
Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

Document Title Specification of BSW Module
Description Template

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 089

Document Classification Standard

Document Version 1.2.0

Document Status Final

Part of Release 3.1

Revision 5

Document Change History
Date Version Changed by Description

07.08.2010 1.2.0 AUTOSAR
Administration

• Added option to MemorySection

06.08.2008 1.1.0 AUTOSAR
Administration

• Added OBD Features

15.02.2008 1.0.1 AUTOSAR
Administration

• Layout adaptations

27.11.2007 1.0.0 AUTOSAR
Administration

• Initial Release

1 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for the
purpose of information only. AUTOSAR and the companies that have contributed to it
shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types of
Intellectual Property Rights. The commercial exploitation of the material contained in
this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only. For any other purpose, no part of
the specification may be utilized or reproduced, in any form or by any means, without
permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary refer-
ence models, ”use cases”, and/or references to exemplary technical solutions, devices,
processes or software).

Any such exemplary items are contained in the Specification Documents for illustration
purposes only, and they themselves are not part of the AUTOSAR Standard. Neither
their presence in such Specification Documents, nor any later documentation of AU-
TOSAR conformance of products actually implementing such exemplary items, imply
that intellectual property rights covering such exemplary items are licensed under the
same rules as applicable to the AUTOSAR Standard.

2 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

Table of Contents

1 General Information 6

1.1 Document Scope . 6
1.2 Input Documents . 6
1.3 Abbreviations . 7

2 Requirements Traceability 8

3 Use Cases and Modeling Approach 10

3.1 Use Cases . 10
3.2 Three Layer Approach . 11
3.3 Several Implementations of the same BSW Module or BSW Cluster . . 12
3.4 Relation to SoftwareComponentType . 12

4 BSW Module Description Overview 14

5 BSW Interface 16

5.1 BSW Module Entry . 16
5.2 BSW Module Dependency . 18

6 BSW Behavior 27

6.1 BSW Behavior Overview . 27
6.2 BSW Module Entity . 28
6.3 BSW Event . 30

7 BSW Implementation 32

8 Implementation 35

8.1 Introduction . 35
8.2 Implementation Description Overview 35
8.3 Assertions and Requirements . 37
8.4 Implementation of a Software Component 37
8.5 Linking to Code . 38
8.6 Dependencies . 39
8.7 Compiler . 42
8.8 Linker . 42

9 ResourceConsumption 43

9.1 Static and Dynamic Resources . 43
9.2 Resource consumption overview . 43
9.3 Static Memory Needs . 45

9.3.1 General . 45
9.3.2 Memory Sections . 45

9.4 Dynamic Memory Needs . 47
9.4.1 General . 47
9.4.2 Stack . 47

3 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

9.4.3 Heap . 51
9.5 Execution Time . 53

9.5.1 General . 53
9.5.2 Preliminaries . 54
9.5.3 Scope . 54

9.5.3.1 Assertions Versus Requirements 54
9.5.3.2 In Scope . 54
9.5.3.3 Out of Scope . 55

9.5.4 Background . 55
9.5.4.1 Dependency of the Execution Time on Hardware 55
9.5.4.2 Dependency on Hardware State 56
9.5.4.3 Dependency on Logical Context 57
9.5.4.4 Dependency on External Code 57

9.5.5 Description-Model for the Execution Time 58
9.5.5.1 Inclusion in the Overall Model 58
9.5.5.2 Detailed Structure of an Execution-Time Description . . 58
9.5.5.3 ExecutionTime References an ”ECU” 60
9.5.5.4 ExecutionTime Includes a HW-Configuration 60
9.5.5.5 ExecutionTime Includes a MemorySectionLocation . . 61
9.5.5.6 ExecutionTime Includes a SoftwareContext 62
9.5.5.7 Dependency on External Libraries 62
9.5.5.8 Several Qualities of Execution Times 63

4 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

Bibliography

[1] Requirements on Basic Software Module Description Template
AUTOSAR RS BSW ModuleDescription.pdf

[2] General Requirements on Basic Software Modules
AUTOSAR SRS General.pdf

[3] Methodology
AUTOSAR Methodology.pdf

[4] Glossary
AUTOSAR Glossary.pdf

[5] Software Component Template
AUTOSAR SoftwareComponentTemplate.pdf

[6] Template UML Profile and Modeling Guide
AUTOSAR TemplateModelingGuide.pdf

[7] Model Persistence Rules for XML
AUTOSAR ModelPersistenceRulesXML.pdf

[8] List of Basic Software Modules
AUTOSAR BasicSoftwareModules.pdf

[9] Meta Data Exchange Format for Software Module Sharing V1.0 (MDX V1.0)
ASAM-AE-MDX-V1 0 0.pdf

[10] Specification of ECU Configuration
AUTOSAR ECU Configuration.pdf

[11] Specification of BSW Scheduler
AUTOSAR SWS BSWSch.pdf

[12] System Template
AUTOSAR SystemTemplate.pdf

[13] Specification of Memory Mapping
AUTOSAR SWS MemoryMapping.pdf

[14] Design Specification for the ECU Resource Template
AUTOSAR ResourceTemplateECU.pdf

5 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

1 General Information

1.1 Document Scope

This is the documentation of the template for the Basic Software Module Description
(BSWMDT).

The BSWMD is a formal notation of all information, which belongs to a certain BSW
artifact (BSW module or BSW cluster) in addition to the implementation of that artifact.
There are several possible use cases for such a description.

The BSWMDT is the standardized format which has to be used for this description
in AUTOSAR. The template is represented in UML as part of the overall AUTOSAR
meta-model and is part of the XML schema generated out of this meta-model. This
document describes all the elements used in that template.

Some elements of the BSWMDT, for example for the description of implementation
aspects and resource consumption, are used also within the Software Component
Template (SWCT). These elements belong to the CommonStructure package of the
meta-model. These common elements are also described within this document, as far
as it is useful to understand the BSWMDT.

This document addresses people who need to have a deeper understanding of the
BSWMDT part of the meta-model, for example tool developers and those who maintain
the meta-model. It is not intended as a guideline for the BSW developers who will have
to provide the actual BSWMD, i.e. who have to ”fill out” the template.

For further information on the overall goal of this document refer to the related require-
ments document, see [1].

1.2 Input Documents

The following input documents have been used to develop the BSWMDT:

• Requirements on BSW Module Description Template [1]

• General Requirements on Basic Software Modules [2]

• AUTOSAR Methodology [3]

• AUTOSAR Glossary [4]

• Software Component Template [5]

• AUTOSAR Template UML Profile and Modeling Guide [6]

• AUTOSAR Model Persistence Rules for XML [7]

6 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

1.3 Abbreviations

Abbreviation Meaning
BSW Basic Software
BSWMD Basic Software Module Description
BSWMDT Basic Software Module Description Template
ECU Electronic Control Unit
ECUC ECU Configuration
ICC1, ICC2, ICC3 AUTOSAR Implementation Conformance Class 1. . . 3
ISR Interrupt Service Routine
ICS Implementation Conformance Statement
MSR Manufacturer Supplier Relationship
OS Operating System
SW-C Software Component
SWCT Software Component Template
UML Unified Modeling Language
XML Extended Markup Language

7 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

2 Requirements Traceability

The following table references the requirements specified in AUTOSAR BSWMD Re-
quirements [1] and denotes how they are satisfied by the meta-model.

Requirement Description Satisfied by
[BSWMD0001] Main source of information on BSW Module

ECU Configuration activity and integration
Complete BSWMDT

[BSWMD0005] Description of the memory needs of the
BSW Module implementation

MM:ResourceConsumption.
stackUsage,
MM:ResourceConsumption.
objectFileSection

[BSWMD0007] Provide vendor-specific published
information

MM:BswImplementation.
preconfiguredConfiguration

[BSWMD0008] BSW Module Description SHALL be tool
processable

Generated XML schema

[BSWMD0009] Description of peripheral register usage MM:BswImplementation.
requiredHW

[BSWMD0010] Compiler version and settings MM:Implementation. compiler
[BSWMD0011] Guaranteed execution context of API calls MM: BswModuleDependency.

requiredEntry. executionContext
[BSWMD0013] Describe configuration class of ECU

Configuration Parameters
MM:BswImplementation.
vendorSpecificModuleDef

[BSWMD0014] Support of BSW Module clusters Complete BSWMDT
[BSWMD0016] Timing guarantees MM:ResourceConsumption.

executionTime
[BSWMD0024] Support description of module specific

published information
MM:BswImplementation.
vendorSpecificModuleDef

[BSWMD0025] Support for shipment information This is not specific for the shipment
of BSWMD. It is handled in general
by the root element of an
AUTOSAR description
MM:AUTOSAR. adminData

[BSWMD0026] Description of supported hardware MM:BswImplementation.
requiredHW

[BSWMD0027] Provide vendor-specific ECU Configuration
Parameter Definition

MM:BswModuleDescription.
vendorSpecificModuleDef

[BSWMD0028] Development according to the AUTOSAR
Metamodeling Guide

Complete BSWMDT

[BSWMD0029] Transformation of BSWMD modeling
according to the AUTOSAR Model
Persistence Rules for XML

Implicitly solved by having the
BSWMDT in the same EAP file as
all templates

[BSWMD0030] Publish resource needs for the BSW
Scheduler

MM:BswBehavior

[BSWMD0031] Description of used memory section names MM:ResourceConsumption.
objectFileSection

[BSWMD0032] Recommended ECU Configuration Values MM:BswImplementation.
recommendedConfiguration

[BSWMD0033] Pre-configured ECU Configuration Values MM:BswImplementation.
preconfiguredConfiguration

[BSWMD0034] ECU Configuration Editor and Generation
supported tool version information

MM:Implementation.
implementationDependency

8 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

Requirement Description Satisfied by
[BSWMD0035] Provide standardized ECU Configuration

Parameter Definition
MM:BswImplementation.
vendorSpecificModuleDef.
refinedConfiguration

[BSWMD0037] Needed libraries MM:Implementation.
implementationDependency

[BSWMD0038] Required execution context of API calls MM: BswModuleDescription.
providedEntry. executionContext

[BSWMD0039] Identification of implemented API and
functions

MM:BswModuleDescription.
providedEntry

[BSWMD0040] Identification of required API and functions MM:BswModuleDescription.
bswModuleDependency.
requiredEntry

[BSWMD0041] Declaration of the provided API argument
data types

MM:BswModuleDescription.
providedEntry

[BSWMD0042] Description of the required API argument
data types

MM:BswModuleDescription.
bswModuleDependency.
requiredEntry

[BSWMD0043] Support description of common published
information

MM: Attributes of
BswImplementation

[BSWMD0045] Publish resources needed from AUTOSAR
Services

MM: BswModuleDependency.
serviceItem

[BSWMD0046] Publish OS resource usage MM:BswBehavior...
[BSWMD0047] Modeling of call-chain dependencies

between BSW Modules
MM:BswModuleEntity. calledEntry

[BSWMD0048] Tagging of vendor-specific ECU
Configuration Parameter Definition

Solved in the ECU Parameter
Definition Template,
MM:ConfigParameter. origin

[BSWMD0050] Allow vendor-specific modification of
standardized ECU Configuration Parameter
Definition

MM:BswImplementation.
vendorSpecificModuleDef

9 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

3 Use Cases and Modeling Approach

3.1 Use Cases

There are several possible use cases for the BSWMDT. The following uses cases can
be applied for BSW modules (ICC3 conformance class) or for BSW clusters (ICC2
conformance class).

• It can be used to specify a BSW module or cluster in terms of interfaces and
dependencies before it is actually implemented. Details of the implementation
are not filled out for this use case.

• It can be used as input for a conformance test, which tests the conformance of
the product (a BSW module or cluster) with respect to the AUTOSAR standard.
The work products include the implementation (source or object code) and its
BSWMD (in XML). In other words this means that for a conformance test the
BSWMD must be usable as an ICS (implementation conformance statement).
Note that this use case is different from the following one (the integration use
case) because conformance test cases will typically cover a wider range of func-
tionality and configuration values than required for the integration on a specific
ECU.

• It can be used to describe an actually implemented BSW module or cluster given
to the integrator of an AUTOSAR ECU. It will contain details of the actual imple-
mentation and constraints w.r.t. the specification. Especially, there may be more
than one implementation (for example for different processors) which have the
same specification.

• It may be used by the integrator to add further information which has not been
filled out by the deliverer of the module (this is maybe against the idea of the
BSWMD as being a description of a deliverable, but it is in principle possible).

Details of the work flow for the different use cases are not in the scope of this document
(please refer to [3]), but the information to be provided in these various steps influences
the meta-model of the BSWMDT.

There is ony limited use for the BSWMDT to describe software according to ICC1
conformance class, because in this case the complete BSW (including RTE) on an
ECU consists of one single cluster, so that no interfaces or dependencies within the
BSW can be described by this template, which means that the relevant parts of the
template will be empty. However, even in this case the BSWMDT may be used to
document implementation aspects (e.g. the required Compiler, resource consumption
or vendor specific configuration parameters).

10 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

3.2 Three Layer Approach

The meta-model of the BSWMDT consists of three abstraction layers similar to the
SWCT. This approach allows for a better reuse of the more abstract parts of the de-
scription. An overview is shown in Figure 3.1.

ARElement

BswBehavior::BswBehavior

ARElement

«atpStructureElement»
BswModuleDescription

+ moduleId: Int

ARElement
Implementation

BswImplementation::BswImplementation

+ arMajorVersion: Int
+ arMinorVersion: Int
+ arPatchVersion: Int
+ vendorApiInfix: String

+behavior 1

+module 1

Figure 3.1: Three Layers of the BSW Module Description

The upper layer, the BswModuleDescription, contains the specification of all the
provided and required interfaces including the dependencies to other modules.

The middle layer, the BswBehavior, contains a model of some basic activity inside
the module. This model defines the requirements of the module for the configuration of
the OS and the BSW Scheduler. There may be several different instances of BswBe-
havior fulfilling the same BswModuleDescription. The term ”behavior” has been
chosen in analogy to a similar term in the SWCT. Note that it is restricted only to the
scheduling behavior here and does not descibe the behavior of the module or cluster
completely.

The bottom layer, the BswImplementation contains information on the individual
code. Again, there may be several instances of BswImplementation for the same
BswModuleBehavior.

The usage of references between these layers instead of aggregations allows for
more flexibility in the XML artifacts: If for example the BswBehavior would aggre-
gate BswImplementation, a concrete XML artifact of a BswBehavior would have
to be duplicated for every instance of BswImplementation. With references, the
layers may be kept in separate files. This is analog to the inclusion of header files in

11 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

a C-source file: Several implementation files can share the same header file, which
typically declares more abstract things as function prototypes and the like.

3.3 Several Implementations of the same BSW Module or BSW
Cluster

According to the three layer approach, the meta-class BswModuleDescription and
an associated BswModuleBehavior describe a type of a BSW module or cluster, for
which different implementations may exist which are represented by different BswMod-
uleImplementations (note that the name of the meta-class BswModuleDescrip-
tion is misleading here, because this meta-class does not contain the complete de-
scription of a module or cluster).

In case the different implementations of a BSW module or cluster are compiled for
different CPUs, the corresponding BSWMDs can be treated as separate artifacts which
may share the BswModuleDescription and/or BswModuleBehavior.

In case the implementations are compiled for the same CPU, i.e. are integrated on the
same ECU and same address space (for example CAN drivers for several CAN chan-
nels), their BSWMDs still should share the BswModuleDescription and BswMod-
uleBehavior, but there must be a mechanism to ensure, that the globally visible C
symbols derived from the BswModuleDescription are unique. This is handled with
infixes defined in the implementation part of the BSWMDT (see chapter 7).

3.4 Relation to SoftwareComponentType

Some BSW modules or clusters not only have interfaces to other BSW modules or
clusters, but have also more abstract interfaces accessed from application SW-Cs via
the RTE. These BSW modules or clusters can be AUTOSAR Services, part of the ECU
Abstraction, or Complex Drivers.

The more abstract interfaces required here are called AUTOSAR Interfaces (see [5]
and [4]). These AUTOSAR Interfaces are described by means of the Software Com-
ponent Template (SWCT), they consist of ports, port interfaces and their further detail-
ing. The root classes of the SWCT used to describe these elements for BSW mod-
ules are ServiceComponentType, EcuAbstractionComponentType and Com-
plexDeviceDriverComponentType (see [5]) which all are derived from Atomic-
SoftwareComponentType.

In addition, the function calls from the RTE into these BSW module must be modeled
as so-called Runnable Entities (”runnables”), which is also contained in the SWCT.
The root class of the SWCT used to describe the runnables (and a few other things) is
called InternalBehavior.

12 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

Thus for BSW modules or clusters which can be accessed via AUTOSAR Interfaces
there must be an XML-artifact defining an AtomicSoftwareComponentType and
an InternalBehavior in addition to the BSWMD. These additional descriptions are
required to generate the RTE. Note that the content of these additional descriptions
can vary between different ECUs (for example due to the number of ports the RTE has
to create for an AUTOSAR Service) and thus must be created per ECU. The detailed
steps for creating these artifacts are described in [5].

In order to trace the dependencies between these additional SWCT descriptions and
the associated BSWMD, there is a reference from the classes ServiceComponent-
Type, EcuAbstractionComponentType and ComplexDeviceDriverCompo-
nentType to BswModuleDescription and from InternalBehavior.runnable
to its counterpart in the BSWMDT, the class BswModuleEntity. Note that there are
no references the other way round, because the SWCT descriptions may be created
after delivery of a BSWMD.

It should be noted, that there is a certain ambiguity in the architecture regarding
scheduling in that a scheduled functionality can be triggered by two different mecha-
nisms: By the BSW Scheduler with the help of an event model defined in the BSWMDT
(see chapter 6 in this document) or by the RTE with an event model defined in the
InternalBehavior of the SWCT. For the AUTOSAR Services defined up to now
(AUTOSAR release 3.0) triggering by the RTE is used only for function calls directly
related to communication via ports, whereas for e.g. cyclic events the BSW Scheduler
shall be used. It is however out of the scope of this document, to define such a rule for
the BSW parts which are not standardized (ECU Abstraction and Complex Drivers).

Another special case arises, if a cyclic function triggered by the BSW Scheduler or
an interrupt routine has to call into the RTE in order to access an SW-C. In order
to generate the RTE API with the means of the current SWCT (Release 3.0), it is
required to specify a runnable entity in this case even if it is not triggered by an RTE
event. Also in this case the runnable entity must have a reference to the associated
BswModuleEntity, as mentioned above.

13 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

4 BSW Module Description Overview

Figure 4.1 and the following class table show all the relations of the BSWMDT top layer,
the BswModuleDescription.

SwService

BswInterfaces::BswModuleEntry

ARElement

BswBehavior::BswBehavior

ARElement

«atpStructureElement»
BswModuleDescription

+ moduleId: Int

Identifiable

BswInterfaces::BswModuleDependency

+ targetModuleId: Int

+expectedCallback 0..*+requiredEntry 0..*

+outgoingCallback

0..*

+providedEntry

0..*

+module

1

+bswModuleDependency

0..*

Figure 4.1: BSW Module Description Overview

First of all, the BswModuleDescription contains an attribute moduleIdwhich refers
to the identifier of the standardized AUTOSAR modules according to [8]. This identifier
can also be used to distinguish modules which are not standardized (i.e. they belong
to the ECU Abstraction or are Complex Device Drivers) or to identify ICC2 clusters. In
this case the idenfifier must be chosen differently from the ones given in [8]. In any
case, this identifier in the BSWMD shall be used to document the relation of an artifact
to the standard and thus is a useful information for the conformance test.

The class BswModuleEntry describes a single C-function prototype. The interface
exported by a BswModuleDescription is a set of providedEntries provided for
the usage by other modules (including ”main”-functions called by the BSW Scheduler)
and of outgoingCallbacks, which are declared by this module and will be called, if
required by other modules.

With the help of class BswModuleDependency it is possible to describe the require-
ments of a given BSW module onto another BSW module, which among other things
includes the interface imported from the other module, namely a set of requiredEn-
tries and expectedCallbacks. Further details are described in chapter 5.

By the association of class BswBehavior to BswModuleDescription it is possible
to add scheduling aspects to the description.

14 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

Class 〈〈atpStructureElement〉〉 BswModuleDescription
Package M2::AUTOSARTemplates::BswModuleTemplate::BswOverview

Class
Desc.

Root element for the description of a single BSW module or BSW cluster.
In case it describes a BSW module, the short name of this element equals the name
of the BSW module.

Base
Class(es) ARElement

Attribute Datatype Mul. Link Type Description
bswMod-
uleDepen-
dency

BswMod-
uleDepen-
dency

* aggregation Describes the dependency to another BSW
module.

moduleId Integer 1 aggregation Refers to the BSW Module Identifier defined
by the AUTOSAR standard.

outgoing
Callback BswMod-

uleEntry * reference
Specifies a callback, which will be called from
this module if required by
another module.

provided
Entry BswMod-

uleEntry * reference

Specifies an entry provided by this module
which can be called by other modules. This
includes ”main” functions and interrupt
routines, but not callbacks (because the
signature of a callback is defined by the
calller).

Table 4.1: BswModuleDescription

15 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

5 BSW Interface

This chapter describes the meta-model elements which are used to define the inter-
face level of a BSW module: The description of providedEntries, outgoingCall-
backs and the dependencies from other modules.

5.1 BSW Module Entry

The class SwService1 from MSR is used to model the signature of a C-function call,
see figure 5.1.

BswModuleEntry

+ callType: BswCallType
+ executionContext: BswExecutionContext
+ isSynchronous: Boolean
+ serviceId: Int

ARElement

ServiceProcessTask::
SwService

Identifiable

ServiceProcessTask::
SwServiceArg

IsSyscond

DataDefProperties::SwDataDefProps

+ displayFormat: DisplayFormatString [0..1]
+ swAliasName: String [0..1]
+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]
+ swCalprmNoEffectValue: String [0..1]
+ swImplPolicy: SwImplPolicyEnum [0..1]
+ swIntendedResolution: NumericalValue [0..1]
+ swInterpolationMethod: String [0..1]
+ swIsVirtual: Boolean [0..1]
+ swVariableAccessImplPolicy: SwVariableAccessImplPolicyEnum [0..1]
+ swVarNotAvlValue: String [0..1]

BaseType

BaseTypes::
SwBaseType

DataDefProperties::
SwPointer

ServiceProcessTask::SwServiceProps

+ swImplPolicy: SwServiceImplPolicyEnum [0..1]
+ swServiceRecursive: String [0..1]
+ swServiceReentrance: SwServiceReentranceEnum [0..1]

ARElement

SwClass::SwClass

«enumeration»
BswCallType

 regular
 callback
 interrupt
 scheduled

«enumeration»
BswExecutionContext

 task
 interrupt
 unspecified

+swClass

0..1

+swServiceReturn

0..1

+swServiceArg 0..*
{ordered}

+swDataDefProps 0..1

+swDataDefProps

0..1

+swDataDefProps

0..1

+baseType

0..1

+swPointer

0..1

+swServiceProps

0..1

Figure 5.1: Details of class BswModuleEntry

The class BswModuleEntry is a subclass of SwService. It contains the AUTOSAR
specific attributes shown in the following table. The attribute serviceId is used to
identify the C-function and thus is an important information for an AUTOSAR confor-
mance test. For standardizes interfaces, the identifier is defined in the AUTOSAR Soft-
ware Specification (SWS) of the module. In case the C-function prototype represented
by the entry is not standardized, it still can be used optionally, but its value must differ
from the standardized ones.

Class 〈〈atpObject〉〉 BswModuleEntry
Package M2::AUTOSARTemplates::BswModuleTemplate::BswInterfaces

1SwService and its attributes belong to the meta-model part re-engineered from MSR-SW. This
subset of MSR-SW is defined by the AUTOSAR meta-model and the XML schema published as part of
an AUTOSAR release. The relevant classes are shown as green in the class diagrams. See [5] and [9]
for more explanation.

16 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

Class
Desc.

This class represents a single API entry (C-function prototype) into the BSW module
or cluster.

The name of the C-function is equal to the short name of this element with one
exception: In case of multiple instances of a module on the same CPU, special rules
for ”infixes” apply, see description of class BswImplementation.

Base
Class(es) SwService

Attribute Datatype Mul. Link Type Description
callType BswCall

Type 1 aggregation the type of call associated with this service

execution
Context

BswEx-
ecution
Context

1 aggregation

Specifies the excution context which is
required (in case of entries into this module)
or guaranteed (in case of entries called from
this module) for this service.

isSyn-
chronous Boolean 1 aggregation

true: This calls a synchronous service, i.e. the
service is completed when the call returns.
false: The service (on semantical level) may
not be complete when the call returns.

serviceId Integer 1 aggregation

Refers to the service identifier of the
Standardized Interfaces of AUTOSAR basic
software.

Table 5.1: BswModuleEntry

Enumeration BswExecutionContext
Package M2::AUTOSARTemplates::BswModuleTemplate::BswInterfaces

Enum Desc. specifies the excution context required or guaranteed for the call associated with
this service

Literal Description
interrupt interrupt context always
unspecified the execution context is not specified by the API
task task context always

Enumeration BswCallType
Package M2::AUTOSARTemplates::BswModuleTemplate::BswInterfaces
Enum Desc. Denotes the mechanism by which the entry into the Bsw module shall be called.
Literal Description
regular regular API call
callback callback (i.e. the caller specifies the signature)
interrupt interrupt routine
scheduled called by the scheduler

The attributes of SwService taken from MSR are used to describe the complete signa-
ture of a call. Not all attributes and classes shown in figure 5.1 will always be required.
The most important ones are:

SwServiceProps.swServiceReentrance declares, whether the C-function guar-
antees reentrancy or not. For standardized BSW calls, this must match to the corre-
sponding definition given in the BSW Specifications. Explanation from [9]: Reentrance

17 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

enables or prohibits the service to be invoked again, before the service has finished
and delivered a result. Valid values are:

• REENTRANCE

If this element is not defined the service cannot be invoked when it is executing.

Class SwServiceArg is used to declare the properties of the function arguments as
well as of the return value.

SwServiceArg.swDataDefProps.baseType can be used to refer to the underlying
basic data type (for more information on SwBaseType see [5]). Because it is attached
via reference, it is a reusable type.

SwServiceArg.swDataDefProps.swClass can be used to relate the data defini-
tion to a reusable type definition, if it is not a basic data type (corresponds to a C
typedef). Because SwClass is an ARElement and itself contains SwDataDefProps,
it is possible to declare the required data properties as part of an SwClass and reuse
it as a data type by referring to it.

SwServiceArg.swDataDefProps.swPointer is used to declare an argument or
return type as a pointer. The class SwPointer in turn contains an element sw-
DataDefProps which is used to describe the properties of the data to which the
pointer refers. If the pointer refers to a reusable type, again baseType or swClass
are used to describe this.

5.2 BSW Module Dependency

Figure 5.2 and the following table show the details of class BswModuleDependency.
This class represents the expectations of one BSW module or cluster from another
BSW module or cluster. It should be noted, that dependencies are not expressed
by associations between instances of BswModuleDescription. In other words, the
meta-model does not define compositions of BSW modules, which would be required
to own such associations. This allows to maintain each BSWMD separately.

18 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

Identifiable

BswModuleDependency

+ targetModuleId: Int

SwService

BswModuleEntry

+ callType: BswCallType
+ executionContext: BswExecutionContext
+ isSynchronous: Boolean
+ serviceId: Int

Identifiable

ServiceNeeds::
ServiceNeeds

+serviceItem

0..*

+expectedCallback
0..*+requiredEntry 0..*

Figure 5.2: Details of class BswModuleDependency

Class 〈〈atpObject〉〉 BswModuleDependency
Package M2::AUTOSARTemplates::BswModuleTemplate::BswInterfaces
Class
Desc.

This class collects the dependencies of a BSW module or cluster on a certain other
BSW module in an abstract way.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description
expected
Callback BswMod-

uleEntry * reference
Indicates a callback expected to be called
from another module and implemented by this
module.

required
Entry BswMod-

uleEntry * reference Indicates an entry into another modules which
is required by this module.

service
Item Service

Needs * aggregation A single item (example: Nv block) for which
the quality of a service is defined.

targetMod-
uleId Integer 1 aggregation

AUTOSAR identifier of the target module of
which the dependencies are defined.

Table 5.2: BswModuleDependency

The set of requiredEntries and expectedCallbacks represent the interface im-
ported from another module. Note that requiredEntries and expectedCall-
backs do also include calls in interrupt context. An example could be as follows:

Consider we want to describe the callback-dependencies of an external EEPROM
driver module from the (standardized) AUTOSAR SPI module. Consider the SPI driver
offers an outgoing callback ”EndJobNotification” always called in interrupt context. To
describe the dependency we would have to create an instance BswModuleDescrip-
tion.bswModuleDependency and do the following assignments:

19 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

bswModuleDependency.targetModuleId = module identifier of the SPI driver
bswModuleDependency.expectedCallback = signature+name of ”‘EndJobNotifi-
cation”
bswModuleDependency.expectedCallback.executionContext = ”interrupt”
(i.e. the required context)
bswModuleDependency.expectedCallback.callType = ”callback”

The set of serviceItems repesents the abstract requirements which the module has
on the configuration of AUTOSAR Services like NVRAM Manager or Watchdog Man-
ager. The class ServiceNeeds is also used by the SWCT, because an AUTOSAR
Service has to be configured per ECU for the needs of both BSW and SWCs. There-
fore this class and its derivatives is defined in the CommonStructure package of the
meta-model. These classes are shown in figure 5.3 and in figure 5.4 and the following
tables.

Note that the ServiceNeeds describes only the source data of an abstract depen-
dency. How this is actually traced down to the configuration parameters is specified by
the configuration parameters of the dependent modules itself. For a description of this
mechnism see topic ”Derived Parameter Definition” in [10]. To get the complete picture,
it should be noted that also other templates can define source data for dependencies,
for example the configuration of the COM stack depends on information defined via the
AUTOSAR System Template.

Identifiable

ServiceNeeds NvBlockNeeds

+ nDataSets: Int
+ readonly: Boolean
+ reliability: NvBlockNeedsReliabilityEnum
+ resistantToChangedSw: Boolean
+ restoreAtStart: Boolean
+ writeOnlyOnce: Boolean
+ writingFrequency: Int
+ writingPriority: NvBlockNeedsWritingPriorityEnum

SupervisedEntityNeeds

+ activateAtStart: Boolean
+ enableDeactivation: Boolean
+ expectedAliveCycle: Float
+ maxAliveCycle: Float
+ minAliveCycle: Float
+ toleratedFailedCycles: Int

ComMgrUserNeeds

+ maxCommMode: MaxCommModeEnum

«enumeration»
MaxCommModeEnum

 none
 si lent
 full

«enumeration»
NvBlockNeedsReliabili tyEnum

 low
 medium
 high

«enumeration»
NvBlockNeedsWritingPriorityEnum

 low
 medium
 high

EcuStateMgrUserNeeds

Figure 5.3: class ServiceNeeds from CommonStructure and some derived classes

20 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

Identifiable

ServiceNeeds DiagnosticEventNeeds

FunctionInhibitionNeeds

DiagnosticCommunicationNeeds

ObdPidServiceNeeds

+ dataLength: Int
+ parameterId: Int
+ standard: String

ObdRatioServiceNeeds

+ connectionType: ObdRatioConnectionKind
+ iumprGroup: String

ObdInfoServiceNeeds

+ dataLength: Int
+ infoType: Int

ObdMonitorServiceNeeds

+ onBoardMonitorId: Int
+ testId: Int
+ unitAndScalingId: Int

ObdControlServiceNeeds

+ testId: Int

«enumeration»
ObdRatioConnectionKind

 apiUse
 observer

+usedFid

0..1

+rateBasedMonitoredEvent

1

Figure 5.4: class ServiceNeeds from CommonStructure and derived classes for diag-
nosis use cases

Class 〈〈atpObject〉〉 ServiceNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Class
Desc.

This expresses the abstract needs that a Software Component or Basic Software
Module has on the configuration of an AUTOSAR Service to which it will be
connected. ”Abstract needs” means, that the model abstracts from the Configuration
Paramaters of the underlying Basic Software.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description

Table 5.3: ServiceNeeds

21 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

Class 〈〈atpObject〉〉 NvBlockNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds
Class
Desc. Specifies the abstract needs on the configuration of a single Nv block.

Base
Class(es) ServiceNeeds

Attribute Datatype Mul. Link Type Description
nDataSets Integer 1 aggregation number of data sets to be provided by the

NVRAM manager for this block

readonly Boolean 1 aggregation

true: data of this block are write protected for
normal operation (but protection can be
disabled)
false: no restriction

reliability
NvBlock
Needs
Reliability
Enum

1 aggregation Reliability against data loss on the non-volatile
medium.

resistantTo
Changed
Sw Boolean 1 aggregation

Defines whether an Nv block shall be treated
resistant to configuration changes (true) or not
(false). For details how to handle initialization
in the latter case, refer to the NVRAM
specification.

restoreAt
Start Boolean 1 aggregation

Defines whether the associated RAM mirror
block shall be implictly restored during startup
by the basic SW or not. Only relevant if a
RAM mirror block (PerInstanceMemory) is
associated with this port.

writeOnly
Once Boolean 1 aggregation

Defines write protection after first write:
true: This block is prevented from being
changed/erased or being replaced with the
default ROM data after first initialization by the
SWC.
false: No such restriction.

writing
Frequency Integer 1 aggregation

Provides the amount of updates to this block
from the application point of view. It has to be
provided in ”number of write access per year”.

writing
Priority

NvBlock
Needs
Writing
Priority
Enum

1 aggregation

Requires the priority of writing this block in
case of concurrent requests to write other
blocks.

Table 5.4: NvBlockNeeds

Class 〈〈atpObject〉〉 SupervisedEntityNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds
Class
Desc.

Specifies the abstract needs on the configuration of the Watchdog Manager for one
specific Supervised Entity (SE).

Base
Class(es) ServiceNeeds

Attribute Datatype Mul. Link Type Description
activateAt
Start Boolean 1 aggregation true/false: supervision activation status of SE

shall be enabled/disabled at start

22 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

enableDe-
activation Boolean 1 aggregation

true: SWC shall be allowed to deactivate
supervision of this SE
false: not

expected
AliveCycle Float 1 aggregation Expected cycle time of alive trigger of this SE

(in seconds)

maxAlive
Cycle Float 1 aggregation Maximum cycle time of alive trigger of this SE

(in seconds)

minAlive
Cycle Float 1 aggregation Minimum cycle time of alive trigger of this SE

(in seconds)

tolerated
FailedCy-
cles Integer 1 aggregation

Number of consecutive failed alive cycles for
this SE which shall be tolerated until the
supervision status of the SE is set to
EXPIRED (see WdgM documentation for
details). Note that this has to be recalculated
w.r.t. the WdgMs own cycle time for ECU
configuration.

Table 5.5: SupervisedEntityNeeds

Class 〈〈atpObject〉〉 ComMgrUserNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds
Class
Desc.

Specifies the abstract needs on the configuration of the Communication Manager for
one ”user”.

Base
Class(es) ServiceNeeds

Attribute Datatype Mul. Link Type Description
maxComm
Mode

MaxComm
Mode
Enum

1 aggregation
Maximum communication mode requested by
this ComM user

Table 5.6: ComMgrUserNeeds

Class 〈〈atpObject〉〉 EcuStateMgrUserNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Class
Desc.

Specifies the abstract needs on the configuration of the ECU State Manager for one
”user”. This class currently contains no attributes. Its name can be regarded as a
symbol identifying the user from the viewpoint of the component or module which
owns this class.

Base
Class(es) ServiceNeeds

Attribute Datatype Mul. Link Type Description

Table 5.7: EcuStateMgrUserNeeds

Class 〈〈atpObject〉〉 DiagnosticEventNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

23 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

Class
Desc.

Specifies the abstract needs on the configuration of the Diagnostic Event Manager for
one diagnostic event. Its name can be regarded as a symbol identifying the diagnostic
event from the viewpoint of the component or module which owns this class.

Base
Class(es) ServiceNeeds

Attribute Datatype Mul. Link Type Description

Table 5.8: DiagnosticEventNeeds

Class 〈〈atpObject〉〉 FunctionInhibitionNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Class
Desc.

Specifies the abstract needs on the configuration of the Function Inhibition Manager
for one Function Identifier (FID). This class currently contains no attributes. Its name
can be regarded as a symbol identifying the FID from the viewpoint of the component
or module which owns this class.

Base
Class(es) ServiceNeeds

Attribute Datatype Mul. Link Type Description

Table 5.9: FunctionInhibitionNeeds

Class 〈〈atpObject〉〉 DiagnosticCommunicationNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Class
Desc.

Specifies the abstract needs on the configuration of the Diagnostic Communication
Manager for one ”user”.

Details are an expert task for AUTOSAR Release 4.0.
Base
Class(es) ServiceNeeds

Attribute Datatype Mul. Link Type Description

Table 5.10: DiagnosticCommunicationNeeds

Class 〈〈atpObject〉〉 ObdPidServiceNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Class
Desc.

Specifies the abstract needs of a compoment or module on the configuration of OBD
Services in relation to a particular PID (parameter identifier), which is supported by
this component or module.

Base
Class(es) ServiceNeeds

Attribute Datatype Mul. Link Type Description
dataLength Integer 1 aggregation Length of data (in bytes) provided for this

particular PID.
parameter
Id Integer 1 aggregation

Standardized parameter identifier (PID)
according to the OBD standard specified in
attribute ”standard”.

24 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

standard String 1 aggregation

Annotates the standard according to which
the PID is given, e.g. ”ISO15031-5” or ”SAE
J1979 Rev May 2007”.

Table 5.11: ObdPidServiceNeeds

Class 〈〈atpObject〉〉 ObdRatioServiceNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Class
Desc.

Specifies the abstract needs of a compoment or module on the configuration of OBD
Services in relation to a particular ”ratio monitoring”, which is supported by this
component or module.

Base
Class(es) ServiceNeeds

Attribute Datatype Mul. Link Type Description
connection
Type

ObdRatio
Connec-
tionKind

1 aggregation
Defines how the DEM is connected to the
component or module to perform the IUMPR
service.

iumpr
Group String 1 aggregation

Defines the IUMPR Group of the SAE
standard. Note that possible values are not
predefined by an enumeration meta-type in
oder to make the meta-model independent of
the details of the SAE standard. Possible
values are currently (AUTOSAR R3.1):
CAT1 CAT2 OXS1 OXS2 EGR SAIR EVAP
SECOXS1 SECOXS2 NMHCCAT NOXCAT
NOXADSORB PMFILTER EGSENSOR
BOOSTPRS NOGROUP NONE.

rateBased
Monitored
Event

Diagnostic
Event
Needs

1 reference The rate based monitored Diagnosic Event.

usedFid Function
Inhibition
Needs

0..1 reference Function Inhibition Identifier used for the rate
based monitor. This is an optional attribute.

Table 5.12: ObdRatioServiceNeeds

Enumeration ObdRatioConnectionKind
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Enum Desc. Defines the way how the IUMPR service connection between the DEM and the
client component or module is handled (for details see the DEM Specification).

Literal Description

apiUse The IUMPR service (of the DEM) uses an explicit API to connect to the component
or module.

observer The IUMPR service (of the DEM) uses no API but ”observes” the associated
diagnostic event.

Class 〈〈atpObject〉〉 ObdInfoServiceNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

25 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

Class
Desc.

Specifies the abstract needs of a compoment or module on the configuration of OBD
Services in relation to a given InfoType (OBD Service 09), which is supported by this
component or module.

Base
Class(es) ServiceNeeds

Attribute Datatype Mul. Link Type Description
dataLength Integer 1 aggregation Length of date (in bytes) provided for this

InfoType.
infoType Integer 1 aggregation The InfoType according to ISO 15031-5

Table 5.13: ObdInfoServiceNeeds

Class 〈〈atpObject〉〉 ObdMonitorServiceNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Class
Desc.

Specifies the abstract needs of a compoment or module on the configuration of OBD
Services in relation to a particular on-board monitoring test supported by this
component or module. (OBD Service 06).

Base
Class(es) ServiceNeeds

Attribute Datatype Mul. Link Type Description
onBoard
MonitorId Integer 1 aggregation On-board monitor ID according to ISO

15031-5.

testId Integer 1 aggregation Test Identifier (TID) according to ISO 15031-5.

unitAnd
ScalingId Integer 1 aggregation Unit and scaling ID according to ISO 15031-5.

Table 5.14: ObdMonitorServiceNeeds

Class 〈〈atpObject〉〉 ObdControlServiceNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Class
Desc.

Specifies the abstract needs of a compoment or module on the configuration of OBD
Service 08 (request control of on-board system) in relation to a particular
test-Identifier (TID) supported by this component or module.

Base
Class(es) ServiceNeeds

Attribute Datatype Mul. Link Type Description
testId Integer 1 aggregation Test Identifier (TID) according to ISO 15031-5.

Table 5.15: ObdControlServiceNeeds

26 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

6 BSW Behavior

6.1 BSW Behavior Overview

Figure 6.1 and the following class table show the attributes and description
of class BswBehavior. Note that BswBehavior.entity and BswBehav-
ior.exclusiveArea describe properties of the actual code whereas BswBehav-
ior.event can be seen as a requirement to the BSW Scheduler to implement such
an event.

ARElement

BswBehavior

ExecutableEntity

BswModuleEntity

BswSchedulableEntity

SwService

BswInterfaces::BswModuleEntry

+ callType: BswCallType
+ executionContext: BswExecutionContext
+ isSynchronous: Boolean
+ serviceId: Int

Identi fiable

BswEvent

BswInterruptEntity

+ interruptCategory: BswInterruptCategory
+ interruptSource: String

Identifiable

InternalBehavior::ExclusiveArea

«enumeration»
BswInterruptCategory

 cat1
 cat2

+entity

1..*

+startsOnEvent 1

+implementedEntry

1

+calledEntry

0..*

+event

0..*

+canEnterExclusiveArea 0..*

+exclusiveArea 0..*

Figure 6.1: Overview of class BswModuleBehavior

Class 〈〈atpObject〉〉 BswBehavior
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Class
Desc.

Specifies the behavior of a BSW module or a BSW cluster w.r.t. the code entities
visible by the BSW Scheduler.
It is possible to have several different BswBehaviors referring to the same
BswModuleDescription.

Base
Class(es) ARElement

Attribute Datatype Mul. Link Type Description
entity BswMod-

uleEntity 1..* aggregation A code entity for which the behavior is
described

event BswEvent * aggregation An event required by this module behavior.

exclusive
Area Exclusive

Area * aggregation
This specifies an ExclusiveArea for this
BswBehavior. The exclusiveArea is local to
the module or module cluster.

27 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

module BswMod-
uleDe-
scription

1 reference The module specification fulfilled by this
behavior.

Table 6.1: BswBehavior

6.2 BSW Module Entity

The next class tables shows the attributes of BswModuleEntity and its specializa-
tions for scheduled and interrupt entities. These attributes are mainly required to con-
figure the BSW Scheduler.

It is important to understand the difference between BswModuleEntity and BswMod-
uleEntry: The first one describes properties of a code fragment wheras the second
one describes only the interface used to invoke a code fragment.

The attribute BswModuleEntity.calledEntry allows to declare which entry of an-
other module (or the same module) is called by this code entity. Note that this is not
a mandatory information in order to be able to integrate a module, but it is a very
important information if an integrator wants to analyze a call chain among several
modules in order to setup a proper scheduling. It is further important to note that
this attribute contains additional information in comparison to BswModuleDescrip-
tion.bswModuleDependency, because the latter only denotes the dependencies
between the module interfaces whereas calledEntry shows from which code frag-
ment a call is invoked.

Class 〈〈atpObject〉〉 BswModuleEntity
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Class
Desc.

Specifies the smallest code fragment which can be described for a BSW module or
cluster within AUTOSAR.

Base
Class(es) ExecutableEntity

Attribute Datatype Mul. Link Type Description
activation
Point BswSpo-

radicEvent * reference The module entity can activate this event.

calledEntry BswMod-
uleEntry * reference

The entry of another (or the same) BSW
module which is called by this entry (usually
via C function call). This information allows to
set up a model of call chains.

canEnter
Exclusive
Area

Exclusive
Area * reference

The BswModuleEntity can enter/leave the
referenced exclusive area through explicit API
calls.

cancellation
Point BswSpo-

radicEvent * reference
The module entity can cancel the activation of
the event (this only makes sense, if the event
has a non-zero delay time).

implemented
Entry BswMod-

uleEntry 1 reference The entry which is implemented by this
module entity.

28 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

Table 6.2: BswModuleEntity

Class 〈〈atpObject〉〉 BswSchedulableEntity
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Class
Desc.

BSW module entity, which is designed for control by the BSW Scheduler. It
implements a so-called ”main” function.

Base
Class(es) BswModuleEntity

Attribute Datatype Mul. Link Type Description

Table 6.3: BswSchedulableEntity

Class 〈〈atpObject〉〉 BswInterruptEntity
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Class
Desc. BSW module entity, which is designed to be triggered by an interrupt.

Base
Class(es) BswModuleEntity

Attribute Datatype Mul. Link Type Description
interrupt
Category

BswIn-
terrupt
Category

1 aggregation Category of the interrupt

interrupt
Source String 1 aggregation

Allows a textual documentation of the
intended interrupt source.

Table 6.4: BswInterruptEntity

Enumeration BswInterruptCategory
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Enum Desc. category of the interrupt service
Literal Description

cat1

Cat1 interrupt routines are not controlled by the OS and are only allowed to make
a very limited selection of OS calls to enable and disable all interrupts. The
BswInterruptEntity is implemented by the interrupt service routine, which is directly
called from the interrupt vector (not via the OS).

cat2
Cat2 interrupt routines are controlled by the OS and they are allowed to make OS
calls. The BswInterruptEntity is implemented by the interrupt handler, which is
called from the OS.

The class ExclusiveArea is not specific for the Basic Software, it is imported from
the CommonStructure package of the meta-model:

Class 〈〈atpObject〉〉 ExclusiveArea
Package M2::AUTOSARTemplates::CommonStructure::InternalBehavior
Class
Desc. Prevents an executable entity running in the area from being preempted.

Base
Class(es) Identifiable

29 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

Attribute Datatype Mul. Link Type Description

Table 6.5: ExclusiveArea

6.3 BSW Event

Figure 6.2 and the following tables show the inheritance and attributes of BswEvent
and its relation to BswModuleEntity. Note the difference in the activation of sporadic
and cyclic events: A BswModuleEntity can trigger or cancel a BswSporadicEvent
(of the same module) with the help of an API generated by the BSW Scheduler,
whereas a BswCyclicEvent is directly triggered by the BswScheduler (via the OS
timer). Further information can be found in [11].

Note that BswCyclicEvents does not include recurring events with variable cycle
time or from an external trigger (e.g. crank-shaft). The input information required to
configure these kind of recurring events in the BSW Scheduler is curently not specified
in [11].

Despite of that, external events can directly trigger a BswInterruptEntity by the
means of an interrupt.

Identifiable

BswEvent

BswCyclicEvent

+ cycleTime: Float

BswSporadicEvent

+ delayTime: Float

ExecutableEntity

BswModuleEntity
BswSchedulableEntity

+startsOnEvent 1

+activationPoint

0..*

+cancellationPoint

0..*

Figure 6.2: BswEvents and their relations to BswModuleEntities

Class 〈〈atpObject〉〉 BswEvent (abstract)
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

30 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

Class
Desc.

Defines an event which is used to trigger a schedulable entity of this BSW module or
cluster. The event is local to the BSW module or cluster. The short name of the class
instance is intended as an input to configure the required API of the BSW Scheduler.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description
startsOn
Event

Bsw
Schedula-
bleEntity

1 reference This entity is started by the event.

Table 6.6: BswEvent

Class 〈〈atpObject〉〉 BswSporadicEvent
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Class
Desc.

A BSW event, which can happen sporadically. The event is activated/cancelled by
explicit calls from the module to the BSW Scheduler. There a two purposes for such
an event:
- cause a context switch, e.g. from an ISR context into a task context
- implement a time delay

Base
Class(es) BswEvent

Attribute Datatype Mul. Link Type Description

delayTime Float 1 aggregation

Requirement for the delay time (in seconds)
after which this event is triggered. The delay is
counted from the activation of this event by a
BswModuleEntitiy until the actual triggering of
another BswModuleEntity associated by the
event.

Table 6.7: BswSporadicEvent

Class 〈〈atpObject〉〉 BswCyclicEvent
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Class
Desc.

A cyclically recurring BSW event. The cyclic activity has to be implemented by the
BSW Scheduler.

Base
Class(es) BswEvent

Attribute Datatype Mul. Link Type Description

cycleTime Float 1 aggregation
Requirement for the cycle time (in seconds)
by which this event is triggered.

Table 6.8: BswCyclicEvent

31 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

7 BSW Implementation

The template elements to be used by the developer in order to document the actual
implementation of a BSW module or cluster are very similar to what is needed for the
same purpose in the case of SW-Cs. Therefore it is based on the CommonStructure
part or the meta-model. This includes also the documentation of resource consump-
tion. The generic classes of the meta-model used to document implementation and
resource consumption are described in chapter 8 and chapter 9 in this document.

There are however some special features in describing the implementation of BSW.
This is the purpose of class BswImplementation (see Figure 7.1 and the following
class table).

The AUTOSAR version information (minor/major/patch) is specific for AUTOSAR BSW
and specified for the BswImplementation.

Note that in case a BSW module is used in multiple implementations on the same
ECU (which means, that the code has to be there multiple times with the exception of
shared libraries), for each module implementation there has to be a separate instance
of BswImplementation. This allows to define name expansions required for global
symbols via the attribute vendorApiInfix.

The attribute requiredHW allows to document special hardware dependencies of a
BSW module or cluster in addition to what can be expressed by the generic attributes
Implementation.processor and Implementation.resourceConsumption
(see also chapter 9). The intended use case of this attribute is to document hard-
ware dependencies of BSW modules or clusters which cover firmware layers, namely
MCAL, ECU abstraction or Complex Drivers.

Finally it is possible to specify vendor specific configuration parameter definitions and
predefined or recommended configuration parameter values within the scope of BSW
implementation. This is expressed by the associations from BswImplementation to
ModuleDef and to ModuleConfiguration which are specified in the ECU Config-
uration Specification document [10]. Note that different implementations of the same
BswModuleDescription can have different parameter values and different sets of
vendor specific configuration parameters. Of course it is also possible that different
implementations of the same module refer to the same configuration parameter defini-
tions resp. to the same predefined or recommended configuration parameter values.

In addition the ModuleConfiguration from the ECU Configuration Template can
refer to the BswImplementation for which it defines the configuration parameters.
This relation is intended to be used by the integrator or tester to indicate for which
BswImplementation an actual ECU configuration has been set up.

32 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

ARElement

BswImplementation

+ arMajorVersion: Int
+ arMinorVersion: Int
+ arPatchVersion: Int
+ vendorApiInfix: String

ARElement

Implementation::Implementation

+ codeGenerator: String [0..1]
+ programmingLanguage: ProgramminglanguageEnum
+ swMajorVersion: Int
+ swMinorVersion: Int
+ swPatchVersion: Int
+ vendorId: Int

ARElement

BswBehavior::BswBehavior

ARElement

ECUResourceTemplate::HWElement

ARElement

ECUCDescriptionTemplate::ModuleConfiguration

+ implementationConfigVariant: ConfigurationVariant

ARElement
ParamConfMultipl icity

ECUCParameterDefTemplate::ModuleDef

+definition 1

+refinedModuleDef 0..1

+vendorSpecificModuleDef

1

+recommendedConfiguration

0..1

+preconfiguredConfiguration

0..1

+requiredHW

0..*

+behavior

1

+moduleDescription

0..1

Figure 7.1: Overview of class BswImplementation

Class 〈〈atpObject〉〉 BswImplementation
Package M2::AUTOSARTemplates::BswModuleTemplate::BswImplementation

Class
Desc.

Contains the implementation specific information in addition to the generic
specification (BswModuleDescription and BswBehavior).
It is possible to have several different BswImplementations referring to the same
BswBehavior.

Base
Class(es) Implementation , ARElement

Attribute Datatype Mul. Link Type Description
arMajor
Version Integer 1 aggregation

Major version number of AUTOSAR
specification on which this implementation is
based on.

arMinor
Version Integer 1 aggregation

Minor version number of AUTOSAR
specification on which this implementation is
based on.

arPatch
Version Integer 1 aggregation

Patch level version number of AUTOSAR
specification on which this implementation is
based on.

behavior BswBehav-
ior 1 reference The behavior of this implementation.

33 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

preconfigured
Configura-
tion

Module
Configura-
tion

0..1 reference
Reference to the module configuration that
contains preconfigured (i.e. fixed)
configuration parameters.

recommended
Configura-
tion

Module
Configura-
tion

0..1 reference Reference to the recommended configuration
for this module.

requiredH
W HWEle-

ment * reference Hardware resource required by this
BswImplementation

vendorApi
Infix String 1 aggregation

In driver modules which can be instantiated
several times on a single ECU, BSW00347
requires that the name of APIs is extended by
the VendorId and a vendor specific name.
This parameter is used to specify the vendor
specific name. In total, the implementation
specific name is generated as follows:
<ModuleName> <VendorId>
<VendorApiInfix><Api name from SWS>.

E.g. assuming that the VendorId of the
implementor is 123 and the implementer
chose a VendorApiInfix of ”v11r456” a api
name Can Write defined in the SWS will
translate to Can 123 v11r456Write.

This attribute is mandatory for all modules
with upper multiplicity > 1. It shall not be used
for modules with upper multiplicity =1.

vendor
Specific
ModuleDef ModuleDef 1 reference Reference to the Vendor Specific ModuleDef

used in this BSW module description.

Table 7.1: BswImplementation

34 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

8 Implementation

8.1 Introduction

This chapter explains, how the implementation details of AUTOSAR software compo-
nents and Basic Software can be described. While AUTOSAR contains various com-
ponent types, only atomic software components and Basic Software Modules possess
an Implementation. In the meta model this means that Implementation can
be provided for AtomicSoftwareComponentType or derived classes and BswMod-
uleDescription only. On the other hand, compositions simply structure and en-
capsulate their contained components in a hierarchical manner, without adding any
implementation relevant behavior or functionality. So they cannot be implemented di-
rectly. Instead, the leaf components in such a composition tree, which by definition are
again atomic, are implemented.

8.2 Implementation Description Overview

The Implementation class shown in Figure 8.1 serves the following main purposes:

• provide information about the resource consumption (chapter 9)

• link to code (source code, object code) (section 8.5)

• specify required libraries (section 8.6)

• specify the build environment (section 8.7)

ARElement

Implementation

+ codeGenerator: String [0..1]
+ programmingLanguage: ProgramminglanguageEnum
+ swMajorVersion: Int
+ swMinorVersion: Int
+ swPatchVersion: Int
+ vendorId: Int

Identifiable

Code

+ type: CodeTypeEnum

Identifiable

Dependency

HWElement

ProcessingUnit

Identifiable

Compiler

+ name: String
+ options: String
+ vendor: String
+ version: String

Identifiable

ResourceConsumption

«enumeration»
ProgramminglanguageEnum

 c
 cpp
 java

«enumeratio...
CodeTypeEnum

 src
 obj

Identifiable

Linker

+ name: String
+ options: String
+ vendor: String
+ version: String

+codeDescriptor

1..*

+resourceConsumption

1

+implementationDependency

*

+l inker

*

+compiler

*

+processor

*

Figure 8.1: Overview of implementation description

35 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

As the figure shows, Implementation is derived from ARElement, i.e. it may be
shipped as a separate engineering artifact, e.g. independent of the description of in-
terfaces, ports and the component type.

The following table lists all attributes shown in Figure 8.1, thereby explaining the mean-
ing of the remaining simple assertions and requirements of class Implementation.

Class 〈〈atpObject〉〉 Implementation
Package M2::AUTOSARTemplates::CommonStructure::Implementation
Class
Desc. Description of an implementation a single software component or module.

Base
Class(es) ARElement

Attribute Datatype Mul. Link Type Description
codeDe-
scriptor Code 1..* aggregation Specifies the provided implementation code.

codeGen-
erator String 0..1 aggregation Optional: code generator used.

compiler Compiler * aggregation Specifies the compiler for which this
implementation has been released

implementation
Depen-
dency Dependency * aggregation Specifies details on dependent software,

modules or libraries.

linker Linker * aggregation Specifies the linker for which this
implementation has been released.

processor Processing
Unit * reference The processor the implementation is

compatible with.
programming
Language Programminglanguage

Enum 1 aggregation Programming language the implementation
was created in.

resource
Consump-
tion

Resource
Consump-
tion

1 aggregation
All static and dynamic resources for each
implementation are described within the
ResourceConsumption class.

swMajor
Version Integer 1 aggregation Major version number of this implementation.

The numbering is vendor specific.

swMinor
Version Integer 1 aggregation Minor version number of this implementation.

The numbering is vendor specific.

swPatch
Version Integer 1 aggregation Patch version number of this implementation.

The numbering is vendor specific.

vendorId Integer 1 aggregation
Vendor ID of this Implementation according to
the AUTOSAR vendor list

Table 8.1: Implementation

36 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

8.3 Assertions and Requirements

For some of the attributes mentioned below it is ambiguous whether they describe a
requirement on the target environment or whether they are assertions made by the par-
ticular component implementation. The Implementation description’s Compiler
attribute is an example for this: does it describe a requirement for source code to be
compiled with the named compiler, or is this simply information which compiler was
used in the process of creating an object file? The simple answer is: if possible, this is
derived from the context. Otherwise the attribute needs to have proper documentation.
For the Compiler example just mentioned, the situation is straightforward: for source
code, the attribute describes a requirement, for object code it is historic information.
The same needs to be applied to all attributes in this section.

8.4 Implementation of a Software Component

Probably the most important information in Implementation is which Atomic Soft-
ware Component or BSW Module is actually implemented. At first glance, this link
seems to be missing in the overview in Figure 8.1. However, implementations are
actually given for a particular component behavior, specified through the class Inter-
nalBehavior respectively BswBehavior. The contents of such a behavior are not
of interest here, but as Figure 8.2 shows, it in turn is associated with a single Atomic-
SoftwareComponentType or BswModuleDescription.

ARElement

Implementation

SwcImplementation::
SwcImplementation

ARElement

BswImplementation::
BswImplementation

ARElement

BswBehavior::BswBehavior

ARElement

SwcInternalBehavior::
InternalBehavior

ComponentType

Components::
AtomicSoftwareComponentType

ARElement

«atpStructureElement»
BswOverview::BswModuleDescription

+module 1

*

+component 1

*

+behavior 1 +behavior 1

Figure 8.2: An implementation is associated with a single software component

37 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

8.5 Linking to Code

When a component is released the descriptions are accompanied by actual implemen-
tation code. This code can come in different ways: source code in C, C++ or Java,
object code or even executable code1.

Figure 8.3 shows how an Implementation is linked to Code files. For each available
form of component code a Code element is used. If for instance a component imple-
mentation is given as source code only, then the respective Implementation would
contain exactly one Code, whose type attribute would have been set to src. For each
code description, all relevant files are then referenced in form of a standard URL. For
relative URLs the path will start at the containing XML file.

ARElement

Implementation

Identifiable

Code

+ type: CodeTypeEnum

Identi fiable

Xfi le

+ notation: String [0..1]
+ tool: String [0..1]
+ toolVersion: String [0..1]

Url

+ mimeType: MimeTypeString [0..1]
+ value: UriString

«enumeratio...
CodeTypeEnum

 src
 obj

+url 0..1

+xfile 1..*

+codeDescriptor 1..*

Figure 8.3: An Implementation references the code files through the Code class

Class 〈〈atpObject〉〉 Code
Package M2::AUTOSARTemplates::CommonStructure::Implementation
Class
Desc. A generic code descriptor.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description
type CodeType

Enum 1 aggregation The type of described code.

1How such linked code would be embedded in the ECU is not in scope of the template specification.
If required further attributes need to be added at a later time to support such a process.

38 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

xfile Xfile 1..* aggregation The files belonging to this code descriptor.

Table 8.2: Code

Class 〈〈atpObject〉〉 Xfile

Package M2::AUTOSARTemplates::GenericStructure::CommonPatterns::InlineTextModel::
Inlines

Class
Desc. Use <xfile> , to reference an external file.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description

tool String 0..1 aggregation
This element describes the tool which was
used to generate the corresponding <xfile> .
Kept as a string.

toolVersion String 0..1 aggregation
This element describes the tool version which
was used to generate the corresponding
<xfile> . Kept as a string.

url Url 0..1 aggregation
This element specifies the Uniform Resource
Locator (URL) of the context contained in the
<url> element.

Table 8.3: Xfile

Class 〈〈atpObject〉〉 Url

Package M2::AUTOSARTemplates::GenericStructure::CommonPatterns::InlineTextModel::
Inlines

Class
Desc.

This element specifies the Uniform Resource Locator (URL) of the context contained
in the <url> element.

Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description
mimeType MimeType

String 0..1 aggregation this denotes the mime type of the resource
located by the url.

value UriString 1 aggregation This is the url itself

Table 8.4: Url

8.6 Dependencies

By specifying dependencies an implementation can depend on certain other artifacts
or model features. The concrete meaning of this is detailed by particular kind of de-
pendency, as shown in Figure 8.4.

39 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

Identifiable

Dependency

+ usage: DependencyUsageEnum [1..*]

DependencyOnFile

DependencyOnLibrary

+ maxVersion: String
+ minVersion: String

Identifiable

Xfile

+ notation: String [0..1]
+ tool: String [0..1]
+ toolVersion: String [0..1]

«enumeration»
DependencyUsageEnum

 compile
 link
 build
 execute

+xfile

1

Figure 8.4: Dependencies of an Implementation

Class 〈〈atpObject〉〉 Dependency (abstract)
Package M2::AUTOSARTemplates::CommonStructure::Implementation
Class
Desc. General dependency, typically on the existence of another artifact.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description

usage Dependency
Usage
Enum

1..* aggregation
Specification during for which process step(s)
this dependency is required.

Table 8.5: Dependency

An implementation can generally depend on files. Such files could for example be
required header files or configuration files. The URL points to the place where the files
are expected, or simply contains the name of the file, in case the path is not relevant.
For libraries, like e.g. a math.lib, a minimum and maximum version number can be
specified, therefore trying to ensure compatibility. Note that the specification of version
numbers is a meta-information about certain artifacts, for which a more general solution
may be found in the future (e.g. as part of a catalog description). So the current solution
has to be seen as a first and rough approach only.

Class 〈〈atpObject〉〉 DependencyOnFile
Package M2::AUTOSARTemplates::CommonStructure::Implementation
Class
Desc. Dependency on the existence of a certain file.

Base
Class(es) Dependency

Attribute Datatype Mul. Link Type Description
xfile Xfile 1 aggregation The specified file needs to exist.

40 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

Table 8.6: DependencyOnFile

Class 〈〈atpObject〉〉 DependencyOnLibrary
Package M2::AUTOSARTemplates::CommonStructure::Implementation
Class
Desc.

A specific file dependency: without the library that implementation cannot be used
(compiled, linked, executed, ...).

Base
Class(es) DependencyOnFile

Attribute Datatype Mul. Link Type Description
maxVer-
sion String 1 aggregation

Maximum version compatible with
implementation. If not set, there is limitation
on the upper version.

minVersion String 1 aggregation
Minimum version compatible with
implementation.

Table 8.7: DependencyOnLibrary

41 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

8.7 Compiler

For the specification of the used (or to be used) compiler the Compiler element shall
be used:

Class 〈〈atpObject〉〉 Compiler
Package M2::AUTOSARTemplates::CommonStructure::Implementation

Class
Desc.

Specifies the compiler attributes. In case of source code this specifies requirements
how the compiler shall be invoked. In case of object code this documents the used
compiler settings.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description
name String 1 aggregation Compiler name (like gcc).

options String 1 aggregation Specifies the compiler options.

vendor String 1 aggregation Vendor of compiler.

version String 1 aggregation Exact version of compiler executable.

Table 8.8: Compiler

8.8 Linker

For the specification of the to be used linker the Linker element shall be used:

Class 〈〈atpObject〉〉 Linker
Package M2::AUTOSARTemplates::CommonStructure::Implementation
Class
Desc. Specifies the linker attributes used to decribe how the linker shall be invoked.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description
name String 1 aggregation Linker name.

options String 1 aggregation Specifies the linker options.

vendor String 1 aggregation Vendor of linker.

version String 1 aggregation Exact version of linker executable.

Table 8.9: Linker

42 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

9 ResourceConsumption

AUTOSAR software needs to be mapped on ECUs at some point during the develop-
ment. Application software components can be basically mapped to any ECU available
within the car. The mapping freedom is limited by the System Constraints [12] and
the available resources on each ECU. BSW Modules are present in each ECU which
provides the corresponding service. The ResourceConsumption element provides
information about the needed resources concerning memory and execution time for
each SwcImplementation or BswImplementation.

9.1 Static and Dynamic Resources

Resources can be divided into static and dynamic resources.

Static resources can only be allocated by one entity and stay with this entity. If the
required amount of resources is bigger than the available resources the mapping does
not fit physically. ROM is an example of a spare resource where obviously only the
amount of data can be stored that is provided by the storage capacity.

Dynamic resources are shared and therefore can be allocated dynamically to different
control threads over time. Processing time is a good example, where different tasks are
given the processor for some time. If some runnable entity uses more processing time
than originally planned, it can lead to functional failure. Also some sections of RAM can
be seen as dynamic resources (e.g. stack, heap which grow and shrink dynamically).

9.2 Resource consumption overview

In Figure 9.1, the meta-model of the ResourceConsumption description is depicted.
The ResourceConsumption is attached to an Implementation. For each Imple-
mentation, there can be one ResourceConsumption description.

ARElement

Implementation

Identifiable

ExecutionTime

Identifiable

ResourceConsumption

Identi fiable

StackUsage A

Identifiable

HeapUsage

Identifiable

MemorySection

Identifiable

ExecutableEntity

+stackUsage 0..*

+objectFileSection 1..* +heapUsage 0..*

+executionTime 0..*

+resourceConsumption 1

+runnable

0..1

+runnable

0..1

Figure 9.1: Resource consumption overview

43 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

As depicted by Figure 9.1, all resources are described within the ResourceConsump-
tion meta-class.

ExecutionTime (section 9.5) and StackUsage (section 9.4.2) are used to provide
information on the implementation specific resource usage of the ExecutableEntity
defined in the InternalBehavior of SW-Component respectively in the BswBehav-
ior of BSW Module.

MemorySection (section 9.3.2) documents the resources needed to load the object
file containing the implementation on the ECU.

HeapUsage (section 9.4.3) describes the dynamic memory usage of the software.

Class 〈〈atpObject〉〉 ResourceConsumption
Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption
Class
Desc. Description of consumed resources by one implementation of a software.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description
execution
Time Execution

Time * aggregation
Collection of the execution time descriptions
for the runnable entities of this
implementation.

heapUs-
age Heap

Usage * aggregation Collection of the heap memory allocated by
this implementation.

objectFile
Section Memory

Section 1..* aggregation
Provides additional information to the sections
of the object-file containing the
implementation of the SW-Component

stackUs-
age Stack

Usage * aggregation Collection of the stack memory usage for each
runnable entity of this implementation.

Table 9.1: ResourceConsumption

44 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

9.3 Static Memory Needs

9.3.1 General

This sub-chapter describes how the static memory needs for the Implementation
are described. This includes all memory needs of software for code or data both at the
class and at the instance level except for:

• stack space needed in the task that activates an ExecutableEntity of the
implementation (see chapter 9.4.2)

• dynamic heap-behavior of the software (in case the software uses malloc/free
to get/free buffers from the heap, see chapter 9.4.31)

9.3.2 Memory Sections

Memory will be needed to load the object-file containing an implementation of the soft-
ware on an ECU. In which kind of memory the code and data of the software have
to be allocated has to be defined in the source code of the software according to the
Specification of Memory Mapping (see [13]).

To support the integration and configuration of the software component the used mem-
ory sections and their attributes have to be described using the MemorySection ele-
ment from figure 9.2.

Identifiable

MemorySection

+ alignment: Int
+ option: Identi fier [0..*]
+ sectionName: String
+ sectionType: MemorySectionType
+ size: Int

Identifiable

ResourceConsumption

ARElement

Implementation

«enumeration»
MemorySectionType

 code
 varNoInit
 varPowerOnInit
 varFast
 var
 const
 configData
 userDefined

+objectFileSection 1..*

+resourceConsumption 1

Figure 9.2: Meta-model related to the MemorySection

The attributes of MemorySection are shown below:

Class 〈〈atpObject〉〉 MemorySection

Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption::Memory
SectionUsage

1 This is often problematic in embedded and real-time systems: most software will only need static
memory blocks and stack-size but will not require dynamic memory allocation

45 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

Class
Desc.

The MemorySection provides description of the Memory Sections used in the
Implementation.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description
alignment Integer 1 aggregation The alignment (typically 1, 2, 4,...)

option Identifier * aggregation

This attribute introduces the ability to specify
further intended properties of this
MemorySection.
The following value is standardized (to be
used for code sections only):

* INLINE - The code section is declared with
the compiler abstraction macro INLINE.

The expansion of INLINE depends on the
compiler specific implementation of the macro.
Depending on this, the code section either
corresponds to an actual section in memory or
is put into the section of the caller. See
AUTOSAR SWS CompilerAbstraction for
more details.

section
Name String 1 aggregation This is the name of the section in the

Implementation.

section
Type

Memory
Section
Type

1 aggregation Memory section type of the described
MemorySection.

size Integer 1 aggregation The size in bytes of the section.

swAddr
Method SwAddr

Method * reference

This assocation indicates all objects (e.g.
calibration parameters, data element
prototypes) being assigned to this
SwAddrMethod shall be placed in this
memory Section.

Table 9.2: MemorySection

Enumeration MemorySectionType

Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption::Memory
SectionUsage

Enum Desc. Enumeration to specify the different types of memory classes available in the
AUTOSAR Memory Mapping.

Literal Description
code To be used for mapping code to application block, boot block, external flash etc.
varNoInit To be used for all global or static variables that are never initialized.
varPowerOn
Init

To be used for all global or static variables that are initialized only after power on
reset.

46 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

varFast

To be used for all global or static variables that have at least one of the following
properties:
- accessed bitwise
- frequently used
- high number of accesses in source code
Some platforms allow the use of bit instructions for variables located in this specific
RAM area as well as shorter addressing instructions. This saves code and
runtime.

var To be used for global or static variables that are initialized after every reset (the
normal case).

const To be used for global or static constants.

configData Constants with attributes that show that they reside in one segment for module
configuration.

userDefined No specific categorization of sectionType possible.

The attribute sectionType is used to define which default section this memory seg-
ment shall be mapped to. Since all of the provided MemorySectionType (except
for userDefined do match to a section form the Specification of Memory Mapping
(see [13]), this information can be used to create a default mapping of each Memory-
Section to some ECU memory segemnt during ECU configuration.

In case the userDefined sectionType is used additional documentation is needed
to support the integrator in selecting the proper memory segment from the ECU.

9.4 Dynamic Memory Needs

9.4.1 General

The dynamic memory is mainly divided into two categories, the stack and the heap.
While the stack is almost always used in embedded software, the heap is avoided as
much as possible due to the complexity of its implementation and segmentation issues.
The dynamic memory consumption of software has a much different quality than the
static memory consumption. The amount of the static memory consumption can be
retrieved from the compiler and is only dependent on the compiler and processor used
as well as on the number of instances.

Dynamic memory consumption is heavily dependent on the actual code being exe-
cuted, which is dependent on the state of the software and the parameters. With the
introduction of recursive concepts the uncertainty is even higher. Therefore the ap-
proach for dynamic memory consumption is far more related to the description of the
execution time introduced in section 9.5.

9.4.2 Stack

The stack is an area in memory that is used to store temporary information like parame-
ters and local variables of function calls. Therefore the stack usage is highly dependent

47 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

on the calling hierarchy and the nesting level of function calls. The stack is organized
in a LIFO (last in first out) manner. So each time a function is called the necessary
stack memory is occupied. After leaving the function also the associated memory area
is freed again and can be used for the next function call. Therefore segmentation is not
a problem for a stack. Only the available amount of stack memory is relevant from the
software point of view.

Different mechanisms can be used to describe the stack memory needs of software.
Needed stack size can either be calculated, measured or estimated. This is shown in
Figure 9.3.

Identifiable

StackUsage

A

WorstCaseStackUsage

+ memoryConsumption: Int

MeasuredStackUsage

+ averageMemoryConsumption: Int
+ maximumMemoryConsumption: Int
+ minimumMemoryConsumption: Int [0..1]
+ testPattern: String [0..1]

RoughEstimateStackUsage

+ memoryConsumption: Int

SoftwareContext

+ input: String
+ state: String

HardwareConfiguration

+ additionalInformation: String
+ processorMode: String
+ processorSpeed: String

HWElementContainer

«atpType»
ECU

Identifiable

ResourceConsumption

Identifiable

ExecutableEntity

+stackUsage 0..*

+ecu

0..1

+softwareContext

0..1

+hardwareConfiguration

0..1

+runnable

0..1

Figure 9.3: Stack Memory Consumption

The given stack memory consumption is dependent on the ECU, the software context
and maybe also on the hardware configuration. The software context and the hard-
ware configuration describe the state of the software and hardware under which the
given stack usage was gathered. So for each given stack memory consumption these
environmental descriptions have to be provided.

Class 〈〈atpObject〉〉 StackUsage (abstract)
Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption::StackUsage
Class
Desc. Describes the stack memory usage of a software.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description
ecu ECU 0..1 reference Reference to the ECU description this

implementation is provided for.

48 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

hardware
Configura-
tion

Hardware
Configura-
tion

0..1 aggregation Contains information about the hardware
context this stack usage is describing.

runnable Executable
Entity 0..1 reference Reference to the runnable this stack usage is

provided for.
software
Context Software

Context 0..1 aggregation Contains details about the software context
this stack usage is provided for.

Table 9.3: StackUsage

Class 〈〈atpObject〉〉WorstCaseStackUsage
Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption::StackUsage
Class
Desc. Provides a formal worst case stack usage.

Base
Class(es) StackUsage

Attribute Datatype Mul. Link Type Description
memory
Consump-
tion Integer 1 aggregation Worst case stack consumption.

Table 9.4: WorstCaseStackUsage

Class 〈〈atpObject〉〉 MeasuredStackUsage
Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption::StackUsage
Class
Desc. The stack usage has been measured.

Base
Class(es) StackUsage

Attribute Datatype Mul. Link Type Description
average
Memory
Consump-
tion

Integer 1 aggregation The average stack usage measured.

maximum
Memory
Consump-
tion

Integer 1 aggregation The maximum stack usage measured.

minimum
Memory
Consump-
tion

Integer 0..1 aggregation The minimum stack usage measured.

testPattern String 0..1 aggregation
Description of the test pattern used to aquire
the measured values.

Table 9.5: MeasuredStackUsage

49 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

Class 〈〈atpObject〉〉 RoughEstimateStackUsage
Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption::StackUsage
Class
Desc. Rough estimation of the stack usage.

Base
Class(es) StackUsage

Attribute Datatype Mul. Link Type Description
memory
Consump-
tion Integer 1 aggregation Rough estimate of the stack usage.

Table 9.6: RoughEstimateStackUsage

50 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

9.4.3 Heap

Heap is the memory segment that is used to cover dynamic memory needs with explicit
memory allocation and de-allocation. Since the allocation of the memory is controlled
by the application program it also survives changes in the context of invocation from
entering a function nesting level and leaving it again. So a memory block allocated
in the subroutine can be used in the calling routine after the subroutine has returned.
Also the allocated memory can be freed again in a different context.

Because of the independence of the heap consumption from processes and tasks only
the whole software component or BSW Module heap consumption is provided in the
description. The meta-model is shown in Figure 9.4.

Identifiable

HeapUsage

Identifiable

ResourceConsumption

WorstCaseHeapUsage

+ memoryConsumption: Int

MeasuredHeapUsage

+ averageMemoryConsumption: Int
+ maximumMemoryConsumption: Int
+ minimumMemoryConsumption: Int [0..1]
+ testPattern: String [0..1]

RoughEstimateHeapUsage

+ memoryConsumption: Int

SoftwareContext

+ input: String
+ state: String

HardwareConfiguration

+ additionalInformation: String
+ processorMode: String
+ processorSpeed: String

HWElementContainer

«atpType»
ECU

+heapUsage 0..*

+hardwareConfiguration

0..1

+softwareContext

0..1

+ecu

0..1

Figure 9.4: Heap Memory Consumption

The heap memory consumption also depends on the ECU, the software context and
the hardware configuration.

Due to the highly dynamic nature of heap memory one problem is the segmentation
of the available memory area. So in some cases there can be not enough memory
allocated, even though the total amount of free heap memory is big enough, because
the available memory space is not available continuously.

Class 〈〈atpObject〉〉 HeapUsage (abstract)
Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption::HeapUsage
Class
Desc. Describes the heap memory usage of a SW-Component.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description
ecu ECU 0..1 reference Reference to the ECU description this

implementation is provided for.

51 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

hardware
Configura-
tion

Hardware
Configura-
tion

0..1 aggregation Contains information about the hardware
context this heap usage is describing.

software
Context Software

Context 0..1 aggregation Contains details about the software context
this heap usage is provided for.

Table 9.7: HeapUsage

Class 〈〈atpObject〉〉WorstCaseHeapUsage
Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption::HeapUsage
Class
Desc. Provides a formal worst case heap usage.

Base
Class(es) HeapUsage

Attribute Datatype Mul. Link Type Description
memory
Consump-
tion Integer 1 aggregation Worst case heap consumption.

Table 9.8: WorstCaseHeapUsage

Class 〈〈atpObject〉〉 MeasuredHeapUsage
Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption::HeapUsage
Class
Desc. The heap usage has been measured.

Base
Class(es) HeapUsage

Attribute Datatype Mul. Link Type Description
average
Memory
Consump-
tion

Integer 1 aggregation The average heap usage measured.

maximum
Memory
Consump-
tion

Integer 1 aggregation The maximum heap usage measured.

minimum
Memory
Consump-
tion

Integer 0..1 aggregation The minimum heap usage measured.

testPattern String 0..1 aggregation
Description of the test pattern used to aquire
the measured values.

Table 9.9: MeasuredHeapUsage

52 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

Class 〈〈atpObject〉〉 RoughEstimateHeapUsage
Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption::HeapUsage
Class
Desc. Rough estimation of the heap usage.

Base
Class(es) HeapUsage

Attribute Datatype Mul. Link Type Description
memory
Consump-
tion Integer 1 aggregation Rough estimate of the heap usage.

Table 9.10: RoughEstimateHeapUsage

9.5 Execution Time

9.5.1 General

This subsection defines a model to describe the ExecutionTime of a specific Exe-
cutableEntity of a specific Implementation.

Section 9.5.3 describes the goals and scope of the ExecutionTime description pro-
posed.

Section 9.5.4 lists all the thoughts and observations that lead to the actual model which
is described in section 9.5.5.

53 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

9.5.2 Preliminaries

This subsection assumes that the reader is familiar with the definition of the following
terminology (please see the AUTOSAR Glossary [4] for details):

• task

• thread

• process

• executable entity

• (worst case) execution time

• (worst case) response time

9.5.3 Scope

9.5.3.1 Assertions Versus Requirements

The ExecutionTime is an ASSERTION: a statement about the duration of the exe-
cution of a piece of code in a given situation. The execution time is NOT a REQUIRE-
MENT on the software, on the hardware or on the scheduling policy.

9.5.3.2 In Scope

This section proposes a description of the ExecutionTime of a ExecutableEntity
of an Implementation. Very roughly, this description includes:

• the nominal execution time (”0.000137 s”) or a range of times

• a description of the entire context in which the execution time measurement or
analysis has been made

• some indication of the quality of this measurement or estimation

The goal is to find a good compromise between flexibility and precision. The description
must be flexible enough so that the entire range between analytic results (”worst-case
execution time”) and rough estimates can be described. The description should be
precise enough so that it is entirely clear what the relevance or meaning of the stated
execution time is. This implies that a large amount of context information needs to be
provided. The following sections analyze what this context is and provide an appropri-
ate structure for this information.

54 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

9.5.3.3 Out of Scope

It is however not in the scope of this section to specify how the execution time of a
runnable entity can be or should be measured or analyzed. We will not discuss what
tools or techniques can be used to find the execution time or worst-case execution time
of a piece of software.

It also is not in the scope of this section to define how information about execution
times is used when integrating various software onto one ECU. Similarly this section
does not deal with the response time of the system to certain events. The response
time does not only depend on the execution times of the involved software but also on
the infrastructure overhead and on the scheduling policies which are used.

The focus also is on the description of the execution time of assembly instructions
(typically generated out of compiled C or C++ code). The execution time of e.g. Java
byte-code on a virtual machine has not been explicitly considered.

9.5.4 Background

This section provides some background to the proposed solution. Readers who want
to skip to the result should go to section 9.5.5. The execution time can be described
for a specific sequence of assembly instructions. It does not make sense to describe
the execution time of a runnable provided as source-code unless a precise compiler
(and compiler options) are also provided so that a unique set of assembly instructions
can be generated out of the source-code. In addition, the execution time of such a
sequence of assembly instructions depends on:

1. the hardware-platform

2. the hardware state

3. the logical (software) context

4. execution time of external pieces of code called from the software

These dependencies are discussed in detail in the following sections.

9.5.4.1 Dependency of the Execution Time on Hardware

The execution time depends both on the CPU-hardware and on certain parts of the
peripheral hardware:

• The execution time depends on a complete description of the processor, includ-
ing:

– kind of processor (e.g. ”PPC603”)

– the internal Processor frequency (”100 MHz”)

55 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

– amount of processor cache

– configuration of CPU (e.g. power-mode)

• Aspects of the periphery that need to be described include:

– external bus-speed

– MMU (memory management unit)

– configuration of the MMU (data-cache, code-cache, write-back,...)

– external cache

– memory (kind of RAM, RAM speed)

In addition, when other devices (I/O) are eventually accessed as memory by the I/O
hardware abstraction, the speed of those devices potentially has a large influence on
the execution time of software.

On top of this, the ECU might provide several ways to store the code and data that
needs to be executed. This might also have a large influence on the execution time.
For example:

• execution of assembly instructions stored in RAM versus execution out of ROM
might have very different execution times

• when caching is present, the relative physical location of data accessed in mem-
ory might also influence the execution time

9.5.4.2 Dependency on Hardware State

In addition to the static configuration of the hardware and location of the code and data
on this hardware, the dynamically changing state of the hardware might have a large
influence on the execution time of a piece of code : some examples of this hardware
state are:

• which parts of the code are available in the execution cache and what parts will
need to be read from external RAM

• what part of the data is stored in data cache versus must be fetched from RAM

• potentially, the state of the processor pipeline

Although this influence is not relevant on simple or deterministic processors (without
cache), the influence of the cache state on modern processors can be enormous (an
order of magnitude difference is not impossible). Despite the potential importance of
this initial hardware-state when caching is present, it is almost impossible and definitely
impractical to describe this hardware state. Therefore it is important and clear that we
will not provide explicit attributes for this purpose.

56 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

9.5.4.3 Dependency on Logical Context

This logical context includes:

1. the input parameters with which the runnable is called

2. also the logical ”state” of the component to which the runnable belongs (or more
precisely: the contents of all the memory that is used by the runnable)

While a description of the input-parameters is relatively straight-forward to specify, it
might be very hard to describe the entire logical state that the software depends on.

In addition, in certain cases, one wants to provide a specific (e.g. measured or sim-
ulated) execution time for a very specific logical context; whereas in other cases, one
wants to describe a worst-case execution time over all valid logical contexts or over a
subset of logical contexts.

9.5.4.4 Dependency on External Code

Things get very complex when the piece of code whose execution time is described
makes calls into (”jumps into”) external libraries. To deal with this problem, we could
take one of the following approaches:

1. Do not support this case at all: only code that does not rely on external libraries
can be given an execution time

2. Support a description of the execution time for a very specific version (again at
object-code level) of the libraries. The exact versions of external libraries used
would be described together with the execution time. In addition, the relative
location in memory of the runnable and the library, the HW-state with respect to
the library (e.g. whether this code is in cache or not) and the logical state of the
library might have an influence.

3. Conceptually, it might be possible to support a description of the software, which
explicitly describes the dependency on the execution times of the library. This
description would include:

(a) the execution time of the code provided by the software itself

(b) a specification of which external library-calls are made (with what parame-
ters, how often, in what order, ...)

Option 3 is deemed unrealistic and impractical and is not supported. Option 2 however
is important as many software might depend on very simple but very common external
libraries (like a math-library that provides floating-point capability in software). Option
2 will therefore be supported for the case that the external library does not have an
additional logical context which influences its execution time.

57 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

9.5.5 Description-Model for the Execution Time

9.5.5.1 Inclusion in the Overall Model

Figure 9.5 shows how the ExecutionTime is part of the overall description of the
Implementation of software. The description of the Implementation references
the description of the ExecutableEntity.

Each description of such an ExecutableEntity (of a specific Implementation)
can include an arbitrary number of ExecutionTime descriptions. Thereby this Exe-
cutionTime description may also depend on code or data variant of the Implemen-
tation.

It is expected that many ExecutableEntity will not have ExecutionTime descrip-
tions. For ExecutableEntity that do have ExecutableEntity descriptions, the
software-implementor could provide several ExecutionTime descriptions: for exam-
ple one per specific ECU on which the Implementation can run and on which the
time was measured or estimated.

If an ExecutableEntity is defined to be running in an ExclusiveArea the Execu-
tionTime of the whole ExecutableEntity can be considered to allow the sched-
uler configuration an optimization of the data consistency mechanism.

If an ExecutableEntity is defined to be able to enter an ExclusiveArea the Ex-
ecutionTime can be specified for each section. The time provided is the time con-
sumed AFTER the call to enter the ExclusiveArea and BEFORE the call to leave
the ExclusiveArea.

Identifiable

ExecutionTime

Identifiable

ResourceConsumption

ARElement

Implementation

Identifiable

ExclusiveArea

+executionTime

0..*

+resourceConsumption

1

+exclusiveArea 0..1

Figure 9.5: Position of ExecutionTime description in the overall model

9.5.5.2 Detailed Structure of an Execution-Time Description

Figure 9.6 shows the details of an execution time description. The following paragraphs
describe aspects of this model in more detail.

58 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

Identi fiable

ExecutionTime

HWElementContainer

«atpType»
ECU

HardwareConfiguration

+ additionalInformation: String
+ processorMode: String
+ processorSpeed: String

SoftwareContext

+ input: String
+ state: String

WorstCaseExecutionTime

+ maximalExecutionTime: Float
+ minimalExecutionTime: Float

RoughEstimateOfExecutionTime

+ description: String

MeasuredExecutionTime

+ averageExecutionTime: Float
+ maximalExecutionTime: Float
+ minimalExecutionTime: Float

SimulatedExecutionTime

+ averageExecutionTime: Float
+ maximalExecutionTime: Float
+ minimalExecutionTime: Float

Identi fiable

MemorySection

+ alignment: Int
+ option: Identifier [0..*]
+ sectionName: String
+ sectionType: MemorySectionType
+ size: Int

MemorySectionLocation

Identifiable

ResourceConsumption

DependencyOnLibrary

+ maxVersion: String
+ minVersion: String

ARElement

Implementation

+ codeGenerator: String [0..1]
+ programmingLanguage: ProgramminglanguageEnum
+ swMajorVersion: Int
+ swMinorVersion: Int
+ swPatchVersion: Int
+ vendorId: Int

«atpPrototype»
ECUPrototype

HWElement

ProvidedMemorySegment

+ alignment: Int [0..1]
+ manufacturingQuality: Float [0..1]
+ segmentSize: Int
+ separate: Boolean [0..1]

DependencyOnFile

Identifiable

Dependency

Identifiable

ExecutableEntity

+softwareContext

1

+resourceConsumption1

+implementationDependency

*

*

+externalLibrary

0..*

+memorySectionLocation

*

+ecu

+hardwareConfiguration

1

+runnable

0..1
«isOfType»

+objectFi leSection

1..*

+executionTime

0..*

+softwareMemorySection

1

+providedMemory 1

Figure 9.6: Detailed structure of an ExecutionTime description

The following shows the attributes of the ExecutionTime in tabular form:

Class 〈〈atpObject〉〉 ExecutionTime

Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption::Execution
Time

Class
Desc.

Base class for several means how to describe the ExecutionTime of software. The
required context information is provided through this class.

Base
Class(es) Identifiable

Attribute Datatype Mul. Link Type Description
ecu ECUProto-

type 1 aggregation Provides information on a ECUPrototype
based on one ECU type.

exclusive
Area Exclusive

Area 0..1 reference Reference to the ExclusiveArea this execution
time is provided for.

external
Library Dependency

OnLibrary * reference
If this dependency is specified, the execution
time of the library code is included in the
execution time data for the runnable.

59 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

hardware
Configura-
tion

Hardware
Configura-
tion

1 aggregation
Provides information on the
HardwareConfiguration used to specify this
ExecutionTime.

memory
Section
Location

Memory
Section
Location

* aggregation
Provides information on the
MemorySectionLocation which is involved in
the ExecutionTime description.

runnable Executable
Entity 0..1 reference Reference to the runnable this execution time

is provided for.
software
Context Software

Context 1 aggregation
Provides information on the detailed
SoftwareContext used to provide the
ExecutionTime description.

Table 9.11: ExecutionTime

9.5.5.3 ExecutionTime References an ”ECU”

The ExecutionTime references an ECU (the concept ECU is defined by the ECU-
Resource-Template [14]). This ECU-reference uniquely describes the hardware for
which the ExecutionTime is provided. This includes: the kind of processor, the
type of MMU, the type of caches, type of memory available,...

Note that this reference to an ECU has a different semantic than the attribute proces-
sor in the Implementation. The processor defines the family of processors on
which the provided implementation may run (it is a requirement on the hardware on
which the component may be deployed). The ECU on the other hand (of which the
processor only is one part) is a statement on the context of the ExecutionTime. Of
course, the processor of the ECU should be equal to the processor specified in the
Implementation. Note that the ECU might include specific hardware that has no in-
fluence on the ExecutionTime. Despite this, it seems currently better to specify a
reference to the entire hardware-platform used rather than introduce another hardware
sub-system that includes all hardware-elements that influence the ExecutionTime of
software.

9.5.5.4 ExecutionTime Includes a HW-Configuration

The ECU described through the ecu attribute can still run in several HW-modes. For ex-
ample, many ECUs can run in several ”speed”-modes (for example a normal fast-mode
and a low-power slow mode). The goal of the HW-Configuration is to describe this. The
attributes processorSpeed and processorMode should describe the specific mode
of the ECU.

Because of the potential dependency on many other HW-Configuration settings (such
as caching policy, MMU-settings, ...), a generic attribute additionalInformation
is provided. Because the exact structure of the information seems to depend so much
on the specific case, all attributes are unstructured text.

60 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

Class 〈〈atpObject〉〉 HardwareConfiguration
Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption
Class
Desc.

Describes in which mode the hardware is operating while providing the
ExecutionTime.

Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description
additional
Information String 1 aggregation Specifies additional information on the

HardwareConfiguration.

processor
Mode String 1 aggregation Specifies in which mode the processor is

operating.

processor
Speed String 1 aggregation

Specifies the speed the processor is
operating.

Table 9.12: HardwareConfiguration

9.5.5.5 ExecutionTime Includes a MemorySectionLocation

For each memorySection of the Implementation, the ExecutionTime must
specify where this section was located on the physical memory of the ECU. The mem-
orySection on the software are described in the softwareMemorySection of the
Implementation. The available memory-regions on the hardware are described in-
side the description of the ECU. The ExecutionTime contains descriptions of the
location of the memory sections MemorySectionLocation which link a software
memory section to a hardware memory section on the ECU.

Class 〈〈atpObject〉〉 MemorySectionLocation

Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption::Execution
Time

Class
Desc.

Specifes in which hardware ProvidedMemorySegment the softwareMemorySection is
located.

Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description
provided
Memory

Provided
Memory
Segment

1 reference Reference to the hardware
ProvidedMemorySegment.

software
Memory
Section

Memory
Section 1 reference

Reference to the MemorySection which is
mapped on a certain hardware memory
segment.

Table 9.13: MemorySectionLocation

61 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

9.5.5.6 ExecutionTime Includes a SoftwareContext

The SoftwareContext is the logical context for which the ExecutionTime is given.
This includes two aspects:

1. the values of the input-parameters to the software

2. the state the logic of the runnable depends on

In the current form, both attributes are of type String and can contain free-form text
describing this state. For the attribute input, it might be appropriate to refine this into
a more formal description of the values of the parameters. For the attribute state, it
is difficult to go beyond an informal text-field, because the state is a private matter of
the component and there currently is no explicit mechanism in AUTOSAR to describe
the value of this state. Further, it is possible to provide several execution times of a
runnable entity, for example, in case of different values of the input-parameters. This is
one of the reasons why the template supports an arbitrary number of ExecutionTime.

Class 〈〈atpObject〉〉 SoftwareContext
Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption
Class
Desc. Specifes the context the software is whose ExecutionTime is provided.

Base
Class(es) ARObject

Attribute Datatype Mul. Link Type Description
input String 1 aggregation Specifies the input vector which is used to

provide the ExecutionTime.

state String 1 aggregation
Specifies the state the software is in when the
ExecutionTime is provided.

Table 9.14: SoftwareContext

9.5.5.7 Dependency on External Libraries

The ExecutionTime measurements can depend on the precise version of external
libraries (such as a math-emulation library) that have been used. This information can
be included by adding a reference to an object of type DependencyOnLibrary which
must be aggregated by the corresponding Implementation.

If such a reference is specified, the ExecutionTime includes the execution time of
that specific library version.

In case the Implementation aggregates attributes of type DependencyOnLibrary,
to which the ExecutionTime does not refer, it means that the execution time of the
library code is NOT included in the execution time of the ExecutableEntity.

62 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

9.5.5.8 Several Qualities of Execution Times

9.5.5.8.1 WorstCaseExecutionTime

The WorstCaseExecutionTime is used to build the application schedule. It is an
overall approximation of an ExecutableEntity which will be running on a hardware
ECU context.

Further ”worst-case” means that an ”analytic” method was used to find the worst-case
(=guaranteed) boundaries. But this boundary has a lower-limit and an upper-limit.

Considering the cache processor ECU, an execution time could be computed, and it
depends on cache level. A maximalExecutionTime and a minimalExecution-
Time has to be filled.

Class 〈〈atpObject〉〉WorstCaseExecutionTime

Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption::Execution
Time

Class
Desc.

WorstCaseExecutionTime provides an analytic method for specifying the minimum
and maximum execution time.

Base
Class(es) ExecutionTime

Attribute Datatype Mul. Link Type Description
maximal
Execution
Time Float 1 aggregation Maximum WorstCaseExecutionTime.

minimal
Execution
Time Float 1 aggregation Minimum WorstCaseExecutionTime.

Table 9.15: WorstCaseExecutionTime

9.5.5.8.2 MeasuredExecutionTime

The MeasuredExecutionTime describes the ExecutableEntity runtime on ECU.

Class 〈〈atpObject〉〉 MeasuredExecutionTime

Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption::Execution
Time

Class
Desc. Specifies the ExecutionTime which has been gathered using measurement means.

Base
Class(es) ExecutionTime

Attribute Datatype Mul. Link Type Description
average
Execution
Time Float 1 aggregation Average MeasuredExecutionTime.

63 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

maximal
Execution
Time Float 1 aggregation Maximum MeasuredExecutionTime.

minimal
Execution
Time Float 1 aggregation Minumum MeasuredExecutionTime.

Table 9.16: MeasuredExecutionTime

9.5.5.8.3 SimulatedExecutionTime

A SimulatedExecutionTime describes the time information which are coming from
a simulation. Simulation could be based on:

• ExecutableEntity model on specific hardware with time weighting to simulate
processor time behavior

• ExecutableEntity model before generation code

Class 〈〈atpObject〉〉 SimulatedExecutionTime

Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption::Execution
Time

Class
Desc. Specifies the ExecutionTime which has been gathered using simulation means.

Base
Class(es) ExecutionTime

Attribute Datatype Mul. Link Type Description
average
Execution
Time Float 1 aggregation Average SimulatedExecutionTime.

maximal
Execution
Time Float 1 aggregation Maximum SimulatedExecutionTime.

minimal
Execution
Time Float 1 aggregation Minimum SimulatedExecutionTime.

Table 9.17: SimulatedExecutionTime

9.5.5.8.4 RoughEstimateOfExecutionTime

A RoughEstimateOfExecutionTime describes the time information which are
based on some estimation.

Class 〈〈atpObject〉〉 RoughEstimateOfExecutionTime

64 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

Specification of BSW Module Description Template
V1.2.0

R3.1 Rev 5

Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption::Execution
Time

Class
Desc. Provides a description of a rough estimate on the ExecutionTime.

Base
Class(es) ExecutionTime

Attribute Datatype Mul. Link Type Description

description String 1 aggregation
Provides description on the rough estimate of
the ExecutionTime.

Table 9.18: RoughEstimateOfExecutionTime

65 of 65
— AUTOSAR CONFIDENTIAL —

Document ID 089: AUTOSAR BSWMD Template

	1 General Information
	1.1 Document Scope
	1.2 Input Documents
	1.3 Abbreviations

	2 Requirements Traceability
	3 Use Cases and Modeling Approach
	3.1 Use Cases
	3.2 Three Layer Approach
	3.3 Several Implementations of the same BSW Module or BSW Cluster
	3.4 Relation to SoftwareComponentType

	4 BSW Module Description Overview
	5 BSW Interface
	5.1 BSW Module Entry
	5.2 BSW Module Dependency

	6 BSW Behavior
	6.1 BSW Behavior Overview
	6.2 BSW Module Entity
	6.3 BSW Event

	7 BSW Implementation
	8 Implementation
	8.1 Introduction
	8.2 Implementation Description Overview
	8.3 Assertions and Requirements
	8.4 Implementation of a Software Component
	8.5 Linking to Code
	8.6 Dependencies
	8.7 Compiler
	8.8 Linker

	9 ResourceConsumption
	9.1 Static and Dynamic Resources
	9.2 Resource consumption overview
	9.3 Static Memory Needs
	9.3.1 General
	9.3.2 Memory Sections

	9.4 Dynamic Memory Needs
	9.4.1 General
	9.4.2 Stack
	9.4.3 Heap

	9.5 Execution Time
	9.5.1 General
	9.5.2 Preliminaries
	9.5.3 Scope
	9.5.3.1 Assertions Versus Requirements
	9.5.3.2 In Scope
	9.5.3.3 Out of Scope

	9.5.4 Background
	9.5.4.1 Dependency of the Execution Time on Hardware
	9.5.4.2 Dependency on Hardware State
	9.5.4.3 Dependency on Logical Context
	9.5.4.4 Dependency on External Code

	9.5.5 Description-Model for the Execution Time
	9.5.5.1 Inclusion in the Overall Model
	9.5.5.2 Detailed Structure of an Execution-Time Description
	9.5.5.3 ExecutionTime References an "ECU"
	9.5.5.4 ExecutionTime Includes a HW-Configuration
	9.5.5.5 ExecutionTime Includes a MemorySectionLocation
	9.5.5.6 ExecutionTime Includes a SoftwareContext
	9.5.5.7 Dependency on External Libraries
	9.5.5.8 Several Qualities of Execution Times

