
 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

Document Title Specification of the Virtual
Functional Bus

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 056
Document Classification Standard

Document Version 1.1.0
Document Status Final
Part of Release 3.0
Revision 7

Document Change History
Date Version Changed by Change Description

14.07.2010 1.1.0
AUTOSAR
Administration

 Last-is-best N:1 S/R communication
allowed
 Legal disclaimer revised

14.11.2007 1.0.0
AUTOSAR
Administration

Initial Release

1 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for the
purpose of information only. AUTOSAR and the companies that have contributed to it shall
not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types of
Intellectual Property Rights. The commercial exploitation of the material contained in this
specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in any form
or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only. They
have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary reference
models, "use cases", and/or references to exemplary technical solutions, devices, processes
or software).

Any such exemplary items are contained in the Specification Documents for illustration
purposes only, and they themselves are not part of the AUTOSAR Standard. Neither their
presence in such Specification Documents, nor any later documentation of AUTOSAR
conformance of products actually implementing such exemplary items, imply that intellectual
property rights covering such exemplary items are licensed under the same rules as
applicable to the AUTOSAR Standard.

2 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

Table of Content

1 Introduction to this document ...5

1.1 Contents ...5
1.2 Prereads ...5
1.3 Relationship to other AUTOSAR specifications..5
1.4 Structure and conventions of this document...6

1.4.1 Structure of this document..6
1.4.2 Specification Items..7

2 The Virtual Functional Bus ...8
3 Overall mechanisms and concepts...11

3.1 Components ...11
3.2 Port-Interfaces ..13
3.3 Ports ...14
3.4 Connectors ...17
3.5 Compositions versus atomic components ..19
3.6 Relationship between the VFB and the ECU Software Architecture20
3.7 Kinds of components ..23
3.8 Resources for components and “runnables”...25

3.8.1 Background...25
3.8.2 The “runnable” concept...26
3.8.3 The implementation of a component and the role of the RTE28

4 Communication on the VFB..29
4.1 Introduction...29
4.2 Error types ..29
4.3 Sender-Receiver communication..29

4.3.1 From the point of view of the sender ..30
4.3.2 From the point of view of the receiver...32
4.3.3 Multiplicity of sender-receiver ...35
4.3.4 Filtering between the sender and the receiver..37
4.3.5 Concurrency and ordering within a sender-receiver connector37

4.4 Client-Server communication..38
4.4.1 From the point of view of the client ...40
4.4.2 From the point of view of the server ...42
4.4.3 Multiplicity of client-server...42
4.4.4 Ordering and concurrency within a client-server connector............................43

4.5 Remarks regarding the identification of communication partners...........................44
5 Timing-model for the VFB (For information only - not part of the Standard)45

5.1 Generic timing framework...45
5.1.1 Event and EventOccurrence...45
5.1.2 Event Models ..46
5.1.3 Timing Chains...48
5.1.4 Timing Chain Models ..49

5.2 Timing aspects of sender-receiver communication ..50
5.2.1 Definition of the events ...50
5.2.2 The sender-receiver timing chain ...50
5.2.3 Application of the timing framework to sender-receiver51

5.3 Timing attributes for client-server communication ..52
5.3.1 Definition of the events ...52
5.3.2 The client-server timing chain...53
5.3.3 Application of the timing framework to client-server communication54

6 Interaction with hardware ...55
6.1 Introduction...55
6.2 Microcontroller Abstraction Layer (MCAL)..56

3 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

6.3 ECU Abstraction ...57
6.4 Sensor-Actuator Software Component ...57
6.5 Complex Device Driver Component ...57

7 AUTOSAR Services ...59
7.1 Introduction...59
7.2 VFB Representation ...59

7.2.1 Selection of a communication mechanism ...60
7.2.2 Location of a Service ..60
7.2.3 Platform dependent types...61
7.2.4 Configuration ..61

7.3 List of Services ...61
8 Mode Management...62

8.1 Introduction...62
8.2 Defining modes...62
8.3 Communicating modes...63
8.4 Mode-managers: components that control modes ...64
8.5 Components that depend on modes ..64

9 Measurement and Calibration ..66
9.1 Calibration ..66

9.1.1 Port-based calibration...66
9.1.2 Private calibration ...69

9.2 Measurement..69
10 Interaction with Non-AUTOSAR-ECUs...70

10.1 Introduction...70
10.2 Problems of interaction...70
10.3 Description of interaction ..71

11 References ...73

4 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

1 Introduction to this document

1.1 Contents

This specification describes the AUTOSAR Virtual Functional Bus (VFB).

1.2 Prereads

This document is one of the high-level conceptual documents of AUTOSAR.
The only required pre-read is [AUTOSAR Technical Overview]. Useful pre-reads are
[Main Requirements] and [AUTOSAR Methodology]. Documents that can be
consulted in parallel to this document include the glossary [AUTOSAR Glossary].

1.3 Relationship to other AUTOSAR specifications

AUTOSAR
Main Requirements Technical

Overview

AUTOSAR
Methodology

Glossary

List of BSW Modules

AUTOSAR
Layered Software
Architecture

Software‐Component
Template

Specification
of

Graphical
Notation

Specification of
RTE

Specification of the
Virtual Functional Bus

Conceptual specifications

BSW SWSBSW SWSBSW SWS

Metamodel and Template
Specifications

RTE and BSW Specifications

5 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

Figure 1.1: Relationship of the “Specification of the Virtual Functional Bus” to
other specifications

Figure 1.1 illustrates the relationship between the “Specification of the Virtual
Functional Bus” and other major AUTOSAR specifications. The “Specification of the
Virtual Functional Bus” is part of a set of specifications describing the overall
concepts of AUTOSAR. These documents give a conceptual overview of AUTOSAR
and serve as requirements to the more detailed specifications. The conceptual
specifications include:

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

The “AUTOSAR Methodology” [AUTOSAR Methodology] describes the method that
is used when building systems with AUTOSAR
The “Specification of the Virtual Functional Bus”
The “Layered Software Architecture” [Layered Software Architecture]
These conceptual documents are refined and made concrete into a large set of
AUTOSAR specifications, which can be grouped into:
the specifications defining the AUTOSAR meta-model and templates; in this group
the “Software-Component Template” [Software Component Template] is directly
influenced by the VFB concepts
the specifications defining the AUTOSAR basic-software modules and the RTE; in
this group the “Specification of RTE” [Specification of RTE Software] is directly
influenced by the VFB concepts.

1.4 Structure and conventions of this document

1.4.1 Structure of this document

Figure 1.2 shows the structure of this document. The first chapters define the VFB
concepts generically and should be read in order. The last chapters define and
clarify specific issues, such as the interaction with hardware, mode-management,
AUTOSAR-Services or Measurement and Calibration. The chapter about the timing
model is for information purposes only and is not part of the standard. It is made
available to show the early conceptual work to model time aspects in the VFB.

The Virtual Functional Bus

Overall mechanisms and concepts

Communication on the VFB

Generic Chapters
Interaction with Hardware

Mode Management

AUTOSAR Services

Measurement and Calibration

Interaction with non‐AUTOSAR ECU‘s

Timing Model for the VFB

Figure 1.2: Structure of the document

6 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

1.4.2 Specification Items

The requirements on the “Virtual Functional Bus” resulting from this document are
listed explicitly as numbered “specification items”. Each specification item has a
unique ID of the form “VFB-XXX” and has the following format:

VBF-XXX : Example of a specification Item

7 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

2 The Virtual Functional Bus

Figure 2.1 shows an overview out of the [AUTOSAR Methodology]. Figure 2.2
illustrates the “Configure System” activity out of the methodology (top-left), focusing
on the VFB.

System

ECU

Component

Configure
System

.XML.XML

System
Configuration

Input :
System

.XML.XML

System
Configuration
Description

:System

Extract
ECU-Specific

Information

.XML.XML

ECU
Extract of
System

Configuration
:System

Configure
ECU

.XML.XML

ECU
Configuration

Description

Generate
Executable

.exe.XML.XML

ECU
related

templates

.exe

ECU
Executable

Component
related

templates

Implemented
Component

Implement
Component

Figure 2.1: Methodology Overview out of [AUTOSAR Methodology]

8 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

ECU I

Virtual Functional Bus

A
U

T
O

S
A

R
S

W
-C

1

A
U

T
O

S
A

R
S

W
-C

2

A
U

T
O

S
A

R
S

W
-C

3

A
U

T
O

S
A

R
S

W
-C

n

...

VFB view

Mapping

System Contraint
DescriptionECU

Descriptions

Tool supporting deployment
of SW components

ECU II ECU m

A
U

T
O

S
A

R
S

W
-C

1

A
U

T
O

S
A

R
S

W
-C

3

A
U

T
O

S
A

R
S

W
-C

2

A
U

T
O

S
A

R
S

W
-C

n

RTE

Basic Software

RTE

Basic Software

RTE

Basic Software

...

Gateway

SW-C
Description

SW-C
Description

SW-C
Description

SW-C
Description

Figure 2.2: Detailed view on the activity “Configure System”

In AUTOSAR, an application is modeled as a composition of interconnected
components. This is illustrated in the top half of Figure 2.2 (labeled “VFB view”). The
“virtual functional bus” is the communication mechanism that allows these
components to interact. In a design step called “Configure System”, the components
are mapped on specific system resources (ECUs). Thereby, the virtual connections
between the components are mapped onto local connections (within a single ECU) or
on network-technology specific communication mechanisms (such as CAN or
FlexRay frames). Finally, the individual ECUs in such a system can be configured.
The concrete interface between the components and the rest of the system on an
ECU is called the Run-Time Environment (RTE), which is defined in [Specification of
RTE Software].
A component encapsulates complete or partial automotive functionality. Components
consist of an implementation and of an associated formal software-component
description (defined in [Software Component Template]). The concept of the virtual
functional bus allows for a strict separation between applications and infrastructure.
The software components implementing the application are largely independent of
the communication mechanisms through which the component interacts with other
components or with hardware (such as sensor or actuators). This fulfills AUTOSAR’s
goal of relocatability (also see [Main Requirements]).
With this the complete communication of a system can be specified including all
communication sources and sinks. The VFB can therefore be used for plausibility
checks concerning the communication of software components. The communication

9 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

connections and the connected software components are saved in one description,
which will be used for the next process steps (mapping, software configuration, etc.).
The VFB specification needs to provide concepts for all infrastructure-services that
are needed by a component implementing an automotive application. These include:
Communication to other components in the system
Communication to sensors and actuators in the system (see Chapter 6, Interaction
with hardware)
Access to standardized services, such as reading to or writing from non-volatile ram
(see Chapter 7, AUTOSAR Services)
Responding to mode-changes, such as changes in the power-status of the local ECU
(see Chapter 8, Mode Management)
Interacting with calibration and measurement systems (see Chapter 9)

10 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

3 Overall mechanisms and concepts

3.1 Components

The central structural element used when building a system at the VFB-level is the
“component”. A component has well-defined “ports”, through which the component
can interact with other components. A port always belongs to exactly one
component and represents a point of interaction between a component and other
components.
Figure 3.1 shows an example of the definition of a component-type called
“SeatHeatingControl”, which controls the heating element in a seat based on several
information sources. In this example, the component inputs whether a passenger is
sitting on the seat (through the port “SeatSwitch”), the setting of the seat temperature
dial (through the port “Setting”) and some information from a central power
management system (through the port “PowerManagement”), which could decide to
disable seat heating in certain conditions. The component controls an LED
associated with the seat temperature dial (port “DialLED”) and the heating element
(through the port “HeatingElement”). Finally, the component can be calibrated (port
“Calibration”), needs the status of the ECU on which the component runs (port
“ecuMode”) and requires access to local non-volatile memory (port “nv”).

SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting

nv

Calibration

ecuMode

Figure 3.1: Example of the definition of the component-type
“SeatHeatingControl” with eight ports

Figure 3.2 shows an example of the definition of a sensor-actuator component1 called
“SeatHeating”. This component inputs the desired setting of the heating element
(through the port “Setting”) and directly controls the seat heating hardware (through
the port “IO”).

11 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

1 Chapter 6, Interaction with hardware, defines the exact purpose of the “sensor-actuator” components

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

SeatHeating

Setting
IO

Figure 3.2: Example of the definition of a component-type “SeatHeating” with
two ports

A single component can implement both very simple but also very complex
functionality. A component may have a small number of ports providing or requiring
simple pieces of information, but can also have a large number of ports providing or
requiring complex combinations of data and operations.
AUTOSAR supports multiple instantiation of components. This means that there can
be several instances2 of the same component in a vehicle system. Figure 3.3 shows
how two instances of the “SeatHeatingControl” component-type are used to control
the left front seat, respectively the right front seat. These components will typically
have their own separate internal state (stored in separate memory locations) but
might for example share the same code (in as far as the code is appropriately written
to support this).

SHCFrontLeft:
SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

SHCFrontRight:
SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting Setting

nv nv

Calibration Calibration

ecuMode ecuMode

Figure 3.3: Example showing the multiple instantiation of the component
“SeatHeatingControl” as “SHCFrontLeft” and “SHCFrontRight”

VFB001: At configuration time, the component’s ports are known

VFB002: Components interact with each other through their ports only

VFB084: A component-type can be instantiated multiple times on the VFB

12 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

2 Dynamic instantiation at runtime is not scope of the present release of AUTOSAR.

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

3.2 Port-Interfaces

A port of a component is associated with a “port-interface”. The port-interface
defines the contract that must be fulfilled by the port providing or requiring that
interface.

VFB003: At configuration time, each port is typed by exactly one port-interface

Table 3.1 lists the three kinds of port-interfaces supported by AUTOSAR: client-
server, sender-receiver and calibration.
Kind of port-
interface

Comment Further reading

Client-server The server is provider of operations and
several clients can invoke those operations.

this section and
Section 4.4

Sender-receiver A sender distributes information to one or
several receivers, or one receiver gets
information (events) from several senders3. A
mode manager can notify mode switches to
one or several receivers

this section and
Section 4.3

Calibration Calibration is a static communication pattern: it
allows modules to access static calibration
parameters.

Chapter 9

Table 3.1: The kinds of port-interfaces provided by AUTOSAR.

A client-server interface defines a set of operations that can be invoked by a client
and implemented by a server. Figure 3.4 shows an example of the definition of a
simple client-server interface. The interface “HeatingElementControl” defines a
single operation called “SetPower” with a single ingoing argument called “Power”.
The operation can return an application error called “HardwareProblem”.

<<ClientServerInterface>>
HeatingElementControl

ApplicationErrors:
HardwareProblem

Operations:
SetPower(
IN ARGUMENTint32 Power,
POSSIBLEERROR=HardwareProblem)

Figure 3.4: Example of a client-server interface “HeatingElementControl” with
a single operation

13 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

3 In the context of AUTOSAR, sending, receiving and distributing of events is seen as part of the
sender-receiver communication pattern.

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

A sender-receiver interface defines a set of data-elements that are sent and received
over the VFB. Figure 3.5 shows the definition of a simple sender-receiver interface
called “SeatSwitch” containing a single data-element called “PassengerDetected”.

<<SenderReceiverInterface>>
SeatSwitch

DataElements:
boolean PassengerDetected

Figure 3.5: Example of a Sender-Receiver Interface “SeatSwitch” with a single
data-element

VFB004: At configuration time it is known whether the port-interface is a client-server
interface or a sender-receiver interface

VFB005: At configuration time, it is known which operations a client-server interface contains

VFB006: At configuration time, it is known which data-elements a sender-receiver interface
contains

3.3 Ports

As defined before, the ports of a component are the interaction points between
components.
A port of a component is either a “PPort” or an “RPort”. A “PPort” provides the
elements defined in a port-interface. An “RPort” requires the elements defined in a
port-interface. A port is thus typed by exactly one port-interface4. A single port-
interface can type several different ports.

VFB007: At configuration time, it is known whether a component’s port is a PPort or an RPort

Table 3.2 shows the port-icons for the various combinations and summarizes the
semantics of those ports.

Kind of Port Kind of Interface Service

Port
Port-Icon and description

PPort sender-receiver No

The component provides values for the
data-elements and mode-groups in the

interface

14 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

4 This implies that a port only provides one elementary communication pattern (either sender-receiver
or client-server). This is necessary because otherwise a reasonable connection of ports is not
possible. Additionally only in this way a reasonable modeling e.g. of data flow is possible.

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

RPort sender-receiver No

The component reads or consumes
values for the data-elements and mode-

groups in the interface
PPort client-server No

The component provides (=implements)
the operations defined in the interface

RPort client-server No

The component requires (=uses or
invokes) the operations defined in the

interfaces
PPort calibration No

The component provides calibration
data

RPort calibration No

The component requires calibration data
PPort sender-receiver Yes

The component provides data-elements
and mode-groups to an AUTOSAR

Service
RPort sender-receiver Yes

The component reads/consumes data-
elements and mode-groups from an

AUTOSAR Service
PPort client-server Yes

15 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

The component provides (=implements)
operations for an AUTOSAR Service

RPort client-server Yes

The component invokes operations from
an AUTOSAR Service

Table 3.2: Semantics of the port-icons

When a PPort of a component provides a client-server interface, the component to
which the port belongs provides an implementation of the operations defined in the
interface.
In the example of Figure 3.6, the component “SeatHeating” implements the operation
“SetPower” and makes it available to other components through the port “Setting”.
The component “SeatHeatingControl” uses the operation “SetPower” and expects
such an operation to be available through the port “HeatingElement”.

SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting

SeatHeating

Setting
IO

<<ClientServerInterface>>
HeatingElementControl

ApplicationErrors:
HardwareProblem

Operations:
SetPower(
IN ARGUMENTint32 Power,

ardwareProblem)

Calibration

ecuMode

POSSIBLEERROR=H

nv

Figure 3.6: Example showing the use of the Client-Server Interface
“HeatingElementControl” to type the Port ”HeatingElement” of the component
“SeatHeatingControl” and the port “Setting” of the component “SeatHeating”

A component providing a sender-receiver interface generates values for the data-
elements defined in the interface.
In the example of Figure 3.7, the component “SeatSwitch” generates values for the
Boolean value “PassengerDetected” through its port “Switch”. Similarly, the
component “SeatHeatingControl” can read the data-element “PassengerDetected”
through its port “SeatSwitch”.

16 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

SeatSwitch

Setting

nv

IO

Calibration

Switch

<<SenderReceiv
SeatSwitch

DataElements:
boolean PassengerDetected

ecuMode

erInterface>>

Figure 3.7: Example showing the use of the Sender-Receiver Interface
“SeatSwitch” to type the Port “SeatSwitch” of the components

“SeatHeatingControl” and the port “Switch” of the component “SeatSwitch”

3.4 Connectors

During the design of an AUTOSAR system, ports between components that need to
communicate with each other are hooked up using assembly-connectors. Such an
assembly-connector connects one RPort with one PPort.

17 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

SHCFrontLeft:
SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting

SHDialFrontLeft:
HeatingDial

Position

LED

SHCFrontRight:
SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElementDialLED

Setting

SHDialFrontRight:
HeatingDial

Position

LED

PM:
PowerManagement

SHFrontLeft:

SeatHeating

WindowDefrost

SeatHeating

SHFrontRight:
SeatHeating

PowerStatus

nv

IO

IOIO

IO

Calibration

Calibration

nv

ecuMode

ecuMode

Figure 3.8: Example of the use of eight assembly-connectors to connect the
ports of seven components

For the case of sender-receiver communication, the presence of an assembly-
connector represents the fact that the data generated by the PPort on the connector
is transmitted to the RPort. In the example of Figure 3.8 the data generated on the
PPort “DialLED” of the component “SHCFrontRight” (of component-type
“SeatHeatingControl”) is transmitted to the RPort “LED” of the component
“SHDialFrontRight” (of component-type “HeatingDial”).
For the case of client-server communication, an invocation of the operations provided
on a PPort is possible from the components that have an RPort connected to this
PPort. In the example of Figure 3.8: when the component “SHDialFrontLeft” invokes
an operation through the port “Position”, this operation will be invoked on the port
“Setting” of the component “SHCFrontLeft”.
Both for sender-receiver communication and for client-server communication, one
PPort can be connected to one or more RPorts (for multicast sending and multiple
clients connected to a server, respectively). In the example of Figure 3.8, the data
coming out of the port “SeatHeating” of the component “PM” is sent to both
components “SHCFrontLeft” and “SHCFrontRight”.
Furthermore, in sender-receiver communication one or more PPorts can be
connected to one RPort (e.g. for information collected from different senders in a
single receiver).
The exact communication behavior that such a connector represents depends on the
kind of operations or data that is provided and/or required on the ports that the
connector connects.
18 of 73 Document ID 056: AUTOSAR_SWS_VFB

- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

VFB008: At configuration time, all components instantiated on the VFB are known

VFB009: At configuration time, all communication possibilities between components on the
VFB are modeled through the presence of connectors. Communication between ports not
connected through such a connector is not possible.5

VFB010: An assembly-connector connects exactly one PPort with exactly one RPort

VFB113: An assembly-connector can connect one PPort with one RPort only if their port
types, interfaces and attributes, characterizing their communication abilities, are compatible
with each other6.

3.5 Compositions versus atomic components

A sub-system consisting of usages of components and connectors is packaged into a
“composition”. In AUTOSAR, the usage of a component-type within a composition is
called a “prototype”. A composition is itself a component-type and can have its own
ports. Compositions can be used as structuring elements to build up hierarchical
systems with an arbitrary number of hierarchies.
Figure 3.9 shows the definition of the composition “SeatHeatingControlAndDrivers”.
This composition contains three prototypes: the prototype “SHDial” (of component-
type “HeatingDial”), the prototype “SHC” (of component-type “SeatHeatingControl”)
and the prototype “SH” (of component-type “SeatHeating”). The composition itself is
a component-type and has seven ports.

Figure 3.9: Example of the definition of the Composition
“SeatHeatingControlAndDrivers”

5 The AUTOSAR-Services are an exception to this rule. The connections related to AUTOSAR-
Services are made later in the AUTOSAR-method, namely during ECU-configuration. See AUTOSAR
Services, for a deeper explanation.
6 The exact meaning of “compatibility” is defined in the [Software Component Template].

SHC:
SeatHeatingContro
l SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting

SHDial:
HeatingDial

Position

LED

SH:
SeatHeating

SeatHeatingControlAndDrivers

SeatSwitch
PowerManagement

IO

IO

ecuModenv IODial Calibration IOHeating

19 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

Figure 3.10 shows the use of a composition as a component-type. Figure 3.10
essentially shows another composition containing three prototypes: the prototypes
“SHFrontLeft” and “SHFrontRight” (both of type “SeatHeatingControlAndDrivers”) and
the prototype “PM” of type “PowerManagement”.
A component-type in AUTOSAR is either a “composition” or “atomic”. A composition
is defined through interconnected prototypes (as in Figure 3.9). An atomic component
cannot be further decomposed into smaller components.

SHFrontLeft:
SeatHeatingControlAndDrivers

SeatSwitch PowerManagement

Figure 3.10: Example of the use of the Composition
“SeatHeatingControlAndDrivers”

3.6 Relationship between the VFB and the ECU Software
Architecture

When a sub-system consisting of atomic components and assembly-connectors is
deployed on a network of ECUs, all atomic components are mapped on an ECU.
The corresponding connectors between the components are implemented by intra- or
inter-ECU communication mechanisms.
In the example of Figure 3.11, atomic components “SHDialFrontLeft” and
“SHCFrontLeft” are mapped onto “ECU1”, whereas the atomic component “PM” is
mapped onto “ECU3”. This implies that the connectors between the first two
components are handled within ECU1, whereas the connection between the
component “SHCFrontLeft” and the component “PM” will run through a network
connection between ECU1 and ECU3.

PM:
PowerManagement

SeatHeating

WindowDefrost

PowerStatus

SHFrontRight:
SeatHeatingControlAndDrivers

SeatSwitch PowerManagement

IODial IOHeating nv CecuMode alibration

IODial nv IOHeating CecuMode alibration

20 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

VFB

PM:
PowerManag

ement

RTE1

BSW1

RTE3

BSW3

ECU1 ECU3

SHDialFrontL
eft:

HeatingDial

SHCFrontLeft:
SeatHeatingControl

SHDialFront
Right:

HeatingDial

SHCFrontRight:
SeatHeatingControl

HFront
Left:

SeatHe
ating

HFront
Right:
SeatHe
ating

PM:
PowerManag

ement

SHDialFrontL
eft:

HeatingDial

ECU2

…
…

…

…

IO IO IOIO

IO

…

SHCFrontLeft: SeatHeatingControl

nv ec
uM

o
d

e

C
al

ib
ra

tio
n

…

…

P
o

w
e

r
M

an
ag

e
m

e
n

t

Figure 3.11: Example illustrating the mapping of a composition of components on
three ECUs.

Figure 3.12 shows the standard component-view on the AUTOSAR layered software
architecture, which is the architecture of a single AUTOSAR ECU. The “AUTOSAR
Interface” of a component refers to the full set of ports of a component (as defined
before, a port-interface characterizes a single port of a component). A “Standardized
AUTOSAR Interface” is an AUTOSAR Interface which is standardized by AUTOSAR.
Typically, an AUTOSAR service will have such a “Standardized AUTOSAR
Interface”. For a formal definition of the term AUTOSAR Interface and Standardized
AUTOSAR Interface see [Layered Software Architecture].

21 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

ECU-Hardware

AUTOSAR Runtime Environment (RTE)

Actuator
Software

Component

AUTOSAR
Software

Component

Application
Software

Component

Sensor
Software

Component

Application
Software

Component

..............

AUTOSAR
Software

Basic Software

AUTOSAR
Interface

AUTOSAR
Interface

AUTOSAR
Interface

AUTOSAR
Interface

Standardized
Interface

Microcontroller
Abstraction

ECU
Firmware

Standard
Software

Standardized
AUTOSAR
Interface

Services

Standardized
Interface

ECU
Abstraction

AUTOSAR
Interface

Standardized
Interface

Complex
Device
Drivers

AUTOSAR
Interface

Interface

API 2
VFB & RTE
relevant

Standardized
Interface

Standardized
Interface

Communication

Standardized
Interface

Operating
System

API 1
RTE
relevant

S
ta

n
d

ard
ize

d
In

te
fac

e

API 0

API 3 Private
Interfaces inside

Basic Software
possible

Figure 3.12: Component-View on the AUTOSAR layered software architecture

Figure 3.13 shows what a possible concrete architecture of ECU1 out of the example
of Figure 3.11 might look like. The atomic software components that are mapped on
ECU1 are hooked into the Run-Time Environment that is generated for ECU1. This
Run-Time Environment will typically implement the local connections between the
local components “SHCFrontLeft” and “SHDialFrontLeft”.
In addition, the Run-Time Environment has the responsibility to route information that
is coming from or going to remote components. In the example, the port “Power
Management” is routed to the communication stack in the underlying basic software.
The RTE also hooks up the component “SHCFrontLeft” to local standardized
AUTOSAR services, such as the local non-volatile memory (through the port “nv”)
and information on the local state of the ECU (“through the port “ecuMode”).

22 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

ECU-Hardware

RTE

AUTOSAR
Software

Basic Software

Standardized
Interface

Microcontroller
Abstraction

Standardized
Interface

Communication

Standardized
Interface

Standardized
Interface

Operating
System

S
ta

n
d

a
rd

ize
d

In
te

rfa
c

e

SHDialFrontLeft:
HeatingDial

SHCFrontLeft: SeatHeatingControl

P
o

w
e

r
M

an
ag

e
m

e
n

t

ec
uM

o
d

e

C
al

ib
ra

tio
n

nv IO

N
vR

am
S

er
vi

ce

E
C

U
 S

ta
te

M
an

ag
er

ECU Abstraction
Component

IO

Figure 3.13: Example showing the relationship between the components mapped
on an ECU and the ECU Software Architecture

3.7 Kinds of components

This section gives a final overview of the various kinds of components that are
relevant to AUTOSAR.

Kind Description Illustration
Application
software
component

The application software component is
an atomic software component that
implements (part of) an application. The
atomic software components can use
all AUTOSAR communication
mechanisms and services. The
application software component
interacts with sensors or actuators
through a sensor-actuator software
component.

<<Application
Software

ComponentType>>

23 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

The sensor-actuator software
component is an atomic software
component that handles the specifics of
a sensor and/or actuator. It directly
interacts with the ECU-Abstraction (this
is illustrated by a port called “IO”). See
Chapter 6, Interaction with hardware.

Sensor-
actuator
software
component

<<SensorActuator
Software

ComponentType>>

IO

Calibration
parameter
component

A calibration parameter component
provides values for calibration
parameters. See Chapter 9.
.

Composition A composition is defined through the

interconnected component-prototypes it
contains. Consequently it can use all
AUTOSAR communication
mechanisms and services.

Service
component

A service-component provides
standardized services through
standardized interfaces. To provide
these services, this component may
interact directly with certain other basic-
software modules (this is represented
by the double arrow). See Chapter 7.

<<Service
ComponentType>>

ECU-
abstraction
component

The ECU-abstraction provides access
to the ECU’s specific IO capabilities.
These services are typically provided
through client-server PPorts and are
used by the sensor-actuator software
components. The ECU-abstraction
may directly interact with certain other
basic-software modules (this is
represented by the double arrow). See
Chapter 6, Interaction with hardware.

<<ECUAbstraction
ComponentType>>

IO

Complex
device driver
component

The complex device driver generalizes
the “ECU-abstraction component”. It
can define ports to interact with other
components in specific ways and can
also interact directly with other basic-
software modules. The purpose of the
complex device-driver is described
further in Section 6.5 Complex Device
Driver.

<<Complex
DeviceDriver

ComponentType>>

<<CompositionTyp
e>>

<<Calprm
ComponentType >>

24 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

Table 3.3: Kinds of components

3.8 Resources for components and “runnables”

3.8.1 Background

The VFB is a system modeling and communication concept, which allows
components to be distributed in a network of ECUs. The interaction possibilities
between a component and other components are described through the component's
ports and their associated interfaces, which define the operations, data-elements,
mode-groups or calibration parameters that are provided or required by the
component. Through the same communication mechanisms, the component can
interact with standardized AUTOSAR services (available on each properly configured
AUTOSAR ECU) or the ECU-specific IO capabilities (available on the specific ECU
on which the appropriate hardware is present and to which the correct devices are
connected).
However, implementations of components need access to additional resources,
mainly memory (the component’s implementation typically needs memory to maintain
its internal state) and CPU-power (the component’s implementation contains code
that must be executed according to a certain timing schedule or in response to
certain events).
As these scheduling issues are closely linked to the communication needs of the
component, the RTE must provide both aspects. Therefore, the RTE must provide a
complete environment for the component, including:

 Appropriate mechanisms through which the component’s implementation (for
example in a programming language like “C”) can:

o Provide values for data-elements in the component’s PPorts
o Read/Consume values for data-elements in the component’s RPorts
o Access the component’s calibration parameters
o Provide implementations for the operations in the component’s PPorts
o Invoke operations provided by other components through the

component’s RPorts
o Etc.

 Appropriate mechanisms through which the component’s implementation (for
example “C” functions) is invoked in response to:

o Fixed-time schedules (for example: many components need to run
“cyclically”)

o Events related to the communication mechanisms (for example some
components might want to be notified upon the reception of data from
other components)

 Appropriate mechanisms through which the component’s implementation can
access other common resources, such as instance-specific memory

 As an AUTOSAR ECU typically is a multi-threaded environment, the RTE
must also provide all common synchronization mechanisms

This section introduces the AUTOSAR construct that addresses these various needs:
the “runnable”.
25 of 73 Document ID 056: AUTOSAR_SWS_VFB

- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

3.8.2 The “runnable” concept

The “atomicity” of an atomic software-component refers to the fact that the
component cannot be divided in smaller components and must therefore be mapped
onto a single ECU.
For example, Figure 3.14 shows a logical component view of the mapped application-
software component “SHCFrontLeft” on a specific ECU. Through its ports, the
component has expressed which information it requires and provides from other
components.

RTE

SHCFrontLeft: SeatHeatingControl

nvec
uM

o
d

e

C
al

ib
ra

tio
n

P
o

w
er

M
an

ag
em

en
t

S
ea

tS
w

itc
h

S
et

tin
g

Figure 3.14: Component-view on the interaction between an atomic software
component and the RTE on an ECU

However, the actual implementation of a component consists of a set of “runnable
entities”7 (also more simply called “runnables”). A “runnable entity” is a sequence of
instructions (provided by the component) that can be started by the Run-Time
Environment8.

7 The usage of the word “runnable” is for example consistent with the “Runnable” Interface in Java:
“the Runnable Interface should be implemented by any class whose instances are intended to be
executed by a thread”.

26 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

8 In certain cases, optimization of the RTE could cause a runnable entity to be started directly from
another software-component without real intervention of the RTE. For example a synchronous call to
a component that runs on the same ECU and can execute within the context (task) of the caller could
be implemented as a direct function-call into the calling component.

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

SHCFrontLeft: SeatHeatingControl

Implementation

RTE

M
ai

nC
yc

lic

S
et

tin
g

P
o

w
er

M
an

ag
em

en
t

S
ea

tS
w

itc
h

S
et

tin
g

g
et

S
ea

tS
w

itc
h_

P
as

se
ng

ec
uM

o
d

e

C
al

ib
ra

tio
n

nv

er
D

et
ec

te
d

()

Figure 3.15: Implementation-view on the interaction between an atomic software
component and the RTE on an ECU

Figure 3.15 shows an example of this. Logically, the component-type
“SeatHeatingControl” has defined six ports, through which it wants to interact with
other components or services. The implementation of the component on the other
hand contains two runnables: “MainCyclic” and “Setting”. The component requires
the runnable “MainCyclic” to be invoked cyclically (at a specific rate) by the RTE.
The component requires that the second runnable “Setting” is invoked whenever
another component invokes an operation on the PPort “Setting”. To access the
information provided to the component through the RPort “SeatSwitch”, the
component will use the operation “getSeatSwitch_PassengerDetected()” of the
sender-receiver interface of the SeatSwitch port. The implementation of this interface
is provided by the RTE.
In general, an atomic software-component can provide just one runnable or it can
contain a large number of runnables. A runnable can be a very simple piece of code
that executes a simple algorithm or a complex program.

VFB043: At configuration time, the runnables of a component must be known

A “runnable entity” runs in the context of a "task"9. The task provides the common
resources to the “runnable entities” such as a context and stack-space. Typically the
operating-system scheduler has the responsibility to decide during run-time when

27 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

9 Within this discussion, it is not necessary to make a distinction between “processes” (heavy-weight
tasks which are often protected from other processes through memory-management) and “threads”
(light-weight tasks running inside a process). The “task” refers to both.

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

which “task” can run on the CPU (or multiple CPUs) of the ECU. There are many
standard strategies that schedulers can use (e.g. priority-based preemptive, round-
robin, time-triggered…).

3.8.3 The implementation of a component and the role of the RTE

In conclusion, the implementation of an atomic software-component essentially
consists of three aspects:
A model of the component (using the concept of ports and port-interfaces) that is
used to hook up the component with other components at the VFB-level
An implementation (“code”). The implementation of the component is structured in
“runnables” which are pieces of code that can be executed by the RTE
A software-component description ([Software Component Template]) in which the
component describes requirements on the RTE. These include:

 Which runnables need to be called cyclically
 Which runnables need to be called in response to events related to

communication or other sources
 How the component would like to access the information in its ports or invoke

the operations that it requires from other components
 Any other resources the component requires, such as AUTOSAR services or

local memory
In a properly configured AUTOSAR ECU, the RTE (in cooperation with a properly
configured basic software), will satisfy the component’s requirements. The RTE will
for example:
Ensure that the runnables are invoked at the correct times
Provide the functions that the component needs to access data or invoked operations
Provide all other resources the component needs

28 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

4 Communication on the VFB

4.1 Introduction

This section specifies the communication mechanisms of the VFB, which atomic
software components can use to communicate with each other.
Section 4.2, Error types, defines the types of errors that can appear in both Sender-
Receiver and Client-Server communication models.
Section 4.3, Sender-Receiver communication, defines the functional semantics of
sender-receiver communication in more detail. This section also defines the
communication attributes that define the exact characteristics of the communication
patterns provided by AUTOSAR. Some details related to mode-switches are covered
in Chapter 8, Mode Management.
Section 4.4, Client-Server communication, does the same for client-server.

4.2 Error types

Errors are divided into two simple classes: infrastructure errors and application
errors.
Infrastructure errors are returned when the infrastructure between the sender and the
receiver, for sender-receiver communication, or between the client and the server, for
client-server communication, failed. A typical example of an infrastructure error is a
timeout. In case the client does not receive a response from the server within a
certain amount of time (because the communication channel between client and
server is not available or a message was lost) a “time-out” infrastructure error is
returned to the client. The possible infrastructure errors are standardized by
AUTOSAR.
Application errors are application-specific and must be defined as part of the sender-
receiver interface, for sender-receiver communication, or client-server interface, for
client-server communication.

4.3 Sender-Receiver communication

The sender-receiver pattern enables the distribution of information where a sender
distributes information to one or several receivers or a receiver receives information
from several senders. Figure 4.1 gives an example how sender-receiver
communication is modeled in the AUTOSAR VFB View.

29 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

Sender

Receiver 1

Receiver 2

Figure 4.1: Example of sender-receiver communication at VFB level

In this example there are two assembly-connectors connecting the PPort of the
component “Sender” with the RPort of “Receiver 1” (respectively “Receiver 2”).
The sender-receiver interface associated with those ports consists of data-elements
that define the data that is sent by the sender and received by the receivers.
The type of a data-element can be something very simple (like an "integer") or can be
a complex (potentially large) data type (e.g. an array or a string). The transfer of a
value, even of a complex data type, is always logically atomic.

VFB011: At configuration time, the data-type of each data-element in a sender-receiver
interface is known

A sender can provide a new value for each data-element defined in the Sender-
Receiver Interface. The precise semantics depend on whether the data-element is
defined to be of type “last-is-best” or whether the data-element is “queued”.

VFB012: At configuration time, each data-element in a sender-receiver interface must be
defined to have either “queued” or “last-is-best” semantics

Each data-element with “last-is-best” semantics can be configured to support
invalidation. If the “last-is-best” data-element supports invalidation, the sending
component can indicate the receivers that the data-element is “invalid” (see attributes
RECEIVE_INVALID and CAN_INVALIDATE in Table 4.1 and Table 4.2).

VFB101: At configuration time, it must be known for each “last-is-best” data-element in a
sender-receiver interface, whether the data-element supports the ability to be “invalid” or not

4.3.1 From the point of view of the sender

Each data-element with “last-is-best”-semantics in a PPort of a sender-component
always has a current value. The initial current value of such a data-element can be
defined through configuration of the VFB (see attribute “INIT_VALUE” in Table 4.1
and in Table 4.2). The sending component can change the current value of the data-
element, thereby overwriting the previous value of the data-element.

30 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

When a data-element has “queued” semantics, the consecutive values produced by
the sender are stored in a queue. The initial queue has length zero (no values are
available). Each time the sender produces a new value, this value is added to the
queue, until an arbitrary and configurable number of entries has been reached.
A sending component does not know the identity and the number of receivers. Its
behavior is independent of the presence or absence of receivers. Sender-receiver
communication allows for a strong decoupling between sender and receiver. The
sender just provides the information and the receivers decide autonomously when
and how to use this information. It is the responsibility of the communication
infrastructure to distribute the information. In certain cases, however, the sending
application wants to be notified when the expected quality-of-service of the
communication system between the sender and its receivers is known to be violated
(see attribute “TRANSMISSION_ACKNOWLEDGEMENT” in Table 4.1).

VFB103: At configuration time, it must be known for each data-element in a PPort of a
component, whether the component wants to be informed on successful transmission or
timed-out transmission

Table 4.1 gives an overview of the communication attributes that a sender can use to
control the behavior of the sender-receiver communication pattern. These attributes
are defined at the level of a single data-element or mode-group.

Kind of data-
element or
modeGroup Realization in

software-component
template

Attribute/Feature
Name

 Description

m
od

e

ev
en

t

da
ta

This attribute defines the
initial value of the data-
element, seen by all
receivers of this data-
element. This initial value
can be overwritten by the
attribute INIT_VALUE on the
receiver side.

attribute “initValue” of
“UnqueuedSenderCom
pSpec”

INIT_VALUE

re
qu

ire
d

no
t

av
ai

la
bl

e
10

no
t

av
ai

la
bl

e
11

CAN_INVALIDATE

attribute
“canInvalidate” of
“UnqueuedSenderCom
Spec”

In case this feature is used,
the sender can invalidate a
data-element.

no
t

av
ai

la
bl

e

op
tio

na
l

no
t

av
ai

la
bl

e

MODE_QUEUE_LE
NGTH

“queueLength” of
ModeSwitchComSpec

This attribute defines the
size of the input queue of the
of mode switch notifications
to a mode machine. no

t
av

ai
la

bl
e

no
t

av
ai

la
bl

e

re
qu

ire
d

10 The initial condition of a queued data-element is the empty queue

31 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

11 The initial mode is defined as part of the ModeDeclarationGroup

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

Normally, a sender must
make an explicit function-call
to send a data-element or
change the current mode.
“Implicit sending” means that
a runnable can modify a
data-element while it is
running. After the runnable

IMPLICIT_SEND “DataWriteAccess”

terminates, the RTE will
make the latest value
available to receivers of the
data-element. op

tio
na

l

no
t

av
ai

la
bl

e

no
t

av
ai

la
bl

e

 “TransmissionAcknowl
edgementRequest”
with attribute “timeout”
or
“ModeSwitchedAckRe
quest” with attribute
“timeout”

The sending component is
informed when the data has
been sent correctly OR when
the mode switch has been
executed by the RTE. If the
timeout occurs before this
acknowledgement, the
sender is informed of an
infrastructure error. op

tio
na

l

op
tio

na
l

op
tio

na
l

TRANSMISSION_
ACKNOWLEDGEM
ENT

IS_QUEUED
“isQueued” in
“DataElementPrototyp
e”

When this parameter is
TRUE, the data-element is
queued (=used for “events”).
When this parameter is
false, the data-element has
“last-is-best” semantics. F

A
LS

E

T
R

U
E

no
t

av
ai

la
bl

e

Table 4.1: Communication Attributes for a Sender

Details can be found in [Software Component Template] and [Specification of RTE
Software].

4.3.2 From the point of view of the receiver

A receiver can access the value of each data-element defined in the Sender-
Receiver Interface associated with the RPort of the receiving component.
For a data-element that has “last-is-best” semantics, the receiver has access to the
latest value of that data-element. Alternatively, the receiver is informed that the data-
element is “invalid” (in case the data-element supports this feature). The receiver
may have access to the livelihood of the data-element, whether its value is valid or
outdated. The livelihood is defined by configuring the VFB (see attributes
“TIME_FOR_RESYNC” and “ALIVE_TIMEOUT” in Table 4.2).

VFB014: At configuration time, the initial value of each last-is-best data-element in an RPort
of a component must be defined

VFB015: The current value of a data-element seen by a receiving component, when a
sending-component has not provided a value, is the configured initial value of the RPort

VFB017: The initial value of the receiving component can be “invalid” if the data-element
supports this

32 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

VFB094: At configuration time, it must be known for each last-is-best data-element in a RPort
of a component whether the component wants to get informed of the livelihood of the data-
element

VFB095: A receiver that gets informed of the livelihood of a data-element must configure the
period of time between receptions. This threshold determines the livelihood of the data-
element: actual or outdated

For a data-element that has “queued” semantics, the receiver has essentially one
operation: to obtain the next data-element from the queue. In case the queue is
empty, this fact is returned to the receiver. Otherwise, the next data-element value is
read and taken from the queue (in other words, this is a “consuming read”). The
capacity of the queue is defined by configuring the VFB (see attribute
“RECEIVER_QUEUE_LENGTH” in Table 4.2).

VFB019: The queue associated with a data-element with “queued” semantics is initially
(before a sender has added values to the queue) empty

VFB020: Logically, the queue is located on the receiver’s side

VFB021: At configuration time, the size of the receiver’s queue must be known

VFB022: The receiver’s queue has first-in first-out semantics

VFB023: When the receiver’s queue is full and a new value arrives, this value is dropped
(“queue overflow”)

VFB024: The receiver can be notified of “queue overflow” if it indicates that it desires this
notification at configuration time

Table 4.2 gives an overview of the communication attributes that a receiver can use to
control the behavior of the sender-receiver communication pattern. These attributes
are defined at the level of a single data-element or mode-group.

Kind of data-
element or
modeGroup Attribute Name Attribute Value Description

m
od

e

ev
en

t

da
ta

A receiver can optionally specify
its own initial value, which
overrides the initial value of the
sender.

“ initValue” of
“UnqueuedReceiverC
omSpec”

op
tio

na
l

INIT_VALUE

no
t

av
ai

la
bl

e
12

no
t

av
ai

la
bl

e
13

RECEIVE_INVA
LID

“handleInvalid” in
“UnqueuedReceiverC
omSpec”

The receiver can specify how it
wants to respond when an invalid
value for a data-element is
received. no

t
av

ai
la

bl
e

op
tio

na
l

no
t

av
ai

la
bl

e

TIME_FOR_RE
SYNC

Time allowed for
resynchronization of data values
after current data is lost, e.g.
after an ECU reset. op

tio
na

l

no
t

av
ai

la
bl

e
no

t
av

ai
la

bl
e“ resyncTime” of

“UnqueuedReceiverC
omSpec”

12 The initial condition of a queued data-element is the empty queue

33 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

13 The initial mode is defined as part of the ModeDeclarationGroup

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

ALIVE_TIMEOU
T

“aliveTimeout” of
“UnqueudReceiverCo
mSpec”

The receiver specifies the
maximum period of time it may
take to receive a data-element If
the data-element is not received
within the defined period, the
data-element is "outdated" op

tio
na

l

no
t

av
ai

la
bl

e

no
t

av
ai

la
bl

e

IMPLICIT_REC
EIVE

“DataReadAccess”

Normally, a runnable wishing to
read a data-element needs to do
this through an explicit call to the
RTE. The “IMPLICIT_RECEIVE”
means that the runnable has
access to the value of the data-
element that was available at the
time of the start of the runnable.
It does not need to invoke an
explicit API to fetch the latest
data. op

tio
na

l

no
t

av
ai

la
bl

e

no
t

av
ai

la
bl

e

RECEIVE_EVE
NT

“DataReceivedEvent”
and
“ModeSwitchEvent”

This implies that the receiving
applications is notified by the
RTE when a new value of a data-
element or a mode-switch is
received. This implies that the
receiving component does not
need to poll but can wait for new
data-elements or mode-changes. op

tio
na

l

op
tio

na
l

op
tio

na
l

IS_QUEUED
“isQueued” in
“DataElementPrototyp
e”

When this parameter is TRUE,
the data-element is queued
(=used for “events”). When this
parameter is false, the data-
element has “last-is-best”
semantics. F

A
LS

E

T
R

U
E

no
t

av
ai

la
bl

e

RECEIVER_QU
EUE_LENGTH

 queueLength of
QueuedReceiverCom
Spec

Received values are added to
the end of the queue and values
are read (consuming) from the
front of the queue (i.e. the queue
is first-in-first-out). If the queue is
full and another data-item
arrives this data item is
discarded and the receiver is
informed by error-handling
mechanisms. no

t
av

ai
la

bl
e

re
qu

ire
d

no
t

av
ai

la
bl

e

34 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

FILTER
Attribute “ DataFilter”
of
“ReceiverComSpec”

A data-element is only passed to
the application if the value of the
data-element passes the
conditions of the filter. If a newly
received value for a data-
element does not pass the
conditions of the filter, the value
is
discarded (not added to queue
for a queued receiver OR the
current value of the data-element
is not updated for a last-is-best
receiver). The VFB provides the
same filters as defined in OSEK-
COM V3.0.3, P.12. These filters
can only be applied to data-
elements that are of a primitive
type. op

tio
na

l

op
tio

na
l

no
t

av
ai

la
bl

e

Table 4.2: Communication Attributes for a Receiver

Details can be found in [Software Component Template] and [Specification of RTE
Software].

4.3.3 Multiplicity of sender-receiver

The term multiplicity discussed in the following two sections applies to the connection
multiplicity of a specific port to one or more other ports; it does not concern two distinct ports
of a software component that are connected separately to two distinct ports of another
software component.
Both types of sender receiver semantics (i.e. an interface with data-elements of “last-is-best”
semantics or queued semantics), support either 1:n communication (1 sender and n
receivers, with n  0) or n:1 communication (n senders and 1 receiver). The sender(s)
own(s) the current value of the data-element. With last-is-best semantics the receiver(s) of
the data always want(s) to have only the most recent value of the data. It is the responsibility
of the communication system to ensure the availability of the correct value of the data-
element on the receiver side. This is illustrated in Figure 4.2.

35 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

use A

SW Component 2

publish A

SW Component 1

A

SW Component 1

AA AA

AA

SW Component 1

AA

Model View

Implementation View

publish A

SW Component 2
Communication System

...

use A

AA
AA

transport A

SW Component n

AA

read value
of A from

communication
system

SW Component n

...

Figure 4.2: ”last-is-best” semantics. The upper part of this figure shows the
model view of ”last-is-best” semantics. The lower part shows the implementation

view of this pattern.

From an implementation point of view, this could for example be realized by having the
sender periodically broadcast the latest value of the data-element to its receivers. A second
implementation could only communicate actual changes to the receivers.
With “queued” semantics and n:1 communication the queue is on the receiving side and
several senders can add values for the data-element to the single receiver’s queue. To avoid
a further increase of the complexity of the VFB mechanisms all other communication
scenarios like n:m (n, m > 1) are not possible.

VFB025: For sender-receiver with data-elements with “last-is-best” semantics, both 1:n as
well as n:1 communication (1 sender to multiple receivers) is possible

VFB026: For sender-receiver with data-elements with “queued” semantics, both 1:n (1
sender to multiple receivers) and n:1 communication (multiple senders to 1 receiver) is
possible

VFB120: For sender-receiver with ModeDeclarationGroups, only 1:n (1 sender to multiple
receivers) is possible

As a component can have an arbitrary number of ports, a single component can assume the
role of sender and/or receiver.

36 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

4.3.4 Filtering between the sender and the receiver

The VFB supports the definition of an additional filter that sits between the sender
and the receiver.
A new value for a data-element is only passed to the application if the value passes
the conditions of the filter. If a newly received value for a data-element does not
pass the conditions of the filter, the value is rejected (not added to queue for a
queued data-element) or the current value of the data-element is not updated (for a
last-is-best data-element).
The filters supported by AUTOSAR are the same as the filters, defined in OSEK-
COM V3.0.3. These filters can only be applied to data-elements that are of a primitive
type.

VFB027: At configuration time, the optional filter on the receiver’s side must be defined

VFB028: The filter has the capabilities of the OSEK-COM V3.0.3 filter

In the VFB-model, such a filter can only be specified on the receiving side. This
however, does not imply that the filtering should be implemented in the RTE on the
receiving side. For example, consider the case that a receiving filter indicates that
the receiver only wants to receive data-elements above a certain value, and that this
is the only receiver hooked up to the sender over a network-connection. In that case
a good implementation might decide to filter out the unnecessary values before they
are sent onto the network (on the sending side).

4.3.5 Concurrency and ordering within a sender-receiver
connector

Within the scope of a single connector between a sender’s PPort and a receiver’s
RPort, the VFB preserves the order of the consecutive changes to the value of a
specific data-element.

37 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

sender VFB receiv er

data-element d1 changed

data-element d1 changed 2nd time

data-element d2 changed

data-element d1 changed

data-element d2 changed

data-element d1 changed 2nd time

Figure 4. 3: concurrency and ordering within a sender-receiver connector

In the case of a queued data-element, the receiver must see the consecutive queued
values of the data-element in the same order as the order in which they were
produced by one specific sender.
In the case of “last-is-best” semantics, the semantics directly imply that “older” values
should never overwrite “newer” values.
However, the VFB does not guarantee any ordering between changes to different
data-elements (even not within the same interface) or between different connectors.
The VFB does not guarantee any ordering between mode switches of different
ModeDeclarationGroups (even not within the same interface) or between different
connectors.

VFB029: Within an individual sender-receiver connector, the VFB guarantees ordering in the
changes made to an individual data-element

4.4 Client-Server communication

A widely used communication pattern in distributed systems is the client-server
pattern, in which the server is a provider of a service14 and the client is a user of a
service. One simple example is the decoding of encrypted wireless key data
(immobilizer, see Figure 4.4).

38 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

14 Service in this chapter is a functionality which is offered by a certain AUTOSAR SW-component, the
server, and which can be used by other AUTOSAR SW-component, the clients. It is not to be mixed
up with an AUTOSAR service, defined more precisely in section 7, AUTOSAR Services.

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

«cl ient»

w irelessKeyHandling

«server»

cryptology

Communication
System

uint16:= decodeCryptedSignal(uint16 encryptedSignal)

decodeCryptedSignal

decryptedSignal

decryptedSignal

Figure 4.4: Example of a synchronous client-server communication: decoding of
encrypted wireless-key data (immobilizer).

AUTOSAR defines a very simple, static n:1 client-server mechanism (n clients and 1
server, with n  0)15. Figure 4.5 gives an example how client-server communication
for a composition of three components and two connections is visualized in the VFB
View.

Client 1

Server

Client 2

Figure 4.5: Client-server communication in the VFB View

In this example, there are 2 assembly-connectors. They hook up the RPort of “Client
1” (respectively “Client 2”) with the PPort of the server. Each port is associated with
a client-server interface, which defines the operations that are made available by the
server and used by the client.
Each operation in such a client-server interface is associated with arguments, which
are transported between the client and the server. These arguments are typed. The

39 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

15 More complex client-server architectures might involve brokers that register services provided by
servers and clients subscribing dynamically to certain services. To support the realization of such
mechanisms, AUTOSAR could be extended by defining additional AUTOSAR Services (see section 7,
AUTOSAR Services).

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

type of an argument in an operation could be a simple elementary data-type (like an
integer in a certain range or a boolean) or complex structures or arrays.16

VFB031: At configuration time, for each operation in a client-server interface, the ingoing
arguments, the returning arguments and their data-types must be known

Figure 4.6 illustrates the client-server mechanism through the VFB.

client :RPort VFB serv er :PPort

invoke operation with outgoing arguments

alt operation reaches serv er
return operation with infrastructure error

[no]

[yes]

invoke operation with outgoing arguments

alt serv er returns error
return operation with return-arguments

[no]

[yes]

alt transmission of response to client

[error]

[successful]

return operation with infrastructure-error

return operation with return-arguments

return operation with application-error

alt transmission of response to client

[error]

[successful]

return operation with infrastructure-error

return operation with application-error

Figure 4.6: Client-server on the VFB (synchronous and asynchronous)

4.4.1 From the point of view of the client

The client initiates the client-server mechanism by requesting that the server
performs a specific operation defined in the interface. The client thereby provides a

40 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

16 Details about the data-types supported by AUTOSAR in arguments can be found in [Software
Component Template].

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

value for each of the outgoing arguments defined for that operation in the Client-
Server Interface.
Eventually, the client will either receive a valid response for the invocation or it will
receive an error in response to the invocation of the operation. A valid response
means that the server has executed the operation. In this case, the client receives a
value for each return argument defined for the operation in the interface.
In case the operations change the state of the server, they should be designed
carefully, so that the client can put the server easily in a known state or can simply
repeat the operation in case of an infrastructure error. A good rule is to make the
operation "idempotent", which means that an operation (with specific arguments) can
be repeated an arbitrary number of times.

VFB032: A client can invoke an operation defined in a client-server interface of one of its
RPorts

VFB033: When invoking an operation, the client must provide a value for each outgoing
argument defined for that operation

VFB034: A client will receive exactly one response for each operation invocation

VFB035: The response which the client receives can be an infrastructure-error, an
application-error or a valid server-response

VFB036: When the client receives a valid server-response, it obtains a value for each return-
argument of the operation

VFB037: At configuration time, the possible application-errors that can be returned by the
server to the client for the operation must be known

VFB038: The possible infrastructure-errors provided to the client as a possible response to a
client invocation are standardized by AUTOSAR

Table 4.3 shows the communication attributes of a client.

Attribute
Name

Realization in software-
component template

 Description

The developer of a client can choose how to
interact with the server.

 Covered indirectly by
the
“SynchronousServerCall
point”, the
“AsynchronousServerCa
llpoint” and the
“AsynchronousServerCa
llReturnsEvent”

In case the CLIENT_MODE is “synchronous”, the
runnable invoking the operation is blocked until
either a response has been received from the
server, an infrastructure error is returned or the
configured maximal blocking time expires.
In case the CLIENT_MODE is “asynchronous -
wakeup_of_wait_point” the runnable invoking the
operation is not blocked. A runnable can wait for
the response (from the server or because of an
infrastructure error) in a wait-point.

CLIENT_MOD
E

In case the CLIENT-MODE is “asynchronous -
activation_of_runnable entity”, the runnable
invoking the operation is not blocked. When the
response (from the server or an infrastructure

41 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

error) is available, a runnable is started which
can process the response of the server

Attribute “timeout” of
ServerCallPoint

TIMEOUT

Time in seconds before the server call times out
and returns with an error message. How this
infrastructure-error is reported depends on the
call type (synchronous or asynchronous).

Table 4.3: Communication Attributes for a Client

4.4.2 From the point of view of the server

A server waits for incoming invocations of operations from its clients. It performs the
requested operation using the argument-values provided by the client. On finishing
the execution of the requested operation, the server provides a value for each of the
return-arguments to the client. In case the server encountered an error, it can
alternatively return an application-error to the client instead of a set of values for the
return-arguments.
Table 4.4 shows the communication attributes of a server.

Attribute
Name

Realization in software-
component template

 Description

QUEUELENG
TH

 Attribute “queuelength”
of ServerCompSpec

On server side, there is a queue with length n,
consuming reading and first-in-first-out strategy. If
the queue is full, and another request arrives, the
new request is discarded and the client will
receive a “time-out” infrastructure error.

Table 4.4: Communication Attributes for Server

4.4.3 Multiplicity of client-server

For client-server communication only “n:1”-communication (n clients, n>=0, 1 server)
is supported.

VFB039: For client-server communication, only n:1-communication (n clients, 1 server) is
supported

Each client RPort must be hooked up to exactly one connector, which links that
RPort to exactly one PPort of a server. A PPort of a server on the other hand can be
hooked up to an arbitrary number of client RPorts, i.e. none or more clients can
invoke operations from the same server. The implementation of the client-server
communication has to ensure, that the result of the invocation of an operation is
dispatched to the correct client.

42 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

As a component can have an arbitrary number of ports, a single component can
assume the role of both client and server.

4.4.4 Ordering and concurrency within a client-server connector

A client is not allowed to invoke a specific operation on an RPort before the previous
invocation of the same operation in the same RPort has returned (with either a valid
response from the server or with an error). This is illustrated in Figure 4.7.

client :RPort VFB

neg

invoke operation o1

invoke operation o1

operation o1 returns

Figure 4.7: Concurrent invocation of the same operation is not allowed

The client is however allowed to make an invocation of a different operation on the
same RPort before the invocation of a first operation has returned. However, in this
case, the VFB does not make any guarantees on the ordering of those invocations.
More specifically, it does not guarantee that the server sees the invocation of
operations in the same order, as the order in which the client made those
invocations. Similarly, there is no guarantee that the responses are made available
to the client in any specific order (for example, in the order in which the client invoked
those operations).
Although ordering is not guaranteed, the implementation of the VFB must make it
possible for a client to associate a response from a server (or from the infrastructure
in case an infrastructure-error is returned) with the correct corresponding invocation
made by the client.

VFB040: A client is not allowed to invoke a specific operation on an RPort before the
previous invocation of the same operation has returned

VFB042: It must be possible for a client to associate a response with the correct
corresponding invocation made by the client

43 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

Client VFB Serv er

invoke operation o1

invoke operation o2

invoke operation o2

operation o2 returns

operation o2 returns

invoke operation o1

operation o1 returns

operation o1 returns

Figure 4.8: The VFB does not support ordering between different operations

4.5 Remarks regarding the identification of communication
partners

One of the main goals of AUTOSAR is the transferability of AUTOSAR software-
components and the possibility to integrate the same component in different systems.
Therefore, the basic communication mechanisms must not depend on the identity of
the communication partners. Which component communicates by which port to which
other port of another component is specified by connectors in the VFB View and is
not visible to a software-component. If a software-component does need to know the
identity of a communication partner for specific communication scenarios the
identification has to be done by the components itself on application level by using
the general AUTOSAR communication patterns17.
By contrast, the unambiguous identification of communication partners, i.e. instances
of components and their ports/interface elements, is necessary for the
implementation of the RTE and maybe for the basic software18.

17 For future extensions like “dynamic components” and “dynamic communication” communication
partners have to provide means to be identified on application level.

44 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

18 For example, in client-server communication the result of the invocation of an operation has to be
dispatched to the correct client, i.e. the client that invoked the service. Therefore, the identity of the
client, i.e. AUTOSAR SW-component and the port, has to be known - at least at runtime - to the RTE
and the basic software.

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

5 Timing-model for the VFB (For information only - not
part of the Standard)

This section uses a generic timing framework to come to a more precise
understanding of the timing-related communication attributes. These concepts are
not mature yet and are therefore not part of the standard. They are intended as a
basis for future extensions.

5.1 Generic timing framework

This section describes the generic framework that is used to describe timing issues.
This generic framework will be employed in the following sections to provide a
precise definition of the behavior of the VFB.
The concepts are illustrated using UML-diagrams.19

5.1.1 Event and EventOccurrence

Event

Ev entOccurrence

+ occurrenceTime: TimePoint

*+occurrences

1+event

Figure 5.1: Event and EventOccurence

Events occur at instantaneous points in time. Therefore, each EventOccurrence has
an occurrenceTime, which is the point in time at which the event occurs. An event
can occur an arbitrary number of times.
The event itself is usually not defined by its set of occurrences but rather by a
description that characterizes the nature of the event.
For example, the “user pressing a key on the keyboard” is an event. This event can
occur an arbitrary number of times (namely each time the user presses a key). Each
occurrence has a unique occurrenceTime (which is the time the user pressed the
key).

45 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

19 Note that because these diagrams are not supposed to represent “templates”, [Template UML
Profile and Modeling Guide] does not apply

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

The distinction between an event and an occurrence of the event is usually obvious
from the context. The term event may also be used instead of occurrence of the
event in contexts like intervals between events, delay of an event or observing an
event.

5.1.2 Event Models

Event

EventModel

PeriodicEv entModel

+ per
+ j itt

iod: TimeInterval
er: TimeInterval

RecurringEv entModel

+ lowestInterOccurrenceTime: TimeInterval
+ highestInterOccurrenceTime: TimeInterval

Ev entOccurrence

+ occurrenceTime: TimePoint

Ev entConstraintOrGuarantee

- constraint or guarantee:

1

1

*+occurrences

1+event

Figure 5.2: EventModel Overview

An EventModel can be used to model the occurrenceTimes of an event.
The AUTOSAR timing framework currently defines 2 very simple EventModels.
When the need arises, more sophisticated event models (e.g. statistical models that
more precisely describe the distribution of the occurrenceTimes) could be added to
the framework.
These event-models can both be used to describe constraints on events or to
describe what a module guarantees about the occurrence of events.
For example, a component that can only handle incoming events at a certain rate,
can impose the constraint that certain events should be spaced at least 100ms apart
(using the RecurringEventModel).
A component containing an internal clock could specify that it guarantees that it
produces some data with a certain period and jitter (using the PeriodicEventModel).

5.1.2.1 PeriodicEventModel

The PeriodicEventModel is characterized by the attributes period and jitter, where
period must be > 0 and jitter must be >= 0. If an event satisfies the event-model then

46 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

the difference between the actual time interval between occurrence (n) and
occurrence (k) (for any n and k) and their nominal difference (period*(k-n)) must be
less than the jitter:
| timek – timen – period*(k-n) | <= jitter
This basically means that assuming a perfect periodic baseline (of unknown starting
point), the differences of the delays of each occurrence compared to this baseline
may not be larger than jitter.

Period (modeled)

Min. delay Max. delay

Jitter (modeled)

Figure 5.3: Period and Jitter in the PeriodicEventModel

Figure 5.3 shows a series of event occurrences where the difference of the minimum
and maximum delay (compared to the periodic baseline) is less than the jitter, (as
shown on bottom part); therefore the occurrences satisfy a periodic event model with
the given period and jitter.

5.1.2.2 RecurringEventModel

The RecurringEventModel is characterized by the attributes
lowestInterOccurrenceTime and highestInterOccurrenceTime whereby
lowestInterOccurrenceTime > 0 and highestInterOccurrenceTime >=
lowestInterOccurrenceTime.
This model means that, when an event occurs, the next event occurs in the time-
interval:
[t_last_occurrence+lowestInterOccurrenceTime,
t_last_occurrence+highestInterOccurrenceTime]
This model is typically used to describe sporadic events.
For example, requiring that an event satisfies a RecurringEventModel with
lowestInterOccurrenceTime=100ms and highestInterOccurrenceTime=infinity, means
that two consecutive events are at least 100ms apart from each other.

47 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

5.1.3 Timing Chains

Often the description of individual events and their models is not sufficient to
characterize the timing behavior of a system. Similarly, the constraints that are used
in doing timing analysis are related to the differences in the occurrenceTimes of
various related events. A typical requirement could e.g. specify the maximum
difference between the times when the front and the rear turn indicators are lit up, or
the maximum delay of locking a door after the corresponding button has been
pushed.

Event

TimingChain

constraints
{segments[0].stimulus == stimulus}
{segments[last].response == response}
{segments[N].response == segments[N+1].stimulus}

Ev entOccurrence

+ occurrenceTime: TimePoint

TimingChainActiv ation

+ responseTime: TimeInterval

1+response1+stimulus

1 *

*

+occurrences+event

1

+segments
1..* {ordered}

1+response1+stimulus

Figure 5.4: TimingChains

In order to model related events, the concept of TimingChain is introduced.
A TimingChain is associated with a stimulus-event and a response-event. In the
example above, the stimulus would be the event that the “door-lock button has been
pressed” and the response would be the event that “all doors are locked”. In case
the events carry a value, the timing-chain is typically associated with a specific
(potentially complex) relationship between the value of the stimulus and the value
associated with the response. For example; if the stimulus is “lock-button changed
state” and the response is “doors changed state”, the timing-chain implies that the
stimulus with data “locked” will lead to the response with data “locked”. Describing
the exact relationship between the values associated with stimuli and responses is
not in the scope of AUTOSAR.
A TimingChain can be activated an arbitrary number of times. One
TimingChainActivation is then associated with a specific occurrence of the stimulus
(the lock-button is pressed at a certain moment in time) and a specific occurrence of
the response (all doors are locked, because the button has been pressed).
Consequently, each TimingChainActivation can be associated with a responseTime,
which is the time-difference between the occurrence of the stimulus and the
occurrence of the response.

48 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

Note that the presence of a TimingChain in the model (for example describing the
chain from the button being pressed to all the doors being locked) does not
necessarily mean that each occurrence of the stimulus automatically leads to the
activation of the timing chain.

5.1.4 Timing Chain Models

TimingChainModels can be used to describe guarantees or constraints on the
responseTimes of all TimingChainActivations of a TimingChain and on the
relationship between the occurrence of a stimulus and the activation of the
TimingChain.

TimingChainModel

MinMaxOneToOneModel

+ minimum: TimeInterval
+ maximum: TimeInterval

TimingChain

TimingChainConstraintOrGuarantee

- constraint or guarantee:

MaxAgeModel

*

+segments 1..* {ordered}

+ maxAge: TimeInterval

Figure 5.5: TimingChainModels

Many sophisticated models could be used to describe responseTimes of timing-
chains. The AUTOSAR Timing Model currently defines only two very simple models:
the MinMaxOneToOneModel and the MaxAgeModel.

5.1.4.1 MinMaxOneToOneModel

The MinMaxOneToOneModel is characterized by the attributes minimum and
maximum, where 0 <= minimum <= maximum.
A TimingChain satisfies the model, when there is a timing-chain activation for EACH
occurrence of the stimulus and when the responseTime of each activation satisfies:
minimum <= responseTime <= maximum.
Often the maximum responseTime is called a “deadline”.

49 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

This model can be used to model event-driven systems, where one component is
supposed to react in an event-driven way to each stimulus and where the response
has to be delivered within a certain defined time-interval after the stimulus.

5.1.4.2 MaxAgeModel

The MaxAgeModel is characterized by one parameter: the maxAge, which is >= 0.
Intuitively, the model is used to describe systems where the events define changes in
a state. Often it is not important that a system responds to each change in the value
of a state but that the response is new enough with respect to the availability of
information on the changes in the state.
A TimingChain satisfies the model when 2 conditions are satisfied:

 for each activation of the timing-chain, the response-time is smaller than the
maxAge

 each stimulus S either leads to a response OR
there is a timing-chain activation with a stimulus S’ (occurring AFTER S) and a

response R’ such that the difference between the occurrenceTime of R’
and the occurrenceTime of S is smaller or equal to the maxAge.

5.2 Timing aspects of sender-receiver communication

5.2.1 Definition of the events

Depending on whether the data-element is associated to a PPort or an RPort, we
distinguish between the following events.

DataElementAvailableOnPPortEvent: This event occurs when a value of a
specific data-element has been made available by the providing component.
On the implementation level, this will typically mean that the value of the data-
element is available in the COM-module or in an internal RTE buffer (for intra-
ECU communication).

DataElementAvailableOnRPortEvent. This event occurs when a value of a
specific data-element is available for the requiring component. On the
implementation level, this will typically mean that the value of the data-element
is available in the COM-module or in an internal RTE buffer (for intra-ECU
communication).

5.2.2 The sender-receiver timing chain

Sender Receiver

Figure 5. 6: Example of a simple sender-receiver relationship
50 of 73 Document ID 056: AUTOSAR_SWS_VFB

- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

The presence of a connector between the PPort of a component (playing the role of
sender) and the RPort of a component (playing the role of receiver) implies the
following timing-chain for each data-element in the Sender-Receiver Interface:

Stimulus: a DataElementAvailableOnPPortEvent for the data-element
Response: a DataElementAvailableOnRPortEvent for the data-element

sender VFB receiv er

DataElementAvailableOnPPort

DataElementAvailableOnRPort

Figure 5. 7: TimingChain driven Invocation of Operations on the VFB, sender
receiver TimingChain

The timing-chain consists of only one segment which corresponds to the time spent
in the infrastructure sending the data-element from the sender to the receiver.

5.2.3 Application of the timing framework to sender-receiver

This section explicitly describes the attributes that emerge when applying the generic
timing framework on the specific case of sender-receiver communication applied to
the transmission of application-events.

5.2.3.1 Attributes that are part of the VFB communication attributes

The connector between a PPort and an RPort is responsible for generating a
DataElementAvailableOnRPortEvent for each DataElementAvailableOnPPortEvent.
The response-time of the connector is the time between the occurrence of a
DataElementAvailableOnPPortEvent and the resulting
DataElementAvailableOnRPortEvent.
The appropriate attributes are to set requirements on the behavior of the timing chain
using a min-max response-time model. This leads to the attributes:

 MAXIMUM_RESPONSE_TIME_REQUIREMENT: this is the maximal
response time allowed by the connector

51 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

 MINIMUM_RESPONSE_TIME_REQUIREMENT: this is the minimal
response time allowed by the connector

In other words: when a DataElementAvailableOnPPortEvent occurs for a data-
element in the PPort, the VFB must ensure that a corresponding
DataElementAvailableOnRPortEvent occurs with a response-time between the
MINIMUM_RESPONSE_TIME_REQUIREMENT and the
MAXIMUM_RESPONSE_TIME_REQUIREMENT.
In many cases, the MINIMUM_RESPONSE_TIME_REQUIREMENT will be 0 (the
connector should be “as fast as possible”).

5.2.3.2 Attributes that can be considered for further extensions of the VFB
communication attributes

According to the timing-framework it is possible to use an event-model allowing the
sender to describe its behavior.
Using the sporadic event-model, this would lead to the following new attributes:

 LOWEST_INTER_OCCURRENCE_TIME_GUARANTEE: The sender
guarantees that consecutive generation of events will at least be spaced
this time from each other

 HIGHEST_INTER_OCCURRENCE_TIME_GUARANTEE: The sender
guarantees that consecutive generation of events will at most be this time
from each other

Using the periodic event-model, this would lead to the following new attributes:
 PERIOD_GUARANTEE
 JITTER_GUARANTEE

According to the timing framework the receiver can put requirements on the timing
properties of the events arriving at the receiver. In this case, it seems also useful to
allow both event-models. This would lead to the following attributes (associated with
data-elements in a RPort):

LOWEST_INTER_OCCURRENCE_TIME_REQUIREMENT
HIGHEST_INTER_OCCURRENCE_TIME_REQUIREMENT

OR
PERIOD_REQUIREMENT
JITTER_REQUIREMENT

5.3 Timing attributes for client-server communication

5.3.1 Definition of the events

To further define the client-server communication semantics, the following events are
defined.
ClientInvocationAvailableOnRPortEvent: This event occurs when the software

component (playing the role of client) has indicated that an operation on an RPort
needs to be invoked and has made available values for all outgoing arguments
defined for that operation.

52 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

ClientInvocationAvailableOnPPortEvent: This event occurs when the software
component (playing the role of server) has access to the values of all outgoing
(incoming from the view of the server) arguments.

ServerResponseAvailableOnPPortEvent: This event occurs when the software-
component (assuming the role of server) has finished the processing of the
service-invocation and has made available values for all returning arguments.

ServerResponseAvailableOnRPortEvent: This event occurs when the software-
component (assuming the role of client) has the response of the server (including
all the values of all returning arguments) available.

5.3.2 The client-server timing chain

ServerClient

Figure 5.8: Example of a simple client-server relationship

The presence of the model shown in the figure above implies the presence of the
following timing-chain for each operation in the Client-Server Interface of the
connected ports.

client serv erVFB

ClientInvocationAvailableOnRPort

ClientInvocationAvailableOnPPort

ServerResponseAvailableOnPPort

ServerResponseAvailableOnRPort

Figure 5.9: TimingChain driven Invocation of Operations on the VFB, client server
TimingChain

This timing chain consists of 4 events:

53 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

 Stimulus of the timing chain is a ClientInvocationAvailableOnRPortEvent
for a specific operation on the RPort of the client. After this event occurs,
the infrastructure can take care of transmitting the service request.

 The 2nd event is a ClientInvocationAvailableOnPPortEvent; after this event
occurs the server can start processing the request

 The 3rd event is a ServerResponseAvailableOnPPortEvent
 The final response of the timing chain is the

ServerResponseAvailableOnRPortEvent.
The timing chain consists of 3 segments:

 The first segment, between the stimulus and the
ClientInvocationAvailableOnPPortEvent corresponds to the VFB
transmitting the call from the client to the server

 The second segment corresponds to the server processing the call and
providing a response

 The third segment corresponds to the VFB returning the server-response
to the client

5.3.3 Application of the timing framework to client-server
communication

This section describes the communication attributes that are a result of applying the
generic timing framework to the specific case of AUTOSAR client-server
communication.

5.3.3.1 Attributes that are part of the VFB communication attributes

Based on the timing framework, it is useful to use the min-max model to put a
constraint on the response time of the overall timing-chain defined above.
For this purpose, the communication attributes of a client (see Table 4.3) contains the
attribute “RESPONSE_TIME_REQUIREMENT”.

5.3.3.2 Attributes that are considered for further extensions of the VFB
communication attributes

The software-component playing the role of client, can make guarantees regarding
the occurrence pattern of the stimulus “ClientInvocationAvailableOnRPortEvent”. As
a sporadic event model is the most appropriate for the invocation of services, the
following attributes can be added for each operation on an RPort of a Client:

 LOWEST_INTER_OCCURRENCE_TIME_GUARANTEE: The client
guarantees that consecutive invocations of the service will at least be this
time apart from each other

 HIGHEST_INTER_OCCURRENCE_TIME_GUARANTEE: The client
guarantees that consecutive invocations of the service will at most be this
time apart from each other

54 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

6 Interaction with hardware

6.1 Introduction

The goal of this section is to focus on standardized interaction between application
software-components and hardware via the Virtual Functional Bus. Hardware
interaction means access to the following three kinds of hardware (see also Figure
6.1):

 Microcontroller peripherals
 ECU electronics
 Sensors and Actuators

Actuator and sensor hardware typically needs specialized software to provide an
interface towards application software. This interface typically includes a software
interface to read sensor values, functions to set an actuator, diagnostic interfaces
etc. The integrator needs the flexibility to connect the sensors and actuators of his
system to a suitable ECU of his choice.
In some cases, even specialized hardware on the ECU is needed, and an interaction
with that hardware is not possible over the standardized basic software. In those
cases, complex device drivers may be used to interact with this specific hardware.
Complex device drivers are supplier specific.
Figure 6.1 shows the typical conversion process from physical signals to software
signals (e.g. car velocity) and back (e.g. car light). This interface architecture is taken
because of 2 reasons:

The best reuse potential (when all other integration requirements like
performance requirements are fulfilled):
o if the µC changes, it is possible to reuse the ECU Abstraction, the sensor-

actuator software-component and the application software-component
o if the ECU changes, it is possible to reuse the sensor-actuator software-

component and the application software-component
o if the sensor or actuator changes, it is still possible to reuse the application

software-component
The various modules can be developed by different experts and/or companies

(µC, ECU, Sensor/Actuator, Application)

55 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

Sensor

IO

Application 1

Application 2 Actuator

IO

ECU
Abstraction

Sensor ECU
Electronics

mC
Peripherals

MCAL

Actuator ECU
Electronics

mC
Peripherals

Electrical/Physical signal

e.g.
Car Velocity

e.g.
Car light

hardware

software

hardware

API 0 (standardized interface) HW/SW Transition

Figure 6.1: Signal conversions between physical signals and software signals

6.2 Microcontroller Abstraction Layer (MCAL)

Access to the hardware is routed through the Microcontroller Abstraction Layer
(MCAL) to avoid direct access to microcontroller registers from higher-level software.
MCAL is a hardware specific layer that ensures a standard interface to the
components of the basic software. It manages the microcontroller peripherals and
provides the components of the basic software with microcontroller independent
values. MCAL implements notification mechanisms to support the distribution of
commands, responses and information to different processes.
Among others it can include20:

 Digital Input/Output
 Analog/Digital Converter
 Pulse Width (De)Modulator
 EEPROM
 FLASH
 Capture Compare Unit
 Watchdog Timer
 Serial Peripheral Interface
 I²C Bus

The MCAL is available on each standard microcontroller.

56 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

20 Please consult [List of Basic Software Modules] for the actual hardware supported by AUTOSAR.

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

6.3 ECU Abstraction

The ECU Abstraction provides a software interface to the electrical values of any
specific ECU in order to decouple higher-level software from all underlying hardware
dependencies.
Figure 6.2 shows a typical example for the ECU abstraction. In this case the service
“ECU_Set_I” is provided in 3 different ways on the ECU, but the SW-Interface is
always the same.

ECU
Abstraction

mC
Peripherals

PWM

MCAL
POWER

IC
X

DIO

software hardware

ECU
Abstraction

mC
Peripherals

POWER
IC
Y

MCAL

ADC

ECU
Abstraction

mC
Peripherals

ASIC
MCAL

current

current

current

DIO_Set()

DIO_Get()

SPI_Write()

SPI_Read()

PWM_Set()

ADC_Get()

ECU_Set_I()

ECU_Set_I()

ECU_Set_I()

Electrical/Physical signal

API 0 (standardized interface) HW/SW Transition

Figure 6.2: example “ECU_Set_I” for the ECU abstraction

6.4 Sensor-Actuator Software Component

A sensor-actuator software-component is an atomic software-component that makes
the functionality of a sensor or actuator usable for other SW-components. That
means that the sensor-actuator software-component provides the application
software-components an interface for the physical values of the sensors and
actuators. A sensor-actuator software-component is written for a concrete sensor or
actuator and uses the ECU abstraction interface.

6.5 Complex Device Driver Component

The Complex Device Driver (CDD) allows direct access to the hardware in particular
for resource critical applications.
The Complex Device Driver is a loosely coupled container, where specific software
implementations can be placed. The only requirement to the software parts is that the
interface to the AUTOSAR world has to be implemented according to the AUTOSAR
port and interface specifications.

57 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

The main task of the complex drivers is to implement complex sensor evaluation and
actuator control with direct access to the μC using specific interrupts and/or complex
μC peripherals (like PCP, TPU), e.g.
injection control
electric valve control
incremental position detection
Further on the Complex Device Drivers will be used to implement drivers for
hardware which is not supported by AUTOSAR.
If for example a new communication system will be introduced in general no
AUTOSAR driver will be available controlling the communication controller. To enable
the communication via this medium, the driver will be implemented proprietarily inside
the Complex Device Drivers. In case of a communication request via that medium the
communication services will call the Complex Device Driver instead of the
communication hardware abstraction to communicate.
Another example where non-standard drivers are needed is to support ASICs that
implement a non-standardized functionality.
Last but not least the Complex Device Drivers are to some extend intended as a
migration mechanism. Due to the fact that direct hardware access is possible within
the Complex Device Drivers already existing applications can be defined as Complex
Device Drivers. If interfaces for extensions are defined according to the AUTOSAR
standards new extensions can be implemented according to the AUTOSAR
standards, which will not force the OEM or the supplier to reengineer all existing
applications.

58 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

7 AUTOSAR Services

7.1 Introduction

This section describes the handling of AUTOSAR services in the VFB view and
defines how they can be represented graphically.
AUTOSAR services depict a hybrid concept composed of Basic Software Modules as
well as of AUTOSAR Software Components. They provide standardized functionality
of the particular ECU infrastructure (AUTOSAR BSW) for Application Software
Components mapped onto it.
For the sake of simplicity sometimes the term “service” is used instead of the full term
“AUTOSAR service”. However, it has nothing to do with the service part of a client-
server interface.

SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting

nv

Calibration

ecuMode

<<Interface>>
NvMService

…
ReadBlock(IN DstPtrType DstPtr, ERR{E_NOT_OK}
WriteBlock(IN DstPtrType SrcPtr, ERR{E_NOT_OK}
…

Figure 7.1 A software component accesses services of the NVRAM Manager

Figure 7.1 shows an example for requiring a servce: the software component type
SeatHeatingControl has a port typed with the interface NvMService. Since this client-
server interface contains operations like ReadBlock or WriteBlock, the software
component SeatHeatingControl is able to control the operations of particular non-
volatile memory blocks.
Figure 8.3 shows another example: here, the software component has access to the
ECU state manager of the ECU Basic Software and its capabilities.

7.2 VFB Representation

59 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

When it comes to model and configure AUTOSAR services main challenges are:

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

 the selection of appropriate communication paradigm,
 the fulfillment of prerequisites defined by RTE (see [Specification of RTE

Software])
 the platform dependent types
 the configuration

7.2.1 Selection of a communication mechanism

In general AUTOSAR services communicate via Standardized AUTOSAR Interfaces.
On the VFB they are only visible at the software components requesting the services.
The corresponding counterparts in the Basic Software are not visible on the VFB, but
inherently present.
Depending on the nature of the service, all kinds of ports are possible:
The most natural way is a service offered to an AUTOSAR component via a provide
port typed by a client-server interface: This acts just like a library call returning some
data. The corresponding software component would then have a require port like in
the example shown in Figure 7.1.
A require port typed by a sender-receiver interface may be used instead, if a service
has to be activated but no immediate answer is needed.
A service may also use a require port of typed by a client-server interface in order to
communicate with an AUTOSAR component. An example is a state manager, which
may need an acknowledgement of an AUTOSAR component before it can change a
state.
Instead of the previous case, a service may use the provide port typed by a sender-
receiver interface to inform AUTOSAR components about e.g. state changes, if no
immediate answer is needed.
In general, the selection of the appropriate communication paradigm is use-case
dependent. No general concept except the already defined rules is required.
However, note that many services are already predefined by the module
specifications of the AUTOSAR Basic Software service layer.
In the VFB view the usage of services by AUTOSAR components is modeled by
using a specific graphical notation (see Table 3.2) for ports.
The SWC-Template provides means to attribute the associated interfaces as well as
the software components: interfaces mark the attribute isService as true, software
components set the attribute ServiceNeeds to an appropriate value.

7.2.2 Location of a Service

The examples shown in Figure 7.1 and Figure 8.3 point to a characteristic property of
software components accessing specific AUTOSAR services. They can only be
integrated onto those ECUs which provide the binding counterparts within the
AUTOSAR Basic Software.
This means that the implementation of a service must be located on the same ECU
as the AUTOSAR component instance, which is using the service. This is required for
good performance and reliability as well as for technical reasons. For example, a
timer service is much easier to use locally on the same CPU. For that kind of services
we will have instances on different ECUs.

60 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

7.2.3 Platform dependent types

Many data types within the Basic software are platform dependent to gain efficiency.
Especially for IDs holds that the type is dependent on the entities to be handled
within a specific ECU, which would definitely restrict the reusability of application
software components.
For source code integrated SW-C no problem occurs, because the type will be
known at compile time. For SW-C integrated as object code a problem might occur,
because the assumed type during compilation of the SW-C might differ from the type
assumed by the basic software modules during their compilation.
The solution to this problem is currently that at least parts of SW-C’s have to be
recompiled after the contract phase although they should be integrated as object
code. The integrator in this case has to define the appropriate types and provide the
appropriate header file to the suppliers of basic software and application software
components.
This results in the restriction that code optimizations within the SW-C and the basic
software shall not rely on specific platform dependent types, e.g., the size of data
types may vary between different platforms.

7.2.4 Configuration

As most parts of the Basic Software, a service may offer static configuration
parameters (i.e. configuration parameters to be defined prior to compile time) in order
to be implemented efficiently, e.g. by keeping memory usage low. In many cases
these configuration parameters will depend on the number and type of AUTOSAR
components by which the service will be used. In these cases at least parts of the
software for AUTOSAR services on a specific ECU have to be recompiled at system
integration time. Appropriate processes and tools for this have to be specified.
However, this configuration is not part of the VFB view. A good overview of the
necessary configuration process needed for AUTOSAR services is given in [Software
Component Template].

7.3 List of Services

As of AUTOSAR Release 2.1 services of the following BSW modules are available:
NVRAM Manager – NvM
Communication Manager – ComM
Diagnostic Communication Manager – Dcm
Diagnostic Event Manager – Dem
Function Inhibition Manager – Fim
ECU State Manager – EcuM
Watchdog Manager – WdgM
Development Error Tracer - DET

61 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

8 Mode Management

8.1 Introduction

Most software components possess specific runnables for initialization, for finalization
and for an operational or run mode. The behavior of certain software components
might depend in even more complex ways on some system modes. As these
components typically do not change their modes themselves, they need to react to
mode changes triggered by other components.
Ergo, AUTOSAR needs to support

 The definition of modes
 Communication mechanisms that allow components (including AUTOSAR

services) to exchange information about modes and mode-changes
 Scheduling mechanisms that allow components to specify how they

behave in different modes
This section briefly describes the generic mechanisms provided by AUTOSAR to
support this. These generic mechanisms can then be applied to typical automotive
use-cases, such as changes in the ECU’s power-state or in the mode of the
communication bus.

8.2 Defining modes

In AUTOSAR the sender-receiver communication mechanism is used to exchange
modes between components. In addition to data-elements, a sender-receiver
interface can include so called “ModeDeclarationGroups”.
Figure 8.1 shows an example of the definition of the sender-receiver Interface
“ECUMCurrentMode” containing a single reference to the ModeDeclarationGroup
“ECUMMode”.

<<SenderReceiverInterface>>
EcuMCurrentMode

ModeDeclarationGroups:
ECUMMode currentMode

Figure 8.1: Example of a Sender-Receiver Interface “ECUMCurrentMode” with
a single ModeDeclarationGroup

The ModeDeclarationGroup is a set of ModeDeclarations. Within the definition of the
group, one ModeDeclaration describes the initial mode. For example, for the case of
the ECU power state, the ModeDeclarationGroup “ECUMMode” could define the
group of modes named { STARTUP_SHUTDOWN, RUN, POST_RUN, SLEEP,
WAKE_SLEEP }, with STARTUP_SHUTDOWN as the initial mode.
The modes are mutually exclusive: at run-time, there is always one active mode in a
ModeDeclarationGroup. The initial mode of a ModeDeclarationGroup is active before
any mode switches occurred.

VFB115: There shall be exactly one active mode for each ModeDeclarationGroup in a RPort
or PPort of a component

62 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

VFB116: At configuration time, the initial mode of each ModeDeclarationGroup in a sender-
receiver interface is known

VFB112: At configuration time, it is known which ModeDeclarationGroups a sender-receiver
interface contains

VFB114: At configuration time, the modes of each ModeDeclarationGroup in a sender-
receiver interface are known

8.3 Communicating modes

Modes are transmitted via the sender-receiver mechanism.
There will be software-components that have PPorts typed by interfaces containing
mode-declaration groups. The components that provide these interfaces set the
current mode within the group and are therefore called “mode-managers”.
The counterparts of the “mode-managers” are components whose behavior depends
on the current mode. These modules have RPorts typed by the same interface. If
the corresponding PPorts and RPorts are connected via a connector, these
components are informed about mode-switches and the current mode set by the
mode-manager. Figure 8.2 shows an example of this for the case that the mode-
manager is an AUTOSAR Service. This figure is an extract out of the example of
Figure 3.13.

RTE

SHCFrontLeft: SeatHeatingControl

P
o

w
e

r
M

an
ag

e
m

e
n

t

ec
uM

o
d

e

C
al

ib
ra

tio
n

nv

E
C

U
M

an
ag

er
 S

ta
te

Figure 8.2: Example of a the communication of a mode from the “ECU State
Manager” Service-component to an application software-component

In the case of an interface containing ModeDeclarationGroups, only 1:n
communication (1 sender and n receivers, with n  0) is possible. The single sender
(the mode-manager) owns the current mode of the ModeDeclarationGroup. The
receivers are informed of any mode switch of the sender.

63 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

8.4 Mode-managers: components that control modes

Entering and leaving modes is initiated by a mode manager. A mode manager might
for example be the Communication Manager, the ECU State Manager, or an
application mode manager. An application mode manager is a software-component
that provides the service of switching modes.
Such a mode manager contains a PPort typed by a sender-receiver interface which
references the appropriate ModeDeclarationGroup. The state of the mode managers
will be sent to other component using sender-receiver communication.

8.5 Components that depend on modes

Some software components need to be capable of reacting to state changes issued
by mode managers and adapt their behavior to the new situation. Such software-
components include an RPort typed by a sender-receiver interface which references
the appropriate ModeDeclarationGroup.
Figure 8.3 shows an example whereby the sender-receiver interface
“EcuMCurrentMode” is used to type the RPort “ecuMode” of the component
“SeatHeatingControl”. As the interface contains the ModeDeclarationGroup
“ECUMMode”, this indicates that the component “SeatHeatingControl” wants to be
notified through its port “ecuMode” whenever there is a change in the “ECUMMode”
(this could for example be the current mode of the ECU on which the component
runs).

SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting

nv

Calibration

ecuMode

<<Interface>>
EcuMCurrentMode

ModeDeclarationGroups:
ECUMMode currentMode

Figure 8.3: Example showing the use of the Sender-Receiver Interface
“ECUMCurrentMode” to type the Port “ecuMode” of the component

“SeatHeatingControl”

64 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

VFB117: At configuration time, it must be known which mode switches, the receiver of a
ModeDeclarationGroup in a sender-receiver interface wants to be informed of

VFB118: The receiver of a ModeDeclarationGroup in a sender-receiver interface shall be
sequentially informed of all configured mode switches received

VFB119: The receiver of a ModeDeclarationGroup sender-receiver interface shall not be
informed of a mode switch until the process attached to the last mode switch of this
ModeDeclarationGroup finishes

VFB138: The sequence of mode switches as seen by the receiver of the sender-receiver
interface for each ModeDeclarationGroup shall be the same as the sequence of
corresponding mode switches send by the sender. The order must be the same to guarantee
proper mode transitions on the receiver side.

VFB121: Within an individual sender-receiver connector, the VFB guarantees ordering in the
mode switches of an individual ModeDeclarationGroup

Since the behavior of an atomic software component is mainly determined by its set
of runnables, the component can specify its reaction to mode changes at the level of
runnables: the component can specify that certain runnables are called when mode-
switches occur or that certain runnables only run in specific modes.

65 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

9 Measurement and Calibration

In embedded automotive software design, measurement means "monitoring" of ECU
internal signals, state variables and intermediate data. It's realized by reading content
of memory cells of a running ECU. In AUTOSAR such data is referred to as
measurable.
“Calibration” means the manipulation of particular calibration parameters. In general,
a calibration parameter characterizes the dynamics of a control algorithm. From a
software implementation point of view it is a variable with read-only access during the
normal operation of an ECU. Since the calibration parameter can be set by the
calibration system, it is possible to manipulate and readjust the determining factors of
closed or open control loop algorithms. Thus, calibration plays an important role
during the development process until near completion.

9.1 Calibration

AUTOSAR provides two mechanisms for calibration:
Port-based calibration: this mechanism is explicitly visible on the VFB and reuses the
already described port- and connector-mechanisms
Private calibration parameters: these reside within an atomic software-component.

9.1.1 Port-based calibration

This mechanism builds upon the common VFB patterns in the following way:
A component requiring calibration parameters defines an RPort typed by a
calibration-parameter interface
The components that contain the actual values of the calibration parameters are
called “calibration-parameter components”. In contrast to normal software-
components, calibration-parameter components do not possess an internal behavior
but are simple containers that provide calibration parameters. They do this through a
PPort typed by a compatible calibration-parameter interface.
The fact that a component is calibrated by a specific calibration-parameter
component is expressed through a connector between the corresponding ports. The
calibration data is made available via the provide port of the calibration-parameter
component to a corresponding require port of any software component.
Since in this model the calibration parameters are visible on the virtual bus,
calibration-parameter components are the way to express public calibration
parameters.
Depending on whether the corresponding components are instantiated or not,
several different cases can be distinguished, described in the following.

9.1.1.1 Pure single instantiation

Figure 9.1 shows the simplest case, where a software component has access to a
particular set of calibration parameters by ‘receiving’ them via a connection from a
providing calibration component.

66 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

Context of a ECU

<<CalprmComponentType>>

: Calprm

<<SoftwareComponentType>>

: SWC

Figure 9.1 A software component has access to calibration parameter
encapsulated in a calibration component

It should be noted here that the calibration components and software components
connected are residing per se on the same ECU. Actually, the calibration
components are only representing memory containing the encapsulated calibration
parameter.

9.1.1.2 Multiple instantiation of the involved software components

Figure 9.2 and Figure 9.3 depict the case, where several software components
(instances) of the same or of different component-type have access to the same set
of calibration parameters.

Context of a particular ECU

<<CalprmComponentType

: Calprm

>>

<<SoftwareCom

A : S

ponentType>>

WC 1

<<SoftwareCom

B : S

ponentType>>

WC 1

<<SoftwareCom

: SW

ponentType>>

C 2

Figure 9.2 Two software components of the same type access the same
calibration parameter encapsulated in a calibration component

67 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

Since the calibration parameters need to reside on the same ECU as the software
component accessing them, the calibration component needs to be duplicated if the
different software component instances are mapped onto different ECUs (see Figure
9.3).

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

Context of ECU A

Context of ECU B

<<CalprmComponentType>>

: Calprm

<<CalprmComponentType>>

: Calprm

<<SoftwareComponentType>>

A : SWC

<<SoftwareComponentType>>

B : SWC

Figure 9.3 Like in Figure 9.1, but the software components are mapped onto different ECUs

9.1.1.3 Multiple instantiation of the involved calibration components

Figure 9.4 shows a configuration, where different software component instances need
to access different sets of the same type of calibration parameter.
Here, it is only required – as explained above – that connected instances of
calibration and software components are integrated on the same ECU. Beyond it, the
different instances can reside on a single or different ECUs.

Context of ECU B

Context of ECU A

<<Softw<<CalprmComponentType>>

A : Calprm

<<Softw<<CalprmComponentType>>

B : Calprm

areComponentType>>

B : SWC

areComponentType>>

A : SWC

Figure 9.4 Two software components of the same type have been assigned different instances
of the same Calibration Parameter Component Type.

68 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

9.1.2 Private calibration

The other calibration mechanism is parameter based and is private and internal to
the software component and of type CalprmElementPrototype.
CalprmElementPrototypes are used in two different roles, as perInstanceCalprm and
as sharedCalprm.
CalprmElementPrototypes used in the role as sharedCalprm operates similar to the
scenario described in Section 9.1.1.2, CalprmElementPrototypes used as
perInstanceCalprm operates like the scenario given in Section 9.1.1.3.
Calibration parameters of type CalprmElementPrototypes are not visible per se on
the virtual functional bus, since it is considered an element associated to an internal
behavior of a software component.
Unlike the structure of software components and compositions which is considered to
be specified by OEMs, the internal behavior can be defined by the OEMs as well as
by their suppliers of particular software components. With this respect the visibility of
the calibration parameters modeled as CalprmElementPrototypes is rather a function
of time, depending on who and when they are assigned.
Hence, CalprmElementPrototypes are a way for suppliers of software components to
express private calibration parameters.

9.2 Measurement

In AUTOSAR systems only actual instances of the following prototypes if marked as
measurable can be monitored:

Communication between AUTOSAR SW-Components:
DataElementPrototypes enclosed in a sender-receiver interface
Arguments of operationPrototypes enclosed in a client-server interface
AUTOSAR SW-Component internal
Content of InterrunnableVariables which are used for communication between
Runnables of one AUTOSAR SW-Component.

69 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

10 Interaction with Non-AUTOSAR-ECUs

10.1 Introduction

This section describes the interaction with Non-AUTOSAR-ECUs on VFB level. This
kind of interaction is e.g. necessary to provide a migration path.
Non-AUTOSAR-ECUs are:

ECUs that have not been developed according to AUTOSAR mechanisms. This is
useful for e.g.:
o Integration of an AUTOSAR ECU into an already existing system of ECUs
o Connect system of AUTOSAR ECUs to already existing system of ECUs
o Re-use already existing ECU in system of AUTOSAR ECUs

ECUs that have been developed according to AUTOSAR mechanisms once, but
stay unchanged now. This is useful for e.g.:
o Reuse strategies (taking over of complete unchangeable AUTOSAR (!!!)

ECUs)
Intelligent ('Smart') Sensors/Actuators with an ECU which do not implement the

AUTOSAR VFB / AUTOSAR RTE. This is useful for e.g.:
o Using Commercial of the shelf LIN nodes.

Interaction of AUTOSAR SW-C with non AUTOSAR software within one ECU is not
analyzed in this document.

10.2 Problems of interaction

The following problems will arise from the interaction with Non-AUTOSAR-ECUs:
Interaction with interfaces of applications on Non-AUTOSAR-ECUs:

Ports/Interfaces have to be mapped to pre-defined communication messages
(possible to be routed through gateway)

 Non-AUTOSAR-SW-Components are currently not modeled at VFB level
o Unconnected ports of AUTOSAR-SW-Components
o Hidden communication load

 Client-Server not supported in old systems.
Interaction/support of services implemented on Non-AUTOSAR ECUs

Old services/protocols have to be supported in parallel, to enable interoperability,
e.g. Network Management.

Additional services supported by communication system (e.g. bus sleep/bus wake-
up).
LIN nodes inherently are not affected because it is using the master slave
paradigm

o services/protocols have to be managed and implemented in any case by
master node (in this case AUTOSAR ECU)

o Required configuration data available in node capability file (NCF)
Problem of support of enhanced services/protocols

(e.g. Network Management, Diagnosis (connection to AUTOSAR SW-C),
Transport Protocol Layer, ...)

The differentiation, whether the non-AUTOSAR ECU(s) are connected to the same or
a different communication system is not relevant for VFB, because no hardware is

70 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

considered on VFB level. For the same reason gateway configuration is not relevant
for the VFB, though it may be a major problem e.g. for the process.

10.3 Description of interaction

The modeling of the interaction with non-AUTOSAR-ECUs is done the same for all
kinds of non-AUTOSAR-ECUs.

 Non-AUTOSAR ECUs are modeled as separate ECUs with separate
AUTOSAR SW-C (with AUTOSAR SW-C Description), which will not be
implemented. To enable communication with the non-AUTOSAR ECU the
RTE on the AUTOSAR ECU must implement wrapper code for the non-
AUTOSAR communication

 Communication messages, configuration and load is defined by System
Constraint Template (for LIN Nodes the information contained within the
node capability files (NCF) has to be integrated into the System Constraint
Template)

The following figure (Figure 10.1: Interaction with non-AUTOSAR ECUs) shall clarify the
interaction by giving an example of non-AUTOSAR-ECU(s) interacting with an
AUTOSAR ECU. A Port type converter (adapting client server/sender receiver
communication) is shown in the example. The port type converter has to be situated
on an AUTOSAR-ECU; it doesn’t necessarily need to be on the same ECU the final
communication partner is on. As the converter is heir from the class 'AUTOSAR SW-
C' it has to be implemented as a separate component. In later solutions it might be
part of an automatically generated RTE.
For the sender-receiver communication no adaption is shown. But even when using
the same communication paradigm an adaption might be required due to different
communication attributes. This would be done the same way like the port type
conversion. The adaption has to be implemented as a separate AUTOSAR SW-C; in
later solutions it might be done within an automatically generated RTE.
The way between the communication system signals (e.g. signals on CAN) and the
RTE layer is the same for AUTOSAR and non-AUTOSAR signals.

71 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

Non-AUTOSAR ECU

A
U

T
O

S
A

R

S
W

-C

AUTOSAR
SW-C

Description

Non-AUTOSAR ECU

A
U

T
O

S
A

R

S
W

-C

AUTOSAR
SW-C

Description

AUTOSAR ECU Non-AUTOSAR ECU

A
U

T
O

S
A

R

S
W

-C

System
Constraint
Description

AUTOSAR
SW-C

Description

n
o

n
A

U
T

O
S

A
R

C

o
m

p
o

n
en

t

AUTOSAR
SW-C

Description

Figure 10.1: Interaction with non-AUTOSAR ECUs

The support of enhanced services/protocols (e.g. Network Management, Diagnosis
(connection to AUTOSAR SW-C), Transport Protocol Layer, ...) may be handled by
Complex Device Drivers or 'special' implementations of the corresponding basic-
software module(s).

72 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

 Specification of the Virtual Functional Bus
 V1.1.0

R3.0 Rev 7

73 of 73 Document ID 056: AUTOSAR_SWS_VFB
- AUTOSAR Confidential -

11 References

AUTOSAR Methodology
AUTOSAR_Methodology.pdf

AUTOSAR Glossary
AUTOSAR_ Glossary.pdf

AUTOSAR Technical Overview
AUTOSAR_ TechnicalOverview.pdf

Main Requirements
AUTOSAR_MainRequirements.pdf

List of Basic Software Modules
AUTOSAR_BasicSoftwareModules.pdf

Layered Software Architecture
AUTOSAR_LayeredSoftwareArchitecture.pdf

Software Component Template
AUTOSAR_SoftwareComponentTemplate.pdf

Specification of ECU Configuration
AUTOSAR_ECU_Configuration.pdf

Specification of Graphical Notation
AUTOSAR_GraphicalNotation.pdf

Specification of RTE Software
AUTOSAR_SWS_RTE.pdf

Template UML Profile and Modeling Guide
AUTOSAR_TemplateModelingGuide.pdf

	1 Introduction to this document
	1.1 Contents
	1.2 Prereads
	1.3 Relationship to other AUTOSAR specifications
	1.4 Structure and conventions of this document
	1.4.1 Structure of this document
	1.4.2 Specification Items

	2 The Virtual Functional Bus
	Overall mechanisms and concepts
	3.1 Components
	3.2 Port-Interfaces
	3.3 Ports
	3.4 Connectors
	3.5 Compositions versus atomic components
	3.6 Relationship between the VFB and the ECU Software Architecture
	3.7 Kinds of components
	3.8 Resources for components and “runnables”
	3.8.1 Background
	3.8.2 The “runnable” concept
	3.8.3 The implementation of a component and the role of the RTE

	Communication on the VFB
	4.1 Introduction
	4.2 Error types
	4.3 Sender-Receiver communication
	4.3.1 From the point of view of the sender
	4.3.2 From the point of view of the receiver
	4.3.3 Multiplicity of sender-receiver
	4.3.4 Filtering between the sender and the receiver
	4.3.5 Concurrency and ordering within a sender-receiver connector

	4.4 Client-Server communication
	4.4.1 From the point of view of the client
	4.4.2 From the point of view of the server
	4.4.3 Multiplicity of client-server
	4.4.4 Ordering and concurrency within a client-server connector

	4.5 Remarks regarding the identification of communication partners

	5 Timing-model for the VFB (For information only - not part of the Standard)
	5.1 Generic timing framework
	5.1.1 Event and EventOccurrence
	5.1.2 Event Models
	5.1.2.1 PeriodicEventModel
	5.1.2.2 RecurringEventModel

	5.1.3 Timing Chains
	5.1.4 Timing Chain Models
	5.1.4.1 MinMaxOneToOneModel
	5.1.4.2 MaxAgeModel

	5.2 Timing aspects of sender-receiver communication
	5.2.1 Definition of the events
	5.2.2 The sender-receiver timing chain
	5.2.3 Application of the timing framework to sender-receiver
	5.2.3.1 Attributes that are part of the VFB communication attributes
	5.2.3.2 Attributes that can be considered for further extensions of the VFB communication attributes

	5.3 Timing attributes for client-server communication
	5.3.1 Definition of the events
	5.3.2 The client-server timing chain
	5.3.3 Application of the timing framework to client-server communication
	5.3.3.1 Attributes that are part of the VFB communication attributes
	5.3.3.2 Attributes that are considered for further extensions of the VFB communication attributes

	Interaction with hardware
	6.1 Introduction
	6.2 Microcontroller Abstraction Layer (MCAL)
	6.3 ECU Abstraction
	6.4 Sensor-Actuator Software Component
	6.5 Complex Device Driver Component

	7 AUTOSAR Services
	7.1 Introduction
	7.2 VFB Representation
	7.2.1 Selection of a communication mechanism
	7.2.2 Location of a Service
	7.2.3 Platform dependent types
	7.2.4 Configuration

	7.3 List of Services

	8 Mode Management
	8.1 Introduction
	8.2 Defining modes
	8.3 Communicating modes
	8.4 Mode-managers: components that control modes
	8.5 Components that depend on modes

	9 Measurement and Calibration
	9.1 Calibration
	9.1.1 Port-based calibration
	9.1.1.1 Pure single instantiation
	9.1.1.2 Multiple instantiation of the involved software components
	9.1.1.3 Multiple instantiation of the involved calibration components

	9.1.2 Private calibration

	9.2 Measurement

	10 Interaction with Non-AUTOSAR-ECUs
	10.1 Introduction
	10.2 Problems of interaction
	10.3 Description of interaction

	11 References

