
 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

Document Title Template UML Profile and
Modeling Guide

Document Owner AUTOSAR GbR
Document Responsibility AUTOSAR GbR
Document Identification No 121
Document Classification Auxiliary

Document Version 2.2.0
Document Status Final
Part of Release 3.0
Revision 0001

Document Change History
Date Version Changed by Change Description
20.12.2007 2.2.0 AUTOSAR

Administration
• Removed stereotype <<atpIdentifiable>>
• Added stereotypes <<import>>
• Refined stereotypes <<instanceRef…>
• Optimized consistency of document
• Added concept for documentation of model

evolution
• Added stereotype <<splitable>>
• Document meta information extended
• Small layout adaptations made

31.01.2007 2.1.0 AUTOSAR
Administration

• Detailed modeling of instanceRefs and
indexedRefs added

• Example on instanceRefs added
• Legal disclaimer revised
• Release Notes added
• “Advice for users” revised
• “Revision Information” added

18.10.2005 2.0.0 AUTOSAR
Administration

• Formal reorganization of document
• Alignment with UML2
• Formal UML profile
• Extraction of common patterns into

separate document
• Methodology added for model subset

specification
09.05.2005 1.0.0 AUTOSAR

Administration
Initial release

1 of 78 - AUTOSAR Confidential - AUTOSAR_TemplateModelingGuide

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

Page left intentionally blank

2 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

3 of 78 AUTOSAR_TemplateModelingGuide

Disclaimer

Any use of these specifications requires membership within the AUTOSAR
Development Partnership or an agreement with the AUTOSAR Development
Partnership. The AUTOSAR Development Partnership will not be liable for any use of
these specifications.

Following the completion of the development of the AUTOSAR specifications
commercial exploitation licenses will be made available to end users by way of
written License Agreement only.

No part of this publication may be reproduced or utilized in any form or by any
means, electronic or mechanical, including photocopying and microfilm, without
permission in writing from the publisher.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Copyright © 2004-2007 AUTOSAR Development Partnership. All rights reserved.

Advice to users of AUTOSAR Specification Documents:

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).
Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary items
are licensed under the same rules as applicable to the AUTOSAR Standard.

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

Table of Contents

1 Introduction ... 7
1.1 Origins and Goals .. 7
1.2 Document Guide.. 8
1.3 Terminology ... 8

1.3.1 Terms ... 8
1.3.2 UML Diagrams.. 9
1.3.3 Profile Classes.. 9
1.3.4 Specification Items.. 9

2 Requirements Traceability.. 11

3 AUTOSAR Template Models at a Glance (informative) 12
3.1 Scope... 12
3.2 Usage of Packages.. 12
3.3 Classes and Attributes ... 12
3.4 Enumerations... 13
3.5 Associations and Composite Aggregations.. 13
3.6 Dependencies.. 14
3.7 Types and Prototypes .. 14
3.8 Structure Elements .. 19
3.9 Constraints... 20
3.10 Metamodel Evolution ... 21

4 Alignment with UML and MOF.. 22

5 UML Profile for AUTOSAR Templates ... 24
5.1 Supported Modeling Constructs... 24
5.2 UML Profile Specification... 24

5.2.1 Classes... 25
5.2.2 Class Attributes... 27
5.2.3 Mixed Content... 30
5.2.4 Types, Prototypes, and Structure Elements ... 31
5.2.5 Associations ... 33
5.2.6 IsOfType Association.. 35
5.2.7 IndexedRef Association .. 36
5.2.8 InstanceRef Association ... 36

5.2.8.1 Detailed Representation of InstanceRef Association....................... 37
5.2.8.2 Short Representation of InstanceRef Association 41
5.2.8.3 ... 42
5.2.8.4 Constraints on instanceRef associations... 42

5.2.9 Constraints ... 46
5.2.10 Dependencies... 48
5.2.11 Packages.. 49
5.2.12 Primitive Types ... 50
5.2.13 Enumerations.. 53
5.2.14 Tagged Values.. 53
5.2.15 Splitable attributes, associations and aggregations 53

5.3 Summary ... 55

6 Conventions... 57
4 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

5 of 78 AUTOSAR_TemplateModelingGuide

6.1 Naming Conventions.. 57
6.1.1 Language.. 57
6.1.2 Model Element Names ... 57
6.1.3 Class Names .. 57
6.1.4 Diagram Names.. 58

6.2 Modeling Conventions ... 58
6.2.1 Unambiguous Models ... 58
6.2.2 Abstract Classes... 58
6.2.3 Enumerations.. 58
6.2.4 Class Attributes vs. Associations .. 59
6.2.5 Physical Quantities ... 59
6.2.6 Modeling Aggregations and Associations in Enterprise Architect 60
6.2.7 Constraints in Metamodel ... 60

6.2.7.1 Context Class .. 60
6.2.7.2 Entering Information .. 60

6.2.8 Implicit & Explicit Stereotypes... 62

7 Template Model Infrastructure ... 63
7.1 Overview.. 63
7.2 Packaging .. 63
7.3 Identifiable Classes.. 64

8 AUTOSAR Template Subsets ... 65
8.1 Goal ... 65
8.2 Related concepts ... 65
8.3 Subset Notation ... 65

8.3.1 Importing Classes ... 65
8.3.2 Attaching Constraints.. 66

8.3.2.1 Attribute Value Constraints .. 67
8.3.2.2 Multiplicity constraints.. 67
8.3.2.3 Location of constraints... 67

9 Specification Items.. 69

10 Appendix .. 71
10.1 Design Rationales (informative)... 71

10.1.1 Choice of Metamodeling Mechanism.. 71
10.1.1.1 Instantiation of MOF Entities.. 71
10.1.1.2 Instantiation of UML Entities .. 72
10.1.1.3 Extending UML through UML Profiles ... 72
10.1.1.4 Templates as Direct UML Profiles ... 73
10.1.1.5 Conclusion... 73

10.1.2 Modeling Prototype Attributes... 74
10.1.2.1 Explicit Prototype Attributes... 74
10.1.2.2 InstanceRef ... 75
10.1.2.3 Conclusion... 75

10.1.3 AUTOSAR Subset Modeling... 75
10.1.3.1 Tagged values ... 75

10.1.4 Stereotypes vs. Tagged Values.. 76
10.2 References .. 76

10.2.1 Normative References .. 76
10.2.2 Informative References... 77

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

6 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

7 of 78 AUTOSAR_TemplateModelingGuide

1 Introduction

1.1 Origins and Goals

AUTOSAR attempts to allow for a very flexible yet stable and reliable software
engineering lifecycle through precise and formal description of all relevant aspects of
a distributed system of embedded controllers and the corresponding executed
software units.
The descriptions range from high level requirements on interfaces of software
components to low level constraints on certain bits of a specific bus message.
Various work packages in AUTOSAR determine the information that needs to be
captured in the different descriptions.
For instance, in [18] it is defined how AUTOSAR software components need to be
described, e.g. when a requirements specification is exchanged between OEM and
supplier. The collection of attributes required specifying various AUTOSAR relevant
artifacts like software components, ECUs and so on is called an AUTOSAR template.
Once information is available a template is said to be filled out, leading to an
AUTOSAR description.
The templates defined by AUTOSAR are expressed in form of UML class diagrams1
defined in [1], or in a certain subset to be more precise. The resulting UML model is
called the template model.
This document formally specifies the allowed subset of UML features and also gives
guidelines on various modeling questions when creating template models.

Scope
While giving an exact definition about template modeling capabilities in AUTOSAR
this document will not address the following issues:

• Models of AUTOSAR specific content, e.g. which relation needs to exist
between a port interface and a software component2. Such content is
described by the responsible work packages only. Exceptions are certain
common patterns that need to be shared between multiple work packages.
Those are collected in [24].

• Definition of the mapping from a UML based template model into other
description domains, e.g. XML DTDs or database schemas. [19] exactly
describes this mapping, including the UML tags and values to control
DTD/XSD creation.

Who should read this specification?
This specification is relevant for:

• template creating work packages
• tool vendors that need to implement and navigate template models

It is not relevant for

• automotive engineers building systems with AUTOSAR technology
• process engineers creating the AUTOSAR process

1 There are many introductions into UML. E.g. see [12] for an overview, [16] gives an excellent explanation in
German.
2 These terms are randomly chosen from an existing template [18], their actual meaning does not matter here at
all.

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

• conceptual work in AUTOSAR (e.g. defining how timing is addressed)
In particular, the reader will not be able to learn good modeling with constructs
provided by UML simply by studying this specification. Instead, UML – at least the
subset of class diagrams – is a mandatory prerequisite for successful application of
the concepts introduced here.

1.2 Document Guide

This specification gives information about modeling AUTOSAR templates on three
related levels, thereby addressing the needs of different audiences.
If your interest is mainly focused on the actual template modeling task, you should
read chapter 3 AUTOSAR Template Models at a Glance (informative), which gives a
quick overview of the modeling patterns used for AUTOSAR templates without much
delving into the formal details and reasons. Chapter 6 Conventions gives further
required detail on how certain features have to be realized in the model.
The formal groundwork has been laid in chapter 0 value := “(since ” date
“) ” comment

For example:
deprecated = (since 20.10.2007) Please use ApplicationSoftwareComponent
 instead.
Alignment with UML and MOF, chapter 5 UML Profile for AUTOSAR Templates and
chapter 6 Conventions.
All specification items given in this document are finally listed in chapter 9
Specification Items, which allows for a systematic model compliance check as well as
formal references to the particular items.

1.3 Terminology

1.3.1 Terms

In this specification the key words MUST, MUST NOT, REQUIRED, SHALL, SHALL
NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when
EMPHASIZED are to be interpreted as described in RFC 2119 [6]. In addition, the
terms defined in the following list are used throughout this specification:

metamodel
A metamodel is a precise definition of the constructs and rules needed for
creating semantic models [17]. In AUTOSAR, templates defining constructs like
software component and ECU are used to create models of AUTOSAR
software and hardware systems.

metalevel
A model and its metamodel are said to be on different metalevels. A standard
setup of metalevels is the so-called four-layer metamodel hierarchy, consisting
of the four metalevels M0, M1, M2 and M3 [2], where entities in M0 are
expressed in terms of M1 entities, M1 is expressed in terms of M2 entities and
so on.

8 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

9 of 78 AUTOSAR_TemplateModelingGuide

There may be more or less than four metalevels (e.g. the hierarchy described in
this specification has five layers). It is a feature of the particular metamodels
defined by the OMG3 that their hierarchy (so far) always stops at M3.

reflective metamodel
If a metamodel can be described in terms of its own entities it is called reflective
[2]. A reflective metamodel is required to end the metamodel hierarchy. E.g. in
OMG’s four-layer metamodel hierarchy the metamodel at M3 is reflective.

UML profile
As defined in [2] profiles can be used to extend the set of entities provided by
the UML specification in order to adapt to a certain domain. The new
metaclasses defined in a profile are called stereotypes. They always extend
existing metaclasses by adding semantics and constraints. A metamodel
created in form of a profile exists on the same metalevel as the metamodel it is
derived from.

1.3.2 UML Diagrams

The diagrams in this specification are consistent with UML 2.0. The underlying
models are assumed to be complete even though certain elements might not be
shown in a particular diagram to simplify understanding.
This is particularly true for diagrams that show extracts of the UML 2.0 metamodel.
Due to the highly modular structure and the extensive use of redefinition of classes,
attributes and associations in UML 2 it is sometimes difficult to show a certain aspect
in just one or two diagrams while still preserving readability. For this reason, the
shown UML 2.0 metamodel extracts are simplified to contain only the parts relevant
to the topic at hand. Applied simplifications include:

• Association constraints {subsets…} and {union} are not shown. It is still shown
whether an attribute or an association is derived (forward slash) and/or
{ordered}.

• In case of derived associations or roles, it is possible that only the derived or
the deriving element is shown, whatever fits the discussed context better.

• Conceptual relations to abstract classes may not be shown if none of the
concrete subclasses will be part of the template profile.

1.3.3 Profile Classes

The classes defined as part of the AUTOSAR template profile are marked with a
prefix atp for AUTOSAR template profile.

1.3.4 Specification Items

At the end of each relevant section a list of specification items is summarizing the
requirements on models resulting from this section. Chapter 9 collects those items,
which then in turn can be used to quickly check the conformance of a given model.

3 Object Management Group, http://www.omg.org/

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

The id as well as the short description of a specification items is listed in the following
form:
ATPS-xxxx This is the description of a specification item.

10 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

11 of 78 AUTOSAR_TemplateModelingGuide

2 Requirements Traceability
This document MUST satisfy the relevant requirements from [8] and [9], which have
the purpose of defining how AUTOSAR tools can successfully and efficiently create
and exchange data. This creates requirements on the used metamodel.

Requirement Satisfied by
[ATUC_007] Repository for AUTOSAR
models

Formal definition of meta model as UML
profile, leading to a repository model (see
chapter 5).

[ATI0003] Support for model validity
checks

Definition of how formal and informal
constraints have to be used in model (see
section 6.2.7).

[ATI0016] Documentation of authoring
tool SHOULD describe supported
features

Explicit concept supporting subset
definition (see chapter 8).

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

3 AUTOSAR Template Models at a Glance (informative)
This section provides a quick overview of the rules and limitations on AUTOSAR
template models introduced by this document. The intention is to ease actual
application of the document without requiring in-depth UML metamodel knowledge.
To avoid repeating parts of the normative sections of this document, especially the
modeling conventions in section 6, they will simply be referenced in case they fit the
style of this chapter.

3.1 Scope

AUTOSAR template metamodels are expressed in form of simplified UML class
diagrams. This section assumes that general UML knowledge is available to the
reader. The concepts of classes, attributes, associations and aggregations are not
explained. Instead the limitations and required elements in such diagrams are
pointed out.
However, reading this chapter is not sufficient for validation of a template model
against the profile defined in here. For applications like this refer to the normative
parts of the document, namely chapters 5, 6, 7 and 8, and finally – in form of a short
but formal summary – chapter 9.

3.2 Usage of Packages

You are invited to structure your models in UML packages. However, note that all
classes must have a unique name within the model.
While in regular UML models a package forms a namespace and classes in different
packages can still be distinguished, this is not the case for AUTOSAR template
models. The classes in the model will eventually end up in form of database tables or
XML elements, and it is assumed that the target platform (databases, XML,
programming language, …) is not necessarily supporting namespaces.

3.3 Classes and Attributes

Figure 3-1 shows a simple class. The following rules are defined in addition to
standard UML class diagrams:
All elements in a template model have to be public. This includes packages, classes,
attributes, associations and so on.
The names of classes and attributes have to follow certain rules, like the so-called
“camel-case” convention. Class names must start with a capital letter, attribute
names with a lower letter.

«atpType»
VehicleModel

+ articleNo: Int
+ modelName: String

Figure 3-1: Example class in a metamodel.

12 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

13 of 78 AUTOSAR_TemplateModelingGuide

Abstractness of classes is used to point out that a metaclass must not be
instantiated.
Attributes can have the following primitive types: Int, Float, String, Boolean, Identifier
or UnlimitedNatural.
An Identifier is a special form of a String, which basically has to satisfy the
requirements for names used in typical programming languages. Identifiers have a
maximum length of 32 characters.
An UnlimitedNatural is a natural numbers that also may have the value +infinity,
expressed in form of an asterisk “*” (without quotes).
The stereotype <<atpType>> will be explained further down.

3.4 Enumerations

Enumerations are modeled as shown in Figure 3-2. See sections 6.2.3 and 6.2.4 for
more information.

«enumeration»
WheelType«atpType»

Wheel
+ regular:
+ allTerrain:
+ offroad:

+ diameter: Float
+ type: WheelType

Figure 3-2: Example of an Enumeration on M2.

3.5 Associations and Composite Aggregations

Associations are used to express that the source class is referencing the target class.
In AUTOSAR template models, associations are always unidirectional, as shown in
Figure 3-3.

Company

+ name: String
+ address: String

Employee
+employee

0..*
+ lastName: String
+ firstName: String
+ address: String

+employeeOfTheMonth

1

Figure 3-3: Example association and composite aggregation.

Aggregations must be composite aggregations, shared aggregations (diamond not
filled) are not allowed. Navigability from whole to part is assumed and therefore does
not need to be shown through an arrow.
For both, associations and aggregations, it is not permitted to assign names to the
connection. Instead role names are required for navigable ends, the same is true for
an explicitly given cardinality.
The documenting comments for associations and aggregations have to be given for
the navigable end, not for the connector itself.

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

3.6 Dependencies

Dependencies are used very rarely in AUTOSAR template models. Dependencies
which are not decorated with a stereotype are used for documentation only. They are
used in overview diagrams in order to indicate a relationship between two elements
in the template model. The detailed relationship should be described in separate
diagrams.
Dependencies which are decorated with a stereotype have special semantics:

• If the stereotype <<import>> is applied then the UML2.0 semantics of
PackageImport /ElementImport is applied: The referenced package/element is
imported. These dependencies are e.g. used to describe subsets of the
metamodel or to reuse elements defined in other standardization
organizations such as ASAM MSR-SW

• If the stereotype <<instanceRef>> is applied, then the dependency shows an
overview of an instance-reference. The detailed representation is described in
diagrams that are contained in the “_instanceRef” package. Details about
instance-references are described in the following section.

For more detailed description of dependencies and its stereotypes please read
section 5.2.10.

3.7 Types and Prototypes

Creating template models involves being clear whether one is modeling some kind of
reusable type or an actual usage of a type. In UML the typical terms are types and
roles. For historical reasons, AUTOSAR is not using role but prototype.
A typical example of a model involving types and prototypes is shown in Figure 3-4,
where some of the classes mentioned before show up in their context.
The model describes a point-of-sales selling the vehicles it has in store. Each vehicle
has a VIN (vehicle identification number) and obviously is of a certain type (the
vehicle’s model).
Let’s now look at two possible vehicle types, e.g. a car and a bike. Both types have
an article number (model number) and a model name. Also, all vehicles have a set of
wheels, but how many and how/where they are used differs between types.
How and where they are used is expressed in class WheelUsage. For instance the
attribute wheelName could be “front left” for a car, while the name would be “front” for
a bike. On the other hand, the four wheels of a car are basically all of the same wheel
type, as is expressed in the class Wheel.
The WheelRepairOrder class is discussed below.

14 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

15 of 78 AUTOSAR_TemplateModelingGuide

PointOfSales

«atpType»
Wheel

+ diameter: Float
+ type: WheelType

«enumeration»
WheelType

+ allTerrain:
+ offroad:
+ regular:

«atpType»
VehicleModel

+ articleNo: Int
+ modelName: String

«atpPrototype»
WheelUsage

+ wheelName: String

+storedItems 0..*

«atpPrototype»
Vehicle

+ vin: String

«atpType»
Bike

«atpType»
Car

WheelRepairOrder

+ estimate: Float
«instanceRef»

+defectWheel

1

+wheel+type

«isOfType» 1..*1

«isOfType»

+type 1

Figure 3-4: Sample model involving types and prototypes.

Some of the classes and associations carry stereotypes to indicate certain
semantics. In particular we have:

• <<atpType>> indicates that a class describes a reusable type.
• <<atpPrototype>> indicates that a class described a certain usage of another

class, its type.
• <<isOfType>> indicates the special relation of a prototype and its defining

type. See the association between Vehicle and VehicleModel. Associations
stereotyped <<isOfType>> always start at a prototype and end at a type. The
type role name is always type and the cardinality is 1 by design.

For the final stereotype shown in Figure 3-4 we need to extend the example to some
degree. Assuming our point-of-sales also has a garage where cars and their parts
are repaired.
If we imagine the case that the assignment to fix a broken wheel is kept as an
instance of class WheelRepairOrder, carrying e.g. the estimated price it will cost the
customer, then this order needs to point out exactly which wheel needs the repair.
Because wheels are always parts of vehicles, this means that a repair order needs to
identify a particular wheel of a particular vehicle.
Now, a simple reference to e.g. the “front left” WheelUsage would not do the job
because it would not identify the context of that front-left wheel, that is it would not
identify a particular vehicle to which the wheel belongs. This is because, as shown in
Figure 3-4, WheelUsage is aggregated by VehicleModel, the type of Vehicle, and not
by Vehicle itself, meaning that any vehicle of the type at hand, in our example any
car of the some given model, has a front-left wheel. The repair order needs to identify
a particular car.
To indicate that a reference needs a context in order to identify an actual instance of
a class the <<instanceRef>> relation is used:

• <<instanceRef>> indicates that the reference needs a context in order to
identify an actual instance of the target class.The target of instance references
always end at prototypes or at structure elements (see Sec. 3.8 below). The
context references always end at prototypes. Figure 3-5 shows the short and

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

detailed representation of the instanceRef association to the WheelUsage as
explained above. The short representation is shown as a dashed line which
points to the target only. The detailed representation describes the target
(WheelUsage) and the context in which the Wheel is used (Vehicle).

WheelRepairOrder

+ estimate: Float

«atpType»
VehicleModel

+ articleNo: Int
+ modelName: String

«atpPrototype»
WheelUsage

+ wheelName: String

«atpPrototype»
Vehicle

+ vin: String

+defectWheel 1

«instanceRef»
WheelRepairOrder_defectWheel

«instanceRef»

+wheel

1..*«isOfType»

+type

1

+defectWheel

«instanceRef.context» «instanceRef.target»

1+wheelUsage 1+vehicle 1

Figure 3-5: Short and detailed representation of an instanceRef association

The next example is taken directly from the AUTOSAR metamodel. Figure 3-6 shows
the structure of component types – a fundamental abstraction in the metamodel. An
AUTOSAR application is described as a composition of components, which
themselves may be composed of smaller components and so on until the leaf-level of
atomic components is reached. This structure is obtained through the interplay of
types and prototypes: a composition type is made out of component prototypes which
are typed by component types. Or: component types are used in composition types
via component prototypes.

16 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

17 of 78 AUTOSAR_TemplateModelingGuide

Identifiable

«atpPrototype»
ComponentPrototype

ARElement

«atpType»
ComponentType

AtomicSoftwareComponentType «atpType»
peCompositionTy

+type

«isOfType»

+component 1..*

*1

Figure 3-6: Component types and prototypes

Using this structure any number of component types may be defined. At the end, the
system designer specifies exactly one composition type to be used as the system’s
software composition. This is shown in Figure 3-7.

Com

«atpT
Compos

Compos

ponentType

ype»
ition::

itionType

ARElement

«atpStructureElement»
System

Identifiable

«atpPrototype»
SoftwareComposition

*

«isOfType»
+softwareComposition 1

+softwareComposition 1

Figure 3-7 - The system's software composition

A next important step in the design process is the allocation of atomic component
prototypes -- representing the leaves of the structure to be generated from a
composition type -- to ECUs. This is achieved via a metamodel class called
SwCompToEcuMapping which ties a particular ECU instance to a particular
component prototype. The modeler defines one instance of this metaclass for every
leaf of the tree, and the sum of all those mapping instances defines the allocation of
all components to ECUs. This is shown in Figure 3-8.

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

In order to identify particular would-be instances of atomic component types it is not
enough to specify component prototype – a context specifying the path from the
software composition down to the leaves is needed. Thus, InstanceRefs are needed,
which are shown in their short representation in Figure 3-8. As shown there, ECU
instances also need a context but we will not get into this here.

ARElement

«atpStructureElement»
SystemTemplate::System

Identi fiable
Sw cToEcuMapping

FibexElement
CoreTopology::EcuInstance

+ comConfigurationId: Int [0..1]
+ comProcessingPeriod: Float
+ diagnosticAddress: Int [0..1]
+ pduRConfigurationId: Int [0..1]
+ responseAddress: Int [0..*]
+ sleepModeSupported: Boolean
+ wakeUpOverBusSupported: Boolean

Identi fiable

«atpPrototype»
Composition::

ComponentPrototype

Identi fiable
SystemTemplate::SystemMapping

+mapping 1

+swMapping *

0..1

0..1

«instanceRef»

+component 1..*

+ecuInstance 1

Figure 3-8: Mapping components to ECUs

Figure 3-9 shows the detailed representation of the InstanceRef identifying a
component prototype in context. Note that we have here an example of a context
path of unbounded length.

18 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

19 of 78 AUTOSAR_TemplateModelingGuide

 - AUTOSAR confidential -

Identifiable

«atpIdentifiable»
SystemMapping

ARElement

«atpStructureElement»
System

«instanceRef»
SwCompToEcuMapping_component

Identifiable
SwCompToEcuMapping

Tags:
instanceRef.context =
softwareComposition
componentPrototype*

Identifiable

«atpPrototype»
ComponentPrototype

«atpType»
CompositionType

Identifiable

«atpPrototype»
SoftwareComposition

ARElement

«atpType»
ComponentType

+component 1..*

+swMapping *

+mapping

1

«instnaceRef.target»

+targetComponentPrototype

0..1

1

«instanceRef.context»

+componentPrototype

0..*
{ordered}

«instanceRef»

+component 1..*

«instanceRef.context»

+softwareComposition

1

*

«isOfType»

+softwareComposition 1

+component

1..*

+softwareComposition 1

+type

«isOfType»* 1

Figure 3-9: Detailed representation of the InstanceRef identifying a component prototype

3.8 Structure Elements

As explained above, the stereotype <<atpType>> indicates that a reusable type is
being modeled. This reusability aspect of <<atpType>> is realized by the fact that a
given class stereotyped with <<atpType>> may, via <<isOfType>>, be used to type
prototypes, which are aggregated by other classes. So Wheel types WheelUsage
which is aggregated by VehicleModel. But as this example shows, <<atpType>>s
may be used not only to type prototypes but also to aggregate them, as does
VehicleModel. Thus, an <<atpType>> has another aspect: it represents a container,
something that has structure. To summarize, an <<atpType>> is something that (1) is
reusable, and (2) can have structure.
In the type-prototype relationship, it is always the type which aggregates the
prototype. That is, a type has structure and its aggregated prototypes define what
that structure is. Each aggregated prototype defines a feature of the aggregating type
and the sum of all features of a given type defines its structure. Each prototype in
turn is typed by another type which in turn may aggregate prototypes within it, and so
on. In the lower, instance level, such a chain results in a (possibly deeply) nested
structure.

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

Given some concept of the problem domain, a wheel for example, the need to model
it via two elements, a type – Wheel -- and a prototype – WheelUsage, stems from the
fact that a wheel may play several roles in a vehicle. It can be the front-left wheel, or
the rear-right wheel, and so on. But in many cases an element in the structure
hierarchy just needs to be there once, without playing different roles.
In Figure 3-10 class Chassis has been inserted between VehicleModel and
WheelUsage, introducing additional structure into the model. The new element is
stereotyped <<atpStructureElement>>. This stereotype indicates that the modeled
element can be part of structure hierarchies, that it can both aggregate and be
aggregated. Classes stereotyped with <<atpStructureElement>> combine the “has
structure” aspect of <<atpType>> and the structuring, feature defining ability of
<<atpPrototype>>, leaving reusability out.

«atpType»
VehicleModel

«atpType»
Wheel

+ diameter: Float
+ type: WheelType

+ articleNo: Int
+ modelName: String

«atpStr
Po

uctureElement»
intOfSales

«atpPrototype»
WheelUsage

TireRepairOr

+ wheelName: String

«atpPrototype»
Vehicle

+ vin: String

VehicleModel

«atpType»
Bike

VehicleModel

«atpType»
Car

«atpStructureElement»
Chassis

der

0..*

«instanceRef»1..*«isOfType» 1

«isOfType»

«atpStructureElement»
Tire

- Pressure: Int1

Figure 3-10: Sample model involving structure elements

As already mentioned in Sec. 3.7, the target of an <<instanceRef>> association must
either be an <<atpPrototype>> or an <<atpStructureElement>>, and the context path
must be composed out of references to <<atpPrototype>>. Another new element in
Figure 3-10 is the class Tire, stereotyped by <<atpStructureElement>> and
aggregated by the <<atpType>> Wheel. The <<instanceRef>> WheelRepairOrder
has been replaced by TireRepairOrder. Its target now is Tire, an
<<atpStructureElement>>. PointOfSales is also stereotyped this way.

3.9 Constraints

The model can be annotated with formal and informal constraints as explained in
section 6.2.7.

20 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

21 of 78 AUTOSAR_TemplateModelingGuide

 - AUTOSAR confidential -

3.10 Metamodel Evolution

In order to allow for evolution of the metamodel without breaking backwards
compatibility old concepts SHOULD not be removed immediately. They SHOULD be
marked with the tagged value deprecated and left in the model until the next major
release. The tagged value indicates that these elements SHOULD no longer be used
actively by an AUTOSAR tool. However, old data remains valid until the next major
release is available. The value of the tagged value SHOULD follow the following
rules:
value := “(since ” date “) ” comment

For example:
deprecated = (since 20.10.2007) Please use ApplicationSoftwareComponent
 instead.

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

4 Alignment with UML and MOF
In this section the relation of AUTOSAR template modeling and the OMG
specifications UML and MOF [3] is explained. AUTOSAR templates use a UML
profile that is specified in the next chapter. See 10.1.1 Choice of Metamodeling
Mechanism for a discussion why the UML profile mechanism was chosen.
The complete metamodel hierarchy for AUTOSAR templates is shown in Figure 4-1.
Unlike the classical four-layer architecture used by OMG, five metalevels are shown.
Starting at the lowest, most concrete metalevel those are:

M0: AUTOSAR objects
This is the realization of an AUTOSAR system at work: real ECUs executing a
software image containing for instance the windshield wiper control software.

M1: AUTOSAR models
Models on this metalevel are built by the AUTOSAR end-user (automotive
engineers). They may define a software component called “windshield wiper”
with a certain set of ports that is connected to another software component and
so on. On this level all artifacts required to describe an AUTOSAR system are
detailed, including re-usable types as well as specific instances.

M2: AUTOSAR metamodel
On this metalevel the vocabulary is defined that later can be used by AUTOSAR
end-users. E.g., it is defined that in AUTOSAR we have an entity called
“software component” and another entity called “port”. The relation between
those entities as well as their semantics is part of such an overall model.

M3: UML profile for AUTOSAR templates
The templates on M2 are built with the metamodel defined on M3. As discussed
before this is UML plus a particular UML profile to better support template
modeling work. Formally a template on M2 is still an instance of UML, but at the
same time the template profile is applied, i.e. that additionally rules set out by
the stereotypes in the profile need to be observed.

M4: Meta Object Facility
Just for completeness, OMG’s MOF sits on the final metalevel M4. No further
metalevels are required since MOF is designed to be reflective.

22 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

23 of 78 AUTOSAR_TemplateModelingGuide

 - AUTOSAR confidential -

UML 2.0

AUTOSAR Templates
AUTOSAR Metamodel
(M2)

ECU, Port, Mapping, ...

MOF 2.0

AUTOSAR User Models

AUTOSAR User Objects

AUTOSAR Model
(M1)

ComponentType "WindshieldWiper", ...

AUTOSAR Objects
(M0)

Component instance at 0x00f0a000, ...

OMG Meta Object Facility

«profi le»
AUTOSARTemplateProfile AUTOSAR Meta-Metamodel

(M3)

Class, Attribute, IsOfType, Type,
Prototype, ...

«instanceOf»

«instanceOf»

«instanceOf»

«import»

«apply»

«instanceOf»

Figure 4-1: AUTOSAR metamodel hierarchy.

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

5 UML Profile for AUTOSAR Templates
This chapter specifies the UML profile that supports defining AUTOSAR template
models.

5.1 Supported Modeling Constructs

Formal metamodels as for example in [1] or [3] are typically given in form of class
diagrams. While even class diagrams may contain advanced features like derived
associations, powertypes or generalization sets, this specification will limit the
available modeling constructs to the smallest subset possible.
It is expected that over time the more involved modeling concepts may be re-enabled
in the profile once it has been proven they are required.
The following modeling constructs are supported in the UML profile:

• Meta classes with attributes, but without operations,
• class stereotypes supporting types and prototypes,
• comments,
• constraints,
• inheritance, single and multiple,
• aggregation,
• aggregation stereotype <<splitable>>
• associations,
• association stereotypes <<splitable>>, <<isOfType>>,

<<instanceRef.context>> and <<instanceRef.target>>,
• dependencies,
• dependency stereotypes <<import>>, <<instanceRef>>
• packages,
• tagged values,
• primitive types and literals,
• new primitive type Float,
• enumerations,
• mixed content.

Not part of regular template models but required by tool vendors:
• Definition of valid subsets, including specification of cardinalities and optional

elements.
The semantic meaning of the various modeling entities listed above is explained in
the next sections actually defining the UML profile.
Other parts of UML, e.g. use-case or sequence diagrams but also advanced
structural features like composite structure diagrams MUST NOT be used, among
other things to allow a fairly straightforward mapping into other structural domains
like XML or databases. Hence, the profile MUST prevent the usage of those UML
constructs.
[ATPS-01] Template models MUST be expressed in form of UML class diagrams

5.2 UML Profile Specification

This section will show how each of the required modeling constructs listed before is
satisfied by the UML profile for AUTOSAR templates.
24 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

25 of 78 AUTOSAR_TemplateModelingGuide

5.2.1 Classes

The ability to define classes is provided by UML in form of the metaclass Class,
which is shown in the simplified class diagram in Figure 5-1. In AUTOSAR however,
only a subset of the features that are possible with a UML class need to be
supported.
To formally limit the template modeler to this subset, a stereotype atpClass is
introduced. This extension is shown in Figure 5-2.

«metaclass»
Element

«metaclass»
Class

«metaclass»
Property

Type

«metaclass»
Classifier

+ isAbstract: Boolean = false

«metaclass»
Operation

«metaclass»
Namespace

«metaclass»
ElementImport

«metaclass»
PackageImport

«metaclass»
NamedElement

+ name: String [0..1]
+ visibil ity: Visibili tyKind [0..1]

«enumeration»
VisibilityKind

+ public:
+ private:
+ protected:
+ package:

«metaclass»
RedefinableElement

+ isLeaf: Boolean = false

«metaclass»
Comment

*

+packageImport

1

+importingNamespace

*

+elementImport

1

+importingNamespace

+ownedComment

* {ordered}

+ownedOperation

0..1

+class

* {ordered}

+nestedClassifier

0..1

+class

* {ordered}

+ownedAttribute

0..1

+class

+/superClass *

*

+/redefinitionContext

+/redefinedElement *

*0..1

Figure 5-1: Core facilities of Class in UML 2 metamodel.

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

atpClass

Classifier

«metaclass»
Kernel::Class

«extends»

{required}

Figure 5-2: Stereotypes atpClass.

The stereotype atpClass now needs to carry a number of semantic constraints that
carefully tailor the metaclass for AUTOSAR. This is done in the following table.
 Feature Context Constraint Description Constraint in OCL (in Context)

1 having a name NamedElement

2 owning comments Element

3 visibility NamedElement All elements in the metamodel MUST
be public.

visibility=public

4 allowing for redefinition RedefinableElementElements MUST NOT be redefined. isLeaf=true
redefinedElement->size()=0

5 importing packages and
elements

Namespace Package imports MUST NOT be
used, classes are always visible.

elementImport->size()=0
packageImport->size()=0

6 abstract classes Classifier

7 owning class attributes Class

8 owning operations Class Operations MUST NOT be used. ownedOperation->size()=0

9 generalization Class

Table 1: Features of UML 2 metaclass Class.

The table has the following columns:

Feature
The particular ability that is provided by the metaclass.

Context
Name of the class providing the aforementioned feature, either the UML 2 class
in discussion or one of its base classes.

Constraint Description
A textual description of what is constrained.

Constraint in OCL
A formal expression in OCL [5] – a formal constraint language – limiting the
feature or possibly removes it altogether.

26 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

It needs to be noted that the feature “owning class attributes” does not yet include
associations and aggregations. Those are discussed further down.
[ATPS-07] All elements in model MUST be public.
[ATPS-08] Redefinition of model elements MUST NOT be used.
[ATPS-09] Packages imports MUST NOT be used to put model elements in scope.
[ATPS-11] Classes MUST NOT have operations.

5.2.2 Class Attributes

So far it has only been defined that a class may have attributes (the Properties of
UML 2). Now their particular capabilities need to be analyzed and tailored in the way
this has been done above for classes.
In UML 2 this capability is provided through metaclass Property, which is shown in
Figure 5-3.

27 of 78 AUTOSAR_TemplateModelingGuide

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

«metaclass»
Element

«metaclass»
Property

+ isDerived: Boolean = false
+ isDerivedUnion: Boolean = false
+/ default: String [0..1]
+ aggregation: AggregationKind = none

«enumeration»
AggregationKind

+ none:
+ shared:
+ composite:

«metaclass»
StructuralFeature

+ isReadOnly: Boolean = false

«metaclass»
Feature

+ isStatic: Boolean = false

«metaclass»
TypedElement

«metaclass»
MultiplicityElement

+ isOrdered: Boolean = false
+ isUnique: Boolean = true
+/ upper: UnlimitedNatural
+/ lower: Integer

«metaclass»
NamedElement

+ name: String [0..1]
+ visibil i ty: Visibil i tyKind [0..1]

PackagableElement

«metaclass»
Type

«metaclass»
RedefinableElement

+ isLeaf: Boolean = false

«metaclass»
Comment

+subsettedProperty *

+/opposite 0..1

0..1

+type

+/redefinedElement *

+ownedComment

* 0..1

Figure 5-3: UML 2 metaclass Property.

For use in AUTOSAR some limitations need to be put on UML properties. Figure 5-4
shows the corresponding stereotype, which again is tagged {required}, i.e. it MUST
be used instead of Property in AUTOSAR template models.

28 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

29 of 78 AUTOSAR_TemplateModelingGuide

MultiplicityElement
StructuralFeature

TypedElement

«metaclass»
Kernel::Property

atpAttribute

{required}

«extends»

Figure 5-4: atpAttribute extends UML 2 metaclass Property.

The constraints in Table 2 are attached to the new stereotype atpAttribute. Note that
we also have a constraint for a feature that is desired in the profile, but still needs to
be limited in terms of allowed values (aggregation).

 Feature Context Constraint Description Constraint in OCL (in Context)

1 having a name NamedElement

2 owning comments Element

3 visibility NamedElement All elements in the metamodel MUST
be public.

visibility=public

4 allowing for
redefinition

RedefinableElement Elements MUST NOT be redefined. isLeaf=true
redefinedElement->size()=0

5 static (class level)
properties

Feature Properties MUST NOT be defined
static.

isStatic=false

6 properties can be
typed

TypedElement In AUTOSAR, attributes MUST be
typed.

type->size()=1

7 properties can be
read only (fixed
attributes)

StructuralFeature Properties MUST be writeable. isReadOnly=false

8 ordered multiplicity MulitplicityElement

9 uniqueness of
property

MulitplicityElementAn object MUST NOT be part of a
multivalued property more than once,
i.e. all properties are always unique.

isUnique=true

10 specification of
upper and lower
boundaries of
multiplicity

MulitplicityElement

11 derived properties Property Derived properties MUST NOT be given
in template model.

isDerived=false
isDerivedUnion=false

12 default values Property Default values MUST NOT be used. default->size()=0

13 aggregation kinds:
o none
o shared
o composite

Property Due to imprecise semantics the
aggregation kind shared MUST NOT be
used.

aggregation=none or
aggregation=composite

14 subsetting a
property

Property Property subsets MUST NOT be
defined.

subsettedProperty->size()=0

15 definition of opposite
property

Property An opposite MUST NOT be defined. opposite->size()=0

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

Table 2: Features of UML 2 metaclass Property.

[ATPS-07] All elements in model MUST be public.
[ATPS-08] Redefinition of model elements MUST NOT be used.
[ATPS-13] Template class attributes and association roles MUST NOT be defined

static (UML default).
[ATPS-14] Regular class attributes MUST be typed. The only possible exception is

when modeling enumerations.
[ATPS-15] Attributes MUST NOT be defined readonly (UML default), i.e. no fixed

attributes are allowed.
[ATPS-16] Attributes MUST be defined unique (UML default.
[ATPS-17] Attributes MUST not be derived from other attributes.
[ATPS-18] Default values MUST NOT be defined for attributes.
[ATPS-25] Aggregations MUST either be of type none or composite. Aggregation

type shared MUST NOT be used.
[ATPS-26] Attribute subsets MUST NOT be used.
[ATPS-27] Opposite attributes MUST NOT be defined

5.2.3 Mixed Content

If a model requires to describe documentation like information, it often will need to
mix formal content and text. An example of such a model is HTML: markup of formal
information bits is mixed into regular text, as shown in the following sample4:

[…]meet runtime
requirements of automotive devices[…]

The sample indicates correctly, that this feature is well known from the XML world,
where it is called mixed content5.
The following list indicates the features of mixed content from a modeling point of
view. Within a mixed content instance

• a set of formally defined model elements may appear an arbitrary number of
times in arbitrary order,

• but the actually present order is relevant in terms of semantics of the whole
object, and

• unqualified text may be mixed in between any of formally defined elements.
This mechanism is supported in AUTOSAR through stereotypes <<atpMixedString>>
and <<atpMixed>>. The latter stereotype does not allow for mixed-in text, but keeps
the definition of order in terms of syntax and semantics.
A mixed content class will aggregate or reference a number of other classes in a
template model. The target cardinalities of those relations are typically 1, since the
overall number of occurrences is arbitrary by definition.
If, however, multiplicity is different from 1, a required grouping is specified. E.g. if the
target multiplicity is 2, always a pair of those objects (not just a single object) must be
put into the mixed content, and so on.

4 Taken from Wikipedia’s description of AUTOSAR: http://en.wikipedia.org/wiki/AUTOSAR.

30 of 78 Document ID 121:
 - AUTOSAR confidential -

5 E.g. see http://www.w3schools.com/schema/schema_complex_mixed.asp.

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

31 of 78 AUTOSAR_TemplateModelingGuide

The concepts introduced above MAY be used in a template model. Alternatives,
typically including ordered references to an abstract base class, MAY also be used, if
applicable.

atpClass

atpMixed atpMixedString

Figure 5-5: Definition of stereotypes for mixed content in a template model.

5.2.4 Types, Prototypes, and Structure Elements

AUTOSAR follows a strict concept of reusability and structure. Certain metamodel
elements are designed to be explicit type declarations, which means M1 instances of
those classes (like a Windshieldwiper software component) are reusable definitions
of structured elements.
Types can then be put to use in the form of roles AKA occurrences AKA prototypes
(from MSR [20]) in the context of other types. Compared to UML, prototypes are very
similar to UML 2 Properties: they are typed elements aggregated by a type. The main
difference is that AUTOSAR prototypes are so-called First Class Objects (FCOs)
[21], meaning that they can carry additional M2 properties (attributes or association
ends) if required.
If an instance of a prototype is created its allowed “values” are constrained by the
used type (see definition of TypedElement in [1]). In terms of attributes this means
that attributes of a type’s instance specify which attributes values are possible for a
prototype instance6.
The fact that types in AUTOSAR may aggregate other elements make them
structured entities. In this respect they are similar to UML’s StructuredClassifier (see
[1]). But unlike UML, where a structured classifier is necessarily a type, i.e. reusable,
AUTOSAR allows for non-reusable elements in structure hierarchies, called Structure
Elements. A structure element may be thought of as a simultaneous definition of a
type an the single role it can play. Structure elements may be used in an M2
metamodel wherever either a type or a prototype may be used.
The related stereotypes, <<atpType>>, <<atpPrototype>>, and
<<atpStructureElement>> extend the UML 2 metaclass Class as shown in Figure
5-6. To better categorize the elements at play, two more M3 abstract metaclasses

6 Note that type and prototype are constructs on M3, i.e. instances of those concepts exist on M2, e.g. in form of
template model elements.

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

are used: <<atpStructured>> and <<atpStructuringFeature>>. The former
corresponds to elements which have structure and the latter to those that give
structure. <<atpType>> has structure and is reusable. <<atpPrototype>> gives
structure and must be typed by an <<atpType>>. <<atpStructureElement>> may both
have and give structure but is not reusable.
These stereotypes make it possible to characterize the target and context of
<<instanceRef>> associations as follows:
• The target of an <<instanceRef>> must be stereotyped with a subclass of

<<atpStructuringFeature>>.
• The context of an <<instanceRef>> must be stereotyped with <<atpPrototype>>
• The first element of the context must be aggregated by an element stereotyped by

a subclass of <<atpStructured>>.
Intuitively it means that in M1, an <<instanceRef>> expresses a reference to a
nested feature (an <<atpStructuringFeature>>) in some containing structured
element (an <<atpStructured>>). Given an M0 instance of the latter, the former
identifies a part of it, i.e. a sub-instance within it.

atpClass

atpStructuredElement

atpStructured

atpType atpPrototype

atpStructuringFeature

Figure 5-6: New stereotypes for types and prototypes.

Note that the stereotype atpClass is not abstract classes, which means the profile
allows defining metaclasses that are deliberately chosen to be non of type,
prototype, or structure element7.
The constraints related to types, prototypes, and structure elements are not given
here, as they are not simple restrictions with respect to what regular classes can do.
Instead sections 5.2.6 and 5.2.7 present two new stereotypes for associations that
result in constraints on atpType, atpPrototype, and atpStructureElement.

32 of 78 Document ID 121:AUTOSAR_TemplateModelingGuide
 - AUTOSAR confidential -

7 Another way of modeling would be to allow prototypes without type reference, as done for UML’s TypedElement.

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

33 of 78 AUTOSAR_TemplateModelingGuide

[ATPS-28] For template classes representing a type, stereotype <<atpType>>
MUST be used.

[ATPS-29] For template classes representing a prototype, stereotype
<<atpPrototype>> MUST be used.

5.2.5 Associations

Classes in the metamodel need to be related to each other. This is done through
associations. For AUTOSAR template models we allow only for two kinds of binary
associations:

(a) Composite aggregation, forming a whole-part relationship, and
(b) Regular association, expressing a reference from the associating to the

associated model element.
The features of the original UML 2 metaclass Association are show in Figure 5-7.

«metaclass»
Element

Relationship

«metaclass»
Association

Type

«metaclass»
Classifier

+ isAbstract: Boolean = false

«metaclass»
Namespace

«metaclass»
ElementImport

«metaclass»
PackageImport

«metaclass»
NamedElement

+ name: String [0..1]
+ visibil ity: Visibil ityKind [0..1]

«enumeration»
VisibilityKind

+ public:
+ private:
+ protected:
+ package:

«metaclass»
RedefinableElement

+ isLeaf: Boolean = false

«metaclass»
Comment

+ownedComment

MultiplicityElement
StructuralFeature

TypedElement

«metaclass»
Property

* {ordered}
{subsets memberEnd}

+ownedEnd

0..1

+owningAssociation

*0..1

+/redefinedElement *

*

+/redefinitionContext

*

+packageImport

1

+importingNamespace

*

+elementImport+importingNamespace

1

0..1

+association +memberEnd

2..*

Figure 5-7: Features of the UML 2 metaclass Association

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

While in the UML Diagrams section in the beginning of this specification it was stated
that no subset clauses are shown for simplification reasons, the diagram above does
contain such an annotation, since it is crucial to distinguish the subset and the
subsetting roles:

• Association.memberEnd holds all participants of the association, at least two
for a binary association, three for a ternary and so on. In AUTOSAR we only
allow binary associations.

• Association.ownedEnd holds those participants among the set given already
in memberEnd that additionally are owned by the association. This means
they are not owned by one of the associated classes and are therefore not
navigable from there. In AUTOSAR there is always exactly one such end: the
aggregating part in case of a composite aggregation and the referring part in
case of a regular (non-aggregating) association.

The aforementioned limitations and other constraints are enforced when the required
stereotype atpAssociation is used, shown in Figure 5-8.

Classifier
Relationship

«metaclass»
Kernel::Association

atpAssociation

«extends»

{required}

Figure 5-8: New stereotype atpAssociation.

The following table lists the required constraints on the new stereotype:
 Feature Context Constraint Description Constraint in OCL (in Context)

1 having a name Element Associations MUST NOT carry a
name.

name.size()=0

2 owning
comments

Element

3 visibility NamedElement All elements in the metamodel MUST
be public.

visibility=public

4 allowing for
redefinition

RedefinableElement Elements MUST NOT be redefined. isLeaf=true
redefinedElement->size()=0

5 importing
packages and
elements

Namespace Package imports MUST NOT be used,
classes in all packages are always
visible from all other packages.

elementImport->size()=0
packageImport->size()=0

6 abstract
associations

Classifier Associations in the metamodel MUST
be concrete.

abstract=false

7 having at least
two ends

Association Associations MUST be binary (the
associating and the associated class).

memberEnd->size()=2

8 types of
association
ends

Association The navigable end of an association
MUST be of type identifiable.

(memberEnd-ownedEnd)-
>forAll(oclIsKindOf(identifiable))

34 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

35 of 78 AUTOSAR_TemplateModelingGuide

9 having non-
navigable ends

Association Associations MUST have exactly one
non-navigable end (the associating/
aggregating class).

ownedEnd->size()=1

Table 3: Constraints on atpAssociation.

[ATPS-07] All elements in model MUST be public.
[ATPS-08] Redefinition of model elements MUST NOT be used.
[ATPS-09] Packages imports MUST NOT be used to put model elements in scope.
[ATPS-30] Associations MUST not be named.
[ATPS-31] Associations MUST be binary.
[ATPS-32] Associations MUST have exactly one non-navigable end.

5.2.6 IsOfType Association

As explained before, classes in an M2 template model can be categorized as
reusable type definitions or as using prototypes within a certain context. While each
type MAY be used in form of a prototype an arbitrary number of times, every such
prototype MUST refer to exactly one type. This association from prototype to type is
very special in terms of semantics: the type defines the attributes and M2 semantics
of the prototype, much like the datatype Integer defines the value range of a variable
a of type Integer.
To clearly show this kind of relation in the model, a new stereotype <<isOfType>> is
introduced in the UML 2 profile. First, the simple example in Figure 5-9 shows the M2
usage of the stereotype, here between two classes taken from [18], also showing the
required cardinalities.

«atpPrototype»
PortPrototype

«atpType»
PortInterface*

+ports +type

«isOfType» 1

Figure 5-9: Example of using stereotype <<isOfType>> on M2.

On M3, the metalevel of the UML 2 Profile for AUTOSAR templates, this is enabled
through the formal introduction of the new stereotype and its associated constraints.

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

atpAssociation

isOfType

Figure 5-10: Introduction of new stereotype <<IsOfType>>.

IsOfType is specializing atpAssociation, i.e. the constraints put on this formerly
defined stereotype also apply. In addition the following constraints MUST be
satisfied:
Constraint Description Constraint in OCL

The non-navigable (source)
association end MUST be an
atpPrototype (a type does not know
about its using prototypes).

-- Note: atpAssociation allows only ownedEnd->size() = 1.
ownedEnd->forAll(c | c.oclIsKindOf(atpPrototype))

The navigable (target) association end
MUST be an atpType (it is possible to
navigate from prototype to type).

-- Note: atpAssociation restricts Association to be binary
-- already. This means the following statement essentially
-- evaluates to: 2 – 1 = 1.
memberEnd->size() – memberEnd->count(atpType) = ownedEnd-
>size()

There MUST be exactly one type
referred (by this association in general
and by an atpPrototype in particular).

(memberEnd – ownedEnd)->forAll(p | p.lower=1 and p.upper=1)
context atpPrototype inv:
 ownedAttribute.association->count(IsOfType)=1

Table 4: Additional constraints for IsOfType.

[ATPS-33] Every prototype MUST refer to its defining type via an association typed
<<isOfType>>.

[ATPS-34] The <<isOfType>> association MUST be used only to refer from an
atpPrototype to an atpType.

[ATPS-35] The target cardinality of an <<isOfType>> association MUST be one.

5.2.7 IndexedRef Association

The stereotype <<indexedRef>> is used for references to elements that may occur s
times in an ordered sequence on M0

5.2.8 InstanceRef Association

If the AUTOSAR template model makes use of reusable type definitions, simple
references are often no longer sufficient. References that contain information about
36 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

37 of 78 AUTOSAR_TemplateModelingGuide

the target within the reusable type and the context in which the type is actually used
are required.
Example: The AUTOSAR template model defines a SenderReceiverInterface as a
type of PPortPrototype. In order to reference a DataElementPrototype that is
communicated via the PPortPrototype, the reference needs information about

• the DataElementPrototype (the target) within a SenderReceiverInterface and
• the PPortPrototype (context) which is typed by that SenderReceiverInterface .

Those references are supported in AUTOSAR template models through two different
representations: a detailed and a short representation: The detailed representation
describes the target and the context of the reference. The short representation shows
the target only. The detailed representation is mandatory whereas the short
representation is optional.

5.2.8.1 Detailed Representation of InstanceRef Association

The support for modeling detailed representations of instanceRef associations could
be realized using n-ary associations (associations with more than two association
ends, see Figure 5-11).

«atpStructureElement»
DelegationConnectorPrototype

«atpPrototype»
PortPrototype

«atpType»
ComponentType

«atpPrototype»
ComponentPrototype

«atpType»
CompositionType

«atpStructureElement»
ConnectorPrototype

«instanceRef.target»

+portPrototype 1

«instanceRef»

+port 2

«isOfType»

+type

+port

0..*

«instanceRef.context»

+componentPrototype

1 {ordered}

+connector

0..*

+component 0..*

Figure 5-11: Example of detailed modelling of an instanceRef association using a 4-ary
association (not supported by AUTOSAR template profile)

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

The AUTOSAR template profile limits itself to modelling concepts that are supported
by OMG MOF[3]. Therefore n-ary associations are replaced by a metaclass which
represents the n-ary associations.
Figure 5-12 shows an example of a detailed representation of an instanceRef
association in the AUTOSAR metamodel (M2).

«atpStructureElement»
DelegationConnectorPrototype

«atpPrototype»
PortPrototype

«atpType»
ComponentType

«atpPrototype»
ComponentPrototype

«atpType»
CompositionType

«atpStructureElement»
ConnectorPrototype +connector

0..*

Tags:
instanceRef.context =
componentPrototype

«instanceRef»
DelegationConnectorPrototype_port

+port 2

+component 0..*

«instanceRef.context»

+componentPrototype

1
«instanceRef.target»

«isOfType»

+portPrototype 1 +type

+port

0..*

Figure 5-12: Example of detailed modeling of an instanceRef association using a meta class
that owns references to the target and the context

Some prototypes or structure elements have a multiplicity defined on them via an
dedicated attribute stereotyped <<atpMaxMultiplicity>>. When the multiplicity is
ordered it is possible to use such prototypes in context paths or as target via
indexing. To allow for that, an intermediate metaclass stereotyped <<indexedRef>>
is introduced between the <<instanceRef>> metaclass and the context or target
element.
An <<indexedRef>> encapsulates a direct, indexed reference to a prototype or
structure element. The <<instanceRef.context>> and <<instanceRef.target>>
associations coming from an <<instanceRef>> class then point to this new kind of
38 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

39 of 78 AUTOSAR_TemplateModelingGuide

metaclass rather than directly to the prototype or structure element itself. In addition
those two associations become aggregations from the <<instanceRef>> class. Figure
5-13 shows an instanceRef which can point to a particular element in a chain of
nested arrays. The <<indexedRef>> metaclass should be used when and only when
the prototype or structure element is in fact a multiplicity element.

SomeElement

Figure 5-13 - InstanceRef with a multiplicity prototype

The detailed representation of an instanceRef is characterized by the following rules:
1. The instanceRef association is represented by a metaclass with stereotype

<<instanceRef>>.
a. This instanceRef metaclass is aggregated by the source metaclass of

the instanceRef association.
b. The role and multiplicity of the referenced model element are specified

on the aggregation between the source and the instanceRef metaclass.
c. The name of the instanceRef metaclass is derived from the name of the

source metaclass and the role of the aggregation:
<name of instanceRef metaclass> :=
 <name of source metaclass> + “_” + <role of instanceRef
association>

d. The instanceRef metaclass is contained in a package called
“_instanceRef”. This package is contained in the package that contains
the source of the instanceRef association.

 «indexedRef»
arrayElementReference

- index: Int

«atpType»
arrayType

«atpPrototype»
ArrayElementPrototype

_ at MaxMultiplicity p
- arraySize: int

«atpType»
dataType

«instanceRef»
SomeElement_dataElement

«instnceRef.target»

+targetArrayElementProrotype

«instanceRef.context»

+arrayElementPrototype

1

«isOfType»

+element 1

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

2. The target of the instanceRef association is described by a reference from the
instanceRef metaclass to either the target metaclass directly or to an
aggregated intermediate metaclass stereotyped <<indexedRef>> which in turn
has a reference to the target metaclass.

a. If the target metaclass does not have an <<atpMaxMultiplicity>>

attribute then the stereotype <<instanceRef.target>> is used to
reference the target metaclass directly.

b. If the target metaclass has an <<atpMaxMultiplicity>> attribute then the
stereotype <<instanceRef.target>> is used to aggregate an
intermediate metaclass stereotyped <<indexedRef>> which in turn has
a reference with multiplicity 1 to the target metaclass.

c. The role name of the <<instanceRef.target>> reference in either case
is derived from the target metaclass. However the first character of the
role name should be lower case:
<role name> :=
 firstCharacterLowerCase (<referenced metaclass name>)

d. If this role name conflicts with a role name defined by context
references (see 3) then the role name is defined by prefixing the
referenced metaclass name by “target”.
<role name> := “target” + <referenced metaclass name>

e. The target metaclass must be stereotyped by a subclass of
<<atpStrucuringFeature>>, i.e. by an <<atpPrototype>> or an
<<atpStructureElement>>.

f. The multiplicity of this reference is 1.
3. The context of the instanceRef association is described by references from the

instanceRef metaclass to either the context metaclass directly or to an
aggregated intermediate metaclass stereotyped <<indexedRef>> which in turn
has a reference to the context metaclass.

a. If the context metaclass does not have an <<atpMaxMultiplicity>>
attribute then the stereotype <<instanceRef.context>> is used to
reference the context metaclass directly.

b. If the context metaclass has an <<atpMaxMultiplicity>> attribute then
the stereotype <<instanceRef.context>> is used to aggregate an
intermediate metaclass stereotyped <<indexedRef>> which in turn has
a reference with multiplicity 1 to the context metaclass.

c. The role name of the <<instanceRef.context>> reference in either case
is derived from the context metaclass. However the first character of the
role name should be lower case:
<role name> :=
 firstCharacterLowerCase (<referenced metaclass name>)

d. The context metaclasses must be stereotyped by <<atpPrototype>>
(see also 5.2.8.4)

e. The multiplicity of the reference depends on the structure of the context.
See section 5.2.8.4 for more details. If the upper multiplicity of a
reference is bigger than one, then the keyword ordered must be
indicated.

f. If there is more than one context reference then the tagged value
“instanceRef.context” must be given a value specifying an order
between the referenced elements. It lists, in some order, all the roles by

40 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

41 of 78 AUTOSAR_TemplateModelingGuide

which context elements are referenced, separated by spaces. In order
to improve the readability the value must contain additional information
on the multiplicity of the roles:

i. multiplicity = 1 then no additional symbol required
ii. multiplicity = 0..1 then the symbol ‘?’ is added
iii. multiplicity = 0..* the the symbol ‘*’ is added
iv. multiplicity = 1..* the the symbol ‘+’ is added

g. The value of instanceRef.context forms a regular expression which can
be used to check the correctness of instanceRef contexts. The tool
needs to concatenate the rolenames within the context in the order as
they are stored in XML or in the tool. Applying the regular expression
validates the context.

5.2.8.2 Short Representation of InstanceRef Association

In addition to the detailed representation a short representation may be used. The
short representation can be derived from the detailed representation by the following
algorithm (Figure 5-14 shows the short representation of the instanceRef association
described in
Figure 5-12):

1. The short representation of an instanceRef association is represented by a
dependency, stereotyped by <<instanceRef>>.

a. The multiplicity of this instanceRef dependency equals the multiplicity of
the aggregation between the source metaclass and the instanceRef
metaclass.

b. The name of the instanceRef dependency equals the name of the
aggregation between the source metaclass and the instanceRef
metaclass.

ConnectorPrototype

«atpPrototype»
DelegationConnectorPrototype

«atpPrototype»
PortPrototype

«instanceRef»

+port 2

Figure 5-14: Example of the short representation of an instanceRef association.

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

 class with the stereotype <<instanceRef>>.

5.2.8.4 Constraints on instanceRef associations

The following constraints define rules for the existence, correctness and
completeness of instanceRef associations. If the following constraints are violated
then the instanceRef association is not valid. The following sections formally describe
these constraints.

Basic relations
Let’s define some basic relations on metaclasses that are based on relations defined
in the AUTOSAR metamodel:

A B

A B

A B

containment(A, B)

generalization(A,B)

isOfType(A,B)

A aggregates B

A is generalization of B.
B is subclass of A

A is of type B
«isOfType»

Figure 5-15: Basic relations

Direct context relation
The direct context of a metaclass is defined by metaclasses that are reachable

• by navigating a containment aggregation towards the containing metaclass
• by navigating a generalization towards the baseclass or
• by navigating a <<isOfType>> reference towards its source

The following relation defines if one metaclass A is in the direct context of another
metaclass B:

directContext (A, B) := containment (A, B) OR
 generalization (A, B) OR
 isOfType(A, B)

Full context paths
The set of all possible full context paths beginning at the metaclass B is defined by
the following expression. A full context path is defined by navigating the metamodel
using the relations defined by the directContext relation. Within the full context path
at least one isOfType relation must be navigated.
 fullContextPaths (B) :=
 { (X1, X2, …,Xn-1, Xn) | X1, X2, …,Xn-1, Xn elementOf Metaclass

AND directContext(Xn, X n-1)
42 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

43 of 78 AUTOSAR_TemplateModelingGuide

….
AND directContext(X2, X1)
AND Xn == B
AND
(exists Xa, Xb elementOf { X1, X2, …,Xn-1, Xn } | isOfType(Xa, Xb))

}
Note that while each path is finite, the set fullContextPaths(B) may be infinite. This
will be the case when the graph defined by the direct context relation contains a
cycle.

InstanceRef context paths
In order to unambiguously describe the full context path of an instanceRef it is not
required to list all classes within the path. Instead it is sufficient to only list the
references to <<atpPrototype>>s within the path. This more compact representation
of context paths is described by the expression contextPaths(B).

«instanceRef»
SenderComSpec_dataElement

DataPrototype
DataElementPrototype

Identifiable

«atpPrototype»
ComponentPrototype

ARElement

«atpType»
ComponentType

Identifiable

«atpPrototype»
PortPrototype

PPortPrototype

ARElement

«atpType»
PortInterface

SenderReceiv erInterface

PPortComSpec
SenderComSpec

+componentPrototype

1
*«isOfType»

contexttarget

«instanceRef.target»

+dataElementPrototype

1

«instanceRef.context»

+type 1

+port 0..*

+component

«instanceRef.context»

+pPortPrototype

1

+pPort *«isOfType»

+providedInterface 1

+dataElement

0..*

+interface

+dataElement 1

1

Figure 5-16: Example of a context path of DataElementPrototype

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

Figure 5-16 shows an example of a contextPath of the metaclass
DataElementPrototoype. In order to unambiguously describe the contextPath of the
instanceRef association from SenderComSpec to DataElementPrototype it is
sufficient to identify the PPortPrototype and the ComponentPrototype.

Constraints
A given detailed M2 representation of an instanceRef association is valid if the
following constraints hold.
1. Completeness: The set of context references is complete if it can describe a valid

context path.
• Exists (X1, X2, …,Xn-1, Xn) elementOf contextPaths(target) |

ForAll Xi Exists context reference from instanceRef metaclass to Xi
Note that this condition implies that contextPaths(target) is nonempty.

3. Multiplicities: The multiplicity of each context reference SHALL NOT exceed the
maximum occurrence of the referenced prototype within possible context paths.

4. Order: Not all sequences of a complete set of context references are allowed. The
value of the tagged value “instanceRef.context” must describe a path or a set of
paths which is contained in contextPaths(target).
• Paths as described by “instanceRef.context”

 subsetOf
contextPaths(target)

44 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

45 of 78 AUTOSAR_TemplateModelingGuide

Example

Identi fiable
SystemMapping

ARElement

«atpStructureElement»
System

+mapping

1

Identi fiable

«atpPrototype»
ComponentPrototype

«atpType»
CompositionType

Identi fiable

«atpPrototype»
Softw areComposition

ARElement

«atpT ype»
ponentTypeCom

Sw cToEcuMappingConstraint

«instanceRef»
Sw cToEcuMappingConstraint_component

T ags:
instanceRef.context =
softwareComposition
componentPrototype*

+mappingConstraint *

MappingConstraint

+softwareComposition 1
+component 1..*

* «isOfT ype»

+type

1

+softwareComposition

«instanceRef.context»«instanceRef» 1

*

«instanceRef.context»
«isOfType»

+softwareComposi tion 1

+component

1..*

mponent 1..* +componentPrototype 0..*

«instanceRef.target»
+targetComponentPrototype 1

Figure 5-17: Example of detailed and short modelling (see below) of an InstanceRef association

Figure 5-17 shows the detailed and short representation of an instanceRef
association. This instanceRef association points from the outside to a
ComponentPrototype which might be deeply nested in the type hierarchy of
CompositionTypes. The modeled instanceRef association is valid because:
1. Completeness

a. Modeled context references:
i. componentPrototype with multiplicity *
ii. softwareComposition with multiplicity 1

b. Valid context paths:
contextPaths(ComponentPrototype) =
 { (SoftwareComposition),
 (SoftwareComposition, ComponentPrototype),
 (SoftwareComposition, ComponentPrototype, ComponentPrototype),
… }

c. The modeled instanceRef association requires at least one context
reference to a SoftwareComposition and zero or more context references
to ComponentPrototypes. Context reference paths described by the

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

instanceRef association are a subset of contextPaths (
ComponentPrototype).

2. Multiplicities:
Multiplicities of context references do not exceed the maximum occurrence of
referenced prototypes.

3. Order:
The tagged value instanceRef.context defines the order as softwareComposition
componentPrototype
This doesn’t allow for creating sequences of context reference that are not
covered by the valid paths as defined in section “completeness”.

5.2.9 Constraints

Constraints are basically taken as they are defined in [1], with one additional
limitation: constraints in an AUTOSAR template model MUST be expressed in OCL
or another supported language, mainly to support automatic evaluation.
Formally this is once again provided by introducing a new stereotype atpConstraint.
Figure 5-18 shows in a simplified diagram how constraints are defined in UML 2
while Figure 5-19 depicts the new stereotype.

«metaclass»
Element

«metaclass»
Constraint«metaclass»

Namespace
«metaclass»

ValueSpecification

«metaclass»
PackagableElement

«metaclass»
NamedElement

+ name: String [0..1]
+ visibil ity: Visibil ityKind [0..1]

«metaclass»
Comment *

+ownedComment

0..1

1

+specification

* {ordered}

+constrainedElement

+/context

0..1*0..1

Figure 5-18: The Constraint metaclass as defined in UML 2.

46 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

47 of 78 AUTOSAR_TemplateModelingGuide

PackagableElement

«metaclass»
Kernel::Constraint

atpConstraint

«extends»

{required}

Figure 5-19: New stereotype <<atpConstraint>>.

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

Note that the stereotype atpConstraint MUST be used in AUTOSAR template
models, which essentially means a supported language MUST be used, as described
in the following table:
 Feature Context Constraint Description Constraint in OCL (in Context)

1 having a
name

NamedElement

2 owning
comments

Element

3 definition
with
context

Constraint

4 constraint
expression

Constraint Constraints must be
expressed in OCL or
another supported
language.

specification.oclIsKindOf(OpaqueExpression) and
(specification.oclAsType(OpaqueExpression).language="OCL" or
specification.oclAsType(OpaqueExpression).language="Java" or
specification.oclAsType(OpaqueExpression).language="informal")

Table 6: Constraints on stereotype <<atpConstraint>>.

For information about the supported languages and how to express constraints see
section 6.2.7.
[ATPS-39] Constraints MUST be expressed in OCL (preferred), Java or informal

text.

5.2.10 Dependencies

Dependencies are extensively described in UML 2. AUTOSAR template models MAY
use dependency stereotypes that have been defined within the context of UML
already, namely:

<<trace>>
A dependency that indicates a historical or process relationship between two
elements that represent the same concept without specific rules for deriving one
from the other [1].

<<use>>
A dependency in which one element (the client) requires the presence of
another element (the supplier) for its correct functioning or implementation [1].

<<import>>
This dependency is allowed only for template subset models (see 8.3.1) and for
reusing packages and elements from other standardization organizations such
as ASAM MSR-SW.

Dependencies without stereotypes MAY be used, however, there is no formal
semantics associated, i.e. those kind of dependencies are simply treated as model
documentation.
Dependencies with stereotypes not listed above MUST NOT be used.

48 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

49 of 78 AUTOSAR_TemplateModelingGuide

[ATPS-40] Dependencies MAY be used. They MUST be used either without
stereotype, or MUST be stereotyped <<import>> or <<instanceRef>>.

5.2.11 Packages

Packages are a grouping mechanism for model elements. AUTOSAR template
models quickly grow large, so packages are required here as well. See Figure 5-20
for the original definition of packages in UML 2.

«metaclass»
Namespace

«metaclass»
PackagableElement

«metaclass»
Package«metaclass»

PackageMerge

«metaclass»
ElementImport

«metaclass»
PackageImport

«metaclass»
NamedElement

+ name: String [0..1]
+ visibil ity: Visibil ityKind [0..1]

«enumeration»
VisibilityKind

+ public:
+ private:
+ protected:
+ package:

«metaclass»
Element«metaclass»

Comment

*

+ownedMembe

*

+elementImport

1

+importingNamespace

*

+packageImport

1

+importingNamespace

*

+ownedComment

0..1

r

0..1

+owningPackage

*

+packageExtension +mergingPackage

1

Figure 5-20: Original definition of Package in UML 2.

Not all of the features provided by UML 2 are desired for the simplified modeling of
AUTOSAR templates. In particular, imports and merges are not required and will be
excluded for the new stereotype atpPackage.

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

atpPackage

Namespace
PackagableElement

«metaclass»
Kernel::Package

«extends»

{required}

Figure 5-21: Definition of stereotype <<atpPackage>>.

In the following table the features and constraints for atpPackage are listed:
 Feature Context Constraint Description Constraint in OCL (in Context)

1 having a name NamedElement Name MUST be a valid Identifier.

2 owning comments Element

3 visibility NamedElement All elements in the metamodel MUST be
public.

visibility=public

4 importing packages and
elements

Namespace Package imports MUST NOT be used,
classes are always visible.

elementImport->size()=0
packageImport->size()=0

5 merging with other
packages

Package Packages MUST NOT be merged. packageExtension->size()=0

Table 7: Constraints on features of packages.

In addition to those constraints, atpPackage has semantics different from the UML 2
package:
Due to limitations/design guidelines of the model processing toolchains (DTD
generators, …) namespaces are not controlling access, i.e. an M2 class
SWComponentType is visible from all packages in the M2 model. This can formally
be implemented by assuming a global import of all M2 packages from all other
packages.
[ATPS-07] All elements in model MUST be public.
[ATPS-09] Packages imports MUST NOT be used to put model elements in scope.
[ATPS-10] Package merges MUST NOT be used.

5.2.12 Primitive Types

UML 2 already defines the basic primitive types that may be used for attributes of
classes. Those include:

50 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

51 of 78 AUTOSAR_TemplateModelingGuide

Integer
An instance of Integer is an element in the (infinite) set of integers (…, -2 , -1 ,
0, 1, 2, …). It is used for integer attributes and integer expressions in the
metamodel [1]. An allowed alias for Integer is Int.

UnlimitedNatural
An instance of UnlimitedNatural is an element in the (infinite) set of naturals (0,
1, 2…). The value of infinity is shown using an asterisk (‘*’) [1].

Boolean
In the metamodel, Boolean defines an enumeration that denotes a logical
condition. Its enumeration literals are:

• true: The Boolean condition is satisfied.
• false: The Boolean condition is not satisfied.

It is used for Boolean attribute and Boolean expressions in the metamodel [1].

String
An instance of String defines a piece of text. The semantics of the string itself
depends on its purpose, it can be a comment, computational language
expression, OCL expression, etc. It is used for String attributes and String
expressions in the metamodel [1].

For all primitive types corresponding literals are defined that allow specifying literal
values for a primitive type. These are also used as defined in UML 2.
In addition to what is defined by UML, AUTOSAR requires a few more primitive
types:

Float
It extends the semantics of String by requiring the string to be in a valid float
number format.

«primitive»
Float

«metaclass»
Kernel::LiteralString

+ value: String

LiteralFloat

«extends»

Figure 5-22: New primitive type Float and its value stereotype <<LiteralFloat>>.

The single constraint is listed in the following table.

Constraint Description Constraint in OCL

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

The value string must be consistent with IEEE 754. n/a.

Table 8: Constraints on a Float value.

Identifier
Similar to Float an Identifier puts additional constraints on the string format.
Identifiers are supposed to be used whenever a string, typically some kind of
name will later be processed by tools or in a programming language.

«metaclass»
Kernel::LiteralString

+ value: String

«primitive»
Identifier

LiteralIdentifier

«extends»

Figure 5-23: New primitive type Identifier and its value <<LiteralIdentifier>>.

The following formal constraint applies to the literal representation of an Identifier:
Constraint Description Constraint in OCL

The value must satisfy the following syntax (in Extended Backus Naur Form [7]):
identifier := letter (letter | digit | uscore)*

letter := "a" | "A" | "b" | "B" | "c" | "C" | "d" |
 "D" | "e" | "E" | "f" | "F" | "g" | "G" |
 "h" | "H" | "i" | "I" | "j" | "J" | "k" |
 "K" | "l" | "L" | "m" | "M" | "n" | "N" |
 "o" | "O" | "p" | "P" | "q" | "Q" | "r" |
 "R" | "s" | "S" | "t" | "T" | "u" | "U" |
 "v" | "V" | "w" | "W" | "x" | "X" | "y" |
 "Y" | "z" | "Z"

digit := "0" | "1" | "2" | "3" | "4" | "5" | "6" |
 "7" | "8" | "9"

uscore := "_"

n/a.

An identifier has a maximum length of 32 characters. This is compliant with MISRA-C
conventions [11].

context LiteralIdentifier
inv:
 value.size()<=32

Table 9: Constraints on an Identifier.

52 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

53 of 78 AUTOSAR_TemplateModelingGuide

[ATPS-20] The primitive types from UML have been extended by two new types
Float and Identifier, which MAY be used.

[ATPS-21] An Identifier name MUST NOT exceed 32 characters.
[ATPS-22] The characters used for an Identifier MUST be consistent with the rules

given in Table 9: Constraints on an Identifier.

5.2.13 Enumerations

Enumerations are imported from UML 2 without refinement. This implies the notation
within an M2 metamodel. Refer to the modeling convention given in 6.2.3 on how to
express enumerations in an AUTOSAR template model.
Once an enumeration is defined the corresponding type can be used just like a
primitive type.

DataType

«metaclass»
Enumeration

InstanceSpecification

«metaclass»
EnumerationLiteral* {ordered}

+ownedLiteral+enumeration

0..1

Figure 5-24: Definition of enumerations in UML 2.

5.2.14 Tagged Values

Tagged values are simply taken as they are defined by OMG as part of the Extension
package defined in [3]. There, tagged values are a feature of the MOF metaclass
Object, which is the common base class of all UML metaclasses.
Tagged values are typically used to annotate the model in order to control later code
generation. E.g. a tagged value called xml.name could control the XML element
name used for a class. The allowed sets of tagged values are defined in the
persistence rules corresponding to a particular target platform. XML tag names are
defined in [19].
[ATPS-47] Platform specific (e.g. XML specific) model information MAY be added

to the model in form of tagged values only.

5.2.15 Splitable attributes, associations and aggregations

By using the stereotype <<splitable>> the metamodel can explicitly define how
instances of the metamodel may be distributed over several files. By default all data
is stored in one single file. If the stereotype <<splitable>> is applied, then the
associated or aggregated information may be stored in different files.

Example: Figure 5-25 shows how an AUTOSAR SenderReceiverInterface is
integrated into the AUTOSAR infrastructure. It is not required to describe the
elements AUTOSAR, ARPackage within one single file. From all these classes there
exists a splitable containment path to the root element AUTOSAR. The

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

SenderReceiverInterface MUST be stored completely in one single file. There are no
<<splitable>> aggregations, attributes or associations within the context of the
SenderReceiverInterface.

AUTOSAR

Identifiable

ARPackage
PackageableElement

ARElement

«atpType»
PortInterface

«atpType»
SenderReceiv erInterface

«atpPrototype»
DataElementPrototype

+element

0..*«spl i table»

+subPackage 0..*

«spli table»

0..1

+topLevelPackage

0..*«spl i table»0..1

+dataElement +interface

0..* 1

Figure 5-25: Example of splitable aggregations

[ATPS-53] For all elements which are marked with the stereotype <<splitable>>
there MUST exist a containment path to the root element where all
navigated containments are stereotyped by <<splitable>>.

54 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

55 of 78 ateModelingGuide

After having addressed all modeling features in detail this section will summarize the resulting UML Profile for AUTOSAR Template
Models.

«metaclass»
Kernel::UnlimitedNatural

- AUTOSAR Confidential - AUTOSAR_Templ

5.3 Summary

«profi le»
AUTOSARTemplateProfile

(from AUTOSAR Template UML Profi le)

atpConstraint

atpAssociation

atpAttribute

atpClass

atpPrototypeatpType

«primi tive»
Float

instanceRef

isOfType

LiteralFloat

atpPackage

«metaclass»
Kernel::Package

«enumeration»
Kernel::

AggregationKind

«metaclass»
Kernel::Association

«metaclass»
Kernel::Boolean«metaclass»

Kernel::Class

«metaclass»
Kernel::Comment

«metaclass»
Kernel::Constraint

«metaclass»
Kernel::Integer

«metaclass»
Kernel::LiteralBoolean

«metaclass»
Kernel::LiteralInteger

«metaclass»
Kernel::LiteralString

«metaclass»
Kernel::Property

«metaclass»
Kernel::String

«primi tive»
Identifier

«metaclass»
Kernel::

LiteralUnlimitedNatural

LiteralIdentifier

atpMixed

atpMixedString

«metaclass»
Kernel::Enumeration

«metaclass»
Kernel::EnumerationLiteral

splitable

atpStructuredElement

atpStructured atpStructuringFeature

«metaclass»
Kernel::Dependency

atpDependency

instanceRefimport

instanceRef.target

instanceRef.context

primi tive,
enumeration

splitable

«import»

«import»

«import»

«import»

{required}

«extends»

{required}

«extends» «import»

«import»

«extends»

«import»

«import»

«extends»

«import»

«import»

{required}

«extends»

{required}

«extends»

«import» {required}

«extends»

Figure 5-26: Overview of the UML Profile for AUTOSAR Templates.

{required}

«extends»

«import»

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

Classes that are imported into the profile MAY be used as they are defined in UML 2.
These are:

• AggregationKind
• Boolean
• Integer
• String
• Enumeration
• LiteralBoolean
• LiteralInteger
• LiteralString
• LiteralUnlimitedNatural
• EnumerationLiteral
• Comment

The remaining classes from UML 2 are extended through required stereotypes, i.e.
the extended metaclasses MUST NOT be used in template models, instead the
extending stereotype MUST be applied.
The new stereotypes defined in the profile are:

• atpClass: a class without operations
• atpType: a class representing a type declaration
• atpPrototype: a class representing the usage or an occurrence of atpType
• atpMixed: mixed content without inclassified strings
• atpMixedString: mixed content including unclassified strings
• atpAssociation: a concrete, binary association, with one navigable end
• InstanceRef: a particular kind of association referring to an instance of

atpPrototype
• IsOfType: a particular kind of association referring from atpPrototype to its

atpType
• atpAttribute: an attribute of a class, without redefinition, always public
• atpConstraint: a constraint that is always expressed in OCL
• atpPackage: packages of this kind imply importing each other (accessibility)
• Float: a float valued primitive datatype
• LiteralFloat: a literal value for Float
• Identifier: a string valued primitive datatype suitable for use in programming

languages
• LiteralIdentifier: the string value of an Identifier

In addition the following primitive types have been added to the profile:
• Float: a rational number
• Identifier: a string that can be used in typical programming and tooling

environments

56 of 78 - AUTOSAR Confidential - AUTOSAR_TemplateModelingGuide

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

57 of 78 AUTOSAR_TemplateModelingGuide

6 Conventions
This chapter will list a number of modeling conventions that are not yet covered by
the formal UML profile.

6.1 Naming Conventions

6.1.1 Language

The AUTOSAR standard language is US English. This means that all model
elements, comments and all text in general MUST be written in English with US
spelling.
For instance “behavior” MUST be used instead of “behaviour”, or “specialized”
instead of “specialised".
[ATPS-03] Model documentation and element names MUST be written in US

English.

6.1.2 Model Element Names

Names of model elements MUST adhere to the following rules:
(a) Template model element names must satisfy the definition of an Identifier,

defined in 5.2.12, except for the length limitation.
Especially (but not exclusively), this means that none of the following
character is allowed to be used: “,”, “.”, “:”, “-“, “(“, “)”, “{“, “}” and “ “.

(b) If a name consists of multiple terms, each of those terms starts with a capital
letter, all other letter are not capitalized (e.g. PortInterface, or
DataElementPrototype).

(c) Class names MUST begin with a capital letter.
(d) Attribute names MUST begin with a lower letter (e.g. isService).
(e) Role names MUST begin with a lower letter.
(f) Even if the multiplicity of an attribute or role is greater 1, the singular form of

the respective name MUST be used (e.g. port, connector).
[ATPS-04] Model elements MUST follow the specified naming conventions.
[ATPS-52] Attribute and role names MUST be given in singular form, even if the

corresponding cardinality is greater 1.

6.1.3 Class Names

In addition to the rules given above, class names must be unique in a template
model.

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

[ATPS-06] Class names MUST be unique within the combined set of all class
names in the template model.

6.1.4 Diagram Names

Since the generation of various specification documents is partly automated, the
names of all diagrams in the complete model – this includes M3 packages, scratch
pads, … -- MUST be unique. Package hierarchy is not observed in our diagram
extraction scripts.
[ATPS-05] Diagram names MUST follow the specified naming conventions.

6.2 Modeling Conventions

6.2.1 Unambiguous Models

An AUTOSAR template model MUST be unambiguous. This means with a given
template model that MUST be only a single way to represent specific semantic
information through instantiation of the template.
[ATPS-02] Template models MUST be unambiguous.

6.2.2 Abstract Classes

Metaclasses MUST be marked as abstract if it they are not intended to be
instantiated directly in an M1 model. Abstract classes are used to capture attributes
and semantics that are common to all derived subclasses.
[ATPS-12] Classes MUST be marked abstract if they are not intended to be

instantiated on M1.

6.2.3 Enumerations

If for instance for an enumeration called “Direction” the literals “forward” and
“backward” need to be specified in UML, Figure 6-1 shows what this would look like:
Essentially, enumerations are visualized as classes with a set of public attributes that
make up their literals. The literals have no type. If the modeling tool supports it the “+”
for public and the “: “ indicating the type MAY be omitted.

«enumeration»
Direction

+ forward:
+ backward:

Figure 6-1: Example of an Enumeration on M2.

58 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

59 of 78 AUTOSAR_TemplateModelingGuide

Enumerations are modeled as classes with a set of public attributes. As such the
same rules apply for their names: they MUST be valid Identifiers and their names
must be unique within the unified set of class and enumeration names.
The names of enumeration literals do not need to be unique within the full model,
only within the namespace of the containing enumeration.
[ATPS-19] Enumerations MUST be modeled as explicit classes with a public

attribute for each literal.
[ATPS-14] Regular class attributes MUST be typed. The only possible exception is

when modeling enumerations.
[ATPS-51] Enumeration names MUST be unique, also with respect to names of

existing regular classes.

6.2.4 Class Attributes vs. Associations

In general it is pure modeling taste whether an aggregation is shown as class
attribute or explicit association. For an AUTOSAR template model, the two options
are used in the following situations:

(a) Primitive types (Integer, Float, Boolean, String) MUST be aggregated in form
of direct class attributes.

(b) Metaclasses defined within the same M2 model MUST be aggregated in form
of explicit associations and aggregations.

(c) Exception to (b): Enumerations, while defined as M2 classifier, MUST be
aggregated as a direct class attribute.

Figure 6-2 shows examples of the cases distinguished above.

«enumeration»
MyEnum

A B

+ anInteger: Int
+ aString: String

+ val: MyEnum
+aBClass

+ literal1:
+ l iteral2:
+ l iteral3:

1

Figure 6-2: Examples of when to use which aggregation method.

[ATPS-23] Primitive types and enumerations MUST be used by a class in form of
direct class attributes.

[ATPS-24] Classes MUST NOT be used in form of direct class attributes but are
always referenced through an association.

6.2.5 Physical Quantities

Class attributes that represent physical quantities MUST use primitive type Float and
be expressed in SI units [10].

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

[ATPS-49] When representing continuous physical quantities in template models
(in form of class attributes), SI units and datatytpe Float MUST be used.

6.2.6 Modeling Aggregations and Associations in Enterprise Architect

Sparx Systems Enterprise Architect (see [22]) is currently the standard UML tool to
create AUTOSAR template models.
While UML defines which adornment of an association end means what (composition
type, role name, cardinalities, constraints, …) the used modeling tool Enterprise
Architect leaves some room how the visual representation is actually created. The
following guidelines MUST be followed when adding associations and aggregations
to a model:

• An association MUST have direction “source->destination”.
• Navigability along aggregations SHOULD be omitted8. It is assumed that

logical navigability exists from container to part class.
• Each navigable association end MUST have a role name and cardinality.
• Each navigable association end MUST be documented.
• The source end of an aggregation (that is the aggregated end) must carry a

role name and cardinality.
• The source end of an aggregation must be documented.

Note that documentation of the association itself is not required.
[ATPS-41] Associations (with composite or no aggregation) MUST comply with the

specified rules with respect to use of names, cardinality and
documentation.

6.2.7 Constraints in Metamodel

6.2.7.1 Context Class

Due to OCL’s ability to completely navigate across model elements, it is possible to
express constraints in the context of an arbitrary class. The following rules should
guide the selection of the annotated metaclass.
In case rules contradict each other in a certain context, they MUST be applied in the
prioritized order given here.

1. Constraints SHOULD be given in the context of the constraining class, not the
constrained class.

2. The length of the OCL expression SHOULD be minimized through selection of
the context metaclass.

[ATPS-42] Constraints MUST be put into the model at the specified locations

6.2.7.2 Entering Information

Figure 6-3 shows the dialog in Enterprise Architect allowing to add a constraint to a
model element. The following dialog fields are used to enter semantic information:

60 of 78 Document ID 121:
 - AUTOSAR confidential -

8 This is an allowed representation option defined in [1].

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

61 of 78 AUTOSAR_TemplateModelingGuide

• Field Constraint: the name of the constraint.
• Field Type: please select “OCL”.
• Field Notes (unnamed in figure): the actual constraint described in OCL plus

additional data encoded in OCL comments. If it is not possible to describe the
constraint using OCL any other preferably formal language may be used. This
constraint needs to be encoded as OCL comments as well. Additionally the
note shall state which language is used.

Key-value pairs follow the following syntax (in EBNF, see [7]):
kv-pair := “-- ” key “: ” value “\n”
key := “id” | “severity”
value := identifier

For the definition of identifier see section 5.2.12. The semantics of the defined
keywords are:

• id: a unique (model-wide) id which will be displayed by tools in case the
constraint is violated. The id should start with ARSema (Autosar Semantic
Constraint).

• severity: The severity defines the behavior of a processing tool in case the
constraint is violated. See [8] for exact definition of severities.

The last lines of the Notes field may be used for additional informal description of the
constraint. The description starts with “-- description: \n” at the beginning of a
new line.

Figure 6-3: Constraint dialog in Enterprise Architect.

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

[ATPS-43] Constraints MUST be formatted as specified.

6.2.8 Implicit & Explicit Stereotypes

For convenience reasons certain stereotypes MAY be omitted. They are assumed to
be implicit in AUTOSAR template models. Implicitly stererotypes are:

• atpClass
• atpAttribute
• atpAssociation
• atpPackage
• atpConstraint

Stereotypes that MUST be explicitly part of template models are:
• atpType
• atpMixed
• atpMixedString
• atpPrototype
• InstanceRef, instanceRef.target, instanceRef.context
• IsOfType
• import
• splitable

It is ALLOWED to omit even enforced stereotypes, if one of the base classes has
been appropriately stereotyped.
[ATPS-44] The list of stereotypes given in MUST be observed with respect to

which stereotypes are required to be given in model (explicit) and which
are optional (implied).

[ATPS-45] Additional stereotypes MUST NOT be defined.
[ATPS-46] Stereotypes of base classes MAY be omitted for derived classes. This

is true even for enforced stereotypes.

62 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

63 of 78 AUTOSAR_TemplateModelingGuide

7 Template Model Infrastructure

7.1 Overview

The basic infrastructure of an AUTOSAR template is shown in Figure 7-1. The root
container class for all templates is the class AUTOSAR, shown on the left end of the
diagram.

Autosar::
AUTOSAR

Autosar::
ARPackage

Identifiable::Identifiable

+ category: String [0..1]
+ shortName: Identi fier
+ uuid: String

Identifiable::
PackageableElement

Identifiable::
ARElement

+subPackage 0..*

«spl i table»

0..1

+topLevelPackage

0..*«spl i table»0..1

+element

«spl i table» 0..*

Figure 7-1: Infrastructure of an AUTOSAR template model.

7.2 Packaging

Class AUTOSAR is composed of a number of packages, represented by class
ARPackage. This class is not to be confused with the M3 class atpPackage defined
in 5.2.11.
While the latter refines the meaning and possibilities of using packages in a template
UML model, ARPackage is actually part of such a model. It allows defining packages
at AUTOSAR system modeling time, e.g. in form of an OEM or project specific
package containing entities like a windshield wiper software component.
The self aggregation (role subPackage) shows that packages may in fact contain
other subpackages. Besides those, a package may contain an arbitrary number of
elements, represented by the abstract class ARElement.
Such an element is an entity for which it makes sense to be defined in its own
semantic context (stand-alone). An example for such an ARElement is the definition
of a reusable software component type, while on the other hand a parameter of an
operation does not make sense to be defined stand-alone: its semantics is defined
within and therefore highly dependent on the enclosing context – the operation.

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

7.3 Identifiable Classes

In addition to the structural classes, one more is shown in Figure 7-1: class
Identifiable.
An Identifiable is an abstract base class that represents the ability to be the target of
an association. Identifiables have a name and therefore can be referenced. This
identifying name is represented in form of the attribute shortName. Identifiables have
further attributes that are not explained here, since they have no structural or
referential relevance. Instead refer to the AUTOSAR template patterns given in [24]
for details.
[ATPS-48] Referenced classes (at the target end of an association) MUST be

derived from class Identifiable.

M1 Application Notes for Identifiable References
The Identifiable-based referencing mechanism is the only official mechanism in
AUTOSAR templates. In an M1 model, references to an Identifiable therefore must
be given in form of a shortname (or a sequence of shortnames).
Identifiable is also by definition a namespace for other contained identifiable classes.
Only within such a namespace the name of an Identifiable must be unique.
When traversing a number of namespaces, the delimiter “/” is used to prepend the
names of the namespace hierarchy containing the object.
Absolute references begin with “/”, which essentially refers to the instance of class
AUTOSAR in a description. Relative references, i.e. references not beginning with “/”,
are then resolved according to the following search order:

(a) all Identifiables declared in the namespace of the referring object
(b) all Identifiables declared in the namespace declaring the namespace

that holds the referring object
(c) recursive application of (b).

Please note that the application notes given here form requirements in the M1 model
only. Therefore, no further ATPS specification items for an M2 template model are
created from them.

64 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

65 of 78 AUTOSAR_TemplateModelingGuide

8 AUTOSAR Template Subsets

8.1 Goal

The complete AUTOSAR metamodel allows for the description of complex technical
elements and their contexts across multiple abstraction levels with different levels of
detail and so on. As a result the full model consists of a few hundred classes and
even more attributes of those classes and is often overwhelming to new AUTOSAR
users.
It therefore may be useful to hide all parts of the model that are not applicable to a
certain problem or even implementation of AUTOSAR. This can be done through the
definition of AUTOSAR subsets defined in the following sections.

8.2 Related concepts

MSR [20] implements this model limiting capability in form of its MSR Use Cases.
Through the definition of additional constraints on the model only certain values,
datatypes and model elements are allowed in a particular MSR Use Case.
UML allows for limitations on existing models (e.g. on UML itself) through UML
Profiles. A profile explicitly imports models and model elements that can be used.
Additional constraints can be added to those elements, e.g. in form of OCL
statements.

8.3 Subset Notation

The notation defined here was initially compared to other approaches. See 10.1.3.1
for details why they were not chosen.

8.3.1 Importing Classes

In analogy to the definition of UML profiles, imports of metaclasses are used to define
the required subsets. Those imports can be done in separate class diagrams
showing <<import>> dependencies from the template subset to the enabled
metaclasses and packages.
Figure 8-1 is an example of a subset of the existing AUTOSAR template allowing for
logical definition of software components only, without the details of scheduling or
implementation9.
Once a set of classes is imported, the following model entities (classes and
attributes) are part of the defined subset:

1. Directly imported classes are part of the subset.
2. Classes derived from directly imported classes are part of the subset.
3. All baseclasses of directly imported classes are part of the subset.

9 These samples contain details of the AUTOSAR Software Component Template. It is not important that the user
knows or understands those concepts. They are shown just for illustration of the subset concept. Also, the shown
extract are not guaranteed to be valid.

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

4. All relations (associations and aggregations) between the classes in the
subset are part of the subset.

5. All attributes (direct and inherited) of classes in the subset are part of the
subset. If such an attribute requires another class (e.g. an enumeration), this
class is part of the subset.

No other classes and attributes are part of the subset.
DatatypesProperties

+ BooleanType+ Assignment
+ CompositeType+ ExistenceCondition
+ DataPrototype+ ExistenceDependsOnProperty
+ OpaqueType+ ExpressionBase
+ PrimitiveTypeWithSemantics+ Invariant
+ Range+ PropertyContainer
+ StringType+ PropertyEvaluator

Namespace
Infrastructure::

ARPackage

+ Datatype+ PropertyPrototype
+ PrimitiveType+ SystemInvariant

(from GenericStructure)
+ IntegerType

MyAUTOSARProfile
Components

+ Characteristic
+ SensorActuatorSoftwareComponentType
+ ComponentType
+ AtomicSoftwareComponentType
+ PPortPrototype
+ PortPrototype
+ RPortPrototype

(from SWComponentTemplate)

Composition

+ AssemblyConnectorPrototype
+ ComponentPrototype
+ CompositionType
+ DelegationConnectorPrototype
+ ConnectorPrototype

(from SWComponentTemplate)

PortInterface

+ PortInterface
+ ClientServerInterface
+ SenderReceiverInterface
+ DataElementPrototype
+ OperationPrototype
+ ArgumentPrototype

(from SWComponentTemplate)

+ RealType
+ CharType
+ ArrayType
+ RecordType

(from Datatype)Constants

+ BooleanConstant
+ CharConstant

«import»
«import»«import»

+ Constant
+ ConstantArray

«import»+ ConstantPrimitive
«import»

+ ConstantRecord
+ NumericConstant
+ OpaqueConstant
+ StringConstant

(from Datatype)

ApplicationAttributes

«import»«import»

«import»

+ ExtAnnotation
+ PortAnnotation
+ ReceiverAnnotation
+ SenderAnnotation
+ SenderReceiverAnnotation

(from SWComponentTemplate)

Figure 8-1: Sample AUTOSAR template subset for software components.

8.3.2 Attaching Constraints

Frequently there is need to attach additional constraints to the created subset, for
instance to:

• restrict the allowed range of an attribute value, possibly to a single fixed value,
or to

• constrain multiplicity.
Those constraints can then be attached to the subset package, as is shown below.

66 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

67 of 78 AUTOSAR_TemplateModelingGuide

 - AUTOSAR confidential -

8.3.2.1 Attribute Value Constraints

To constrain the values of a certain attribute (which in this context refers to a direct
attribute of a meta class), simple OCL expressions can be used [5]. For instance if a
class PortInterface is part of the subset, its attributes isService needs to be removed,
the following expression will do the job:
context PortInterface
 inv: isService = false

This defines an invariant in the context of metaclass PortInterface, demanding that
for a valid model the isService flag must be false. This effectively removes the
attribute from the remaining model in a defined way.
If instead of fixed attributes the range needs to be constrained, a similarly simple
expression can be used. For example three kinds of directions are allowed for a class
ArgumentPrototype, namely in, out and inout. If the reference like direction inout
needs to be disallowed, the following expression can be used:
context ArgumentPrototype
 inv: (direction = in) or (direction = out)

Alternatively, the following statement can be used:
context ArgumentPrototype
 inv: direction <> inout

Obviously, the two alternatives are only equivalent if the original set of allowed values
equals 3.

8.3.2.2 Multiplicity constraints

Very similar constraints on multiplicity of attributes and roles can be written. For
instance if we have a class ComponentType which aggregates another class through
the role name ports with original cardinality “*”, but the subset is supposed to restrict
the allowed number of ports to less or equal 5 (for whatever reason), then this can be
written like so:
context ComponentType
 inv: ports->size() <= 5

If an attribute or a role in the original metamodel has an upper multiplicity greater 1,
the corresponding OCL type is called a collection. OCL defines a set of predefined
operations that can be applied to collections and size() is one of them, returning the
number of elements in the collection.

8.3.2.3 Location of constraints

Since the original metamodel is not supposed to be changed by the definition of a
new element subset and the constraints defined for it, those constraints must not be
attached to the actually constrained model elements.
With the context keyword of OCL it is possible to write constraints almost anywhere
in and even outside of the model, e.g. in a separate document. A logical place for the
constraints of a newly defined subset is the subset package itself. This way the
constraints can still be kept in the model.

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

68 of 78 Document ID 121:AUTOSAR_TemplateModelingGuide
 - AUTOSAR confidential -

The following example shows how this could look for the subset and the three
constraints defined above.

MyAUTOSARSubset

context ComponentType
 inv: ports->size() <= 5

context ArgumentPrototype
 inv: direction <> inout

context PortInterface
 inv: isService = false

Figure 8-2: Constraints can be attached to the defined subset.

Note that Enterprise Architect provides a feature that allows linking the text in a UML
note to a feature of the annotated element, which can be used to implement single
source constraints10, since it is updated as soon as the element feature is changed.
[ATPS-50] Subsets of AUTOSAR template models MUST be defined using the

specified notation.

10 Right click on the note link between the note and the annotated element and select “Link this note to en
element feature”. There, select the feature type “Constraint” and lastly the constraint to show.

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

69 of 78 AUTOSAR_TemplateModelingGuide

9 Specification Items
All specification items given in this document are briefly listed in this section to allow
referencing them from other AUTOSAR documents as well as systematic checking
for model compliance.
[ATPS-01] Template models MUST be expressed in form of UML class diagrams.
[ATPS-02] Template models MUST be unambiguous.
[ATPS-03] Model documentation and element names MUST be written in US

English.
[ATPS-04] Model elements MUST follow the specified naming conventions.
[ATPS-05] Diagram names MUST follow the specified naming conventions.
[ATPS-06] Class names MUST be unique within the combined set of all class

names in the template model.
[ATPS-07] All elements in model MUST be public.
[ATPS-08] Redefinition of model elements MUST NOT be used.
[ATPS-09] Packages imports MUST NOT be used to put model elements in scope.
[ATPS-10] Package merges MUST NOT be used.
[ATPS-11] Classes MUST NOT have operations.
[ATPS-12] Classes MUST be marked abstract if they are not intended to be

instantiated on M1.
[ATPS-13] Template class attributes and association roles MUST NOT be defined

static (UML default).
[ATPS-14] Regular class attributes MUST be typed. The only possible exception is

when modeling enumerations.
[ATPS-15] Attributes MUST NOT be defined readonly (UML default), i.e. no fixed

attributes are allowed.
[ATPS-16] Attributes MUST be defined unique (UML default.
[ATPS-17] Attributes MUST not be derived from other attributes.
[ATPS-18] Default values MUST NOT be defined for attributes.
[ATPS-19] Enumerations MUST be modeled as explicit classes with a public

attribute for each literal.
[ATPS-20] The primitive types from UML have been extended by two new types

Float and Identifier, which MAY be used.
[ATPS-21] An Identifier name MUST NOT exceed 32 characters.
[ATPS-22] The characters used for an Identifier MUST be consistent with the rules

given in Table 9: Constraints on an Identifier.
[ATPS-23] Primitive types and enumerations MUST be used by a class in form of

direct class attributes.
[ATPS-24] Classes MUST NOT be used in form of direct class attributes but are

always referenced through an association.
[ATPS-25] Aggregations MUST either be of type none or composite. Aggregation

type shared MUST NOT be used.
[ATPS-26] Attribute subsets MUST NOT be used.
[ATPS-27] Opposite attributes MUST NOT be defined.
[ATPS-28] For template classes representing a type, stereotype <<atpType>>

MUST be used.
[ATPS-29] For template classes representing a prototype, stereotype

<<atpPrototype>> MUST be used.
[ATPS-30] Associations MUST not be named.
[ATPS-31] Associations MUST be binary.

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

[ATPS-32] Associations MUST have exactly one non-navigable end.
[ATPS-33] Every prototype MUST refer to its defining type via an association typed

<<isOfType>>.
[ATPS-34] The <<isOfType>> association MUST be used only to refer from an

atpPrototype to an atpType.
[ATPS-35] The target cardinality of an <<isOfType>> association MUST be one.
[ATPS-36] When referring to an instance of a prototype – and not to its definition in

another enclosing type – an association stereotyped <<instanceRef>>
MUST be used.

[ATPS-37] The source end of an <<instanceRef.context>> or
<<instanceRef.target>> association MUST be a class with the stereotype
<<instanceRef>>.

[ATPS-38] The target end of an <<instanceRef.context>> association MUST be an
atpPrototype.

[ATPS-39] Constraints MUST be expressed in OCL (preferred), Java or informal
text.

[ATPS-40] Dependencies MAY be used. They MUST be used either without
stereotype, or MUST be stereotyped <<import>> or <<instanceRef>>.

[ATPS-41] Associations (with composite or no aggregation) MUST comply with the
specified rules with respect to use of names, cardinality and
documentation.

[ATPS-42] Constraints MUST be put into the model at the specified locations.
[ATPS-43] Constraints MUST be formatted as specified.
[ATPS-44] The list of stereotypes given in MUST be observed with respect to

which stereotypes are required to be given in model (explicit) and which
are optional (implied).

[ATPS-45] Additional stereotypes MUST NOT be defined.
[ATPS-46] Stereotypes of base classes MAY be omitted for derived classes. This

is true even for enforced stereotypes.
[ATPS-47] Platform specific (e.g. XML specific) model information MAY be added

to the model in form of tagged values only.
[ATPS-48] Referenced classes (at the target end of an association) MUST be

derived from class Identifiable.
[ATPS-49] When representing continuous physical quantities in template models

(in form of class attributes), SI units and datatytpe Float MUST be used.
[ATPS-50] Subsets of AUTOSAR template models MUST be defined using the

specified notation.
[ATPS-51] Enumeration names MUST be unique, also with respect to names of

existing regular classes.
[ATPS-52] Attribute and role names MUST be given in singular form, even if the

corresponding cardinality is greater 1.
[ATPS-53] For all elements which are marked with the stereotype <<splitable>>

there MUST exist a containment path to the root element where all
navigated containments are stereotyped by <<splitable>>.

70 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

71 of 78 AUTOSAR_TemplateModelingGuide

10 Appendix

10.1 Design Rationales (informative)

This section will list the different design decisions applied throughout this
specification.

10.1.1 Choice of Metamodeling Mechanism

One of the design goals of this specification is that existing and widely accepted
modeling standards MUST be incorporated, namely the various mechanisms of UML.
Within this restriction the following approaches for the definition of a specialized
metamodel for AUTOSAR templates have been analyzed.

10.1.1.1 Instantiation of MOF Entities

In this approach the new metamodel is an instance of MOF, therefore lives in parallel
and in particular independently of UML, which is also an instance of MOF, as shown
in Figure 10-1. While almost any kind of metamodel can be built with MOF the
independency of UML is problematic in terms of tool support.
The number of UML modeling tools is constantly growing and professional tools exist
today. If however peculiar meta constructs are modeled, a standard UML tool may
very well not be able to express models built on those constructs [13].
There are tools that span two metalevels (e.g. GME [14], which was used in the ITEA
EAST-EAA project [15]), therefore allowing to build metamodel and subsequent user
models, but today the number, quality and commercial applicability of those tools is
questionable.

MOF

UML AUTOSARTemplateMetaModel

«instanceOf»«instanceOf»

Figure 10-1: AUTOSAR template model as MOF instance.

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

10.1.1.2 Instantiation of UML Entities

This is a very similar approach to what has been described above, just that UML
constructs are used to build the metamodel. While on a different metalevel (see
Figure 10-2), the problems are the same, namely missing tool support.

UML

MOF

«instanceOf»

AUTOSARTemplateMetaModel

«instanceOf»

Figure 10-2: AUTOSAR template model as UML instance.

10.1.1.3 Extending UML through UML Profiles

Unlike the approach in 10.1.1.2, where UML is instantiated to create a new
metamodel on a lower metalevel, a UML profile extends UML on the same metalevel
by basically adding new metaclasses (see Figure 10-3).
The profile mechanism is designed in such a way that a model built with it is still a
valid UML instance. This requirement limits the additions a profile can bring to an
existing metamodel:

• New metaclasses that extend existing metaclasses. Those new metaclasses
are called stereotypes.

• Stereotypes must not define additional attributes, but only own the attributes
that the extended metaclass already has11.

• Additional constraints on the model, e.g. fixed values for certain class
attributes or restricted ranges for values and cardinalities.

For a detailed introduction into UML profiles see [13] as well as the formal
specification by OMG [2].

72 of 78 Document ID 121:
 - AUTOSAR confidential -

11 A common workaround for this limitation is the use of tagged values, not explicitly explained here.

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

73 of 78 AUTOSAR_TemplateModelingGuide

While the modification options of a profile are limited by the aforementioned
requirement, this at the same time has the extreme advantage that profiled models
can be built, exchanged and visualized by standard UML tools and even further
processed by any UML (or XMI [4] for that matter) toolchain.
Besides the technical advantage of finding ready-to-use toolchains when applying the
UML profile mechanism, there is also a political advantage: it will be much easier to
defend a metamodel that is built on standard UML with has been extended through
standard mechanisms instead of a metamodel that is built from scratch.

MOF 2.0

«instanceOf»

«profile»
AUTOSARTemplateProfile

UML 2.0

«import»

Figure 10-3: AUTOSAR template model as UML profile.

10.1.1.4 Templates as Direct UML Profiles

Just for completeness this fourth approach is also mentioned here: it is theoretically
also possible to abandon the explicit templating metamodel and create the actual
AUTOSAR template directly as UML profiles. This would e.g. lead to stereotypes
called “software component”, “port” and “interface” in case of the software component
template.
The major disadvantage – besides asking template modelers to become proficient in
handling UML profiles – is that for instance all associations between the stereotypes
need to be derived from existing associations. Since those existing associations are
very general (associating any number of classes), the particular attributes of
relations, namely cardinality, which classes can be connected and aggregation type
would need to be captured in form of constraints on the general association.
This makes this approach basically unmanageable.

10.1.1.5 Conclusion

For the reasons given above, alternative 10.1.1.3 Extending UML has been chosen.

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

10.1.2 Modeling Prototype Attributes

The semantics of the IsOfType association from atpPrototype to atpType implies that
if an instance of atpType has a certain attribute (either in form of an atpAttribute, or
through a atpAssociation), a corresponding attribute is available on the respective
atpPrototype.
E.g., taken from the metamodel described in [18], if a software component type has
ports, then obviously one expects a corresponding software component prototype to
also expose ports.
Frequently, those attributes need to be referred to in the model, e.g. a connector will
need to connect the ports of component prototypes instead of connecting the ports of
reusable, unconnected component types!
Two options have been analyzed to allow this, which are discussed in the following
sections.

10.1.2.1 Explicit Prototype Attributes

This is the most straight-forward approach. To stick with the above example: if
component types have ports, then also component prototypes need to have ports
modeled. A semantic constraint needs to then make sure that the two port sets are
consistent, as shown in Figure 10-4.

«ARType»
ComponentType

«ARPrototype»
ComponentPrototype +prototype +type

«isOfType»

«ARPrototype»
PortPrototype

«ARPrototype»
PortPrototype2

«Invariant»
{"ports of component prototype
type must be consistent with
ports of corresponding type"}

«ARPrototype»
ConnectorPrototype

+port 2

+port *

* 1

+port *

+port

2

«instanceRef»

Figure 10-4: Alternative of prototypes having explicitly modeled attributes.

The definitive advantage of such an approach is how easy it is to understand. The
major disadvantage is that if a metamodel (like the AUTOSAR templates) contains
many kinds of types and prototypes, then large portions of the model will be
duplicated, at least in terms of attributes and associations (similar as to how in the
above example ComponentPrototype now also has an composite aggregation of
ports, which is not in the original model).

74 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

75 of 78 AUTOSAR_TemplateModelingGuide

10.1.2.2 InstanceRef

Another approach is to specialize associations to instances through a new stereotype
<<instanceRef>>, which simply implies the semantics of what is explicitly modeled
and constrained in the previous section.
This means that no explicit prototype attributes are modeled unless they are really
attributes of the prototype only, not also of the referenced type. The example would
then look like .

«ARType»
ComponentType

«ARPrototype»
ComponentPrototype +prototype +type

«isOfType»

«ARPrototype»
PortPrototype

«ARPrototype»
ConnectorPrototype

* 1

+port *

«instanceRef»

+port 2

Figure 10-5: Reference to prototype instances through a instanceRef association.

10.1.2.3 Conclusion

It was decided to go with the latter alternative to keep template models as simple as
possible. This knowingly shifts the difficulty to the evaluating tool chain which needs
to implement the described InstanceRef semantics.

10.1.3 AUTOSAR Subset Modeling

In this section the disadvantages of other approaches leading to template subsets
(see 8.3) are listed.

10.1.3.1 Tagged values

An option that was originally discussed is the application of tagged values. Every
UML model element, including the AUTOSAR metaclasses, allows for adding so-
called tagged values, consisting of simple key-value pairs.

 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

While less trivial keys are certainly possible, a simple approach would be the addition
of a tagged value like the following to indicate a model element is in fact part of a
certain profile:
PART-OF-PROFILE-XY = TRUE

Tools can then check the model for the existence of the corresponding tag and deal
with it appropriately.
There are a number of disadvantages of this approach:

• By adding tagged elements to a meta class, the meta class is in fact modified.
This is problematic. In fact, in a version-controlled environment a new revision
of the meta class would need to be committed just because a new profile was
defined.

• Tagged values are inherently text-based. This means that tools may be able to
display them in UML diagrams, but whether a tool is able to filter by tagged
values is questionable (EA is not). This means that in case tagged values are
shown, the tagged values for all profiles and all other tagged values are shown
for all classes in the diagram. This gets messy very fast.

10.1.4 Stereotypes vs. Tagged Values

Frequently, when mapping the metamodel to a specific platform like XML, modelers
are quick to invent new stereotypes expressing platform specifics, e.g. that a
container class in the model should result in an XML or-group.
As there is some ambiguity to adding a stereotype to a class or alternatively adding a
(Boolean) tagged value to express membership, we have the following findings:

• A stereotyped class is essentially an instance of a metaclass in the underlying
metamodel.

• As this profile is intended to be target platform independent (comparable to a
PIM in MDA [23]), the instantiated metamodel and therefore the defined
stereotypes are also always platform independent.

• Platform dependent information is expressed in form of tagged values.
• The tags available are defined in the persistence rule document for a specific

target platform.

10.2 References

In this section the references used in this specification are listed. They are separated
into normative and non-normative (informative) references.

10.2.1 Normative References

[1] Unified Modeling Language: Superstructure, Version 2.0, OMG Adopted
Specification, ptc/03-08-02.

[2] UML 2.0 Infrastructure Specification, OMG Adopted Specification, ptc/03-09-
15.

[3] Meta Object Facility (MOF) 2.0 Core Specification, OMG Adopted
Specification, ptc/03-10-04.

76 of 78 Document ID 121:
 - AUTOSAR confidential -

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

77 of 78 AUTOSAR_TemplateModelingGuide

[4] UML 2.0 Diagram Interchange Specification, OMG Adopted Specification,
ptc/03-09-01.

[5] UML 2.0 OCL Specification, OMG Adopted Specification, ptc/03-10-14.
[6] Key words for use in RFCs to Indicate Requirement Levels. Network Working

Group, S. Brandner, Harvard University, 1997.
(http://www.ietf.org/rfc/rfc2119.txt).

[7] ISO/IEC 14977:1996: Extended BNF, freely available at
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER
=26153

[8] Requirements on Interoperability of Authoring Tools,
https://svn2.autosar.org/repos2/22_Releases/,
AUTOSAR_RS_InteroperabilityAuthoringTools.pdf

[9] Specification of Interoperability of Authoring Tools,
https://svn2.autosar.org/repos2/22_Releases/,
AUTOSAR_InteroperabilityAuthoringTools.pdf

[10] Guide to the SI, with a focus on usage and unit conversions: NIST Special
Publication 811, 1995 Edition, by Barry N. Taylor. Guide for the Use of the
International System of Units (SI).

[11] Guidelines for the Use of the C Language in Critical Systems (“MISRA C
Guidelines”), ISBN 0-9524156-2-3, October 2004.

10.2.2 Informative References

[12] UML 2 Toolkit. H.-E. Eriksson, M. Penker, B. Lyons, D. Fado, OMG Press,
Wiley Publishings, Indianapolis, 2004.

[13] An Introduction to UML Profiles. L. Fuentes, A. Vallecillo, Universidad de
Málaga, Spain, 2003. (http://se2c.uni.lu/tiki/se2c-bib_download.php?id=1421).

[14] The Generic Modeling Environment,
http://www.isis.vanderbilt.edu/Projects/gme/

[15] ITEA EAST-EAA, Embedded Electronic Architecture,
http://www.east-eea.net/start.asp

[16] UML 2 glasklar. M. Jeckle, C. Rupp, J. Hahn, B. Zengler, S. Queins, Carl
Hanser Verlag, München, 2004.

[17] What is metamodeling and what is it good for? metamodel.com, 2002.
(http://www.metamodel.com/staticpages/index.php?page=2002101023105697
7)

[18] Software Component Template,
https://svn2.autosar.org/repos2/22_Releases/,
AUTOSAR_SoftwareComponentTemplate.pdf

[19] Model Persistence Rules for XML,
https://svn2.autosar.org/repos2/22_Releases/,
AUTOSAR_ModelPersistenceRulesXML.pdf.

[20] MSR-SW Element Attribute Documentation V2.2.2. (http://www.msr-
wg.de/medoc/download/)

[21] Definition of term “First-class object”, Wikipedia.
(http://en.wikipedia.org/wiki/First-class_object)

[22] Sparx Systems homepage: http://www.sparxsystems.com.au
[23] MDA Guide Version 1.0.1, OMG Document, omg/03-06-01

 - AUTOSAR confidential -

http://www.ietf.org/rfc/rfc2119.txt
http://www.nist.fss.ru/hr/doc/mstd/iso/14977-96.htm
http://www.nist.fss.ru/hr/doc/mstd/iso/14977-96.htm
http://www.nist.fss.ru/hr/doc/mstd/iso/14977-96.htm
https://svn2.autosar.org/repos2/22_Releases/
https://svn2.autosar.org/repos2/22_Releases/
http://se2c.uni.lu/tiki/se2c-bib_download.php?id=1421
http://www.isis.vanderbilt.edu/Projects/gme/
http://www.east-eea.net/start.asp
http://www.metamodel.com/staticpages/index.php?page=20021010231056977
http://www.metamodel.com/staticpages/index.php?page=20021010231056977
https://svn2.autosar.org/repos2/22_Releases/
https://svn2.autosar.org/repos2/22_Releases/
http://www.msr-wg.de/medoc/download/
http://www.msr-wg.de/medoc/download/
http://en.wikipedia.org/wiki/First-class_object
http://www.sparxsystems.com.au/

 Template UML Profile and Modeling Guide
 V2.2.0

R3.0 Rev 0001

AUTOSAR_TemplateModelingGuide

[24] Template Modeling Patterns,
https://svn2.autosar.org/repos2/22_Releases/,
AUTOSAR_TemplateModelingPatterns.pdf.

78 of 78 Document ID 121:
 - AUTOSAR confidential -

https://svn2.autosar.org/repos2/22_Releases/

	1 Introduction
	1.1 Origins and Goals
	1.2 Document Guide
	1.3 Terminology
	1.3.1 Terms
	1.3.2 UML Diagrams
	1.3.3 Profile Classes
	1.3.4 Specification Items

	2 Requirements Traceability
	3 AUTOSAR Template Models at a Glance (informative)
	3.1 Scope
	3.2 Usage of Packages
	3.3 Classes and Attributes
	3.4 Enumerations
	3.5 Associations and Composite Aggregations
	3.6 Dependencies
	3.7 Types and Prototypes
	3.8 Structure Elements
	3.9 Constraints
	3.10 Metamodel Evolution

	4 Alignment with UML and MOF
	5 UML Profile for AUTOSAR Templates
	5.1 Supported Modeling Constructs
	5.2 UML Profile Specification
	5.2.1 Classes
	5.2.2 Class Attributes
	5.2.3 Mixed Content
	5.2.4 Types, Prototypes, and Structure Elements
	5.2.5 Associations
	5.2.6 IsOfType Association
	5.2.7 IndexedRef Association
	5.2.8 InstanceRef Association
	5.2.8.1 Detailed Representation of InstanceRef Association
	5.2.8.2 Short Representation of InstanceRef Association
	5.2.8.4 Constraints on instanceRef associations

	5.2.9 Constraints
	5.2.10 Dependencies
	5.2.11 Packages
	5.2.12 Primitive Types
	5.2.13 Enumerations
	5.2.14 Tagged Values
	5.2.15 Splitable attributes, associations and aggregations

	5.3 Summary

	6 Conventions
	6.1 Naming Conventions
	6.1.1 Language
	6.1.2 Model Element Names
	6.1.3 Class Names
	6.1.4 Diagram Names

	6.2 Modeling Conventions
	6.2.1 Unambiguous Models
	6.2.2 Abstract Classes
	6.2.3 Enumerations
	6.2.4 Class Attributes vs. Associations
	6.2.5 Physical Quantities
	6.2.6 Modeling Aggregations and Associations in Enterprise Architect
	6.2.7 Constraints in Metamodel
	6.2.7.1 Context Class
	6.2.7.2 Entering Information

	6.2.8 Implicit & Explicit Stereotypes

	7 Template Model Infrastructure
	7.1 Overview
	7.2 Packaging
	7.3 Identifiable Classes

	8 AUTOSAR Template Subsets
	8.1 Goal
	8.2 Related concepts
	8.3 Subset Notation
	8.3.1 Importing Classes
	8.3.2 Attaching Constraints
	8.3.2.1 Attribute Value Constraints
	8.3.2.2 Multiplicity constraints
	8.3.2.3 Location of constraints

	9 Specification Items
	10 Appendix
	10.1 Design Rationales (informative)
	10.1.1 Choice of Metamodeling Mechanism
	10.1.1.1 Instantiation of MOF Entities
	10.1.1.2 Instantiation of UML Entities
	10.1.1.3 Extending UML through UML Profiles
	10.1.1.4 Templates as Direct UML Profiles
	10.1.1.5 Conclusion

	10.1.2 Modeling Prototype Attributes
	10.1.2.1 Explicit Prototype Attributes
	10.1.2.2 InstanceRef
	10.1.2.3 Conclusion

	10.1.3 AUTOSAR Subset Modeling
	10.1.3.1 Tagged values

	10.1.4 Stereotypes vs. Tagged Values

	10.2 References
	10.2.1 Normative References
	10.2.2 Informative References

