
AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

Document Title AUTOSAR Methodology
Document Owner AUTOSAR GbR
Document Responsibility AUTOSAR GbR
Document Identification No 068
Document Classification Auxiliary

Document Version 1.2.1
Document Status Final
Part of Release 3.1
Revision 0001

Document Change History
Date Version Changed by Change Description
23.06.2008 1.2.1 AUTOSAR

Administration
Legal disclaimer revised

28.11.2007 1.2.0 AUTOSAR
Administration

• Subchapter “limitations of the
current version” enhanced

• Document meta information
extended

• Small layout adaptations made
31.01.2007 1.1.0 AUTOSAR

Administration
• Updated chapter 5 “ECU-Design”
• Updated chapter 6.1 “Relationship

with Services”

• Legal disclaimer revised
• Release Notes added
• “Advice for users” revised
• “Revision Information” added

27.04.2006 1.0.0 AUTOSAR
Administration

Initial release

1 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

Page left intentionally blank

2 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

Disclaimer

This document of a specification as released by the AUTOSAR Development
Partnership is intended for the purpose of information only. The commercial
exploitation of material contained in this specification requires membership of the
AUTOSAR Development Partnership or an agreement with the AUTOSAR
Development Partnership. The AUTOSAR Development Partnership will not be liable
for any use of this specification. Following the completion of the development of the
AUTOSAR specifications commercial exploitation licenses will be made available to
end users by way of written License Agreement only.

No part of this publication may be reproduced or utilized in any form or by any
means, electronic or mechanical, including photocopying and microfilm, without per-
mission in writing from the publisher." The word AUTOSAR and the AUTOSAR logo
are registered trademarks.

Copyright © 2004-2008 AUTOSAR Development Partnership. All rights reserved.

Advice to users of AUTOSAR Specification Documents:

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).
Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary
items are licensed under the same rules as applicable to the AUTOSAR Standard.

3 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

Table of Contents
1 Abbreviations... 5

2 AUTOSAR Methodology.. 6

2.1 Introduction .. 6
2.1.1 Scope of the methodology .. 6
2.1.2 How the methodology is modeled ... 6
2.1.3 Limitations of the current version .. 7

2.2 Structure of this document ... 7
2.3 The notation used to describe the Methodology... 7

2.3.1 SPEM.. 7
2.3.2 Work-Product .. 8
2.3.3 Activity... 8
2.3.4 Guidance... 8
2.3.5 Flow of Work-Products.. 9
2.3.6 Dependency.. 9
2.3.7 Transitive Relations... 9
2.3.8 Composition .. 10
2.3.9 Reference to elements of the meta-model .. 10
2.3.10 Different states of work-products... 11

3 Methodology Overview.. 12

4 System Configuration .. 14

4.1 System Configuration Overview ... 14
4.2 System Configuration Details ... 15
4.3 Activities after System Configuration.. 17

5 ECU Design and Configuration Methodology .. 18

5.1 Overview .. 18
5.2 Extract ECU-Specific Information... 18
5.3 Configure AUTOSAR Services... 19
5.4 Configure ECU ... 20
5.5 Generate Executable.. 26

5.5.1 Basic Software Generation.. 27
5.5.2 RTE Generation .. 28
5.5.3 Generation of Executable Code for ECU .. 29

5.6 Measurement and Calibration .. 30

6 Component Implementation .. 32

6.1 Relationship with Services ... 33
6.2 ECU-Configuration-Specific Optimizations... 34

7 References .. 36

8 Appendix ... 37

4 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

1 Abbreviations
API Application Programming Interface

ASAM MCD Assosiation for Standardization of Automation- and Measuring
Systems Measurement, Calibration and Diagnositics

AUTOSAR Automotive Open System Architecture

BSW Basic Software

CAN Controller Area Network

CCP CAN Calibration Protocol

CPU Central Processing Unit

DWARF Debug With Arbitrary Record Format

ECU Electronic Control Unit

KWP2000 KeyWord Protocol 2000

MCAL MicroController Abstraction Layer

OEM Original Equipment Manufacture

OS Operating System

RTE Runtime Environment

SW Software

SWC Software Component

VFB Virtual Functional Bus

XCP Universal Measurement and Calibration Protocol

XML Extensible Markup Language

5 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

2 AUTOSAR Methodology

2.1 Introduction

AUTOSAR requires a common technical approach for some steps of system
development. This approach is called the “AUTOSAR methodology”. This document
defines and describes this AUTOSAR methodology.

This document is a refinement of the “AUTOSAR Technical Overview” [Tech]. It
covers all major steps of the development of a system with AUTOSAR: from the
system-level configuration to the generation of an ECU executable.

2.1.1 Scope of the methodology

The AUTOSAR methodology is not a complete process description. “Roles” and
“responsibilities” are not defined in this methodology.

Furthermore, the methodology does not prescribe a precise order in which activities
should be carried out. The methodology is a mere work-product flow: it defines the
dependencies of activities on work-products. This means that when the information
specified in the methodology is available, an activity can be carried out to produce
the output work-products.

This restriction implies that the AUTOSAR methodology does not define an overall
time-line and does not define how and when iterations are carried out. For example
during system-design, the same activity (namely configuring the system) will be
carried out repeatedly with various levels of precision. There will be a first “rough”
configuration and a final “precise” configuration which might depend on the feedback
from the actual configuration or even implementation of ECUs. How and when such
refinement steps are to be carried out is NOT defined in the methodology.

2.1.2 How the methodology is modeled

In order to promote a consistent and precise description of the “AUTOSAR
methodology” across the project, a formal syntax, called “SPEM”, is used to model
the methodology [SPEM].

SPEM is closely integrated with the AUTOSAR meta-model. The AUTOSAR meta-
model precisely defines the concepts that are used when describing systems with
AUTOSAR1. The syntax of the exchange formats (the so-called “templates”)
between tools is directly generated out of this meta-model2.

1 The “Template UML Profile and Modeling Guide“ describes the modelling approach used in the
meta-model [ModGuide]. The detailed content of the meta-model is described in various other
specifications, such as the “Software-Component Template”, the “ECU-Resource Template” and the
“System Description Template”.

6 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

2 The “Model Persistence Rules for XML“ describes the relationship between the XML-based
exchange formats and the meta-model [ModRules], [MetaModel].

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

The SPEM of the AUTOSAR methodology relates many work-products that are input
or output of an activity to specific elements out of the AUTOSAR meta-model. This
ensures consistency between the AUTOSAR “templates” and their application in
specific steps in the AUTOSAR methodology: the AUTOSAR meta-model defines
HOW something is described; the AUTOSAR methodology defines WHEN these
descriptions are used in specific activities.

2.1.3 Limitations of the current version

2.1.3.1 General limitations

Over the past releases in AUTOSAR, detailed work on both template and software
specifications has progressed. Hence, one might experience inconsistencies
between this document and detailed specifications as referred to in Chapter
7 References. In the unlikely case of a conflict between this document and one of the
referenced detailed specifications, the latter shall take precedence.

2.1.3.2 Usage of the C language

This version of the methodology description refers to the implementation language C.
That means the handling of software sources in this context is explained or illustrated
exemplarily for C. Basically the methodology should be independent from the
implementation language and the given description should be easily adaptable to
other languages.

2.2 Structure of this document

Chapter 2.3 of this document describes the syntax used in the SPEM. This chapter is
a prerequisite for a precise understanding of the methodology.

The actual methodology starts with an overview and then goes into more depth
according to the following structure:

• The System Configuration shows all activities taking place at system-level,
• the activities ECU Design and Configuration are taking place at ECU-level,
• and the Component Implementation highlights the methodology used at

component level.

2.3 The notation used to describe the Methodology

2.3.1 SPEM

AUTOSAR describes the methodology using the Software Process Engineering
meta-model, or SPEM for short. SPEM standardizes the terminology used for
7 of 38 Document ID 068: AUTOSAR_Methodology

- AUTOSAR Confidential -

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

describing processes. SPEM is a standard defined by the Object Management
Group (OMG) and is designed to describe a concrete software development process
or a family of related software development processes [SPEM]. SPEM is a UML
profile, which makes it possible to integrate the AUTOSAR methodology right into the
AUTOSAR meta-model.

For the purposes of describing the AUTOSAR methodology, only a very small subset
of SPEM is actually used. The following sections describe the modeling-elements
used for the definition of the AUTOSAR methodology. These are:

• Work-Product,
• Activity,
• Guidance,
• Flow of Work-Products,
• Dependencies between Work-Products,
• Composition of Work-Products,
• and References to elements of the meta-model.

2.3.2 Work-Product

A «Work-Product» is a piece of information or physical entity produced by or
used by an activity.

For the AUTOSAR methodology 4 specific kinds of «Work-Product» are

defined:
• XML-Document3,
• c-Document (for files containing sources in the language C),
• obj-Document (for object files),
• h-Document (for files containing header files that are included in c-files).

2.3.3 Activity

An «Activity» describes a piece of work performed by one or a group of
persons: the tasks, operations, and actions that are performed by a role or
with which the role may assist4.

2.3.4 Guidance

«Guidance» elements are associated with activities and
represent additional information or tools that are available
to the practitioners of the activity. In SPEM, possible
types of «Guidance» can for example be: Guidelines,

3 Note that a single XML-document can consist of an arbitrary number of files. The AUTOSAR
methodology defined in this document does NOT define the number of files that are input or output of
an activity.
4 Note that the AUTOSAR methodology does NOT define roles.
8 of 38 Document ID 068: AUTOSAR_Methodology

- AUTOSAR Confidential -

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

Techniques, Metrics, Examples, UML Profiles, Tool mentors, Checklist, Templates.

In the AUTOSAR methodology, we are using «Guidance» to model tools that are to
be used to perform the activity. The example on the right shows that the activity
Configure System is associated with the «Guidance» AUTOSAR System
Configuration Generator. The association is represented by a dotted line and
means that the tool AUTOSAR System Configuration Generator is used to
perform the activity.

2.3.5 Flow of Work-Products

The flow of work-products is
graphically represented by a
line with an arrowhead. It is
always directed from its
source to its destination and

is used to identify the input and output of an activity. In this example the activity
System Configuration uses the work-product System Constraint
Description as input and outputs the System Configuration Description.

2.3.6 Dependency

A «Dependency» is a dotted line with an
arrowhead that indicates that one work-
product depends on another work-
product. It is a unidirectional
«Dependency» and the direction of the
line clarifies who depends on whom.

The example shows that the XML-Document ECU Object Description depends
on the XML-Document Component Implementation Description. In this
context the «Dependency» can also be interpreted as a reference: the XML-
document ECU Object Description contains references to information
contained in the XML-document Component Implementation Description.

2.3.7 Transitive Relations

The graphic on the left shows an example where the XML-
Document System Configuration Input depends on
the XML-Documents Top-Level Composition,
Component Type Description, Topology and ECU
Resource Description. This is graphically represented
by four single dependencies.

But it is possible to reduce the graphical
overhead by observing the following fact:
the Top-Level Composition
depends on the Component Type

9 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

Description and the Topology depends on the ECU Resource
Description. Therefore an explicit graphical representation of the dependency
between the System Configuration Input and the Component Type
Description is superfluous. The same applies to the dependency between the
System Configuration Input and the ECU Resource Description. The
graphic on the right is semantically equivalent.

The same simplification is applicable to workflows.
In this example the activity Configure System
has three inputs,
namely Top
Composition,
System
Configuration
Input

-Level

tion
Description.

2.3.9 Reference to elements of the meta-model

 a pecific template out
of the

at information can6 be contained in this work-product and how this
information is structured.

and
Topology. It is
sufficient to show the

flow between Configure System and System
Configuration Input, because the last named
depends on the Top-Level Composition and on the Topology. Also these
both graphics are semantically equivalent.

2.3.8 Composition

A «Composition» is graphically
represented by a line with a solid
diamond on its end. A «Composition» is
used to show that one work-product is
made up of (=contains) other work-
products. In this example the System

Configuration Description contains a System Mapping. It is also possible
to say that the System Mapping is part of the System Configura

The following notation is used in the AUTOSAR methodology
diagrams to indicate that a work-product uses s

 AUTOSAR meta-model [MetaModel] :
Work-product-name : Meta-class-name 5

In this example we have an XML-Document named System
Configuration Description which is an instance of the meta-

class “System”. This reference to the class “System” out of the meta-model defines
precisely wh

10 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

5 The Work-Product is an instance of a meta-class out of the meta-model

http://dict.leo.org/se?lp=ende&p=/Mn4k.&search=superfluous

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

2.3.10 Different states of work-products

The state of a work-product can change during an activity. Therefore the same work-
product appears several times in the diagram, but with a different state. The name of
the work-product remains the same, but the state changes. The notation is as
follows:

Work-product-name [Work-product-state] : Meta-class-name
In the example above the state of the Component Implementation
Description changes from [for Source-Code] to [for Object-Code] and
then to [resource needs].

6 Through referencing the meta-model, the methodology defines more precisely what information can
be contained in the work-products. The current version of the methodology however does not define
formally what information MUST be contained in a work-product in order to be able to carry out a

11 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

certain process step. Future versions of the methodology will also try to capture this information more
precisely.

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

3 Methodology Overview
Figure 1 shows a rough outline of the design steps to build a system and resultant of
this the ECUs and the topology with the AUTOSAR methodology.

Configure
System

.XML.XML

System
Configuration

Input :
System

.XML.XML

System
Configuration
Description

:System

Extract
ECU-

Specific
Information

.XML.XML

ECU
Extract

of
System

Configuration
:System

Configure
ECU

.XML.XML

ECU
Configuration

Description

Generate
Executable

.exe.exe

ECU
Executable

Figure 1: Overview AUTOSAR methodology

Firstly the System Configuration Input has to be defined. This is a system
design or architecture task. The software components and the hardware have to be
selected, and overall system constraints have to be identified. AUTOSAR intends to
ease the formal description of these initial system design decisions via the
information exchange format and the use of templates. So defining the System
Configuration Input means filling out or editing the appropriate templates.

This addresses information of the following packages

• Software Components: each software component requires a description of the
software API e.g. data types, ports, interfaces, etc., see [SWCTempl].

• ECU Resources: each ECU requires specifications regarding e.g. the
processor unit, memory, peripherals, sensors and actuators, see [ECURes].

• System Constraints: this contains e.g. constraints regarding the bus signals,
topology and mapping of belonging together software components, see
[SysTempl].

It depends on the use case whether a template has to be filled out from scratch or
whether a reuse – probably with some editing – is possible. Basically the AUTOSAR
methodology allows for a high degree of reuse in this context.

The activity of the Configure System mainly maps the software components to
the ECUs with regard to resources and timing requirements.

The output of the Configure System is the System Configuration
Description. This description includes all system information (e.g. bus mapping,
topology) and the mapping of which software component is located on which ECU.

12 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

The step Extract ECU-Specific Information extracts the information from
the System Configuration Description needed for a specific ECU. This is
then placed in the ECU Extract of System Configuration.
The activity Configure ECU adds all necessary information for implementation like
task scheduling, necessary BSW (basic software) modules, configuration of the
BSW, assignment of runnable entities to tasks, etc.

The result of the activity Configure ECU is included in the ECU Configuration
Description, which collects all information that is local to a specific ECU. The
executable software to this specific ECU can be built from this information.

In the last step Generate Executable an executable is generated based on the
configuration of the ECU described in the ECU Configuration Description.
This step typically involves generating code (e.g. for the RTE and the BSW),
compiling code (compiling generated code or compiling software-components
available as source-code) and linking everything together into an executable.

Parallel to these briefly described steps of the methodology there are several steps
required to integrate the software components into the whole system, e.g. generating
the components API, and implementing the components functionality. For clarity
they are not depicted in Figure 1. Nevertheless the implementation of a software
component is more or less independent from ECU configuration. This is a key
feature of the AUTOSAR methodology.

The following sections describe the various parts of the AUTOSAR methodology in
more detail. To reflect the parallelism of the several activities we don't follow the
simplified sequential structure of Figure 1, but we distinguish parts of the
methodology that are necessary at least once per system, per ECU, and per
component.

13 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

4 System Configuration

4.1 System Configuration Overview

Configure System

AUTOSAR
System

Configuration
Generator

.XML.XML

System
Configuration
Input :System

.XML.XML

System
Configuration
Description :

System

.XML.XML

System
Communication-

Matrix :
CommunicationMatrixType

.XML.XML

Collection of
Available SWC

Implementations

Figure 2: System configuration overview

The activity Configure System takes engineering decisions at system level.
These decisions are based on the System Configuration Input and the
Collection of Available SWC Implementations. The AUTOSAR System
Configuration Tool supports the decisions. Output of this activity is a complete
System Configuration Description and an associated System
Communication-Matrix.

14 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

4.2 System Configuration Details

Configure System

.XML.XML
System

Configuration
Input :System

.XML.XML
System

Configuration
Description :

System
AUTOSAR

System
Configuration

Generator

.XML.XML

Topology :
SystemTopologyType

.XML.XML

System
Mapping :

SystemMapping

.XML.XML

Top-Level
Composition :

CompositionType

.XML.XML

Mapping
Constraints :

SystemMapping

.XML.XML

System
Communication-

Matrix :
CommunicationMatrixType

.XML.XML

Communication-
Matrix as

Constraint :
CommunicationMatrixType

.XML.XML

Available SWC
Implementation

:
Implementation

.XML.XML

Collection of
Av ailable SWC

Implementations

.XML.XML

ECU Resource
Description :ECU

*

Figure 3: System configuration details

The activity Configure System is performed at system level. In addition to the
System Configuration Input, this activity needs a Collection of
Available SWC Implementations, which contains a description of the software-
component implementations that can be used to realize the components required by
the Top-Level Composition. The work-products coming out of this activity are
the System Configuration Description and the System Communication-
Matrix.

The System Configuration Input contains a reference to a Top-Level
Composition. This Top-Level Composition contains a hierarchical description
of all components that should be present in the system to be generated. The
outgoing work-product System Configuration Description references the
same Top-Level Composition. This means that during the Configure
System activity the component-view on a system (which components are present) is
not modified.

The System Configuration Input also contains a reference to the Topology
of the system. The topology describes the ECUs that are present in the system and
how they are interconnected through networks. The topology references ECU
Resource Descriptions, which describe the hardware-resources available on
individual ECUs in the topology. This topology is not modified during the activity
Configure System; the System Configuration Description references the
same topology.

15 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

One of the most important decisions that are taken during the Configure System
activity is the “mapping”: for each component (out of the Top-Level
Composition), a decision must be taken on what ECU in the Topology the
component runs.

As part of the mapping decisions, the Configure System activity might decide on
the use of specific implementations for certain software components. These
implementations are chosen from the Collection of Available SWC
Implementations. Choosing an implementation at system-level might enable a
more precise analysis of required and provided resources and allows the system-
designer to influence more precisely what happens inside the ECU. In many cases
however, such choices are not made at system-level, but are left over to the specific
ECU configuration in a later activity in the AUTOSAR methodology.

The results of the decisions regarding mapping and component-implementations are
documented in the System Mapping which is part of the System
Configuration Description. This System Mapping contains a complete
mapping of all components on ECUs of the topology and an optional choice of
specific implementations for the software-components.

The System Configuration Input includes or references various constraints
that should be considered during the Configure System activity. These
constraints can be described as Mapping Constraints which force or forbid
certain components to be mapped to certain ECUs or requires certain
implementations to be used for components. In addition, these Mapping
Constraints can contain resource estimations describing the net availability of
resources on ECUs and thereby limiting the possible mappings. The System
Configuration Input can also reference a partly incomplete Communication-
Matrix as Constraint.

Finally, an important aspect of the activity is the design of the System
Communication-Matrix. This System Communication-Matrix completely
describes the frames running on the networks described in the topology and the
contents and timing of those frames.

The tool AUTOSAR System Configuration Tool supports the activity
Configure System. That means this tool is more than a generator that produces
the output based on some input following a certain algorithm. It is rather an editing
tool. It should help to take the aforementioned engineering decisions (e.g. via clear
graphical representation), to store these decisions, and to change them later if
necessary. So when an initial output was generated, the tool will be used to refine
both the System Configuration Description and the System
Communication-Matrix. As a consequence of such iterations during the overall
system development, the tool also has to be able to read not only the inputs but the
outputs as well.

16 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

4.3 Activities after System Configuration

Configure System

.XML.XML

System
Configuration
Description :

System

.XML.XML

System
Configuration
Input :System

Extract ECU-Specific
Information

AUTOSAR ECU
Configuration

Extractor

AUTOSAR
System

Configuration
Generator

.XML.XML

System
Communication-

Matrix :
CommunicationMatrixType

Continued in
"ECU Design and
Configuration
Methodology"

.XML.XML

Collection of
Av ailable SWC

Implementations

Figure 4: Activities after system configuration

The System Configuration Description which is output of the Configure
System activity can be used to generate ECU-specific extracts of the system
configuration. These ECU-specific work-products7 are used as input to the design
and configuration of specific ECUs as described in the following section.

17 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

7 This includes also an ECU specific extract of the system communication matrix.

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

5 ECU Design and Configuration Methodology

5.1 Overview

Figure 5 shows an overview about the design steps to build an ECU with the
AUTOSAR technology.

Extract
ECU-

Specific
Information

Configure
ECU

.XML.XML

System
Configuration
Description

:System

.XML.XML

ECU
Extract

of
System

Configuration
:System

.XML.XML

ECU
Configuration

Description

.exe.exe

ECU
Executable

Generate
Executable

Figure 5: Overview about ECU part of the AUTOSAR methodology

The input to this phase is the System Configuration Description, which is
created during the system configuration phase. The output of this phase is the
executable ECU software.

To avoid misunderstandings it should be emphasized that the ECU Executable
described in the methodology is not always the executable which will be used finally
in the production line. The methodology does not define when and how iterations
take place. Thus in practice the executable likely will change during development,
e.g. due to optimizations or to consider calibration.

The major activities in this phase are the extraction of ECU-specific information from
the System Configuration Description, the configuration of the ECU and the
generation of the executable ECU software. The following sections will describe
these activities in more detail.

5.2 Extract ECU-Specific Information

The System Configuration Description is an instance of the System
element of the AUTOSAR meta-model. The tool AUTOSAR ECU Configuration
Extractor extracts the information from the System Configuration
Description needed for a specific ECU. This is a one to one copy of all elements
of the System Configuration Description that are appointed to this specific
ECU. Hence the activity Extract ECU-Specific Information can be
completely automated. The result is primarily the ECU Extract of System
Configuration.

There are some additional outputs generated in this activity that are for clarity
neglected in the overview of Figure 5. These are the ECU Extract of
Communication Matrix, the ECU Extract of Topology, and the ECU
18 of 38 Document ID 068: AUTOSAR_Methodology

- AUTOSAR Confidential -

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

Extract of Top-Level Composition. The input System Configuration
Description simply references the information to be extracted. The ECU
Extract of System Configuration can reference all these outputs.

5.3 Configure AUTOSAR Services

The ECU Extract of the System Configuration by means of the ECU
Extract of Top-Level Composition contains all information about which
components are mapped to a specific ECU. This Information is used in the
Generate ECU SW Composition activity illustrated by Figure 6: A new work
product ECU Software Composition is created which represents the overall
software composition on a particular ECU, forming the basis for RTE generation. On
one hand it references the application ComponentPrototypes via the ECU Extract
and on the other hand contains newly generated ServiceComponentPrototypes
describing the Services required by the application component: For each mapped
ComponentPrototype of type AtomicSoftwareComponentType, the
PortPrototypes requiring a Service are collected. Based on this information,
ServiceComponentTypes are created exactly once per service per ECU with the
corresponding number of PortPrototypes, thus that all service-type Port-
Prototypes on the Application Components have their PortPrototype
counterpart on the ServiceComponentType. Additionally, in order to connect the
services to the application components, ServiceConnectorPrototypes are
generated in this activity, directly connecting the application port with the service port.
In order to describe the Service completely with regard to RTE generation an
InternalBehavior and Implementation is created for each Service-
ComponentType.

19 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

.XML.XML

ECU
Extract of
System

Configuration
:System

.XML.XML

ECU
Extract of
Mapping

.XML.XML

ECU
Extract of
Top-Lev el

Composition

.XML.XML
ECU

Configuration
Description

.XML.XML
ECU

Software
Composition

:
EcuSwComposition

Generate
Base ECU

Configuration
Description

Generate
ECU SW

Composition

Configure
Serv ice

Component

.XML.XML

Serv ice
Component
Description

:
Serv iceComponentType

Generate ECU
SW

Composition
Generator

AUTOSAR
Serv ice

Component
Configurator

.XML.XML

BSW-
Module

Description
:

BswModuleDescription

Figure 6: Per ECU Service configuration

The activity Configure Service Component adds all missing information
relevant for RTE generation to the InternalBehavior associated with each
ServiceComponentType. In particular, the port defined argument values required
for the usage of some service interfaces are configured, and the required
RunnableEntities and RTEEvents necessary for the RTE generation are set up.

EcuSoftwareComposition together with the ECU Extract of the System
Configuration then serves as input for generating the Base ECU
Configuration Description. Further parameter configuration of the BSW
module implementing the service is being done in ECU Configuration phase, as
explained in the next chapter.

5.4 Configure ECU

In contrast to the extraction of ECU-specific information, the configuration of the ECU
is a non-trivial design step, which requires complex design algorithms and
engineering knowledge. This step deals with e.g. the detailed scheduling information

20 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

or the configuration data for the needed Basic Software modules. With respect to the
complexity of the configuration firstly there will be a perfunctory view on it, followed
by a more detailed description. For background information and even more details
on this topic (e.g. distinguish configuration at pre-compile time, at link time, or at
post-build time) refer to [ECUConf].

Figure 7 depicts an overview of the ECU configuration. The activity Configure
ECU tends to deliver a usable ECU Configuration Description for the
following generation step. The configuration activity is based on the input work
products ECU Extract of System Configuration, Collection of
Available SWC Implementations, and BSW Module Description. The
latter contains the Vendor Specific ECU Configuration Parameter
Definition which defines all possible configuration parameters and their structure.
This is necessary because the output ECU Configuration Description has a
flexible structure which does not define a fixed number of configuration parameters a
priori. The BSW Module Description is assumed to consist of single descriptions
delivered together with the appropriate used BSW module.

For details in the ECU configuration the ECU Configuration Description has
to be able to reference the BSW Module Description, and also the ECU
Extract of System Configuration.

.XML.XML

ECU
Configuration

Description

Configure
ECU

.XML.XML

ECU
Extract

of
System

Configuration
:

System

.XML.XML

BSW-
Module

Description
:

BswModuleDescription

.XML.XML

Collection
of

Available
SWC

Implementations

.XML.XML

Vendor
Specific
Module

Definition
:

ModuleDef

Figure 7: Overview about ECU configuration

21 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

AUTOSAR
OS

Configuration
Editor

Configure
OS

AUTOSAR
COM

Configuration
Editor

Configure
COM

AUTOSAR
RTE

Configuration
Editor

Configure
RTE

.XML.XML
ECU

Extract
of

System
Configuration

:
System

.XML.XML
ECU

Configuration
Description

STATUS: proposed

COMMENT: -

.XML.XML
BSW-

Module
Description

:
BswModuleDescription

.XML.XML

Collection
of

Av ailable
SWC

Implementations

.XML.XML

Component
Type

Description
:

AtomicSoftwareComponentType

Configure
other
BSW-

Module

.XML.XML

ECU
Extract
of Top-
Level

Composition
:

CompositionType

.XML.XML

ECU
Extract

of
Communication-

Matrix :
CommunicationMatrixType

.XML.XML

ECU
Extract

of
Mapping

.XML.XML

All
Atomic
SWC

Implementations
on the

ECU

Decide on
all Atomic

SWC
Implementations

.XML.XML

Component
Implementation

Description
[resource
needs] :

Implementation

Generate
Base ECU

Configuration
Description

AUTOSAR
Base
ECU

Config
Generator

AUTOSAR
BSW-

Module
Configuration

Editor

.XML.XML

Vendor
Specific
Module

Definition
:

ModuleDef

Figure 8 shows the details of the ECU configuration. In regard to the time flow of the
ECU configuration, this starts with the activity Generate Base ECU
Configuration Description which is supported by the tool AUTOSAR Base
ECU Config Generator8. This activity takes the input ECU Extract of
System Configuration, the BSW Module Description and if existing a
previously generated ECU Configuration Description.

22 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

8 Probably integrated in any other ECU configuration editing tool.

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

The upper left part of

AUTOSAR
OS

Configuration
Editor

Configure
OS

AUTOSAR
COM

Configuration
Editor

Configure
COM

AUTOSAR
RTE

Configuration
Editor

Configure
RTE

.XML.XML
ECU

Extract
of

System
Configuration

:
System

.XML.XML
ECU

Configuration
Description

STATUS: proposed

COMMENT: -

.XML.XML
BSW-

Module
Description

:
BswModuleDescription

.XML.XML

Collection
of

Av ailable
SWC

Implementations

.XML.XML

Component
Type

Description
:

AtomicSoftwareComponentType

Configure
other
BSW-

Module

.XML.XML

ECU
Extract
of Top-
Level

Composition
:

CompositionType

.XML.XML

ECU
Extract

of
Communication-

Matrix :
CommunicationMatrixType

.XML.XML

ECU
Extract

of
Mapping

.XML.XML

All
Atomic
SWC

Implementations
on the

ECU

Decide on
all Atomic

SWC
Implementations

.XML.XML

Component
Implementation

Description
[resource
needs] :

Implementation

Generate
Base ECU

Configuration
Description

AUTOSAR
Base
ECU

Config
Generator

AUTOSAR
BSW-

Module
Configuration

Editor

.XML.XML

Vendor
Specific
Module

Definition
:

ModuleDef

Figure 8 depicts the work products the ECU Extract of System
Configuration has to access (either as contained part or via reference) for
generating the base configuration. These are ECU specific extracts of the top-level
composition, the mapping and the communication matrix.

23 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

AUTOSAR
OS

Configuration
Editor

Configure
OS

AUTOSAR
COM

Configuration
Editor

Configure
COM

AUTOSAR
RTE

Configuration
Editor

Configure
RTE

.XML.XML
ECU

Extract
of

System
Configuration

:
System

.XML.XML
ECU

Configuration
Description

STATUS: proposed

COMMENT: -

.XML.XML
BSW-

Module
Description

:
BswModuleDescription

.XML.XML

Collection
of

Av ailable
SWC

Implementations

.XML.XML

Component
Type

Description
:

AtomicSoftwareComponentType

Configure
other
BSW-

Module

.XML.XML

ECU
Extract
of Top-
Level

Composition
:

CompositionType

.XML.XML

ECU
Extract

of
Communication-

Matrix :
CommunicationMatrixType

.XML.XML

ECU
Extract

of
Mapping

.XML.XML

All
Atomic
SWC

Implementations
on the

ECU

Decide on
all Atomic

SWC
Implementations

.XML.XML

Component
Implementation

Description
[resource
needs] :

Implementation

Generate
Base ECU

Configuration
Description

AUTOSAR
Base
ECU

Config
Generator

AUTOSAR
BSW-

Module
Configuration

Editor

.XML.XML

Vendor
Specific
Module

Definition
:

ModuleDef

Figure 8: Details of ECU configuration

When there is a base ECU configuration, the real configuration can be performed.
This is mainly editing work on the ECU Configuration Description which is
typically supported by an editing tool. In practice this will require iterations and/or

24 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

parallel work to configure the RTE and all participating BSW modules. For clarity

Figure 8 distinguishes only the configuration activities Configure RTE, Configure
COM, Configure OS, and Configure other BSW Module, all supported by an
appropriate configuration editor9.

The methodology does not prescribe a certain order of these configuration steps.
The ECU Configuration Description which was produced by one activity can
be read by another activity (e.g. Configure RTE generates a description and
Configure COM reads this).

Usually the configuration activities for the BSW modules (inclusive COM and OS)
read and write the ECU Configuration Description.

The configuration of the RTE is more complex. This additionally needs the work
product All Atomic SWC Implementations on ECU. As this description may
change frequently (e.g. because software components have been moved to or from
other ECUs or simply another implementation of a software component has been
selected), the configuration of the RTE has to be repeated as well.

The All Atomic SWC Implementations on ECU is the output of the activity
Decide on all Atomic SWC Implementations. That means based on the
Collection of Available SWC and on the Service SWC Description an
implementation is selected for each Atomic Software Component.

25 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

9 This editor may also be a generic tool which is able to configure any parameter in the ECU
Configuration Description. In addition such a generic editor may contain the
capabilities of the AUTOSAR Base ECU Config Generator.

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

This leads to the configuration of AUTOSAR services in the ECU context as depicted

in the lower left of

Figure 8. The activity Configure AUTOSAR Interface of Service results in a
Service SWC Description for the service. Thus it reads the Requirements
on Service which reference the Service Description, and a Template for
Service Configuration Description. The Service SWC Description
must be generated, because it depends on the configuration of the service.

5.5 Generate Executable

After the ECU has been configured, software for several parts of the ECU can be
generated. This refers to the Basic Software, the RTE and (if the implementation of
all necessary software components is available) the linking of the components
resulting in the executable code of the ECU. The following sections describe these
generation steps in more detail.

26 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

5.5.1 Basic Software Generation

.h.h

OS
Configuration

Header

.c.c

OS
Configuration

Code

.h.h

COM
Configuration

Header

.c.c

COM
Configuration

Code

.h.h

RTE
Header

.c.c

RTE
Code

Generate
OS

Generate
COM

Generate
RTE

.XML.XML

ECU
Configuration

Description

Generate
Other
BSW

Modules

AUTOSAR
Other
BSW

Module
Generator

AUTOSAR
RTE

Generator

AUTOSAR
COM

Generator

AUTOSAR
OS

Generator
.c.c

Module
Code.h.h

Module
Headers

Figure 9: Per-ECU Basic Software generation

Figure 9 shows the generation of Basic Software. For each module of the BSW a
generator reads the relevant parameters from the ECU Configuration
Description and creates code that implements the specified configuration. For
sake of clarity Figure 9 distinguishes only generation activities Generate RTE,
Generate COM, Generate OS, and Generate Other BSW Modules.
Appropriate generation tools10 should support all these generation activities.

27 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

10 These tools don’t have to be stand-alone tools. Probably a generator for a certain BSW module will
be integrated in the related configuration editor. It is also possible to aggregate the generation for
several modules in a generic generator.

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

The configuration of the RTE and BSW modules, like COM or OS, reflects via
specifically generated C code.

5.5.2 RTE Generation

.obj.obj

Compiled
RTE

Measure
Resources

.XML.XML

BSW/RTE
Resources

:
EcuResourceEstimation

Compile
RTE

.h.h

RTE
Header

AUTOSAR
RTE

Generator

Generate
RTE

.obj.obj

Compiled
BSW

.XML.XML

ECU
Configuration

Description

.c.c

RTE
Code

Figure 10: Per-ECU RTE generation

Figure 10 shows the details of the RTE generation process. After the RTE code and
headers are generated by the activity Generate RTE, the generated RTE code is
compiled (Compile RTE). Some resources, such as required space for code and
data, can already be measured (Measure Resources).

28 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

5.5.3 Generation of Executable Code for ECU

.obj.obj

Compiled
COM

.obj.obj

Compiled
Component

.XML.XML

Component
Implementation

Description
[resource

needs]
:

Implementation

Generate
Executable

.obj.obj

ECU-
Configuration-

Specific
Compiled

Component

.obj.obj

Compiled
Libraries

.obj.obj

Compiled
RTE

.obj.obj

Compiled
BSW

.XML.XML

Component
Implementation

Description
[for

ECU-
Configuration-

Specific
Object-
Code] :

Implementation

.XML.XML

ECU
Configuration

Description

STATUS: proposed

COMMENT: -

.obj.obj

Compiled
OS

Map
of

Executable

.exe.exe

ECU
Executable

.obj.obj

Compiled
Other
BSW

Modules

Figure 11: Generation of executable code for ECU

The remaining steps to generate the code for an ECU resemble today's development
practice. However, it is important to note that the Generate Executable activity is
more than a simple linker step. Information from the ECU Configuration
Description might be used to generate specially configured executable software.
The ECU Configuration Description is needed as input to the Generate
Executable activity, because it contains the information which BSW modules and
SWC implementations are used to create the executable.

The output of this activity is the ECU Executable and the Map of Executable
(which is typically the log file from linking the ECU Executable).

Furthermore it has to be synchronized with the component implementation (as
described in section 6). That means the Compiled Component and the Compiled
Libraries must be available.

29 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

5.6 Measurement and Calibration

The AUTOSAR methodology supports the use of measurement and calibration.
Thus it is necessary that data characteristics, which should be measured or changed
by means of a calibration tool, are described in the standard format of ASAM MCD,
see [ASAM]. The ASAM MCD description collects the information of how to
physically interpret binary data on certain ECU memory addresses. The related file
format is called A2L.

Basically measurement and calibration can be performed for each ECU separately.
Figure 12 depicts the steps to generate an A2L file usable by a calibration tool.

Generate
flat

description
of SW per

ECU

Generate
A2L

Map
of

Executable

A2L

.XML.XML

ECU
flat

description

AUTOSAR
flattener

A2L
Generator

MCD
Configuration

Description

.XML.XML

ECU
Configuration
Description

.XML.XML

ECU
Extract

of
System

Configuration
:

System

.XML.XML

ECU
Extract
of Top-
Level

Composition
:

CompositionType

.XML.XML

Component
Type

Description
:

.XML.XML

ECU
Software

Composition
:

EcuSwComposition

.XML.XML

Serv ice
Component
Description

:

.XML.XML

BSW-
Module

Description
:

Figure 12: Measurement and calibration – A2L generation

The basic information about which data to measure or calibrate and how to interpret
it is stored in the description of each software component. However, the information

30 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

on C-symbols required to identify the data is not directly available in the the
Component Type Description. We need an intermediate work product per
ECU, called ECU flat description, which contains this information. Note that
this work product could be an intermediate format for the RTE generation activity, so
it makes sense to combine the ativity Generate flat description of SW per
ECU with the RTE generator. The activity generate flat description of SW
per ECU reads the Component Type Description of all the software
components mapped to the ECU, the Service Component Description of all
AUTOSAR Services configured for the ECU and the BSW Module Description of
all BSW modules integrated on the ECU. It gets access to these data via the ECU
Configuration Description.

The flat description is not yet usable by a calibration tool because it does not contain
address information. So this will be fetched in the next activity Generate A2L. Here
the A2L Generator tool reads the A2L and gathers the appropriate addresses from
the Map of Executable. In addition some information about the measurement and
calibration configuration is needed. This information, e.g. of the used XCP, CCP, or
KWP2000 driver is provided by the MCD Configuration Description. Based
on these inputs the A2L Generator generates the A2L output, which should be
directly usable with calibration tools.

The A2L Generator tool needs some kind of parsing intelligence to correctly
interpret the file syntax of the Map of Executable (which is typically the log file
from linking the Executable). As this is highly dependent on the used
compiler/linker tool chain the A2L Generator is not a standardized AUTOSAR tool.

31 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

6 Component Implementation
This section describes the workflow and the necessary activities in terms of the
AUTOSAR methodology to start the development of an application software
component and to integrate it later into the system. The workflow shall allow a more
or less independent development of the software component’s core functionality.
These activities have to be performed for every application software component;
hence it is also called “per component”.

Figure 13 depicts the per component part of the AUTOSAR methodology. For clarity
and easier understandability, this addresses only a basic workflow without any ECU-
configuration-specific optimizations. It is assumed that such optimizations, as
described in section 6.2, will be rather the default case in practice.

.h.h

Component
API

Generate
Component

API

.XML.XML

Component
Internal

Behav ior
Description

[API
Generation]

:
InternalBehav ior

.XML.XML

Component
Type

Description
:

AtomicSoftwareComponentType

Implement
Component

.c.c

Component
Implementation

Compile
Component

.obj.obj

Compiled
Component

.XML.XML

Component
Implementation

Description
[for

Source-
Code] :

Implementation

Measure
Resources

.XML.XML

Component
Implementation

Description
[resource
needs] :

Implementation

.XML.XML

Component
Internal

Behav ior
Description

[post
Implementation]

:
InternalBehav ior .XML.XML

ECU
Resource

Description
:ECU

.XML.XML

Component
Implementation

Description
[for

Object-
Code] :

Implementation

Status: proposed (proposed, approved, rejected)

Description: per Component
The workflow and the necessary activities in terms of the AUTOSAR
methodology to start the development of an application software component
and to integrate it later into the system.
These activities have to be performed for every application software
component.

Comment: -

.XML.XML

Component
Resource

Consumption
:

ResourceConsumption

.h.h

Additional
Headers

AUTOSAR
Component

API
Generator

.XML.XML

Serv ice
Port :

PortPrototype

.XML.XML

Standardized
Serv ice

Interface :
PortInterface

.XML.XML

Serv ice
Needs :

Serv iceNeeds

Figure 13: Per component part of the AUTOSAR methodology

32 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

The main workflow in Figure 13 runs from the left to the right. The initial work in this
context starts with providing the necessary parts of the software component template
[SWCTempl]. That means at least the Component Internal Behavior
Description as part of the software component related templates has to be filled
out. The internal behavior describes the scheduling relevant aspects of a
component, i.e. the runnable entities and the events they respond to. Furthermore,
the behavior specifies how a component (or more precisely which runnable)
responds to events like received data elements. However, it does not describe the
detailed functional behavior of the component. In practice an AUTOSAR authoring
tool will support editing the Component Internal Behavior Description.

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

Afterwards Generate Component API has to be performed. This is a tool-based
activity. The AUTOSAR Component API Generator11 reads the Component
Internal Behavior Description of the appropriate software component and
generates the Component API accordingly. The Component API contains all
header declarations for the RTE communication. There isn’t any further engineering
or configuration expected in this activity. All input is located in the Component
Internal Behavior Description or referenced by it.

Next Implement Component means the functional development of the component.
With the Component Internal Behavior Description and the Component
API a software developer can implement (i.e. developing, programming, testing) the
component vastly independent from the other system design. This implementation
basically is outside the scope of AUTOSAR. The results of the implementation will
be the Component Implementation (i.e. typically the C-sources), a refined
Component Internal Behavior Description, which contains now additional
implementation specific information, and a Component Implementation
Description, which contains information about the further build process (e.g.
compiler settings, optimizations, etc.).

The following activities address the integration of the previously provided component.
Compile Component uses the Component Implementation Description for
compiling the Component Implementation together with the Component API
and the Additional Headers. This yields the Compiled Component and a
refined Component Implementation Description. This contains additional
new build process information (mainly linker settings) and the entry points.

Now a first Measure Resources basing on the Compiled Component, the
Component Implementation Description, and the ECU Resource
Description yield a refinement of the Component Implementation
Description. Typical measures here refer to memory resources, e.g. RAM, ROM
or stack usage.

This description does not mean that a component implementer always has to deliver
the component as object code for further integration into an ECU. In AUTOSAR also
a component shipment of source code will be supported. In that case the compiling
has to be performed within the scope of the integration into an ECU.

6.1 Relationship with Services

Some parts of the aforementioned component implementation depend on the
services the component requires. Figure 14 shows how a Component Type
Description is used to describe the requirements of a software component on the
services of the basic software: The connection points to AUTOSAR Services are
described via Port Prototypes which are typed by Standardized AUTOSAR

33 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

11 The AUTOSAR Component API Generator does not have to be a stand-alone tool. The functionality
propably is included in the AUTOSAR RTE Generator.

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

Interfaces. Additional annotations to those ports12, called Service Needs, are
used to describe specific needs to the services, which need to be known by the
ECU integrator and cannot be deduced from the Port Interfaces alone. Note
that the same method can be applied to describe the connection of sensor/actuator
component to the ECU Abstraction, with the only difference, that that the Port
Interfaces are not standardized by AUTOSAR in this case.

.XML.XML

Component
Type

Description
:

AtomicSoftwareComponentType

Generate
Component

API

.XML.XML

Component
Internal

Behav ior
Description

[API
Generation]

:
InternalBehav ior

.h.h

Component
API

AUTOSAR
Component

API
Generator

.XML.XML

Standardized
Serv ice
Interface

:
PortInterface

.XML.XML

Serv ice
Port :

PortPrototype

.XML.XML

Serv ice
Needs :

Serv iceNeeds

Figure 14: Per service part of AUTOSAR methodology

The services (including ECU abstraction) which shall be used in a certain component
affect the API of the component. As depicted in Figure 14, the Component
Internal Behavior Description references the Component Type
Description which contains the Service Ports. Hence in the activity Generate
Component API the generator produces a Component API tailored to the required
services. For completeness it should be noted, that the Service Needs give
additional information to the integrator which does NOT influence the Component
API and is not an input to the later RTE generation.

6.2 ECU-Configuration-Specific Optimizations

In practice the integration of an application software component has to consider
some optimizations to meet performance or resource requirements. The Component
API might be much more efficient, if it will be generated particularly adapted to the
concrete ECU configuration, e.g. via using macro definitions instead of function calls
for some RTE interaction. In fact this should not change the Component
Implementation (i.e. the C-sources).

34 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

12 This outlines only the general approach. In special cases, requirements on a service may include
additional information which cannot be attached to a port, for example the requirements to the NVRAM
service may include the description of PerInstanceMemory used as RAM mirror blocks. These special
cases are modeled explictly in the Software Component Template. But also in this case, the
requirements on the service are described as part of a Component Type Description.

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

This workflow is shown in Figure 15. It is an optional, additional parallel set of
activities, which can start only after the Implement Component as depicted in
Figure 13.

.c.c

Component
Implementation

.XML.XML

Component
Implementation

Description
[for

Source-
Code] :

Implementation

.XML.XML

Component
Internal

Behav ior
Description

[post
Implementation]

:
InternalBehav ior

.h.h

ECU-
Configuration-

Specific
Component

API

Generate
ECU-

Configuration-
Specific

Component
API

Compile
ECU-

Configuration-
Specific

Component.h.h

Additional
Headers

.obj.obj

ECU-
Configuration-

Specific
Compiled
Component

.XML.XML

Component
Implementation

Description
[for ECU-

Configuration-
Specific
Object-
Code] :

Implementation

AUTOSAR
RTE

Generator

Status: proposed (proposed, approved, rejected)

Description: perComponentOptimized
The Component API will be generated particularly adapted to the concrete ECU
configuration, e.g. via using macro definitions instead of function calls for some
RTE interaction. In fact this should not change the Component Implementation
(i.e. the C-sources), but the API shall be more efficient.
Optional, additional parallel set of activities, which can start only after the
Implement Component.

Comment: -

Figure 15: Per component part with ECU-configuration-specific optimization

The Generate ECU-Configuration-Specific Component API reads the
Component Implementation Description [for source code], which
refers to the Component Implementation and the Component Internal
Behavior Description [post Implementation]. This activity is again tool-
based. The AUTOSAR RTE Generator generates the ECU-Configuration-
Specific Component API. That means now we have a different set of
component headers, which include the ECU-configuration-specific optimizations.

The compilation activity has to consider the optimized parts. Hence the Compile
ECU-Configuration-Specific Component bases on the inputs Component
Implementation, on the Component Implementation Description [for
source code], on the ECU-Configuration-Specific Component API and
on the Additional Headers. The results of this activity will be the Component
Implementation Description and the ECU-Configuration-Specific
Compiled Component.

35 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

7 References

[ASAM] ASAM MCD Assosiation for Standardization of Automation- and Measuring
Systems Measurement, Calibration and Diagnositics,
http://www.asam.net/

[ECUConf] Specification of ECU Configuration,
https:/svn2.autosar.org/repos2/22_Releases
AUTOSAR_ECU_Configuration_Specification.pdf

[ECURes] Specification ECU Resource Template,
https:/svn2.autosar.org/repos2/22_Releases
AUTOSAR_ECU_ResourceTemplate.pdf

[Glossary] Glossary,
https:/svn2.autosar.org/repos2/22_Releases
AUTOSAR_Glossary.pdf

[MainReq] Main Requirements,
https:/svn2.autosar.org/repos2/22_Releases
AUTOSAR_MainRequirements.pdf

[MetaModel] Metamodel,
https:/svn2.autosar.org/repos2/22_Releases
AUTOSAR_MetaModel.eap

[ModGuide] Template UML Profile and Modeling Guide,
https:/svn2.autosar.org/repos2/22_Releases
 AUTOSAR_TemplateModelingGuide.pdf

[ModRules] Model Persistence Rules for XML,
https:/svn2.autosar.org/repos2/22_Releases
AUTOSAR_ModelPersistenceRulesXML.pdf

[SPEM] OMG Object Management Group: Software Process Engineering Metamodel
Specification,
http://www.omg.org/technology/documents/modeling_spec_catalog.htm

[SWCTempl] Software Component Template,
https:/svn2.autosar.org/repos2/22_Releases
AUTOSAR_SoftwareComponentTemplate.pdf

[SysTempl] Specification of System Template,
https:/svn2.autosar.org/repos2/22_Releases
AUTOSAR_SystemTemplate.pdf

[Tech] Technical Overview,
https:/svn2.autosar.org/repos2/22_Releases
AUTOSAR_TechnicalOverview.pdf
36 of 38 Document ID 068: AUTOSAR_Methodology

- AUTOSAR Confidential -

https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

8 Appendix
This appendix contains some detailed methodology figures without any explanation.
They are collected here only for completeness. These figures don’t help a reader
very much with understanding the methodology (the authors mainly use them).

.XML.XML

System
Configuration
Description

:System

Extract
ECU-

Specific
Information

.XML.XML

ECU
Extract

of
System

Configuration
:

System

Process per ECU

.XML.XML

Top-
Lev el

Composition
:

CompositionType

.XML.XML

ECU
Extract
of Top-
Lev el

Composition
:

CompositionType
.XML.XML

Topology
:

SystemTopologyType

.XML.XML

ECU
Extract

of
Topology

.XML.XML

System
Mapping

:
SystemMapping

.XML.XML

ECU
Extract

of
Mapping

.XML.XML

System
Communication-

Matrix :
CommunicationMatrixType

.XML.XML

ECU
Configuration

Description

.XML.XML

Component
Implementation

Description
[resource
needs] :

Implementation

.XML.XML

Component
Resource

Consumption
:

ResourceConsumption

AUTOSAR
ECU

Configuration
Extractor

Generate
Executable

.obj.obj

Compiled
Component

.obj.obj

ECU-
Configuration-

Specific
Compiled

Component

.obj.obj

Compiled
Libraries

.obj.obj

Compiled
RTE

.obj.obj

Compiled
BSW

.h.h

OS
Configuration

Header

.c.c

OS
Configuration

Code

.h.h

COM
Configuration

Header

.c.c

COM
Configuration

Code

.h.h

RTE
Header

.c.c

RTE
Code

Compile
RTE

Compile
COM

Compile
OS

Generate
OS

Generate
COM

Generate
RTE

.obj.obj

Compiled
OS

.obj.obj

Compiled
COM

.exe.exe

ECU
Executable

.XML.XML

BSW-
Module

Description
:

BswModuleDescription

.XML.XML

ECU
Extract

of
Communication-

Matrix :
CommunicationMatrixType

Configure
COM

Configure
RTE

Configure
OS

AUTOSAR
RTE

Configuration
Editor

AUTOSAR
COM

Configuration
Editor

AUTOSAR
OS

Configuration
Editor

Generate
Other
BSW

Modules

AUTOSAR
Other
BSW

Module
Generator

.XML.XML

Collection
of

Available
SWC

Implementations

Map
of

Executable

.XML.XML

Component
Implementation

Description
[for

ECU-
Configuration-

Specific
Object-
Code] :

Implementation

.obj.obj

Compiled
Other
BSW

Modules

Compile
Other
BSW

Modules

AUTOSAR
RTE

Generator

AUTOSAR
COM

Generator

AUTOSAR
OS

Generator

Generate
flat

description
of SW per

ECU

Generate
A2L

A2L

.XML.XML

ECU
flat

description

AUTOSAR
flattener

A2L
Generator

.XML.XML

All
Atomic
SWC

Implementations
on the

ECU

Decide on
all Atomic

SWC
Implementations

MCD
Configuration

Description

Measure
Resources

.XML.XML

BSW/RTE
Resources

:
EcuResourceEstimation

Generate
Base ECU

Configuration
Description

AUTOSAR
Base
ECU

Config
Generator

.XML.XML

Vendor
Specific
Module

Definition
:

ModuleDef

.XML.XML

ECU
Resource

Description
:ECU

.XML.XML

Component
Type

Description
:

AtomicSoftwareComponentType

.c.c

Module
Code

.h.h

Module
Headers

.XML.XML

Serv ice
Component
Description

:
Serv iceComponentType

Configure
Serv ice

Component

.XML.XML

ECU
Software

Composition
:

EcuSwComposition

Generate
ECU SW

Composition

Generate
ECU
SW

Composition
Generator

AUTOSAR
Serv ice

Component
Configurator

Figure 16: Detailed view of ECU part

37 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

AUTOSAR Methodology
 V1.2.1

R3.1 Rev 0001

.obj.obj

Compiled
RTE

Measure
Resources

.XML.XML

BSW/RTE
Resources

:
EcuResourceEstimation

.c.c

RTE
Code

Compile
RTE

.h.h

RTE
Header

AUTOSAR
RTE

Generator

Generate
RTE

.obj.obj

Compiled
BSW

.XML.XML

ECU
Configuration

Description

AUTOSAR
RTE

Configuration
Editor

Configure
RTE

.XML.XML

ECU
Extract

of
System

Configuration
:

System

.XML.XML

BSW-
Module

Description
:

BswModuleDescription

.XML.XML

All
Atomic
SWC

Implementations
on the

ECU

Figure 17: RTE aspects of ECU part

38 of 38 Document ID 068: AUTOSAR_Methodology
- AUTOSAR Confidential -

	1 Abbreviations
	2 AUTOSAR Methodology
	2.1 Introduction
	2.1.1 Scope of the methodology
	2.1.2 How the methodology is modeled
	2.1.3 Limitations of the current version
	2.1.3.1 General limitations
	2.1.3.2 Usage of the C language

	2.2 Structure of this document
	2.3 The notation used to describe the Methodology
	2.3.1 SPEM
	2.3.2 Work-Product
	2.3.3 Activity
	Guidance
	2.3.5 Flow of Work-Products
	2.3.6 Dependency
	2.3.7 Transitive Relations
	2.3.8 Composition
	2.3.9 Reference to elements of the meta-model
	2.3.10 Different states of work-products

	3 Methodology Overview
	4 System Configuration
	4.1 System Configuration Overview
	4.2 System Configuration Details
	4.3 Activities after System Configuration

	5 ECU Design and Configuration Methodology
	5.1 Overview
	5.2 Extract ECU-Specific Information
	5.3 Configure AUTOSAR Services
	5.4 Configure ECU
	5.5 Generate Executable
	5.5.1 Basic Software Generation
	5.5.2 RTE Generation
	5.5.3 Generation of Executable Code for ECU

	5.6 Measurement and Calibration

	6 Component Implementation
	6.1 Relationship with Services
	6.2 ECU-Configuration-Specific Optimizations

	7 References
	8 Appendix

