
 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

1 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

Document Title Applying Simulink to AUTO-
SAR

Document Owner AUTOSAR GbR
Document Responsibility AUTOSAR GbR
Document Identification No 185
Document Classification Auxiliary

Document Version 1.0.4
Document Status Final
Part of Release 3.0
Revision 0001

Document Change History
Date Version Changed by Change Description
31.10.2007 1.0.4 AUTOSAR

Administration
• Document meta information extended
• Small layout adaptations made

24.01.2007 1.0.3 AUTOSAR
Administration

• “Advice for users” revised
• “Revision Information” added

04.12.2006 1.0.2 AUTOSAR
Administration

Legal disclaimer revised

28.06.2006 1.0.1 AUTOSAR
Administration

Layout Adaptations

28.04.2006 1.0.0 AUTOSAR
Administration

Initial release

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

2 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

Page left intentionally blank

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

3 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

Disclaimer

Any use of these specifications requires membership within the AUTOSAR Devel-
opment Partnership or an agreement with the AUTOSAR Development Partnership.
The AUTOSAR Development Partnership will not be liable for any use of these speci-
fications.

Following the completion of the development of the AUTOSAR specifications com-
mercial exploitation licenses will be made available to end users by way of written
License Agreement only.

No part of this publication may be reproduced or utilized in any form or by any
means, electronic or mechanical, including photocopying and microfilm, without per-
mission in writing from the publisher.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Copyright © 2004-2006 AUTOSAR Development Partnership. All rights reserved.

Advice to users of AUTOSAR Specification Documents:

AUTOSAR Specification Documents may contain exemplary items (exemplary refer-
ence models, "use cases", and/or references to exemplary technical solutions, de-
vices, processes or software).
Any such exemplary items are contained in the Specification Documents for illustra-
tion purposes only, and they themselves are not part of the AUTOSAR Standard.
Neither their presence in such Specification Documents, nor any later documentation
of AUTOSAR conformance of products actually implementing such exemplary items,
imply that intellectual property rights covering such exemplary items are licensed un-
der the same rules as applicable to the AUTOSAR Standard.

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

4 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

Table of Contents

1 Introduction.. 6
1.1 Related Documents ... 6
1.2 Terminology ... 6
1.3 Scope... 7

1.3.1 In Scope ... 7
1.3.2 Out of Scope... 8

1.4 Document Overview... 8

2 Mapping of AUTOSAR software components to Simulink 9
2.1 AUTOSAR Concepts / Simulink Concepts... 9
2.2 AtomicSoftwareComponentType ..11

2.2.1 Canonical Pattern ... 12
2.2.1.1 Current Limitations .. 12

2.2.2 AUTOSAR Ports ... 13
2.2.3 Sender/Receiver Interface (SenderReceiverInterface) 14
2.2.4 Client/Server Interface (ClientServerInterface) 16
2.2.5 Sensor Actuator Software Component ... 17

2.2.5.1 Simulation.. 17
2.2.5.2 Code Generation ... 19

2.2.6 Services.. 19
2.2.6.1 Simulation.. 19
2.2.6.2 Code Generation ... 20

2.3 Modeling Runnables Explicitly ..20
2.3.1 Canonical Pattern ... 20
2.3.2 Code Generation Layout... 21
2.3.3 Communication Modes of Sender-Receiver Communication 23

2.3.3.1 Code Generation ... 23
2.3.3.2 Simulation.. 24

2.3.4 Inter Runnable Communication .. 24
2.3.4.1 Code Generation ... 24
2.3.4.2 Simulation.. 24

2.3.5 Exclusive Areas .. 25
2.3.5.1 Code Generation ... 26

2.3.6 Sensor Actuator Component Runnables .. 26
2.3.6.1 Code Generation ... 27
2.3.6.2 Simulation.. 27

2.3.7 Runnables That Access Services ... 28
2.3.8 Complex Runnables ... 29

2.3.8.1 Annotations.. 29
2.3.9 Communication Specification – ComSpec.. 31

2.3.9.1 ComSpec – initValue (Receive and Send) 32
2.3.9.2 ComSpec – Acknowledgement Request and timeout (Send).......... 32
2.3.9.3 Code generation .. 32
2.3.9.4 Simulation.. 32
2.3.9.5 ComSpec – canInvalidate (Send) .. 32

2.3.10 DataElement Filter (Receive).. 33
2.3.10.1 Code generation .. 33
2.3.10.2 Simulation.. 33

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

5 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

- AUTOSAR Confidential -

2.4 Compositions ..34
2.4.1 Canonical Pattern ... 34

2.5 The Use of Types and Prototypes in AUTOSAR ..35
2.5.1 Modeling one Software component .. 35
2.5.2 Modeling several Software components ... 36

2.5.2.1 Simplification ... 36
2.6 Communication between Atomic Software-Components37
2.7 Datatypes, Constants and Parameters ...38

2.7.1 Datatypes ... 38
2.7.1.1 Primitive Datatypes in AUTOSAR.. 38
2.7.1.2 Composite Datatypes in AUTOSAR .. 38

2.7.2 Characteristics .. 39

3 RTE Simulation ... 40
3.1 Basic Mechanism..40
3.2 Modeling Runnables for Sender Receiver Communication.............................41

3.2.1 Sender Receiver Communication ... 41
3.3 Modeling Runnables for Client Server Communication...................................44

3.3.1 Client Server Communication – Client Model ... 44
3.3.1.1 Synchronous Client Server Communication 44
3.3.1.2 Asynchronous Client Server Communication 45

3.3.2 Client Server Communication – Server Model .. 46
3.3.2.1 Simulation.. 46
3.3.2.2 Code generation .. 46

3.3.3 Client Server Communication – Software Component View................... 47
3.4 Modeling distributed functional networks – Simulation of Communication

Delays ..48
3.5 Simulation of Communication Specification – ComSpec49

3.5.1 ComSpec – initValue .. 49
3.5.2 ComSpec – Acknowledgement Request .. 49

3.5.2.1 ComSpec – canInvalidate.. 50
3.5.3 DataElement Filter .. 50

4 References .. 51
4.1 Normative References to AUTOSAR documents ...51
4.2 Normative References to Non-AUTOSAR documents....................................53

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

6 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

1 Introduction
Model-Based Design with Simulink [15] has become a very common approach to de-
signing and implementing embedded software systems, particularly embedded con-
trol. This document explores how AUTOSAR concepts are mapped to equivalent
Simulink concepts in order to make use of Model-Based Design techniques for
AUTOSAR.

1.1 Related Documents

The following documents are related to this Styleguide:
• This Simulink Styleguide is based on the “Specification of Interaction with Be-

havioral Models” [3], which is independent of particular behavior modeling tools.
In the specification general use cases and requirements for mapping AUTOSAR
modeling elements to behavior models and vice versa are defined. In the center
this specification identifies the parts of the overall AUTOSAR meta-model [4],
which are relevant to Behavior Modeling.

• The “Specification of Feature Definition of Authoring Tools” [12] gives a rec-
ommendation for a stepwise implementation of the overall AUTOSAR concept with
respect to the interchange descriptions, namely the Software-Component Tem-
plate [5], the ECU Resource Template [11] and the System Template [10]. As the
basis for a first implementation, a subset (corresponding to the definition of fea-
tures) of the AUTOSAR templates mentioned above for a first implementation of
AUTOSAR authoring tools is defined.

• The “Specification of Interoperability of Authoring Tools” [8] emphasizes on
issues that might come up when exchanging AUTOSAR models between different
tools. After describing some basic concepts of data exchange the document
sketches strategies on how these issues can be resolved. Requirements on
AUTOSAR Authoring Tools for ensuring interoperability are defined.

• The “Specification of graphical Notation” [12] defines the graphical AUTOSAR
notation for AUTOSAR Authoring Tools. For example, the document provides a
comprehensive schema for graphically modeling Software components. The
graphical notation should be used as a guideline for implementing AUTOSAR Au-
thoring Tools.

1.2 Terminology

In this section the terminology as used throughout this document is defined. The
definitions are to some extend specific for the scope of AUTOSAR and especially for
this deliverable. Common use of these terms, however, is taken into account as far
as possible:
• An Authoring Tool is an AUTOSAR tool operating on any form of AUTOSAR

models describing systems (software component, ECU hardware, network topol-
ogy and system constraint descriptions). It is regarded to be a design entry tool for
AUTOSAR descriptions according to the respective templates. Typical functions
may include creating, retrieving, modifying, validating and storing such descrip-
tions. An authoring tool may provide a tool specific language or notations for the
design entry, typically used as the expressive language at the tool’s user interface.

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

7 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

- AUTOSAR Confidential -

These languages might differ from those used for AUTOSAR standard description
formats. E.g. a graphical behavior modeling tool could be used to edit a software
component description, stored as an XML file according to the software compo-
nent template. Being an authoring tool is thus more a dedicated role of a tool than
a classification of a tool itself.

• AUTOSAR Model is a generic expression for any kind of representation of in-
stances of the AUTOSAR meta model. It might be a set of files in a file system, an
XML stream, a database or memory used by some running software, etc.

• AUTOSAR Tools are software tools that may occur within the AUTOSAR meth-
odology and support interpreting, processing and/or creating of AUTOSAR mod-
els.

• Behavior is used in two ways in AUTOSAR. On the one hand, behavior is used as
an abbreviation for InternalBehavior – to describe the scheduling relevant
aspects of a software component. On the other hand, behavior is a common con-
trol engineering term used to identify the functional input/output relation of a con-
trol design over time. Throughout this document the term behavior and combina-
tions of this term like behavior models should be understood in this control engi-
neering interpretation.

• A Behavior Modeling Tool (BMT) is used to edit a functional behavior model in a
functional behavior modeling language.

1.3 Scope

This document is concerned with describing the elements that constitute an AUTO-
SAR software component in Simulink. Given this “mapping” of the component struc-
ture it is possible to use Simulink to describe the behavior of individual control mod-
ules, for application with a code generator to create implementations that are harmo-
nized with the AUTOSAR RTE, and to create system wide simulators of the entire
ECU network and physical environment.
In this document, Simulink will be considered in the role of a behavior modeling tool
rather than an AUTOSAR authoring tool.

1.3.1 In Scope

The following items are considered in scope for this document:

• Mapping of the AUTOSAR meta-model relevant for behavior modeling, as de-
fined in “Interaction with Behavior Models” document [3], to Simulink.

• Use of features that are present in MATLAB/Simulink/Stateflow R2006a [15]
• A description of how to generate application code that is harmonized with the

AUTOSAR RTE layer.
• A description of how to create a simulation of the AUTOSAR software envi-

ronment.
• The use of client/server communication for software component to AUTOSAR

services communication and sensor actuator software component to ECU ab-
straction communication.

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

8 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

1.3.2 Out of Scope

The following items are considered out of scope for this document:

• A description of how AUTOSAR xml files should be im-
ported/modified/exported from Simulink.

• The use of client/server communication mechanism for software component to
software component communication (excluded from the meta-model relevant
for behavior modeling, as defined in “Interaction with Behavior Models” docu-
ment [3]).

• A description of how to model category 2 runnables.

1.4 Document Overview

The document is structured as follows: Chapter 2 contains the mapping of AUTOSAR
software component meta-classes to their Simulink constructs and details the strat-
egy for generating implementations that are harmonized with the AUTOSAR RTE.
Chapter 3 highlights simulation aspects that are relevant for system-wide modeling
not least the modeling of distributed networks of software components.

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

9 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

- AUTOSAR Confidential -

2 Mapping of AUTOSAR software components to Simulink

2.1 AUTOSAR Concepts / Simulink Concepts

As this document may be read by Simulink users who are not so familiar with AUTO-
SAR concepts, Table 1 summarizes the key mappings between AUTOSAR concepts
and their proposed Simulink concepts.

AUTOSAR
Concept

AUTOSAR Description [1]
[4]

Simulink Concept Document
Section

Atomic Software
Component

Smallest non-dividable software
entity, connected to the AUTO-
SAR Virtual Functional Bus,
relocatable [1].

Can be represented as any type
of subsystem (virtual & non-
virtual) and also by a model.

NB. AUTOSAR’s notion of
atomic is not to be confused with
a Simulink atomic subsystem.

2.2

P-Port

Provide-Port

Specific Port providing data or
providing a service of a server
[1].

Outport for sender/receiver com-
munication

2.2.2

R-Port

Require-Port

Specific Port requiring data or
requiring a service of a server
[1].

Inport for sender/receiver com-
munication

2.2.2

PortInterface A PortInterface characterizes
the information provided or re-
quired by a port. Can be either
sender/receiver interface or
client/server interface.

Abstract class – no realization in
Simulink.

--

ComSpec ComSpec defines specific com-
munication attributes [4].

Various concepts see sections 2.3.9/3.5

Sender/Receiver
Interface

A sender-receiver interface is a
special kind of port-interface
used for the case of sender-
receiver communication. The
sender-receiver interface de-
fines the data-elements which
are sent by a sending compo-
nent (which has a p-port provid-
ing the sender-receiver inter-
face) or received by a receiving
component (which has an r-port
requiring the sender-receiver
interface) [1].

BusObject and bus selec-
tor/creators

2.2.2

Client/Server
Interface

The client-server interface is a
special kind of port-interface
used for the case of client-
server communication. The cli-
ent-server interface defines the
operations that are provided by
the server and that can be used
by the client [1].

Specific blocks, realizing RTE-
API

2.2.4

Sender Receiver
Annotation

Annotation of the data elements
in a port that realizes a
sender/receiver interface [4].

description field assigned to a
specific DataElementPrototype
inside the Runnable subsystem

2.3.8.1

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

10 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

Sensor Actuator
Software Com-
ponent

AUTOSAR SW-Component
dedicated to the control of a
sensor or actuator [1].

Virtual subsystem

2.2.5

Services An AUTOSAR Service is a logi-
cal entity of the basic software
offering general functionality to
be used by various AUTOSAR
software components [1].

Virtual subsystem

2.2.6

Runnable A Runnable Entity is a part of an
Atomic Software-Component
which can be executed and
scheduled independently from
the other Runnable Entities [1].

Function call subsystem 2.3

RTEEvents An RTEEvent encompasses all
possible situations that can trig-
ger execution of a runnable
entity by the RTE [1].

Function calls 2.3

Exclusive Areas Exclusive Areas prevent run-
nables from being preempted by
other runnables [4].

Atomic subsystem marked as
ExclusiveArea.

2.3.5

Composition Composition encapsulates a
collaboration of Components
thereby hiding detail and allow-
ing the creation of higher ab-
straction levels [1].

Virtual subsystems 2.4

Datatypes AUTOSAR datatypes are either
primitive or complex they are
used to type data-elements,
arguments of the operations in a
client-server interface and con-
stants.

-- 2.7.1

Primitive
Datatype

All primitive datatypes allow an
efficient mapping to program-
ming languages like C

Simulink built-in types 2.7.1.1

Complex data
types

Composite or complex
datatypes are either arrays or
records. An array consists of
numberOfElements elements
that each have the same type,
arrays have zero based index-
ing. A record describes a non-
empty set of objects, each of
which has a unique identifier.

Simulink wide signal for arrays.
Simulink bus signal for records.

2.7.1.2

Characteristics Values of characteristics can be
changed on an ECU via calibra-
tion data management tool or an
offline calibration tool

Overloaded Simulink.Parameter
class suitable for online calibra-
tion.

2.7.2

Table 1: Mapping of AUTOSAR Concepts to Simulink Concepts

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

11 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

2.2 AtomicSoftwareComponentType

In AUTOSAR, application software is organized in independent units, called software
components. Such components hide the implementation of the functionality and be-
havior they provide and simply expose well defined connection points called ports.

In this section, we examine how these software component fundamental meta-
classes can be expressed in Simulink. This section forms the framework for the next
section where the lower level Runnables (RunnableEntity), which are (at least
indirectly) a subject for scheduling by the underlying AUTOSAR operating system,
are expressed in Simulink. This section also forms the framework for the subsequent
section for expressing the higher level AUTOSAR compositions, which allows for en-
capsulation of functionality by aggregating existing software components, in Simulink.

On the level of abstraction of software components, ComponentType, Atomic-
SoftwareComponentType and ComponentPrototype are relevant. The meta-
class ComponentType is an abstract class and as such is not instantiable. Con-
versely the meta-class ComponentPrototype assigns a certain role to a compo-
nent type (eg. a windshield wiper component is assigned the left wiper role and an-
other one the right wiper role). What is salient in behavioral modeling terms is the
AtomicSoftwareComponentType which is the only meta-class to support an im-
plementation and hence runnables.

AtomicSoftwareComponentType is interesting from a Simulink point of view, per-
haps largely due to the prefix atomic, not referring to atomicity in terms of the atomic
execution of Simulink subsystems, but to the fact that this software component can-
not be decomposed to run on more than one ECU and is to be mapped to one
AUTOSAR ECU only.

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

12 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

2.2.1 Canonical Pattern

The canonical pattern for modeling atomic software components in Simulink is shown
in Figure 1.
• An atomic software component type may be modeled as a virtual/non-virtual sub-

system, library block or model. Figure 1 shows atomic software components as vir-
tual subsystems.

• The first inport should be used to route RTEEvents to the software component’s
runnables. Although there is no fundamental reason why all RTEEvents cannot be
routed through one RTEEvent bus and selected within the software component,
generally it is preferred to separate the function calls of the software components,
by bus selectors and creators.

• The rest of the inports (R-Ports) and all of the outports (P-Ports) are responsible to
fulfill the R-Port and P-Port sender/receiver communication of the software com-
ponent.

•

Figure 1: Canonical Pattern for Software Components

2.2.1.1 Current Limitations

Simulink version (R2006a) [15]only supports the propagation of a single function to a
model reference block, thus if an atomic software component requires more than one
RTEEvent (represented as a function call, see Figure 8) a model should not be used
to represent an atomic software component.

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

13 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

2.2.2 AUTOSAR Ports

As mentioned in the introduction to this section, AUTOSAR software components
have well defined interaction points, called ports, to describe the possible kinds of
communication with other software components. This concept should be very familiar
to users of Simulink:
• An AUTOSAR receive port (R-Port), or R-PortPrototype for sender/receiver com-

munication corresponds to a Simulink inport.
• An AUTOSAR provide port (P-Port), or P-PortPrototype for sender/receiver com-

munication corresponds to a Simulink outport.
• The data elements required or provided by these ports are defined by a Sender-
ReceiverInterface. This type of interface however only describes structure
and does not provide information about whether communication needs to be done
reliably, or whether an initial value exists. This is covered by the communication
specification or ComSpec classes.

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

14 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

2.2.3 Sender/Receiver Interface (SenderReceiverInterface)

A port interface defines which information can be exchanged between the ports of
the components by formally describing the names and signatures of data elements
exchanged between components.
A SenderReceiverInterface behaves sufficiently similar to a Simulink BusOb-
ject for this to be the recommended way to express this mechanism in Simulink.
The individual elements that are described by a SenderReceiverInterface are
called data elements (DataElementPrototype) which has a name and a datatype,
which could be a predefined AUTOSAR datatype or a user-defined datatype.
For arguments of extensibility AUTOSAR ports do not necessarily have to refer to the
same SenderReceiverInterface in order to be connected. Rather the port inter-
faces must be “compatible”. These compatibility rules are discussed in depth in [5]
and the salient features are restated here: Two PortInterfaces are compatible if:

• The data elements datatypes are the same or aliases.
• The data elements have the same name.
• For each data element that is required, there exists one compatible data ele-

ment that is provided.
Interfaces describe the static structure of this exchanged information, while the com-
munication relevant dynamic attributes are attached to ports by communication at-
tributes. The SenderReceiverInterface aggregates DataElementPrototypes.
Figure 2 shows the recommended use of BusObject and bus selector/creators in
Simulink to represent port interfaces. The p-port1 of the sender subsystem is vali-
dated against busObject Interface_a. The r-port1 of the receiver subsystem is vali-
dated against busObject Interface_c. A bus selector has been used to show which
data has been provided but in practice this is a redundant block, however the bus
creator is needed to “support” AUTOSAR’s port interface compatibility rules and allow
the receiving subsystem to receive a subset of the data provided by the sender sub-
system. R-Port2 requires the same data elements (not necessarily referencing the
same port interface) as those being provided by P-Port2 hence no bus selector is
needed.

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

15 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

- AUTOSAR Confidential -

Figure 2: Respecting AUTOSAR's interface compatibility rules using a bus creator (not strictly

needed) and a bus selector block.

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

16 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

2.2.4 Client/Server Interface (ClientServerInterface)

For Client/Server communication, the client initiates the communication, requesting
that the server perform a service, transferring a parameter set if necessary. The client
may be blocked (synchronous communication) or non-blocked (asynchronous com-
munication) until the response from the server is received.

Client/Server among atomic software components is considered out of scope for this
document; however, we do consider client/server communication between:

• atomic software components (client) and AUTOSAR services and;
• sensor actuator software components (client) and the ECU abstraction.

The interfaces of AUTOSAR services and the ECU abstraction are slightly different
than software component interfaces in that they have been standardized. This stan-
dardization obviates the need to explicitly connect the software component to the
standardized entity.

Figure 3: A client port block within Simulink which will reside in the runnables.

Figure 3 shows an example of how the client port would look for a software compo-
nent communicating with a service or the ECU abstraction. This port will reside in the
runnable and will be either a masked s-function or a Stateflow chart (See Section
3.3). The operation signatures for both AUTOSAR services and ECU abstractions is
standardized so the user may wish to create a unique client port block for each op-
eration offered to the software component runnable.

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

17 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

2.2.5 Sensor Actuator Software Component

The sensor actuator software components offer a physical (real world) unit interface
(eg. engine speed in kph) of sensor/actuator values to the application software com-
ponents. Sensor/actuator components will have an implementation, say providing
simple filtering, however an appropriate implementation might be delivered together
with the sensor/actuator or more easily built manually. Hence the focus in this section
is on simulation rather than code generation or the unification of these two activities.

Figure 4: Sensor and Actuator Software Components communicating with application software

components

2.2.5.1 Simulation

The sensor/actuator components are convenient placeholders for connecting various
plant models to the overall system for simulation. The signals offered by these com-
ponents are in physical (real-world) units and as such can generally be connected to
various plant models, for system wide simulation, with little/no unit conversion. Figure
5 shows an example of using the sensor/actuator software components as simulation
placeholders to model sensor/actuator dynamics and to offer a connection interface
to a plant model. What is interesting to note is that the sensor/actuator dynamics
would normally consist of two components: 1. electrical dynamics between the ECU
abstraction layer and the electrical signal offered by the real µC peripheral layer and
2. the electro/mechanical dynamics of the sensor/actuator. The system’s engineer
will have to use his/her judgment as to the level of fidelity needed. Figure 6 shows an
example of some simple sensor/actuator dynamics that may be used. The sample
rate of the blocks would generally reflect the cyclic activation or rate of the sen-
sor/actuator runnables.

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

18 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

- AUTOSAR Confidential -

Figure 5: Application components connected to a plant model

Figure 6: Simple Sensor dynamics

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

19 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

2.2.5.2 Code Generation

A user may wish to create an implementation for a sensor/actuator software compo-
nent this is addressed in Section 2.3.6.1.

2.2.6 Services

Some functions that are utilized by a software component are not implemented by
other application level components but are provided by the runtime environment and
are referred to as AUTOSAR services [7]. Typical examples include state manage-
ment, memory management, synchronization services.
The flag isService provided by the class PortInterface specifies that the ser-
vice is provided by the RTE and the connection does not need to be made explicit.
Internally to the software component, the PortInterface still defines the communi-
cation mechanism irrespective of whether the port is externally connected to a ser-
vice or another software component and the RTE API call signature in the software
component’s runnables remains the same. The PortInterface description for the
services has been standardized.
In general, services implement client/server interfaces as well as sender/receiver in-
terfaces. Client/server interfaces for software components is considered out of scope
for this document, however client/server interface for services will be discussed.

2.2.6.1 Simulation

Figure 7 shows a place holder for the simulation of an AUTOSAR service.

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

20 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

Figure 7: AUTOSAR Service

2.2.6.2 Code Generation

Generating code for software components that access services is addressed in Sec-
tion 2.3.6.1.

2.3 Modeling Runnables Explicitly

A runnable (RunnableEntity) is part of an Atomic Software-Component which can
be executed and scheduled independently from the other Runnable Entities. The
categorization is summarized in Table 2. Runnables can be a target for code genera-
tion.

Table 2: Runnable Categorization

Runnable Cate-
gorization

Summary In
scope

Category 1A Activated by the RTE using RTEEvents. Do not have WaitPoints and
have to terminate in finite time.

Only implicit communication.

Category 1B Activated by the RTE using RTEEvents. Do not have WaitPoints and
have to terminate in finite time.

Explicit and implicit communication.

Category 2 Same as Category 1B plus can have at least one WaitPoint. x

2.3.1 Canonical Pattern

The canonical pattern for modeling a runnable within Simulink is largely determined
by the need for i) independent execution and ii) regular (cyclical) and irregular event
activation predicating i) atomicity and ii) triggering of functionality. Figure 8 shows the
Simulink representation.
A runnable may be cyclically triggered by a TimingEvent or triggered by other
events that also subclass the meta-class RTEEvent (e.g. DataReceivedEvent)
which could be posted asynchronously. For generality the runnable should be repre-
sented as a function-call subsystem where the type of function-call corresponds to
the type of the event that is triggering it; e.g. cyclical or asynchronous.
Runnables for sender-receiver communication can access the individual data ele-
ments in the components r and p-ports.
These general observations lead to the following design decisions:
• A Runnable is represented by a function-call subsystem.
• Individual data elements should be routed to/from the function-call subsystem via

signals.
• For clarity, the function calls for the different Runnables are combined by using a

function-call bus, which is routed via inport 1.

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

21 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

- AUTOSAR Confidential -

• Function calls should be selected using the bus selector block and routed to the
different Runnables. More than one function call may be passed to the function-
call subsystem by a bus of function calls (see Runnable_simple in Figure 8).
- Events can be generated using function-call generator blocks or Stateflow.

Please Note: that the top-level subsystem of an AUTOSAR software component (see
Figure 8) contains only runnables and virtual blocks.

Figure 8: Canonical Pattern for Runnables. Runnable_Simple is activated by multiple

RTEEvents.

2.3.2 Code Generation Layout

Code generated from Simulink and a code generation tool must conform to the APIs
set out in the RTE software specification [2]. An RTE generation tool will generate the
header file and the Simulink code generator will be responsible for generating the
corresponding source file. Here we show an example of some generated code to out-
line the calling sequence and the function signatures that will be discussed through-
out this section:

void RSimple(Rte_Instance self)
{
 uint16 indata1, indata2, indata3;
 uint16 outdata1, outdata2, outdata3;
 uint8 invalid;

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

22 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

// copy data from RTE to Simulink
/* rte_status = Rte_IRead_<re>_<p>_<d>(self, <data>);
 <re> = RSimple, Short Name of RunnableEntity instance
 <p> = RP1, Short Name of PortPrototype instance
 <d> = DE1, Short Name of Data Element instance, referenced by port
instance
*/

 Rte_IRead_RSimple_RP1_DE1(self, &indata1);

Rte_IRead_RSimple_RP1_DE2(self, &indata2);
Rte_IRead_RSimple_RP1_DE3(self, &indata3);

 // Simulink implementation e.g.
 outdata1 = indata1 + indata2+ indata3 + Rte_CData_PARAMA;
 outdata2 = indata1 + indata2;
 outdata3 = indata3;

/* return = Rte_CData_<name>(self);

<name> = param1, Short Name of characteristic
*/

// copy data from Simulink to RTE
/* rte_status = Rte_IWrite_<re>_<p>_<d>(self, <data>);
 <re> = RSimple, Short Name of RunnableEntity instance
 <p> = PPa, Short Name of PortPrototype instance
 <d> = DEa, Short Name of Data Element instance, referenced by port
instance
*/

 Rte_IWrite_RSimple_PPa_DEa(self, outdata1);

Rte_IWrite_RSimple_PPa_DEb(self, outdata2);
Rte_Write_PPa_DEc(self, outdata3);

// could invalid explicit data transmission if we want
invalid = 1;
if(invalid){
/* Rte_Invalidate_<p>_<o>(self);
 <p> = PP1, Short Name of PortPrototype instance
 <d> = EB1, Short Name of Data Element instance, referenced by port
instance
*/

 Rte_Invalidate_PPa_DEc(self);
 }
}

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

23 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

2.3.3 Communication Modes of Sender-Receiver Communication

Figure 9 shows an example of a runnable with some functional behavior (highlighted
in yellow). The data for the function is passed into and out of the function by sender-
receiver communication over the RTE (inports 1/2 and outports 1/2) and also via an
inter-runnable variable (outport 3). For sender-receiver communication there are two
modes of operation:
• Implicit: The RTE automatically reads a specified set of data elements before a

runnable is invoked and automatically writes (a different) set of data elements after
the runnable entity has terminated. This mode is termed “implicit” since the run-
nable takes no explicit action to inform the RTE to read or write data.

• Explicit: A component uses explicit RTE API calls to send and receive data ele-
ments before the runnable has terminated.

Figure 9: The Inside of a runnable which implements some functional behavior (highlighted in

yellow). Data is passed into and out of the runnable by sender-receiver communication (in-
ports/outports, 1 and 2) and via an inter-runnable variable (outport 3).

2.3.3.1 Code Generation

The following code signatures need to be generated for each data element of the
runnable depending on whether it is a receive port or provide port and also whether
communication is achieved implicitly or explicitly:

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

24 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

Concept RTE API
implicit data recep-
tion

rte_status = Rte_IRead_<re>_<p>_<d>(self, <data>);

explicit data recep-
tion

rte_status = Rte_Read_<p>_<d>(self, <data>);

implicit data
transmission

rte_status = Rte_IWrite_<re>_<p>_<d>(self, <data>);

explicit data
transmission

rte_status = Rte_Write_<p>_<d>(self, <data>);

The RTE API access can be realized either using an overall subsystem configuration
block, custom storage classes (CSC) attached to the input and output signals or cus-
tom blocks attached to the inports and outports.

2.3.3.2 Simulation

The code generation artifacts should not affect simulation.

2.3.4 Inter Runnable Communication

Inter runnable communication is handled by inter runnable variables (See port 3 in
Figure 9). These variables can be read and written by all runnables of an atomic
software component. Akin to sender-receiver communication access can either be
implicit or explicit.

2.3.4.1 Code Generation

Concept RTE API
implicit IRV recep-
tion

rte_status = Rte_IrvIRead_<re>_<p>_<d>(self, <data>
);

explicit IRV recep-
tion

rte_status = Rte_IrvRead_<p>_<d>(self, <data>);

implicit IRV trans-
mission

rte_status = Rte_IrvIWrite_<re>_<p>_<d>(self, <data>
);

explicit IRV trans-
mission

rte_status = Rte_IrvWrite_<p>_<d>(self, <data>);

Again the RTE API access can be realized either using an overall subsystem con-
figuration block, custom storage classes (CSC) attached to the input and output sig-
nals or custom blocks attached to the inports and outports.

2.3.4.2 Simulation

Again the code generation artifacts should not affect simulation. Also it should be
noted that since the simulation of a runnable is atomic and can not be interrupted by

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

25 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

- AUTOSAR Confidential -

an additional parallel operation e.g. of an additional runnable the consequences of
direct explicit communication between two runnables cannot be observed during
simulation.

2.3.5 Exclusive Areas

An exclusive area defines a region of functionality within which concurrent data ac-
cess is blocked by the RTE.

For a runnable that runs entirely within an exclusive area the top-level runnable-
subsystem should be tagged as an exclusive area. This tagging only affects the de-
scription of the software component (meta model property INSIDE-EXCLUSIVE-
AREAS) and not code generation (Figure 10).

Figure 10: Entire runnable is within an Exclusive Area

If the runnable internally contains parts which should be protected by an exclusive
area (meta model property USES-EXCLUSIVE-AREAS), this corresponds to nested
Simulink subsystems within the runnable which should be tagged as exclusive areas
(Figure 11).

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

26 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

- AUTOSAR Confidential -

Figure 11: Only part of the runnable is within an Exclusive Area.

2.3.5.1 Code Generation

Concept RTE API
Entering an exclu-
sive area

Rte_Enter_<name>(self);

Exiting an exclu-
sive area

Rte_Exit_<name>(self);

2.3.6 Sensor Actuator Component Runnables

Sensor/actuator components are the only components that can access ports from the
ECU abstraction below the RTE layer, these ports are automatically connected by
the RTE generator rather than at the component authoring stage.

A sensor/actuator component will contain normal ports (e.g. any application software
component can access) and ECU abstraction ports (The ECU Abstraction provides
an interface to physical values of an ECU). As with application components that can
access service ports the code generation mechanism for the runnable does not need
to explicitly distinguish these two, as the RTE API calls port name and data element
will cause the connection. An example of a sensor actuator component runnable is
shown in Figure 12.

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

27 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

- AUTOSAR Confidential -

Figure 12: Inside the sensor/actuator runnable for code generation

2.3.6.1 Code Generation

Concept RTE API
Invoke server operation rte_status = Rte_Call_<p>_<o>(self,

<data_1>,...);

Collect the result of an
asynchronous client-
server communication
(client side)

rte_status = Rte_Result_<p>_<o>(self, <pa-
ram_1>,...);

2.3.6.2 Simulation

Simulation aspects are covered in Section 2.2.5.1.

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

28 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

2.3.7 Runnables That Access Services

Figure 13 shows the layout of the runnable of the software component that utilizes an
AUTOSAR service.

Figure 13: The runnable of a software component, utilizing AUTOSAR services.

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

29 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

2.3.8 Complex Runnables

Figure 9 shows an example of a runnable whose functional behavior does not de-
pend on the error status of the communication between software components, Figure
14 in contrast, shows how this information might be offered to the user.

All data reception/transmission functions return a status value (of type Rte_Status)
indicating whether the communication was successful or not. In addition when send-
ing data the runnable can request that the RTE reports whether the data was re-
ceived by the corresponding reception units successfully.

There are generally two approaches to offer this information to the author of the run-
nable, 1) augment the data signal with the additional information packed in a bus or
2) use a block approach (chosen for pedagogical reasons, see Figure 14).
As we have chosen to use the block approach we also cover annotations and the
ComSpec issues in this section.

Figure 14: A complex runnable utilizing rte_status, rte_feedback and data invalidation informa-

tion.

2.3.8.1 Annotations

The SenderReceiverAnnotation annotates data elements in a port that realizes
a sender receiver interface. An annotation is information given to the control engineer
to aid with the design of the controller implementation. For example it could be used
to inform the control designer about the maximum allowed age of the signal since it
was originally detected by a sensor 0[3]. SenderReceiverAnnotations are only com-
menting annotations and they do not affect either simulation or code generation. This

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

30 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

- AUTOSAR Confidential -

information could be attached to a block holding both the annotations and communi-
cation specification information (Figure 15).

Figure 15: The ComSpec block being used to store annotations.

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

31 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

2.3.9 Communication Specification – ComSpec

The communication specification (ComSpec) classes provide information relating to
the quality of data communication. This information is applied to individual data ele-
ments and is different for sent and received data. A summary of the information is
shown for receiver is show in Figure 16.and for sender in Figure 17.

Figure 16: DataReceiverComSpec parameters.

Figure 17: DataSenderComSpec parameters.

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

32 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

2.3.9.1 ComSpec – initValue (Receive and Send)

The initValue defines the initial value for the data.

2.3.9.2 ComSpec – Acknowledgement Request and timeout (Send)

The AcknowledgementRequest provides access to an acknowledgement notification
for a provided DataElementPrototype. The attribute timeout specifies the number of
seconds before an error is reported.

Request Type Summary
transmission data reached the receiving port

reception not mentioned in RTE spec

2.3.9.3 Code generation

For notification is accessed using the RTE API.

Concept RTE API
acknowledgement
notification for
explicit data
transmission

rte_status = Rte_Feedback_<p>_<o>(self);

2.3.9.4 Simulation

Simulation aspects are shown in the Section 3.5.2.

2.3.9.5 ComSpec – canInvalidate (Send)

The SenderComSpec defines communication attributes for a sender port (P-Port and
sender-receiver interface). The canInvalidate flag indicates whether the component
can actively invalidate data. The component could set this flag perhaps because the
data is out of date or other application specific reasons. The canInvalidate Flag is
assigned to individual DataElementPrototypes. The RTE provides an Invalidate API
for any DataSendPoint that references a provided DataElementPrototype that is
marked as invalidatable [2].

2.3.9.5.1 Code Generation

Concept RTE API
invalidate a data
element for explicit
data transmission

rte_status = Rte_Invalidate_<p>_<o>(self);

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

33 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

2.3.9.5.2 Simulation

Simulation aspects are shown in the Section 3.5.2.1.

2.3.10 DataElement Filter (Receive)

Data-Filtering is handled by the RTE respectively COM. Data Filters are assigned to
individual DataElementPrototypes [4].
By means of the FILTER attribute an additional filter layer can be added on the re-
ceiver side [2]. Value-based filters can be defined, i.e. only signal values fulfilling cer-
tain conditions are made available for the receiving component. The possible condi-
tions are the same as listed in OSEK COM version 3.0.2. While receiving messages,
only the message values allowed by the filter algorithms pass to the application [14].
If a value has been filtered out the last message value that passed through the filter
is provided.

2.3.10.1 Code generation

Not needed: filtering is provided by COM layer.

2.3.10.2 Simulation

Simulation aspects are shown in the Section 3.5.3.

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

34 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

2.4 Compositions

The purpose of an AUTOSAR composition is to allow encapsulation of functionality
by aggregating existing software components. Since a composition is also a kind of
component, it again may be aggregated in even further compositions.
It is important to note that while compositions allow for system abstraction, they are
solely an architectural element supporting model scalability and compositions have
no effect on how components interact with the Virtual Functional Bus.
As noted in the Software Component Template [5] it has to be understood that by
defining a composition a new component type is defined, which is not instantiated by
itself. However, the components that are part of a composition are assigned roles
with the component’s context.

2.4.1 Canonical Pattern

The canonical pattern for the top level view of a composition is shown in Figure 18.
• The function calls for all Runnables are created within a subsystem “Function Call

Creation”.
- In this central place it is possible to control the execution order of runnables.

E.g. In order to execute simulation experiments the execution order of the run-
nables can be changed in this central place. (Main reason to have a central
place, where all function calls are generated).

• The subsystem “Function Call Creation” belongs to the “Software Component En-
vironment” model, as defined in the deliverable “Interaction with Behavioral Mod-
els” [3].The inside behavior of this subsystem is not specified within this document,
it is up to the user to implement this in an appropriate way.

•

Figure 18: Canonical Pattern for the Top Level Composition View

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

35 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

2.5 The Use of Types and Prototypes in AUTOSAR

When examining components and compositions in AUTOSAR, one is quickly aware
of the need to distinguish between meta-classes that are types and meta-classes that
are prototypes. ComponentType, AtomicSoftwareComponentType, Compo-
nentPrototype and CompositionType are all relevant.
The meta-class ComponentType is an abstract class and as such is not instantiable.
Conversely the meta-class ComponentPrototype assigns a certain role to a com-
ponent type (e.g. a windshield wiper component is assigned the left wiper role and
another one the right wiper role). The only meta-class to support an implementation
is the AtomicSoftwareComponentType and the need to aggregate compositions
is addressed by CompositionType.
Examining the meta-model one sees that a ComponentPrototype has a
<<isOfType>> reference to the ComponentType, which is the parent abstract class
for both AtomicSoftwareComponentType and CompositionType.
A natural mechanism to model this <<isOfType>> reference relationship in Simulink
is by the use of model reference or library links.
Simulink allows you to include models in other models as blocks, a feature called
model referencing and allows you to include subsystems that have been defined in a
library in other models as blocks, a feature called library linking. Table 3 summarizes
the mapping of AUTOSAR Component Types to Simulink concepts. It is recom-
mended that the user tags the subsystem with the AUTOSAR meta-class name to
ensure that these blocks could be easily searched for in a Simulink model.

AUTOSAR Con-
cept

Simulink Concept

ComponentType Abstract class: no Simulink representation needed.

Atomic Software
Component

A Simulink model or virtual/non-virtual subsystem stored in a library repre-
senting a SWC, this model must not contain any further ComponentProto-
types (Model or library reference blocks expressing ComponentPrototypes).

ComponentPrototype A model or library reference block which references a AtomicSoftwareCom-
ponentType or a CompositionType contained in a CompositionType.

CompositionType A Simulink model with ComponentPrototypes (blocks which reference a
AtomicSoftwareComponentType or a CompositionType)

Table 3: Simulink Representation of AUTOSAR Component Types

2.5.1 Modeling one Software component

• In case of modeling only one software component, the AtomicSoftwareCompo-
nentType can be modelled in a normal Simulink model file.

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

36 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

2.5.2 Modeling several Software components

• In case of modeling more than one software component, the AtomicSoftware-
ComponentType should be stored in a Simulink library (or in separate model files
in case of model reference concept).

• In the actual Simulink model only ComponentPrototypes are used, which link to
the Library (or reference to another model).

2.5.2.1 Simplification

• If an AtomicSoftwareComponentType is only used once inside a model (only

one prototype of a specific type), the model can directly contain the software com-
ponent type. No library link or model reference is needed. (See Atomic Software
Component Type1 and Atomic Software Component Type2 in Figure 19.)

• If the same type is referenced by more than one prototype, then the type is defined
within a library or referenced model (grayed subsystems in Figure 19).

type type

prototype prototype

type

Figure 19: Mapping of AUTOSAR Type Prototype concept to Simulink Libraries (alternatively
Model Reference)

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

37 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

2.6 Communication between Atomic Software-Components

Figure 20 shows the communication between Atomic Software-Components within
Compositions in case of sender receiver communication.
The communication is modeled without modeling of communication delays between
software component. For communication delay modeling see chapter 3.
• Simulink lines represent the sender receiver communication:

- Bus Objects for the definition of Interfaces are taken
- Signal lines between software components represent the “assembly connec-

tors”.
- Signal lines to the In- and Out-Ports to the upper subsystem represent the

“delegation connectors”.

Figure 20: Communication between Atomic Software-Components

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

38 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

2.7 Datatypes, Constants and Parameters

2.7.1 Datatypes

The software component template defines the meta model classes for defining inte-
gers, floats as well as “complex” data types such as records. These datatypes are
used to type:

• the data-elements inside a sender-receiver interface
• the arguments of the operations in a client-server interface
• constants
• characteristics
• InterRunnableVariables

2.7.1.1 Primitive Datatypes in AUTOSAR

All primitive datatypes in AUTOSAR allow an efficient mapping to programming lan-
guages like C. The user-defined datatypes, are always mapped to a set of base
types. The mapping of Simulink built-ins to standard AUTOSAR primitive types is
shown in Table 4.

AUTOSAR Type BSW Type Simulink Datatype
UInt4 uint8 uint8

SInt4 sint8 int8

UInt8 uint8 uint8

SInt8 sint8 int8

UInt16 uint16 uint16

SInt16 sint16 int16

UInt32 uint32 uint32

SInt32 sint32 int32

Float_with_NaN float32 float

Float float32 float

Double_with_NaN float64 double

Double float64 double

Boolean boolean boolean

Char8 uint8 uint8

Char16 uint16 uint16

Table 4: AUTOSAR and Simulink’s built-in datatypes.

2.7.1.2 Composite Datatypes in AUTOSAR

AUTOSAR provides the composite datatypes array and record. An array consists of
numberOfElements elements that each have the same type, arrays have zero based

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

39 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

- AUTOSAR Confidential -

indexing. A record describes a nonempty set of objects, each of which has a unique
identifier with respect to the record-type and a datatype.
Both arrays and records can consist of objects that are types by any AUTOSAR data
type including arrays and records.
In Simulink it is common for a wide signal to represent an array, with individual ele-
ments being concatenated together using mux blocks and separated using demux or
the selector block, records could either be represented by bus objects or alternately
as a Simulink.Structtype object.
One thing to note is that it is currently not possible to have a wide signal of bus ob-
jects. The workaround would be to have a wide signal of Simulink.Struct objects,
however the support for Simulink.Struct objects is not as extensive as that of bus ob-
jects.

2.7.2 Characteristics

In AUTOSAR, a Characteristic defines a value that can be modified on an ECU via a
calibration data management tool or an offline calibration tool. In Simulink this con-
cept maps to a parameter. For code generation the respective RTE-API call needs to
generated:
<return>
Rte_CData_<name>(IN Rte_Instance <instance>)

Where <name> is the configuration data name.

One way to achieve this functionality is to extend the Simulink.Parameter class to a
new class, AUTOSAR.Characteristic. Using this class the user may then attach
AUTOSAR.Characteristic objects in place of parameters (Figure 21).

Concept RTE API
provide access to
characteristics

rtn = Rte_CData_<name>(self);

Figure 21: Using AUTOSAR Characteristics. AR_Char_P, AR_Char_I, AR_CHAR_D are AUTO-

SAR.Characteristic objects.

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

40 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

3 RTE Simulation
The following section shows how one could model the RTE environment in Simu-
link/Stateflow.

3.1 Basic Mechanism

The basic idea is to use a central Stateflow chart, which implements simple RTE
functionality for simulation issues. This chart is located at a central place of the envi-
ronmental model. Various simple Stateflow charts in the software component model
are able to call the exported chart level graphical functions of the central chart.
By use of state charts the communication of DataElements between software com-
ponents can be realized. Additional internal buffers can be added, which allow to
store DataElement values etc. Concepts like communication delay modeling can be
easily added in a seamless way, as well as service implementation e.g. of the
NVRAM Manager.
Please note: The Stateflow charts are only used for simulation aspects, for code
generation these blocks have to be ignored. For code generation custom storage
classes can be used.
Please note: This Styleguide will not describe the implementation of the RTE simula-
tion within Stateflow, it only outlines the basic mechanism.

An example of this basic mechanism is shown in Figure 22:
• As an example the two graphical functions RTE_Read and RTE_Write are pro-

vided as exported chart level graphical functions. These graphical functions can be
access by other state charts in the model.

• All state charts are provided by a model library (the central chart, and the individ-
ual charts for accessing the graphical functions).

Figure 22: Exported chart Level Graphical Functions and chart library

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

41 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

3.2 Modeling Runnables for Sender Receiver Communication

In the following it is outlined how the Stateflow concept for RTE simulation can be
applied to communication mechanisms of the Runnables. The following basic rules
have been followed:
• same model for simulation and code generation
• try to do it without simulation-specific blocks within runnable

- for some advanced features it might still be needed
• self contained subsystem representing the runnable: code generation only of the

runnable subsystem
• additional subsystems provide stubs to the simulated RTE
• signals connecting software components shall have valid values, e.g. when taking

a scope for visualization.

3.2.1 Sender Receiver Communication

Figure 23 and Figure 24 illustrate the Stateflow concept for RTE simulation in the
case of Sender Receiver Communication:
• In the center the runnable is located, which is target for code generation.
• Additionally the subsystems are executed before and after the runnable for simula-

tion issues, controlled by the function call sequencer.
• The left subsystem provides the Runnable with the current DataElement values

from the simulated RTE (see Figure 23). Thus the actual value of the data element
is read from the simulated RTE via the RTE_Read Stateflow chart. The value pre-
sent on the signal line is ignored. Thus the signal line is mainly used for illustrating
the connections between software components.

• The right subsystem writes the Data Elements to the Simulated RTE buffers, simi-
lar to the left subsystem (see Figure 24). Additionally the DataElement is provided
on the bus connecting the Software Component ports. Thus the signals connecting
software components have valid values, e.g. when taking a scope for visualization.

Please Note: For code generation the left and right subsystems do not have any ef-
fect, since code is only generated from the Runnable subsystem. The access to the
data elements is done in the same way as described in section 2.3.

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

42 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

- AUTOSAR Confidential -

Figure 23: Left Subsystem

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

43 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

- AUTOSAR Confidential -

Figure 24: Right Subsystem

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

44 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

3.3 Modeling Runnables for Client Server Communication

Simulink in general does not support a client server communication paradigm. In the
following it is tried to give an outline, how client server communication could be real-
ized. It is not claimed to be complete. In future specific block sets might be available,
which support client sever communication.
Client server communication can be synchronous and asynchronous. For invoking a
server operation the RTE provides the RTE_Call API. The RTE_Result API is used
by a client to collect the result of an asynchronous client-server communication [2]:

Rte_StatusType
Rte_Call_<p>_<o>(IN Rte_Instance <instance>,
[IN|IN/OUT|OUT] <data_1>...
[IN|IN/OUT|OUT] <data_n>)
Where <p> is the port name and <o> the operation within the client-server
interface categorizing the port.

Rte_StatusType
Rte_Result_<p>_<o>(IN Rte_Instance <instance>,
[OUT <param 1>]...
[OUT <param n>])
Where <p> is the port name and <o> the operation within the client-server
interface categorizing the port.

3.3.1 Client Server Communication – Client Model

Figure 25 shows the client model. Inside the client runnable, a server operating is
called. This is realized by a specific block, which realizes the RTE_Call API.

3.3.1.1 Synchronous Client Server Communication

3.3.1.1.1 Simulation

The Stateflow approach outlines how client server communication can be realized
within Simulink:
• A Stateflow chart models the RTE_Call API for simulation issues. The chart is pro-

vided with a number of input data.
• The RTE_Call-chart calls a central state chart (via virtual exported chart level

graphical function), which simulates the RTE behavior. This central state chart
immediately triggers the server runnable via function call via event broadcast. The
server runnable is triggered via a function call, which realizes the OperationIn-
vokedEvent. By the event broadcast construct the client runnable interrupted, until
the server has completed (synchronous) (see Figure 27).

• The RTE_Call-chart provides the result of the server call, via the “out-data” signals
(could also be a signal bus).

• The R-Port is realized by a Simulink outport. It does not have any functionality, it is
only used in order to display the port on software component level. Therefore the
outport is connected with a ground block.

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

45 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

3.3.1.1.2 Code generation

In case of Code generation instead of the state flow chart, a block has to be pro-
vided, which implements the RTE_Call API according to the RTE specification.

Figure 25: Model of Client Runnable (Synchronous)

3.3.1.2 Asynchronous Client Server Communication

3.3.1.2.1 Simulation

Figure 26 shows the Simulink model for asynchronous client server communication:
• Similar to the synchronous call, input data can be provided.
• The RTE_Call-chart also calls a central state chart, which simulates the RTE be-

havior. This central state chart returns without providing output data. Somewhere
later in time the simulated RTE triggers the asynchronous server call returns run-
nable.

• Inside the “Asynchronous ServerCallReturns runnable”, the result of the server call
can be accessed via an additional chart.

3.3.1.2.2 Code generation

In case of Code generation instead of the Stateflow chart, blocks have to be pro-
vided, which implement the RTE_Call and RTE_Result API according to the RTE
specification.

- AUTOSAR Confidential -

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

46 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

- AUTOSAR Confidential -

Figure 26: Model of Client Runnable (Asynchronous)

3.3.2 Client Server Communication – Server Model

3.3.2.1 Simulation

Figure 27 shows the server model for client server communication.
• The left and the right subsystems are only for simulation issues. They provide the

server runnable with input data from the simulated RTE and provide with RTE the
resulting output data of the server call for the RTE.

• Inside the of subsystem in the middle, the server functionality is modelled.
• The P-Port is realized by a Simulink inport. It does not have any functionality, it is

only used in order to display the port on software component level. Therefore the
inport is connected with a ground block.

3.3.2.2 Code generation

In Figure 27 a similar approach to section 3.2 is used. Only the middle subsystem
representing the server runnable is target of code generation. Out of this subsystem
the code-generator has to provide a RTE conformant server implementation.

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

47 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

- AUTOSAR Confidential -

Figure 27: Model of Server Runnable

3.3.3 Client Server Communication – Software Component View

Figure 28 shows the software component view of client server communication. The
R-Ports and P-Ports can be connected, in order to display the relationship between
clients and servers. However this connection does not have any functionality.

Figure 28: Representation of R-Ports and P-Ports on Software Component Level

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

48 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

- AUTOSAR Confidential -

3.4 Modeling distributed functional networks – Simulation of
Communication Delays

For modeling distributed functional networks within Simulink, the modeling of com-
munication delays is interesting, in order to evaluate functional behavior of software
components with respect to communication delays, mapping aspects etc.
Figure 29 shows the top level view for the modeling of communication delays:
• Additionally to the subsystems representing atomic software components commu-

nication delay subsystems are added, which allow to simulate the communication
delays. The communication delay blocks are assigned to the R-Port side of soft-
ware components. Thus in the example of Figure 29 the communicated DataEle-
ments of Port1 can have different communication delays for the communication to
Atomic Software Component 2 and Atomic Software Component 3.

• These communication delay subsystems are triggered via an additional function
call bus. The generation of these function calls are handled by a central state chart
in the outside simulation environment.

• Inside the communication delay subsystems the communication delay is assigned
to individual data elements, since data elements can follow independent commu-
nication paths, or are located in different bus messages.

Please note: These communication delays do not have effect to the code generation,
since code is only generated for individual Runnables of the atomic software compo-
nents.

Figure 29: Modeling communication delays of distributed functional networks

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

49 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

- AUTOSAR Confidential -

The communication delay block is realized by using the Stateflow approach (see
Figure 30): The upper function call subsystem is called by the function call Creation
block of the software component environment, at a defined point in time, which the
reads the current DataElement value from the simulated RTE.
Note the connector ComSpec has a maxTransferTime and maxJitter attribute which
could be used for simulation purposes and should be parameterized in the bus delay
blocks.

Figure 30: Realization of the communication delay block by using the Stateflow approach

3.5 Simulation of Communication Specification – ComSpec

To provide the status signals during simulation the DataReceiverComSpec and
DataSenderComSpec blocks of Figure 14 may internally contain a Stateflow Chart
block, which provides the connection to the simulated RTE. That is to say, the inter-
nal RTE status logic is simulated with a global state machine in the environment
model, which has chart blocks as “satellites” in every DataReceiverComSpec and
DataSenderComSpec block.

3.5.1 ComSpec – initValue

The initValue is handled within the RTE simulation layer.

3.5.2 ComSpec – Acknowledgement Request

The AcknowledgementRequest requests acknowledgements that data has been sent
successfully. Success or failure is reported via a SendPoint of a Runnable. The Ac-
knowledgementRequest is assigned to individual DataElementPrototypes. The attrib-
ute timeout specifies the number of seconds before an error is reported.

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

50 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

- AUTOSAR Confidential -

The attribute type specifies the part of communication the acknowledgement is re-
quested for [4]:
• "transmission" refers reaching the receiving port,
where "reception" refers to the value being actually passed to the receiving compo-
nent code.
When transmission_ack is specified, the RTE will inform the sending component
that the signal has been sent correctly [2].

3.5.2.1 ComSpec – canInvalidate

The SenderComSpec defines communication attributes for a sender port (P-Port and
sender-receiver interface). The canInvalidate flag indicates whether the component
can actively invalidate data. The component could set this flag perhaps because the
data is out of date or other application specific reasons. The canInvalidate Flag is
assigned to individual DataElementPrototypes. The RTE provides an Invalidate API
for any DataSendPoint that references a provided DataElementPrototype that is
marked as invalidatable [2].
For simulation issues the invalidation of Data Elements has to be transferred from the
Runnable to the simulation environment. Figure 16 shows the usage of 2 Invalidate
Signals DataElement_1_Invalidate and DataElement_2_Invalidate which are passed
from the Runnable3 to the subsystem Data Send and SenderComSpec. Inside the
subsystem Data Send and SenderComSpec the simulation environment is updated.

3.5.3 DataElement Filter

Data-Filtering is handled by the RTE respectively COM. Data Filters are assigned to
individual DataElementPrototypes [4].
By means of the FILTER attribute an additional filter layer can be added on the re-
ceiver side [2]. Value-based filters can be defined, i.e. only signal values fulfilling cer-
tain conditions are made available for the receiving component. The possible condi-
tions are the same as listed in OSEK COM version 3.0.2. While receiving messages,
only the message values allowed by the filter algorithms pass to the application [14].
If a value has been filtered out the last message value that passed through the filter
is provided.
For simulation purposes the filter mechanism should be provided within Simulink.
Therefore subsystems providing the DataElement values from the simulated RTE can
be extended with additional filter functionality.

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

51 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

4 References

4.1 Normative References to AUTOSAR documents

[1] Specification of the Virtual Functional Bus
 https:/svn2.autosar.org/repos2/22_Releases
 AUTOSAR_VirtualFunctionBus.pdf

[2] Specification of RTE Software
 https:/svn2.autosar.org/repos2/22_Releases
 AUTOSAR_SWS_RTE.pdf

[3] Specification of Interaction with Behavioral Models
 https:/svn2.autosar.org/repos2/22_Releases
 AUTOSAR_InteractionBehavioralModels.pdf

[4] Metamodel
 https:/svn2.autosar.org/repos2/22_Releases
 AUTOSAR_Metamodel.eap

[5] Software Component Template
 https:/svn2.autosar.org/repos2/22_Releases
 AUTOSAR_SoftwareComponentTemplate.pdf

[6] Glossary
 https:/svn2.autosar.org/repos2/22_Releases
 AUTOSAR_Glossary.pdf

[7] AUTOSAR Services
 https:/svn2.autosar.org/repos2/22_Releases
 AUTOSAR_Services.pdf

[8] Requirements on Interoperability of Authoring Tools
 https:/svn2.autosar.org/repos2/22_Releases
 AUTOSAR_RS_InteroperabilityAuthoringTools.pdf

[9] Methodology
 https:/svn2.autosar.org/repos2/22_Releases
 AUTOSAR_Methodology.pdf

[10] Specification of System Template
 https:/svn2.autosar.org/repos2/22_Releases
 AUTOSAR_SystemTemplate.pdf

- AUTOSAR Confidential -

https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

52 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

[11] Specification of ECU Resource Template
 https:/svn2.autosar.org/repos2/22_Releases
 AUTOSAR_ECUResourceTemplate.pdf

[12] Specification of Feature Definition of Authoring Tools
 https:/svn2.autosar.org/repos2/22_Releases
 AUTOSAR_FeatureDefinition.pdf

[13] Specification of Graphical Notation
 https:/svn2.autosar.org/repos2/22_Releases
 AUTOSAR_GraphicalNotation.pdf

- AUTOSAR Confidential -

https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases

 Applying Simulink to AUTOSAR
 V1.0.4

R3.0 Rev 0001

53 of 53 Document ID 185: AUTOSAR_SimulinkStyleguide

- AUTOSAR Confidential -

4.2 Normative References to Non-AUTOSAR documents

[14] OSEK COM Spec 3.0.3
http://www.osek-vdx.org/mirror/
OSEKCOM303.pdf

[15] Simulink
http://www.mathworks.co.uk/products/simulink/

http://www.osek-vdx.org/mirror/
http://www.mathworks.co.uk/products/simulink/

	1 Introduction
	1.1 Related Documents
	1.2 Terminology
	1.3 Scope
	1.3.1 In Scope
	1.3.2 Out of Scope

	1.4 Document Overview

	2 Mapping of AUTOSAR software components to Simulink
	2.1 AUTOSAR Concepts / Simulink Concepts
	2.2 AtomicSoftwareComponentType
	2.2.1 Canonical Pattern
	2.2.1.1 Current Limitations

	2.2.2 AUTOSAR Ports
	2.2.3 Sender/Receiver Interface (SenderReceiverInterface)
	2.2.4 Client/Server Interface (ClientServerInterface)
	2.2.5 Sensor Actuator Software Component
	2.2.5.1 Simulation
	2.2.5.2 Code Generation

	2.2.6 Services
	2.2.6.1 Simulation
	2.2.6.2 Code Generation

	2.3 Modeling Runnables Explicitly
	2.3.1 Canonical Pattern
	2.3.2 Code Generation Layout
	2.3.3 Communication Modes of Sender-Receiver Communication
	2.3.3.1 Code Generation
	2.3.3.2 Simulation

	2.3.4 Inter Runnable Communication
	2.3.4.1 Code Generation
	2.3.4.2 Simulation

	2.3.5 Exclusive Areas
	2.3.5.1 Code Generation

	2.3.6 Sensor Actuator Component Runnables
	2.3.6.1 Code Generation
	2.3.6.2 Simulation

	2.3.7 Runnables That Access Services
	2.3.8 Complex Runnables
	2.3.8.1 Annotations

	2.3.9 Communication Specification – ComSpec
	2.3.9.1 ComSpec – initValue (Receive and Send)
	2.3.9.2 ComSpec – Acknowledgement Request and timeout (Send)
	2.3.9.3 Code generation
	2.3.9.4 Simulation
	2.3.9.5 ComSpec – canInvalidate (Send)
	2.3.9.5.1 Code Generation
	2.3.9.5.2 Simulation

	2.3.10 DataElement Filter (Receive)
	2.3.10.1 Code generation
	2.3.10.2 Simulation

	2.4 Compositions
	2.4.1 Canonical Pattern

	2.5 The Use of Types and Prototypes in AUTOSAR
	2.5.1 Modeling one Software component
	2.5.2 Modeling several Software components
	2.5.2.1 Simplification

	2.6 Communication between Atomic Software-Components
	2.7 Datatypes, Constants and Parameters
	2.7.1 Datatypes
	2.7.1.1 Primitive Datatypes in AUTOSAR
	2.7.1.2 Composite Datatypes in AUTOSAR

	2.7.2 Characteristics

	3 RTE Simulation
	3.1 Basic Mechanism
	3.2 Modeling Runnables for Sender Receiver Communication
	3.2.1 Sender Receiver Communication

	3.3 Modeling Runnables for Client Server Communication
	3.3.1 Client Server Communication – Client Model
	3.3.1.1 Synchronous Client Server Communication
	3.3.1.1.1 Simulation
	3.3.1.1.2 Code generation

	3.3.1.2 Asynchronous Client Server Communication
	3.3.1.2.1 Simulation
	3.3.1.2.2 Code generation

	3.3.2 Client Server Communication – Server Model
	3.3.2.1 Simulation
	3.3.2.2 Code generation

	3.3.3 Client Server Communication – Software Component View

	3.4 Modeling distributed functional networks – Simulation of Communication Delays
	3.5 Simulation of Communication Specification – ComSpec
	3.5.1 ComSpec – initValue
	3.5.2 ComSpec – Acknowledgement Request
	3.5.2.1 ComSpec – canInvalidate

	3.5.3 DataElement Filter

	4 References
	4.1 Normative References to AUTOSAR documents
	4.2 Normative References to Non-AUTOSAR documents

