
Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Document Title Specification of Operating
System

Document Owner AUTOSAR GbR
Document Responsibility AUTOSAR GbR
Document Identification No 034
Document Classification Standard

Document Version 3.1.0
Document Status Final
Part of Release 3.0
Revision 0004

Document Change History
Date Version Changed by Change Description
14.01.2009 3.1.0 AUTOSAR

Administration
• Changes in OS configuration:

- removed "OsAppModeId"
Parameter from
OsAppModeContainer

- added optional references from
OsAppModeContainer to OsAlarm,
OsTask and OsScheduleTable

• Legal disclaimer revised

17.04.2008 3.0.1 AUTOSAR
Administration

• Added "OsScheduleTableDuration"
parameter to configuration specification
chapter

07.12.2007 3.0.0 AUTOSAR
Administration

• Changed methods for timing protection
• Moved configuration from OIL to

AUTOSAR XML
• Clarrified description for

synchronization and schedule tables
• Document meta information extended
• Small layout adaptations made

31.01.2007 2.1.0 AUTOSAR
Administration

• Added support for
SoftwareFreeRunningTimer (SWFRT)
incl. 2 new APIs

• Added API to start a schedule table
synchron

• Misc. Corrections, Clarification and
further explanations

• Legal disclaimer revised
• Release Notes added
• “Advice for users” revised
• “Revision Information” added

1 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Document Change History
Date

2 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Version Changed by Change Description
28.04.2006 2.0.0 AUTOSAR

Administration
Document structure adapted to common
Release 2.0 SWS Template.

• Major changes in chapter 10
• Structure of document changed

partly
• Other changes see chapter 14

28.06.2005 1.0.0 AUTOSAR
Administration

Initial Release

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Page left intentionally blank

3 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Disclaimer

This document of a specification as released by the AUTOSAR Development
Partnership is intended for the purpose of information only. The commercial
exploitation of material contained in this specification requires membership of the
AUTOSAR Development Partnership or an agreement with the AUTOSAR
Development Partnership. The AUTOSAR Development Partnership will not be liable
for any use of this specification. Following the completion of the development of the
AUTOSAR specifications commercial exploitation licenses will be made available to
end users by way of written License Agreement only.
No part of this publication may be reproduced or utilized in any form or by any
means, electronic or mechanical, including photocopying and microfilm, without per-
mission in writing from the publisher. The word AUTOSAR and the AUTOSAR logo
are registered trademarks.

Copyright © 2004-2008 AUTOSAR Development Partnership. All rights reserved.

Advice to users of AUTOSAR Specification Documents:

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).
Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary
items are licensed under the same rules as applicable to the AUTOSAR Standard.

4 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Table of Content

1 ... 10 Introduction and functional overview

2 ... 11 Acronyms and abbreviations
2.1 .. 11 Glossary of Terms

3 .. 15 Related documentation
3.1 ... 15 Input documents
3.2 .. 16 Related standards and norms

3.2.1 .. 16 OSEK/VDX
3.2.2 .. 16 HIS
3.2.3 ... 17 ISO/IEC

3.3 .. 17 Company Reports, Academic Work, etc.
4 .. 18 Constraints and assumptions

4.1 ... 18 Existing Standards
4.2 ... 18 Terminology
4.3 ... 18 Interaction with the RTE
4.4 ... 19 Operating System Abstraction Layer (OSAL)
4.5 .. 20 Limitations

4.5.1 .. 20 Hardware
4.5.2 .. 20 Programming Language
4.5.3 ... 21 Miscellaneous

4.6 .. 21 Applicability to car domains
5 .. 22 Dependencies to other modules

5.1 .. 22 File structure
5.1.1 ... 22 Code file structure
5.1.2 Header file structure.. 22

6 Requirements Traceability... 24

6.1 General Requirements on Basic Software Modules 24
6.2 Requirements on Software Free-Running Timer .. 28
6.3 AUTOSAR SRS OS Requirements .. 28
6.4 AUTOSAR SWS Service Requirements to API .. 29

7 Functional specification ... 31

7.1 Core OS ... 31
7.1.1 Background & Rationale ... 31
7.1.2 Requirements.. 31

7.1.2.1 Restrictions on OSEK OS .. 31
7.1.2.2 Undefined Behaviour in OSEK OS... 32
7.1.2.3 Extensions to OSEK OS .. 32

7.2 Software Free Running Timer .. 34
7.3 Schedule Tables... 35

7.3.1 Background & Rationale ... 35
7.3.2 Requirements.. 35

5 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

7.3.2.1 Structure of a Schedule Table.. 35

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

7.3.2.2 Constraints on Expiry Points .. 36
7.3.2.3 Processing Schedule Tables.. 36
7.3.2.4 Repeated Schedule Table Processing... 37
7.3.2.5 Controlling Schedule Table Processing 38

7.4 Schedule Table Synchronization.. 41
7.4.1 Background & Rationale ... 41
7.4.2 Requirements.. 43

7.4.2.1 Implicit Synchronization ... 43
7.4.2.2 Explicit Synchonization .. 44
7.4.2.3 Performing Synchronization ... 47

7.5 Stack Monitoring Facilities.. 49
7.5.1 Background & Rationale ... 49
7.5.2 Requirements.. 49

7.6 OS-Application ... 50
7.6.1 Background & Rationale ... 50
7.6.2 Requirements.. 52

7.7 Protection Facilities .. 52
7.7.1 Memory Protection .. 53

7.7.1.1 Background & Rationale .. 53
7.7.1.2 Requirements... 53

7.7.2 Timing Protection .. 55
7.7.2.1 Background & Rationale .. 55
7.7.2.2 Requirements... 58
7.7.2.3 Implementation Notes .. 60

7.7.3 Service Protection ... 60
7.7.3.1 Invalid Object Parameter or Out of Range Value 60
7.7.3.2 Service Calls Made from Wrong Context 61
7.7.3.3 Services with Undefined Behaviour ... 62
7.7.3.4 Service Restrictions for Non-Trusted OS-Applications................. 64
7.7.3.5 Service Calls on Objects in Different OS-Applications 65

7.7.4 Protecting the Hardware used by the OS.. 65
7.7.4.1 Background & Rationale .. 65
7.7.4.2 Requirements... 66
7.7.4.3 Implementation Notes .. 66

7.7.5 Providing »Trusted Functions«.. 66
7.7.5.1 Background & Rationale .. 66
7.7.5.2 Requirements... 67

7.8 Protection Error Handling ... 67
7.8.1 Background & Rationale ... 67
7.8.2 Requirements.. 68

7.9 System Scalability .. 69
7.9.1 Background & Rationale ... 69
7.9.2 Requirements.. 70

7.10 Hook Functions .. 71
7.10.1 Background & Rationale ... 71
7.10.2 Requirements.. 71

7.11 Error classification .. 72

8 API specification.. 73

6 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

8.1 Constants ... 73
8.1.1 Error codes of type StatusType... 73

8.2 Macros ... 73
8.3 Type definitions .. 73

8.3.1 ApplicationType (for OS-Applications) .. 73
8.3.2 TrustedFunctionIndexType ... 73
8.3.3 TrustedFunctionParameterRefType .. 73
8.3.4 AccessType... 73
8.3.5 ObjectAccessType .. 74
8.3.6 ObjectTypeType.. 74
8.3.7 MemoryStartAddressType... 74
8.3.8 MemorySizeType .. 74
8.3.9 ISRType .. 74
8.3.10 ScheduleTableType .. 74
8.3.11 ScheduleTableStatusType .. 75
8.3.12 ScheduleTableStatusRefType... 75
8.3.13 CounterType ... 75
8.3.14 ProtectionReturnType ... 75
8.3.15 RestartType... 75
8.3.16 PhysicalTimeType... 76

8.4 Function definitions .. 76
8.4.1 GetApplicationID ... 76
8.4.2 GetISRID... 76
8.4.3 CallTrustedFunction .. 77
8.4.4 CheckISRMemoryAccess ... 78
8.4.5 CheckTaskMemoryAccess.. 79
8.4.6 CheckObjectAccess .. 79
8.4.7 CheckObjectOwnership .. 80
8.4.8 StartScheduleTableRel ... 81
8.4.9 StartScheduleTableAbs .. 81
8.4.10 StopScheduleTable... 82
8.4.11 NextScheduleTable... 84
8.4.12 StartScheduleTableSynchron.. 85
8.4.13 SyncScheduleTable .. 85
8.4.14 SetScheduleTableAsync ... 86
8.4.15 GetScheduleTableStatus .. 87
8.4.16 IncrementCounter ... 88
8.4.17 GetCounterValue .. 88
8.4.18 GetElapsedCounterValue ... 89
8.4.19 TerminateApplication .. 90

8.5 Hook functions.. 91
8.5.1 Protection Hook... 91
8.5.2 Application specific StartupHook... 91
8.5.3 Application specific ErrorHook .. 92
8.5.4 Application specific ShutdownHook .. 92

9 Sequence diagrams... 93

9.1 Sequence chart for calling trusted functions... 93
9.2 Sequence chart for usage of ErrorHook ... 94

7 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

9.3 Sequence chart for ProtectionHook.. 95
9.4 Sequence chart for StartupHook .. 96
9.5 Sequence chart for ShutdownHook.. 97

10 Configuration Specification .. 98

10.1 How to read this chapter .. 98
10.1.1 Configuration and configuration parameters 98
10.1.2 Variants... 98
10.1.3 Containers... 99
10.1.4 Rules for paramters... 99

10.2 Containers and configuration parameters .. 99
10.2.1 Os ... 99
10.2.2 OsAlarmSetEvent.. 100
10.2.3 OsAlarm .. 100
10.2.4 OsAlarmAction .. 101
10.2.5 OsAlarmActivateTask.. 101
10.2.6 OsAlarmAutostart.. 102
10.2.7 OsAlarmCallback .. 103
10.2.8 OsAlarmIncrementCounter ... 103
10.2.9 OsApplication .. 104
10.2.10 OsApplicationHooks .. 106
10.2.11 OsApplicationTrustedFunction... 107
10.2.12 OsAppMode... 107
10.2.13 OsCounter ... 108
10.2.14 OsDriver .. 110
10.2.15 OsEvent... 110
10.2.16 OsHooks.. 111
10.2.17 OsIsr.. 112
10.2.18 OsIsrResourceLock ... 113
10.2.19 OsIsrTimingProtection ... 114
10.2.20 OsOS... 115
10.2.21 OsResource... 117
10.2.22 OsScheduleTable .. 118
10.2.23 OsScheduleTableAutostart.. 119
10.2.24 OsScheduleTableEventSetting.. 120
10.2.25 OsScheduleTableExpiryPoint .. 121
10.2.26 OsScheduleTableTaskActivation... 121
10.2.27 OsScheduleTblAdjustableExpPoint ... 122
10.2.28 OsScheduleTableSync .. 122
10.2.29 OsTask .. 123
10.2.30 OsTaskAutostart.. 125
10.2.31 OsTaskResourceLock ... 125
10.2.32 OsTaskTimingProtection ... 126
10.2.33 OsTimeConstant.. 127

10.3 Published Information... 128

11 Generation of the OS... 129

11.1 Read in configuration ... 129
11.2 Consistency check ... 129

8 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

11.3 Generating operating system ... 131

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

12 Application Notes... 132

12.1 Hooks ... 132
12.2 Providing Trusted Functions... 132
12.3 Migration hints for OSEKtime OS users ... 134
12.4 Software Components and OS-Applications .. 136
12.5 Global Time Synchronization ... 137
12.6 Working with FlexRay... 137
12.7 Migration from OIL to XML ... 138

13 AUTOSAR Service implemented by the OS .. 139

13.1 Scope of this Chapter... 139
13.1.1 Package .. 139

13.2 Overview .. 139
13.3 Specification of the Ports and Port Interfaces .. 139

13.3.1 Data Types and Port Interface .. 140
13.3.1.1 General Approach.. 140
13.3.1.2 Data Types... 140
13.3.1.3 Port Interface ... 140
13.3.1.4 Ports .. 140

14 Outlook on Memory Protection Configuration .. 142

14.1 Configuration Approach.. 142

15 Changes to Release 1 ... 143

15.1 Deleted SWS Items.. 143
15.2 Replaced SWS Items ... 143
15.3 Changed SWS Items.. 143
15.4 Added SWS Items.. 144

16 Changes to Release 2.1 .. 145

9 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

1 Introduction and functional overview

This document describes the essential requirements on the AUTOSAR Operating
System to satisfy the top-level requirements presented in the AUTOSAR SRS [2].

In general, operating systems can be split up in different groups according to their
characteristics, e.g. statically configured vs. dynamically managed. To classify the
AUTOSAR OS, here are the basic features: the OS

• is configured and scaled statically
• is amenable to reasoning of real-time performance
• provides a priority-based scheduling policy
• provides protective functions (memory, timing etc.) at run-time
• is hostable on low-end controllers and without external resources

This feature set defines the type of OS commonly used in the current generation of
automotive ECUs, with the exception of Telematic/Infotainment systems. It is
assumed that Telematic/Infotainment systems will continue to use proprietary Oss
under the AUTOSAR framework (e.g. Windows CE, VxWorks, QNX, etc.). In the case
where AUTOSAR components are needed to run on these proprietary Oss, the
interfaces defined in this document should be provided as an Operating System
Abstraction Layer (OSAL) according to requirement BSW00322 in [3].

This document uses the industry standard OSEK OS [12] (ISO 17356-3) as the basis
for the AUTOSAR OS. The reader should be familiar with this standard before
reading this document.

This document describes extensions to, and restrictions of, this OSEK OS.

10 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

2 Acronyms and abbreviations

11 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Abbreviation Description
API Application Programming Interface
BSW Basic Software Requirement
COM Communications
ECU Electronic Control Unit
HIS Hersteller Initiative Software
ISR Interrupt Service Routine
MCU Microcontroller Unit
MPU Memory Protection Unit
NM Network Management
OIL OSEK Implementation Language
OS Operating System
OSEK/VDX Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug
SWC Software Component
SWFRT Software FreeRunningTimer

2.1 Glossary of Terms

Term: Definition
Access Right An indication that an object (e.g. Task, OsIsr, hook function) of an OS-Application

has the permission of access or manipulation with respect to memory, OS
services or (set of) OS objects.

Cardinality The number of items in a set.
An operating system object that registers a count in ticks. There are two types of
counters:
Hardware Counter A counter that is advanced by hardware (e.g. timer).

The count value is maintained by the peripheral “in
hardware”.

Counter

Software Counter A counter which is incremented by making the
IncrementCounter() API call. The count value is
maintained by the operating system “in software”.

Deadline The time at which a Task/Category 2 OsIsr must reach a certain point during its
execution defined by system design relative to the stimulus that triggered
activation. See Figure 2:1Figure

Delay The number of ticks between two adjacent expiry points on a schedule table.
A pair of expiry points X and Y are said to be adjacent when:

• There is no expiry point Z such that X.Offset < Z.Offset < Y.Offset. In this
case the Delay = Y.Offset-X.Offset

• X and Y are the Final Expiry Point and the Initial Expiry Point
respectively. In this case Delay = (Duration-X.Offset)+Y.Offset

When used in the text, Delay is a relative number of ticks measured from a
specified expiry point. For example: X.Delay is the delay from X to the next expiry
point.

Deviation The difference between the current position on an indirectly synchronized
schedule table and the value of the synchronization count. .

Duration The number of ticks from a notional zero at which a schedule table wraps.
Execution Time Tasks:

The net time a task spends in the RUNNING state without entering the
SUSPENDED or WAITING state. An extended task executing the
WaitEvent() API call to wait on an event which is already set notionally
enters the WAITING state.

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

OsIsrs:

The net time from the first to the last instruction of the user provided
Category 2 interrupt handler excluding all preemptions due to higher
priority OsIsrs executing in preference.

Execution time includes the time spent in the error, pretask and posttask hooks
and the time spent making OS service calls.

Execution Budget Maximum permitted execution time for a Task/OsIsr.
The offset on a Schedule Table, measured from zero, at which the OS activates
tasks and/or sets events.
Initial Expiry Point The expiry point with the smallest offset

Expiry Point

Final Expiry Point The expiry point with the largest offset
A Hook function is implemented by the user and invoked by the operating system
in the case of certain incidents. In order to react to these on system or application
level, there are two kinds of hook functions
Application-specific Hook functions within the scope of an individual OS-

Application.

Hook Function

System-specific Hook functions within the scope of the complete
system (in general provided by the integrator).

Initial Offset The smallest expiry point offset on a schedule table. This can be zero.
Interarrival Time Basic Tasks

The time between successively entering the READY state from the
SUSPENDED state. Activation of a task always represents a new arrival.
This applies in the case of multiple activations, even if an existing
instance of the task is in the RUNNING or READY state.

Extended Tasks:
The time between successively entering the READY state from the
SUSPENDED or WAITING states. Setting an event for a task in the
WAITING state represents a new arrival if the task is waiting on the
event. Waiting for an event in the RUNNING state which is already set
represents a new arrival.

OsIsrs:
The time between successive occurrences of an interrupt..

See Figure 2:1.
Interrupt Lock Time The time for which a Task/OsIsr executes with Category 1 interrupts

disabled/suspended and/or Category 2 interrupts disabled/suspend .
Interrupt Source
Enable

The switch which enables a specific interrupt source in the hardware.

Interrupt Vector
Table

Conceptually, the interrupt vector table contains the mapping from hardware
interrupt requests to (software) interrupt service routines. The real content of the
Interrupt Vector Table is very hardware specific, e.g. it can contain the start
addresses of the interrupt service routines.

Final Delay The difference between the final expiry point offset and the duration on a
schedule table in ticks. This value defines the delay from the final expiry point to
the logical end of the schedule table for single-shot and “nexted” schedule tables.
Final Delay = Final Expiry Point Delay if Initial Offset = 0

Forced OS-
Application
Termination

The operating system frees all system objects, e.g. forcibly terminates Tasks,
disables interrupts, etc., which are associated to the OS-Application. OS-
Application and internal variables are potentially left in an undefined state.

Forced
Termination

The OS terminates the Task/Category 2 OsIsr and does ”unlock” its held
resources. For details see OS108 and OS109.

Linker File File containing linking settings for the linker. The syntax of the linker file depends
on the specific linker and, consequently, definitions are stored “linker-specific” in
the linker file.

12 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Lock Budget Maximum permitted Interrupt Lock Time or Resource Lock Time.
Memory Protection
Unit

A Memory Protection Unit (MPU) enables memory partitioning with individual
protection attributes. This is distinct from a Memory Management Unit (MMU)
that provides a mapping between virtual addresses and physical memory
locations at runtime.
Note that some devices may realise the functionality of an MPU in an MMU.
Describes the permissions available on a processor.
Privileged In general, in »privileged mode« unrestricted access is

available to memory as well as the underlying hardware.

Mode

Non-privileged In »non-privileged mode« access is restricted.
Modulus The number of ticks required to complete a full wrap of an OSEK counter. This is

equal to OsCounterMaxAllowedValue +1 ticks of the counter.
A collection of OS objects
Trusted An OS-Application that is executed in privileged mode and has

unrestricted access to the API and hardware resources. Only
trusted applications can provide trusted functions.

OS-Application

Non-trusted An OS-Application that is executed in non-privileged mode has
restricted access to the API and hardware resources.

OS object Object that belongs to a single OS-Application: Task, OsIsr, Alarm, Event,
Schedule Table, Resource, Trusted Function, Counter, Applicaton-specific hook.

OS Service OS services are the API of the operating system.
Systematic error in the software of an OS-Application.
Memory access
violation

A protection error caused by access to an address in a
manner for which no access right exists.

Timing fault A protection error that violates the timing protection.
Illegal service A protection error that violates the service protection, e.g.

unauthorized call to OS service.

Protection Error

Hardware exception division by zero, illegal instruction etc.
Resource Lock
Time

The time an OSEK resource is held by a Task/OsIsr (excluding the preemptions
of the Task/OsIsr by higher prior Tasks/OsIsrs).

Response Time The time between a Task/OsIsr being made ready to execute and generating a
specified response. The time includes all preemptions. Figure

Restart an OS-
Application

An OS-Application can be restarted after self-termination or being forcibly
terminated because of a protection error. When an OS-Application is restarted,
the OS activates the configured OsRestartTask.

Scalability Class The features of the OS (e.g. Memory Protection or Timing Protection), described
by this document, can be grouped together to customize the operating system to
the needs of the application. There are 4 defined groups of features which are
named scalability classes. For details see Chapter 7.9

Schedule Table Encapsulation of a statically defined set of expiry points.
Part of an object file in which instructions or data are combined to form a unit
(contiguous address space in memory allocated for data or code). A section in an
object file (object file format) has a name and a size.
From the linker perspective, two different sides can be distinguished:
input section memory section in an input object file of the linker.

Section

Output section memory section in an output object file of the linker.
Set (of OS objects) This document uses the term set, indicating a collection of the same type of OS

objects, in the strict mathematical sense, i.e.:
- a set contains zero or more OS objects (this means a set can be empty)
- the OS objects in the set are unique (this means there cannot be duplicate OS
objects in the set)
Address label that can be imported/used by software modules and resolved by
the linker. The precise syntax of the labels is linker-specific. Here, these address
labels are used to identify the start and end of memory sections.
Start symbol Tags the start of a memory section

Symbol

End symbol Tags the end of a memory section

13 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Synchronization of
schedule tables
with a
synchronization
counter

Synchronization with a synchronization counter is achieved, if the expiry points of
the schedule table are processed within an absolute deviation from the
synchronization counter that is smaller than or equal to a precision threshold.

Synchronization
Counter

The “Synchronization Counter”, distinct from an OS counter object, is an external
counter, external to the OS, against which expiry points of a schedule table are
synchronized

Time Frame The minmum inter-arrival time for a Task/OsIsr.
Trusted Function A service provided by a trusted OS-Application that can be used by other OS-

Applications (trusted or non-trusted).
Worst case
execution time
(WCET)

The longest possible execution time.

Write access Storing a value in a register or memory location. All memory accesses that have
the consequence of writing (e.g. reads that have the side effect of writing to a
memory location) are treated as write accesses.

12 13 14 152 3 4 5 6 7 8 9 10 110 1

High

16 17 18

High

Low Low

LOW’s Response Time

LOW’s Deadline

LOW’s Inter-arrival time

Low

19 20 21 22 23 24

Low

LOW’s Execution Time

High

Low

Task HIGH and Task
LOW activated

Task LOW
terminates

Task LOW activated
again

Figure 2:1: Definition of Timing Terminology

14 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

3 Related documentation

3.1 Input documents

[1] Layered Software Architecture
https://svn2.autosar.org/repos2/22_Releases
AUTOSAR_LayeredSoftwareArchitecture.pdf

[2] Requirements on Operating System
https://svn2.autosar.org/repos2/22_Releases
AUTOSAR_SRS_OS.pdf

[3] General Requirements on Basic Software Modules
https://svn2.autosar.org/repos2/22_Releases
AUTOSAR_SRS_General.pdf

[4] Specification of the Virtual Functional Bus
https://svn2.autosar.org/repos2/22_Releases
AUTOSAR_Spec_of_VFB.pdf

[5] Requirements on Software FreeRunningTimer
https://svn2.autosar.org/repos2/22_Releases
AUTOSAR_SRS_SWFreeRunnningTimer.pdf

[6] Specification of GPT Driver
https://svn2.autosar.org/repos2/22_Releases
AUTOSAR_SWS_GPT_Driver.pdf

[7] Specification of Standard Types
https://svn2.autosar.org/repos2/22_Releases
AUTOSAR_SWS_StandardTypes.pdf

[8] Specification of Memory Mapping
https://svn2.autosar.org/repos2/22_Releases
AUTOSAR_SWS_MemoryMapping.pdf

[9] Specification of RTE
https://svn2.autosar.org/repos2/22_Releases
AUTOSAR_SWS_RTE.pdf

[10] AUTOSAR ECU Configuration Specification
https://svn2.autosar.org/repos2/22_Releases
AUTOSAR_ECU_Configuration.pdf

[11] AUTOSAR Basic Software Module Description Template,
https://svn2.autosar.org/repos2/22_Releases

15 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

AUTOSAR_BSW_Module_Description.pdf

3.2 Related standards and norms

3.2.1 OSEK/VDX

The OSEK/VDX specifications are publically available from www.osek-vdx.org

[12] Operating System

Version 2.2.3
17th February 2005

[13] Time-Triggered Operating System

Version 1.0
24th July 2001

[14] System Generation OIL: OSEK Implementation Language

Version 2.5
1st July 2004

[15] OSEK RunTime Interface (ORTI) Part A: Language Specification

Version 2.2
14th November 2005

[16] OSEK Run Time Interface (ORTI) Part B: OSEK Objects and Attributes
Version 2.2
25th November 2005

[17] Binding Specification

Version 1.4.2
15th July 2004

3.2.2 HIS

The HIS (Hersteller Initiative Software) documents are publicly available from
www.automotive-his.de

[18] Requirements for Protected Applications under OSEK

Version 1
25th September 2002.

[19] OSEK OS Extensions for Protected Applications

Version 1.0
27th July 2003

16 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

http://www.automotive-his.de/

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

3.2.3 ISO/IEC

[20] ISO/IEC 9899:1990 Programming Language – C

(Remark: The international ISO standard ISO/IEC 9899:1990, also sometimes simply
called »C90«, describes the language C. It was introduced in 1990 and replaced the
ANSI C standard that was introduced only one year before, that's why it is also called
»C89«. C89 differs from ISO/IEC 9899:1990 essentially only by the copyright note.)

[21] ISO/IEC 9899:1999 Programming Language – C

(Remark: A revised version of the standard was published in 1999. It is officially
ISO/IEC 9899:1999, but is more often referred to as »C99«.)

3.3 Company Reports, Academic Work, etc.

[22] Extensions of OSEK OS for Protected Applications

OSEK Support Project DC058_02
DaimlerChrysler AG

17 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

4 Constraints and assumptions

4.1 Existing Standards

This document makes the following assumptions about the referenced related
standards and norms:

• OSEK OS [12] provides a sufficiently flexible scheduling policy to schedule

AUTOSAR systems.
• OSEK OS [12] is a mature specification and implementations are used in millions

of ECUs worldwide.
• OSEK OS [12] does not provide sufficient support for isolating multi-source

software components at runtime.
• OSEK OS [12] does not provide sufficient runtime support for demonstrating the

absence of some classes of fault propagation in a safety-case.
• OSEKtime OS [13] and the HIS Protected OSEK [19] are immature specifications

that contain concepts necessary for AUTOSAR and satisfy specific application
domains. It is the purpose of this document to identify these needs and to
recommend the use of parts (or all) of these specifications as appropriate.

4.2 Terminology

The specification uses the following operators when requirements specify multiple
terms:

NOT : negation of a single term e.g. NOT Weekend
AND : conjunction of two terms e.g. Weekend AND Saturday
OR : disjunction of two terms e.g. Monday OR Tuesday

A requirement comprising multiple terms is evaluated left to right.

The precedence rules are:

Highest Precedence NOT
Lowest Precedence AND OR

The expression NOT X AND Y means (NOT X) AND (Y)

Where operators of the same precedence are used in the same sentence, commas
are used to disambiguate. The expression X AND Y, OR Z means (X AND Y) OR Z.

4.3 Interaction with the RTE

The configuration of an AUTOSAR system [4] maps the »runnables« of a »software
component« to (one or more) tasks that are scheduled by the operating system. All
runnables in a task share the same protection boundary. In AUTOSAR, a software
component must not include an interrupt handler. A software component is therefore
implemented as runnables executing within the body of a task, or set of tasks, only.
18 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Runnables get access to hardware-sourced data through the AUTOSAR RTE. The
RTE provides the runtime interface between runnables and the basic software
modules. The basic software modules also comprise a number of tasks and OsIsrs
that are scheduled by the operating system.

It is assumed that the software component templates and the description of the basic
software modules provide sufficient information about the required runtime behavior
to be able to specify the attributes of tasks required to configure the OS.

4.4 Operating System Abstraction Layer (OSAL)

Systems that do not use the OS defined in AUTOSAR can provide a platform for the
execution of AUTOSAR software components using an Operating System
Abstraction Layer. The interface to the OSAL is exactly that defined for the
AUTOSAR OS.

19 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

4.5 Limitations

4.5.1 Hardware

The core AUTOSAR operating system assumes free access to hardware resources,
which are managed by the OS itself. This includes, but is not limited to, the following
hardware:

• interrupt control registers
• processor status words
• stack pointer(s)

Specific (extended) features of the core operating system extend the requirements
on hardware resource. The following list outlines the features that have requirements
on the hardware. Systems that do not use these OS features do not have these
hardware requirements.

• Memory Protection: A hardware memory protection unit is required. All memory

accesses that have the consequence of writing (e.g. reads that have the side
effect of writing to a memory location) shall be treated as writes.

• Time Protection: Timer Hardware for monitoring execution times and arrival rates.

• »Privileged« and »non-privileged« modes on the MCU: to protect the OS against

internal corruption caused by writes to OS controlled registers. This mode must
not allow OS-Applications to circumvent protection (e.g. write registers which
govern memory protection, write to processor status word etc.). The privileged
mode must be under full control of the protected OS which uses the mode
internally and to transfer control back and forth from a non-trusted OS-Application
to a trusted OS-Application. The microprocessor must support a controlled means
which moves a processor into this privileged mode.

• Local/Global Time Synchronization: A global time source is needed.

In general hardware failures in the processor are not detected by the operating
system. In the event of hardware failure, correct operation of the OS cannot be
guaranteed.

The resources managed by a specific OS implementation have to be defined within
the appropriate configuration file of the OS.

4.5.2 Programming Language

The API of the operating system is defined as C89 [20] function calls or macros. If
other languages are used they must adapt to the C interface. This is because C99
[21] allows for internal dynamic memory allocation during subroutine calls. Most
automotive applications are static (non-heap based).

20 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

4.5.3 Miscellaneous

The operating system does not provide services for dynamic memory management.

The operating system is only able to handle a single thread of execution at one time.
It is therefore not able to manage software running on a multi-processor system. A
multi-processor system must use a different OS image for each processor.

4.6 Applicability to car domains

The operating system has the same design constraints regarding size and scalability
under which the OSEK OS was designed. The immediate domain of applicability is
therefore currently body, chassis and power train ECUs. However, there is no reason
that the OS cannot be used to implement ECUs for infotainment applications.

21 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

5 Dependencies to other modules

There are no forced dependencies on other modules, however:

o It is assumed that the operating system may use timer units (e.g. a GPT
channel) to drive counters.

o If the user needs to drive scheduling directly from global time, then a global
time interrupt is required.

o If the user needs to synchronize the processing of a schedule table to a global
time, the operating system needs to be told the global time using the
SyncScheduleTable() service.

5.1 File structure

5.1.1 Code file structure

The code file structure of the Operating system is not fixed, besides the requirements
in the General SRS.

5.1.2 Header file structure

22 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Figure 5:1: Header File Structure for the OS

The figure above contains the defined AUTOSAR header file hierarchy of the
Operating System.

Users of the Operating Systems shall only include the Os.h file.

If an implementation of the Operating System requires additional header files, it is
free to include them. The header files are self contained, that means they will include

Os.h

includes

OS

Std_Types.h Os_Cfg.h

MemMap.h

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

all other header files which are required by them (e.g include files for the GPT driver
if required).

23 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

6 Requirements Traceability

This chapter contains references to requirements of other AUTOSAR documents.

6.1 General Requirements on Basic Software Modules

Requirement Satisfied by

Functional Requirements - Configuration
[BSW00344]
Reference to link time configuration

Not applicable
(AUTOSAR OS is a statically configured
Operating System.)

[BSW00404]
Reference to post build time configuration

Not applicable
(AUTOSAR OS does not support post build time
configuration.)

[BSW00405]
Reference to multiple configuration sets

Not applicable
(AUTOSAR OS does not support post build time
configuration.)

[BSW159]
Tool-based configuration

OS uses standard XML, so various tools may be
used to configure the OS

[BSW167]
Static configuration checking

See Chapter 11.2

[BSW171]
Configurability of optional functionality

See Chapter 10. Requirement focuses on
implementation.

[BSW170]
Data for reconfiguration of AUTOSAR SW-
Components

Not applicable

[BSW00380]
Separate C-Files for configuration parameters

Not applicable
(Requirement for implementation)

[BSW00419]
Separate C-Files for pre-compile time
configuration parameters

Not applicable
(Requirement for implementation)

[BSW00381]
Separate configuration header file for pre-compile
time parameters

Not applicable
(Requirement for implementation)

[BSW00412]
Separate H-File for configuration parameters

Not applicable
(Requirement for implementation)

[BSW00383]
List dependencies of configuration files

Not applicable
(SWS has no dependencies for configuration
files.)

[BSW00384]
List dependencies to other modules

Not applicable
(SWS has no dependencies to other modules.)

[BSW00387]
Specify the configuration class of callback function

See Chapter 8.5 for details.

[BSW00388]
Introduce containers

See Chapter 10.2.

[BSW00389]
Containers shall have names

See Chapter 10.2.

[BSW00390]
Parameter content shall be unique within the
module

See Chapter 10.2.

[BSW00391]
Parameter shall have unique names

See Chapter 10.2.

[BSW00392]
Parameters shall have a type

See Chapter 10.2.

[BSW00393]
Parameters shall have a range

See Chapter 10.2.

24 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

25 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Requirement Satisfied by
[BSW00394]
Specify the scope of the parameters

See Chapter 10.2.

[BSW00395]
List the required parameters (per parameter)

See Chapter 10.2.

[BSW00396]
Configuration classes

See Chapter 10.2.

[BSW00397]
Pre-compile-time parameters

See Chapter 10.2.

[BSW00398]
Link-time parameters

See Chapter 10.2.

[BSW00399]
Loadable Post-build time parameters

See Chapter 10.2.

[BSW00400]
Selectable Post-build time parameters

See Chapter 10.2.

[BSW00438]
Post-build configuration data structure

See Chapter 10.2.

[BSW00402]
Published information

See Chapter 10.2.

Functional Requirements - Wake Up
[BSW00375]
Notification of wake-up reason

Not applicable

Functional Requirements - Initialization
[BSW101]
Initialization interface

StartOS()

[BSW00416]
Sequence of Initialization

StartOS() is called by the user. Sequence of
calls with other modules is not affected.

[BSW00406]
Check module initialization

Not applicable
(Requirement for implementation)

[BSW00437]
NoInit—Area in RAM

N/A – The OS only covers it’s own data areas.

Functional Requirements - Normal Operation
[BSW168]
Diagnostic interface of SW components

Not applicable

[BSW00407]
Function to read out published parameters

Not applicable
(Requirement for implementation)

[BSW00423]
Usage of SW-C template to describe BSW
modules with AUTOSAR Interface

Not applicable
(AUTOSAR OS does not interact directly with SW-
C.)

[BSW00424]
BSW main processing function task allocation

Requirement for users of AUTOSAR OS together
with the RTE.

[BSW00425] Trigger conditions for schedulable
objects

Requirement for users of AUTOSAR OS together
with the RTE.

[BSW00426]
Exclusive areas in BSW modules

Requirement for users of AUTOSAR OS together
with the RTE.

[BSW00427]
OsIsr description for BSW modules

Requirement for users of AUTOSAR OS together
with the RTE.

[BSW00428]
Execution order dependencies of main processing
functions

Requirement for users of AUTOSAR OS together
with the RTE.

[BSW00429]
Restricted BSW OS functionality access

Requirement for users of AUTOSAR OS together
with the RTE.

[BSW00431]
The BSW Scheduler module implements task
bodies

Requirement for users of AUTOSAR OS together
with the RTE.

[BSW00432]
Modules should have separate main processing
functions for read/receive and write/transmit data

Requirement for users of AUTOSAR OS together
with the RTE.

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

26 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Requirement Satisfied by
path
[BSW00433]
Calling of main processing functions

Requirement for users of AUTOSAR OS together
with the RTE.

[BSW00434]
The Schedule Module shall provide an API for
exclusive areas

Requirement for users of AUTOSAR OS together
with the RTE.

Functional Requirements - Shutdown Operation
[BSW00336]
Shutdown Interface

ShutdownOS()

Functional Requirements - Fault Operation and Error Detection
[BSW00337]
Classification of errors

Not applicable
(AUTOSAR OS does not distinguish between
“development” and “production” errors. See
Section 7.11.

[BSW00338]
Detection and Reporting of development errors

Not applicable
(AUTOSAR OS calls the ErrorHook (defined by
the OSEK OS specification [12]) and the
ProtectionHook (see Section 7.8) in case of
errors. It is possible to call Debug Error Tracer
from these hook routines.)

[BSW00369]
Do not return development error codes via API

Not applicable
(AUTOSAR OS does not distinguish between
“development” and “production” errors. In
accordance with OSEK OS all possible errors are
reported via the ErrorHook() and as return
values of system services.)

[BSW00339]
Reporting of production relevant error status

Not applicable
(AUTOSAR OS calls the ErrorHook() (defined
by the OSEK OS specification [12]) and the
ProtectionHook() (see Section 7.8) in case of
errors. It is possible to call the function inhibition
or diagnostic event manager (DEM) and handle
the debouncing from these hook routines.)

[BSW00422]
Debouncing of production relevant error status

Not applicable
(AUTOSAR OS calls the ErrorHook() (defined
by the OSEK OS specification [12]) and the
ProtectionHook() (see Section 7.8) in case of
errors. It is possible to call the function inhibition
or diagnostic event manager (DEM) and handle
the debouncing from these hook routines.)

[BSW00417]
Reporting of Error Events by Non-Basic Software

Not applicable
(e.g. this module does not provide any wake-up
reason)

[BSW00323]
API parameter checking

See Section 7.7.3

[BSW004]
Version check

Not applicable
(Requirement for implementation)

[BSW00409]
Header files for production code error IDs

Not applicable
(AUTOSAR OS does not distinguish between
“development” and “production” errors. See
Section 7.11.

[BSW00385]
List possible error notifications

Not applicable
(AUTOSAR OS does not distinguish between
“development” and “production” errors. See
Section 7.11.

[BSW00386]
Configuration for detecting an error

Not applicable
(AUTOSAR OS calls the ErrorHook() (defined

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

27 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Requirement Satisfied by
by the OSEK OS specification [12]) and the
ProtectionHook() (see Section 7.8) in case of
errors. It is possible to call the function inhibition
or diagnostic event manager (DEM) and handle
the debouncing from these hook routines.)

Non-functional Requirements - Software Architecture Requirements
[BSW161]
Microcontroller Abstraction

N/A

[BSW162]
ECU Layout Abstraction

N/A

[BSW005]
No hard coded horizontal interfaces within MCAL

OS does not belong to MCAL

[BSW00415]
User dependant include files

N/A – OS is used by several BSWs and SWCs

Non-functional Requirements - Software Integration Requirements
[BSW164]
Implementation of interrupt service routines

OK – OS is allowed to implement interrupt service
routines

[BSW00325]
Runtime of interrupt service routines

N/A

[BSW00326]
Transition of OsIsrs to OS tasks

N/A

[BSW00342]
Usage of source code and object code

N/A

[BSW00343]
Specification and configuration of time

OS supports ticks for OSEK compatibility and
physical times (with convert macros)

[BSW160]
Human-readable configuration data

OS is using XML

Non-functional Requirements - Software Documentation Requirements
[BSW009]
User Module Documentation

N/A

[BSW00401]
Documentation of multiple instance of
configuration parameters

N/A

[BSW172]
Compatibility and documentation of scheduling
strategy

N/A

[BSW010]
Memory resource documentation

N/A

[BSW00333]
Documentation of callback function context

N/A

[BSW00374]
Module vendor identification

N/A

[BSW00379]
Module identification

N/A

[BSW003]
Version identification

N/A

[BSW00318]
Format of module version numbers

N/A

[BSW00321]
Enumeration of module version numbers

N/A

[BSW00341]
Microcontroller compatibility documentation

N/A

[BSW00334]
Provision of XML file

N/A

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

6.2 Requirements on Software Free-Running Timer

Requirement Satisfied by
[SWFRT00019]
Configure HW Timer Type

OS390

[SWFRT00020]
Configuration/initialization of HW Timer

OS371, OS374

[SWFRT00021]
Import Used HW Timer’s Configuration

GPT is referenced by OS configuration (via
XML) See chapter 10.2 for details.

[SWFRT00022]
State which HW Timer is used

OS370

[SWFRT00023]
Set up Duration of one Tick

OS385

[SWFRT00024]
Support different Ranges/Resolutions

OS375

[SWFRT00025]
Set up Access Methods

OS383, OS392

[SWFRT00026]
Set up Target Count Values

OS386

[SWFRT00028]
Ensure Continuous Running Mode

OS441

[SWFRT00029]
Init Function

The init function of the OS is the
StartOS() service. If the GPT driver is
used by the OS, the init function of the GPT
driver has to be called before starting the
OS via StartOS().

[SWFRT00030]
Start with Zero

OS384

[SWFRT00031]
Increment Counter

OS384

[SWFRT00032]
Wrap Around

N/A. This requirement targets specific timer
features. The OS should minimize the
software access to timers (e.g. by using
automatic reload features of the hardware).

[SWFRT00033]
Read out Ticks

OS377

[SWFRT00034]
Calculate Ticks Elapsed since given value

OS382

[SWFRT00041]
Shutdown Function

There is no function to shutdown the timers
which drive counters

[SWFRT00047]
Convert Ticks to Time

OS393

[SWFRT00048]
EcuM Modes

The OS is not aware of any EcuM modes
and switching modes which influences
timers (e.g. stop them or slow down
counting) is neither recognized nor handled
by the OS. It is the responsibility of the user
to take care of this affects.

6.3 AUTOSAR SRS OS Requirements

Requirement Satisfied by
[BSW097]
Existing OSEK OS

OS001

[BSW11001]
Object Grouping

OS114, OS056

28 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

29 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Requirement Satisfied by
[BSW098]
Table based schedules

OS002, OS007

[BSW099]
Switchable schedules

OS191

[BSW11002]
Synchronization with global time

OS206, OS200, OS201, OS013, OS199,
OS260, OS227

[BSW11003]
Stack Monitoring

OS067, OS068

[BSW11005]
Memory Write Access

OS207, OS208, OS195

[BSW11006]
Data exchange

OS086, OS196, OS087

[BSW11007]
Code Sharing

OS081

[BSW11000]
Memory read access

OS026

[BSW11008]
Timing Protection

OS028, OS089, OS033, OS037, OS048,
OS064, OS465, OS469, OS470, OS471,
OS472, OS473, OS474

[BSW11009]
Protection of the OS

OS051, OS088, OS052, OS069, OS070,
OS092, OS093

[BSW11010]
Protection of OS-Applications

OS056

[BSW11011]
Protecting the OS managed hardware

OS096, OS245

[BSW11012]
Scalable Protection

OS241, OS240

[BSW11016]
Scalability of the OS

OS241, OS240

[BSW11013]
Error Notification

OS068, OS044, OS210, OS033, OS037,
OS064, OS051, OS088, OS070, OS093,
OS056, OS246

[BSW11014]
Protection Error Handling

OS033, OS037, OS106, OS107, OS108,
OS109, OS110, OS243, OS244,

[BSW11018]
Interrupt services

OS299

[BSW11020]
Interface for ticking counters

OS286

[BSW11021]
Cascading counters

OS301

[BSW11019]
Creation of Interrupt Vector Table

OS336

6.4 AUTOSAR SWS Service Requirements to API

Requirement Associated API
OS016 8.4.1
OS097 8.4.3
OS358 8.4.9
OS347 8.4.8
OS006 8.4.10
OS191 8.4.11
OS012 8.4.16
OS199 8.4.13, 8.4.14
OS227, OS359 8.4.15

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

30 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Requirement Associated API
OS099 8.4.4,8.4.5,8.4.2
OS256 8.4.6
OS017 8.4.7
OS258 8.4.19
OS383, OS392 8.4.17, 8.4.18
OS201 8.4.12

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

7 Functional specification

7.1 Core OS

7.1.1 Background & Rationale

The OSEK/VDX Operating System [12] is widely used in the automotive industry and
has been proven in use in all classes of ECUs found in modern vehicles. The
concepts that OSEK OS has introduced are widely understood and the automotive
industry has many years of collective experience in engineering OSEK OS based
systems.

OSEK OS is an event-triggered operating system. This provides high flexibility in the
design and maintenance of AUTOSAR based systems. Event triggering gives
freedom for the selection of the events to drive scheduling at runtime, for example
angular rotation, local time source, global time source, error occurrence etc.

For these reasons the core functionality of the AUTOSAR OS shall be based upon
the OSEK OS. In particular OSEK OS provides the following features to support
concepts in AUTOSAR:

o fixed priority-based scheduling
o facilities for handling interrupts
o only interrupts with higher priority than tasks
o some protection against incorrect use of OS services
o a startup interface through StartOS() and the StartupHook()
o a shutdown interface through ShutdownOS() and the ShutdownHook()

OSEK OS provides many features in addition to these. Readers should consult the
OSEK specification [12] for details.

Basing AUTOSAR OS on OSEK OS means that legacy applications will be backward
compatible – i.e. applications written for OSEK OS will run on AUTOSAR OS.
However, some of the features introduced by AUTOSAR OS require restrictions on
the use of existing OSEK OS features or extend existing OSEK OS features.

7.1.2 Requirements

OS001: The Operating System shall provide an API that is backward compatible with
the OSEK OS API [12].

7.1.2.1 Restrictions on OSEK OS

It is too inefficient to achieve timing and memory protection for alarm callbacks. They
are therefore not allowed in specific scalability classes (OS242)

31 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

OS242: The Operating System shall only allow Alarm Callbacks in Scalability Class
1.

OSEK OS is required to provide functionality to handle inter-task (internal)
communication according to the OSEK COM specification when internal
communication only is required in the system. In AUTOSAR, internal communication
is provided by the AUTOSAR RTE or by AUTOSAR COM at least one of which will
be present for all AUTOSAR ECUs.

AUTOSAR OS, when used in an AUTOSAR system, therefore does not need to
support internal communication.

An OSEK OS must implement internal communication if the symbol
LOCALMESSAGESONLY is defined. AUTOSAR OS can deprecate the need to
implement OSEK COM functionality and maintain compatibility with OSEK suite of
specifications by ensuring that AUTOSAR OS always exists in an environment where
LOCALMESSAGESONLY is undefined. This leads to the following requirement:

OS398: The OS shall not define the symbol LOCALMESSAGESONLY

7.1.2.2 Undefined Behaviour in OSEK OS

There are a number of cases where the behaviour of OSEK OS is undefined. These
cases represent a barrier to portability. AUTOSAR OS tightens the OSEK OS
specification by defining the required behaviour.

OS304: If in a call to SetRelAlarm() the parameter “increment” is set to zero, the
service shall return E_OS_VALUE in standard and extended status .

OS424: The first call to StartOS() (for starting the Operating System) shall not
return.

OS425: If ShutdownOS() is called and ShutdownHook() returns then the operating
system shall disable all interrupts and enter an endless loop.

7.1.2.3 Extensions to OSEK OS

OS299:The Operating System shall provide the services DisableAllInterrupts(),
EnableAllInterrupts(), SuspendAllInterrupts(), ResumeAllInterrupts()
prior to calling StartOS() and after calling ShutdownOS(). (It is assumed that the
static variables of these functions are initialized).

OS301: The Operating System shall provide the ability to increment a software
counter as an alternative action on alarm expiry.

32 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

OS399: The OS shall provide an API call to increment a software counter.

33 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

7.2 Software Free Running Timer

Due to the fact that the number of timers is often very limited, some functionality and
configuration is added to extend the reuse of timers. E.g. this allows timer
measurments and the integration of GPT drivers. For more details see also [5]
(SWFRT).

OS374: The Operating System shall handle all the initialization and configuration of
timers used directly by the OS and not handled by the GPT driver.

OS383: The Operating System shall provide a service to read the current count value
of a counter (returning either the hardware timer ticks if counter is driven by hardware
or the software ticks when user drives counter).

OS392: The Operating System shall provide a service to get the number of ticks
between the current tick value and a previously read tick value.

OS384: The Operating System shall adjust the read out values of hardware timers
(which drive counters) in such that the lowest value is zero and consecutive reads
return an increasing count value until the timer wraps at its modulus.

34 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

7.3 Schedule Tables

7.3.1 Background & Rationale

It is possible to implement a statically defined task activation mechanism using an
OSEK counter and a series of auto started alarms. In the simple case, this can be
achieved by specifying that the alarms are not modified once started. Run-time
modifications can only be made if relative synchronization between alarms can be
guaranteed. This typically means modifying the alarms while associated counter tick
interrupts are disabled.

Schedule Tables address the synchronization issue by providing an encapsulation of
a statically defined set of expiry points. Each expiry point defines:

• one or more actions that must occur when it is processed where an action is

the activation of a task or the setting of an event.
• An offset in ticks from the start of the schedule table

Each schedule table has a duration in ticks. The duration is measured from zero and
defines the modulus of the schedule table.

At runtime, the OS will iterate over the schedule table, processing each expiry point
in turn. The iteration is driven by an OSEK counter. It therefore follows that the
properties of the counter have an impact on what is possible to configure on the
schedule table.

7.3.2 Requirements

7.3.2.1 Structure of a Schedule Table

Delay=8 Delay=8

Expiry Point 1

Task Activations
TaskA
TaskB

Event Settings
EventP:TaskC
EventP:TaskD

Offset
4 ticks

Expiry Point 2

Task Activations
<none>

Event Settings
EventP:TaskC
EventP:TaskD

Offset
12 ticks

Expiry Point 3

Task Activations
TaskA
TaskE

Event Settings
<none>

Offset
20 ticks

Expiry Point 4

Task Activations
TaskA
TaskE

Event Settings
EventQ:TaskC
EventQ:TaskE

Offset
32 ticks

Expiry Point 5

Task Activations
TaskB
TaskF

Event Settings
EventP:TaskC

Offset
40 ticks

Delay=12 Delay=8

Delay=InitialOffset+FinalDelay=14

120 3220 40 0

Schedule Table Duration = 50 ticks

4

InitialOffset=4

Initial Expiry
Point

Final Expiry
Point

FinalDelay=10

Figure 7.1: Anatomy of a Schedule Table

35 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

OS401: A schedule table shall have at least one expiry point.

OS402: An expiry point shall contain a (possibly empty) set of tasks to activate.

OS403: An expiry point shall contain a (possibly empty) set of events to set.

OS404: An expiry point shall contain an offset in ticks from the start of the schedule
table.

7.3.2.2 Constraints on Expiry Points

There is no use case for an empty expiry point, so each one must define at least one
action.

OS407: An expiry point shall activate at least one task OR set at least one event

The OS needs to know the order in which expiry points are processed. It is therefore
necessary to ensure that the expiry points on a schedule table can be totally ordered.
This is guaranteed by forcing each expiry point on a schedule table to have a unique
offset.

OS442: : Each expiry point on a given schedule table shall have a unique offset.

Iteration over expiry points on a schedule table is driven by an OSEK counter. The
characteristics of the counter - OsCounterMinCycle and
OsCounterMaxAllowedValue - place constraints on expiry point offsets.

OS443: The Initial Offset shall be zero OR in the range OsCounterMinCycle ..
OsCounterMaxAllowedValue of the underlying counter.

Simlarly, constraints apply to the delays between of adjacent expiry points and the
delay to the logical end of the schedule table.

OS408: The delay between adjacent expiry points shall be in the range
OsCounterMinCycle .. OsCounterMaxAllowedValue of the underlying counter.

OS444: The value of Final Delay shall be in the range OsCounterMinCycle ..
OsCounterMaxAllowedValue of the underlying counter.

7.3.2.3 Processing Schedule Tables

OS002: The OS shall drive an iterator over schedule table expiry points, processing
each expiry point from the InitialExpiryPoint to the FinalExpiryPoint in order of
increasing offset.

36 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

OS007: The Operating System shall permit multiple schedule tables to be processed
concurrently.

OS409: A schedule table shall be driven by exactly one counter.

OS410: The Operating System shall be able to process at least one schedule table
per counter at any given time.

OS411: One tick on the counter shall correspond to one tick on the schedule table.

It is possible to activate a task and set (one or more unique) events for the same task
at the same expiry point. The ordering of task activations and event settings
performed from the expiry point could lead to different implementations exhibiting
different behaviour (for example, activating a suspended task and then setting and
event on the task would succeed but if the ordering was reversed then the event
setting would fail). To prevent such non-determinism, it is necessary to enforce a
strict ordering of actions on the expiry point.

OS412: The OS shall process all task activations on an expiry point first and then set
events.

A schedule table always has a defined state and the following figure illustrates the
different states (for a non-synchronized schedule table) and the transitions between
them.

Figure 7.2: States of a schedule table

If a schedule table is not active – this means that is not processed by the Operating
System – the state is SCHEDULETABLE_STOPPED. After starting a schedule tables
enters the SCHEDULETABLE_RUNNING state where the OS processes the expiry points.
If the service to switch a schedule table is called a schedule table enters the the
SCHEDULETABLE_NEXT state and waits until the “current” schedule table ends.
7.3.2.4 Repeated Schedule Table Processing

A schedule table may or may not repeat after the final expiry point is processed. This
allows two types of behaviour:

37 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

1. single-shot – the schedule table processes each expiry point in sequence and
then stops at the end . This is useful for triggering a phased sequence of
actions in response to some trigger

2. repeating – the schedule table processes each expity point in turn, After

processing the final expiry point, it loops back to the initial expirt point. This is
useful for building applications that perform repeated processing or system
which need to synchronise processing to a driver source.

A repeating schedule table means that each expiry point is repeated at a period
equal to the schedule table duration.

OS413: The schedule table shall be configurable as either single-shot or repeating.

OS009: If the schedule table is single-shot, the Operating System shall stop the
processing of the schedule table Final Delay ticks after the Final Expiry Point is
processed.

OS427: The Operating System shall allow the Final Delay for a single-shot schedule
table to be zero.

OS194: If the schedule table is repeating, the Operating System shall process the
Initial Expiry Point Final Delay plus Initial Offset ticks have elapsed after processing
the Final Expiry Point.
.

7.3.2.5 Controlling Schedule Table Processing

The application is responsible for starting and stopping the processing of a schedule
table. There is no implied relationship between the duration of the schedule table and
the range of the counter which drives it.

OS358: The Operating System shall provide a service to start the processing of a
schedule table at an absolute value “Start” on the underlying counter. (The Initial
Expiry Point shall be processed when the value of the underlying counter equals
Start + InitialOffset).

OS347: The Operating System shall provide a service to start the processing of a
schedule table at “Offset” relative to the “Now” value on the underlying counter (The
Initial Expiry Point shall be processed when the value of the underlying counter
equals Now + Offset + InitialOffset).

The figure below illustrates the two different methods for a schedule table driven by a
counter with a modulus of 65536 (i.e. an OsCounterMaxAllowedValue = 65535).

38 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Figure 7.3: Starting a Schedule Table at an Absolute and a Relative Count

OS006: The Operating System shall provide a service to cancel the processing of a
schedule table immediately at any point while the schedule table is running.

OS428: If schedule table processing has been cancelled before reaching the Final
Expiry Point and is subsequently restarted then OS358/OS347 means that the re-
start occurs from the start of the schedule table.

OS191: The Operating System shall provide a service to switch the processing from
one schedule table to another schedule table.

OS414: When a schedule table switch is requested, the OS shall continue to process
expiry points on the current schedule table up and including the Final Expiry Point
then delay for Final Delay ticks before processing the Initial Expiry Point on the
switched-to schedule table (after the initial offset).

39 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

OS359: The Operating System shall provide a service to query the state of a
schedule table.

40 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

7.4 Schedule Table Synchronization

7.4.1 Background & Rationale

The absolute time at which the Initial Expiry Point on a schedule table is processed is
under user control. However, if the schedule table repeats then it is not guaranteed
that the absolute count value at which the initial expiry point was first processed is
the same count value at which it is subsequently processed. This is because the
duration of the schedule table need not be equal to the counter modulus.

In many cases it may be important that schedule table expiry points are processed at
specific absolute values of the underlying counter. This is called synchronization.
Typical use-cases include:

• Synchronization of expiry points to degrees of angular rotation for motor
management

• Synchronizing the computation to a global (network) time base. Note that in

AUTOSAR, the Operating System does not provide a global (network) time
source because
1. a global time may not be needed in many cases
2. other AUTOSAR modules, most notably FlexRay, provide this

independently to the OS
3. if the OS is required to synchronize to multiple global (network) time

sources (for example when building a gateway between two time-triggered
networks) the OS cannot be the source of a unique global time.

AUTOSAR OS provides support for synchronization in two ways:

1. implicit synchronization – the counter driving the schedule table is the counter
with which synchronization is required. This is typically how synchronization
with time-triggered networking technologies (e.g. FlexRay, TTP) is achieved –
the underlying hardware manages network time synchronization and simply
presents time as an output/compare timer interface to the OS. The following
figure shows the possible states for schedule tables with implicit
synchronization.

41 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Figure 7.4: States of an implicit synchronized schedule table

2. explicit synchronization – the schedule table is driven by an OS counter which

is not the counter with which synchronization is required. The OS provides
additional functionality to keep schedule table processing driven by the OS
counter synchronized with the synchronization counter. This is typically how
synchronization with broadcast periodically global times works. The next figure
shows the states of such schedule tables.

Figure 7.5: States of an explicit synchronized schedule table

42 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

7.4.2 Requirements

OS013: The Operating System shall provide the ability to synchronize the processing
of schedule table to known counter values.

7.4.2.1 Implicit Synchronization

The OS does not need to provide any additional support for implicit synchronization
of schedule tables. However, it is necessary to constrain configuration and runtime
control of the schedule table so that ticks on the configured schedule table can be
aligned with ticks on the counter. This requires the range of the schedule table to be
identical to the range of the counter (the equality of tick resolution of each is
guaranteed by the requirements on the schedule table / counter interaction):

OS429: A schedule table that is implicitly synchronized shall have a Duration equal to
OsCounterMaxAllowedValue + 1 of its associated OSEK OS counter.

To synchronize the processing of the schedule table it must be started at a known
counter value. The implication of this is that a schedule table requiring implicit
synchronization must only be started at an absolute counter value and cannot be
started at a relative count value.

OS430: The OS shall prevent a schedule table that is implicitly synchronized from
being started at a relative count value.

When the schedule table is started at an absolute counter value each expiry point will
be processed when the counter equals the value specified in the service call plus
expiry point’s offset. The common use-case is to ensure that the offsets specified in
the schedule table configuration correspond to absolute values of the underlying
counter. This is achieved trivially using StartScheduleTable(Tbl,0) as shown
below.

Figure 7.6: Example for implicit synchronized schedule table

43 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

7.4.2.2 Explicit Synchonization

An explicitly synchronized schedule table requires additional support from the OS.
The schedule table is driven by an OS counter as normal (termed the “drive counter”)
but processing needs to be synchronized with a different counter (termed the
“synchronization counter”) which is not an OS counter object.

The following constraints must be enforced between the schedule table, the OS
counter and the synchronization counter:

Constraint1:

OS431: A schedule table that is explicitly synchronized shall have a duration
no greater than modulus of the drive counter.

Constraint2:

OS462: A schedule table that is explicitly synchronized shall have a duration
equal to the modulus of the synchronization counter.

Constraint3:

OS463: The synchronization counter shall have the same resolution as the
drive counter associated with the schedule table. This means that a tick on the
schedule table has the same duration as a tick on the synchronization counter.

Note that it is in the responsibility of the OS user to verify that Constraints 2 and 3 are
satisfied by their system.

The function of explicit synchronization is for the OS to keep processing each expiry
point at absolute value of the synchronization counter equal to the expiry point’s
offset. This means that explicit synchronization always assumes that the notional
zero of the schedule table has to be synchronized with absolute value zero on the
synchronization counter.

To achieve this, the OS must be told the value of the synchronization counter by the
user. As the modulus of the synchronization counter and the schedule table are
identical, the OS can use this information to calculate drift. The OS then
automatically adjusts the delay between specially configured expiry points, retarding
them or advancing them as appropriate, to ensure that synchronization is maintained.

7.4.2.2.1 Startup

There are two options for starting an explicitly synchronized schedule table:

1. Asynchronous start: Start the schedule table at an arbitrary value of the
synchronization counter.

44 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

2. Synchronous start: Start the schedule table at absolute value zero of the
synchronization counter only after a synchronization count has been provided.
This may mean waiting for first synchronization indefinitely.

Asynchronous start is provided by the existing absolute and relative schedule table
start services. Both of these services set the point at which the initial expiry point is
processed with respect to the driver counter not the synchronization counter. This
allows the schedule table to start running before the value of the synchronization
counter is known.

OS434: An explicitly synchronized schedule table started at an absolute or relative
counter value shall have state “running” when the service call returns.

Synchronous start requires an additional service that starts the schedule table only
after the OS is told the value of the synchronization counter.

OS201:The Operating system shall provide a service to start an explicitly
synchronized schedule table. The Initial Expiry Point will be processed after (Duration
– Value) + Initial Offset ticks of the driver counter have elapsed where Value is the
absolute value of the synchronization count provided to the schedule table.

OS435: An explicitly synchronized schedule table started synchronously shall have
state “waiting” when the service call returns.

7.4.2.2.2 Providing a Synchronization Count

The OS must be told the value of the synchronization counter. Since the schedule
table duration is equal to the modulus of the synchronization counter, the OS can use
this to determine the drift between the current count value on the schedule table time
and the synchronization count and decide whether (or not) any action to achieve
synchronization is required.

OS199: The Operating System shall provide a service to provide the schedule table
with a synchronization count and start synchronization.

7.4.2.2.3 Specifying Synchronization Bounds

A schedule table defaults to denying adjustment at all expiry points. Adjustment is
allowed only when explicitly configured. The range of adjustment that the OS can
make at an adjustable expiry point is controlled by specifying:

• OsScheduleTableMaxRetard : the maximum value that can be subtracted
from the expiry offset

• OsScheduleTableMaxAdvance: the maximum value that can be added to the
expiry point offset

45 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

The following figure illustrates the behaviour of OsScheduleTableMaxRetard and
OsScheduleTableMaxAdvance:

Figure 7.7: Adjustment of Exipry Points
46 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

So called “hard” and “smooth” synchronization from OSEKtime [13] are supported by
this single unified concept in AUTOSAR OS. “Smooth” synchronization may be
emulated by setting the small adjustment values on the final expiry point. “Hard”
synchronization may be emulated by setting large adjustment values on the final
expiry point.

OS415: An expiry point shall permit the configuration of a OsScheduleTableMaxRetard
that defines the maximum number of ticks that can be subtracted from expiry point
offset.

OS416: An expiry point shall permit the configuration of a
OsScheduleTableMaxAdvance that defines the maximum number of ticks that can be
added to expiry point offset.

When performing synchrioniszation it is important that the expiry points on the
schedule table are processed according to the total ordering defined by their offsets.
This means that the range of permitted values for OsScheduleTableMaxRetard and
OsScheduleTableMaxAdvance must ensure that the next expiry point is not retarded
into the past or advanced beyond more than one iteration of the schedule table.

OS436: The value of (Offset - OsScheduleTableMaxRetard) of an expiry point shall
be greater than (Offset + OsCounterMinCycle) of the pervious expiry point.

OS437: The value of (Offset+OsScheduleTableMaxAdvance) of an expiry point shall
be less than the duration of the schedule table.

Explicitly synchronized schedule tables allow the tolerance of some drift between the
schedule table value and the synchronization counter value. This tolerance can be
zero, indicating that the schedule table is not considered synchronized unless the
values are indentical..

OS438: A schedule table shall define a precision bound with a value in the range 0
to duration.

7.4.2.3 Performing Synchronization

The OS uses the synchronization count to support (re-)synchronization of a schedule
table at each expiry point by calculating an adjustment to the delay to the next expiry
point. This provides faster re-synchronization of the schedule table than doing the
action on the final expiry point.

OS206: When a new synchronization count is provided, the Operating System shall
calculate the current deviation between the explicitly synchronized scheduled table
and the synchronization count.

It is meaningless to try and synchronise an explicitly synchronized schedule table
before a synchronization count is provided.
47 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

OS417: The OS shall start to synchronise an explicitly synchronized schedule table
after a synchronization count is provided.

OS418: The OS shall set the state of an explicitly synchronized schedule table to
“running and synchronous” if the absolute value of the deviation between schedule
table value the synchronization count is less than the configured
OsScheduleTblExplicitPrecision threshold.

OS419: The OS shall set the state of an explicitly synchronized schedule table to
“running” if the absolute value of the deviation between schedule table value the
synchronization count is greater than or equal to the configured
OsScheduleTblExplicitPrecision threshold.

OS420: If the deviation is negative and the next expiry point is adjustable then the
OS shall set the delay to the next expiry point to
Delay+min(OsScheduleTableMaxAdvance,Deviation)

OS421: If the deviation is positive and the next expiry point is adjustable then the OS
shall set the delay to the next expiry point to Delay-
min(OsScheduleTableMaxRetard, Deviation)

Figure 7.8: shows explicit synchronization of a schedule table. It assumes the
following:

• EP1-3 have OsScheduleTableMaxAdvance=2
• EP1-3 have OsScheduleTableMaxRetard =1

Figure 7.8: Explict Schedule Table Synchronization

48 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

OS422: The OS shall provide a service to cancel synchronization being performed at
adjustable expiry points on a schedule table.
OS227: The Operating System shall extend the service from OS359 to query the
state of a schedule table with respect to synchronization.

7.5 Stack Monitoring Facilities

7.5.1 Background & Rationale

On processors that do not provide any memory protection hardware it may still be
necessary to provide a “best effort with available resources” scheme for detectable
classes of memory faults. Stack monitoring will identify where a task or OsIsr has
exceeded a specified stack usage at context switch time. This may mean that there is
considerable time between the system being in error and that fault being detected.
Similarly, the error may have been cleared at the point the fault is notified (the stack
may be less than the specified size when the context switch occurs).

It is not usually sufficient to simply monitor the entire stack space for the system
because it is not necessarily the Task/OsIsr that was executing that used more than
stack space than required – it could be a lower priority object that was pre-empted.

Significant debugging time can be saved by letting the OS correctly identify the
Task/Category 2 OsIsr in error.

Note that for systems using a MPU and scalability class 3 or 4 a stack overflow may
cause a memory exception before the stack monitoring is able to detect the fault.

7.5.2 Requirements

OS067: The Operating System shall offer a stack monitoring which detects possible
stack faults of Task(s)/Category 2 OsIsr(s).

OS068: If a stack fault is detected by stack monitoring AND the configured scalability
class is 1 or 2, the Operating System shall call the ShutdownOS() service with the
status E_OS_STACKFAULT.

OS396: If a stack fault is detected by stack monitoring AND the configured scalability
class is 3 or 4, the Operating System shall call the ProtectionHook() with the
status E_OS_STACKFAULT.

49 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

7.6 OS-Application

7.6.1 Background & Rationale

An AUTOSAR OS must be capable of supporting a collection of OS objects (Tasks,
OsIsrs, Alarms, Schedule tables, Counters, Resources) that form a cohesive
functional unit. This collection of object is termed an OS-Application.

The OS is responsible for scheduling the available processing resource between the
OS-Applications that share the processor. If OS-Application(s) are used, all Tasks,
OsIsrs, Resources, Counters, Alarms and Schedule tables must belong to an OS-
Application. Events belong to the OSApplications of the tasks that use them. All
objects which belong to the same OS-Application have access to each other. The
right to access objects from other OS-Applications may be granted during
configuration. An event is accessible if the task for which the event can be set is
accessible. Access means that these OS objects are allowed as parameters to API
services.

There are two classes of OS-Application:

(1) Trusted OS-Applications are allowed to run with monitoring or protection
features disabled at runtime. They may have unrestricted access to memory,
the OS API, and need not have their timing behaviour enforced at runtime.
They are allowed to run in privileged mode when supported by the processor.

(2) Non-Trusted OS-Applications are not allowed to run with monitoring or

protection features disabled at runtime. They have restricted access to
memory, restricted access to the OS API and have their timing behaviour
enforced at runtime. They are not allowed to run in privileged mode when
supported by the processor.

It is assumed that the OS itself is trusted.

There are services offered by the AUTOSAR OS which give the caller information
about the access rights and the membership of objects. These services are intended
to be used in case of an inter-OS-Application call for checking access rights and
arguments.

The running OS-Application is defined as the OS-Application to which the currently
running Task or OsIsr belongs. In case of a hook routine the Task or OsIsr which
caused the call of the hook routine defines the running OS-Application.

50 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Figure 7.9: UML-model of OS-Application

51 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

7.6.2 Requirements

OS445: The Operating System shall support OS-Applications which are a
composition of (at least one Task OR OsIsr) AND (zero or more Alarms, Schedule
tables, Counters or Resources) AND (zero or one hooks for startup, error and
shutdown).

OS446: The Operating System shall support the notion of trusted and not trustet OS-
Applications.

OS464: Trusted OS-Applications may offer services (“trusted services”) to other
(even non-trusted) OS-Applications.

OS016: The Operating System shall provide a service to determine the currently
running OS-Application (a unique identifier shall be allocated to each application).

OS017: The Operating System shall provide a service to determine to which OS-
Application a given Task, OsIsr, Resource, Counter, Alarm or Schedule Table
belongs.

OS256: The Operating System shall provide a service to determine which OS-
Applications are allowed to use the IDs of a Task, OsIsr, Resource, Counter, Alarm
or Schedule Table in API calls.

OS258: The Operating System shall provide a service to terminate the OS-
Application to which the calling Task/Category 2 OsIsr/application specific error hook
belongs. (This is an OS-Application level variant of the TerminateTask() service)

OS447: Terminating an OS-Application means to:

• terminate all running, ready and waiting Tasks/OsIsrs of the OS-Application
AND

• disabling all interrupts of the OS-Application AND
• stop all active alarms of the OS-Applications AND
• stop all schedule tables of the OS-Application.

OS448: OS-Applications, trusted or non-trusted, shall by default have only access
rights to objects belonging to this OS-Application. Access rights from other OS-
Applications shall be granted explicitely by configuration.

7.7 Protection Facilities

Protection is only possible for OS managed objects. This means that:

• It is not possible to provide protection during runtime of Category 1 OsIsrs,
because the operating system is not aware of any Category 1 OsIsrs being
invoked. Therefore, if any protection is required, Category 1 OsIsrs shall be

52 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

avoided. If Category 1 interrupts AND OS-Applications are used together then
all Category 1 OsIsr must belong to a trusted OS-Application.

• It is not possible to provide protection between functions called from the body

of the same Task/Category 2 OsIsr.

7.7.1 Memory Protection

7.7.1.1 Background & Rationale

Memory protection will only be possible on processors that provide hardware support
for memory protection.

The memory protection scheme is based on the (data, code and stack) sections of
the executable program.

Stack: An OS-Application comprises a number of Tasks and OsIsrs. The stack
for these objects, by definition, belongs only to that OS-Application and there is
therefore no need to share stack data between OS-Applications. The stacks of
Task(s)/Category 2 OsIsr(s) belonging to different OS-Applications need to be
protected.
The smallest unit managed by the OS is the stack of Task(s)/Category 2 OsIsr(s).
Memory protection for the stack for each Task/Category 2 OsIsr within the same
OS-Application is sometimes useful, mainly for two reasons:

(1) Provide a better (more immediate) detection of a stack overflow for the
Task/Category 2 OsIsr compared to stack monitoring.

(2) Provide protection between the constituent parts of an OS-Application (e.g.
to satisfy some safety constraints).

Data: OS-Applications can have private data sections and Tasks/OsIsrs may
have private data sections. OS-Application’s private data sections are shared by
all Tasks/OsIsrs belonging to that OS-Application.

Code: Code sections are either private to an OS-Application or can be shared
between all OS-Applications (to use shared libraries). In the case where code
protection is not used, executing incorrect code will eventually result in a memory,
timing or service violation.

7.7.1.2 Requirements

Data Sections and Stack

OS198: The Operating System shall prevent write access to its own data sections
and its own stack from non-trusted OS-Applications.

Private data of an OS-Application

53 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

OS026: The Operating System may prevent read access to an OS-Application’s data
section attempted by other non-trusted OS-Applications.

OS086: The Operating System shall permit an OS-Application read and write access
to that OS-Application’s own private data sections.

OS207: The Operating System shall prevent write access to the OS-Application’s
private data sections from other non-trusted OS-Applications.

Private Stack of Task/OsIsr

OS196: The Operating System shall permit a Task/Category 2 OsIsr read and write
access to that Task’s/Category 2 OsIsr’s own private stack.

OS208: The Operating System may prevent write access to the private stack of
Tasks/Category 2 OsIsrs of a non-trusted application from all other Tasks/OsIsrs in
the same OS-Application.

OS355: The Operating System shall prevent write access to all private stacks of
Tasks/Category 2 OsIsrs of an OS-Application from other non-trusted OS-
Applications.

Private data of a Task/OsIsr

OS087: The Operating System shall permit a Task/Category 2 OsIsr read and write
access to that Task’s/Category 2 OsIsr’s own private data sections.

OS195: The Operating System may prevent write access to the private data sections
of a Task/Category 2 OsIsr of a non-trusted application from all other Tasks/OsIsrs in
the same OS-Application.

OS356: The Operating System shall prevent write access to all private data sections
of a Task/Category 2 OsIsr of an OS-Application from other non-trusted OS-
Applications.

Code Sections

OS027: The Operating System may provide an OS-Application the ability to protect
its code sections against executing by non-trusted OS-Applications.

OS081: The Operating System shall provide the ability to provide shared library code
in sections that are executable by all OS-Applications.

Peripherals

OS209: The Operating System shall permit trusted OS-Applications read and write
access to peripherals.

54 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

OS083: The Operating System shall allow non-trusted OS-Applications to write to
their assigned peripherals only (incl. reads that have the side effect of writing to a
memory location).

Memory Access Violation

OS044: If a memory access violation is detected, the Operating System shall call the
Protection Hook with status code E_OS_PROTECTION_MEMORY.

7.7.2 Timing Protection

7.7.2.1 Background & Rationale

A timing fault in a real-time system occurs when a task or interrupt misses its
deadline at runtime.

AUTOSAR OS does not offer deadline monitoring for timing protection. Deadline
monitoring is insufficient to correctly identify the Task/OsIsr causing a timing fault in
an AUTOSAR system. When a deadline is violated this may be due to a timing fault
introduced by an unrelated Task/OsIsr that interferes/blocks for too long. The fault in
this case lies with the unrelated Task/OsIsr and this will propagate through the
system until a Task/OsIsr misses its deadline. The Task/OsIsr that misses a deadline
is therefore not necessarily the Task/OsIsr that has failed at runtime, it is simply the
earliest point that a timing fault is detected.

If action is taken based on a missed deadline identified with deadline monitoring this
would potentially use false evidence of error to terminate a correct OS-Application in
favour of allowing an incorrect OS-Application to continue running. The problem is
best illustrated by example. Consider a system with the following configuration:

TaskID Priority Execution Time Deadline (=Period)
A High 1 5
B Medium 3 10
C Low 5 15

Assuming that all tasks are ready to run at time zero, the following execution trace
would be expected and all tasks would meet their respective deadlines.

55 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

.

Figure 7.10: Example execution trace

Now consider the case when tasks A and B behave incorrectly. The figure below
shows both task A and task B executing for longer than specified and task B arriving
2 ticks earlier than specified. Both tasks A and B meet their deadlines. Task C
however, behaves correctly but it fails to meet its deadline because of the incorrect
execution of Tasks A and B. This is fault propagation – a fault in an unrelated part of
the system is causing a correctly functionality part of the system to fail.

Figure 7.11: Insufficiency of Deadline Monitoring

Whether a task or OsIsr meets its deadline in a fixed priority preemptive operating
system like AUTOSAR OS is determined by the following factors:

(1) the execution time of Task/OsIsrs in the system

56 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

(2) the blocking time that Task/OsIsrs suffers from lower priority Tasks/OsIsrs
locking shared resources or disabling interrupts

(3) the interarrival rate of Task/OsIsrs in the system

For safe and accurate timing protection it is necessary for the operating system to
control these factors at runtime to ensure that Tasks/OsIsrs can meet their respective
deadlines.

AUTOSAR OS prevents timing errors from (1) by using execution time protection to
guarantee a statically configured upper bound, called the Execution Budget, on the
execution time of:

• Tasks
• Category 2 OsIsrs

AUTOSAR OS prevents timing errors from (2) by using locking time protection to
guarantee a statically configured upper bound, called the Lock Budget, on the time
that:

• Resources are held by Tasks/Category 2 OsIsrs
• OS interrupts are suspended by Tasks/Category 2 OsIsrs
• ALL interrupts are suspended/disabled by Tasks/Category 2 OsIsrs

AUTOSAR OS prevents timing errors from (3) by using inter-arrival time protection to
guarantee a statically configured lower bounds, called the Time Frame, on the time
between:

• A task being permitted to transition into the READY state due to:
o Activation (the transition from the SUSPENDED to the READY state)
o Release (the transition from the WAITING to the READY state)

• A Category 2 OsIsr arriving
An arrival occurs when the Category 2 OsIsr is recognized by the OS

Inter-arrival time protection for basic tasks controls the time between successive
activations, irrespective of whether activations are queued or not. In the case of
queued activations, activating a basic task which is in the READY or RUNNING state is
a new activation because it represents the activation of a new instance of the task.
Inter-arrival time protection therefore interacts with queued activation to control the
rate at which the queue is filled.

Inter-arrival time protection for extended tasks controls the time between successive
activations and releases. When a task is in the WAITING state and multiple events are
set with a single call to SetEvent() this represents a single release. When a task
waits for one or more events which are already set this represents a notional
Wait/Reklease/Start transition and therefore is considered as a new release.

The following figure shows how execution time protection and inter-arrival time
protection interact with the task state transition model for AUTOSAR OS.

57 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Notes:

1. Inter-arrival time enforcement on Category 2 OsIsrs can be used to protect an
ECU from a “babbling idiot” source of interrupts (e.g. a CAN controller taking
an interrupt each time a frame is received from another ECU on the network)
and provides the type of protection given by the OSEKtime Interrupt re-enable
schedule event [13].

2. Timing protection only applies to Tasks or Catgeory 2 OsIsrs. There is no
protection for Category 1 OsIsrs

3. Timing protection does not apply before the OS is started.
4. In the case of trusted OS-Applications it is essential that all timing information

is correct, otherwise the system may fail at run-time. For a non-trusted OS-
Application, timing protection can be used to enforce timing boundaries
between executable objects.

7.7.2.2 Requirements

OS028: In a non-trusted OS-Application, the Operating System shall apply timing
protection to every Task/Category 2 OsIsr of this non-trusted OS-Application.

OS089: In a trusted OS-Application, the Operating System shall offer the ability to
apply timing protection to Tasks/Category 2 OsIsrs of this OS-Application.

OS397: If no OS-Application is configured, the Operating System shall be able to
apply timing protection to Tasks/Category 2 OsIsrs.

Timing Protection: Tasks

OS064: If a task’s OsTaskExecutionBudget is reached then the Operating System
shall call the ProtectionHook() with E_OS_PROTECTION_TIME.

58 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

OS473: The Operating System shall reset a task’s OsTaskExecutionBudget on a
transition to the SUSPENDED or WAITING states.

OS465: The Operating System shall limit the inter-arrival time of tasks to one per
OsTaskTimeFrame.

OS469: The Operating System shall start an OsTaskTimeFrame when a task is
activated successfully.

OS472: The Operating System shall start an OsTaskTimeFrame when a task is
released successfully.

OS466: If an attempt is made to activate a task before the end of an
OsTaskTimeFrame then the Operating System shall not perform the activation AND
shall call the ProtectionHook() with E_OS_PROTECTION_ARRIVAL.

OS467: If an attempt is made to release a task before the end of an
OsTaskTimeFrame then the Operating System shall not perform the release AND
shall call the ProtectionHook() with E_OS_PROTECTION_ARRIVAL.

Timing Protection: OsIsrs

OS210: If a Category 2 OsIsr’s OsIsrExecutionBudget is reached then the Operating
System shall call the ProtectionHook() with E_OS_PROTECTION_TIME.
OS474: The Operating System shall rest an OsIsr’s OsIsrExecutionBudget when the
OsIsr returns control to the Operating terminates.

OS470: The Operating System shall limit the inter-arrival time of Category 2 OsIsrs to
one per OsIsrTimeFrame.

OS471: The Operating System shall measure the start of an OsIsrTimeFrame from
the point at which it recognises the interrupt (i.e. in the Operating System interrupt
wrapper).

OS048: If Category 2 interrupt occurs before the end of the OsIsrTimeFrame then the
Operating System shall not execute the user provided OsIsr AND shall call the
ProtectionHook() with E_OS_PROTECTION_ARRIVAL.

Timing Protection: Resource Locking and Interrupt Disabling

OS033: If a Task/Category 2 OsIsr holds an OSEK Resource and exceeds the
Os[Task|Isr]ResourceLockBudget, the Operating System shall call the
ProtectionHook() with E_OS_PROTECTION_LOCKED.

OS037: If a Task/Category 2 OsIsr disables interrupts (via
Suspend/Disable|All/OS|Interrupts()) and exceeds the configured
Os[Task|Isr][All|OS]InterruptLockBudget, the Operating System shall call the
ProtectionHook() with E_OS_PROTECTION_LOCKED.
59 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

7.7.2.3 Implementation Notes

Execution time enforcement requires hardware support, e.g. a timing enforcement
interrupt. If an interrupt is used to implement the time enforcement, the priority of this
interrupt shall be high enough to “interrupt” the supervised tasks or OsIsrs.

7.7.3 Service Protection

Background & Rationale

As OS-Applications may interact with the OS through services, it is essential that the
service calls will not corrupt the OS itself. Service Protection guards against such
corruption at runtime.

There are a number of cases to consider with Service Protection: An OS-Application
makes an API call

(1) with an invalid handle or out of range value.

(2) in the wrong context, e.g. calling ActivateTask() in the StartupHook().

(3) or fails to make an API call that results in the OSEK OS being left in an
undefined state, e.g. it terminates without a ReleaseResource() call

(4) that impacts on the behaviour of every other OS-Application in the system,
e.g. ShutdownOS()

(5) to manipulate OS objects that belong to another OS-Application (to which it
does not have the necessary permissions), e.g. an OS-Application tries to
execute ActivateTask() on a task it does not own.

The OSEK OS already provides some service protection through the status codes
returned from service calls and this will provide the basis for service protection. This
means that service protection will only apply for the extended status of OSEK OS.

However, OSEK OS does not cover all the cases outlined above. The following
sections describe – besides the mandatory extended status – the additional
protection requirements to be applied in each of these cases.

7.7.3.1 Invalid Object Parameter or Out of Range Value

7.7.3.1.1 Background & Rationale

The current OSEK OS’ service calls already return E_OS_ID on invalid objects (i.e.
objects not defined in the OIL file) and E_OS_VALUE for out of range values (e.g.
setting an alarm cycle time less than OsCounterMinCycle).

60 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

7.7.3.1.2 Requirements

OS051: If an invalid address (address is not writable by this OS-Application) is
passed as an out-parameter to an OS service, the Operating System shall return the
status code E_OS_ILLEGAL_ADDRESS.

7.7.3.2 Service Calls Made from Wrong Context

7.7.3.2.1 Background & Rationale

The current OSEK OS defines the valid calling context for service calls ([12], Fig. 12-
1), however protects against only a small set of these invalid calls, e.g. calling
TerminateTask() from a Category 2 OsIsr.

Service Ta
sk

C
at

1
O

sI
sr

C
at

2
O

sI
sr

Er
ro

r H
oo

k

Pr
eT

as
k

H
oo

k

Po
st

Ta
sk

 H
oo

k

St
ar

tu
p

H
oo

k

Sh
ut

do
w

n
H

oo
k

A
la

rm
 C

al
lb

ac
k

Pr
ot

ec
tio

n
H

oo
k

ActivateTask
TerminateTask C
ChainTask C
Schedule C
GetTaskID
GetTaskState
DisableAllInterrupts
EnableAllInterrupts
SuspendAllInterrupts
ResumeAllInterrupts
SuspendOSInterrupts
ResumeOSInterrupts
GetResource
ReleaseResource
SetEvent
ClearEvent C
GetEvent
WaitEvent C
GetAlarmBase
GetAlarm
SetRelAlarm
SetAbsAlarm
CancelAlarm
GetActiveApplicationMode
StartOS
ShutdownOS
GetApplicationID
GetISRID
CallTrustedFunction

61 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Pr
ot

ec
tio

n
H

oo
k

Sh
ut

do
w

n
H

oo
k

A
la

rm
 C

al
lb

ac
k

Po
st

Ta
sk

 H
oo

k

Pr
eT

as
k

H
oo

k

St
ar

tu
p

H
oo

k

Er
ro

r H
oo

k

C
at

1
O

sI
sr

C
at

2
O

sI
sr

Ta
sk

Service
CheckISRMemoryAccess
CheckTaskMemoryAccess
CheckObjectAccess
CheckObjectOwnership
StartScheduleTableRel
StartScheduleTableAbs
StopScheduleTable
NextScheduleTable
StartScheduleTableSynchron
SyncScheduleTable
GetScheduleTableStatus
SetScheduleTableAsync
IncrementCounter
GetCounterValue
GetElapsedCounterValue
TerminateApplication 1

Tab. 1: Allowed Calling Context for OS Service Calls

In the table above “C” indicates that validity is only “Checked in Extended status by
E_OS_CALLEVEL”.

7.7.3.2.2 Requirements

OS088: If an OS-Application makes a service call from the wrong context AND is
currently not inside a Category 1 OsIsr the Operating System shall not perform the
requested action (the service call shall have no effect), and return E_OS_CALLEVEL or
the “invalid value” of the service.

7.7.3.3 Services with Undefined Behaviour

7.7.3.3.1 Background & Rationale

There are a number of situations where the behaviour of OSEK OS is undefined in
extended status. This is unacceptable when protection is required as it would allow
the OS to be corrupted through its own service calls. The implementation of service
protection for the OS must therefore describe and implement a behaviour that does

62 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

1 Only in application specific ErrorHooks.

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

not jeopardise the integrity of the system or of any OS-Application which did not
cause the specific error.

7.7.3.3.2 Requirements

Tasks ends without calling a TerminateTask() or ChainTask()

OS052: If a task returns from its entry function without making a TerminateTask()
or ChainTask() call, the Operating System shall terminate the task (and call the
PostTaskHook() if configured).

OS069: If a task returns from its entry function without making a TerminateTask() or
ChainTask() call AND the error hook is configured, the Operating System shall call
the ErrorHook() (this is done regardless of whether the task causes other errors,
e.g. E_OS_RESOURCE) with status E_OS_MISSINGEND before the task leaves the
RUNNING state.

OS070: If a task returns from the entry function without making a TerminateTask()
or ChainTask() call and still holds OSEK Resources, the Operating System shall
release them.

OS239: If a task returns from the entry function without making a TerminateTask()
or ChainTask() call and interrupts are still disabled, the Operating System shall
enable them.

Category 2 OsIsr ends with locked interrupts or allocated resources

OS368: If a Category 2 OsIsr calls DisableAllInterupts() /
SuspendAllInterrupts() / SuspendOSInterrupts() and ends (returns) without
calling the corresponding EnableAllInterrupts() / ResumeAllInterrupts() /
ResumeOSInterrupts(), the Operating System shall perform the missing service
and shall call the ErrorHook() (if configured) with the status E_OS_DISABLEDINT.

OS369: If a Category 2 OsIsr calls GetResource() and ends (returns) without calling
the corresponding ReleaseResource(), the Operating System shall perform the
ReleaseResource() call and shall call the ErrorHook() (if configured) with the
status E_OS_RESOURCE.

PostTaskHook called during ShutdownOS()

OS071: If the PostTaskHook() is configured, the Operating System shall not call the
hook if ShutdownOS() is called.

Tasks/OsIsrs calls
EnableAllInterrupts/ResumeAllInterrupts/ResumeOSInterrupts without a
corresponding disable

63 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

OS092: If EnableAllInterrupts() / ResumeAllInterrupts() /
ResumeOSInterrupts() are called and no corresponding DisableAllInterupts()
/ SuspendAllInterrupts() / SuspendOSInterrupts() was done before, the
Operating System shall not perform this OS service.

Tasks/OsIsrs calling OS services when
DisableAllInterupts/SuspendAllInterrupts/SuspendOSInterrupts called

OS093: If interrupts are disabled/suspended by a Task/OsIsr and the Task/OsIsr
calls any OS service (excluding the interrupt services) then the Operating System
shall ignore the service AND shall return E_OS_DISABLEDINT if the service returns a
StatusType value.

7.7.3.4 Service Restrictions for Non-Trusted OS-Applications

7.7.3.4.1 Background & Rationale

The OS service calls available are restricted according to the calling context (see
Section 7.7.3.2). In a protected system, additional constraints need to be placed to
prevent non-trusted OS-Applications executing API calls that can have a global effect
on the system. Each level of restriction is a proper subset of the previous level as
shown in the figure below.

Figure 7.12: API Restrictions

There are two defined integrity levels:

1. Trusted
2. Non-Trusted

that correspond exactly with trusted and non-trusted OS-Applications.
64 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

7.7.3.4.2 Requirements

OS054: The Operating System shall ignore calls to ShutdownOS() from non-trusted
OS-Applications.

7.7.3.5 Service Calls on Objects in Different OS-Applications

7.7.3.5.1 Background

Section 7.7.3.1 stated that E_OS_ID is returned by OSEK OS service calls when the
object is invalid. Under the protection scheme a service call can be invalid because
the caller does not have valid permissions for the object (a new meaning for multi-
OS-Application systems).
This is a similar case to an object not being accessible in OSEK OS (for example,
when a task tries to get a resource which exists in the system but has not been
configured as used by the task).

7.7.3.5.2 Requirements

OS056: If an OS-object identifier is the parameter of a system service, and no
sufficient access rights have been assigned at configuration time (Parameter
Os[...]AccessingApplication) to the calling Task/Category 2 OsIsr, the system
service shall return E_OS_ACCESS.

OS449: CheckTaskMemoryAccess and CheckIsrMemoryAccess check the memory
access. Memory access checking is possible for all OS-Applications and from all OS-
Applications and does not need granted rights (This is an exception to OS056).

OS450: CheckObjectAccess checks the access rights for OS objects. Checking
object access is possible for all OS-Applications and from all OS-Applications and
does not need granted rights (This is an exception to OS056).

7.7.4 Protecting the Hardware used by the OS

7.7.4.1 Background & Rationale

Where a processor supports privileged and non-privileged mode it is usually the case
that certain registers, and the instructions to modify those registers, are inaccessible
outside the privileged mode.

On such hardware, executing the OS in privileged mode and Tasks/OsIsrs in non-
privileged mode protects the registers fundamental to OS operation from inadvertent
corruption by the objects executing in non-privileged mode. The OS services will
need to execute in privileged mode as they will need to modify the registers that are
protected outside this mode.

65 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

The OS may use the control registers of the MPU, timer unit(s), interrupt controller,
etc. and therefore it is necessary to protect those registers against non-trusted OS-
Applications.

7.7.4.2 Requirements

OS058: If supported by hardware, the Operating System shall execute non-trusted
OS-Applications in non-privileged mode.

OS096: As far as supported by hardware, the Operating System shall not allow non-
trusted OS-Applications to access control registers managed by the Operating
System.

OS245: If an instruction exception occurs (e.g. division by zero) the operating system
shall call the protection hook with E_OS_PROTECTION_EXCEPTION.

7.7.4.3 Implementation Notes

When the OS is running non-trusted OS-Applications, the OS treatment of interrupt
entry and hook routines must be carefully managed.

Interrupt handling: Where the MCU is moded (as discussed in this section) OsIsrs
will require the OS to do extra work in the OsIsr() wrapper. OsIsrs will typically be
entered in privileged mode. If the handler is part of a non-trusted OS-Application then
the OsIsr() wrapper must make sure that a switch to non-privileged mode occurs
before the handler executes.

7.7.5 Providing »Trusted Functions«

7.7.5.1 Background & Rationale

An OS-Application may invoke a Trusted Function provided by (another) trusted OS-
Application. That may require a switch from non-privileged to privileged mode. This is
typically achieved by these operations:

(1) Each trusted OS-Application may export services which are callable from
other OS-Applications.

(2) During configuration these trusted services must be configured to be called
from a non-trusted OS-Application.

(3) The call from the non-trusted OS-Application to the trusted service is using a
mechanism (e.g. trap/software interrupt) provided by the OS. The service is
passed as an identifier that is used to determine, in the trusted environment, if
the service can be called.

(4) The OS offers services to check if a memory region is write/read/execute
accessible from an OS-Application. It also returns information if the memory
region is part of the stack space.

66 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

The system does not support »non-trusted services«.

7.7.5.2 Requirements

OS451: The Operating System shall allow to export services from trusted OS-
Applications.

OS097: The Operating System shall provide a mechanism to call a trusted function
from a (trusted or non-trusted) OS-Application.

OS100: If a called trusted function is not configured the Operating System shall call
the ErrorHook with E_OS_SERVICEID.

OS099: The Operating System shall offer OS-Applications a service to check if a
memory region is write/read/execute accessible from a Task/Category 2 OsIsr and
also return information if the memory region is part of the stack space.

7.8 Protection Error Handling

7.8.1 Background & Rationale

The OS can detect protection errors based on statically configured information on
what the constituent parts of an OS-Application can do at runtime. See Section 7.7.

Unlike monitoring, protection facilities will trap the erroneous state at the point the
error occurs, resulting in the shortest possible time between transition into an
erroneous state and detection of the fault. The different kinds of protection errors are
described in the glossary. If a protection error occurs before the operating system is
started the behaviour is not defined. If a protection error happens during shutdown,
e.g. in the application-specific shutdown hook, an endless loop between the
shutdown service and the protection hook may occur.

In the case of a protection error, the OS calls a user provided Protection Hook for the
notification of protection errors at runtime. The Protection Hook runs in the context of
the OS and must therefore be trusted code.

The OS itself needs only to detect an error and provide the ability to act. The
Protection Hook can select one out of four options the OS provides, which will be
performed after returning from the Protection Hook, depending on the return value of
the Protection Hook. The options are:

• do nothing
1. forcibly terminate the faulty Task/Category 2 OsIsr
2. forcibly terminate all tasks and OsIsrs in the faulty OS-Application

a. without restart of the OS-Application
b. with restart of the OS-Application

67 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

68 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

3. shutdown the OS.
4.

Requirements OS243 and OS244 define the order of the default reaction if no faulty
Task/Category 2 OsIsr or OS-Application can be found, e.g. in the system specific
hook routines. Also OS-Applications are only mandatory in Scalability Classes 3 and
4, therefore in other Scalability Classes OS-Applications need not be defined.

Note that forcibly terminating interrupts is handled differently in “forcibly terminate the
faulty OsIsr” and “forcibly terminate the OS-Application”. If a faulty OsIsr is forcibly
terminated, the current invocation of the OsIsr is terminated. A subsequent invocation
is allowed. If the OS-Application is forcibly terminate, then the interrupt source is also
disabled, preventing subsequent interrupts.

7.8.2 Requirements

OS211: The Operating System shall execute the ProtectionHook() with the same
permissions as the Operating System.

OS106: The Operating System shall perform one of the following reactions
depending on the return value of the ProtectionHook():

o Do nothing
o Forcibly terminate the faulty Task/Category 2 OsIsr OR
o Forcibly terminate the faulty OS-Application OR
o Forcibly terminate the faulty OS-Application and restart the OS-

Application. OR
o Call ShutdownOS().

OS107: If no ProtectionHook() is configured and a protection error occurs, the
Operating System shall call ShutdownOS().

OS475: If the reaction is to do nothing and the ProtectionHook() was not called with
E_OS_PROTECTION_ARRIVAL then the Operating System shall call ShutdownOS()

OS243: If the reaction is to forcibly terminate the Task/Category 2 OsIsr and no Task
or OsIsr can be associated with the error, the running OS-Application is forcibly
terminated by the Operating System.

OS244: If the reaction is to forcibly terminate the faulty OS-Application and no OS-
Application can be assigned, ShutdownOS()is called.

OS108: If the Operating System forcibly terminates a task, it terminates the task (no
PostTaskHook() for the task will be called), releases all allocated OSEK resources
and calls EnableAllInterrupts()/ ResumeOSInterrupts() /
ResumeAllInterrupts() if the Task called DisableAllInterrupts() /
SuspendOSInterrupts() / SuspendAllInterrupts() before without the
corresponding EnableAllInterrupts()/ ResumeOSInterrupts() /
ResumeAllInterrupts() call.

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

OS109: If the Operating System forcibly terminates an interrupt service routine, it
clears the interrupt request, aborts the interrupt service routine (The interrupt source
stays in the current state.) and releases all OSEK resources the interrupt service
routine has allocated and calls EnableAllInterrupts() / ResumeOSInterrupts() /
ResumeAllInterrupts() if the interrupt called DisableAllInterrupts() /
SuspendOSInterrupts() / SuspendAllInterrupts() before without the
corresponding EnableAllInterrupts()/ ResumeOSInterrupts() /
ResumeAllInterrupts() call.

OS110: If the Operating System forcibly terminates an OS-Application, it:

o forcibly terminates all Tasks/OsIsrs of the OS-Application AND
o cancels all alarms of the OS-Application AND
o stops schedule tables of the OS-Application AND
o disables interrupt sources of Category 2 OsIsrs belonging to the OS-

Application

OS111: When the Operating System restarts an OS-Application it activates the
configured OsRestartTask.

7.9 System Scalability

7.9.1 Background & Rationale

In order to customize the operating system to the needs of the user and to take full
advantage of the processor features the operating system can be scaled according to
the following scalability classes

Feature D
es

cr
ib

ed
 in

 S
ec

tio
n

Sc
al

ab
ili

ty
 C

la
ss

 1

Sc
al

ab
ili

ty
 C

la
ss

 2

Sc
al

ab
ili

ty
 C

la
ss

 3

Sc
al

ab
ili

ty
 C

la
ss

 4

Hardware requirements
OSEK OS (all
conformance classes)

7.1

Counter Interface 8.4.16
SWFRT Interface 8.4.17,

8.4.18

 Optional feature to support
GPT driver

Schedule Tables 7.3
Stack Monitoring 7.5
ProtectionHook 7.8
Timing Protection 7.7.2 Timer(s) with high priority

interrupt
Global Time
/Synchronization Support

7.4 Global time source

Memory Protection 7.7.1,
7.7.4

 MPU

69 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

OS-Applications 7.6, 7.10
Service Protection 7.7.3
CallTrustedFunction 7.7.5 (Non-)privileged Modes

Tab. 2: Scalability classes

Feature Sc
al

ab
ili

ty
 C

la
ss

 1

Sc
al

ab
ili

ty
 C

la
ss

 2

Sc
al

ab
ili

ty
 C

la
ss

 3

Sc
al

ab
ili

ty
 C

la
ss

 4

Minimum number of Schedule
Tables supported

2 8 2 8

Minimum number of OS-
Applications supported

0 0 2 2

Minimum number of software
Counters supported

8 8 8 8

Tab. 3: Minimum requirements of scalability classes

7.9.2 Requirements

OS240: If an implementation of a lower scalability class supports features of higher
classes then the interfaces for the features must comply with this specification.

OS241: The operating system shall support the features according to the configured
scalability class. (See Tab. 2)

OS327: The operating system shall always use extended status in Scalability Class 3
and 4.

70 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

7.10 Hook Functions

7.10.1 Background & Rationale

Hook routines as defined in OSEK OS run at the level of the OS and therefore can
only belong to the trusted environment. Furthermore, these hook routines are global
to the system (system-specific) and will probably be supplied by the ECU integrator.

In AUTOSAR however, each OS-Application may have the need to execute
application specific code e.g. initialize some hardware in its own additional
(application-specific) startup hook. These are called application specific hook
routines. In general the application specific hooks have the same properties as the
hook routines described in the OSEK OS specification. Differences are described
below.

7.10.2 Requirements

OS439: The Operating System shall offer the OSEK error macros (OSError…()) to all
configured error hooks AND there shall be two (like in OIL) global configuration
parameter to switch these macros on or off.

StartupHook

OS060: If an application-specific startup hook is configured for an OS-Application
<App>, the Operating System shall call StartupHook_<App> on startup of the OS.

OS226: The Operating System shall execute an application-specific startup hook with
the access rights of the associated OS-Application.

OS236: If both a system-specific and one (or more) application specific startup
hook(s) are configured, the Operating System shall call the system-specific startup
hook before the application-specific startup hook(s).

ShutdownHook

OS112: If an application-specific shutdown hook is configured for an OS-Application
<App>, the Operating System shall call ShutdownHook_<App> on shutdown of the
OS.

OS225: The Operating System shall execute an application-specific shutdown hook
with the access rights of the associated OS-Application.

OS237: If both a system-specific and one (or more) application specific shutdown
hook(s) are configured, the Operating System shall call the system-specific shutdown
hook after the application-specific shutdown hook(s).

Error Hook

71 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

OS246: When an error occurs AND an application-specific error hook is configured
for the faulty OS-Application <App>, the Operating System shall call that application-
specific error hook ErrorHook_<App> after the system specific error hook is called (if
configured).

OS085: The Operating System shall execute an application-specific error hook with
the access rights of the associated OS-Application.

OS367: Operating System services which do not return a StatusType shall not raise
the error hook(s).

7.11 Error classification

Instead of specifying two versions for production and development errors the
AUTOSAR OS provides a finer granularity to adjust the error handling to specific
needs, e.g. Scalability Classes, standard and extended status, switching on/off of
hook routines.

Type or error Relevance Related error code Value
Service can not be called. Production E_OS_SERVICEID Assigned by

implementation

An invalid address is
given as a parameter to a
service.

Production E_OS_ILLEGAL_ADDRESS Assigned by
implementation

Tasks terminates without
a TerminateTask() or
ChainTask() call.

Production E_OS_MISSINGEND Assigned by
implementation

 A service of the OS is
called inside an interrupt
disable/enable pair.

Production E_OS_DISABLEDINT Assigned by
implementation

A stack fault detected via
stack monitoring by the
OS

Production E_OS_STACKFAULT Assigned by
implementation

A memory access
violation occurred

Production E_OS_PROTECTION_MEMORY Assigned by
implementation

A Task exceeds its
execution time budget
A Category 2 OsIsr
exceeds its execution
time budget

Production

E_OS_PROTECTION_TIME

Assigned by
implementation

A Task/Category 2 arrives
before its timeframe has
expired

Production E_OS_PROTECTION_ARRIVAL Assigned by
implementation

A Task/Category 2 OsIsr
blocks for too long

Production E_OS_PROTECTION_LOCKED Assigned by
implementation

A trap occurred Production E_OS_PROTECTION_EXCEPTION Assigned by
implementation

72 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

8 API specification

8.1 Constants

8.1.1 Error codes of type StatusType

See Section 7.11 and [12].

8.2 Macros

OSMEMORY_IS_READABLE(<AccessType>)
OSMEMORY_IS_WRITEABLE(<AccessType>)
OSMEMORY_IS_EXECUTABLE(<AccessType>)
OSMEMORY_IS_STACKSPACE(<AccessType>)

These macros return a value not equal to zero if the memory is readable / writable /
executable or stack space.

8.3 Type definitions

8.3.1 ApplicationType (for OS-Applications)

Type: Scalar
Description: This data type identifies the OS-Application.
Constants of this
Type:

INVALID_OSAPPLICATION

8.3.2 TrustedFunctionIndexType

Type: Scalar
Description: This data type identifies a trusted function.

8.3.3 TrustedFunctionParameterRefType

Type: Pointer
Description: This data type points to a structure which holds the arguments for a call to a

trusted function.

8.3.4 AccessType

Type: Integral
Description: This type holds information how a specific memory region can be accessed.

73 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

8.3.5 ObjectAccessType

Type: Scalar
Description: This data type identifies if an OS-Application has access to an object.
Constants of this
Type:

ACCESS
NO_ACCESS

8.3.6 ObjectTypeType

Type: Scalar
Description: This data type identifies an object.
Constants of this
Type:

OBJECT_TASK
OBJECT_ISR
OBJECT_ALARM
OBJECT_RESOURCE
OBJECT_COUNTER
OBJECT_SCHEDULETABLE

8.3.7 MemoryStartAddressType

Type: Pointer
Description: This data type is a pointer which is able to point to any location in the MCU

address space.

8.3.8 MemorySizeType

Type: Scalar
Description: This data type holds the size (in bytes) of a memory region.

8.3.9 ISRType

Type: Scalar
Description: This data type identifies an interrupt service routine (OsIsr).
Constants of this
Type:

INVALID_ISR

8.3.10 ScheduleTableType

Type: Scalar
Description: This data type identifies a schedule table.

74 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

8.3.11 ScheduleTableStatusType

Type: Scalar
Description: This type describes the status of a schedule. The status can be one of the

following:
o The schedule table is not started (SCHEDULETABLE_STOPPED)
o The schedule table will be started after the end of currently running schedule

table (schedule table was used in NextScheduleTable() service)
(SCHEDULETABLE_NEXT)

o The schedule table uses implicit synchronization, has been started and is
waiting for the global time. (SCHEDULETABLE_WAITING)

o The schedule table is running, but is currently not synchronous to a global
time source (SCHEDULETABLE_RUNNING)

o The schedule table is running and is synchronous to a global time source
(SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS)

Constants of this
Type:

SCHEDULETABLE_STOPPED
SCHEDULETABLE_NEXT
SCHEDULETABLE_WAITING
SCHEDULETABLE_RUNNING
SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS

8.3.12 ScheduleTableStatusRefType

Type: Pointer
Description: This data type points to a variable of the data type ScheduleTableStatusType.

8.3.13 CounterType

Type: Scalar
Description: This data type identifies a counter.

8.3.14 ProtectionReturnType

Type: Scalar
Description: This data type identifies a value which controls further actions of the OS on return

from the protection hook.
Constants of this
Type:

PRO_IGNORE
PRO_TERMINATETASKISR
PRO_TERMINATEAPPL
PRO_TERMINATEAPPL_RESTART
PRO_SHUTDOWN

8.3.15 RestartType

Type: Scalar
Description: This data type defines the use of a Restart Task after terminating an OS-

Application.
Constants of this
Type:

RESTART
NO_RESTART

75 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

8.3.16 PhysicalTimeType

Type: Scalar
Description: This data type is used for values returned by the conversion macro (see OS393())

OS_TICKS2<Unit>_<Counter>().

8.4 Function definitions

The availability of the following services is defined in Tab. 2. The use of these
services may be restricted depending on the context they are called from. See
Tab. 1 for details.

8.4.1 GetApplicationID

Service name: GetApplicationID
Syntax: ApplicationType GetApplicationID (void)
Service ID: OSServiceId_GetApplicationID

Sync/Async: Sync
Reentrancy: Yes
Parameters (in): None
Parameters (out): None

<Identifier of running OS-Application> Or Return value:
INVALID_OSAPPLICATION

Description: OS261: GetApplicationID() shall return the application identifier to which
the executing Task/OsIsr/hook belongs.

OS262: If no OS-Application is running, GetApplicationID() shall return
INVALID_OSAPPLICATION.

Caveats: None
Configuration: Available in Scalability Classes 3 and 4

8.4.2 GetISRID

Service name: GetISRID
Syntax: ISRType GetISRID (void)
Service ID: OSServiceId_GetISRID

Sync/Async: Sync
Reentrancy: Yes
Parameters (in): None
Parameters (out): None

<Identifier of running OsIsr> Or Return value:
INVALID_ISR

Description: OS263: If called from category 2 OsIsr (or Hook routines called inside a category
2 OsIsr), GetISRID() shall return the identifier of the currently executing OsIsr.

OS264: If its caller is not a category 2 OsIsr (or Hook routines called inside a

76 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

category 2 OsIsr), GetISRID() shall return INVALID_ISR.
Caveats: None
Configuration: Available in all Scalability Classes.

8.4.3 CallTrustedFunction

Service name: CallTrustedFunction
Syntax: StatusType CallTrustedFunction

(
 TrustedFunctionIndexType FunctionIndex,
 TrustedFunctionParameterRefType FunctionParams
)

Service ID: OSServiceId_CallTrustedFunction

Sync/Async: Depends on called function. If called function is synchronous then service is
synchronous. May cause rescheduling.

Reentrancy: Yes
FunctionIndex Index of the function to be called. Parameters (in):
FunctionParams
or NULL

Pointer to the parameters for the function – specified by
the FunctionIndex - to be called. If no parameters are
provided, a NULL pointer has to be passed.

Parameters (out): None
E_OK No Error Return value:
E_OS_SERVICEID No function defined for this index

77 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Description: OS265: If <FunctionIndex> is a defined function index,
CallTrustedFunction() shall switch the processor into privileged mode AND
shall call the function <FunctionIndex> out of a list of implementation specific
trusted functions AND shall return E_OK after completion.

OS312: The called trusted function must conform to the following C prototype:
void TRUSTED_<name_of_the_trusted_service>(
TrustedFunctionIndexType,TrustedFunctionParameterRefType);
(The arguments are the same as the arguments of CallTrustedFunction).

OS266: When the function <FunctionIndex> is called, it shall get the same
permissions (access rights) as the associated trusted OS-Application.

OS364: If the trusted function is called from a Category 2 OsIsr context it shall
continue to run on the same interrupt priority and be allowed to call all system
services defined for Category 2 OsIsr (see table in chapter 7.7.3.2).

OS365: If the trusted function is called from a task context it shall continue to run
on the same priority and be allowed to call all system services defined for tasks
(see table in chapter 7.7.3.2).

OS292: If the function index <FunctionIndex> is undefined,
CallTrustedFunction() shall return E_OS_SERVICEID.

Caveats: Normally, a user will not directly call this service, but it will be part of some
standard interface, e.g. a standard I/O interface.

It is the duty of the called trusted function to check rights of passed parameters,
especially if parameters are interpreted as out parameters.

Configuration: Available in Scalability Classes 3 and 4

8.4.4 CheckISRMemoryAccess

Service name: CheckISRMemoryAccess
Syntax: AccessType CheckISRMemoryAccess

(
 ISRType ISRID,
 MemoryStartAddressType Address,
 MemorySizeType Size
)

Service ID: OSServiceId_CheckISRMemoryAccess
Sync/Async: Sync
Reentrancy: Yes

ISRID OsIsr reference
Address Start of memory area

Parameters (in):

Size Size of memory area
Parameters (out): None
Return value: Value which contains the access rights to the memory area.

78 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Description: OS267: If the OsIsr reference <ISRID> is valid, CheckISRMemoryAccess() shall
return the access rights of the OsIsr on the specified memory area.

OS313: If an access right (e.g. “read”) is not valid for the whole specified memory
area CheckISRMemoryAccess() shall yield no access regarding this right.

OS268: If the OsIsr reference <ISRID> is not valid, CheckISRMemoryAccess()
shall yield no access rights.

Caveats: None
Configuration: Available in Scalability Classes 3 and 4

8.4.5 CheckTaskMemoryAccess

Service name: CheckTaskMemoryAccess
Syntax: AccessType CheckTaskMemoryAccess

(
 TaskType TaskID,
 MemoryStartAddressType Address,
 MemorySizeType Size
)

Service ID: OSServiceId_CheckTaskMemoryAccess
Sync/Async: Sync
Reentrancy: Yes

TaskID Task reference
Address Start of memory area

Parameters (in):

Size Size of memory area
Parameters (out): None
Return value: Value which contains the access rights to the memory area.
Description: OS269: If the Task reference <TaskID> is valid, CheckTaskMemoryAccess()

shall return the access rights of the task on the specified memory area.

OS314: If an access right (e.g. “read”) is not valid for the whole specified memory
area CheckTaskMemoryAccess() shall yield no access regarding this right.

OS270: If the Task reference <TaskID> is not valid, CheckTaskMemoryAccess()
shall yield no access rights.

Caveats: None
Configuration: Available in Scalability Classes 3 and 4

8.4.6 CheckObjectAccess

Service name: CheckObjectAccess
Syntax: ObjectAccessType CheckObjectAccess

(
 ApplicationType ApplID,
 ObjectTypeType ObjectType,
 …
)

Service ID: OSServiceId_CheckObjectAccess
Sync/Async: Sync
Reentrancy: Yes
Parameters (in): ApplID OS-Application identifier

79 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

ObjectType Type of the following parameter
… The object to be examined

Parameters (out): None
ACCESS if the ApplID has access to the object Return value:
NO_ACCESS Otherwise

Description: OS271: If the OS-Application <ApplID> has access to the queried object,
CheckObjectAccess() shall return ACCESS.

OS272: If the OS-Application <ApplID> has no access to the queried object,
CheckObjectAccess() shall return NO_ACCESS.

OS423: If the object to be examined is not a valid object OR <ApplID> is invalid
OR <ObjectType> is invalid THEN the the CheckObjectAccess() shall return
NO_ACCESS.

OS318: If the object type is OBJECT_RESOURCE AND the object to be examined is
the RES_SCHEDULER CheckObjectAccess() shall always return ACCESS.

Caveats: None
Configuration: Available in Scalability Classes 3 and 4

8.4.7 CheckObjectOwnership

Service name: CheckObjectOwnership
Syntax: ApplicationType CheckObjectOwnership

(
 ObjectTypeType ObjectType,
 …
)

Service ID: OSServiceId_CheckObjectOwnership
Sync/Async: Sync
Reentrancy: Yes

ObjectType Type of the following parameter Parameters (in):

… The object to be examined
Parameters (out): None

<OS-Application> The service returns the OS-Application to which
the object ObjectType belongs or

Return value:

INVALID_OSAPPLICATION If the object does not exists the service returns:
Description: OS273: If the specified object ObjectType exists, CheckObjectOwnership()

shall return the identifier of the OS-Application to which the object belongs.

OS274: If the specified object ObjectType is invalid OR the argument of the type
(the “…”) is invalid , CheckObjectOwnership() shall return
INVALID_OSAPPLICATION.

OS319: If the object to be examined is the RES_SCHEDULER
CheckObjectOwnership() shall always return INVALID_OSAPPLICATION.

Caveats: None
Configuration: Available in Scalability Classes 3 and 4

80 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

8.4.8 StartScheduleTableRel

Service name: StartScheduleTableRel
Syntax: StatusType StartScheduleTableRel

(
 ScheduleTableType ScheduleTableID,
 TickType Offset
)

Service ID: OSServiceId_StartScheduleTableRel

Sync/Async: Sync
Reentrancy: Yes

ScheduleTableID Schedule table to be started Parameters (in):
Offset Number of ticks on the counter before the the schedule

table processing is started
Parameters (out): None

E_OK No Error
E_OS_ID (only in
EXTENDED status)

ScheduleTableID not valid.

E_OS_VALUE (only in
EXTENDED status)

Offset is greater than (OsCounterMaxAllowedValue
– InitialOffset) or is equal to 0.

Return value:

E_OS_STATE Schedule table was already started.
Description: OS275: If the schedule table <ScheduleTableID> is not valid,

StartScheduleTableRel() shall return E_OS_ID.

OS452: If the schedule table <ScheduleTableID> is implicitely synchronized
(OsScheduleTblSyncStrategy = IMPLICIT),
StartScheduleTableRel() shall return E_OS_ID.

OS332: If <Offset> is zero StartScheduleTableRel() shall return
E_OS_VALUE.

OS276: If the offset <Offset> is greater than OsCounterMaxAllowedValue of
the underlying counter minus the Initial Offset, StartScheduleTableRel()
shall return E_OS_VALUE.

OS277: If the schedule table <ScheduleTableID> is not in the state
SCHEDULETABLE_STOPPED, StartScheduleTableRel() shall return
E_OS_STATE.

OS278: If its input parameters are valid and the state of schedule table
<ScheduleTableID> is SCHEDULETABLE_STOPPED, then
StartScheduleTableRel() shall start the processing of a schedule table
<ScheduleTableID>. The Initial Expiry Point shall be processed after <Offset> +
Initial Offset ticks have elapsed on the underlying counter. The state of
<ScheduleTableID> to SCHEDULETABLE_RUNNING.

Caveats: None
Configuration: Available in all Scalability Classes.

8.4.9 StartScheduleTableAbs

Service name: StartScheduleTableAbs
Syntax: StatusType StartScheduleTableAbs

81 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

(
 ScheduleTableType ScheduleTableID,
 TickType Start
)

Service ID: OSServiceId_StartScheduleTableAbs

Sync/Async: Sync
Reentrancy: Yes

ScheduleTableID Schedule table to be started Parameters (in):
Start Absolute counter tick value at which the schedule table is

started.
Parameters (out): None

E_OK No Error
E_OS_ID (only in
EXTENDED status)

ScheduleTableID not valid.

E_OS_VALUE (only in
EXTENDED status)

Tickvalue is greater than
OsCounterMaxAllowedValue.

Return value:

E_OS_STATE Schedule table was already started.
Description: OS348: If the schedule table <ScheduleTableID> is not valid,

StartScheduleTableAbs() shall return E_OS_ID.

OS349: If the <Tickvalue> is greater than the OsCounterMaxAllowedValue of
the underlying counter, StartScheduleTableAbs() shall return E_OS_VALUE.

OS350: If the schedule table <ScheduleTableID> is not in the state
SCHEDULETABLE_STOPPED, StartScheduleTableAbs() shall return
E_OS_STATE.

OS351: If its input parameters are valid and <ScheduleTableID> is in the state
SCHEDULETABLE_STOPPED, StartScheduleTableAbs() shall start the
processing of schedule table <ScheduleTableID> at count value <Start> and shall
set the state of <ScheduleTableID> to SCHEDULETABLE_RUNNING. The Initial
Expiry Point will be processed when the underlying counter equals <Start>+Initial
Offset.

Caveats: None
Configuration: Available in all Scalability Classes.

8.4.10 StopScheduleTable

Service name: StopScheduleTable
Syntax: StatusType StopScheduleTable

(
 ScheduleTableType ScheduleTableID
)

Service ID: OSServiceId_StopScheduleTable

Sync/Async: Sync
Reentrancy: Yes
Parameters (in): ScheduleTableID Schedule table to be stopped
Parameters (out): None

E_OK No Error Return value:
E_OS_ID (only in
EXTENDED status)

ScheduleTableID not valid.

82 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

 E_OS_NOFUNC Schedule table was already stopped
Description: OS279: If the schedule table identifier <ScheduleTableID> is not valid,

StopScheduleTable() shall return E_OS_ID.

OS280: If the schedule table with identifier <ScheduleTableID> is in state
SCHEDULETABLE_STOPPED, StopScheduleTable() shall return
E_OS_NOFUNC.

OS281: If its input parameters are valid, StopScheduleTable()shall set the
state of <ScheduleTableID> to SCHEDULETABLE_STOPPED and (stop the
schedule table <ScheduleTableID> from processing any further expiry points and)
shall return E_OK.

Caveats: None
Configuration: Available in all Scalability Classes.

83 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

8.4.11 NextScheduleTable

Service name: NextScheduleTable
Syntax: StatusType NextScheduleTable

(
 ScheduleTableType ScheduleTableID_From,
 ScheduleTableType ScheduleTableID_To
)

Service ID: OSServiceId_NextScheduleTable
Sync/Async: Sync
Reentrancy: Yes

ScheduleTableID_From Schedule table Parameters (in):
ScheduleTableID_To Schedule table that provides its series of expiry

points
Parameters (out): None

E_OK No error
E_OS_ID (only in EXTENDED
status)

ScheduleTableID_From or
ScheduleTableID_To not valid.

E_OS_NOFUNC ScheduleTableID_From not started.

Return value:

E_OS_STATE (only in
EXTENDED status)

ScheduleTableID_To is started or next.

Description: OS282: If the input parameter <ScheduleTableID_From> or
<ScheduleTableID_To> is not valid, NextScheduleTable() shall return
E_OS_ID.

OS330: If schedule table <ScheduleTableID_To> is driven by different counter than
schedule table <ScheduleTableID_From> then NextScheduleTable() shall
return an error E_OS_ID.

OS283: If the schedule table <ScheduleTableID_From> is in state
SCHEDULETABLE_STOPPED OR in state SCHEDULETABLE_NEXT,
NextScheduleTable() shall leave the state of <ScheduleTable_From> and
<ScheduleTable_To> unchanged and return E_OS_NOFUNC..

OS309: If the schedule table <ScheduleTableID_To> is not in state
SCHEDULETABLE_STOPPED, NextScheduleTable() shall leave the state of
<ScheduleTable_From> and <ScheduleTable_To> unchanged and return
E_OS_STATE.

OS284: If the input parameters are valid then NextScheduleTable() shall start
the processing of schedule table <ScheduleTableID_To>
<ScheduleTableID_From>.FinalDelay ticks after the Final Expiry Point on
<ScheduleTableID_From> is processed and shall return E_OK. The Initial Expiry
Point on <ScheduleTableID_To> shall be processed at
<ScheduleTableID_From>.Final Delay + <ScheduleTable_To>.Initial Offset ticks
after the Final Expiry Point on <ScheduleTableID_From> is processed .

OS324: If the input parameters are valid AND the <ScheduleTableID_From>
already has a “next” schedule table then the <ScheduleTableID_To> shall replace
the previous “next” schedule table and the old “next” schedule table state becomes
SCHEDULETABLE_STOPPED.

OS363: The synchronization strategy of the <ScheduleTableID_To> shall come into
effect when the Operating System processes the first expiry point of
<ScheduleTableID_To>.

84 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Caveats: OS453: If the <ScheduleTableID_From> is stopped, the “next” schedule table
does not start and its state changes to SCHEDULETABLE_STOPPED.

Configuration: Available in all Scalability Classes.

8.4.12 StartScheduleTableSynchron

Service name: StartScheduleTableSynchron
Syntax: StatusType StartScheduleTableSynchron

(
 ScheduleTableType ScheduleTableID
)

Service ID: OSServiceId_StartScheduleTableSynchronhron

Sync/Async: Sync
Reentrancy: Yes
Parameters (in): ScheduleTableID Schedule table to be started

Parameters (out): None
E_OK No Error
E_OS_ID (only in
EXTENDED status)

ScheduleTableID not valid.
Return value:

E_OS_STATE Schedule table was already started.
Description: OS387: If the schedule table <ScheduleTableID> is not valid OR the schedule

table <ScheduleTableID> is not explicitly synchronized
(OsScheduleTblSyncStrategy = EXPLICIT)
StartScheduleTableSynchron() shall return E_OS_ID.

OS388: If the schedule table <ScheduleTableID> is not in the state
SCHEDULETABLE_STOPPED, the service shall return E_OS_STATE.

OS389: If <ScheduleTableID> is valid, StartScheduleTableSynchron()
shall set the state of <ScheduleTableID> to SCHEDULETABLE_WAITING and
start the processing of schedule table <ScheduleTableID> after the
synchronization count of the schedule table is set via SyncScheduleTable().
The Initial Expiry Point shall processed when (Duration-SyncValue)+InitialOffset
ticks have elapsed on the synchronization counter where:

• Duration is <ScheduleTableID>.OsScheduleTableDuration
• SyncValue is the <Value> parameter passed to the SyncScheduleTable()
• InitialOffset is the shortest expiry point offset in <ScheduleTableID>

.
Caveats: None
Configuration: Available in Scalability Classes 2 and 4.

8.4.13 SyncScheduleTable

Service name: SyncScheduleTable
Syntax: StatusType SyncScheduleTable

(
 ScheduleTableType ScheduleTableID,
 TickType Value
)

85 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004
Service ID: OSServiceId_SyncScheduleTable
Sync/Async: Sync
Reentrancy: Yes

ScheduleTableID Schedule table Parameters (in):
Value The current value of the synchronization counter.

Parameters (out): None
E_OK No errors
E_OS_ID (only in
EXTENDED status)

The ScheduleTableID was not valid or schedule
table can not be synchronized
(OsScheduleTblSyncStrategy not set or
OsScheduleTblSyncStrategy = IMPLICIT).

E_OS_VALUE (only in
EXETENDED status)

The <Value> is out of range.

Return value:

E_OS_STATE (only in
EXTENDED status)

The state of schedule table <ScheduleTableID> is
equal to SCHEDULETABLE_STOPPED.

Description: OS454: If the <ScheduleTableID> is not valid OR schedule table can not be
explicitely synchronized (OsScheduleTblSyncStrategy is not equal to
EXPLICIT) the service shall return E_OS_ID.

OS455: If the <Value> is greater than the OsScheduleTableDuration,
SyncScheduleTableAbs() shall return E_OS_VALUE.

OS456: If the state of the schedule table <ScheduleTableID> is equal to
SCHEDULETABLE_STOPPED or SCHEDULETABLE_NEXT the service shall return
E_OS_STATE.

OS457: If the parameters are valid, the service provides the operating system with
the current synchronization count for the given schedule table. (It is used to
synchronize the processing of the schedule table to the synchronization counter.)

Caveats: None
Configuration: Available in Scalability Classes 2 and 4.

8.4.14 SetScheduleTableAsync

Service name: SetScheduleTableAsync
Syntax: StatusType SetScheduleTableAsync

(
 ScheduleTableType ScheduleTableID
)

Service ID: OSServiceId_SetScheduleTableAsync

Sync/Async: Sync
Reentrancy: Yes
Parameters (in): ScheduleTableID Name of schedule for which status is requested
Parameters (out): None

E_OK No Error Return value:
E_OS_ID (only in
EXTENDED status)

Invalid ScheduleTableID

Description: OS300: If OsScheduleTblSyncStrategy of <ScheduleTableID> equals to
EXPLICIT then SetScheduleTableAsync() shall set the status of
<ScheduleTableID> to SCHEDULETABLE_RUNNING.

86 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

OS362: If SetScheduleTableAsync() is called for a running schedule table
the OS shall stop further synchronization until a SyncScheduleTable() call is
made.

OS323: If SetScheduleTableAsync() is called for a running schedule table
the OS shall continue to process expiry points on the schedule table.

OS458: If OsScheduleTblSyncStrategy of <ScheduleTableID> is not equal
to EXPLICIT then the service call shall return E_OS_ID

Caveats: None
Configuration: Available in Scalability Classes 2 and 4.

8.4.15 GetScheduleTableStatus

Service name: GetScheduleTableStatus
Syntax: StatusType GetScheduleTableStatus

(
 ScheduleTableType ScheduleTableID,
 ScheduleTableStatusRefType ScheduleStatus
)

Service ID: OSServiceId_GetScheduleTableStatus

Sync/Async: Sync
Reentrancy: Yes
Parameters (in): ScheduleTableID Schedule table for which status is requested
Parameters (out): ScheduleStatus Reference to ScheduleStatusType

E_OK No Error Return value:
E_OS_ID (only in
EXTENDED status)

Invalid ScheduleTableID

Description: OS289: If the schedule table <ScheduleTableID> is NOT started,
GetScheduleTableStatus() shall pass back SCHEDULETABLE_STOPPED via
the reference parameter <ScheduleStatus> AND shall return E_OK.

OS353: If the schedule table <ScheduleTableID> was used in a
NextScheduleTable() call AND waits for the end of the current schedule
table, GetScheduleTableStatus() shall return SCHEDULETABLE_NEXT via
the reference parameter <ScheduleStatus> AND shall return E_OK.

OS354: If the schedule table <ScheduleTableID> is configured with explicit
synchronization AND no synchronization count was provided to the Operating
System, GetScheduleTableStatus() shall return
SCHEDULETABLE_WAITING via the reference parameter <ScheduleStatus> AND
shall return E_OK.

OS290: If the schedule table <ScheduleTableID> is started AND synchronous,
GetScheduleTableStatus() shall pass back
SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS via the reference parameter
<ScheduleStatus> AND shall return E_OK.

OS291: If the schedule table <ScheduleTableID> is started AND NOT
synchronous (deviation is not within the precision interval OR the schedule table
has been set asynchronous), GetScheduleTableStatus() shall pass back
SCHEDULETABLE_RUNNING via the reference parameter ScheduleStatus AND
shall return E_OK.

87 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

OS293: If the identifier <ScheduleTableID> is NOT valid,
GetScheduleTableStatus() shall return E_OS_ID.

Caveats: None
Configuration: Available in all Scalability Classes.

8.4.16 IncrementCounter

Service name: IncrementCounter
Syntax: StatusType IncrementCounter

(
 CounterType CounterID
)

Service ID: OSServiceId_IncrementCounter

Sync/Async: Sync, may cause rescheduling.
Reentrancy: Yes
Parameters (in): CounterID The Counter to be incremented
Parameters (out): None

E_OK No errors Return value:
E_OS_ID (only in
EXTENDED status)

The CounterID was not valid or counter is implemented
in hardware and can not be incremented by software.

Description: OS285: If the input parameter <CounterID> is not valid OR the counter is a
hardware counter, IncrementCounter() shall return E_OS_ID.

OS286: If its input parameter is valid, IncrementCounter() shall increment the
counter <CounterID> by one (if any alarm connected to this counter expires, the
given action, e.g. task activation, is done) and shall return E_OK.

OS321: If an error happens during the execution of an alarm action, e.g.
E_OS_LIMIT caused by a task activation, the error hook(s) are called, but the
IncrementCounter() service itself will return E_OK.

Caveats: If called from a task, rescheduling may take place.
Configuration: Available in all Scalability Classes.

8.4.17 GetCounterValue

Service name: GetCounterValue
Syntax: StatusType GetCounterValue

(
 CounterType CounterID,
 TickRefType Value
)

Service ID: OSServiceId_GetCounterValue

Sync/Async: Sync
Reentrancy: Yes
Parameters (in): CounterID The Counter which tick value should be read
Parameters (out): Value Contains the current tick value of the counter
Return value: E_OK No errors

88 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

 E_OS_ID (only in
EXTENDED status)

The <CounterID> was not valid.

Description: OS376: If the input parameter <CounterID> is not valid, the service should return
E_OS_ID.

OS377: If its input parameter is valid, GetCounterValue() shall return the
current tick value of the counter via <Value> and return E_OK.

Caveats: Note that for counters of OsCounterType = HARDWARE the real timer value (the
– possibly adjusted - hardware value, see OS384) is returned, whereas for
counters of OsCounterType = SOFTWARE the current “software” tick value is
returned.

Configuration: Available in all Scalability Classes.-

8.4.18 GetElapsedCounterValue

Service name: GetElapsedCounterValue
Syntax: StatusType GetElapsedCounterValue

(
 CounterType CounterID,
 TickRefType Value,
 TickRefType ElapsedValue
)

Service ID: OSServiceId_GetElapsedCounterValue

Sync/Async: Sync
Reentrancy: Yes

CounterID The Counter to be read Parameters (in):
Value The previously read tick value of the counter
Value Contains the current tick value of the counter Parameters (out):

 ElapsedValue The difference to the previous read value
E_OK No errors

E_OS_ID (only in
EXTENDED status)

The CounterID was not valid

Return value:

E_OS_VALUE (only in
EXTENDED status)

The given Value was not valid

Description: OS381: If the input parameter <CounterID> is not valid the service will return
E_OS_ID.

OS391: If the <Value> is larger than the max allowed value of the <CounterID>,
the service will return E_OS_VALUE.

OS382: If its input parameter are valid, GetElapsedCounterValue() shall
return the number of elapsed ticks since the given <Value> value via
<ElapsedValue> and shall return E_OK.

[OS460: In the <Value> parameter the current tick value of the counter is
returned.

Caveats: If the timer already passed the <Value> value a second (or multiple) time, the
result returned is wrong. The reason is that the service can not detect such a
relative overflow.

Configuration: Available in all Scalability Classes.

89 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

8.4.19 TerminateApplication

Service name: TerminateApplication
Syntax: StatusType TerminateApplication(RestartType RestartOption)
Service ID: OSServiceId_TerminateApplication

Sync/Async: Normally does not return to the caller, except called in the wrong context: sync.
Reentrancy: Yes
Parameters (in): RestartOption Either RESTART for doing a restart of the OS-Application

or NO_RESTART if OS-Application shall not be restarted.
Parameters (out): None

E_OS_CALLEVEL Called in the wrong context. Return value:
E_OS_VALUE RestartOption is neither RESTART nor NO_RESTART.

Description: OS287: If called from allowed context – see table [7.7.3.2.1] --,
TerminateApplication() shall terminate the calling OS-Application (i.e. to
kill all tasks, disable the interrupt sources of those OsIsrs which belong to the OS-
Application and free all other OS resources associated with the application).

OS288: If called from wrong context, TerminateApplication() shall return
E_OS_CALLEVEL.

OS459: If the <RestartOption> is invalid, the service shall retrun E_OS_VALUE.

OS346: If RestartOption equals RESTART, TerminateApplication() shall
activate the configured OsRestartTask of the terminated OS-Application.

Caveats: If no applications are configured the implementation shall make sure that this
service is not available.

Configuration: Available in Scalability Classes 3 and 4.

90 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

8.5 Hook functions

Hook functions are called by the operating system if specific conditions are met. They
are provided by the user. Besides the ProtectionHook below, the hooks from [14]
and/or extensions from 7.10 may be called by the OS.

8.5.1 Protection Hook

Service name: ProtectionHook
Syntax: ProtectionReturnType ProtectionHook

(
 StatusType Fatalerror
)

Service ID: Not a user service, so no ID.
Sync/Async: Sync
Reentrancy: Yes
Parameters (in): Fatalerror The error which caused the call to the

protection hook
Parameters (out): None

PRO_IGNORE

PRO_TERMINATETASKISR

PRO_TERMINATEAPPL

PRO_TERMINATEAPPL_RESTART

Return value:

PRO_SHUTDOWN

The return value defines the action the OS
shall take after the protection hook

Description: The protection hook is always called if a serious error occurs. E.g. exceeding the
worst case execution time or violating against the memory protection.
Depending on the return value the OS will either:

• forcibly terminate the Task/Category 2 OsIsr which causes the problem
OR

• forcibly terminate the OS-Application the Task/Category 2 OsIsr belong
(optional with restart) OR shutdown the system OR

• do nothing
Caveats: OS308: If an invalid value is returned the Operating System shall take the same

action as if no protection hook is configured.
Configuration: Available in Scalability Classes 2, 3 and 4.

8.5.2 Application specific StartupHook

Service name: StartupHook_<App>
Syntax: void StartupHook_<App>(void)
Service ID: Not a user service, so no ID.
Sync/Async: Sync
Reentrancy: Yes
Parameters (in): None
Parameters (out): None
Return value: None

Description: The application specific startup hook is called during the start of the OS (after the
91 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

user has started the OS via StartOS()). The hook is always called after the
standard StartupHook(). If more than one OS-Application is configured which use
startup hooks, the order of calls to the startup hooks of the different OS-
Applications is not defined.

Caveats:
Configuration: Available in Scalability Classes 3 and 4.

8.5.3 Application specific ErrorHook

Service name: ErrorHook_<App>
Syntax: void ErrorHook_<App>(StatusType Error)
Service ID: Not a user service, so no ID.
Sync/Async: Sync
Reentrancy: Yes
Parameters (in): Error The error which caused the call to the error hook
Parameters (out): None
Return value: None

Description: The application specific error hook is called whenever a Task or Category 2 OsIsr
which belongs to the OS-Application causes an error. If the general
ErrorHook() is configured, the general ErrorHook() is called before the
application specific error hook is called.

Caveats:
Configuration: Available in Scalability Classes 3 and 4.

8.5.4 Application specific ShutdownHook

Service name: ShutdownHook_<App>
Syntax: void ShutdownHook_<App>(StatusType Fatalerror)
Service ID: Not a user service, so no ID.
Sync/Async: Sync
Reentrancy: Yes
Parameters (in): Fatalerror The error which caused the action to shut down the

operating system.
Parameters (out): None
Return value: None

Description: The application specific shutdown hook is called whenever the system starts the
shut down of itself. If the general ShutdownHook() is configured, the general
ShutdownHook() is called after all application specific shutdown hook(s) are
called. If there exist more OS-Applications with an application specific shutdown
hook the order of calls to these application specific shutdown hooks is not
defined.

Caveats: Since a shutdown hook may not return to the caller it is recommended that at
least all application specific shutdown hooks return to the caller in order to allow a
execution of all shutdown hooks.

Configuration: Available in Scalability Classes 3 and 4.

92 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

9 Sequence diagrams

9.1 Sequence chart for calling trusted functions

sd Interactions

calling
OS-Appl.

<trusted
function

stub>

operating
system

prov iding
OS-Appl.

alt Check permission

[denied]

[accepted]

system call
dispatcher

<trusted function stub>

CallTrustedFunction(FunID,FunParPtr)

E_OS_SERVICEID

<trusted function>

<CheckAccess>

<Access Information>

E_OK

<return value>

Figure 9.1: System Call sequence chart

The above sequence describes a call to the CallTrustedFunction service. It starts
with a user who calls a service which requires itself a call to a trusted function. The
service then packs the argument for the trusted function into a structure and calls
CallTrustedFunction with the ID and the pointer as arguments. Afterwards the OS
checks if the access to the requested service is valid. If no access is granted
E_OS_SERVICEID is returned. Otherwise the trusted service itself is called and the
function checks the arguments for access right, etc.

93 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

9.2 Sequence chart for usage of ErrorHook

sd Interactions

alt

[condition]

OS-Appl.
<App>

operating
system

condition: <System service> is called outside an Error Hook
AND both the system-/appl,-specific Error Hook are configured

alt

[return != E_OK]

<system service> which returns
a value of type StatusType

ErrorHook (<Error>)

ErrorHook_<App> (<Error>)

StatusType value

Figure 9.2: Error Hook sequence chart

The above sequence chart shows the sequence of error hook calls in case a service
does not return with E_OK. Note that in this case the general error hook and the OS-
Application specific error hook are called.

94 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

9.3 Sequence chart for ProtectionHook

Figure 9.3: Protection Hook sequence chart

The sequence shows the flow of control if a protection error occurs. Depending on
the return values of the ProtectionHook, either the faulty Task/OsIsr is forcibly
terminated or the OS-Application is forcibly terminated or the system is shut down. If
the action is to terminate the faulty OS-Application an option is to start afterwards the
restart task, which can do a cleanup, etc.

95 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

9.4 Sequence chart for StartupHook

sd Interactions

OS-Appl. <App> operating system

Startup

Normal Operation

Initial

alt

[system-/application-specific Startup Hook are configured]

StartOS(<Mode>)

StartupHook

StartupHook_<App>

Figure 9.4: StartupHook sequence chart

The above sequence shows the flow of control during the startup of the OS. Like in
OSEK OS the user calls the StartOS() service to start the OS. During the startup the
startup hooks are called in the above order. The rest of the startup sequence is
identical to the defined behaviour of OSEK OS.

96 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

9.5 Sequence chart for ShutdownHook

The next sequence shows the behaviour in case of a shut down. The flow is the
same as in OSEK OS with the exception that the shut down hooks of the OS-
Applications are called before the general ShutdownHook is called. Note that the
specific shutdown hooks of the application are not allowed to block, they must return
to the caller.

sd Interactions

OS-Appl. <App> operating system

Shutdown

alt

[system-/application-specific Shutdown Hook are configured]

Terminate Terminate

ShutdownHook_<App>(<Error>)

ShutdownHook(<Error>)

Figure 9.5: ShutdownHook sequence chart

97 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

10 Configuration Specification

In general, this chapter defines configuration parameters and their clustering into
containers. In order to support the specification Chapter 10.1 describes
fundamentals. It also specifies a template (table) you shall use for the parameter
specification.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
Os.

Chapter 10.3 specifies published information of the module Os.

10.1 How to read this chapter

In addition to this section, it is highly recommended to read the documents:
- AUTOSAR Layered Software Architecture [1]
- AUTOSAR ECU Configuration Specification [10]

This document describes the AUTOSAR configuration methodology and the
AUTOSAR configuration metamodel in detail.

The following is only a short survey of the topic and it will not replace the ECU
Configuration Specification document.

10.1.1 Configuration and configuration parameters

Configuration parameters define the variability of the generic part(s) of an
implementation of a module. This means that only generic or configurable module
implementation can be adapted to the environment (software/hardware) in use during
system and/or ECU configuration.

The configuration of parameters can be achieved at different times during the
software process: before compile time, before link time or after build time. In the
following, the term “configuration class” (of a parameter) shall be used in order to
refer to a specific configuration point in time.

Note that not all attributes may be available in all scalability class.

Memory protection configuration is not standardized and therefore not part of this
specification.

10.1.2 Variants

Variants describe sets of configuration parameters. E.g., variant 1: only pre-compile
time configuration parameters; variant 2: mix of pre-compile- and post build time-
configuration parameters. In one variant a parameter can only be of one
configuration class.

98 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

10.1.3 Containers

Containers structure the set of configuration parameters. This means:
• all configuration parameters are kept in containers.
• (sub-) containers can reference (sub-) containers. It is possible to assign a

multiplicity to these references. The multiplicity then defines the possible
number of instances of the contained parameters.

10.1.4 Rules for paramters

Some configuration parameters are configured as floating point values and
sometimes these values must be rounded in order to be used. The following rules
define the rounding of specific parameters:

• Execution times (for the timing protection) are “round down”
• Timeframes are “round down”

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters and their containers.
The detailed meanings of the parameters describe Chapters 7 and 8.

For better readability OIL names of the 2.1 OS specification are given in curly braces
in the namefield of configuration parameters.

10.2.1 Os

Module Name Os
Module Description Configuration of the Os (Operating System) module.

Included Containers
Container Name MultiplicityScope / Dependency

OsAlarm 0..*
An OsAlarm may be used to asynchronously inform or activate
a specific task. It is possible to start alarms automatically at
system start-up depending on the application mode.

OsAppMode 1..*

OsAppMode is the object used to define OSEK OS properties
for an OSEK OS application mode. No standard attributes are
defined for AppMode. In a CPU, at least one AppMode object
has to be defined. [source: OSEK OIL Spec. 2.5] An
OsAppMode called OSDEFAULTAPPMODE must always be
there for OSEK compatilbility.

OsApplication 0..*

An AUTOSAR OS must be capable of supporting a collection
of OS objects (tasks, interrupts, alarms, hooks etc.) that form a
cohesive functional unit. This collection of objects is termed an
OS-Application. All objects which belong to the same OS-
Application have access to each other. Access means to allow
to use these objects within API services. Access by other
applications can be granted separately.

OsCounter 0..* Configuration information for the counters that belong to the
OsApplication.

99 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

OsEvent 0..* Representation of OS events in the configuration context.
Adopted from the OSEK OIL specification.

OsIsr 0..* The OsIsr container represents an OSEK interrupt service
routine.

OsOS 1
OS is the object used to define OSEK OS properties for an
OSEK application. Per CPU exactly one OS object has to be
defined.

OsResource 0..*
An OsResource object is used to co-ordinate the concurrent
access by tasks and ISRs to a shared resource, e.g. the
scheduler, any program sequence, memory or any hardware
area.

OsScheduleTable 0..*
An OsScheduleTable addresses the synchronization issue by
providing an encapsulation of a statically defined set of alarms
that cannot be modified at runtime.

OsTask 0..* This container represents an OSEK task.

10.2.2 OsAlarmSetEvent

SWS Item --
Container Name OsAlarmSetEvent{SETEVENT}
Description This container specifies the parameters to set an event
Configuration Parameters

SWS Item --
N ame OsAlarmSetEventRef {EVENT}
Description Reference to the event that will be set by that alarm action
Multiplicity 1
Type Reference to OsEvent

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item --
N ame OsAlarmSetEventTaskRef {TASK}
Description Reference to the task that will be activated by that event
Multiplicity 1
Type Reference to OsTask

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

No Included Containers

10.2.3 OsAlarm

SWS Item --
Container Name OsAlarm{ALARM}

Description An OsAlarm may be used to asynchronously inform or activate a specific
task. It is possible to start alarms automatically at system start-up

100 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

depending on the application mode.
Configuration Parameters

SWS Item --
Name OsAlarmAccessingApplication {ACCESSING_APPLICATION}
Description Reference to applications which have an access to this object.

0..* Multiplicity
Reference to OsApplication Type

101 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
 Scope / Dependency

SWS Item --
N ame OsAlarmCounterRef {COUNTER}

Reference to the assigned counter for that alarm Description
1 Multiplicity

Type Reference to OsCounter
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

Included Containers
Container Name MultiplicityScope / Dependency

OsAlarmAction 1 This container defines which type of notification is used when
the alarm expires.

OsAlarmAutostart 0..1
If present this container defines if an alarm is started
automatically at system start-up depending on the application
mode.

10.2.4 OsAlarmAction

SWS Item --
Choice Container Name OsAlarmAction{ACTION}

Description This container defines which type of notification is used when the alarm
expires.

Container Choices
Container Name MultiplicityScope / Dependency
OsAlarmActivateTask 0..1 This container specifies the parameters to activate a task.

OsAlarmCallback 0..1 This container specifies the parameters to call a callback OS
alarm action.

OsAlarmIncrementCounter 0..1 This container specifies the parameters to increment a
counter.

OsAlarmSetEvent 0..1 This container specifies the parameters to set an event

10.2.5 OsAlarmActivateTask

SWS Item --
Container Name OsAlarmActivateTask{ACTIVATETASK}

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Description This container specifies the parameters to activate a task.
Configuration Parameters

SWS Item --
N ame OsAlarmActivateTaskRef {TASK}
Description Reference to the task that will be activated by that alarm action
Multiplicity 1
Type Reference to OsTask

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

No Included Containers

10.2.6 OsAlarmAutostart

SWS Item --
Container Name OsAlarmAutostart{AUTOSTART}

Description If present this container defines if an alarm is started automatically at
system start-up depending on the application mode.

Configuration Parameters

SWS Item --
N ame OsAlarmAlarmTime {ALARMTIME}
Description The relative or absolute tick value when the alarm expires for the first time.

Note that for an alarm which is RELATIVE the value must be at bigger than
0.

Multiplicity 1
Type IntegerParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item --
N ame OsAlarmAutostartType
Description This specifies the type of autostart for the alarm..
Multiplicity 1
Type EnumerationParamDef

ABSOLUTE The alarm is started on startup via SetAbsAlarm(). Range
RELATIVE The alarm is started on startup via SetAbsAlarm.
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item --
N ame OsAlarmCycleTime {CYCLETIME}
Description Cycle time of a cyclic alarm in ticks. If the value is 0 than the alarm is not

cyclic.
102 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Multiplicity 1
Type IntegerParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item --
N ame OsAlarmAppModeRef {APPMODE}
Description Reference to the application modes for which the AUTOSTART shall be

performed
Multiplicity 1..*
Type Reference to OsAppMode

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

No Included Containers

10.2.7 OsAlarmCallback

SWS Item --
Container Name OsAlarmCallback{ALARMCALLBACK}
Description This container specifies the parameters to call a callback OS alarm action.
Configuration Parameters

SWS Item --
N ame OsAlarmCallbackName {ALARMCALLBACKNAME}
Description Name of the function that is called when this alarm callback is triggered.
Multiplicity 1
Type FunctionNameDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

No Included Containers

10.2.8 OsAlarmIncrementCounter

SWS Item OS302 :
Container Name OsAlarmIncrementCounter{INCREMENTCOUNTER}
Description This container specifies the parameters to increment a counter.
Configuration Parameters

SWS Item --
N ame OsAlarmIncrementCounterRef {COUNTER}

103 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Description Reference to the counter that will be incremented by that alarm action
Multiplicity 1
Type Reference to OsCounter

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

No Included Containers

10.2.9 OsApplication

SWS Item OS114 :
Container Name OsApplication{APPLICATION}

Description

An AUTOSAR OS must be capable of supporting a collection of OS
objects (tasks, interrupts, alarms, hooks etc.) that form a cohesive
functional unit. This collection of objects is termed an OS-Application. All
objects which belong to the same OS-Application have access to each
other. Access means to allow to use these objects within API services.
Access by other applications can be granted separately.

Configuration Parameters

SWS Item OS115 :
N ame OsTrusted {TRUSTED}
Description Parameter to specify if an OS-Application is trusted or not. true: OS-

Application is trusted false: OS-Application is not trusted (default)
Multiplicity 1
Type BooleanParamDef
Default value false

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.

SWS Item OS231 :
N ame OsAppAlarmRef
Description Specifies the OsAlarms that belong to the OsApplication.
Multiplicity 0..*
Type Reference to OsAlarm

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4

SWS Item OS234, OS317 :
N ame OsAppCounterRef
Description References the OsCounters that belong to the OsApplication.
Multiplicity 0..*
Type Reference to OsCounter

Pre-compile time X All Variants ConfigurationClass
Link time --

104 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

 Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.

SWS Item OS221 :
N ame OsAppIsrRef
Description references which OsIsrs belong to the OsApplication
Multiplicity 0..*
Type Reference to OsIsr

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.

SWS Item OS248, OS252 :
N ame OsAppResourceRef
Description References the OsResources that belong to the OsApplication.
Multiplicity 0..*
Type Reference to OsResource

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.

SWS Item OS230, OS249 :
N ame OsAppScheduleTableRef
Description References the OsScheduleTables that belong to the OsApplication.
Multiplicity 0..*
Type Reference to OsScheduleTable

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.

SWS Item OS116, OS250 :
N ame OsAppTaskRef
Description references which OsTasks belong to the OsApplication
Multiplicity 0..*
Type Reference to OsTask

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4

SWS Item OS120 :
N ame OsRestartTask {RESTARTTASK}
Description Optionally one task of an OS-Application may be defined as Restart Task.

Multiplicity = 1: Restart Task is activated by the Operating System if the
protection hook requests it. Multiplicity = 0: No task is automatically started
after a protection error happened.

105 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Multiplicity 0..1
Type Reference to OsTask

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.

Included Containers
Container Name MultiplicityScope / Dependency
OsApplicationHooks 1 Container to structure the OS-Application-specific hooks
OsApplicationTrustedFunctio
n 0..* Container to structure the configration parameters of trusted

functions

10.2.10 OsApplicationHooks

SWS Item --
Container Name OsApplicationHooks
Description Container to structure the OS-Application-specific hooks
Configuration Parameters

SWS Item OS213 :
N ame OsAppErrorHook {ERRORHOOK}
Description Select the OS-Application error hook. true: Hook is called false: Hook is

not called
Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.

SWS Item OS125 :
N ame OsAppShutdownHook {SHUTDOWNHOOK}
Description Select the OS-Application specific shutdown hook for the OS-Application.

true: Hook is called false: Hook is not called
Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.

SWS Item OS124 :
N ame OsAppStartupHook {STARTUPHOOK}
Description Select the OS-Application specific startup hook for the OS-Application.

true: Hook is called false: Hook is not called
Multiplicity 1
Type BooleanParamDef
106 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.

No Included Containers

10.2.11 OsApplicationTrustedFunction

SWS Item --
Container Name OsApplicationTrustedFunction
Description Container to structure the configration parameters of trusted functions
Configuration Parameters

SWS Item OS254 :
N ame OsTrustedFunctionName
Description Trusted function (as part of a trusted OS-Application) available to other

OS-Applications. This also supersedes the OSEK OIL attribute TRUSTED
in APPLICATION because the optionality of this parameter is describing
that already.

Multiplicity 1
Type FunctionNameDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4 and in trusted OS-
Applications.

No Included Containers

10.2.12 OsAppMode

SWS Item --
Container Name OsAppMode{--}

Description

OsAppMode is the object used to define OSEK OS properties for an OSEK
OS application mode.
No standard attributes are defined for AppMode.
In a CPU, at least one AppMode object has to be defined.
[source: OSEK OIL Spec. 2.5]
An OsAppMode called OSDEFAULTAPPMODE must always be there for
OSEK compatilbility.

Configuration Parameters

SWS Item --
N ame OsAlarmRef {--}
Description Optional References to autostarted OSAlarms.
Multiplicity 0..*
Type Reference to OsAlarm

107 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item --
N ame OsScheduleTableRef {--}
Description Optional References to autostarted OS Schedule Tables.
Multiplicity 0..*
Type Reference to OsScheduleTable

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item --
N ame OsTaskRef {--}
Description Optional References to autosarted Os Tasks.
Multiplicity 0..*
Type Reference to OsTask

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

No Included Containers

10.2.13 OsCounter

SWS Item --
Container Name OsCounter{COUNTER}
Description Configuration information for the counters that belong to the OsApplication.
Configuration Parameters

SWS Item --
N ame OsCounterMaxAllowedValue {MAXALLOWEDVALUE}
Description Maximum possible allowed value of the system counter in ticks.
Multiplicity 1
Type IntegerParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item --
N ame OsCounterMinCycle {MINCYCLE}
Description The MINCYCLE attribute specifies the minimum allowed number of

counter ticks for a cyclic alarm linked to the counter.
Multiplicity 1
Type IntegerParamDef
Default value --

108 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item --
N ame OsCounterTicksPerBase {TICKSPERBASE}
Description The TICKSPERBASE attribute specifies the number of ticks required to

reach a counterspecific unit. The interpretation is implementation-specific.
Multiplicity 1
Type IntegerParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item OS255 :
N ame OsCounterType {TYPE}
Description This parameter contains the natural type or unit of the counter.
Multiplicity 1
Type EnumerationParamDef

HARDWARE This counter is driven by some hardware e.g. a
hardware timer unit.

Range

SOFTWARE The counter is driven by some software which calls the
IncrementCounter service.

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

SWS Item --
N ame OsSecondsPerTick
Description Time of one hardware tick in seconds.
Multiplicity 0..1
Type FloatParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

SWS Item --
N ame OsCounterAccessingApplication {ACCESSING_APPLICATION}
Description Reference to applications which have an access to this object.
Multiplicity 0..*
Type Reference to OsApplication

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

Included Containers

109 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Container Name MultiplicityScope / Dependency

OsDriver 0..1

This Container contains the information who will drive the
counter. This configuration is only valid if the counter has
OsCounterType set to HARDWARE. If the container does not
exist (multiplicity=0) the timer is managed by the OS internally
(OSINTERNAL). If the container exists the OS can use the
GPT interface to manage the timer. The user have to supply
the GPT channel. If the counter is driven by some other
(external to the OS) source (like a TPU for example) this must
be described as a vendor specific extension.

OsTimeConstant 0..*

Allows the user to define constants which can be e.g. used to
compare time values with timer tick values. A time value will be
converted to a timer tick value during generation and can later
on accessed via the OsConstName. The conversation is done
by rounding time values to the nearest fitting tick value.

10.2.14 OsDriver

SWS Item OS371 :
Container Name OsDriver{DRIVER}

Description

This Container contains the information who will drive the counter. This
configuration is only valid if the counter has OsCounterType set to
HARDWARE. If the container does not exist (multiplicity=0) the timer is
managed by the OS internally (OSINTERNAL). If the container exists the
OS can use the GPT interface to manage the timer. The user have to
supply the GPT channel. If the counter is driven by some other (external to
the OS) source (like a TPU for example) this must be described as a
vendor specific extension.

Configuration Parameters

SWS Item --
N ame OsGptChannelRef {GPTCHANNELNAME}
Description Reference to the GPT channel.
Multiplicity 0..1
Type Reference to GptChannelConfiguration

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

No Included Containers

10.2.15 OsEvent

SWS Item --
Container Name OsEvent{EVENT}

Description Representation of OS events in the configuration context. Adopted from
the OSEK OIL specification.

Configuration Parameters

SWS Item --
N ame OsEventMask {MASK}
Description If event mask would be set to AUTO in OIL, this parameter should be
110 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

omitted here.
Multiplicity 0..1
Type IntegerParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

No Included Containers

10.2.16 OsHooks

SWS Item --
Container Name OsHooks
Description Container to structure all hooks belonging to the OS
Configuration Parameters

SWS Item --
N ame OsErrorHook {ERRORHOOK}
Description Error hook as defined by OSEK true: Hook is called false: Hook is not

called
Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item --
N ame OsPostTaskHook {POSTTASKHOOK}
Description Post-task hook as defined by OSEK true: Hook is called false: Hook is not

called
Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item --
N ame OsPreTaskHook {PRETASKHOOK}
Description Pre-task hook as defined by OSEK true: Hook is called false: Hook is not

called
Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
111 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Scope / Dependency

SWS Item OS214 :
N ame OsProtectionHook {PROTECTIONHOOK}
Description Switch to enable/disable the call to the (user supplied) protection hook.

true: Protection hook is called on protection error false: Protection hook is
not called

Multiplicity 0..1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 2,3 and 4

SWS Item --
N ame OsShutdownHook {SHUTDOWNHOOK}
Description Shutdown hook as defined by OSEK true: Hook is called false: Hook is not

called
Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item --
N ame OsStartupHook {STARTUPHOOK}
Description Startup hook as defined by OSEK true: Hook is called false: Hook is not

called
Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

No Included Containers

10.2.17 OsIsr

SWS Item --
Container Name OsIsr{ISR}
Description The OsIsr container represents an OSEK interrupt service routine.
Configuration Parameters

SWS Item --
N ame OsIsrCategory {CATEGORY}
Description This attribute specifies the category of this ISR.
112 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Multiplicity 1
Type EnumerationParamDef

CATEGORY_1 Interrupt is of category 1 Range
CATEGORY_2 Interrupt is of category 2
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item --
N ame OsIsrResourceRef {RESOURCE}
Description This reference defines the resources accessed by this ISR.
Multiplicity 0..*
Type Reference to OsResource

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

Included Containers
Container Name MultiplicityScope / Dependency

OsIsrTimingProtection 0..1
This container contains all parameters which are related to
timing protection If the container exists, the timing protection is
used for this interrupt. If the container does not exist, the
interrupt is not supervised regarding timing violations.

10.2.18 OsIsrResourceLock

SWS Item OS229 :
Container Name OsIsrResourceLock{LOCKINGTIME}
Description This parameter contains a list of times the interrupt uses resources.
Configuration Parameters

SWS Item OS229 :
N ame OsIsrResourceLockBudget {MAXRESOURCELOCKTIME}
Description This parameter contains the maximum time the interrupt is allowed to hold

the given resource (in seconds).
Multiplicity 1
Type FloatParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

SWS Item OS229 :
N ame OsIsrResourceLockResourceRef {RESOURCE}
Description Reference to the resource the locking time is depending on
Multiplicity 1
Type Reference to OsResource
ConfigurationClass Pre-compile time X All Variants

113 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Link time --
Post-build time --

Scope / Dependency scope: ECU
dependency: Required for scalability class 2 and 4

No Included Containers

10.2.19 OsIsrTimingProtection

SWS Item OS326 :
Container Name OsIsrTimingProtection{TIMING_PROTECTION}

Description

This container contains all parameters which are related to timing
protection If the container exists, the timing protection is used for this
interrupt. If the container does not exist, the interrupt is not supervised
regarding timing violations.

Configuration Parameters

SWS Item OS229 :
N ame OsIsrAllInterruptLockBudget {MAXALLINTERRUPTLOCKTIME}
Description This parameter contains the maximum time for which the ISR is allowed to

lock all interrupts (via SuspendAllInterrupts() or DisableAllInterrupts()) (in
seconds).

Multiplicity 0..1
Type FloatParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

SWS Item OS222 :
N ame OsIsrExecutionBudget {EXECUTIONTIME}
Description The parameter contains the maximum allowed execution time of the

interrupt (in seconds).
Multiplicity 0..1
Type FloatParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

SWS Item OS229 :
N ame OsIsrOsInterruptLockBudget {MAXOSINTERRUPTLOCKTIME}
Description This parameter contains the maximum time for which the ISR is allowed to

lock all Category 2 interrupts (via SuspendOSInterrupts()) (in seconds).
Multiplicity 0..1
Type FloatParamDef
Default value --

Pre-compile time X All Variants ConfigurationClass
Link time --

114 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

 Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

SWS Item OS223 :
N ame OsIsrTimeFrame {TIMEFRAME}
Description This parameter contains the minimum inter-arrival time between

successive interrupts (in seconds).
Multiplicity 0..1
Type FloatParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

Included Containers
Container Name MultiplicityScope / Dependency

OsIsrResourceLock 0..* This parameter contains a list of times the interrupt uses
resources.

10.2.20 OsOS

SWS Item --
Container Name OsOS{OS}

Description OS is the object used to define OSEK OS properties for an OSEK
application. Per CPU exactly one OS object has to be defined.

Configuration Parameters

SWS Item OS259 :
N ame OsScalabilityClass {SCALABILITYCLASS}
Description A scalability class for each System Object "OS" has to be selected. In order to

customize the operating system to the needs of the user and to take full
advantage of the processor features the operating system can be scaled
according to the scalability classes. If the scalability class is omitted this
translates to the OIL AUTO mechanism.

Multiplicity 0..1
Type EnumerationParamDef

SC1 --
SC2 --
SC3 --

Range

SC4 --
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

SWS Item OS307 :
115 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

N ame OsStackMonitoring {STACKMONITORING}
Description Select stack monitoring of Tasks/Category 2 ISRs true: Stacks are

monitored false: Stacks are not monitored
Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

SWS Item --
N ame OsStatus {STATUS}
Description The Status attribute specifies whether a system with standard or extended

status has to be used. Automatic assigment is not supported for this attribute.
Multiplicity 1
Type EnumerationParamDef

EXTENDED -- Range
STANDARD --
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item --
N ame OsUseGetServiceId {USEGETSERVICEID}
Description As defined by OSEK
Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item --
N ame OsUseParameterAccess {USEPARAMETERACCESS}
Description As defined by OSEK
Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item --
N ame OsUseResScheduler {USERESSCHEDULER}
Description The OsUseResScheduler attribute defines whether the resource

RES_SCHEDULER is used within the application.
Multiplicity 1
Type BooleanParamDef
Default value true

116 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

Included Containers
Container Name Multiplicity Scope / Dependency
OsHooks 1 Container to structure all hooks belonging to the OS

10.2.21 OsResource

SWS Item OS252 :
Container Name OsResource{RESOURCE}

Description
An OsResource object is used to co-ordinate the concurrent access by
tasks and ISRs to a shared resource, e.g. the scheduler, any program
sequence, memory or any hardware area.

Configuration Parameters

SWS Item --
N ame OsResourceProperty {RESOURCEPROPERTY}
Description This specifies the type of the resource.
Multiplicity 1
Type EnumerationParamDef

INTERNAL The resource is an internal resource.
LINKED The resource is a linked resource (a second name for

a existing resource).

Range

STANDARD The resource is a standard resource.
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item --
N ame OsResourceAccessingApplication {ACCESSING_APPLICATION}
Description Reference to applications which have an access to this object.
Multiplicity 0..*
Type Reference to OsApplication

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item --
N ame OsResourceLinkedResourceRef {LINKEDRESOURCE}
Description The link to the resource. Must be valid if OsResourceProperty is LINKED.

If OsResourceProperty is not LINKED the value is ignored.
Multiplicity 0..1
Type Reference to OsResource

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency
117 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

No Included Containers

10.2.22 OsScheduleTable

SWS Item OS141 :
Container Name OsScheduleTable{SCHEDULETABLE}

Description
An OsScheduleTable addresses the synchronization issue by providing an
encapsulation of a statically defined set of alarms that cannot be modified
at runtime.

Configuration Parameters

SWS Item --
N ame OsScheduleTableDuration
Description This parameter defines the duration (modulus) of the schedule table in

ticks, i.e. the number of ticks that occur before the schedule table wraps.
Multiplicity 1
Type IntegerParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

SWS Item OS144 :
N ame OsScheduleTableRepeating {REPEATING}
Description true: first expiry point on the schedule table shall be processed at final

expiry point delay ticks after the final expiry point is processed. false: the
schedule table processing stops when the final expiry point is processed.

Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

SWS Item --
N ame OsSchTblAccessingApplication {ACCESSING_APPLICATION}
Description Reference to applications which have an access to this object.
Multiplicity 0..*
Type Reference to OsApplication

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item OS145 :
N ame OsScheduleTableCounterRef {COUNTER}
Description This parameter contains a reference to the counter which drives the

schedule table.
Multiplicity 1

118 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Type Reference to OsCounter
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

Included Containers
Container Name MultiplicityScope / Dependency

OsScheduleTableAutostart 0..1
This parameter specifies if and how the schedule table is
started on startup of the Operating System. The options to
start a schedule table correspond to the API calls to start
schedule tables during runtime.

OsScheduleTableExpiryPoint 1..* The point on a Schedule Table at which the OS activates tasks
and/or sets events

OsScheduleTableSync 0..1 This parameter specifies the synchronization parameters of
the schedule table.

10.2.23 OsScheduleTableAutostart

SWS Item OS335 :
Container Name OsScheduleTableAutostart{AUTOSTART}

Description
This parameter specifies if and how the schedule table is started on startup
of the Operating System. The options to start a schedule table correspond
to the API calls to start schedule tables during runtime.

Configuration Parameters

SWS Item --
N ame OsScheduleTableAbsValue
Description Absolute autostart tick value when the schedule table starts. Only used if

the OsScheduleTableAutostartType is ABSOLUTE.
Multiplicity 1
Type IntegerParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

SWS Item --
N ame OsScheduleTableAutostartType
Description This specifies the type of the autostart for the schedule table.
Multiplicity 1
Type EnumerationParamDef

ABSOLUTE The schedule table is started during startup with the
StartScheduleTableAbs() service.

RELATIVE The schedule table is started during startup with the
StartScheduleTableRel() service.

Range

SYNCHRON The schedule table is started during startup with the
StartScheduleTableSynchron() service.

Pre-compile time X All Variants ConfigurationClass
Link time --

119 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

 Post-build time --
Scope / Dependency

SWS Item --
N ame OsScheduleTableRelOffset
Description Relative offset in ticks when the schedule table starts. Only used if the

OsScheduleTableAutostartType is RELATIVE.
Multiplicity 1
Type IntegerParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

SWS Item --
N ame OsScheduleTableAppModeRef
Description Reference in which application modes the schedule table should be started

during startup
Multiplicity 1..*
Type Reference to OsAppMode

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

No Included Containers

10.2.24 OsScheduleTableEventSetting

SWS Item --
Container Name OsScheduleTableEventSetting{SETEVENT}
Description Event that is triggered by that schedule table.
Configuration Parameters

SWS Item --
N ame OsScheduleTableSetEventRef {EVENT}
Description Reference to event that will be set by action
Multiplicity 1
Type Reference to OsEvent

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item --
N ame OsScheduleTableSetEventTaskRef
Description --
Multiplicity 1
Type Reference to OsTask

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
120 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Scope / Dependency

No Included Containers

10.2.25 OsScheduleTableExpiryPoint

SWS Item OS143 :
Container Name OsScheduleTableExpiryPoint{ACTION}

Description The point on a Schedule Table at which the OS activates tasks and/or sets
events

Configuration Parameters

SWS Item --
N ame OsScheduleTblExpPointOffset
Description The offset from zero (in ticks) at which the expiry point is to be processed.
Multiplicity 1
Type IntegerParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

Included Containers
Container Name Multiplicity Scope / Dependency
OsScheduleTableEventSetting 0..* Event that is triggered by that schedule table.
OsScheduleTableTaskActivation 0..* Task that is triggered by that schedule table.
OsScheduleTblAdjustableExpPoin
t 0..1 Adjustable expiry point

10.2.26 OsScheduleTableTaskActivation

SWS Item --
Container Name OsScheduleTableTaskActivation{ACTIVATETASK}
Description Task that is triggered by that schedule table.
Configuration Parameters

SWS Item --
N ame OsScheduleTableActivateTaskRef {TASK}
Description Reference to task that will be activated by action
Multiplicity 1
Type Reference to OsTask

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

No Included Containers

121 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

10.2.27 OsScheduleTblAdjustableExpPoint

SWS Item --
Container Name OsScheduleTblAdjustableExpPoint
Description Adjustable expiry point
Configuration Parameters

SWS Item --
N ame OsScheduleTableMaxAdvance
Description The maximum positive adjustment that can be made to the expiry point

offset (in ticks).
Multiplicity 1
Type IntegerParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item --
N ame OsScheduleTableMaxRetard
Description The maximum negative adjustment that can be made to the expiry point

offset (in ticks).
Multiplicity 1
Type IntegerParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

No Included Containers

10.2.28 OsScheduleTableSync

SWS Item --
Container Name OsScheduleTableSync{LOCAL_TO_GLOBAL_TIME_SYNCHRONIZATION}

Description This parameter specifies the synchronization parameters of the schedule
table.

Configuration Parameters

SWS Item --
N ame OsScheduleTblExplicitPrecision
Description This configuration is only valid if the explicit synchronisation is used.
Multiplicity 0..1
Type IntegerParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: System

122 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

SWS Item --
N ame OsScheduleTblSyncStrategy
Description AUTOSAR OS provides support for synchronisation in two ways: explicit and

implicit.
Multiplicity 1
Type EnumerationParamDef

EXPLICIT The schedule table is driven by an OS counter but
processing needs to be synchronized with a different
counter which is not an OS counter object.

IMPLICIT The counter driving the schedule table is the counter
with which synchronisation is required.

Range

NONE No support for synchronisation. (default)
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: System

No Included Containers

10.2.29 OsTask

SWS Item --
Container Name OsTask{TASK}
Description This container represents an OSEK task.
Configuration Parameters

SWS Item --
N ame OsTaskActivation {ACTIVATION}
Description This attribute defines the maximum number of queued activation requests

for the task. A value equal to "1" means that at any time only a single
activation is permitted for this task. Note that the value must be a natural
number starting at 1.

Multiplicity 1
Type IntegerParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item --
N ame OsTaskPriority {PRIORITY}
Description The priority of a task is defined by the value of this attribute. This value has

to be understood as a relative value, i.e. the values show only the relative
ordering of the tasks. OSEK OS defines the lowest priority as zero (0);
larger values correspond to higher priorities.

Multiplicity 1
Type IntegerParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --

123 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Scope / Dependency

SWS Item --
N ame OsTaskSchedule {SCHEDULE}
Description The OsTaskSchedule attribute defines the preemptability of the task. If this

attribute is set to NON, no internal resources may be assigned to this task.
Multiplicity 1
Type EnumerationParamDef

FULL Task is preemptable. Range

NON Task is not preemptable.
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item --
N ame OsTaskAccessingApplication {ACCESSING_APPLICATION}
Description Reference to applications which have an access to this object.
Multiplicity 0..*
Type Reference to OsApplication

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item --
N ame OsTaskEventRef {EVENT}
Description This reference defines the list of events the extended task may react on.
Multiplicity 0..*
Type Reference to OsEvent

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item --
N ame OsTaskResourceRef {RESOURCE}
Description This reference defines a list of resources accessed by this task.
Multiplicity 0..*
Type Reference to OsResource

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

Included Containers
Container Name MultiplicityScope / Dependency

OsTaskAutostart 0..1
This container determines whether the task is activated during
the system start-up procedure or not for some specific
application modes. If the task shall be activated during the
system start-up, this container is present and holds the

124 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

references to the application modes in which the task is auto-
started.

OsTaskTimingProtection 0..1 This parameter contains all parameters regarding timing
protection of the task.

10.2.30 OsTaskAutostart

SWS Item --
Container Name OsTaskAutostart{AUTOSTART}

Description

This container determines whether the task is activated during the system
start-up procedure or not for some specific application modes. If the task
shall be activated during the system start-up, this container is present and
holds the references to the application modes in which the task is auto-
started.

Configuration Parameters

SWS Item --
N ame OsTaskAppModeRef {APPMODE}
Description Reference to application modes in which that task is activated on startup of

the OS
Multiplicity 1..*
Type Reference to OsAppMode

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

No Included Containers

10.2.31 OsTaskResourceLock

SWS Item --
Container Name OsTaskResourceLock{RESOURCELOCK}

Description This parameter contains the worst case time between getting and
releasing a given resource (in seconds).

Configuration Parameters

SWS Item --
N ame OsTaskResourceLockBudget {RESOURCELOCKTIME}
Description This parameter contains the maximum time the task is allowed to lock the

resource (in seconds)
Multiplicity 1
Type FloatParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

SWS Item --

125 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

N ame OsTaskResourceLockResourceRef {RESOURCE}
Description Reference to the resource used by the task
Multiplicity 1
Type Reference to OsResource

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

No Included Containers

10.2.32 OsTaskTimingProtection

SWS Item OS325 :
Container Name OsTaskTimingProtection{TIMING_PROTECTION}

Description This parameter contains all parameters regarding timing protection of the
task.

Configuration Parameters

SWS Item --
N ame OsTaskAllInterruptLockBudget {MAXALLINTERRUPTLOCKTIME}
Description This parameter contains the maximum time for which the task is allowed to

lock all interrupts (via SuspendAllInterrupts() or DisableAllInterrupts()) (in
seconds).

Multiplicity 0..1
Type FloatParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

SWS Item OS185 :
N ame OsTaskExecutionBudget {EXECUTIONBUDGET}
Description This parameter contains the maximum allowed execution time of the task

(in seconds).
Multiplicity 0..1
Type FloatParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

SWS Item --
N ame OsTaskOsInterruptLockBudget {MAXOSINTERRUPTLOCKTIME}
Description This parameter contains the maximum time for which the task is allowed to

lock all Category 2 interrupts (via SuspendOSInterrupts()) (in seconds).
Multiplicity 0..1
Type FloatParamDef
126 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

SWS Item OS185 :
N ame OsTaskTimeFrame {TIMEFRAME}
Description The minimum inter-arrival time between activations and/or releases of a

task (in seconds).
Multiplicity 0..1
Type FloatParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Only available in scalability class 2 and 4

Included Containers
Container Name MultiplicityScope / Dependency

OsTaskResourceLock 0..* This parameter contains the worst case time between getting
and releasing a given resource (in seconds).

10.2.33 OsTimeConstant

SWS Item OS386 :
Container Name OsTimeConstant{TIMECONSTANTS}

Description

Allows the user to define constants which can be e.g. used to compare
time values with timer tick values. A time value will be converted to a timer
tick value during generation and can later on accessed via the
OsConstName. The conversation is done by rounding time values to the
nearest fitting tick value.

Configuration Parameters

SWS Item --
N ame OsConstName {CONSTNAME}
Description The name which is accessed by the application to get the above

OsTimeValue.
Multiplicity 1
Type StringParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

SWS Item --
N ame OsTimeValue
Description This parameter contains the value of the constant in seconds.
Multiplicity 1
Type FloatParamDef

127 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

No Included Containers

10.3 Published Information

Published information contains data defined by the implementer of the SW module
that does not change when the module is adapted (i.e. configured) to the actual
HW/SW environment. It thus contains version and manufacturer information.

The standard common published information like

vendorId (<Module>_VENDOR_ID),
moduleId (<Module>_MODULE_ID),
arMajorVersion (<Module>_AR_MAJOR_VERSION),
arMinorVersion (<Module>_ AR_MINOR_VERSION),
arPatchVersion (<Module>_ AR_PATCH_VERSION),
swMajorVersion (<Module>_SW_MAJOR_VERSION),
swMinorVersion (<Module>_ SW_MINOR_VERSION),
swPatchVersion (<Module>_ SW_PATCH_VERSION),
vendorApiInfix (<Module>_VENDOR_API_INFIX)

is provided in the BSW Module Description Template (see [11] Figure 4.1 and Figure
7.1).

Additional published parameters are listed below if applicable for this module.

128 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

11 Generation of the OS

linker
«binary»

object
file

«executable»
executable
program

linker
file

generator

(input-)
section

(output-)
section

«source»
configuration

file

1..*

1

1..*

1

generates

controls

reads

UML 1.4

operating
system

generates/configures

Figure 11.1: Generation Activities

11.1 Read in configuration

OS172: The generator shall provide the user the ability of reading the information of
a selectable configuration file.

11.2 Consistency check

The conistency check can issue warnings or errors. Warnings mean that the
generation is completed successfully, only indicating a not advisable configuration.
Errors mean that the generation is not performed.

OS173: The generator shall provide the user the ability of performing a consistency
check of the current configuration.

OS050: If service protection is required and OsStatus is not equal to EXTENDED (all
the associated error handling is provided), the consistency check shall issue an error.

OS045: If timing protection is configured together with OSEK OS Category 1
interrupts, the consistency check shall issue a warning.

129 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

OS320: If configured attributes do not match the configured scalability class (e.g.
defining an execution time budget in Tasks or Category 2 OsIsrs and selected
scalability class is 1) the consistency check shall issue a warning.

OS311: If OsScalabilityClass is SC3 or SC4 AND a Task OR Category 2 OsIsr OR
Resources OR Counters OR Alarms OR Schedule tables does not belong to exactly
one OS-Application the consistency check shall issue an error.. RES_SCHEDULER
as the only exception does not belong to any OS-Application.

OS361: If OsScalabilityClass is SC3 or SC4 AND a Category 1 OsIsr does not
belong to exactly one trusted OS-Application the consistency check shall issue an
error

OS177: If OsScalabilityClass is SC3 or SC4 AND an interrupt source that is used
by the OS is assigned to an OS-Application, the consistency check shall issue an
error.

OS303: If OsAlarmIncrementCounter is configured as action on alarm expiry AND
the alarm is driven directly or indirectly (a cyclic chain of alarm actions with
OsAlarmIncrementCounter) by that counter, the consistency check shall issue a
warning..

OS328: If OsStatus is STANDARD and OsScalabilityClass is SC3 or SC4 the
consistency check shall issue an error.

OS343: If OsScalabilityClass is SC3 or SC4 AND a task is referenced within a
schedule table object AND the OS-Application of the schedule table has no access to
the task, the consistency check shall issue an error.

OS344: If OsScalabilityClass is SC3 or SC4 AND a task is referenced within an
alarm object AND the OS-Application of the alarm has no access to the task, the
consistency check shall issue an error.

OS440: If a schedule table has OsScheduleTblSyncStrategy = IMPLICIT and the
OsCounterMaxAllowedValue+1 of the associated counter is not equal to the
duration of the schedule table then the consitency check shall issue an error.

OS441: If a GPT channel is configured as a hardware counter driver the consitency
check shall issue an error if the selected GPT channel is not configured for
continuous mode.

OS461: If OsScalabilityClass is SC2, SC3 or SC4 AND Alarm Callbacks are
configured the conistency check shall isuue an error.

130 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

11.3 Generating operating system

OS179: If the consistency check of the read-in configuration file has not run free of
errors, the generator shall not generate/configure the operating system.

OS336: The generator shall generate a relocatable memory section containing the
interrupt vector table.

OS370: The generator shall print out information about timers used internally by the
OS during generation (e.g. on console, list file).

OS393: The generator shall create conversation macros to convert counter ticks
(given as argument) into real time. The format of the macro is
OS_TICKS2<Unit>_<Counter>(ticks) whereas <Unit> is one of NS
(nanoseconds), US (microseconds), MS (milliseconds) or SEC (seconds) and
<Counter> is the name of the counter; E.g. OS_TICKS2MS_MyCounter())

131 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

12 Application Notes

12.1 Hooks

In OSEK OS, PreTask & PostTask Hooks run at the level of the OS with unrestricted
access rights and therefore must be trusted. It is strongly recommended that these
hook routines are only used during debugging and are not used in a final product.

When an OS-Application is killed the shutdown and startup hooks of the OS-
Application are not called. Cleanup of OS-Application specific data can be done in
the restart task.

All application-specific hook functions (startup, shutdown and error) must return
(blocking or endless loops are not acceptable).

12.2 Providing Trusted Functions

Address checking shall be done before data is accessed. Special care must be taken
if parameters passed by reference point to the stack space of a task or interrupt,
because this address space might no longer belong to the task or interrupt when the
address is used.

The following code fragment shows an example how a trusted function is called and
how the checks should be done.

132 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

struct parameter_struct {type1 name1, type2 name2, StatusType
return_value};

/* This service is called by the user and uses a trusted function */

StatusType system_service(
 type1 parameter1,
 type2 parameter2)
{
 /* store parameters in a structure (parameter1 and parameter2) */
 struct parameter_struct local_struct;
 local_struct.name1 = parameter1;
 local_struct.name2 = parameter2;

 /* call CallTrustedFunction with appropriate index and
 * pointer to structure */
 if(CallTrustedFunction(SYSTEM_SERVICE_INDEX, &local_struct) !=
 E_OK)
 return(FUNCTION_DOES_NOT_EXIST);
 return(local_struct.return_value);
}

/* The CallTrustedFunction() service switches to the privileged
* mode. Note that the example is only a fragment! */

StatusType CallTrustedFunction(
 TrustedFunctionIndexType ix,
 TrustedFunctionParameterRefType ref)
{
 /* check for legal service index and return error if necessary */
 if(ix > MAX_SYSTEM_SERVICE)
 return(E_OS_SERVICEID);

 /* some implementation specific magic happens: the processor is
 * set to privileged mode */
 ….

 /* indirectly call target function based on the index */
 (*(system-service_list[ix]))(ix, ref);

 /* some implementation specific magic happens: the processor is
 * set to non-privileged mode */
 ….

 return(E_OK);
}

133 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

/* This part of the system service is called by
 * CallTrustedFunction() */

void TRUSTED_system_service_part2 (TrustedFunctionIndexType a,
parameter_struct *local_struct)
{
 TaskRefType task;
 type1 parameter1;
 type2 parameter2;

 if (GetTaskID(&task) != E_OK)
 task = INVALID_TASK;

 /* get parameters out of the structure (parameter1 and
 * parameter2) */
 parameter1 = local_struct.name1;
 parameter2 = local_struct.name2;

 /* check the parameters if necessary */
 /* example is for parameter1 being an address and parameter2
 * being a size */
 /* example only for system_service called from tasks */
 if(GetISRID()!=INVALID_ISR)
 {
 /* error: not callable from ISR */
 local_struct.return_value = E_OS_ACCESS;
 }
 else if(OSMEMORY_IS_WRITEABLE(CheckTaskMemoryAccess(
 task,parameter1,parameter2)))
 {
 /* system_service_part3() is now the function as it

* would be if directly called in a non-protected
* environment */

 local_struct.return_value =
 system_service_part3(parameter1,parameter2);
 }
 else
 {
 /* error handling */
 local_struct.return_value = E_OS_ACCESS;
 }
}

Note: Since the service of CallTrustedFunction() is very generic, it is needed to
define a stub-interface which does the packing and unpacking of the arguments (as
the example show). Depending on the implementation the stub interface may be
(partly) generated by the generation tool.

12.3 Migration hints for OSEKtime OS users

All important OSEKtime OS features are supported in AUTOSAR OS and it should
be relatively easy to port applications from OSEKtime OS to AUTOSAR OS.
134 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

However, most OSEKtime OS features are implemented slightly differently and
requiring some porting effort. The following steps show how to proceed.

o Dispatcher tables can be implemented by using schedule tables provided by

AUTOSAR OS. Synchronization to a global time base can be done in a similar
way to OSEKtime by using the SyncScheduleTable() API call. A more elegant
synchronization solution is also available by driving the schedule table directly
from the global time source. However, the AUTOSAR OS implements priority
based scheduling rather than the stack based scheduling of OSEKtime.
Therefore, priorities have to be chosen for the tasks.
If a given OSEKtime dispatcher table has to be converted, all tasks can be given
the same priority as long as there are no task preemptions. If this cannot be
guaranteed, in each case where a task could be pre-empted at a dispatch point,
the pre-empting task must be allocated a strictly higher priority than the task it
pre-empts. Usually, there are few preemptions in OSEKtime systems, so the
priorities are easy to calculate – a simple monotonically increasing priority
assignment relative to the tasks position in the schedule table should suffice in
most cases. Caveat: In OSEKtime, it is theoretically possible that task A pre-
empts task B at one point in the dispatcher table and task B pre-empts task A at
another point (however, this is rarely used in practice). Such behaviour is not
directly possible in AUTOSAR OS. It can, however, be emulated if required, either
by constructing a simple state machine in the task bodies, or by adding two tasks
A' and B' using the same code as tasks A and B respectively.
o Deadline monitoring is not supported by AUTOSAR OS - instead, worst-case

execution time enforcement is provided. Schedulability analysis can be used
to calculate whether given deadlines are met in a system of periodic tasks with
given worst-case execution times.

o Reenabling of interrupts defined offline is not supported by AUTOSAR OS.
o Tasks that have precedence over interrupt service routines are not supported

by AUTOSAR OS, however, this behaviour can be easily emulated by
activating a low-priority task from an OsIsr.

o Smooth synchronization is achieved by adjusting the delay between adjacent
expiry points, generalising OSEKtime OS' approach, where the
synchronization of the local time to the global time is done during several
dispatcher rounds by extending or shortening the last ground state of the
dispatcher round.

The OSEK time specification allows dispatcher rounds to take 3 modes:

1. Synchronous
2. Asynchronous/Hard
3. Asynchronous/Smooth

Users of OSEKtime who are migrating the AUTOSAR OS can define a schedule
table that has the same range/tick resolution as their global time source (with an
accompanying AUTOSAR OS counter that has the same resolution as the global
time) and can synthesise these modes as follows:

135 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

1. Synchronous: Define OsScheduleTblSyncStrategy = IMPLICIT and start
using StartScheduleTableAbs(). Or define
OsScheduleTblSyncStrategy = EXPLICIT and start using
StartScheduleTableSynchron()

2. Asynchronous/Hard: Define OsScheduleTblSyncStrategy = EXPLICIT

and specify that the final expiry point on the schedule table has a
OsScheduleTableMaxRetard = 1 and a OsScheduleTableMaxAdvance
= OsCounterMaxAllowedValue. Start using StartScheduleTableRel().

3. Asynchronous/Smooth: Define OsScheduleTblSyncStrategy = EXPLICIT

and specify that each expiry point on the schedule table has
OsScheduleTableMaxRetard = 1 and a OsScheduleTableMaxAdvance
 < OsCounterMaxAllowedValue. Start using StartScheduleTableRel().

12.4 Software Components and OS-Applications

Trusted OS-Applications can be permitted access to IO space. As software
components can not be allowed direct access to the hardware, software components
can not be trusted OS-Applications because this would violate this protection feature.
The configuration process must ensure that this is the case.

The AUTOSAR Virtual Function Bus (VFB) specification places no restrictions on
how runnables from software components are mapped to OS tasks. However,
because the protection mechanisms in AUTOSAR OS apply only to OS managed
objects. This means that all runnables in a task:

• Are not protected from each other at runtime
• Share the same protection boundary

If runnables need to be protected they must therefore be allocated to different tasks
and those tasks protected accordingly.

A simple rule can suffice:

“When allocating runnables to tasks, only allocate runnables from the same
software component into the same task or set of tasks.”

If multiple software components from the same application are to reside on the same
processor, then, assuming protection is required between applications (or parts
thereof) on the same processor, this rule could be modified to relax the scope of
protection to the application:

“When allocating runnables to tasks, only allocate runnables from the same
application into the same task or set of tasks.”

136 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

If an OS-Application is killed and the restart task is activated it can not assume that
the startup of the OS-Application has finished. Maybe the fault happened in the
application startup hook and no task of the application was started so far.

12.5 Global Time Synchronization

The OS currently assumes that the global time synchronization is done by the user
(unless implicit synchronization is used). This allows maximum flexibility regarding
the time source. For synchronization with e.g. FlexRay some glue code may be
necessary which transfer the information from the time source to the OS.

12.6 Working with FlexRay

Schedule tables in the AUTOSAR OS may be synchronized with a global (network)
time provided by FlexRay in essentially two ways:

1. Using the FlexRay interface’s services for controlling timer interrupts related to
global time to provide a “hardware” counter tick source to drive the processing
of a schedule table (implicit synchronization)

2. Using the FlexRay interface’s service for accessing the current global time and
passing this into the OS through the SyncScheduleTable() OS service call

This section looks at the second option only.

In FlexRay time is presented as a tuple of a Cycle and a MacrotickOffset within the
cycle. Cycle is an 8-bit value and MacrotickOffset is a 16-bit value.
In AUTOSAR OS a schedule table is associated with an underlying counter that has
a notion of ticks. It is therefore possible to synchronize with either the Cycle or the
tuple of Cycle/MacrotickOffset to give the resolution of synchronization required by
the application.
If Cycle only resolution is require then an OS COUNTER object should be configured
that has a OsCounterMaxAllowedValue equal to the maximum number of Cycles. If
Cycle/MacrotickOffset is required then an OS COUNTER object should be configured
with a OsCounterMaxAllowedValue of the maximum number of Cycles multiplied by
the MacrotickOffset. This provides the OS with a time base against which a
ScheduleTable can be synchronized.

Synchronization between the OS and an external global time source is provided by
telling the OS the global time through the SyncScheduleTable() service call. This call
takes a scalar parameter of TickType so to interface this to FlexRay’s representation
of time a small conversion needs to be done. The following example assumes a
Cycle of 255 with 65535 Macroticks per Cycle. TickType is at least 24-bits wide.

#define OSTIME(x) (TickType)(x);
FrIf_GetGlobalTime(Controller, &Cycle, &Macrotick);
SyncScheduleTable(Tbl, ((OSTIME(Cycle) << 16)+(OSTIME(Macrotick))));

137 of 145 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Telling the ScheduleTable that GlobalTime can be done when the application detects
that the FlexRay controller has lost synchronization with the network (by polling the
controller sync status). The following code indicates how this can be used to force an
associated ScheduleTable into the SCHEDULETABLE_RUNNING state from the
SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS state.

Fr_SyncStateType CurrentSyncStatus;
if (FrIf_GetSyncState(Controller, &CurrentSyncStatus) == E_OK) {
 if (CurrentSyncStatus == FR_ASYNC) {
 SetScheduleTableAsync(Table);
 }
}

Of course, other actions are possible here, like stopping the ScheduleTable, as best
fits user requirements.

12.7 Migration from OIL to XML

This version of the AUTOSAR OS specification does not directly support the
configuration via OIL. The support for OIL was dropped in favour of XML because
XML is the standard configuration language in AUTOSAR and is essential if
configuration data has to be imported / exported from / to other AUTOSAR modules
or between different tools during development.

Since OIL and XML are both ASCII formats a tool vendor may offer a possibility to
import (old) OIL files and to store them as (AUTOSAR OS) XML files. Currently all
known vendors support at least the import of existing OIL configurations.

Note that for showing conformance to the OSEK OS specification, each OSEK OS
vendor must support OIL. This means that practically each AUTOSAR OS vendor will
offer some sort of import of OIL configurations – at least to show the OSEK OS
conformance.

138 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

13 AUTOSAR Service implemented by the OS

13.1 Scope of this Chapter

This chapter is an addition to the specification of the Operating System. Whereas the
other parts of the specification define the behavior and the C-interfaces of the OS
module, this chapter formally specifies the corresponding AUTOSAR Service in
terms of the SWC Template. The interfaces described here will be visible on the VFB
and are used by the RTE generator to create the glue code between the application
software (SWC) and the OS.

13.1.1 Package

The following definitions are interpreted to be in
ARPackage AUTOSAR/Services/Os

13.2 Overview

The AUTOSAR Operating System is normally not used directly by SWCs. Even the
other BSW modules which are below the RTE are using the BSW Scheduler to have
access to OS services. The BSW Scheduler of courses uses the OS to implement its
features, e.g. critical sections.
Nevertheless there is one use case, where it makes sense to allow SWCs access to
services of the OS: timer services. Since the number of timers in an ECU is limited it
make sense to share these units across several SWCs. The functionality of the timer
services of the OS which are offered to the SWCs are:

• A service to get the current value of a – hardware or software – counter
• A service which calculates the time difference between the current timer value

and a given (previouls read) timer value

13.3 Specification of the Ports and Port Interfaces

This chapter specifies the ports and port interfaces which are needed in order to
operate the timer services of the OS over the VFB. Note that there are ports on both
sides of the RTE: The SW-C description of the OS service will define the ports below
the RTE. Each SW-Component, which uses the Service, must contain “service ports”
in its own SW-C description which will be connected to the ports of the OS, so that
the RTE can be generated.

139 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

13.3.1 Data Types and Port Interface

13.3.1.1 General Approach

It is appropriate to model the requests issued from a client to the timer services by
ports using the client/server interfaces.

13.3.1.2 Data Types

This chapter describes the data types which will be used in the port interfaces for
timer service requests. In general the timer interfaces are using the following types:

• CounterType – This type is the reference to the requested Counter
• TickType – This type holds a timer value
• TickRefType – This is a reference (pointer) to a TickType

The APIs of the timer services have a return type of StatusType. This means that a
successful call returns 0 and a return value not equal 0 represents an error.

13.3.1.3 Port Interface

The operations correspond to the function calls of the OS C-API (notation in pseudo
code; must be transferred into XML).

The notation of possible error codes resulting from server calls follows the approach
in the meta-model. It is a matter of the RTE specification [9], how those error codes
will be passed via the actual API.

ClientServerInterface OsService {
 PossibleErrors {
 E_NOT_OK <> 0
 };

 // The timer services

 GetCounterValue(IN CounterType CounterID,
 OUT TickRefType Value);

 GetElapsedCounterValue(IN CounterType CounterID,
 INOUT TickType PreviousValue,
 OUT TickRefType Value
};

13.3.1.4 Ports

We end up with the following structure for the AUTOSAR Interface of the OS:

140 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004
Service Os
{
 ProvidePort OsService OsTimerService;
};

It is obvious that the existence of all these port definitions depends on the ECU.

141 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

14 Outlook on Memory Protection Configuration

As stated before, memory protection configuration is not standardized yet.
Nevertheless it seems helpful to contribute a recommendation in this chapter, how
the configuration might work.

14.1 Configuration Approach

Both, SW-Components and BSW modules, map code and variables to dedicated,
disjoined memory sections (see meta-class»ObjectFileSection« in chapter 7.3 of
»Software Component Template«, Version 2.0.1, and »module specific sections« in
chapter 8.2 of »Specification of Memory Mapping«, Version 1.0.1).

This essential precondition (avoid an inseparable conglomeration of variables in the
default section) can be used to support configuration of memory protection domains:

1. The generator can save for each OS-Application a (processor-specific)
maximum number of output sections for data in a file (to be used in the linker
file).

2. The generator can uniquely identify the address spaces of the data output

sections with symbols using the naming convention (see »memory allocation
keywords« _STOP_SEC_VAR and _START_SEC_VAR for start and stop
symbols) in the specification mentioned above.

The input data sections in the object files of an OS-Application can then be assigned
to the output sections (with potential tool support). Usually, this is one segment for
global data, and one segment for code.

To archieve portability, the user shall group all variables belonging to a private data
section (Task/OsIsr or OS-Application) in separate files.

142 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

15 Changes to Release 1

This chapter contains all major changes to the previous release. Changes made are
either based on bugzilla entries or on proposals which were presented during work
group meetings. Note that small changes or typos or reformatting are not listed.

15.1 Deleted SWS Items

SWS Item Rationale
Chapter 4.5 Deleted completely
Chapter 7 OS260 (in chapter 7.3), OS305 (in chapter 7.7)
Chapter 8 Deleted StartScheduleTable()
Chapter 11 OS174 (in chapter 11.2), OS178 (in chapter 11.3)

15.2 Replaced SWS Items

SWS Item of Release 1 replaced by

SWS Item
Rationale

Rational and
background of chapter
7.3

New rational and
background

Replaced complete description which also
contains now an example how relative/absolute
starts of schedule tables influences the
synchronization

15.3 Changed SWS Items

SWS Item Rationale
Glossary of Terms Adapted some terms to the new specification/meaning.
Chapter 6 Updated tables to reflect new API and added missing requirements

Chapter 7

Clarified and extended synchronization of schedule tables (OS206,
OS200).
Changed handling of memory protection for Task/Category 2 OsIsr private
stack/data within an OS-Application to an optional feature (OS208,
OS195).
Changed arrival rate handling:
For Tasks the model changed from a state-based to a time budget
behavior.
For Category 2 OsIsrs two APIs were introduced to allow a save
implementation.
Exclude Category 1 Interrupts from some requirements (e.g. OS088)
Restrict Scalability Class 3 and 4 to EXTENDED mode. Service protection
makes no sense in standard mode.
The interrupt locking time for Tasks/Category 2 OsIsrs is split into two
timings: One for the time a Task/Category 2 OsIsr disables all interrupts
and one time where only the Category 2 interrupts are disabled.
Changed several requirments to fit to new configuration parameters.

Chapter 8

Improved wording of constants for schedule table status type.
Added argument for TerminateApplication() to allow a restart.
Removed 3rd argument of SyncScheduleTable() (now obsolete).

143 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

Chapter 12 Updated the OIL example to new attributes.

15.4 Added SWS Items

SWS Item Rationale
Glossary of Terms

Added some new terms which are now covered by the SWS, e.g. Interrupt
Vector Table.

Chapter 7 Added new figure to 7.2 explaining the start of a schedule table.

Chapter 8

Added new APIs:
o StartScheduleTableRel()
o StartScheduleTableAbs()
o DisableInterruptSource()
o EnableInterruptSource()
Extended GetScheduleTableStatus()

Chapter 10 Added containers from new SWS template. These contain now also the
OIL attribute and their meaning.

Chapter 11 Added some additional consistency checks (OS343, OS344, OS345).

Chapter 13 Added more explanations to 13.4 covering the migration from OSEKtime to
AUTOSAR OS.

144 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

Specification of Operating System
 V3.1.0

R3.0 Rev 0004

16 Changes to Release 2.1

- Rewrote schedule table and synchronization chapter to improve description
and to make some requirments more explicit

- Support for XML, OIL is dropped
- Updates of figures
- Small correction (wording, typos, clarifications)
- Added service interface for SWCs calling the timer services

145 of 145 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

	Introduction and functional overview
	2 Acronyms and abbreviations
	2.1 Glossary of Terms

	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.2.1 OSEK/VDX
	3.2.2 HIS
	3.2.3 ISO/IEC

	3.3 Company Reports, Academic Work, etc.

	4 Constraints and assumptions
	4.1 Existing Standards
	4.2 Terminology
	4.3 Interaction with the RTE
	4.4 Operating System Abstraction Layer (OSAL)
	4.5 Limitations
	4.5.1 Hardware
	4.5.2 Programming Language
	4.5.3 Miscellaneous

	4.6 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure

	6 Requirements Traceability
	6.1 General Requirements on Basic Software Modules
	6.2 Requirements on Software Free-Running Timer
	6.3 AUTOSAR SRS OS Requirements
	6.4 AUTOSAR SWS Service Requirements to API

	7 Functional specification
	7.1 Core OS
	7.1.1 Background & Rationale
	7.1.2 Requirements
	7.1.2.2 Undefined Behaviour in OSEK OS
	7.1.2.3 Extensions to OSEK OS

	7.2 Software Free Running Timer
	7.3 Schedule Tables
	7.3.1 Background & Rationale
	7.3.2 Requirements
	7.3.2.1 Structure of a Schedule Table
	7.3.2.2 Constraints on Expiry Points
	7.3.2.3 Processing Schedule Tables
	7.3.2.4 Repeated Schedule Table Processing
	7.3.2.5 Controlling Schedule Table Processing

	7.4 Schedule Table Synchronization
	7.4.1 Background & Rationale
	7.4.2 Requirements
	7.4.2.1 Implicit Synchronization
	7.4.2.2 Explicit Synchonization
	7.4.2.2.1 Startup
	7.4.2.2.2 Providing a Synchronization Count
	7.4.2.2.3 Specifying Synchronization Bounds

	7.4.2.3 Performing Synchronization

	7.5 Stack Monitoring Facilities
	7.5.1 Background & Rationale
	7.5.2 Requirements

	7.6 OS-Application
	7.6.1 Background & Rationale
	7.6.2 Requirements

	7.7 Protection Facilities
	7.7.1 Memory Protection
	7.7.1.1 Background & Rationale
	7.7.1.2 Requirements

	7.7.2 Timing Protection
	7.7.2.1 Background & Rationale
	7.7.2.2 Requirements
	7.7.2.3 Implementation Notes

	7.7.3 Service Protection
	7.7.3.1 Invalid Object Parameter or Out of Range Value
	7.7.3.1.1 Background & Rationale
	7.7.3.1.2 Requirements

	7.7.3.2 Service Calls Made from Wrong Context
	7.7.3.2.1 Background & Rationale
	7.7.3.2.2 Requirements

	7.7.3.3 Services with Undefined Behaviour
	7.7.3.3.1 Background & Rationale
	7.7.3.3.2 Requirements

	7.7.3.4 Service Restrictions for Non-Trusted OS-Applications
	7.7.3.4.1 Background & Rationale
	7.7.3.4.2 Requirements

	7.7.3.5 Service Calls on Objects in Different OS-Applications
	7.7.3.5.1 Background
	7.7.3.5.2 Requirements

	7.7.4 Protecting the Hardware used by the OS
	7.7.4.1 Background & Rationale
	7.7.4.2 Requirements
	7.7.4.3 Implementation Notes

	7.7.5 Providing »Trusted Functions«
	7.7.5.1 Background & Rationale
	7.7.5.2 Requirements

	7.8 Protection Error Handling
	7.8.1 Background & Rationale
	7.8.2 Requirements

	7.9 System Scalability
	7.9.1 Background & Rationale
	7.9.2 Requirements

	7.10 Hook Functions
	7.10.1 Background & Rationale
	7.10.2 Requirements

	7.11 Error classification

	8 API specification
	8.1 Constants
	8.1.1 Error codes of type StatusType

	8.2 Macros
	8.3 Type definitions
	8.3.1 ApplicationType (for OS-Applications)
	8.3.2 TrustedFunctionIndexType
	8.3.3 TrustedFunctionParameterRefType
	8.3.4 AccessType
	8.3.5 ObjectAccessType
	8.3.6 ObjectTypeType
	8.3.7 MemoryStartAddressType
	8.3.8 MemorySizeType
	8.3.9 ISRType
	8.3.10 ScheduleTableType
	8.3.11 ScheduleTableStatusType
	8.3.12 ScheduleTableStatusRefType
	8.3.13 CounterType
	8.3.14 ProtectionReturnType
	8.3.15 RestartType
	8.3.16 PhysicalTimeType

	8.4 Function definitions
	8.4.1 GetApplicationID
	8.4.2 GetISRID
	8.4.3 CallTrustedFunction
	8.4.4 CheckISRMemoryAccess
	8.4.5 CheckTaskMemoryAccess
	8.4.6 CheckObjectAccess
	8.4.7 CheckObjectOwnership
	8.4.8 StartScheduleTableRel
	8.4.9 StartScheduleTableAbs
	8.4.10 StopScheduleTable
	8.4.11 NextScheduleTable
	8.4.12 StartScheduleTableSynchron
	8.4.13 SyncScheduleTable
	8.4.14 SetScheduleTableAsync
	8.4.15 GetScheduleTableStatus
	8.4.16 IncrementCounter
	8.4.17 GetCounterValue
	8.4.18 GetElapsedCounterValue
	8.4.19 TerminateApplication

	8.5 Hook functions
	8.5.1 Protection Hook
	8.5.2 Application specific StartupHook
	8.5.3 Application specific ErrorHook
	8.5.4 Application specific ShutdownHook

	9 Sequence diagrams
	9.1 Sequence chart for calling trusted functions
	9.2 Sequence chart for usage of ErrorHook
	9.3 Sequence chart for ProtectionHook
	9.4 Sequence chart for StartupHook
	9.5 Sequence chart for ShutdownHook

	10 Configuration Specification
	10.1 How to read this chapter
	10.1.1 Configuration and configuration parameters
	10.1.2 Variants
	10.1.3 Containers
	10.1.4 Rules for paramters

	10.2 Containers and configuration parameters
	Os
	OsAlarmSetEvent
	OsAlarm
	OsAlarmAction
	OsAlarmActivateTask
	OsAlarmAutostart
	OsAlarmCallback
	OsAlarmIncrementCounter
	 OsApplicationSWS I
	OsApplicationTrustedFunction
	10.2.12 OsAppMode
	OsCounter
	OsDriver
	OsEvent
	OsHooks
	OsIsr
	OsIsrResourceLock
	OsIsrTimingProtection
	OsOS
	OsResource
	OsScheduleTable
	OsScheduleTableAutostart
	OsScheduleTableEventSetting
	OsScheduleTableExpiryPoint
	OsScheduleTableTaskActivation
	OsScheduleTblAdjustableExpPoint
	OsScheduleTableSync
	OsTask
	OsTaskAutostart
	OsTaskResourceLock
	OsTaskTimingProtection
	OsTimeConstant

	10.3 Published Information

	11 Generation of the OS
	11.1 Read in configuration
	11.2 Consistency check
	11.3 Generating operating system

	12 Application Notes
	12.1 Hooks
	12.2 Providing Trusted Functions
	12.3 Migration hints for OSEKtime OS users
	12.4 Software Components and OS-Applications
	12.5 Global Time Synchronization
	12.6 Working with FlexRay
	12.7 Migration from OIL to XML

	13 AUTOSAR Service implemented by the OS
	13.1 Scope of this Chapter
	13.1.1 Package

	13.2 Overview
	13.3 Specification of the Ports and Port Interfaces
	13.3.1 Data Types and Port Interface
	13.3.1.1 General Approach
	13.3.1.2 Data Types
	13.3.1.3 Port Interface
	13.3.1.4 Ports

	14 Outlook on Memory Protection Configuration
	14.1 Configuration Approach

	15 Changes to Release 1
	15.1 Deleted SWS Items
	15.2 Replaced SWS Items
	15.3 Changed SWS Items
	15.4 Added SWS Items

	16 Changes to Release 2.1

