to be
compliant to wakeup concept.

CAN271

12.4 Added SWS Items

SWS Item Rationale
CAN177 Requirement for the function Can_GetVersionInfo
CAN178 Requirement for the function Can_MainFunction_Write
CAN179 Requirement for the function Can_MainFunction_Write
CAN180 Requirement for the function Can_MainFunction_Read
CAN181 Requirement for the function Can_MainFunction_Read

74 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

CAN183 Requirement for the function Can_MainFunction_BusOff
CAN184 Requirement for the function Can_MainFunction_BusOff
CAN185 Requirement for the function Can_MainFunction_Wakeup
CAN186 Requirement for the function Can_MainFunction_Wakeup
CAN187 Requirement for the function Can_InitController
CAN188 Requirement for the function Can_InitController
CAN189 Requirement for the function Can_InitController
CAN190 Requirement for the function Can_InitController
CAN192 Requirement for the function Can_InitController
CAN193 Requirement for the function Can_SetControllerMode
CAN196 Requirement for the function Can_SetControllerMode
CAN197 Requirement for the function Can_SetControllerMode
CAN198 Requirement for the function Can_SetControllerMode
CAN199 Requirement for the function Can_SetControllerMode
CAN200 Requirement for the function Can_SetControllerMode
CAN201 Requirement for the function Can_SetControllerMode
CAN202 Requirement for the function Can_DisableControllerInterrupts
CAN204 Requirement for the function Can_DisableControllerInterrupts
CAN205 Requirement for the function Can_DisableControllerInterrupts
CAN206 Requirement for the function Can_DisableControllerInterrupts
CAN208 Requirement for the function Can_EnableControllerInterrupts
CAN209 Requirement for the function Can_EnableControllerInterrupts
CAN210 Requirement for the function Can_EnableControllerInterrupts
CAN220 Each variant gets an individual requirement ID
CAN221 Each variant gets an individual requirement ID
CAN222 UML model linking of imported types
CAN223 UML model linking of Can_Init
CAN224 UML model linking of Can_GetVersionInfo
CAN225 UML model linking of Can_MainFunction_Write
CAN226 UML model linking of Can_MainFunction_Read
CAN227 UML model linking of Can_MainFunction_BusOff
CAN228 UML model linking of Can_MainFunction_Wakeup
CAN229 UML model linking of Can_InitController
CAN230 UML model linking of Can_SetControllerMode
CAN231 UML model linking of Can_DisableControllerInterrupts
CAN232 UML model linking of Can_EnableControllerInterrupts
CAN233 UML model linking of Can_Write
CAN234 UML model linking of mandatory interfaces
CAN235 UML model linking of optional interfaces
CAN237 Gave ID to existing requirement
CAN245 Gave ID to existing requirement
CAN246 Gave ID to existing requirement
CAN247 Gave ID to existing requirement
CAN248 Gave ID to existing requirement
CAN249 Gave ID to existing requirement
CAN250 Gave ID to existing requirement
CAN251 Gave ID to existing requirement
CAN252 Gave ID to existing requirement
CAN255 Gave ID to existing requirement
CAN256 Gave ID to existing requirement
CAN259 Gave ID to existing requirement
CAN260 Gave ID to existing requirement
CAN261 Gave ID to existing requirement
CAN262 Gave ID to existing requirement
CAN263 Gave ID to existing requirement
CAN264 Gave ID to existing requirement
CAN265 Gave ID to existing requirement
CAN266 Gave ID to existing requirement

75 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

Specification of CAN Driver
 V2.4.0

R3.1 Rev 5

76 of 76 Document ID 011: AUTOSAR_SWS_CAN_Driver
 - AUTOSAR confidential -

CAN267 Gave ID to existing requirement
CAN268 Gave ID to existing requirement
CAN269 Gave ID to existing requirement
CAN270 Gave ID to existing requirement
CAN271 Gave ID to existing requirement
CAN272 Gave ID to existing requirement
CAN273 Gave ID to existing requirement
CAN274 Gave ID to existing requirement
CAN275 Gave ID to existing requirement
CAN276 Gave ID to existing requirement
CAN279 Gave ID to existing requirement
CAN399, CAN400 Improve description of Cancel Transmit functionality
CAN401 Improve description of Multiplexed Transmission
CAN404 Added to support requirement BSW00435

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	2.1 Priority Inversion
	2.2 CAN Hardware Unit

	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1.1 Static Configuration
	5.1.2 Driver Services
	5.1.3 System Services
	5.1.4 Can module Users
	5.2 File structure
	5.2.1 Code file structure
	5.2.2 Header file structure

	6 Requirements traceability
	7 Functional specification
	7.1 Driver scope
	7.2 Driver State Machine
	7.3 CAN Controller State Machine
	7.3.1 State Description
	7.3.2 State Transitions

	7.4 Can module/Controller Initialization
	7.5 L-PDU transmission
	7.5.1 Priority Inversion
	7.5.1.1 Multiplexed Transmission
	7.5.1.2 Transmit Cancellation

	7.5.2 Transmit Data Consistency

	7.6 L-PDU reception
	7.6.1 Receive Data Consistency

	7.7 Wakeup concept
	7.8 Notification concept
	7.9 Reentrancy issues
	7.10 Error classification
	7.10.1 Development Errors
	7.10.2 Production Errors
	7.10.3 Return Values

	7.11 Error detection
	7.12 Error notification
	7.13 Version Check

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Can_ConfigType
	8.2.2 Can_ControllerConfigType
	8.2.3 Can_IdType
	Can_StateTransitionType
	Can_ReturnType

	8.3 Function definitions
	8.3.1 Services affecting the complete hardware unit
	8.3.1.1 Can_Init
	8.3.1.2 Can_GetVersionInfo

	8.3.2 Services affecting one single CAN Controller
	8.3.2.1 Can_InitController
	8.3.2.2 Can_SetControllerMode
	8.3.2.3 Can_DisableControllerInterrupts
	8.3.2.4 Can_EnableControllerInterrupts
	8.3.2.5 Can_Cbk_CheckWakeup

	8.3.3 Services affecting a Hardware Handle
	8.3.3.1 Can_Write

	8.4 Call-back notifications
	8.5 Scheduled functions
	8.5.1.1 Can_MainFunction_Write
	8.5.1.2 Can_MainFunction_Read
	8.5.1.3 Can_MainFunction_BusOff
	8.5.1.4 Can_MainFunction_Wakeup

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	Configurable interfaces

	9 Sequence diagrams
	9.1 Interaction between Can and CanIf module
	9.2 Wakeup sequence

	10 Configuration specification
	10.1 How to read this chapter
	10.1.1 Configuration and configuration parameters
	10.1.2 Variants
	10.1.3 Containers

	10.2 Containers and configuration parameters
	10.2.1 Variants
	Can
	CanGeneral
	CanController
	CanHardwareObject
	CanFilterMask
	CanConfigSet

	 Published Information

	11 Changes to Release 2.1
	11.1 Deleted SWS Items
	11.2 Replaced SWS Items
	11.3 Changed SWS Items
	11.4 Added SWS Items

	12 Changes during SWS Improvements by Technical Office
	12.1 Deleted SWS Items
	12.2 Replaced SWS Items
	12.3 Changed SWS Items
	12.4 Added SWS Items

