
Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

1 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Document Title Specification of NVRAM
Manager

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 033
Document Classification Standard

Document Version 2.3.0
Document Status Final
Part of Release 3.0
Revision 7

Document Change History
Date Version Changed by Change Description
10.09.2010 2.3.0 AUTOSAR

Administration
 Behavior specified to prevent possible loss

of data during shutdown
 Typo corrected in chapter 7.1.2.1
 Behavior specified: handling of single-block

callbacks during asynchronous multi-block
requests

 Behavior specified when NVRAM block ID 1
shall be written

 Include of Crc.h is not optional
 Legal disclaimer revised

11.12.2007 2.2.0 AUTOSAR
Administration

 Technical Office SWS Improvements are
incorporated.

 Requirement IDs for configuration
parameters (chapter 10) added.

 Management of the RAM block state
specified more precisely.

 The NVRAM Manager doesn't support non-
sequential NVRAM block IDs any longer.

 Document meta information extended
 Small layout adaptations made

26.01.2007 2.1.0 AUTOSAR
Administration

 AUTOSAR service description added in
chapter 13

 Reentrancy of callback functions specified
 Details regarding memory hardware

abstraction addressing scheme added
 Further changes see chapter 11

 Legal disclaimer revised
 “Advice for users” revised
 “Revision Information” added

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

2 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

28.04.2006 2.0.0 AUTOSAR
Administration

Document structure adapted to common
Release 2.0 SWS Template.
 Major changes in chapter10
 Structure of document changed partly
 Other changes see chapter 11

20.06.2005 1.0.0 AUTOSAR
Administration

Initial release

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

3 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).

Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary
items are licensed under the same rules as applicable to the AUTOSAR Standard.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

4 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Table of Contents

1 Introduction and functional overview ... 8

2 Acronyms and abbreviations ... 9

3 Related documentation.. 11

3.1 Input documents... 11

4 Constraints and assumptions .. 12

4.1 Limitations .. 12
4.2 Applicability to car domains.. 12
4.3 Conflicts ... 12

5 Dependencies to other modules.. 13

5.1 File structure .. 13
5.1.1 Code file structure ... 13
5.1.2 Header file structure.. 13

5.2 Memory abstraction modules ... 13
5.3 CRC module... 14
5.4 Capability of the underlying drivers .. 14

6 Requirements traceability .. 15

7 Functional specification ... 21

7.1 Basic architecture guidelines.. 21
7.1.1 Layer structure .. 21
7.1.2 Addressing scheme for the memory hardware abstraction 21

7.1.2.1 Examples of addressing scheme for the memory hardware
abstraction 22

7.1.3 Basic storage objects .. 23
7.1.3.1 NV block... 23
7.1.3.2 RAM block.. 23
7.1.3.3 ROM block ... 24
7.1.3.4 Administrative block ... 25

7.1.4 Block management types.. 25
7.1.4.1 Block management types overview.. 25
7.1.4.2 NVRAM block structure.. 26
7.1.4.3 NVRAM block descriptor table ... 26
7.1.4.4 Native NVRAM block ... 26
7.1.4.5 Redundant NVRAM block .. 26
7.1.4.6 Dataset NVRAM block ... 27
7.1.4.7 NVRAM Manager API configuration classes................................ 29

7.1.5 Scan order / priority scheme ... 30
7.2 General behavior.. 30

7.2.1 Functional requirements.. 30
7.2.2 Design notes ... 32

7.2.2.1 NVRAM manager startup ... 32

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

5 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

7.2.2.2 NVRAM manager shutdown... 33
7.2.2.3 (Quasi) parallel write access to the NvM module 33
7.2.2.4 Avoid infinite loops ... 33
7.2.2.5 NVRAM block consistency check... 33
7.2.2.6 Error recovery .. 33
7.2.2.7 Recovery of a RAM block with ROM data.................................... 34
7.2.2.8 Implicit recovery of a RAM block with ROM default data.............. 34
7.2.2.9 Explicit recovery of a RAM block with ROM default data 34
7.2.2.10 Detection of an incomplete write operation to a NV block............ 35
7.2.2.11 Termination of a single block request .. 35
7.2.2.12 Termination of a multi block request .. 35
7.2.2.13 General handling of asynchronous requests/ job processing....... 36
7.2.2.14 NVRAM block write protection ... 36
7.2.2.15 Validation and modification of RAM block data 37
7.2.2.16 Communication and synchronization between application and
NVRAM manager... 39
7.2.2.17 Normal and extended runtime preparation of NVRAM blocks...... 42

7.3 Error classification .. 42
7.4 Error detection.. 43
7.5 Error notification ... 45
7.6 Version check... 45

8 API specification.. 46

8.1 Imported types.. 46
8.2 Type definitions .. 46

8.2.1 NvM_RequestResultType ... 46
8.2.2 NvM_BlockIdType ... 47

8.3 Function definitions .. 47
8.3.1 Synchronous requests .. 47

8.3.1.1 NvM_Init... 47
8.3.1.2 NvM_SetDataIndex.. 48
8.3.1.3 NvM_GetDataIndex ... 49
8.3.1.4 NvM_SetBlockProtection ... 50
8.3.1.5 NvM_GetErrorStatus.. 50
8.3.1.6 NvM_GetVersionInfo.. 51
8.3.1.7 NvM_SetRamBlockStatus.. 52

8.3.2 Asynchronous single block requests ... 53
8.3.2.1 NvM_ReadBlock .. 53
8.3.2.2 NvM_WriteBlock .. 56
8.3.2.3 NvM_RestoreBlockDefaults ... 58
8.3.2.4 NvM_EraseNvBlock ... 60
8.3.2.5 NvM_CancelWriteAll .. 61
8.3.2.6 NvM_InvalidateNvBlock ... 62

8.3.3 Asynchronous multi block requests... 63
8.3.3.1 NvM_ReadAll ... 63
8.3.3.2 NvM_WriteAll ... 69

8.4 Call-back notifications .. 71
8.4.1 Callback notification of the NvM module ... 71

8.4.1.1 NVRAM Manager job end notification without error 71

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

6 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

8.4.1.2 NVRAM Manager job end notification with error 72
8.5 Scheduled functions ... 73
8.6 Expected Interfaces.. 74

8.6.1 Mandatory Interfaces .. 75
8.6.2 Optional Interfaces .. 75
8.6.3 Configurable interfaces ... 75

8.6.3.1 Single block job end notification... 76
8.6.3.2 Multi block job end notification ... 76
8.6.3.3 Callback function for block initialization.. 77

8.7 API Overview ... 78

9 Sequence Diagrams.. 79

9.1 Synchronous calls .. 79
9.1.1 NvM_Init .. 79
9.1.2 NvM_SetDataIndex ... 79
9.1.3 NvM_GetDataIndex... 80
9.1.4 NvM_SetBlockProtection .. 80
9.1.5 NvM_GetErrorStatus... 81
9.1.6 NvM_GetVersionInfo... 81

9.2 Asynchronous calls .. 81
9.2.1 Asynchronous call with polling .. 82
9.2.2 Asynchronous call with callback.. 82
9.2.3 Cancellation of a Multi Block Request... 84

10 Configuration specification .. 85

10.1 How to read this chapter .. 85
10.1.1 Configuration and configuration parameters 85
10.1.2 Variants... 85
10.1.3 Containers... 85

10.2 Containers and configuration parameters .. 86
10.2.1 Variants... 86
10.2.2 NvM... 86
10.2.3 NvmCommon .. 86
10.2.4 NvmBlockDescriptor.. 90
10.2.5 NvmTargetBlockReference ... 96
10.2.6 NvmEaRef... 96
10.2.7 NvmFeeRef ... 97

10.3 Common configuration options... 98
10.3.1 Published parameters ... 98

11 Changes to Release 1 ... 100

11.1 Deleted SWS Items.. 100
11.2 Replaced SWS Items ... 101
11.3 Changed SWS Items.. 101
11.4 Added SWS Items.. 101

12 Changes during SWS Improvements .. 103

12.1 Deleted SWS Items.. 103
12.2 Replaced SWS Items ... 103
12.3 Changed SWS Items.. 104

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

7 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

12.4 Added SWS Items.. 104

13 AUTOSAR Service implemented by the NVRAM Manger 106

13.1 Scope of this Chapter... 106
13.1.1 Package .. 106

13.2 Overview .. 106
13.2.1 Architecture ... 106
13.2.2 Requirements.. 107
13.2.3 Use Cases... 108

13.2.3.1 Implicit Update and Restore of RAM Mirror................................ 108
13.2.3.2 Explicit Update and Restore of RAM Mirror 109
13.2.3.3 Explicit Update and Restore via a Local Buffer 110

13.3 Specification of the Ports and Port Interfaces .. 111
13.3.1 Ports and Port Interface for Single Block Requests 111

13.3.1.1 General Approach.. 111
13.3.1.2 Data Types... 112
13.3.1.3 Port Interface ... 113
13.3.1.4 Ports .. 114

13.3.2 Ports and Port Interface for Notifications... 115
13.3.3 Ports and Port Interfaces for Administrative Operations 116
13.3.4 Summary of all Ports... 117

13.4 Access to the Memory Blocks .. 118
13.5 InternalBehavior ... 119
13.6 Configuration of the Block IDs.. 120

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

8 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

1 Introduction and functional overview

This specification describes the functionality, API and the configuration of the
AUTOSAR Basic Software module NVRAM Manager.

The NvM module shall provide services to ensure the data storage and maintenance
of NV data according to their individual requirements in an automotive environment.
The NvM module shall be able to administrate the NV data of an EEPROM and/or a
FLASH EEPROM emulation device.

The NvM module shall provide the required synchronous/asynchronous services for
the management and the maintenance of NV data (init/read/write/control).

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

9 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

2 Acronyms and abbreviations

Acronyms and abbreviations, which have a local scope and therefore are not
contained in the AUTOSAR glossary, must appear in a local glossary.

Abbreviation/
Acronym:

Description:

Basic Storage Object A “Basic Storage Object” is the smallest entity of a “NVRAM block”.
Several “Basic Storage Objects” can be used to build a NVRAM Block.
A “Basic Storage Object“ can reside in different memory locations
(RAM/ROM/NV memory).

NVRAM Block The “NVRAM Block” is the entire structure, which is needed to
administrate and to store a block of NV data.

NV data The data to be stored in Non-Volatile memory.

Block Management Type Type of the NVRAM Block. It depends on the (configurable) individual
composition of a NVRAM Block in chunks of different
mandatory/optional Basic Storage Objects and the subsequent
handling of this NVRAM block.

RAM Block The „RAM Block“ is a „Basic Storage Object“. It represents the part of a
„NVRAM Block“ which resides in the RAM.
See [BSW08534] .[NVM126]

ROM Block The „ROM Block“ is a „Basic Storage Object“. It represents the part of
a „NVRAM Block“ which resides in the ROM. The „ROM Block“ is an
optional part of a „NVRAM Block“.[NVM020]

NV Block The „NV Block“ is a „Basic Storage Object“. It represents the part of a
„NVRAM Block“ which resides in the NV memory. The „NV Block“ is a
mandatory part of a „NVRAM Block“. [NVM125]

Administrative Block The “Administrative Block” is a “Basic Storage Object”. It resides in
RAM. The “Administrative Block” is a mandatory part of a “NVRAM
Block”. [NVM135]

DET Development Error Tracer – module to which development errors are
reported.

DEM Diagnostic Event Manager – module to which production relevant
errors are reported

NV Non volatile

FEE Flash EEPROM Emulation

EA EEPROM Abstraction

FCFS First come first served

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

10 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

id Component Model

NV Block RAM Block Administrativ e BlockROM Block

Basic Storage Object

«abstract»
NVRAM Block

- Block Management Type:

constraints
{exact composition depends on Management type}
{handling depends on Block Management Type}

«user data»

NV Data

«realize» «realize»«realize»«realize»

Figure 1: Overview describing the acronyms table

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

11 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

3 Related documentation

3.1 Input documents

[1] Layered Software Architecture
AUTOSAR_LayeredSoftwareArchitecture.pdf

[2] General Requirements on Basic Software Modules
AUTOSAR_SRS_General.pdf

[3] Requirements on Memory Services
AUTOSAR_SRS_MemoryServices.pdf

[4] Specification of EEPROM Abstraction
AUTOSAR_SWS_EA.pdf

[5] Specification of Flash EEPROM Emulation
AUTOSAR_SWS_FLASH_EEPROM_Emulation.pdf

[6] Specification of Memory Abstraction Interface
AUTOSAR_SWS_MemIf.pdf

[7] Specification of the Virtual Functional Bus

AUTOSAR_Spec_of_VFB.pdf

[8] Software Component Template

AUTOSAR_SoftwareComponentTemplate.pdf

[9] Specification of RTE Software
AUTOSAR_SWS_RTE.pdf

[10] Specification of BSW Scheduler
AUTOSAR_SWS_BSW_Scheduler.pdf

[11] Specification of ECU Configuration
AUTOSAR_ECU_Configuration.pdf

[12] AUTOSAR Basic Software Module Description Template,

AUTOSAR_BSW_Module_Description.pdf

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

12 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

4 Constraints and assumptions

4.1 Limitations

Limitations are given mainly by the finite number of “Block Management Types” and
their individual treatment of NV data. These limits can be reduced by an enhanced
user defined management information, which can be stored as a structured part of
the real NV data. In this case the user defined management information has to be
interpreted and handled by the application at least.

4.2 Applicability to car domains

No restrictions.

4.3 Conflicts

None

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

13 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

5 Dependencies to other modules

This section describes the relations to other modules within the basic software.

5.1 File structure

5.1.1 Code file structure

NVM076: The NvM module shall consist of the following parts:

 One or more C file NvM_xxx.c containing the entire or parts of NVRAM
manager code

5.1.2 Header file structure

NVM077: The include file structure shall be as follows:

 An API interface NvM.h providing the function prototypes to access the
underlying NVRAM functions

 A type header NvM_Types.h providing the types for the NvM module
 A callback interface NvM_Cbk.h providing the callback function prototypes to

be used by the lower layers
 A type header NvM_Cfg.h providing the configuration parameters for the NvM

module
 NvM_Cfg.h shall include NvM_Types.h
 NvM_Types.h shall include Std_Types.h
 NvM.h shall include NvM_Cfg.h
 NvM.c shall include NvM.h, Dem.h, MemIf.h, SchM_NvM.h, MemMap.h, Crc.h

and optionally Det.h

Only NvM.h shall be included by the upper layer.

5.2 Memory abstraction modules

The memory abstraction modules abstract the NvM module from the subordinated
drivers which are hardware dependent. The memory abstraction modules provide a
runtime translation of each block access initiated by the NvM module to select the
corresponding driver functions which are unique for all configured EEPROM or
FLASH storage devices. The memory abstraction module is chosen via the NVRAM
block device ID which is configured for each NVRAM block.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

14 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

5.3 CRC module

The NvM module uses CRC generation routines (16/32 bit) to check and to generate
CRC for NVRAM blocks as a configurable option. The CRC routines have to be
provided externally [ref. to ch. 8.6.2].

5.4 Capability of the underlying drivers

A set of underlying driver functions has to be provided for every configured NVRAM
device as, for example, internal or external EEPROM or FLASH devices. The unique
driver functions inside each set of driver functions are selected during runtime via a
memory hardware abstraction module (see chapter 5.2). A set of driver functions has
to include all the needed functions to write to, to read from or to maintain (e.g. erase)
a configured NVRAM device.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

15 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

6 Requirements traceability

Document: General requirements on Basic Software Modules

Requirement Satisfied by
[BSW00344] Reference to link-time configuration Not applicable

(currently the NVM is only pre-compile-time
configurable)

[BSW00404] Reference to post build time
configuration

Not applicable
(currently the NVM is only pre-compile-time
configurable)

[BSW00405] Reference to multiple configuration
sets

Not applicable
(currently the NVM is only pre-compile-time
configurable)

[BSW00345] Pre-compile-time configuration NVM095
[BSW159] Tool-based configuration NVM095
[BSW167] Static configuration checking NVM028, NVM061
[BSW170] Data for reconfiguration of AUTOSAR
SW-components

Not applicable
(NVM is no AUTOSAR SW-C)

[BSW00380] Separate C-File for configuration
parameters

Not applicable
(currently the NVM is only pre-compile-time
configurable)

[BSW00419] Separate C-Files for pre-compile
time configuration parameters

NVM321

[BSW00381] Separate configuration header file
for pre-compile time parameters

NVM028

[BSW00412] Separate H-File for configuration
parameters

Not applicable
(currently the NVM is only pre-compile-time
configurable)

[BSW00383] List dependencies of configuration
files

NVM095, NVM319, NVM320

[BSW00384] List dependencies to other module NVM319, NVM320
[BSW00385] List possible error notifications NVM023, NVM027
[BSW00386] Configuration for detecting an error NVM023, NVM027, NVM025
[BSW00387] Specify the configuration class of
callback functions

NVM330, NVM331

[BSW00388] Introduce containers NVM028, NVM061, NVM095
[BSW00389] Containers shall have names NVM028, NVM061, NVM095
[BSW00390] Parameter content shall be unique
within the module

NVM028, NVM061, NVM095

[BSW00391] Parameter shall have unique names NVM028, NVM061, NVM095
[BSW00392] Parameters shall have a type NVM028, NVM061, NVM095
[BSW00393] Parameters shall have a range NVM028, NVM061, NVM095
[BSW00394] Specify the scope of the parameters NVM028, NVM061, NVM095
[BSW00395] List the required parameters (per
parameter]

NVM028, NVM061, NVM095

[BSW00396] Configuration classes NVM028, NVM061, NVM095
[BSW00397] Pre-compile-time parameters NVM028, NVM061, NVM095
[BSW00398] Link-time-parameters Not applicable

(currently the NVM is only pre-compile-time
configurable)

[BSW00399] Loadable post-build time parameters Not applicable
(currently the NVM is only pre-compile-time
configurable)

[BSW00400] Selectable post-build time
parameters

Not applicable
(currently the NVM is only pre-compile-time

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

16 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

configurable)
[BSW00402] Published information NVM022
[BSW101] Initialization interface NVM399, NVM400
[BSW00416] Sequence of Initialization Not applicable

(the NvM module isn’t responsible for any BSW
module initialization)

[BSW00406] Check module initialization NVM399, NVM400, NVM027, NVM023
[BSW003] Version identification NVM022
[BSW004] Version check NVM089
[BSW00337] Classification of errors NVM023, NVM024
[BSW00338] Detection and reporting of
development errors

NVM025

[BSW168] Diagnostic Interface Not applicable
(no use case for the NvM module)

[BSW00407] Function to read out published
parameters

NVM285, NVM286

 [BSW00423] Usage of SW-C template to
describe BSW modules with AUTOSAR Interfaces

Not applicable

[BSW00424] BSW main processing function task
allocation [approved]

NVM322

[BSW00425] Trigger conditions for schedulable
objects

NVM464

[BSW00426] Exclusive areas in BSW modules Not applicable
[BSW00427] ISR description for BSW modules Not applicable

(NVM doesn’t use ISRs)
[BSW00428] Execution order dependencies of
main processing functions

NVM324

[BSW00429] Restricted BSW OS functionality
access

NVM332

[BSW00431] The BSW Scheduler module
implements task bodies

Not applicable
(Requirement on implementation, not on
specification)

[BSW00432] Modules should have separate main
processing functions for read/receive and
write/transmit data path

Not applicable
(read and write jobs are handled in a serialized
way, not in parallel)

[BSW00433] Calling of main processing functions NVM324
[BSW00434] The Schedule Module shall provide
an API for exclusive areas

Not applicable
(Requirement for schedule module)

[BSW00375] Notification of wake-up reason Not applicable
(no use case)

[BSW00339] Reporting of production relevant
errors status

NVM026

[BSW00369] Do not return development error
codes via API

NVM025

[BSW00421] Reporting of production relevant
error events

NVM319

[BSW00422] Debouncing of production relevant
error status

Not applicable
(NVM uses Dem_ReportError API for error
reporting)

[BSW00420] Production relevant error event rate
detection

Not applicable
(Requirement belongs to Dem)

[BSW00417] Reporting of Error Events by Non-
Basic Software

Not applicable
(NVM is a BSW module)

[BSW00409] Header files for production code
error IDs

NVM186

[BSW00336] Shutdown interface Not applicable
(no use case)

[BSW171] Configurability of optional functionality NVM028

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

17 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

[BSW00323] API parameter checking NVM027
[BSW00373] Main processing function naming
convention

NVM464

[BSW161] Microcontroller abstraction Not applicable
(Requirement on AUTOSAR architecture, not a
single module)

[BSW162] ECU layout abstraction Not applicable
(Requirement on AUTOSAR architecture, not a
single module)

[BSW00324] Do not use HIS I/O Library Not applicable
(architecture decision)

[BSW005] No hard coded horizontal interfaces
within MCAL

Not applicable
(Requirement on AUTOSAR architecture, not a
single module)

[BSW00415] User dependent include files Not applicable
(NVM doesn't provide restricted access for several
modules)

[BSW164] Implementation of interrupt service
routines

Not applicable
(this module doesn't implement any ISRs)

[BSW00325] Runtime of interrupt service routines Not applicable
(this module doesn't implement any ISRs)

[BSW00326] Transition from ISRs to OS tasks Not applicable
(this module doesn't implement any ISRs)

[BSW00342] Usage of source code and object
code

Not applicable
(Requirement on AUTOSAR architecture, not a
single module)

[BSW00343] Specification and configuration of
time

Not applicable
(no configurable timings)

[BSW160] Human-readable configuration data Not applicable
(Requirement on documentation, not on
specification)

[BSW007] HIS MSIRA C Not applicable
(Requirement on implementation, not on
specification)

[BSW00300] Module naming convention Chapter 5.1
[BSW00413] Accessing instances of BSW
modules

Conflict: This requirement will have impact on
almost all BSW modules, therefore it can not be
implemented within the Release 2.0 timeframe.

[BSW00347] Naming separation of different
instances of BSW drivers

Not applicable
(Requirement on implementation, not on
specification)

[BSW00305] Self-defined data types naming
convention

Chapter 8.2

[BSW00307] Global variables naming convention Not applicable
(Requirement on implementation, not on
specification)

[BSW00310] API naming convention Chapters 8.3, 0, 0
[BSW00327] Error values naming convention NVM023, NVM027
[BSW00335] Status values naming convention Not applicable

(no status values available)
[BSW00350] Development error detection
keyword

NVM025, NVM188

[BSW00408] Configuration parameter naming
convention

 Chapter 10

[BSW00410] Compiler switches shall have
defined values

Chapter 10

[BSW00411] Get version info keyword NVM286, Chapter 10
[BSW00346] Basic set of module files Chapter 5.1

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

18 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

[BSW158] Separation of configuration from
implementation

Chapter 5.1

[BSW00314] Separation of interrupt frames and
service routines

Not applicable
(this module doesn't implement any ISRs)

[BSW00370] Separation of callback interface from
API

Chapter 5.1

[BSW00348] Standard type header Not applicable
(this module simply includes the standard type
header via the module header file)

[BSW00353] Platform specific type header Not applicable
(this module simply includes the standard type
header via the module header file)

[BSW00361] Compiler specific language
extension header

Not applicable
(this module simply includes the standard type
header via the module header file)

[BSW00301] Limit imported information Chapter 5.1
[BSW00302] Limit exported information Not applicable

(Requirement on the implementation, not on the
specification)

[BSW00328] Avoid duplication of code Not applicable
(Requirement on the implementation, not on the
specification)

[BSW00312] Shared code shall be reentrant Not applicable
(Requirement on the implementation, not on the
specification)

[BSW006] Platform independency Not applicable
(Requirement on the implementation, not on the
specification)

[BSW00357] Standard API return type Chapter 8.1, 8.2
[BSW00377] Module specific API return types Chapter 8.2
[BSW00304] AUTOSAR integer data types Not applicable

(Requirement on implementation, not for
specification)

[BSW00355] Do not redefine AUTOSAR integer
data types

Not applicable
(Requirement on implementation, not for
specification)

[BSW00378] AUTOSAR boolean type Not applicable
(Requirement on implementation, not for
specification)

[BSW00306] Avoid direct use of compiler and
platform specific keywords

Not applicable
(Requirement on implementation, not for
specification)

[BSW00308] Definition of global data Not applicable
(Requirement on implementation, not for
specification)

[BSW00309] Global data with read-only constraint Not applicable
(Requirement on implementation, not for
specification)

[BSW00371] Do not pass function pointers via API Not applicable
(no function pointers in this specification)

[BSW00358] Return type of init() functions Chapter 8.3.1.1
[BSW00414] Parameter of init function Chapter 8.3.1.1
[BSW00376] Return type and parameters of main
processing functions

NVM106

[BSW00359] Return type of callback functions Chapter 8.6.3.1, 0
[BSW00360] Parameters of callback functions Chapter 8.6.3.1, 0
[BSW00329] Avoidance of generic interfaces Chapter 8.3
[BSW00330] Usage of macros / inline functions Not applicable

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

19 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

instead of functions Requirement on implementation, not for
specification)

[BSW00331] Separation of error and status values NVM023, NVM027
[BSW009] Module User Documentation Not applicable

(Requirement on documentation, not on
specification)

[BSW00401] Documentation of multiple instances
of configuration parameters

Chapter 10

[BSW172] Compatibility and documentation of
scheduling strategy

NVM323, NVM324

[BSW010] Memory resource documentation Not applicable
(Requirement on documentation, not on
specification)

[BSW00333] Documentation of callback function
context

Chapter 8.6.3.1, 0

[BSW00374] Module vendor identification NVM022
[BSW00379] Module identification NVM022
[BSW003] Version identification NVM022
[BSW00318] Format of module version numbers NVM022
[BSW00321] Enumeration of module version
numbers

Not applicable
(Requirement on implementation, not for
specification)

[BSW00341] Microcontroller compatibility
documentation

Not applicable
(Requirement on documentation, not on
specification)

[BSW00334] Provision of XML file Not applicable
(Requirement on documentation, not on
specification)

[BSW00435] Header File Structure for the Basic
Software Scheduler

NVM077

[BSW00436] Module Header File Structure for the
Basic Software Memory Mapping

NVM077

Document: Requirements on Memory Services

Requirement Satisfied by
[BSW041] Declaration and allocation of
application memory

NVM030

[BSW08534] Classes of RAM data blocks NVM370, NVM371, NVM372, NVM373
[BSW08528] NVRAM block management type -
native

NVM000

[BSW08529] NVRAM block management type -
redundant

NVM001, NVM047

[BSW08531] NVRAM block management type –
dataset

NVM006

[BSW08543] Static configuration of block priority NVM032
[BSW08009] Default write protection of blocks NVM033, NVM054
[BSW135] NVRAM configuration ID NVM034, NVM073
[BSW08549] Automatic initialization of RAM data
after Software update

NVM116

[BSW125] Job notification NVM383, NVM384,
[BSW08000] Configurable access to multiple
(different) devices

NVM035

[BSW08001] Configuration of consistency check
of data

NVM036, NVM040

[BSW08538] Static configuration of NVRAM
blocks being loaded during start-up

NVM117, NVM245, NVM118

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

20 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

[BSW08546] Protection of RAM data blocks
against data loss [approved]

NVM119

[BSW08533] Load data blocks from NVRAM to
RAM

NVM008

[BSW176] Only access non-volatile memory via
NVRAM manager

NVM037
(note: this has to be handled on RTE level)

[BSW027] Accessing of non volatile data NVM038
[BSW08014] RAM block allocation NVM088
[BSW013] Handling of concurrent accesses to
NVRAM

NVM378, NVM379

[BSW016] Block-wise reading of data NVM010 NVM029
[BSW017] Block-wise writing of data NVM410, NVM411
[BSW08541] Guaranteed processing of accepted
write requests

NVM380, NVM381, NVM152

[BSW018] Block-wise restoring of default data NVM012
[BSW08548] Automatic initialization without ROM
Block

NVM116

[BSW08547] Distinction between invalidated and
inconsistent data

NVM405, NVM406, NVM294, NVM203,

[BSW08550] Marking blocks modified/unmodified NVM405, NVM406, NVM432, NVM433, NVM434,
NVM344, NVM345

[BSW08545] Validation of permanent RAM data
blocks

NVM405, NVM406, NVM121, NVM344, NVM345

[BSW08011] Invalidation of NVRAM data blocks NVM421, NVM422, NVM423, NVM424
[BSW08544] Block-wise erasing of NVRAM data NVM415, NVM416, NVM417, NVM418
[BSW08007] Selection of datasets NVM014, NVM021
[BSW08542] Job order prioritization NVM032
[BSW020] Readout of current status of NVRAM
manager operations

NVM015

[BSW127] Write protect/unprotect function NVM016, NVM054
[BSW030] Consistency/integrity check of data NVM040, NVM036, NVM165
[BSW034] Quasi-parallel write access NVM378, NVM379
[BSW08535] Save data blocks from RAM to NV
memory

NVM018

[BSW08540] Aborting the shut down process NVM019
[BSW038] Treatable errors shall not affect other
software components

NVM047, NVM001

[BSW129] Automatic data repair NVM047, NVM001
[BSW08010] Loading of ROM default data NVM012, NVM020, NVM387, NVM388
[BSW011] (Memory) hardware independence NVM051
[BSW130] Provide information about used
memory resources

NVM052

[BSW08015] NV Block security of ECU
reprogramming

NVM072, NVM276

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

21 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

7 Functional specification

7.1 Basic architecture guidelines

7.1.1 Layer structure

sd NVM Ov erv iew

NVM

DEM
CRC Library

MemIf

OS

EcuM

RTE

DET

«communicate»

«communicate»
«communicate»

«communicate»

«communicate»«communicate»

«communicate»

Figure 2: NVRAM Manager interactions overview

7.1.2 Addressing scheme for the memory hardware abstraction

NVM051: The Memory Abstraction Interface, the underlying Flash EEPROM
Emulation and EEPROM Abstraction Layer provide the NvM module with a virtual
linear 32bit address space which is composed of a 16bit logical block number and a
16bit block address offset.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

22 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Hint: According to NVM051, the NvM module can allow for a (theoretical) number of
65536 logical blocks, each logical block can have a (theoretical)1 size of up to 64
Kbytes.

NVM122: The NvM module shall further subdivide the 16bit logical block number into
the following parts:

- block identifier with the size of (16 - NvmDatasetSelectionBits)bits
- NvmDatasetSelectionBits bit data index, allowing for up to 256 datasets per

NVRAM block

NVM343: Handling/addressing of redundant NVRAM blocks shall be done towards
the memory hardware abstraction in the same way like for dataset NVRAM blocks,
i.e. the redundant NV blocks shall be managed by usage of the configuration
parameter NvmDatasetSelectionBits.

NVM123: The NvM module shall store the block identifier in the most significant bits
of the 16bit logical block number.

NVM442: The configuration tool shall configure the block identifiers.

NVM443: The NvM module shall not modify the configured block identifiers.

7.1.2.1 Examples of addressing scheme for the memory hardware abstraction

To clarify the previously described addressing scheme which is used for NVRAM
manager memory hardware abstraction interaction, the following examples shall
help to understand the correlations between the configuration parameters
NvmNvBlockBaseNumber, NvmDatasetSelectionBits on NVRAM manager side and
EA_BLOCK_Number / FEE_BLOCK_NUMBER on memory hardware abstraction side
[NVM061].

For the given examples A and B a simple formula is used:
FEE/EA_BLOCK_NUMBER = NvmNvBlockBaseNumber + NvmDatasetSelectionBits.

Example A:
The configuration parameter NvmDatasetSelectionBits is configured to be 2. This
leads to the result that 14 bits are available as range for the configuration parameter
NvmNvBlockBaseNumber.

 Range of NvmNvBlockBaseNumber: 0x1..0x3FFE
 Range of NvmDatasetSelectionBits: 0x0..0x3
 Range of FEE_BLOCK_NUMBER/EA_BLOCK_NUMBER: 0x4..0xFFFB

Example B:
The configuration parameter NvmDatasetSelectionBits is configured to be 4. This
leads to the result that 12 bits are available as range for the configuration parameter
NvmNvBlockBaseNumber.

1 “Theoretical” meaning here that we don’t expect anyone to use the NVRAM manager and underlying
layers in exactly this way.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

23 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

 Range of NvmNvBlockBaseNumber: 0x1..0xFFE
 Range of NvmDatasetSelectionBits: 0x0..0xF
 Range of FEE/EA Block Number: 0x10..0xFFEF

7.1.3 Basic storage objects

7.1.3.1 NV block

NVM125: The NV block is a basic storage object and represents a memory area
consisting of NV user data and (optionally) a CRC value.

NV Block

NV block data

NV block CRC
(optional)

NV Block

NV block data

NV block CRC
(optional)

NV block CRC
(optional)

Figure 3: NV Block layout

Note: This figure does not show the physical memory layout of an NV block. Only the
logical clustering is shown.

7.1.3.2 RAM block

NVM126: The RAM block is a basic storage object and represents an area in RAM
consisting of user data and (optionally) a CRC value.

NVM127: Restrictions on CRC usage on RAM blocks. CRC is only available if the
corresponding NV block(s) also have a CRC. CRC has to be of the same type as that
of the corresponding NV block(s). [NVM061]

NVM129: The user data area of a RAM block can reside in a different RAM address
location (global data section) than the state of the RAM block.
NVM130: The data area of a RAM block shall be accessible from NVRAM Manager
and from the application side (data passing from/to the corresponding NV block).

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

24 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

RAM Block

RAM block data
(permanent/
temporary)

RAM block CRC
(optional)

RAM Block
Data Field

RAM block
CRC Field

RAM Block

RAM block data
(permanent/
temporary)

RAM block CRC
(optional)

RAM Block
Data Field

RAM block
CRC Field

Figure 4: RAM Block layout

Note: This figure does not show the physical memory layout of a RAM block. Only
the logical clustering is shown.
As the NvM module doesn’t support alignment, this could be managed by
configuration, i.e. the block length could be enlarged by adding padding to meet
alignment requirements.

NVM373: The RAM block data shall contain the permanently or temporarily assigned
user data.

NVM371: The RAM block data is assigned to exactly one SW-Component or BSW
module.

NVM370: In case of permanently assigned user data, the address of the RAM block
data is known during configuration time.

NVM372: In case of temporarily assigned user data, the address of the RAM block
data is not known during configuration time and will be passed to the NvM module
during runtime. The RAM block data can be used e.g. as a shared buffer for several
SW-Components or BSW modules.

NVM088: It shall be possible to allocate each RAM block without address constraints
in the global RAM area. The whole number of configured RAM blocks needs not be
located in a continuous address space.

7.1.3.3 ROM block

NVM020: The ROM block is a basic storage object, resides in the ROM (FLASH) and
is used to provide default data in case of an empty or damaged NV block.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

25 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

ROM Block

ROM block data
(default data)

ROM Block

ROM block data
(default data)

Figure 5: ROM block layout

7.1.3.4 Administrative block

NVM134: The Administrative block shall be located in RAM and shall contain a block
index which is used in association with Dataset NV blocks. Additionally,
attribute/error/status information of the corresponding NVRAM block shall be
contained.

NVM128: The NvM module shall use state information of the permanent RAM block
(invalid/valid) to determine the validity of the permanent RAM block user data.

NVM132: The RAM block state „invalid“ indicates that the data area of the respective
RAM block is invalid. The RAM block state „valid“ indicates that the data area of the
respective RAM block is valid.

NVM133: The value of “invalid” shall be represented by all other values except
“valid”.

NVM135: The Administrative block shall be invisible for the application and is used
exclusively by the NvM module for security and administrative purposes of the RAM
block and the NVRAM block itself.

NVM054: The NvM module shall use an attribute field to manage the NV block write
protection in order to protect/unprotect a NV block data field.

NVM136: The NvM module shall use an error/status field to manage the error/status
value of the last request [NVM083].

7.1.4 Block management types

7.1.4.1 Block management types overview

NVM137: The following types of NVRAM storage shall be supported by the NvM
module implementation and consist of the following basic storage objects:

Management Type NV

Blocks
RAM

Blocks
ROM

Blocks
Administrative

Blocks
NVM_BLOCK_NATIVE 1 1 0..1 1

NVM_BLOCK_REDUNDANT 2 1 0..1 1

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

26 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

NVM_BLOCK_DATASET 1..(m<256)* 1 0..n 1

* The number of possible datasets depends on the configuration parameter
NvmDatasetSelectionBits.

7.1.4.2 NVRAM block structure

NVM138: The NVRAM block shall consist of the mandatory basic storage objects
NV block, RAM block and Administrative block.

NVM139: The basic storage object ROM block is optional.

NVM140: The composition of any NVRAM block is fixed during configuration by the
corresponding NVRAM block descriptor.

NVM141: All address offsets are given relatively to the start addresses of RAM or
ROM in the NVRAM block descriptor. The start address is assumed to be zero. A
device specific base address or offset will be added by the respective device driver if
needed.

For details of the NVRAM block descriptor see chapter 7.1.4.3.

7.1.4.3 NVRAM block descriptor table

NVM069: A single NVRAM block to deal with will be selected via the NvM module
API by providing a subsequently named Block ID.

NVM143: All structures related to the NVRAM block descriptor table and their
addresses in ROM (FLASH) have to be generated during configuration of the NvM
module.

7.1.4.4 Native NVRAM block

The Native NVRAM block is the simplest block management type. It allows storage
to/retrieval from NV memory with a minimum of overhead.

NVM000: The Native NVRAM block consists of a single NV block, RAM block and
Administrative block.

7.1.4.5 Redundant NVRAM block

In addition to the Native NVRAM block, the Redundant NVRAM block provides
enhanced fault tolerance, reliability and availability. It increases resistance against
data corruption.

NVM001: The Redundant NVRAM block consists of two NV blocks, a RAM block and
an Administrative block.

The following figure reflects the internal structure of the NV memory:

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

27 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

NV block data

NV block CRC
(optional)

NV block data

NV block CRC
(optional)

NV memory

NV block data

NV block CRC
(optional)

NV block data

NV block CRC
(optional)

NV memory

Figure 6: Redundant NVRAM Block layout

Note: This figure does not show the physical NV memory layout of a redundant
NVRAM block. Only the logical clustering is shown.

7.1.4.6 Dataset NVRAM block

The Dataset NVRAM block is an array of equally sized data blocks (NV/ROM). The
application can at one time access exactly one of these elements.

NVM006: The Dataset NVRAM block consists of multiple NV user data and
(optionally) CRC areas, a RAM block and an Administrative block.

NVM144: The index position of the dataset is noticed via a separated field in the
corresponding Administrative block.

NVM374: The NvM module shall be able to read all assigned NV blocks.

NVM375: The NvM module shall only be able to write to all assigned NV blocks if
(and only if) write protection is disabled.

NVM146: If the basic storage object ROM block is selected as optional part, the
index range which normally selects a dataset is extended to the ROM to make it
possible to select a ROM block instead of a NV block. The index covers all NV/ROM
blocks which may build up the NVRAM Dataset block.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

28 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

NVM376: The NvM module shall be able to only read optional ROM blocks (default
datasets).

NVM377: The NvM module shall treat a write to a ROM block like a write to a
protected NV block.
NVM444: The total number of configured datasets (NV+ROM blocks) must be in the
range of 1..255.

NVM445: In case of optional ROM blocks, data areas with an index from 0 up to
NvmNvBlockNum-1 represent the NV blocks with their CRC in the NV memory. Data
areas with an index from NvmNvBlockNum up to
NvmNvBlockNum+NvmRomBlockNum represent the ROM blocks.

NVRAM

NV block data
area 0

NV block CRC
of data area 0 (opt)

.

.

.

index
0 to

NVM_NV_BLOCK_NUM - 1

NV block data
area

(NVM_NV_BLOCK_NUM-1)

NV block CRC
of data area

(NVM_NV_BLOCK_NUM-1) (opt)

ROM block data area
NVM_NV_BLOCK_NUM (opt)

.

.

.

index
NVM_NV_BLOCK_NUM to

NVM_NV_BLOCK_NUM+NVM_ROM_BLOCK_NUM-1

ROM block data area
(NVM_NV_BLOCK_NUM+NVM_RO

M_BLOCK_NUM-1) (opt)

ROM

NVRAM

NV block data
area 0

NV block CRC
of data area 0 (opt)

.

.

.

index
0 to

NVM_NV_BLOCK_NUM - 1

NV block data
area

(NVM_NV_BLOCK_NUM-1)

NV block CRC
of data area

(NVM_NV_BLOCK_NUM-1) (opt)

ROM block data area
NVM_NV_BLOCK_NUM (opt)

.

.

.

index
NVM_NV_BLOCK_NUM to

NVM_NV_BLOCK_NUM+NVM_ROM_BLOCK_NUM-1

ROM block data area
(NVM_NV_BLOCK_NUM+NVM_RO

M_BLOCK_NUM-1) (opt)

ROM

Figure 7: Dataset NVRAM block layout

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

29 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Note: This figure does not show the physical NV memory layout of a Dataset NVRAM
block. Only the logical clustering is shown.

7.1.4.7 NVRAM Manager API configuration classes

NVM149: To have the possibility to adapt the NvM module to limited hardware
resources, three different API configuration classes shall be defined:

 API configuration class 3:
All specified API calls are available. A maximum of functionality is supported.

 API configuration class 2:
An intermediate set of API calls is available.

 API configuration class 1:
Especially for matching systems with very limited hardware resources this API
configuration class offers only a minimum set of API calls which are required in
any case.

API configuration class 3 API configuration class 2 API configuration class 1

Type 1:

NvM_SetDataIndex (...)
NvM_GetDataIndex (...)
NvM_SetBlockProtection (...)
NvM_GetErrorStatus(...)
NvM_SetRamBlockStatus(...)

Type 1:

NvM_SetDataIndex (...)
NvM_GetDataIndex (...)
NvM_GetErrorStatus(...)
NvM_SetRamBlockStatus(...)

Type 1:

NvM_GetErrorStatus(...)
NvM_SetRamBlockStatus(...)

Type 2:

NvM_ReadBlock(...)
NvM_WriteBlock(...)
NvM_RestoreBlockDefaults(...)
NvM_EraseNvBlock(...)
NvM_InvalidateNvBlock(...)

Type 2:

NvM_ReadBlock(...)
NvM_WriteBlock(...)
NvM_RestoreBlockDefaults(...)

Type 2:

--

Type 3:

NvM_ReadAll(...)
NvM_WriteAll(...)
NvM_CancelWriteAll(...)

Type 3:

NvM_ReadAll(...)
NvM_WriteAll(...)
NvM_CancelWriteAll(...)

Type 3:

NvM_ReadAll(...)
NvM_WriteAll(...)
NvM_CancelWriteAll(...)

Type 4:

NvM_Init(...)

Type 4:

NvM_Init(...)

Type 4:

NvM_Init(...)

Note: For API configuration class 1 no queues are needed, no immediate data can
be written. Furthermore the API call NvM_SetRamBlockStatus is only available if
configured by NvmSetRamBlockStatusApi.

NVM365: Within API configuration class 1, the block management type
NVM_BLOCK_DATASET is not supported.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

30 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

For information regarding the definition of Type 1…4 ref. to chapter 8.7.

NVM150: The NvM module shall only contain that code that is needed to handle the
configured block types.

7.1.5 Scan order / priority scheme

NVM032: The NvM module shall support a priority based job processing. By
configuration parameter NvmJobPrioritization [NVM028] priority based job
processing shall be enabled/disabled.

NVM378: In case of priority based job processing order, the NvM module shall use
two queues, one for immediate write jobs (crash data) another for all other jobs
(including immediate read/erase jobs).

NVM379: If priority based job processing is disabled via configuration, the NvM
module shall not support immediate write jobs. In this case, the NvM module
processes all jobs in FCFS order.

NVM380: The job queue length for multi block requests originating from the
NvM_ReadAll and NvM_WriteAll shall be one (only one job is queued).

NVM381: The NvM module shall not interrupt jobs originating from the
NvM_ReadAll and NvM_WriteAll request by other requests. The NvM module
shall rather queue read / write jobs that are requested during an ongoing
NvM_ReadAll / NvM_WriteAll request and executed them subsequently.

Note: The NvM_WriteAll request can be aborted by calling
NvM_CancelWriteAll. In this case, the current block is processed completely but
no further blocks are written [NVM238].

Hint: It shall be allowed to dequeue requests, if they became obsolete by completion
of the regarding NVRAM block.

NVM152: The only exception to the rule given in [NVM380, NVM381] is a write job with
immediate priority which shall preempt the running read / write job. The preempted
job shall subsequently be resumed / restarted by the NvM module.

7.2 General behavior

7.2.1 Functional requirements

NVM383: For each asynchronous request, a notification of the caller after completion
of the job shall be a configurable option.

NVM384: The NvM module shall provide a callback interface [NVM113].

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

31 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

NVM037: The NvM module’s environment shall access the non-volatile memory via
the NvM module only. It shall not be allowed for any module (except for the NvM
module) to access the non-volatile memory directly.

NVM038: The NvM module only provides an implicit way of accessing blocks in the
NVRAM and in the shared memory (RAM). This means, the NvM module copies one
or more blocks from NVRAM to the RAM and the other way round.

The application accesses the RAM data directly, with respect to given restrictions
(e.g. synchronization).

NVM385: The NvM module shall queue all asynchronous “single block”
read/write/control requests if the block with its specific ID is not already queued or
currently in progress (multitasking restrictions).

NVM386: The NvM module shall accept multiple asynchronous “single block”
requests as long as no queue overflow occurs.

NVM155: The highest priority request shall be fetched from the queues by the NvM
module and processed in a serialized order.

NVM040: The NvM module shall implement implicit mechanisms for
consistency / integrity checks of data saved in NV memory [NVM165].

NVM156: Depending on implementation, callback routines provided and/or invoked
by the NvM module may be called in interrupt context. The NvM module providing
those routines has therefore to make sure that their runtime is reasonably short.

NVM042: The NvM module shall be able to detect corrupted / invalid data during
NvM_ReadAll by performing a checksum calculation and/or testing the RAM block
validity, which is managed in the administrative block.[NVM036] [NVM008]

NVM085: If there is no default ROM data available at configuration time or no
callback defined by NvmInitBlockCallback then the application shall be
responsible for providing the default initialization data.

In this case, the application has to use NvM_GetErrorStatus() to be able to
distinguish [NVM061] between first initialization and corrupted data. [NVM083]

NVM387: During processing of NvM_ReadAll, the NvM module shall be able to
detect corrupted / invalid RAM data by performing a checksum calculation and/or
testing the validity of a data within the administrative block.

NVM388: During startup phase and normal operation of NvM_ReadAll and if the
NvM module has detected an unrecoverable error within the NV block, the NvM
module shall copy default data (if configured) to the corresponding RAM block.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

32 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

NVM332: The NvM module shall use the BSW scheduler only, i.e. instead of directly
making use of OS objects and/or related OS services.

7.2.2 Design notes

7.2.2.1 NVRAM manager startup

NvM_Init shall be invoked by the ECU state manager exclusively.

NVM091: Due to strong constraints concerning the ECU startup time, the NvM_Init
request shall not contain the initialization of the configured NVRAM blocks.

NVM157: The NvM_Init request shall not be responsible to trigger the initialization
of underlying drivers and memory hardware abstraction. This shall also be handled
by the ECU state manager.

NVM158: The initialization of the RAM data blocks shall be done by another request,
namely NvM_ReadAll [NVM008].

NvM_ReadAll shall be called exclusively by the ECU state manager.

Software components which use the NvM module shall be responsible for checking
global error/status information resulting from the NvM module startup. The ECU state
manager shall use polling by using NvM_GetErrorStatus [NVM015] (reserved
block ID 0) or callback notification (configurable option NvmMultiBlockCallback
[NVM028]) to derive global error/status information resulting from startup. If polling is
used, the end of the NVRAM startup procedure shall be detected by the global
error/status NVM_REQ_OK or NVM_REQ_NOT_OK (during startup
NVM_REQ_PENDING) [NVM083]. If callbacks are chosen for notification, software
components shall be notified automatically if an assigned NVRAM block has been
processed.[NVM281].

Note 1: If callbacks are configured for each NVRAM block which is processed within
NvM_ReadAll, they can be used by the RTE to start e.g. SW-Cs at an early point of
time.

Note 2: To ensure that the DEM is fully operational at an early point of time, i.e. its
NV data is restored to RAM, DEM related NVRAM blocks should be configured to
have a low ID to be processed first within NvM_ReadAll.

NVM160: The NvM module shall not store the currently used Dataset index
automatically in a persistent way.

Software components shall check the specific error/status of all blocks they are
responsible for by using NvM_GetErrorStatus [NVM015] with specific block IDs to
determine the validity of the corresponding RAM blocks.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

33 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

For all blocks of the block management type “NVRAM Dataset” [NVM006] the
software component shall be responsible to set the proper index position by
NvM_SetDataIndex [NVM014]. E.g. the current index position can be
stored/maintained by the software component in a unique NVRAM block. To get the
current index position of a “Dataset Block”, the software component shall use the
NvM_GetDataIndex [NVM021] API call.

7.2.2.2 NVRAM manager shutdown

NVM092: The basic shutdown procedure shall be done by the request
NvM_WriteAll [NVM018].

Hint: NvM_WriteAll shall be invoked by the ECU state manager.

7.2.2.3 (Quasi) parallel write access to the NvM module

NVM162: The NvM module shall receive the requests via an asynchronous interface
using a queuing mechanism. The NvM module shall process all requests serially
depending on their priority.

7.2.2.4 Avoid infinite loops

NVM163: The DEM is responsible for handling the loop detection.

7.2.2.5 NVRAM block consistency check

NVM164: The NvM module shall provide implicit techniques to check the data
consistency of NVRAM blocks [NVM036], [NVM040]. The data consistency check of
a NVRAM block shall be done by CRC recalculations of its corresponding NV
block(s).

NVM165: The implicit way of a data consistency check shall be provided by
configurable options of the internal functions. The implicit consistency check shall be
configurable for each NVRAM block and depends on the configurable parameters
NvmBlockUseCrc and NvmCalcRamBlockCrc [NVM061].

7.2.2.6 Error recovery

NVM047: The NvM module shall provide techniques for error recovery. The error
recovery depends on the NVRAM block management type [NVM001].

NVM389: The NvM module shall provide errror recovery on read for every kind of
NVRAM block management type by loading of default values.

NVM390: The NvM module shall provide error recovery on read for NVRAM blocks of
block management type NVM_BLOCK_REDUNDANT by loading the redundant NV data
with default values.

NVM168: The NvM module shall provide error recovery on write by performing write
retries regardless of the NVRAM block management type.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

34 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

NVM169: The NvM module shall provide read error recovery on startup for all
NVRAM blocks with configured RAM CRC in case of RAM block revalidation failure.

7.2.2.7 Recovery of a RAM block with ROM data

NVM171: The NvM module shall provide implicit and explicit recovery techniques to
restore ROM data to its corresponding RAM block in case of unrecoverable data
inconsistency of a NV block [NVM387, NVM388].

Application hint:
As the NvM module does not provide a mechanism or special status information to
inform the caller that a ROM block has been loaded due to recovery of a RAM block,
this has to be managed by e.g. SW-Cs itself. A possible solution could be to add
additional data marking the block as ROM defaults.

7.2.2.8 Implicit recovery of a RAM block with ROM default data

NVM172: The implicit recovery shall be provided during startup (part of
NvM_ReadAll) and NvM_ReadBlock for each NVRAM block with a configured
ROM block and a permanent RAM block. If permanent RAM block and NV block are
invalid or inconsistent, operations shall be performed as specified in the table below.
The data content of the corresponding NV block shall remain unmodified.

NVRAM block
configured
with ROM

block

per. RAM
block

state + CRC

NV block
state

read attempt
from NV

fails

Actions done
regarding
per. RAM

no

--

--

--

no ROM data

loaded

yes

valid + consistent

--

--

no ROM data

loaded

yes

invalid +

(in)consistent

valid

no

no ROM data

loaded

yes

invalid +

(in)consistent

valid

yes

ROM data loaded

yes

invalid +

(in)consistent

invalid

--

ROM data loaded

7.2.2.9 Explicit recovery of a RAM block with ROM default data

NVM391: For explicit recovery with ROM block data the NvM module shall provide a
function NvM_RestoreBlockDefaults [NVM012] to restore ROM data to its
corresponding RAM block.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

35 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

NVM392: The function NvM_RestoreBlockDefaults shall remain unmodified the
data content of the corresponding NV block.

Hint:
The function NvM_RestoreBlockDefaults shall be used by the application to
restore ROM data to the corresponding RAM block every time it is needed.

7.2.2.10 Detection of an incomplete write operation to a NV block

NVM174: The detection of an incomplete write operation to a NV block is out of
scope of the NvM module. This is handled and detected by the memory hardware
abstraction. The NvM module expects to get information from the memory hardware
abstraction if a referenced NV block is invalid or inconsistent and cannot be read
when requested.
SW-Cs may use NvM_InvalidateNvBlock to prevent lower layers from delivering old
data.

7.2.2.11 Termination of a single block request

NVM175: All asynchronous requests provided by the NvM module (except for
NvM_CancelWriteAll) shall indicate their result in the designated error/status field
of the corresponding Administrative block [NVM000].

NVM176: The optional configuration parameter NvmSingleBlockCallback
configures the notification via callback on the termination of an asynchronous block
request (except for NvM_CancelWriteAll) [NVM061].

7.2.2.12 Termination of a multi block request

NVM393: The NvM module shall use a separate variable to store the result of an
asynchronous multi block request (NvM_ReadAll, NvM_WriteAll including
NvM_CancelWriteAll).

NVM394: The function NvM_GetErrorStatus [NVM015] shall return the most
recent error/status information of an asynchronous multi block request (including
NvM_CancelWriteAll) [NVM083] in conjunction with a reserved block ID value of
0.

NVM395: The result of a multi block request shall represent only a common
error/status information.

NVM396: The multi block requests provided by the NvM module shall indicate their
detailed error/status information in the designated error/status field of each affected
Administrative block.

NVM179: The optional configuration parameter NvmMultiBlockCallback
configures the notification via callback on the termination of an asynchronous multi
block request [NVM028].

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

36 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

7.2.2.13 General handling of asynchronous requests/ job processing

NVM180: Every time when CRC calculation is processed within a request, the NvM
module shall calculate the CRC in multiple steps if the referenced NVRAM block
length exceeds the number of bytes configured by the parameter
NvmCrcNumOfBytes.

NVM351: For CRC calculation, the NvM module shall use initial values which are
published by the CRC module.

NVM181: Multiple concurrent single block requests shall be queueable.

NVM182: The NvM module shall interrupt asynchronous request/job processing in
favor of jobs with immediate priority (crash data).

NVM184: If the invocation of an asynchronous function on the NvM module leads to
a job queue overflow, the function shall return with E_NOT_OK.

NVM185: On successful enqueuing a request, the NvM module shall set the request
result of the corresponding NVRAM block to NVM_REQ_PENDING.

NVM270: If the NvM module has successfully processed a job, it shall return
NVM_REQ_OK as job result.

7.2.2.14 NVRAM block write protection

The NvM module shall offer different kinds of write protection which shall be
configurable. Every kind of write protection is only related to the NV part of NVRAM
block, i.e. the RAM block data can be modified but not be written to NV memory.

NVM325: For enabling and disabling write protection the function
NvM_SetBlockProtection [NVM016] shall be used which depends on the
configuration parameters NvmBlockWriteProt and NvmWriteBlockOnce.

NvM_SetBlockProtection
can modify write
protection?

NvmBlockWriteProt NvmWriteBlockOnce

YES TRUE FALSE
YES FALSE FALSE
NO TRUE TRUE
NO FALSE TRUE

NVM326: For all NVRAM blocks configured with NvmBlockWriteProt == TRUE,
the NvM module shall enable a default write protection. The NvM module’s
environment can explicitly disable the write protection using the
NvM_SetBlockProtection function.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

37 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

NVM397: For NVRAM blocks configured with NvmWriteBlockOnce == TRUE
[NVM072], the NvM module shall only write once to the associated NV memory, i.e
in case of a blank NV device.

NVM398: For NVRAM blocks configured with NvmWriteBlockOnce == TRUE, the
NvM module shall not allow disabling the write protection explicitly using the
NvM_SetBlockProtection function.[NVM276]

7.2.2.15 Validation and modification of RAM block data

This chapter shall give summarized information regarding the internal handling of
NVRAM Manager status bits. Depending on different API calls, the influence on the
status of RAM blocks shall be described in addition to the specification items located
in chapter 8.3.

sm RAM Block States - Set v ia API

set by API

Ini tial

INVALID /
UNCHANGED

responsibilities
must not WriteAl l
must ReadAll

INVALID / CHANGED

constraints
{can never occur}

VALID /
UNCHANGED

responsibilities
may ReadAll
must not WriteAll

constraints
{RAM == NV}

VALID / CHANGED

responsibilities
must not ReadAll
must WriteAl l

constraints
{RAM != NV}

set by API means: the state is set in the synchronous part of
a service. See also: Interaction Diagram

Upon request of NvM_ReadBlock()
and NvM_RestoreBlockDefaults, i t
can be assumed that the RAM data
are not needed any longer, therefore
"INVALID".

Upon request of NvM_WriteBlock(), i t
can be assumed that the RAM
content is ("VALID" && "Changed").

NvM_ReadBlock() 1) ||
NvM_RestoreBlockDefaults()

NvM_ReadBlock() 1) ||
NvM_RestoreBlockDefaults()

NvM_SetRamBlockStatus("CHANGED")NvM_SetRamBlockStatus("UNCHANGED")

NvM_SetRamBlockStatus("UNCHANGED")

NvM_SetRamBlockStatus("CHANGED") ||
NvM_WriteBlock() 2)

NvM_SetRamBlockStatus("CHANGED") ||
NvM_WriteBlock() 2)

Power-On Reset

NvM_SetRamBlockStatus("UNCHANGED")

Figure 8: RAM block states I

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

38 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

sm RAM Block States - Read processing

during Read processing

Initial

INVALID /
UNCHANGED

responsibilities
must not Write
must Read

INVALID / CHANGED

constraints
{can never occur}

VALID /
UNCHANGED

responsibilities
may ReadAll
must not WriteAll

constraints
{RAM == NV}

VALID / CHANGED

responsibilities
must not ReadAll
must WriteAll

constraints
{RAM != NV}

Applies only to
NvM_ReadAll() processing,
since NvM_ReadBlock() and
NvM_RestroreBlockDefaults()
unconditional reset a RAM
block's state to "INVALID"

A reset occured a reset occured, and
block write failed, or
NvM_WriteAll has been
cancelled

(RAM CRC) &&
(RAM CRC match)

(RAM CRC) &&
(RAM CRC match)

(read from NV fails) &&
(no ROM defaults)

(no RAM CRC) || (RAM
CRC mismatch)

(no RAM CRC) || (RAM
CRC mismatch)

read ROM defaults completesread from NV succeeds

Power-On Reset ||
NvM_ReadAll() ||
NvM_RestoreBlockDefaults()

Figure 9: RAM block states II

NVM344: If the API for modifying the RAM block status has been configured out (via
NvmSetRamBlockStatusApi) the NvM module shall treat a RAM block as valid
and modified when writing to it, i.e. during NvM_WriteAll, the NvM module shall
write each permanent RAM block to NV memory.

NVM345: If the API for modifying the RAM block status has been configured out (via
NvmSetRamBlockStatusApi) the NvM module shall treat a RAM block as invalid
when reading it, i.e. during NvM_ReadAll, the NvM module shall copy each NVRAM
block to RAM if configured accordingly.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

39 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Note: In case of an unsuccessful block read attempt, it is the responsibility of the
application to provide valid data before the next write attempt.

7.2.2.16 Communication and synchronization between application and
NVRAM manager

To minimize locking/unlocking overhead or the use of other synchronization methods,
the communication between applications and the NvM module must follow a strict
sequence of steps which is described below. This ensures a reliable communication
between applications and the NvM module and avoids data corruption in RAM blocks
and a proper synchronization is guaranteed.

This access model assumes that two parties are involved in communication with a
RAM block: The application and the NvM module.

If several applications are using the same RAM block it is not the job of the NvM
module to ensure the data integrity of the RAM block. In this case, the applications
have to synchronize their accesses to the RAM block and have to guarantee that no
unsuitable accesses to the RAM block take place during NVRAM operations (details
see below).
Especially if several applications are sharing a NVRAM block by using (different)
temporary RAM blocks, synchronization between applications becomes more
complex and this is not handled by the NvM module, too. In case of using callbacks
as notification method, it could happen that e.g. an application gets a notification
although the request has not been initiated by this application.

All applications have to adhere to the following rules.

7.2.2.16.1 Write requests (NvM_WriteBlock)

1. The application fills a RAM block with the data that has to be written by the NvM
module.

2. The application issues the NvM_WriteBlock request which transfers control to
the NvM module.

3. From now on the application must not modify the RAM block until success or

failure of the request is signaled or derived via polling. In the meantime the
contents of the RAM block may be read.

4. An application can use polling to get the status of the request or can be informed

via a callback function asynchronously.

5. After completion of the NvM module operation, the RAM block is reusable for

modifications.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

40 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

7.2.2.16.2 Read requests (NvM_ReadBlock)

1. The application provides a RAM block that has to be filled with NVRAM data from
the NvM module’s side.

2. The application issues the NvM_ReadBlock request which transfers control to

the NvM module.

3. From now on the application must not read or write to the RAM block until

success or failure of the request is signaled or derived via polling.

4. An application can use polling to get the status of the request or can be informed

via a callback function.

5. After completion of the NvM module operation, the RAM block is available with

new data for use by the application.

7.2.2.16.3 Restore default requests (NvM_RestoreBlockDefaults)

1. The application provides a RAM block, which has to be filled with ROM data from
the NvM modules side.

2. The application issues the NvM_RestoreBlockDefaults request which transfers

control to the NvM module.

3. From now on the application must not read or write to the RAM block until

success or failure of the request is signaled or derived via polling.

4. An application can use polling to get the status of the request or can be informed

via a callback function.

5. After completion of the NvM module operation, the RAM block is available with

the ROM data for use by the application.

7.2.2.16.4 Multi block read requests (NvM_ReadAll)

This request may be triggered only by the ECU state manager at system startup.
This request fills all configured permanent RAM blocks with necessary data for
startup.

If the request fails or the request is handled only partially successful, the NVRAM-
Manager signals this condition to the DEM and returns an error to the ECU state
manager. The DEM and the ECU state manager have to decide about further
measures that have to be taken. These steps are beyond the scope of the NvM
module and are handled in the specifications of DEM and ECU state manager.

Normal operation:

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

41 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

1. The ECU state manager issues the NvM_ReadAll.

2. The ECU state manager can use polling to get the status of the request or can
be informed via a callback function.

3. During NvM_ReadAll, a single block callback (if configured) will be invoked

after having completely processed a NVRAM block. These callbacks enable
the RTE to start each SW-C individually.

7.2.2.16.5 Multi block write requests (NvM_WriteAll)

This request must only be triggered by the ECU state manager at shutdown of the
system. This request writes the contents of all modified permanent RAM blocks to NV
memory. By calling this request only during ECU shutdown, the ECU state manager
can ensure that no SW component is able to modify data in the RAM blocks until the
end of the operation. These measures are beyond the scope of the NvM module and
are handled in the specifications of the ECU state manager.

Normal operation:

1. The ECU state manager issues the NvM_WriteAll request which transfers
control to the NvM module.

2. The ECU state manager can use polling to get the status of the request or can

be informed via a callback function.

7.2.2.16.6 Cancel Operation (NvM_CancelWriteAll)

This request cancels a pending NvM_WriteAll request. This is an asynchronous
request and can be called to terminate a pending NvM_WriteAll request. This
request shall only be used by the ECU state manager.

7.2.2.16.7 Modification of administrative blocks

For administrative purposes an administrative block is part of each configured
NVRAM block (ref. to ch. 7.1.3.4).

If there is a pending single-block operation for a NVRAM block, the
application is not allowed to call any operation that modifies the
administrative block, like NvM_SetDataIndex, NvM_SetBlockProtection,
SetRamBlockStatus, until the pending job has finished.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

42 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

7.2.2.17 Normal and extended runtime preparation of NVRAM blocks

This subchapter is supposed to provide a short summary of normal and extended
runtime preparation of NVRAM blocks. The detailed behavior regarding the handling
of NVRAM blocks during start-up is specified in chapter 8.3.3.1.

Depending on the two configuration parameters NvmDynamicConfiguration and
NvmResistantToChangedSw the NVRAM Manager shall behave in different ways
during start-up, i.e. while processing the request NvM_ReadAll().
If NvmDynamicConfiguration is set to FALSE, the NVRAM Manager shall ignore the
stored configuration ID and continue with the normal runtime preparation of NVRAM
blocks. In this case the RAM block shall be checked for its validity. If the RAM block
content is detected to be invalid the NV block shall be checked for its validity. A NV
block which is detected to be valid shall be copied to its assigned RAM block. If an
invalid NV Block is detected default data shall be loaded.
If NvmDynamicConfiguration is set to TRUE and a configuration ID mismatch is
detected, the extended runtime preparation shall be performed for those NVRAM
blocks which are configured with NvmResistantToChangedSw(FALSE). In this case
default data shall be loaded independent of the validity of an assigned RAM or NV
block.

7.3 Error classification

NVM186: Values for production code Event Ids are assigned externally by the
configuration of the Dem. They are published in the file Dem_IntErrId.h and
included via Dem.h.

NVM187: Development error values are of type uint8.

NVM023: The following errors and exceptions shall be detectable by the NvM
module depending on its build version (development/production mode).

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

43 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Type or error Relevance Related error code Value[hex]

API requests called with wrong
parameter

Development NVM_E_PARAM_BLOCK_ID
NVM_E_PARAM_BLOCK_TYPE
NVM_E_PARAM_BLOCK_DATA_IDX
NVM_E_PARAM_ADDRESS
NVM_E_PARAM_DATA

0x0A
0x0B
0x0C
0x0D
0x0E

NVRAM manager is still not
initialized

Development NVM_E_NOT_INITIALIZED 0x14

API read/write/control request
failed because a block with the
same ID is already listed or
currently in progress

Development NVM_E_BLOCK_PENDING 0x15

NVRAM manager job queue
overflow occurred

Development NVM_E_LIST_OVERFLOW 0x16

A write attempt to a write
protected NVRAM block was
requested.

Development NVM_E_NV_WRITE_PROTECTED 0x17

The service is not possible with
this block configuration.

Development NVM_E_BLOCK_CONFIG 0x18

API request integrity failed Production NVM_E_INTEGRITY_FAILED Assigned by
DEM

API request failed Production NVM_E_REQ_FAILED Assigned by
DEM

NVM024: Additional errors that are detected because of specific implementation
and/or specific hardware properties shall be added in the NvM module
implementation specification. The classification and enumeration shall be compatible
to the errors listed above [NVM023].

7.4 Error detection

NVM025: The detection of development errors is configurable (ON / OFF) at pre-
compile time. The switch NvmDevErrorDetect (see chapter 10) shall activate or
deactivate the detection of all development errors.

NVM188: If the NvmDevErrorDetect switch is enabled API parameter checking is
enabled. The detailed description of the detected errors can be found in chapter 7.3.

NVM189: The detection of production code errors cannot be switched off.

NVM027: If development error detection is enabled for this module [NVM028], the
following table specifies which DET error values shall be reported for each API call:

API call Error condition DET related error value
NvM_Init -- --

NVM not yet initialized NVM_E_NOT_INITIALIZED NvM_SetDataIndex
NVRAM block identifier is already
queued or currently in progress

NVM_E_BLOCK_PENDING

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

44 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

DataIndex parameter exceeds the
total number of configured datasets
NVM444, NVM445

NVM_E_PARAM_BLOCK_DATA_IDX

The request is not possible in
conjunction with the configured
block management type.

NVM_E_PARAM_BLOCK_TYPE

The passed BlockID is out of range NVM_E_PARAM_BLOCK_ID
NVM not yet initialized NVM_E_NOT_INITIALIZED

The request is not possible in
conjunction with the configured
block management type.

NVM_E_PARAM_BLOCK_TYPE

The passed BlockID is out of range NVM_E_PARAM_BLOCK_ID

NvM_GetDataIndex

A NULL pointer is passed via the
parameter DataIndexPtr.

NVM_E_PARAM_DATA

NVM not yet initialized NVM_E_NOT_INITIALIZED

NVRAM block identifier is already
queued or currently in progress

NVM_E_BLOCK_PENDING

The NVRAM block is configured
with NvmWriteBlockOnce = TRUE

NVM_E_BLOCK_CONFIG

NvM_SetBlockProtection

The passed BlockID is out of range NVM_E_PARAM_BLOCK_ID
NVM not yet initialized NVM_E_NOT_INITIALIZED

The passed BlockID is out of range NVM_E_PARAM_BLOCK_ID

NvM_GetErrorStatus

A NULL pointer is passed via the
parameter RequestResultPtr.

NVM_E_PARAM_DATA

NvM_GetVersionInfo A NULL pointer is passed via the
parameter versioninfo.

NVM_E_PARAM_DATA

NVM not yet initialized NVM_E_NOT_INITIALIZED

NVRAM block identifier is already
queued or currently in progress

NVM_E_BLOCK_PENDING

No permanent RAM block is
configured and a NULL pointer is
passed via the parameter
NvM_DstPtr.

NVM_E_PARAM_ADDRESS

A job queue overflow occured NVM_E_LIST_OVERFLOW

NvM_ReadBlock

The passed BlockID is out of range NVM_E_PARAM_BLOCK_ID
NVM not yet initialized NVM_E_NOT_INITIALIZED

NVRAM block identifier is already
queued or currently in progress

NVM_E_BLOCK_PENDING

A job queue overflow occured NVM_E_LIST_OVERFLOW
No permanent RAM block is
configured and a NULL pointer is
passed via the parameter
NvM_SrcPtr

NVM_E_PARAM_ADDRESS

A write protected NVRAM block is
referenced by the passed BlockID.

NVM_E_NV_WRITE_PROTECTED

NvM_WriteBlock

The passed BlockID is out of range NVM_E_PARAM_BLOCK_ID
NVM not yet initialized NVM_E_NOT_INITIALIZED

NVRAM block identifier is already
queued or currently in progress

NVM_E_BLOCK_PENDING

NvM_RestoreBlockDefaults

A job queue overflow occured NVM_E_LIST_OVERFLOW

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

45 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Default data is not
available/configured for the
referenced NVRAM block.

NVM_E_BLOCK_CONFIG

No permanent RAM block is
configured and a NULL pointer is
passed via the parameter
NvM_DstPtr

NVM_E_PARAM_ADDRESS

The passed BlockID is out of range NVM_E_PARAM_BLOCK_ID
NVM not yet initialized NVM_E_NOT_INITIALIZED
NVRAM block identifier is already
queued or currently in progress

NVM_E_BLOCK_PENDING

A job queue overflow occured NVM_E_LIST_OVERFLOW
A write protected NVRAM block is
referenced by the passed BlockID.

NVM_E_NV_WRITE_PROTECTED

The passed BlockID is out of range NVM_E_PARAM_BLOCK_ID

NvM_EraseNvBlock

The NVRAM block has not
immediate priority

NVM_E_BLOCK_CONFIG

NvM_CancelWriteAll NVM not yet initialized NVM_E_NOT_INITIALIZED
NVM not yet initialized NVM_E_NOT_INITIALIZED
NVRAM block identifier is already
queued or currently in progress

NVM_E_BLOCK_PENDING

A job queue overflow occured NVM_E_LIST_OVERFLOW
A write protected NVRAM block is
referenced by the passed BlockID.

NVM_E_NV_WRITE_PROTECTED

NvM_InvalidateNvBlock

The passed BlockID is out of range NVM_E_PARAM_BLOCK_ID
NVM not yet initialized NVM_E_NOT_INITIALIZED
NVRAM block identifier is already
queued or currently in progress

NVM_E_BLOCK_PENDING
NvM_SetRamBlockStatus

The passed BlockID is out of range NVM_E_PARAM_BLOCK_ID
NvM_ReadAll NVM not yet initialized NVM_E_NOT_INITIALIZED
NvM_WriteAll NVM not yet initialized NVM_E_NOT_INITIALIZED

7.5 Error notification

NVM026: Production errors shall be reported to the Diagnostic Event Manager.

NVM191: Detected development errors shall be reported to the Det_ReportError
service of the Development Error Tracer (DET) if the pre-processor switch
PWM_DEV_ERROR_DETECT is set (see chapter 10).

7.6 Version check

NVM089: NvM.c shall check if the correct version of NvM.h is included. This shall be
done by a preprocessor check of the version number NVM_SW_MAJOR_VERSION
[NVM022].

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

46 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

8 API specification

8.1 Imported types

In this chapter all types included from the following files are listed:

NVM446:

Header file Imported Type

MemIf_ModeType
MemIf_JobResultType

MemIf_Types.h

MemIf_StatusType
Dem_Types.h Dem_EventIdType

Std_VersionInfoType Std_Types.h
Std_ReturnType

8.2 Type definitions

8.2.1 NvM_RequestResultType

NVM083: The type NvM_RequestResultType is an asynchronous request result,
which will be returned by the API service NvM_GetErrorStatus [NVM015].

NVM470:

Name: NvM_RequestResultType
Type: uint8

NVM_REQ_OK 0The last asynchronous read/write/control request
has been finished successfully. This shall be the
default value after reset. This status shall have the
value 0.

NVM_REQ_NOT_OK 1The last asynchronous read/write/control request
has been finished unsuccessfully.

NVM_REQ_PENDING 2An asynchronous read/write/control request is
currently pending.

Range:

NVM_REQ_INTEGRITY_FAILED3The result of the last asynchronous request

NvM_ReadBlock or NvM_ReadAll

is a data integrity failure.

Note:
In case of

NvM_ReadBlock

the content of the RAM block has changed but has
become invalid. The application is responsible to
renew and validate the RAM block content.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

47 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

NVM_REQ_BLOCK_SKIPPED 4The referenced block was skipped during
execution of NvM_ReadAll or NvM_WriteAll, e.g.
Dataset NVRAM blocks (NvM_ReadAll) or NVRAM
blocks without a permanently configured RAM
block.

NVM_REQ_NV_INVALIDATED 5The referenced NV block is invalidated.
NVM_REQ_CANCELLED 6The multi block request NvM_WriteAll was

cancelled by calling NvM_CancelWriteAll.
Description: This is an asynchronous request result returned by the API service

NvM_GetErrorStatus. The availability of an asynchronous request result can be
additionally signaled via a callback function.

8.2.2 NvM_BlockIdType

NVM471:

Name: NvM_BlockIdType
Type: uint16
Range: 0..2^(16-

NVM_DATASET_SELECTION_BITS)-
1

--

Description: Identification of a NVRAM block via a unique block identifier.

Reserved NVRAM block IDs:
0 -> to derive multi block request results via NvM_GetErrorStatus
1 -> redundant NVRAM block which holds the configuration ID

NVM475: The NVRAM block IDs are expected to be in a sequential order, i.e. the
NVRAM manager does not need to be capable of handling non-sequential NVRAM
block IDs.

8.3 Function definitions

8.3.1 Synchronous requests

8.3.1.1 NvM_Init

NVM447:

Service name: NvM_Init
Syntax: void NvM_Init(

)

Service ID[hex]: 0x00
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters
(inout):

None

Parameters (out): None
Return value: None

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

48 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Description: Service for resetting all internal variables.

NVM399: The function NvM_Init shall reset all internal variables, e.g. the queues,
request flags, state machines, to their initial values. It shall signal “INIT DONE”
internally, e.g. to enable job processing and queue management.

NVM400: The function NvM_Init shall not modify the permanent RAM block contents,
as this shall be done on NvM_ReadAll.

NVM192: The function NvM_Init shall set the dataset index of all NVRAM blocks of
type NVM_BLOCK_DATASET to zero.

NVM193: The function NvM_Init shall not initialize other modules (it is assumed
that the underlying layers are already initialized).

The function NvM_Init is affected by the common [NVM028] and published
[NVM022] configuration parameter.

Hint:
The time consuming NVRAM block initialization and setup according to the block
descriptor [NVM061] shall be done by the NvM_ReadAll request [NVM008].

8.3.1.2 NvM_SetDataIndex

NVM448:

Service name: NvM_SetDataIndex
Syntax: void NvM_SetDataIndex(

 NvM_BlockIdType BlockId,
 uint8 DataIndex
)

Service ID[hex]: 0x01
Sync/Async: Synchronous
Reentrancy: Reentrant

BlockId The block identifier uniquely identifies one NVRAM block descriptor. A
NVRAM block descriptor contains all needed information about a single
NVRAM block. Parameters (in):

DataIndex Index position (association) of a NV/ROM block.
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: Service for setting the DataIndex of a dataset NVRAM block.

NVM014: The function NvM_SetDataIndex shall set the index to access a certain
dataset of a NVRAM block (with/without ROM blocks).

NVM263: The function NvM_SetDataIndex shall leave the content of the
corresponding RAM block unmodified.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

49 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

NVM264: The NvM module’s environment shall use the function
NvM_SetDataIndex in conjunction with dataset NVRAM block management types.
The function NvM_SetDataIndex shall be able to be used in conjunction with all
other block management types but without any effect in production mode.

Regarding error detection, the requirement NVM027 is applicable to the function
NvM_SetDataIndex.

NVM401: The NvM module’s environment shall have initialized the NvM module
before it calls the function NvM_SetDataIndex.

Hint:
NVRAM common block configuration parameters [NVM028], block management
types [NVM061] and one configured NVRAM block descriptor needed [NVM062].

8.3.1.3 NvM_GetDataIndex

NVM449:

Service name: NvM_GetDataIndex
Syntax: void NvM_GetDataIndex(

 NvM_BlockIdType BlockId,
 uint8* DataIndexPtr
)

Service ID[hex]: 0x02
Sync/Async: Synchronous
Reentrancy: Reentrant

Parameters (in):
BlockId The block identifier uniquely identifies one NVRAM block descriptor.

A NVRAM block descriptor contains all needed information about a
single NVRAM block.

Parameters
(inout):

None

Parameters (out): DataIndexPtr Pointer to where to store the current dataset index (0..255)
Return value: None
Description: Service for getting the currently set DataIndex of a dataset NVRAM block

NVM021: The function NvM_GetDataIndex shall get the current index (association)
of a dataset NVRAM block (with/without ROM blocks).

NVM265: The function NvM_GetDataIndex shall be able to be used in conjunction
with all other block management types than dataset block management type is
possible but without any effect in production mode. In this case, the function shall
return zero, i.e. the function shall set the pointer DataIndexPtr to zero.

Regarding error detection, the requirement NVM027 is applicable to the function
NvM_GetDataIndex.

NVM402: The NvM module’s environment shall have initialized the NvM module
before it calls the function NvM_GetDataIndex.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

50 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Hint:
NVRAM common block configuration parameters [NVM028], block management
types [NVM061] and one configured NVRAM block descriptor needed [NVM062].

8.3.1.4 NvM_SetBlockProtection

NVM450:

Service name: NvM_SetBlockProtection
Syntax: void NvM_SetBlockProtection(

 NvM_BlockIdType BlockId,
 boolean ProtectionEnabled
)

Service ID[hex]: 0x03
Sync/Async: Synchronous
Reentrancy: Reentrant

BlockId The block identifier uniquely identifies one NVRAM block
descriptor. A NVRAM block descriptor contains all needed
information about a single NVRAM block. Parameters (in):

ProtectionEnabledTRUE: Write protection shall be enabled
FALSE: Write protection shall be disabled

Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: Service for setting/resetting the write protection for a NV block.

NVM016: The function NvM_SetBlockProtection shall set/reset the write
protection for the corresponding NV block by setting the write protection attribute in
the administrative part of the corresponding NVRAM block.

NVM276: The function NvM_SetBlockProtection shall not change the write
protection of NV blocks with NvmWriteBlockOnce == TRUE.

Regarding error detection, the requirement NVM027 is applicable to the function
NvM_SetBlockProtection.

NVM403: The NvM module’s environment shall have initialized the NvM module
before it calls the function NvM_SetBlockProtection.

Hint:
NVRAM common block configuration parameters [NVM028], block management
types [NVM061] and one configured NVRAM block descriptor needed [NVM062].

8.3.1.5 NvM_GetErrorStatus

NVM451:

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

51 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Service name: NvM_GetErrorStatus
Syntax: void NvM_GetErrorStatus(

 NvM_BlockIdType BlockId,
 uint8* RequestResultPtr
)

Service ID[hex]: 0x04
Sync/Async: Synchronous
Reentrancy: Reentrant

Parameters (in):
BlockId The block identifier uniquely identifies one NVRAM block

descriptor. A NVRAM block descriptor contains all needed
information about a single NVRAM block.

Parameters
(inout):

None

Parameters (out):
RequestResultPtr Pointer to where to store the request result. See

NvM_RequestResultType .
Return value: None
Description: Service to read the block dependent error/status information.

NVM015: The function NvM_GetErrorStatus shall read the block dependent
error/status information in the administrative part of a NVRAM block.

The status/error information of a NVRAM block shall be set by a former or current
asynchronous request.

Regarding error detection, the requirement NVM027 is applicable to the function
NvM_GetErrorStatus.

NVM404: The NvM module’s environment shall have initialized the NvM module
before it calls the function NvM_GetErrorStatus.

NVRAM common block configuration parameters [NVM028], block management
types [NVM061] and one configured NVRAM block descriptor are needed in the
configuration with respect to the function NvM_GetErrorStatus [NVM062].

8.3.1.6 NvM_GetVersionInfo

NVM452:

Service name: NvM_GetVersionInfo
Syntax: void NvM_GetVersionInfo(

 Std_VersionInfoType* versioninfo
)

Service ID[hex]: 0x0f
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters
(inout):

None

Parameters (out): versioninfo Pointer to where to store the version information of this module.
Return value: None
Description: Service to get the version information of the NvM module.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

52 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

NVM285: The function NvM_GetVersionInfo shall return the version information
of this module. The version information includes:

- Module Id
- Vendor Id
- Vendor specific version numbers (BSW00407).

NVM286: The function NvM_GetVersionInfo shall be pre-compile time
configurable On/Off by the configuration parameter: NvmVersionInfoApi

Hint:
If source code for caller and callee of the function NvM_GetVersionInfo is
available, the function should be realized as a macro. The macro should be defined
in the modules header file.

The function NvM_GetVersionInfo is affected by the common block configuration
parameter [NVM028].

8.3.1.7 NvM_SetRamBlockStatus

NVM453:

Service name: NvM_SetRamBlockStatus
Syntax: void NvM_SetRamBlockStatus(

 NvM_BlockIdType BlockId,
 boolean BlockChanged
)

Service ID[hex]: 0x05
Sync/Async: Synchronous
Reentrancy: Reentrant

BlockId The block identifier uniquely identifies one NVRAM block descriptor.
A NVRAM block descriptor contains all needed information about a
single NVRAM block. Parameters (in):

BlockChanged TRUE: Validate the RAM block and mark block as changed.
FALSE: Invalidate the RAM block and mark block as unchanged.

Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: Service for setting the RAM block status of an NVRAM block.

NVM240: The function NvM_SetRamBlockStatus shall only work on NVRAM
blocks with a permanently configured RAM block and shall have no effect to other
NVRAM blocks.

NVM241: The function NvM_SetRamBlockStatus shall assume that a changed
permanent RAM block is valid (basic assumption).

NVM405: When the “BlockChanged” parameter passed to the function
NvM_SetRamBlockStatus is FALSE the corresponding RAM block is either invalid
or unchanged (or both).

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

53 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

NVM406: When the “BlockChanged” parameter passed to the function
NvM_SetRamBlockStatus is TRUE, the corresponding permanent RAM block is
valid and changed.

NVM121: The function NvM_SetRamBlockStatus shall request the recalculation of
CRC in the background, i.e. the CRC recalculation shall be processed by the
NvM_MainFunction, if the given “BlockChanged” parameter is TRUE and CRC
calculation in RAM is configured (i.e. NvmCalcRamBlockCrc == TRUE).

Hint:
In some cases, a permanent RAM block cannot be validated neither by a reload of its
NV data, nor by a load of its ROM data during the execution of a NvM_ReadAll
command (startup). The application is responsible to fill in proper data to the RAM
block and to validate the block via the function NvM_SetRamBlockStatus before
this RAM block can be written to its corresponding NV block by NvM_WriteAll.

It is expected that the function NvM_SetRamBlockStatus will be called frequently
for NVRAM blocks which are configured to be protected in RAM via CRC. Otherwise
this function only needs to be called once to mark a block as “changed” and to be
processed during NvM_WriteAll.

Regarding error detection, the requirement NVM027 is applicable to the function
NvM_SetRamBlockStatus.

NVM407: The NvM module’s environment shall have initialized the NvM module
before it calls the function NvM_SetRamBlockStatus.

NVM408: The NvM module shall provide the function NvM_SetRamBlockStatus
only if it is configured via NvmSetRamBlockStatusApi [NVM028].

NVRAM common configuration parameters [NVM028], block management types
[NVM061] and one configured NVRAM block descriptor are needed in the
configuration with respect to the function NvM_SetRamBlockStatus [NVM062].

8.3.2 Asynchronous single block requests

8.3.2.1 NvM_ReadBlock

NVM454:

Service name: NvM_ReadBlock
Syntax: Std_ReturnType NvM_ReadBlock(

 NvM_BlockIdType BlockId,
 uint8* NvM_DstPtr
)

Service ID[hex]: 0x06
Sync/Async: Asynchronous

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

54 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Reentrancy: Reentrant

Parameters (in):
BlockId The block identifier uniquely identifies one NVRAM block

descriptor. A NVRAM block descriptor contains all needed
information about a single NVRAM block.

Parameters
(inout):

None

Parameters (out): NvM_DstPtr Pointer to the RAM data block.

Return value:
Std_ReturnType E_OK: request has been accepted

E_NOT_OK: request has not been accepted
Description: Service to copy the data of the NV block to its corresponding RAM block.

NVM010: The job of the function NvM_ReadBlock shall copy the data of the NV
block to the corresponding RAM block.

NVM195: The function NvM_ReadBlock shall take over the given parameters,
queue the read request in the job queue and return.

NVM196: The NvM module’s environment shall pass a NULL pointer or the address
of the permanent RAM block via the parameter NvM_DstPtr if the referenced RAM
block is configured to be permanent available.

NVM278: The job of the function NvM_ReadBlock shall provide the possibility to
copy NV data to a temporary RAM block although the NVRAM block is configured
with a permanent RAM block. In this case, the parameter NvM_DstPtr must be
unequal to the NULL pointer.

NVM198: The function NvM_ReadBlock shall invalidate a permanent RAM block
immediately when the block is successfully enqueued or the job processing starts,
i.e. copying data from NV memory or ROM to RAM.

[NVM199: The job of the function NvM_ReadBlock shall initiate a read attempt on
the second NV block if the passed BlockId references a NVRAM block of type
NVM_BLOCK_REDUNDANT and the read attempt on the first NV block fails.

NVM340: In case of NVRAM block management type NVM_BLOCK_DATASET, the job
of the function NvM_ReadBlock shall copy only that NV block to the corresponding
RAM block which is selected via the data index in the administrative block.

NVM355: The job of the function NvM_ReadBlock shall not copy the NV block to the
corresponding RAM block if the NVRAM block management type is
NVM_BLOCK_DATASET and the NV block selected by the dataset index is invalidate
or inconsistent.

NVM354: The job of the function NvM_ReadBlock shall copy the ROM block to RAM
and set the job result to NVM_REQ_OK if the NVRAM block management type is
NVM_BLOCK_DATASET and the dataset index points at a ROM block.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

55 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

NVM200: The job of the function NvM_ReadBlock shall set the RAM block to valid
and assume it to be unchanged after a successful copy process of the NV block to
RAM.

NVM366: The job of the function NvM_ReadBlock shall set the RAM block to valid
and assume it to be changed if the default values are copied to the RAM
successfully.

NVM206: The job of the function NvM_ReadBlock shall set the job result to
NVM_REQ_OK if the NV block was copied successfully from NV memory to RAM.

NVM341: The job of the function NvM_ReadBlock shall set the request result to
NVM_REQ_NV_INVALIDATED and shall report no error to the DEM if the MemIf
reports MEMIF_BLOCK_INVALID.

NVM358: The job of the function NvM_ReadBlock shall set the request result to
NVM_REQ_INTEGRITY_FAILED and report NVM_E_INTEGRITY_FAILED to the
DEM if the MemIf reports MEMIF_BLOCK_INCONSISTENT.

NVM359: The job of the function NvM_ReadBlock shall set the request result to
NVM_REQ_NOT_OK and report NVM_E_REQ_FAILED to the DEM if the MemIf reports
MEMIF_JOB_FAILED.

NVM279: The job of the function NvM_ReadBlock shall set the job result to
NVM_REQ_OK and report no error to the DEM if the block management type of the
given NVRAM block is NVM_BLOCK_REDUNDANT and one of the NV blocks was
copied successfully from NV memory to RAM.

NVM316: The job of the function NvM_ReadBlock shall mark every NVRAM block
that is not detected by underlying SW as being invalidated and that has been
configured with NvmWriteBlockOnce == TRUE as write protected.

Hint: This write protection must not be cleared by NvM_SetBlockProtection.

NVM317: The job of the function NvM_ReadBlock shall invalidate a NVRAM block of
management type redundant if both NV blocks have been invalidated.

NVM201: The job of the function NvM_ReadBlock shall request a CRC recalculation
over the RAM block data after the copy process [NVM180] if the NV block is
configured with CRC.

NVM202: The job of the function NvM_ReadBlock shall load the default values
according to processing of NvM_RestoreBlockDefaults if the recalculated CRC
is not equal to the CRC stored in NV memory or the read request passed to the
underlying layer fails. If there are no default values available, the RAM blocks shall
remain invalid.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

56 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

NVM203: The job of the function NvM_ReadBlock shall report
NVM_E_INTEGRITY_FAILED to the DEM if a CRC mismatch occurs.

NVM204: The job of the function NvM_ReadBlock shall set the job result
NVM_REQ_INTEGRITY_FAILED if a CRC mismatch occurs.

Regarding error detection, the requirement NVM027 is applicable to the function
NvM_ReadBlock.

NVM409: The NvM module’s environment shall have initialized the NvM module
before it calls the function NvM_ReadBlock.

NVRAM common block configuration parameters [NVM028], block management
types [NVM061] and one configured NVRAM block descriptor are needed for
configuration with respected to the function NvM_ReadBlock [NVM062].

8.3.2.2 NvM_WriteBlock

NVM455:

Service name: NvM_WriteBlock
Syntax: Std_ReturnType NvM_WriteBlock(

 NvM_BlockIdType BlockId,
 const uint8* NvM_SrcPtr
)

Service ID[hex]: 0x07
Sync/Async: Asynchronous
Reentrancy: Reentrant

BlockId The block identifier uniquely identifies one NVRAM block
descriptor. A NVRAM block descriptor contains all needed
information about a single NVRAM block. Parameters (in):

NvM_SrcPtr Pointer to the RAM data block.
Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: request has been accepted

E_NOT_OK: request has not been accepted
Description: Service to copy the data of the RAM block to its corresponding NV block.

NVM410: The job of the function NvM_WriteBlock shall copy the data of the RAM
block to its corresponding NV block.

NVM411: The function NvM_WriteBlock shall test the write protection attribute of
the NV block in the administrative part of the corresponding RAM block.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

57 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

NVM217: The function NvM_WriteBlock shall return with E_NOT_OK, if a write
protected NVRAM block is referenced by the passed BlockId parameter.

NVM208: The function NvM_WriteBlock shall take over the given parameters,
queue the write request in the job queue and return.

NVM209: The function NvM_WriteBlock shall check the NVRAM block protection
when the request is enqueued but not again before the request is executed.

NVM300: The function NvM_WriteBlock shall cancel a pending job immediately in
a destructive way if the passed BlockId references a NVRAM block configured to
have immediate priority. The immediate job shall be the next active job to be
processed.

NVM210: The NvM module’s environment shall pass a NULL pointer or the address
of a permanent RAM block as parameter NvM_SrcPtr to the function
NvM_WriteBlock if the referenced RAM block is configured to be permanent
available.

NVM280: The job of the function NvM_WriteBlock shall provide the possibility to
copy a temporary RAM block to a NV block although the NVRAM block is configured
with a permanent RAM block. In this case, the parameter NvM_SrcPtr must be
unequal to a NULL pointer.

NVM212: The job of the function NvM_WriteBlock shall request a CRC
recalculation before the RAM block will be copied to NV memory if the NV block is
configured with CRC [NVM180].

NVM338: The job of the function NvM_WriteBlock shall copy the RAM block to the
corresponding NV block which is selected via the data index in the administrative
block if the NVRAM block management type of the given NVRAM block is
NVM_BLOCK_DATASET.

NVM303: The job of the function NvM_WriteBlock shall assume a referenced
permanent RAM block to be valid when the request is passed to the NvM module. If
the permanent RAM block is still in an invalid state, the function NvM_WriteBlock
shall validate it automatically before copying the RAM block contents to NV memory.

NVM213: The job of the function NvM_WriteBlock shall check the number of write
retries using a write retry counter to avoid infinite loops. Each negative result
reported by the memory interface shall be followed by an increment of the retry
counter. In case of a retry counter overrun, the job of the function NvM_WriteBlock
shall set the job result to NVM_REQ_NOT_OK and report NVM_E_REQ_FAILED to the
DEM.

NVM216: The configuration parameter NVM_MAX_NO_OF_WRITE_RETRIES
[NVM028] shall prescribe the maximum number of write retries for the job of the

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

58 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

function NvM_WriteBlock when RAM block data cannot be written successfully to
the corresponding NV block.

NVM472: In case of a RAM block is successfully copied to NV memory the RAM
block state shall be set to "valid/unmodified" afterwards.

NVM284: The job of the function NvM_WriteBlock shall set NVM_REQ_OK as job
result if the passed BlockId references a NVRAM block of type
NVM_BLOCK_REDUNDANT and one of the NV blocks have been written successfully.

NVM328: The job of the function NvM_WriteBlock shall set the write protection flag
in the administrative block immediately if the NVRAM block is configured with
NvmWriteBlockOnce == TRUE and the data has been written successfully to the
NV block.

Regarding error detection, the requirement NVM027 is applicable to the function
NvM_WriteBlock.

NVM412: The NvM module’s environment shall have initialized the NvM module
before it calls the function NvM_WriteBlock.

Hint:
To avoid the situation that in case of redundant NVRAM blocks two different NV
blocks are containing different but valid data at the same time, each client of the
function NvM_WriteBlock may call NvM_InvalidateNvBlock in advance.

NVRAM common block configuration parameters [NVM028], block management
types [NVM061] and one configured NVRAM block descriptor are needed in the
configuration with respect to the function NvM_WriteBlock [NVM062].

8.3.2.3 NvM_RestoreBlockDefaults

NVM456:

Service name: NvM_RestoreBlockDefaults
Syntax: Std_ReturnType NvM_RestoreBlockDefaults(

 NvM_BlockIdType BlockId,
 uint8* NvM_DestPtr
)

Service ID[hex]: 0x08
Sync/Async: Asynchronous
Reentrancy: Non Reentrant

Parameters (in):
BlockId The block identifier uniquely identifies one NVRAM block

descriptor. A NVRAM block descriptor contains all needed
information about a single NVRAM block.

Parameters
(inout):

None

Parameters (out): NvM_DestPtr Pointer to the RAM data block.

Return value:
Std_ReturnType E_OK: request has been accepted

E_NOT_OK: request has not been accepted

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

59 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Description: Service to restore the default data to its corresponding RAM block.

NVM012: The job of the function NvM_RestoreBlockDefaults shall restore the
default data to its corresponding RAM block.

NVM224: The function NvM_RestoreBlockDefaults shall take over the given
parameters, queue the request in the job queue and return.

NVM267: The job of the function NvM_RestoreBlockDefaults shall load the
default data from a ROM block if a ROM block is configured.

NVM266: The NvM module’s environment shall call the function
NvM_RestoreBlockDefaults to obtain the default data if no ROM block is
configured for a NVRAM block and an application callback routine is configured via
the parameter NvmInitBlockCallback.

NVM353: The function NvM_RestoreBlockDefaults shall return with E_NOT_OK
if the block management type of the given NVRAM block is NVM_BLOCK_DATASET,
at least one ROM block is configured and the data index points at a NV block.

NVM435: The NvM module’s environment shall pass a NULL pointer via the
parameter NvM_DstPtr to the function NvM_RestoreBlockDefaults if the
referenced RAM block is configured to be permanent available

NVM436: The NvM module’s environment shall pass a pointer unequal to NULL via
the parameter NvM_DstPtr to the function NvM_RestoreBlockDefaults in order
to copy ROM data to a temporary RAM block although the NVRAM block is
configured with a permanent RAM block.

NVM227: The job of the function NvM_RestoreBlockDefaults shall invalidate a
RAM block before copying default data to the RAM if a permanent RAM block is
requested.

NVM228: The job of the function NvM_RestoreBlockDefaults shall validate and
assume a RAM block to be changed if the requested RAM block is permanent and
the copy process of the default data to RAM was successful.

NVM229: The job of the function NvM_RestoreBlockDefaults shall request a
recalculation of CRC from a RAM block after the copy process/validation if a CRC is
configured for this RAM block.

Regarding error detection, the requirement NVM027 is applicable to the function
NvM_RestoreBlockDefaults.

NVM413: The NvM module’s environment shall have initialized the NvM module
before it calls the function NvM_RestoreBlockDefaults.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

60 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Hint:
For the block management type NVM_BLOCK_DATASET, the application has to
ensure that a valid dataset index is selected (pointing to ROM data).

NVRAM common block configuration parameters [NVM028], block management
types [NVM061] and one configured NVRAM block descriptor are needed in the
configuration with respect to the function NvM_RestoreBlockDefaults [NVM062].

8.3.2.4 NvM_EraseNvBlock

NVM457:

Service name: NvM_EraseNvBlock
Syntax: Std_ReturnType NvM_EraseNvBlock(

 NvM_BlockIdType BlockId
)

Service ID[hex]: 0x09
Sync/Async: Asynchronous
Reentrancy: Reentrant

Parameters (in):
BlockId The block identifier uniquely identifies one NVRAM block

descriptor. A NVRAM block descriptor contains all needed
information about a single NVRAM block.

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: request has been accepted

E_NOT_OK: request has not been accepted
Description: Service to erase a NV block.

NVM415: The job of the function NvM_EraseNvBlock shall erase a NV block.

NVM231: The function NvM_EraseNvBlock shall take over the given parameters,
queue the request and return.

NVM418: The function NvM_EraseNvBlock shall queue the request to erase in
case of disabled write protection.

NVM416: The job of the function NvM_EraseNvBlock shall leave the content of the
RAM block unmodified.

NVM417: The function NvM_EraseNvBlock shall test the write protection attribute
of the NV block in the corresponding Administrative block.

NVM262: The function NvM_EraseNvBlock shall return with E_NOT_OK if a write
protected NV block or a ROM block of a dataset NVRAM block is referenced.

NVM230: The function NvM_EraseNvBlock shall check the write protection of a
NVRAM block only before the job is put to the job queue. The NvM module shall not
re-check the write protection before fetching the job from the job queue.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

61 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

NVM269: If the referenced NVRAM block is of type NVM_BLOCK_REDUNDANT, the
function NvM_EraseNvBlock shall only succeed when both NV blocks have been
erased.

NVM271: The job of the function NvM_EraseNvBlock shall set the job result to
NVM_REQ_NOT_OK and report NVM_E_REQ_FAILED to the DEM if the processing of
the service fails.

NVM357: The function NvM_EraseNvBlock shall return with E_NOT_OK, when
development error detection is enabled and the referenced NVRAM block is
configured with standard priority.

Regarding error detection, the requirement NVM027 is applicable to the function
NvM_EraseNvBlock.

NVM414: The NvM module’s environment shall have initialized the NvM module
before it calls the function NvM_EraseNvBlock.

NVRAM common block configuration parameters [NVM028], block management
types [NVM061] and one configured NVRAM block descriptor are needed in the
configuration with respect to the function NvM_EraseNvBlock [NVM062].

8.3.2.5 NvM_CancelWriteAll

NVM458:

Service name: NvM_CancelWriteAll
Syntax: void NvM_CancelWriteAll(

)

Service ID[hex]: 0x0a
Sync/Async: Asynchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: Service to cancel a running NvM_WriteAll request.

NVM019: The function NvM_CancelWriteAll shall cancel a running
NvM_WriteAll request. It shall terminate the NvM_WriteAll request in a way that
the data consistency during processing of a single NVRAM block is not compromised

NVM232: The function NvM_CancelWriteAll shall signal the request to the NvM
module and return.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

62 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

NVM233: The function NvM_CancelWriteAll shall be without any effect if no
NvM_WriteAll request is pending.

NVM234: The function NvM_CancelWriteAll shall treat multiple requests to
cancel a running NvM_WriteAll request as one request, i.e. subsequent requests
will be ignored.

NVM235: The request result of the function NvM_CancelWriteAll shall be
implicitly given by the result of the NvM_WriteAll request to be cancelled.

NVM255: The function NvM_CancelWriteAll shall ignore an already pending
NvM_CancelWriteAll request.

NVM236: The function NvM_CancelWriteAll shall not modify any management
information.

Regarding error detection, the requirement NVM027 is applicable to the function
NvM_CancelWriteAll.

NVM419: The NvM module’s environment shall have initialized the NvM module
before it calls the function function NvM_CancelWriteAll.

NVM420: The function NvM_CancelWriteAll shall signal the NvM module and
shall not be queued, i.e. there can be only one pending request of this type.

8.3.2.6 NvM_InvalidateNvBlock

NVM459:

Service name: NvM_InvalidateNvBlock
Syntax: Std_ReturnType NvM_InvalidateNvBlock(

 NvM_BlockIdType BlockId
)

Service ID[hex]: 0x0b
Sync/Async: Asynchronous
Reentrancy: Reentrant

Parameters (in):
BlockId The block identifier uniquely identifies one NVRAM block

descriptor. A NVRAM block descriptor contains all needed
information about a single NVRAM block.

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: request has been accepted

E_NOT_OK: request has not been accepted
Description: Service to invalidate a NV block.

NVM421: The job of the function NvM_InvalidateNvBlock shall invalidate a NV
block.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

63 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

NVM422: The job of the function NvM_InvalidateNvBlock shall leave the RAM
block unmodified.

NVM423: The function NvM_InvalidateNvBlock shall check the write protection
attribute of the NV block in the administrative part of the corresponding RAM block.

NVM424: The function NvM_InvalidateNvBlock shall queue the request if the
write protection of the corresponding NV block is disabled.

NVM239: The function NvM_InvalidateNvBlock shall take over the given
parameters, queue the request and return.

NVM272: The function NvM_InvalidateNvBlock shall return with E_NOT_OK if a
write protected NV block or a ROM block of a dataset NVRAM block is referenced by
the BlockId parameter.

NVM273: The function NvM_InvalidateNvBlock shall check the write protection
of a NVRAM block before the job is put into the job queue. The NvM module shall not
re-check write protection before fetching the job from the job queue.

NVM274: If the referenced NVRAM block is of type NVM_BLOCK_REDUNDANT, the
function NvM_InvalidateNvBlock shall only set the request result
NvM_RequestResultType to NVM_REQ_OK when both NV blocks have been
invalidated.

NVM275: The function NvM_InvalidateNvBlock shall set the job result to
NVM_REQ_NOT_OK and report NVM_E_REQ_FAILED to the DEM if the processing of
this service fails.

Regarding error detection, the requirement NVM027 is applicable to the function
NvM_InvalidateNvBlock.

NVM425: The NvM module’s environment shall have initialized the NvM module
before it calls the function function NvM_InvalidateNvBlock.

NVRAM common block configuration parameters [NVM028], block management
types [NVM061] and one configured NVRAM block descriptor are needed in the
configuration with respect to the function NvM_InvalidateBlock [NVM062].

8.3.3 Asynchronous multi block requests

8.3.3.1 NvM_ReadAll

NVM460:

Service name: NvM_ReadAll
Syntax: void NvM_ReadAll(

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

64 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

)
Service ID[hex]: 0x0c
Sync/Async: Asynchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: Initiates a multi block read request.

NVM3566: The multi block service NvM_ReadAll shall provide two distinct
functionalities.

1. Initialize the management data for all NVRAM blocks (see NVM304 ff)
2. Copy data to the permanent RAM blocks for those NVRAM blocks which are

configured accordingly (see NVM008 ff).

Note: The two functionalities can be implemented in one loop.

NVM243: The function NvM_ReadAll shall signal the request to the NvM module
and return. The NVRAM Manager shall defer the processing of the requested
ReadAll until all single block job queues are empty.

NVM304: The job of the function NvM_ReadAll shall set each proceeding block
specific job result for NVRAM blocks and the multi block job result to
NVM_REQ_PENDING in advance.

NVM244: The job of the function NvM_ReadAll shall iterate over all user NVRAM
blocks, i.e. except for reserved Block Ids 0 (multi block request result) and 1 (NV
configuration ID), beginning with the lowest Block Id.

NVM362: The NvM module shall initiate the recalculation of the RAM CRC for every
NVRAM block with a valid permanent RAM block and NvmCalcRamBlockCrc ==
TRUE during the processing of NvM_ReadAll.

NVM364: The job of the function NvM_ReadAll shall treat the data for every
recalculated RAM CRC which matches the stored RAM CRC as valid and set the
block specific request result to NVM_REQ_OK.

Note: This mechanism enables the NVRAM Manager to avoid overwriting of maybe
still valid RAM data with outdated NV data.

NVM363: The job of the function NvM_ReadAll shall treat invalid marked RAM
blocks or the data for every recalculated RAM CRC which doesn't match the stored
RAM CRC as invalid and restore the data from NV memory or load default values.

NVM246: The job of the function NvM_ReadAll shall validate the configuration ID by
comparing the stored NVRAM configuration ID vs. the compiled NVRAM

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

65 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

configuration ID [NVM034]. The NVRAM block with the block ID 1 (redundant type
with CRC) shall be reserved to contain the stored NVRAM configuration ID.

NVM247: The job of the function NvM_ReadAll shall process the normal runtime
preparation for all configured NVRAM blocks and set the error/status information field
of the corresponding NVRAM block’s administrative block to NVM_REQ_OK in case of
configuration ID match.

NVM305: The job of the function NvM_ReadAll shall report the production error
NVM_E_REQ_FAILED to the DEM and set the error status field of the reserved
NVRAM block to NVM_REQ_INTEGRITY_FAILED if the configuration ID cannot be
read because of an error detected by one of the subsequent SW layers. The NvM
module shall behave in the same way as if a configuration ID mismatch was
detected.

NVM307: The job of the function NvM_ReadAll shall set the error/status information
field of a NVRAM block’s administrative block to NVM_REQ_NOT_OK in the case of
configuration ID mismatch.

NVM306: In case the NvM module can not read the configuration ID because the
corresponding NV blocks are empty or invalidated, the job of the function
NvM_ReadAll shall not report a production error to the DEM but set the error/status
information field in this NVRAM block’s administrative block to
NVM_REQ_NV_INVALIDATED and update the configuration Id according to NVM310.
The NvM module shall behave the same way as if the configuration ID matched.

NVM248: The job of the function NvM_ReadAll shall ignore a configuration ID
mismatch and behave normal if NvmDynamicConfiguration == FALSE
[NVM028].

NVM249: The job of the function NvM_ReadAll shall process the normal runtime
preparation of all NVRAM blocks when they are configured with
NvmResistantToChangedSw == TRUE [NVM061] and
NvmDynamicConfiguration == TRUE [NVM028] and if a configuration ID
mismatch occurs. The job of the function NvM_ReadAll shall process an extended
runtime preparation for all blocks which are configured with
NvmResistantToChangedSw == FALSE.

NVM314: The job of the function NvM_ReadAll shall mark every NVRAM block that
has not been detected by underlying SW as invalid and is configured with
NvmWriteBlockOnce == TRUE as write protected.

Note: The function NvM_SetBlockProtection shall not be able to clear this write
protection.

NVM315: The job of the function NvM_ReadAll shall only invalidate a NVRAM block
of management type NVM_BLOCK_REDUNDANT if both NV blocks have been
invalidated.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

66 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

NVM008: The NvM module’s environment shall use the multi block request
NvM_ReadAll to load and validate the content of configured permanent RAM blocks
during start-up [NVM091].

NVM118: The job of the function NvM_ReadAll shall process only the permanent
RAM blocks which are configured with NvmSelectBlockForReadall == TRUE.

NVM287: The job of the function NvM_ReadAll shall set the job result to
NVM_REQ_BLOCK_SKIPPED for all NVRAM blocks which are not loaded
automatically during processing of the NvM_ReadAll job.

NVM426: If configured by NvmDrvModeSwitch, the job of the function
NvM_ReadAll shall switch the mode of each memory device to “fast-mode” before
starting to iterate over all user NVRAM bocks.

NVM427: If configured by NvmDrvModeSwitch, the job of the function
NvM_ReadAll shall switch the mode of each memory device to “slow-mode” after
having processed all user NVRAM blocks.

NVM308: The job of the function NvM_ReadAll shall load the ROM default data to
the corresponding RAM blocks and set the error/status field in the administrative
block to NVM_REQ_OK when processing the extended runtime preparation.

NVM309: When executing the extended runtime preparation, the job of the function
NvM_ReadAll shall treat the affected NVRAM blocks as invalid or blank in order to
allow rewriting of blocks configured with NVM_BLOCK_WRITE_ONCE == TRUE.

NVM310: The job of the function NvM_ReadAll shall update the configuration ID
from the RAM block assigned to the reserved NVRAM block with ID 1 according to
the new (compiled) configuration ID, mark the NVRAM block to be written during
NvM_WriteAll and request a CRC recalculation if a configuration ID mismatch
occurs and if the NVRAM block is configured with NvmDynamicConfiguration ==
TRUE.

NVM311: The NvM module shall allow applications to send any request for the
reserved NVRAM Block, including NvM_WriteBlock, with respect to specified
constraints and caveats.

NVM312: The NvM module shall not send a request for invalidation of the reserved
configuration ID NVRAM block to the underlying layer, unless requested so by the
application. This shall ensure that the NvM module’s environment can rely on this
block to be only invalidated at the first start-up of the ECU or if desired by the
application.

NVM313: In case of a Configuration ID match, the job of the function NvM_ReadAll
shall not automatically write to the Configuration ID block stored in the reserved
NVRAM block 1.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

67 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

NVM288: The job of the function NvM_ReadAll shall initiate a read attempt on the
second NV block for each NVRAM block of type NVM_BLOCK_REDUNDANT [NVM118]
and shall report no error to the DEM if the read attempt on the first NV block fails.

NVM290: The job of the function NvM_ReadAll shall set the block specific job result
to NVM_REQ_OK if the job has successfully copied the corresponding NV block from
NV memory to RAM.

NVM342: The job of the function NvM_ReadAll shall set the block specific job result
to NVM_REQ_NV_INVALIDATED and shall report no error to the DEM if the MemIf
reports MEMIF_BLOCK_INVALID.

NVM360: The job of the function NvM_ReadAll shall set the block specific job result
to NVM_REQ_INTEGRITY_FAILED and report NVM_E_INTEGRITY_FAILED to the
DEM if the MemIf reports MEMIF_BLOCK_INCONSISTENT.

NVM361: The job of the function NvM_ReadAll shall set the block specific job result
to NVM_REQ_NOT_OK and report NVM_E_REQ_FAILED to the DEM, if the MemIf
reports MEMIF_JOB_FAILED.

NVM291: The job of the function NvM_ReadAll shall set the block specific job result
to NVM_REQ_OK if the corresponding block management type is
NVM_BLOCK_REDUNDANT and the function has successfully copied one of the NV
blocks from NV memory to RAM.

NVM292: The job of the function NvM_ReadAll shall request a CRC recalculation
over the RAM block data after the copy process [NVM180] if the NV block is
configured with CRC.

NVM293: The job of the function NvM_ReadAll shall load the default values to the
RAM blocks according to the processing of NvM_RestoreBlockDefaults if the
recalculated CRC is not equal to the CRC stored in NV memory or the read request
passed to the underlying layer fails. If there are no default values available, the job
shall leave the RAM blocks invalid.

NVM294: The job of the function NvM_ReadAll shall report
NVM_E_INTEGRITY_FAILED to the DEM if a CRC mismatch occurs.

NVM295: The job of the function NvM_ReadAll shall set a block specific job result to
NVM_REQ_INTEGRITY_FAILED if a CRC mismatch occurs.

NVM302: The job of the function NvM_ReadAll shall report NVM_E_REQ_FAILED to
the DEM if the referenced NVRAM Block is not configured with CRC and the
corresponding job process has failed.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

68 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

NVM301: The job of the function NvM_ReadAll shall set the multi block job result to
NVM_REQ_NOT_OK if the job fails with the processing of at least one NVRAM block.

NVM281: If configured by NvmSingleBlockCallback, the job of the function
NvM_ReadAll shall call the single block callback after having completely processed
a NVRAM block.

Note: The idea behind using the single block callbacks also for multi-block requests
is to speed up the software initialization process:

 A single-block callback issued from a multi-block request (e.g. NvM_ReadAll)
will result in an RTE event.

 If the RTE is initialized after or during the asynchronous multi-block request
(e.g. NvM_ReadAll), all or some of these RTE events will get lost because they
are overwritten during the RTE initialization (see rte_sws_2536).

 After its initialization, the RTE can use the "surviving" RTE events to start
software components even before the complete multi-block request (e.g.
NvM_ReadAll) has been finished.

 For those RTE events that got lost during the initialization: the RTE will start
those software components and the software components either query the
status of the NV block they want to access or request that NV block to be read.
This is exactly the same behavior if the single-block callbacks would not be
used in multi-block requests.

NVM251: The job of the function NvM_ReadAll shall mark a NVRAM block as
“valid/unmodified” if NV data has been successfully loaded to the RAM Block.

NVM367: The job of the function NvM_ReadAll shall set a RAM block to valid and
assume it to be changed if the job has successfully copied default values to the
corresponding RAM.

NVM428: The NvM module’s environment shall have initialized the NvM module
before it calls the function NvM_ReadAll.

NVM429: In Development Mode, the NvM module shall reject the function
NvM_ReadAll if another multi block request is pending.

Regarding error detection, the requirement NVM027 is applicable to the function
NvM_ReadAll.

The DEM shall already be able to accept error notifications.

NVRAM common block configuration parameters [NVM028], block management
types [NVM061] and all configured NVRAM block descriptors are needed in the
configuration with respect to the function NvM_ReadAll [NVM062], [NVM069].

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

69 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

8.3.3.2 NvM_WriteAll

NVM461:

Service name: NvM_WriteAll
Syntax: void NvM_WriteAll(

)

Service ID[hex]: 0x0d
Sync/Async: Asynchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: Initiates a multi block write request.

NVM018: The job of the function NvM_WriteAll shall synchronize the contents of
permanent RAM blocks to their corresponding NV blocks on shutdown.

NVM733: If NVRAM block ID 1 (which holds the configuration ID of the memory
layout) is marked as "to be written during NvM_WriteAll", the job of the function
NvM_WriteAll shall write this block in a final step (last write operation) to prevent
memory layout mismatch in case of a power loss failure during write operation.

NVM254: The function NvM_WriteAll shall signal the request to the NvM module
and return. The NVRAM Manager shall defer the processing of the requested
WriteAll until all single block job queues are empty.

NVM252: The job of the function NvM_WriteAll shall process all permanent RAM
blocks except for block ID 0.

NVM430: If configured by NvmDrvModeSwitch, the job of the function
NvM_WriteAll shall set the mode of each memory device to “fast-mode” before
starting to iterate over all non-reserved NVRAM blocks.

NVM431: If configured by NvmDrvModeSwitch, the job of the function
NvM_WriteAll shall set the mode of each memory device to “slow-mode” after
having processed all non-reserved NVRAM blocks or after the function
NvM_CancelWriteAll has cancelled the job.

NVM432: The job of the function NvM_WriteAll shall check the write-protection
and “valid/modified” state for each RAM block in advance.

NVM433: The job of the function NvM_WriteAll shall only write the content of a
RAM block to its corresponding NV block for non write-protected NVRAM blocks.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

70 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

NVM474: The job of the function NvM_WriteAll may write unchanged data, if this
would repair (redundant) NV data. Otherwise it should not write unchanged data.

NVM434: The job of the function NvM_WriteAll shall skip every write-protected
NVRAM block without error notification.

NVM298: The job of the function NvM_WriteAll shall set the job result for each
NVRAM block which has not been written automatically by the job to
NVM_REQ_BLOCK_SKIPPED.

NVM339: In case of NVRAM block management type NVM_BLOCK_DATASET, the job
of the function NvM_WriteAll shall copy only the RAM block to the corresponding
NV block which is selected via the data index in the administrative block.

NVM253: The job of the function NvM_WriteAll shall request a CRC recalculation
and renew the CRC from a NVRAM block before writing the data if a CRC is
configured for this NVRAM block.

NVM296: The job of the function NvM_WriteAll shall check the number of write
retries [NVM028] by a write retry counter to avoid infinite loops. Each unsuccessful
result reported by the MemIf module shall be followed by an increment of the retry
counter. The job of the function NvM_WriteAll shall set the block specific job result
to NVM_REQ_NOT_OK and report NVM_E_REQ_FAILED to the DEM if the write retry
counter becomes greater than the configured NVM_MAX_NO_OF_WRITE_RETRIES.

NVM337: The job of the function NvM_WriteAll shall set the single block job result
to NVM_REQ_OK if the processed NVRAM block is of type NVM_BLOCK_REDUNDANT
and one of the NV blocks has been written successfully.

NVM238: The job of the function NvM_WriteAll shall complete the job in a non-
destructive way for the NVRAM block currently being processed if a cancellation of
NvM_WriteAll is signaled by a call of NvM_CancelWriteAll.

NVM237: The NvM module shall set the multi block request result to
NVM_REQ_CANCELLED in case of cancellation of NvM_WriteAll. The NvM module
shall anyway report the error code condition, due to a failed NVRAM block write, to
the DEM.

NVM318: The job of the function NvM_WriteAll shall set the multi block request
result to NVM_REQ_NOT_OK if processing of one or even more NVRAM blocks fails.

NVM329: If the job of the function NvM_WriteAll has successfully written data to
NV memory for a NVRAM block configured with NvmWriteBlockOnce == TRUE,
the job shall immediately set the corresponding write protection flag in the
administrative block.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

71 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Regarding error detection, the requirement NVM027 is applicable to the function
NvM_WriteAll.

NVM473: In case of a RAM block is successfully copied to NV memory the RAM
block state shall be set to "valid/unmodified" afterwards.

NVM437: The NvM module’s environment shall have initialized the NvM module
before it calls the function NvM_WriteAll.

No other multiblock request shall be pending when the NvM module’s environment
calls the function NvM_WriteAll.

Note: To avoid the situation that in case of redundant NVRAM blocks two different
NV blocks are containing different but valid data at the same time, each client of the
NvM_WriteAll service may call NvM_InvalidateNvBlock in advance.

NVRAM common block configuration parameters [NVM028], block management
types [NVM061] and all configured NVRAM block descriptors are needed in the
configuration with respect to the NvM_WriteAll function [NVM062], [NVM069].

8.4 Call-back notifications

8.4.1 Callback notification of the NvM module

NVM438: The NvM module shall provide callback functions to be used by the
underlying memory abstraction (EEPROM abstraction / FLASH EEPROM Emulation)
to signal end of job state with or without error.

NVM439: The file NvM_Cbk.h shall provide the function prototypes of the callback
functions.

Note: The file NvM_Cbk.h is to be included by the underlying memory driver layers.

8.4.1.1 NVRAM Manager job end notification without error

NVM462:

Service name: NvM_JobEndNotification
Syntax: void NvM_JobEndNotification(

)

Service ID[hex]: 0x00
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters
(inout):

None

Parameters (out): None

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

72 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Return value: None
Description: Function to be used by the underlying memory abstraction to signal end of job

without error.

NVM111: The callback function NvM_JobEndNotification is used by the
underlying memory abstraction to signal end of job without error.

Note: Successful job end notification of the memory abstraction:

 Read finished & OK
 Write finished & OK
 Erase finished & OK

This routine might be called in interrupt context, depending on the calling function. All
memory abstraction modules should be configured to use the same mode
(callback/polling).

NVM440: The NvM module shall only provide the callback function
NvM_JobEndNotification if polling mode is disabled via NvmPollingMode.

The function NvM_JobEndNotification is affected by the common [NVM028]
configuration parameters.

8.4.1.2 NVRAM Manager job end notification with error

NVM463:

Service name: NvM_JobErrorNotification
Syntax: void NvM_JobErrorNotification(

)

Service ID[hex]: 0x00
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: Function to be used by the underlying memory abstraction to signal end of job with

error.

NVM112: The callback function NvM_JobErrorNotification is to be used by the
underlying memory abstraction to signal end of job with error.

Note: Unsuccessful job end notification of the memory abstraction:

 Read aborted or failed
 Write aborted or failed

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

73 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

 Erase aborted or failed

This routine might be called in interrupt context, depending on the calling function. All
memory abstraction modules should be configured to use the same mode
(callback/polling).

NVM441: The NvM module shall only provide the callback function
NvM_JobErrorNotification if polling mode is disabled via NvmPollingMode.

The function NvM_JoberrorNotification is affected by the common [NVM028]
configuration parameters.

8.5 Scheduled functions

These functions are directly called by the Basic Software Scheduler. The following
functions shall have no return value and no parameter. All functions shall be non
reentrant.

.NVM322: BSW module main processing functions are only allowed to be allocated
to basic tasks by the function NvM_MainFunction.

NVM464:

Service name: NvM_MainFunction
Syntax: void NvM_MainFunction(

)

Service ID[hex]: 0x0e
Timing: VARIABLE_CYCLIC
Description: Service for performing the processing of the NvM jobs.

NVM256: The function NvM_MainFunction shall perform the processing of the
NvM module jobs.

NVM333: The function NvM_MainFunction shall perform the CRC recalculation if
requested for a NVRAM block in addition to NVM256.

NVM334: The NvM module shall only start writing of a block (i.e. hand over the job
to the lower layers) after CRC calculation for this block has been finished.

NVM257: The NvM module shall only do/start job processing, queue management
and CRC recalculation if the NvM_Init function has internally set an “INIT DONE”
signal.

NVM258: The function NvM_MainFunction shall restart a destructively cancelled
request caused by an immediate priority request after the NvM module has
processed the immediate priority request [NVM152].

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

74 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

NVM259: The function NvM_MainFunction shall supervise the immediate priority
queue (if configured) regarding the existence of immediate priority requests.

NVM346: If polling mode is enabled, the function NvM_MainFunction shall check
the status of the requested job sent to the lower layer.

NVM347: If callback routines are configured, the function NvM_MainFunction shall
call callback routines to the upper layer after completion of an asynchronous service.

NVM350: In case of processing an NvM_WriteAll multi block request, the function
NvM_MainFunction shall not call callback routines to the upper layer as long as the
service MemIf_GetStatus returns MEMIF_BUSY_INTERNAL for the reserved
device ID MEMIF_BROADCAST_ID [6]. For this purpose (status is
MEMIF_BUSY_INTERNAL), the function NvM_MainFunction shall cyclically poll the
status of the Memory Hardware Abstraction independent of being configured for
polling or callback mode.

NVM349: The function NvM_MainFunction shall return immediately if no further job
processing is possible.

Note: NVRAM blocks with immediate priority are not expected to be configured to
have a CRC.

NVM324: The NvM module’s environment does not have to execute the function
NvM_MainFunction in a specific order or sequence with respect to other BSW main
processing function(s).

The function NvM_MainFunction is affected by the common [NVM028] configuration
parameters.

Terms and definitions:

Fixed cyclic: Fixed cyclic means that one cycle time is defined at configuration and
shall not be changed because functionality is requiring that fixed timing (e.g. filters).

Variable cyclic: Variable cyclic means that the cycle times are defined at
configuration but might be mode dependent and therefore vary during runtime.

On pre-condition: On pre-condition means that no cycle time can be defined. The
function is called when the conditions are fulfilled. Alternatively, the function may be
called cyclically. However, the cycle time is assigned dynamically during runtime by
other modules.

8.6 Expected Interfaces

In this chapter, all interfaces required by other modules are listed.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

75 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

8.6.1 Mandatory Interfaces

NVM319: The following table defines all interfaces which are required to fulfill the
core functionality of the module.

NVM465:

API function Description
Dem_ReportErrorStatus Reports errors to the DEM.
MemIf_Read --
MemIf_InvalidateBlock --
MemIf_GetJobResult --
MemIf_Write --
MemIf_EraseImmediateBlock --
MemIf_GetStatus --
MemIf_Cancel --

8.6.2 Optional Interfaces

NVM320: The following table defines all interfaces which are required to fulfill an
optional functionality of the module.

NVM466:

API function Description
Det_ReportError Service to report development errors.
Crc_CalculateCRC16 This service makes a CRC16 calculation on Crc_Length data bytes.
Crc_CalculateCRC32 This service makes a CRC32 calculation on Crc_Length data bytes.
MemIf_SetMode --

8.6.3 Configurable interfaces

In this chapter, all interfaces are listed for which the target function can be
configured. The target function is usually a callback function. The names of these
interfaces are not fixed because they are configurable.

NVM113: The notification of a caller via an asynchronous callback routine
(NvmSingleBlockCallback) shall be optionally configurable for all NV blocks (see
NVM061).

NVM740: If a callback is configured for a NVRAM block, every asynchronous block
request to the block itself shall be terminated with an invocation of the callback
routine.

NVM741: The ID identifying the NVRAM service, shall be passed to the callback
routine.

NVM742: If no callback is configured for a NVRAM block, there shall be no
asynchronous notification of the caller in case of an asynchronous block request.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

76 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

NVM260: A common callback entry (NvmMultiBlockCallback) which is not bound
to any NVRAM block [NVM028] shall be optionally configurable for all asynchronous
multi block requests (including NvM_CancelWriteAll). The ID identifying the
NVRAM service shall be passed to the common callback routine. If a NULL pointer is
configured for the common callback entry, there shall be no asynchronous
notification of the caller in case of asynchronous multi block requests (including
NvM_CancelWriteAll).

8.6.3.1 Single block job end notification

NVM467:

Service name: SingleBlockCallbackFunction
Syntax: Std_ReturnType SingleBlockCallbackFunction(

 uint8 ServiceId,
 NvM_RequestResultType JobResult
)

Sync/Async: Synchronous
Reentrancy: Non Reentrant

ServiceId Unique Service ID of NVRAM manager service.
Parameters (in): JobResult Covers the job result of the previous processed single block

job.
Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: Callback function has been processed successfully.

E_NOT_OK: Callback function has not been processed
successfully.

Description: Per block callback routine to notify the upper layer that an asynchronous single
block request has been finished.

NVM368: The single block callback function shall always return with E_OK.

There is no need for the NvM module to evaluate the return value of the single block
callback function because of NVM368.

NVM330: The single block callback function shall be a function pointer.

Note: Please refer to NvmSingleBlockCallback in chapter 10.

The Single block job end notification might be called in interrupt context, depending
on the calling function.

8.6.3.2 Multi block job end notification

NVM468:

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

77 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Service name: MultiBlockCallbackFunction
Syntax: void MultiBlockCallbackFunction(

 uint8 ServiceId,
 NvM_RequestResultType JobResult
)

Sync/Async: Synchronous
Reentrancy: Non Reentrant

ServiceId Unique Service ID of NVRAM manager service.
Parameters (in):

JobResult Covers the job result of the previous processed multi block job.
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: Common callback routine to notify the upper layer that an asynchronous multi

block request has been finished.

NVM331: The Multi block job end notification shall be a function pointer.

Note: Please refer to NvmMultiBlockCallback in chapter 10.

The Multi block job end notification might be called in interrupt context, depending on
the calling function.

8.6.3.3 Callback function for block initialization

NVM469:

Service name: InitBlockCallbackFunction
Syntax: Std_ReturnType InitBlockCallbackFunction(

)

Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: callback function has been processed successfully

E_NOT_OK: callback function has not been processed
successfully

Description: Per block callback routine which shall be called by the NvM module to copy default
data to a RAM block if a ROM block isn’t configured.

NVM369: The Init block callback for block initialization shall always return with E_OK.

There is no need for the NvM module to evaluate the return value of the callback
function because of NVM369.

NVM352: The Init block callback shall be a function pointer.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

78 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Note: Please refer to NvmInitBlockCallback in chapter 10.

The init block callback function might be called in interrupt context.

8.7 API Overview

Request Types Characteristics of Request Types

Type 1:

- NvM_SetDataIndex (...)
- NvM_GetDataIndex (...)
- NvM_SetBlockProtection (...)
- NvM_GetErrorStatus(...)
- NvM_SetRamBlockStatus(...)

- synchronous request
- affects one RAM block

- available for all SW-Cs

Type 2:

- NvM_ReadBlock(...)
- NvM_WriteBlock(...)
- NvM_RestoreBlockDefaults(...)
- NvM_EraseNvBlock(...)
- NvM_InvalidateNvBlock(...)

- asynchronous request (result via callback or polling)
- affects one NVRAM block
- handled by NVRAM manager task via request list

- available for all SW-Cs

Type 3:

- NvM_ReadAll(...)
- NvM_WriteAll(...)
- NvM_CancelWriteAll(...)

- asynchronous request (result via callback or polling)
- affects all NVRAM blocks with permanent RAM data

Type 4:

- NvM_Init(...)

- synchronous request
- basic initialization
- success signaled to the task via command interface
 inside the function itself

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

79 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

9 Sequence Diagrams

9.1 Synchronous calls

9.1.1 NvM_Init

sd Nv M_Init

«module»

NvM::NvM

EcuM::EcuM
Comment:
Ini tial ization of NVRAM
manager is performed
synchronously

Status: Proposed by TO as per NvM SWS 1.44

Description:

Comments:

NvM_Init()

NvM_Init()

Figure 10: UML sequence diagram NvM_Init

9.1.2 NvM_SetDataIndex

sd Nv M_SetDataIndex

«module»

NvM::NvM

Generic Elements::NvM
User

Status: Proposed by TO as per NvM SWS 1.44

Description:

Comments:

NvM_SetDataIndex(BlockId,DataIndex)

NvM_SetDataIndex

Figure 11: UML sequence diagram NvM_SetDataIndex

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

80 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

9.1.3 NvM_GetDataIndex

sd Nv M_GetDataIndex

«module»

NvM::NvM

Generic Elements::NvM
User

Status: Proposed by TO as per NvM SWS 1.44

Description:

Comments:

NvM_GetDataIndex(BlockId,DataIndexPtr)

NvM_GetDataIndex

Figure 12: UML sequence diagram NvM_GetDataIndex

9.1.4 NvM_SetBlockProtection

sd Nv M_SetBlockProtection

«module»

NvM::NvM

Generic Elements::NvM
User

Status: Proposed by TO as per NvM SWS 1.44

Description:

Comments:

NvM_SetBlockProtection(BlockId,ProtectionEnabled)

NvM_SetBlockProtection

Figure 13: UML sequence diagram NvM_SetBlockProtection

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

81 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

9.1.5 NvM_GetErrorStatus

sd Nv M_GetErrorStatus

«module»

NvM::NvM

Generic Elements::NvM
User

Status: Proposed by TO as per NvM SWS 1.44

Description:

Comments:

NvM_GetErrorStatus(BlockId,RequestResultPtr)

NvM_GetErrorStatus

Figure 14: UML sequence diagram NvM_GetErrorStatus

9.1.6 NvM_GetVersionInfo

sd Nv M_GetVersionInfo

«module»

NvM::NvM

Generic Elements::NvM
User

Status: Proposed by TO as per NvM SWS 1.44

Description:

Comments:

NvM_GetVersionInfo(versioninfo)

NvM_GetVersionInfo

Figure 15: UML sequence diagram NvM_GetVersionInfo

9.2 Asynchronous calls

The following sequence diagrams concentrate on the interaction between the NvM
module and SW-C’s or the ECU state manager. For interaction regarding the
Memory Interface please ref. to [4] or [5].

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

82 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

9.2.1 Asynchronous call with polling

The following diagram shows the function NvM_WriteBlock as an example of a
request that is performed asynchronously. The sequence for all other asynchronous
functions is the same, only the processed number of blocks and the block types may
vary. The result of the asynchronous function is obtained by polling requests to the
error/status information.

sd Asychronous Call w ith Polling

«module»

NvM::NvM

Generic Elements::NvM
User

BSW Task (OS
task or cyclic call)

Comment:
Check and store request.
Set job resul t to NVM_REQ_PENDING

Comment:
Job processing (wri ting NVRAM) is done
asynchronously.

Data uni t by data uni t is wri tten to
NVRAM (e.g. 1 byte every 10 ms, both
depending on NVRAM hardware).

During wri ting of data job resul t is sti l l
NVM_REQ_PENDING

Comment:
Wri ting of Block completed successful ly.
Job result wi l l be NVM_REQ_OK

loop Job processing

[repeat unti l wri ting of block is completed]

Status: Proposed by TO as per NvM SWS 1.44

Description:

Comments:

NvM_Wri teBlock(return,BlockId,NvM_SrcPtr) :Std_ReturnT ype

NvM_Wri teBlock

NvM_MainFunction()

NvM_MainFunction

NvM_GetErrorStatus(BlockId,RequestResul tPtr) :
NvM_RequestResul tType

NvM_GetErrorStatus

NvM_GetErrorStatus(BlockId,RequestResultPtr) :
NvM_RequestResultT ype

NvM_GetErrorStatus

Figure 16: UML sequence diagram for asynchronous call with polling

9.2.2 Asynchronous call with callback

The following diagram shows the function NvM_WriteBlock as an example of a
request that is performed asynchronously. The sequence for all other asynchronous
functions is the same, only the processed number of blocks and the block types may
vary. The result of the asynchronous function is obtained after an asynchronous
notification (callback) by requesting the error/status information.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

83 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

sd Asychronous Call w ith Callback

«module»

NvM::NvM

Generic Elements::NvM
User

BSW Task (OS
task or cyclic call)

Comment:
Job processing (wri ting NVRAM) is done
asynchronously.

Data uni t by data uni t is wri tten to NVRAM (e.g.
1 byte every 10 ms, both depending on NVRAM
hardware).

During wri ting of data job resul t is sti l l
NVM_REQ_PENDING

Comment:
Check and store request.
Cal lback address is stored in the NVRAM block
descriptor.
Set job resul t to NVM_REQ_PENDING.

Comment:
Wri ting of Block completed.
Cal l Job End Notification

Comment:
Wri ting of Block completed successful ly.
Job result wi l l be NVM_REQ_OK

loop Job processing

[repeat unti l wri ting of block is completed]

Status: Proposed by TO as per NvM SWS 2.0.7

Description:

Comments:

NvM_Wri teBlock(return,BlockId,NvM_SrcPtr) :Std_ReturnType

NvM_WriteBlock

NvM_MainFunction()

NvM_MainFunction

NvM_MainFunction()

SingleBlockCal lbackFunction(return,ServiceId,JobResul t) :Std_ReturnT ype

<SingleBlockJobEndNoti fication>

NvM_MainFunction

NvM_GetErrorStatus(BlockId,RequestResul tPtr) :
NvM_RequestResul tType

NvM_GetErrorStatus

Figure 17: UML sequence diagram for asynchronous call with callback

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

84 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

9.2.3 Cancellation of a Multi Block Request

The following diagram shows the effect of a cancel operation applied to a running
NvM_WriteAll multi block request. The running NvM_WriteAll function completes the
actual NVRAM block and stops further writes.

sd Cancellation of a Multi-Block Request

«module»

NvM::NvM

BSW Task (OS
task or cyclic call)

EcuM::EcuM

Comment:
Cal l Job End Noti fication i f
configured

Comment:
A currently pending NVRAM
block wi l l be processed unti l i ts
end non-destructively.
Processing a next NVRAM
block resulting from
NvM_WriteAl l wi l l not be
started.

Status: Proposed by TO as per NvM SWS 1.44

Description:

Comments:

NvM_WriteAl l()

NvM_WriteAl l()

NvM_MainFunction()

NvM_MainFunction

NvM_CancelWri teAl l ()

NvM_CancelWriteAl l

NvM_MainFunction()

EcuM_CB_NfyNvMJobEnd(ServiceId,JobResult)

EcuM_CB_NfyNvMJobEnd

NvM_MainFunction

Figure 18: UML sequence diagram for cancellation of asynchronous call

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

85 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into
containers. In order to support the specification Chapter 10.1 describes
fundamentals. It also specifies a template (table) you shall use for the parameter
specification.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
NvM.

Chapter 10.3 specifies published information of the module NvM.

10.1 How to read this chapter

In addition to this section, it is highly recommended to read the documents:
- AUTOSAR Layered Software Architecture [1]
- AUTOSAR ECU Configuration Specification [11]

This document describes the AUTOSAR configuration methodology and the
AUTOSAR configuration metamodel in detail.

The following is only a short survey of the topic and it will not replace the ECU
Configuration Specification document.

10.1.1 Configuration and configuration parameters

Configuration parameters define the variability of the generic part(s) of an
implementation of a module. This means that only generic or configurable module
implementation can be adapted to the environment (software/hardware) in use during
system and/or ECU configuration.

The configuration of parameters can be achieved at different times during the
software process: before compile time, before link time or after build time. In the
following, the term “configuration class” (of a parameter) shall be used in order to
refer to a specific configuration point in time.

10.1.2 Variants

Variants describe sets of configuration parameters. E.g., variant 1: only pre-compile
time configuration parameters; variant 2: mix of pre-compile- and post build time-
configuration parameters. In one variant a parameter can only be of one
configuration class.

10.1.3 Containers

Containers structure the set of configuration parameters. This means:
 all configuration parameters are kept in containers.
 (sub-) containers can reference (sub-) containers. It is possible to assign a

multiplicity to these references. The multiplicity then defines the possible
number of instances of the contained parameters.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

86 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed
meanings of the parameters describe chapter 7.2 and chapter 8.

10.2.1 Variants

Variant1: This variant allows only pre-compile time configuration parameters.

10.2.2 NvM

Module Name NvM
Module Description Configuration of the NvM (NvRam Manager) module.

Included Containers
Container Name MultiplicityScope / Dependency

NvmBlockDescriptor 1..65536

Container for a management structure to configure the
composition of a given NVRAM Block Management Type. Its
multiplicity describes thenumber of configured NVRAM blocks,
one block is required to be configured. The NVRAM block
descriptors are condensed in the NVRAM block descriptor
table.

NvmCommon 1 Container for common configuration options.

10.2.3 NvmCommon

SWS Item NVM028 :
Container Name NvmCommon
Description Container for common configuration options.
Configuration Parameters

SWS Item NVM491 :
Name NvmApiConfigClass {NVM_API_CONFIG_CLASS}
Description Preprocessor switch to enable some API calls which are related to NVM API

configuration classes.
Multiplicity 1
Type EnumerationParamDef

NVM_API_CONFIG_CLASS_1All API calls belonging to configuration class 1
are available.

NVM_API_CONFIG_CLASS_2All API calls belonging to configuration class 2
are available.

Range

NVM_API_CONFIG_CLASS_3All API calls belonging to configuration class 3
are available.

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

87 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

SWS Item NVM492 :
Name NvmCompiledConfigId {NVM_COMPILED_CONFIG_ID}
Description Configuration ID regarding the NV memory layout. This configuration ID

shall be published as e.g. a SW-C shall have the possibility to write it to NV
memory.

Multiplicity 1
Type IntegerParamDef
Range 0 .. 65535

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item NVM493 :
Name NvmCrcNumOfBytes {NVM_CRC_NUM_OF_BYTES}
Description If CRC is configured for at least one NVRAM block, this parameter defines

the maximum number of bytes which shall be processed within one cycle
of job processing.

Multiplicity 1
Type IntegerParamDef
Range 1 .. 65535

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

dependency: CRC library

SWS Item NVM494 :
Name NvmDatasetSelectionBits {NVM_DATASET_SELECTION_BITS}
Description Defines the number of least significant bits which shall be used to address

a certain dataset of a NVRAM block within the interface to the memory
hardware abstraction. 0..8: Number of bits which are used for dataset or
redundant block addressing. 0: No dataset or redundant NVRAM blocks
are configured at all, no selection bits required. 1: In case of redundant
NVRAM blocks are configured, but no dataset NVRAM blocks.

Multiplicity 1
Type IntegerParamDef
Range 0 .. 8

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: MemHwA, NVM_NV_BLOCK_IDENTIFIER,
NVM_BLOCK_MANAGEMENT_TYPE

SWS Item NVM495 :
Name NvmDevErrorDetect {NVM_DEV_ERROR_DETECT}
Description Pre-processor switch to enable and disable development error detection.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

88 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

true: Development error detection enabled. false: Development error
detection disabled.

Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item NVM496 :
Name NvmDrvModeSwitch {NVM_DRV_MODE_SWITCH}
Description Preprocessor switch to enable switching memory drivers to fast mode

during performing NvM_ReadAll and NvM_WriteAll true: Fast mode
enabled. false: Fast mode disabled.

Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item NVM497 :
Name NvmDynamicConfiguration {NVM_DYNAMIC_CONFIGURATION}
Description Preprocessor switch to enable the dynamic configuration management

handling by the NvM_ReadAll request. true: Dynamic configuration
management handling enabled. false: Dynamic configuration management
handling disabled.

Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item NVM498 :
Name NvmJobPrioritization {NVM_JOB_PRIORITIZATION}
Description Preprocessor switch to enable job prioritization handling true: Job

prioritization handling enabled. false: Job prioritization handling disabled.
Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item NVM499 :
Name NvmMaxNoOfWriteRetries {NVM_MAX_NUM_OF_WRITE_RETRIES}
Description Defines the maximum number of write retries for a NVRAM block with

[NVM061]. Regardless of configuration a consistency check (and maybe
write retries) are always forced for each block which is processed by the

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

89 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

request NvM_WriteAll and NvM_WriteBlock.
Multiplicity 1
Type IntegerParamDef
Range 0 .. 7

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item NVM500 :
Name NvmMultiBlockCallback {NVM_MULTI_BLOCK_CALLBACK}
Description Entry address of the common callback routine which shall be invoked on

termination of each asynchronous multi block request
Multiplicity 1
Type FunctionNameDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item NVM501 :
Name NvmPollingMode {NVM_POLLING_MODE}
Description Preprocessor switch to enable/disable the polling mode in the NVRAM

Manager and at the same time disable/enable the callback functions
useable by lower layers true: Polling mode enabled, callback function
usage disabled. false: Polling mode disabled, callback function usage
enabled.

Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item NVM502 :
Name NvmSetRamBlockStatusApi {NVM_SET_RAM_BLOCK_STATUS_API}
Description Preprocessor switch to enable the API NvM_SetRamBlockStatus. true: API

NvM_SetRamBlockStatus enabled. false: API NvM_SetRamBlockStatus
disabled.

Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item NVM503 :
Name NvmSizeImmediateJobQueue {NVM_SIZE_IMMEDIATE_JOB_QUEUE}
Description Defines the number of queue entries for the immediate priority job queue.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

90 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

If NVM_JOB_PRIORITIZATION is switched OFF this parameter shall be
out of scope.

Multiplicity 1
Type IntegerParamDef
Range 1 .. 255

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

dependency: NVM_JOB_PRIORITIZATION

SWS Item NVM504 :
Name NvmSizeStandardJobQueue {NVM_SIZE_STANDARD_JOB_QUEUE}
Description Defines the number of queue entries for the standard job queue.
Multiplicity 1
Type IntegerParamDef
Range 1 .. 255

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item NVM505 :
Name NvmVersionInfoApi {NVM_VERSION_INFO_API}
Description Pre-processor switch to enable / disable the API to read out the modules

version information [NVM285], [NVM286]. true: Version info API enabled.
false: Version info API disabled.

Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

No Included Containers

NVM028: The following tables specify parameters that shall be definable in the
module’s configuration file (NvM_Cfg.h).

NVM321: Pre-compile time configuration parameters to be implemented as “const“
should be placed into a separate c-file (NvM_Cfg.c).

10.2.4 NvmBlockDescriptor

SWS Item NVM061 :
Container Name NvmBlockDescriptor

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

91 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Description

Container for a management structure to configure the composition of a
given NVRAM Block Management Type. Its multiplicity describes
thenumber of configured NVRAM blocks, one block is required to be
configured. The NVRAM block descriptors are condensed in the NVRAM
block descriptor table.

Configuration Parameters

SWS Item NVM476 :
Name NvmBlockCRCType {NVM_BLOCK_CRC_TYPE}
Description Defines CRC data width for the NVRAM block. Default: NVM_CRC16, i.e.

CRC16 will be used if NVM_BLOCK_USE_CRC==TRUE
Multiplicity 1
Type EnumerationParamDef

NVM_CRC16 (Default) CRC16 will be used if
NVM_BLOCK_USE_CRC==TRUE.

Range

NVM_CRC32 CRC32 is selected for this NVRAM block.
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

dependency: NVM_BLOCK_USE_CRC, NVM_CALC_RAM_BLOCK_CRC

SWS Item NVM477 :
Name NvmBlockJobPriority {NVM_BLOCK_JOB_PRIORITY}
Description Defines the job priority for a NVRAM block (0 = Immediate priority).
Multiplicity 1
Type IntegerParamDef
Range 0 .. 255

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item NVM062 :
Name NvmBlockManagementType {NVM_BLOCK_MANAGEMENT_TYPE}
Description Defines the block management type for the NVRAM block.[NVM137]
Multiplicity 1
Type EnumerationParamDef

NVM_BLOCK_DATASET
NVRAM block is configured to be of dataset
type.

NVM_BLOCK_NATIVE
NVRAM block is configured to be of native
type.

Range

NVM_BLOCK_REDUNDANT
NVRAM block is configured to be of
redundant type.

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

92 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

SWS Item NVM036 :
Name NvmBlockUseCrc {NVM_BLOCK_USE_CRC}
Description Defines CRC usage for the NVRAM block, i.e. memory space for CRC is

reserved in RAM and NV memory. true: CRC will be used for this NVRAM
block. false: CRC will not be used for this NVRAM block.

Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item NVM033 :
Name NvmBlockWriteProt {NVM_BLOCK_WRITE_PROT}
Description Defines an initial write protection of the NV block true: Initial block write

protection is enabled. false: Initial block write protection is disabled.
Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item NVM119 :
Name NvmCalcRamBlockCrc {NVM_CALC_RAM_BLOCK_CRC}
Description Defines CRC (re)calculation for the permanent RAM block true: CRC will

be (re)calculated for this permanent RAM block. false: CRC will not be
(re)calculated for this permanent RAM block.

Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

dependency: NVM_BLOCK_USE_CRC

SWS Item NVM116 :
Name NvmInitBlockCallback {NVM_INIT_BLOCK_CALLBACK}
Description Entry address of a block specific callback routine which shall be called if no

ROM data is available for initialization of the NVRAM block. If a NULL
pointer is configured, no specific callback routine shall be called for
initialization of the NVRAM block with default data.

Multiplicity 1
Type FunctionNameDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item NVM478 :

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

93 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Name NvmNvBlockBaseNumber {NVM_NV_BLOCK_BASE_NUMBER}
Description Configuration parameter to perform the link between the

NVM_NVRAM_BLOCK_IDENTIFIER used by the SW-Cs and the
FEE_BLOCK_NUMBER expected by the memory abstraction modules.
The parameter relates directly to the FEE_BLOCK_NUMBER or
EA_BLOCK_NUMBER with all configured
NVM_DATASET_SELECTION_BITS set to zero (ref. to chapter 7.1.2.1).
Calculation Formula: "value =
TargetBlockReference.[Ea/Fee]BlockConfiguration.[Ea/Fee]BlockNumber"

Multiplicity 1
Type DerivedIntegerParamDef
Default value --
calculationFormula --
calculationLanguage informal

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

dependency: FEE_BLOCK_NUMBER, EA_BLOCK_NUMBER

SWS Item NVM479 :
Name NvmNvBlockLength {NVM_NV_BLOCK_LENGTH}
Description Defines the NV block data length in bytes
Multiplicity 1
Type IntegerParamDef
Range 1 .. 65535

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item NVM480 :
Name NvmNvBlockNum {NVM_NV_BLOCK_NUM}
Description Defines the number of multiple NV blocks in a contiguous area according

to the given block management type. 1-255 For NVRAM blocks to be
configured of block management type NVM_BLOCK_DATASET. The
actual range is limited according to NVM148. 1 For NVRAM blocks to be
configured of block management type NVM_BLOCK_NATIVE 2 For
NVRAM blocks to be configured of block management type
NVM_BLOCK_REDUNDANT

Multiplicity 1
Type IntegerParamDef
Range 1 .. 255

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

dependency: NVM_BLOCK_MANAGEMENT_TYPE

SWS Item NVM481 :
Name NvmNvramBlockIdentifier {NVM_NVRAM_BLOCK_IDENTIFIER}

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

94 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Description Identification of a NVRAM block via a unique block identifier.
Implementation Type: NvM_BlockIdType. min = 0 max = 2^(16-
NVM_DATASET_SELECTION_BITS)-1 Reserved NVRAM block IDs: 0 ->
to derive multi block request results via NvM_GetErrorStatus 1 ->
redundant NVRAM block which holds the configuration ID

Multiplicity 1
Type IntegerParamDef (Symbolic Name generated for this parameter)
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

dependency: NVM_DATASET_SELECTION_BITS

SWS Item NVM035 :
Name NvmNvramDeviceId {NVM_NVRAM_DEVICE_ID}
Description Defines the NVRAM device ID where the NVRAM block is located.

Calculation Formula: "value =
TargetBlockReference.[Ea/Fee]BlockConfiguration.[Ea/Fee]DeviceIndex"

Multiplicity 1
Type DerivedIntegerParamDef
Default value --
calculationFormula --
calculationLanguage informal

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

dependency: EA_DEVICE_INDEX, FEE_DEVICE_INDEX

SWS Item NVM482 :
Name NvmRamBlockDataAddress {NVM_RAM_BLOCK_DATA_ADDRESS}
Description Defines the start address of the RAM block data. If a NULL pointer is

configured, no permanent RAM data block is available for the selected
block management type.

Multiplicity 1
Type StringParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item NVM483 :
Name NvmResistantToChangedSw {NVM_RESISTANT_TO_CHANGED_SW}
Description Defines whether a NVRAM block shall be treated resistant to configuration

changes or not. If there is no default data available at configuration time
then the application shall be responsible for providing the default
initialization data. In this case the application has to use
NvM_GetErrorStatus()to be able to distinguish between first initialization
and corrupted data. true: NVRAM block is resistant to changed software.
false: NVRAM block is not resistant to changed software.

Multiplicity 1
Type BooleanParamDef
Default value --

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

95 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item NVM484 :
Name NvmRomBlockDataAddress {NVM_ROM_BLOCK_DATA_ADDRESS}
Description Defines the start address of the ROM block data. If a NULL pointer is

configured, no ROM block is available for the selected block management
type.

Multiplicity 1
Type StringParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item NVM485 :
Name NvmRomBlockNum {NVM_ROM_BLOCK_NUM}
Description Defines the number of multiple ROM blocks in a contiguous area according

to the given block management type. 0-255 For NVRAM blocks to be
configured of block management type NVM_BLOCK_DATASET. The
actual range is limited according to NVM148. 0-1 For NVRAM blocks to be
configured of block management type NVM_BLOCK_NATIVE 0-1 For
NVRAM blocks to be configured of block management type
NVM_BLOCK_REDUNDANT

Multiplicity 1
Type IntegerParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

dependency: NVM_BLOCK_MANAGEMENT_TYPE,
NVM_NV_BLOCK_NUM

SWS Item NVM117, NVM245 :
Name NvmSelectBlockForReadall {NVM_SELECT_BLOCK_FOR_READALL}
Description NVM117: Defines whether a NVRAM block shall be processed during

NvM_ReadAll or not. This configuration parameter has only influence on
those NVRAM blocks which are configured to have a permanent RAM
block. NVM245: Blocks of management type NVM_BLOCK_DATASET
shall not be loaded automatically upon start-up. Thus the selection of
blocks, which belong to block management type NVM_BLOCK_DATASET,
shall not be possible for the service NvM_ReadAll. true: NVRAM block
shall be processed by NvM_ReadAll false: NVRAM block shall not be
processed by NvM_ReadAll

Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

96 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

dependency: NVM_RAM_BLOCK_DATA_ADDRESS

SWS Item --
Name NvmSingleBlockCallback {NVM_SINGLE_BLOCK_CALLBACK}
Description Entry address of the block specific callback routine which shall be invoked

on termination of each asynchronous single block request [NVM113].
Multiplicity 1
Type FunctionNameDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item NVM072 :
Name NvmWriteBlockOnce {NVM_WRITE_BLOCK_ONCE}
Description Defines write protection after first write. The NVRAM manager sets the

write protection bit after the NV block was written the first time. This means
that some of the NV blocks in the NVRAM should never be erased nor be
replaced with the default ROM data after first initialization. [NVM276]. true:
Defines write protection after first write is enabled. false: Defines write
protection after first write is disabled.

Multiplicity 1
Type BooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

Included Containers
Container Name Multiplicity Scope / Dependency
NvmTargetBlockReference 1 --

10.2.5 NvmTargetBlockReference

SWS Item NVM486 :
Choice Container Name NvmTargetBlockReference
Description --

Container Choices
Container Name Multiplicity Scope / Dependency
NvmEaRef 0..1 EEPROM Abstraction

NvmFeeRef 0..1 Flash EEPROM Emulation

10.2.6 NvmEaRef

SWS Item NVM487 :
Container Name NvmEaRef

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

97 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Description EEPROM Abstraction
Configuration Parameters

SWS Item NVM488 :
Name NvmNameOfEaBlock
Description reference to EaBlock
Multiplicity 1
Type Reference to EaBlockConfiguration

Pre-compile time --
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

No Included Containers

10.2.7 NvmFeeRef

SWS Item NVM489 :
Container Name NvmFeeRef
Description Flash EEPROM Emulation
Configuration Parameters

SWS Item NVM490 :
Name NvmNameOfFeeBlock
Description reference to FeeBlock
Multiplicity 1
Type Reference to FeeBlockConfiguration

Pre-compile time --
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

No Included Containers

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

98 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

10.3 Common configuration options

NVM030: By use of configuration techniques, each application shall be enabled to
declare the memory requirements at configuration time. This information shall be
useable to assign memory areas and to generate the appropriate interfaces. Wrong
memory assignments and conflicts in requirements (sufficient memory not available)
shall be detected at configuration time.

NVM034: The NVRAM memory layout configuration shall have a unique ID. The NvM
module shall have a configuration identifier that is a unique property of the memory
layout configuration. The ID can be either statically assigned to the configuration or it
can be calculated from the configuration properties. This should be supported by a
configuration tool. The ID must be changed if the block configuration changes, i.e. if a
block is added or removed, or if its size or type is changed. The ID shall be stored
together with the data and shall be used in addition to the data checksum to
determine the consistency of the NVRAM contents.

NVM073: The comparison between the stored configuration ID and the compiled
configuration ID shall be done as the first step within the function NvM_ReadAll
[NVM008] during startup. In case of a detected configuration ID mismatch, the
behavior of the NvM module shall be defined by a configurable option [NVM028].

NVM052: Provide information about used memory resources. The NvM module
configuration shall provide information on how many resources of RAM, ROM and
NVRAM are used. The configuration tool shall be responsible to provide detailed
information about all reserved resources. The format of this information shall be
commonly used (e.g. MAP file format).

10.3.1 Published parameters

Published information contains data defined by the implementer of the SW module
that does not change when the module is adapted (i.e. configured) to the actual
HW/SW environment. It thus contains version and manufacturer information.

The standard common published information like

vendorId (<Module>_VENDOR_ID),
moduleId (<Module>_MODULE_ID),
arMajorVersion (<Module>_AR_MAJOR_VERSION),
arMinorVersion (<Module>_ AR_MINOR_VERSION),
arPatchVersion (<Module>_ AR_PATCH_VERSION),
swMajorVersion (<Module>_SW_MAJOR_VERSION),
swMinorVersion (<Module>_ SW_MINOR_VERSION),
swPatchVersion (<Module>_ SW_PATCH_VERSION),
vendorApiInfix (<Module>_VENDOR_API_INFIX)

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

99 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

is provided in the BSW Module Description Template (see 3.1 Figure 4.1 and Figure
7.1).

Additional published parameters are listed below if applicable for this module.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

100 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

11 Changes to Release 1

11.1 Deleted SWS Items

SWS Item Rationale

NVM002
NVRAM block management type NVM_BLOCK_WALKING is out of scope of
the NvM module R2.0 (shifted to memory hardware abstraction).

NVM003 Specification item didn’t specify any functionality.

NVM005
NVRAM block management type NVM_BLOCK_WALKING is out of scope of
the NvM module R2.0 (shifted to memory hardware abstraction).

NVM031 Due to rejection of requirement BSW124
NVM041 Will be managed by MemHwA in R2.0

NVM043
NVRAM block management type NVM_BLOCK_WALKING is out of scope of
the NvM module R2.0 (shifted to memory hardware abstraction).

NVM045 Specification item didn’t satisfy requirement.
NVM048 NVM048 didn’t add any new information to NVM047.
NVM053 NVM053 was only used as link to the block descriptor.
NVM055 NVM055 didn’t add any new information to NVM032.
NVM056 Std_ReturnType is used instead of NvM_ReturnType.
NVM057 Specification item didn’t satisfy requirement.
NVM058 Summarized in NVM027
NVM059 Summarized in NVM027
NVM060 Summarized in NVM027
NVM064 Standard type uint8 is used for data sets.
NVM065 Standard type Boolean instead of NvM_ProtectionType.
NVM070 Summarized in NVM027
NVM080 Specification item was only used as a link to the input documents.
NVM081 NvM_ServiceIdType no more required -> Standard type is used instead
NVM082 Replaced by link to chapter 8.6.2 “Optional interfaces”.
NVM090 NVM090 didn’t add any new information to NVM001.
NVM093 Decision done by PL team to remove the flow charts.
NVM094 Decision done by PL team to remove the flow charts.
NVM096 Decision done by PL team to remove the flow charts.
NVM097 Decision done by PL team to remove the flow charts.
NVM098 Decision done by PL team to remove the flow charts.
NVM099 Decision done by PL team to remove the flow charts.
NVM100 Decision done by PL team to remove the flow charts.
NVM101 Decision done by PL team to remove the flow charts.
NVM102 Decision done by PL team to remove the flow charts.
NVM103 Decision done by PL team to remove the flow charts.
NVM104 Decision done by PL team to remove the flow charts.
NVM105 Decision done by PL team to remove the flow charts.
NVM108 Summarized in NVM027
NVM110 Decision done by PL team to remove the flow charts.
NVM142 RfC #14404
NVM205 RfC 17960
NVM299 RfC 17960
NVM289 RfC 17960
NVM297 RfC 17138

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

101 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

11.2 Replaced SWS Items

SWS Item of
Release 1

replaced by
SWS Item

Rationale

NVM017 NVM165 Explicit way of data consistency/integrity check
no longer available.

NVM079 NVM113,NVM260

11.3 Changed SWS Items

SWS Item Rationale

NVM008
Only permanent RAM blocks can be processed automatically during start-
up. Furthermore a configuration option was introduced to decide whether a
permanent RAM block shall be processed or not.

NVM022 Adaptation to new SWS template for R2.0.
NVM023 Simplification of error possibilities.

NVM027
All possible development errors are summarized for each API call in a
global table.

NVM032 Priority is no longer only related to write requests.
NVM051 Change in memory hardware abstraction layer.
NVM061 Configuration parameters added/deleted for R2.0.
NVM062 NVM_BLOCK_WALKING and _ROM types no longer supported.
NVM072 Configuration parameter renamed due to be more precise.
NVM077 Optional interfaces added.
NVM083 Simplification of possible request results.

NVM085
Modified due to support of NvmInitBlockCallback configuration
parameter.

NVM087 Unified behavior of NvM_ReadBlock and NvM_ReadAll
NVM141 RfC 10970
NVM127 RfC 10978
NVM148 RfC 10974
NVM027 RfC 13056
NVM039 RfC 10938
NVM341 RfC 12253
NVM342 RfC 12253
NVM279 RfC 12253
NVM288 RfC 12253
NVM111 RfC 14701
NVM112 RfC 14701
NVM007 RfC 14690
NVM028 RfC 14727
NVM200 RfC 15173
NVM251 RfC 15173
NVM276 RfC 15746
NVM077 RfC 16572
NVM380 RfC 44254 ECUM - NVRAM interaction during shutdown
NVM243 RfC 44254 ECUM - NVRAM interaction during shutdown
NVM254 RfC 44254 ECUM - NVRAM interaction during shutdown

11.4 Added SWS Items

SWS Item Rationale

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

102 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

NVM112
NVM285 Added due to adaptation to new SWS template.
NVM286 Added due to adaptation to new SWS template.
NVM351 RfC 13416
NVM352 RfC 11982
NVM353 RfC 10945
NVM354 RfC 10954
NVM355 RfC 10954
NVM356 RfC 11008
NVM357 RfC 13056
NVM358 RfC 12253
NVM359 RfC 12253
NVM360 RfC 12253
NVM361 RfC 12253
NVM362 RfC 12458
NVM363 RfC 12458
NVM364 RfC 12458
NVM365 RfC 15525
NVM366 RfC 15173
NVM367 RfC 15173
NVM368 RfC 15995
NVM369 RfC 15995
NVM446 UML Model linking of imported types
NVM447 UML Model linking of NvM_Init
NVM448 UML Model linking of NvM_SetDataIndex
NVM449 UML Model linking of NvM_GetDataIndex
NVM450 UML Model linking of NvM_SetBlockProtection
NVM451 UML Model linking of NvM_GetErrorStatus
NVM452 UML Model linking of NvM_GetVersionInfo
NVM453 UML Model linking of NvM_SetRamBlockStatus
NVM454 UML Model linking of NvM_ReadBlock
NVM455 UML Model linking of NvM_WriteBlock
NVM456 UML Model linking of NvM_RestoreBlockDefaults
NVM457 UML Model linking of NvM_EraseNvBlock
NVM458 UML Model linking of NvM_CancelWriteAll
NVM459 UML Model linking of NvM_InvalidateNvBlock
NVM460 UML Model linking of NvM_ReadAll
NVM461 UML Model linking of NvM_WriteAll
NVM462 UML Model linking of NvM_JobEndNotification
NVM463 UML Model linking of NvM_JobErrorNotification
NVM464 UML Model linking of NvM_MainFunction
NVM465 UML Model linking of mandatory interfaces
NVM466 UML Model linking of optional interfaces
NVM467 UML Model linking of SingleBlockCallbackFunction
NVM468 UML Model linking of MultiBlockCallbackFunction
NVM469 UML Model linking of InitBlockCallbackFunction
NVM472 RfC 17133
NVM473 RfC 17133
NVM474 RfC 17139
NVM475 RfC 16667

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

103 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

12 Changes during SWS Improvements

12.1 Deleted SWS Items

SWS Item Rationale
NVM109 Requirement on other module.
NVM159 Requirements on other modules.

12.2 Replaced SWS Items

SWS Item of
Release 1

replaced by
SWS Item

Rationale

NVM115
NVM370, NVM371,
NVM372, NVM373

Removed requirement according to make it
atomic.

NVM145
NVM374, NVM375 Removed requirement according to make it

atomic.

NVM147
NVM376, NVM377 Removed requirement according to make it

atomic.

NVM039
NVM378, NVM379 Removed requirement according to make it

atomic.

NVM151
NVM380, NVM381 Removed requirement according to make it

atomic.

NVM007
NVM383, NVM384 Removed requirement according to make it

atomic.

NVM154
NVM385, NVM386 Removed requirement according to make it

atomic.

NVM087
NVM387, NVM388 Removed requirement according to make it

atomic.

NVM167
NVM389, NVM390 Removed requirement according to make it

atomic.

NVM173
NVM391, NVM392 Removed requirement according to make it

atomic.

NVM177
NVM393, NVM394 Removed requirement according to make it

atomic.

NVM178
NVM395, NVM396 Removed requirement according to make it

atomic.

NVM327
NVM397, NVM398 Removed requirement according to make it

atomic.

NVM004
NVM399, NVM400 Removed requirement according to make it

atomic.

NVM074
NVM405, NVM406 Removed requirement according to make it

atomic.

NVM011
NVM410, NVM411 Removed requirement according to make it

atomic.

NVM067
NVM415, NVM416,
NVM417, NVM418

Removed requirement according to make it
atomic.

NVM013
NVM421, NVM422,
NVM423, NVM424

Removed requirement according to make it
atomic.

NVM282
NVM426, NVM427 Removed requirement according to make it

atomic.

NVM283
NVM430, NVM431 Removed requirement according to make it

atomic.
NVM120 NVM432, NVM433, Removed requirement according to make it

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

104 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

NVM434 atomic.

NVM225
NVM435, NVM436 Removed requirement according to make it

atomic.

NVM261
NVM438, NVM439 Removed requirement according to make it

atomic.
NVM124 NVM442, NVM443 Original requirement was on different objects
NVM148 NVM444, NVM445 Original requirement was on different objects

12.3 Changed SWS Items

Many requirements have been changed to improve understandability.

12.4 Added SWS Items

SWS Item Rationale
NVM401 Caveat for NvM_SetDataIndex.
NVM402 Caveat for NvM_GetDataIndex.
NVM403 Caveat for NvM_SetBlockProtection.
NVM404 Caveat for NvM_GetErrorStatus.
NVM407 Caveat for NvM_SetRamBlockStatus.
NVM408 Caveat for NvM_SetRamBlockStatus.
NVM409 Caveat for NvM_ReadBlock.
NVM412 Caveat for NvM_WriteBlock.
NVM413 Caveat for NvM_ResoreBlockDefaults.
NVM414 Caveat for NvM_EraseNvBlock
NVM419 Caveat for NvM_CancelWriteAll.
NVM420 Caveat for NvM_CancelWriteAll.
NVM425 Caveat for NvM_InvalidateNvBlock
NVM428 Caveat for NvM_ReadAll
NVM429 Caveat for NvM_ReadAll
NVM437 Caveat for NvM_WriteAll
NVM440 Requirement for NvM_JobEndNotification
NVM441 Requirement for NvM_JobErrorNotification
NVM446 UML Model linking of imported types
NVM447 UML Model linking of NvM_Init
NVM448 UML Model linking of NvM_SetDataIndex
NVM449 UML Model linking of NvM_GetDataIndex
NVM450 UML Model linking of NvM_SetBlockProtection
NVM451 UML Model linking of NvM_GetErrorStatus
NVM452 UML Model linking of NvM_GetVersionInfo
NVM453 UML Model linking of NvM_SetRamBlockStatus
NVM454 UML Model linking of NvM_ReadBlock
NVM455 UML Model linking of NvM_WriteBlock
NVM456 UML Model linking of NvM_RestoreBlockDefaults
NVM457 UML Model linking of NvM_EraseNvBlock
NVM458 UML Model linking of NvM_CancelWriteAll
NVM459 UML Model linking of NvM_InvalidateNvBlock
NVM460 UML Model linking of NvM_ReadAll
NVM461 UML Model linking of NvM_WriteAll
NVM462 UML Model linking of NvM_JobEndNotification
NVM463 UML Model linking of NvM_JobErrorNotification
NVM464 UML Model linking of NvM_MainFunction

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

105 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

NVM465 UML Model linking of the mandatory interfaces
NVM466 UML Model linking of the optional interfaces
NVM467 UML Model linking of SingleBlockCallbackFunction
NVM468 UML Model linking of MultiBlockCallbackFunction
NVM469 UML Model linking of InitBlockCallbackFunction
NVM470 UML Model linking of NvM_RequestResultType
NVM471 UML Model linking of NvM_BlockIDType

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

106 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

13 AUTOSAR Service implemented by the NVRAM Manger

13.1 Scope of this Chapter

This chapter is an addition to the specification of the NvM module. Whereas the other
parts of the specification define the behavior and the C-interfaces of the
corresponding basic software module, this chapter formally specifies the
corresponding AUTOSAR Service in terms of the SWC Template. The interfaces
described here will be visible on the VFB and are used to generate the RTE between
application software and the NvM module.

13.1.1 Package

The following definitions are interpreted to be in
ARPackage AUTOSAR/Services/NvM

13.2 Overview

13.2.1 Architecture

In the AUTOSAR ECU Architecture (see [1]) the NvM module implements an
AUTOSAR Service as indicated in Figure 19.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

107 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Figure 19: NVRAM Manager in ECU software architecture

From the viewpoint of the basic software C-module “NVRAM Manager”, there are
three kinds of dependencies between the Service and the AUTOSAR Software
Components above the RTE2 :

 the application accesses the API (implemented as C-functions) of the NvM
module

 the application is optionally notified upon the outcome of requested
asynchronous activity (via callback-C-functions by the NvM module)

 the application accesses the RAM-blocks which the NvM module has to save
or restore.

These dependencies must be described in terms of the AUTOSAR meta-model
which will contribute to the SW-C Description of the application component as well as
to the SW-C Description of the NVRAM Service.

13.2.2 Requirements

There are three sources of requirements for this specification:
 The requirements for the functionality of the NVRAM service are specified in

[3].
 In order to model the VFB view of the Service, the chapter on AUTOSAR

Services of the VFB specification [7] has to be considered as an additional
requirement.

 For the formal description of the SW-C attributes [8] gives the requirements.

2“Applications” of the NVRAM Manager can be “below” as well as “above” the RTE; this chapter
concentrates on the interfaces seen from the applications above the RTE.

ECU-Hardware

AUTOSAR Runtime Environment (RTE)

 Application
Software

Component

Application
Software

Component

Basic Software
Standardized

Interface

AUTOSAR
Interface

AUTOSAR
Interface

Microcontroller
Abstraction

AUTOSAR
Software

Component

ECU
Firmware

Standard
Software

NVRamManager

Standardized
Interface

ECU
Abstraction

AUTOSAR
Interface

Standardized
Interface

Complex
Device
Drivers

AUTOSAR
Interface

API 2
VFB & RTE
relevant

Standardized
Interface

Communication

Standardized
Interface

Standardized
Interface

Operating
System

API 1
RTE relevant

API 0

Different

Kinds of
Interfaces

Stan
dardi
zed

Interf
ace

API

RAM
Block

Notifications

How does the
app SW-C access
the RAM block?

How does the app SW-C
call the API?

How are the notifications
provided?

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

108 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

13.2.3 Use Cases

On each ECU we have typically one instance of the NVRAM Service and several
Atomic Software Component instances, named “clients” further on in this chapter,
which are using this Service. In addition, there are parts of the basic software, which
either control the NvM module (e.g. for initiation and shutdown) or need to read or
write some NVRAM data themselves.

Each client will own certain transient data which it “wants” to make persistent via the
NVRAM Service. It is important to mention that the transient data are privately owned
by clients3 – otherwise, the clients could communicate via the content of those data
which is against AUTOSAR principles. Towards the NVRAM Service, the client uses
so-called block identifiers to address the persistent data.

Furthermore, it is important that in general a client is a component instance. So if a
client component can be instantiated more than once on an ECU, each instance will
in general possess its own private copy of transient data. This is an important
restriction on the modeling of block identifiers: Because for a reusable component,
we cannot a priori prescribe the number of instances. We can use block identifiers
(which could be in the form of symbolic information) in the code only on a per-
component base, but this must result in different actual identifiers towards the
NVRAM.

There are three principle ways, how a client can use the NVRAM service.

13.2.3.1 Implicit Update and Restore of RAM Mirror

See Figure 20. This is a summary of use cases in which there is no communication
(in the sense of the VFB) between the NvM module and its client. The client holds its
transient data in a so-called RAM mirror which is organized in so-called RAM blocks
permanently associated with their non-volatile counterparts of the NvM module.
Update and restore of the RAM blocks is initiated by the ECU State Manager, the
AUTOSAR SW-C accesses its RAM blocks directly. Note that the NvM module does
NOT communicate with its client via the RAM blocks because no information is
exchanged between the NvM module and its client via the RAM block.
In this case, the client does not need any AUTOSAR Interface to communicate with
the Service. But nevertheless, there have to be certain contracts between the client
and the NvM module:

 On the size, identification and maybe further properties of the RAM/NVRAM
blocks which have to be known on both sides. For the access of the RAM
mirror via the RTE see 13.4.

 On the states (of the ECU and/or the client component) in which the RAM
blocks can be safely accessed by the client. For this contract, it is essential
that the client is informed about its activation/termination or about the relevant
ECU states. This communication path has to be handled by the RTE in
cooperation with the ECU State Manager (not visible in Figure 20).

3 If the client is an Atomic SWC. It does not hold for components of the basic SWC which might use
the NVRAM Manager.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

109 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Figure 20: Implicit update/restore of RAM blocks

13.2.3.2 Explicit Update and Restore of RAM Mirror

See Figure 21. This is a summary of use cases in which the client explicitly requests
to save or restore the content of a mirror RAM block from/to non-volatile memory
(e.g. in order to decrease the risk of data loss). But as in the first case, RAM blocks
are permanently associated with their counterparts in NVRAM. Now we need direct
communication (in the sense of the VFB) between the NvM module and its client.
Also in this case, the NvM module does NOT communicate with its client via the
RAM blocks. In this case, the client must use an AUTOSAR interface to
communicate with the service.

Similar to the case of implicit update/restore, we need certain contracts between the
client and the NvM module:

 On the size, identification and maybe further properties of the RAM/NVRAM
blocks which have to be known on both sides. For the access of the RAM
mirror via the RTE see 13.4.

 On the states (of the ECU and/or the client component) in which the client may
request to restore or save RAM blocks. For this contract, it is essential that the
client is informed about its activation/termination or relevant ECU states. This
communication path has to be handled by the RTE in cooperation with the
ECU State Manager (not visible in Figure 21).

 During the explicit update and restore scenarios, the client has to follow
certain rules, e.g. not to access a RAM block before the update or restore is

AUTOSAR
SW-

Component
 RAM block

NVRAM
Manager

Other parts of
basic SW Initialize;

Request to restore/save
all blocks depending on
ECU state

Restore/save all
blocks from/to
non-volatile
medium

Access content
of RAM blocks

RTE

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

110 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

finished.

Figure 21: Explicit update/restore of mirror RAM blocks

13.2.3.3 Explicit Update and Restore via a Local Buffer

See Figure 22. This is a summary of use cases in which the client explicitly requests
to save or restore the content of some transient data, but instead of using a RAM
mirror, it passes the address of a buffer which is only temporarily associated with a
certain block in NVRAM. Also, we need here direct communication (in the sense of
the VFB) between the NvM module and its client. Also in this case, the NvM module
does NOT communicate with its client via the RAM blocks.

Also in this case, the client must use an AUTOSAR interface to communicate with
the service.

Again we need certain contracts between the client and the NvM module:

 On the size, identification and maybe further properties of the temporarily
associated NVRAM blocks which have to be known on both sides. For the
buffer, the partners do not have to agree on its allocation because it is totally
up to the client.

 On the states (of the ECU and/or the client component) in which the client may
request to restore or save RAM blocks. For this contract, it is essential that the
client is informed about its activation/termination or relevant ECU states. This
communication path has to be handled by the RTE in cooperation with the
ECU State Manager (not visible in Figure 21).

 During the explicit update and restore scenarios, the client has to follow
certain rules, e.g. not to access the buffer before the update or restore is
finished.

AUTOSAR
SW-

Component
 RAM block

NVRAM
Manager

Other parts of
basic SW

Request to
restore/save a
block from/ to
non-volatile
medium

Notify on
outcome of
request
(optional)

Initialize

Restore/save
block from/to
non-volatile
medium

Access content
of RAM blocks

RTE

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

111 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Figure 22: Explicit update/restore of RAM blocks via buffer

13.3 Specification of the Ports and Port Interfaces

This chapter specifies the ports and port interfaces which are needed in order to
operate the NvM module functionality over the VFB. Note that there are ports on both
sides of the RTE: The SW-C description of the NVRAM Service defines the ports
below the RTE. Each SW-Component which uses the Service must contain “service
ports” in its own SW-C description which are connected to the ports of the NvM
module, so that the RTE can be generated.

13.3.1 Ports and Port Interface for Single Block Requests

13.3.1.1 General Approach

It is appropriate to model the requests issued from a client to the NVRAM Service by
ports with client/server interfaces.

Typically, a client of the application domain needs the NvM module for services
dealing with individual blocks (except for the simple use case described in 13.2.3.1).
These so-called single block requests of the NvM module C-API need the Block ID
as a first argument for the C-function.

In order to keep the client code independent from the configuration of NVRAM block
IDs (which depend on the needs of all the applications on an ECU), the block IDs are
not passed from the clients to the NvM module, but are modeled as “port defined
argument values” of the Provide Ports on the NvM module side. As a consequence,
the block IDs will not show up as arguments in the operations of the client-server
interface. As a further consequence of this approach, there will be separate ports for
each NVRAM block both on the client side as well as on the server side.

AUTOSAR
SW-

Component
Local Buffer

NVRAM
Manager

Request to
restore/save a
block from/ to
non-volatile
medium to/from
buffer

Notify on
outcome of
request
(optional)

Initialize

Restore/save
buffer from/to
non-volatile
medium

Allocate buffer &
access content

RTE

Other parts of
basic SW

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

112 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

13.3.1.2 Data Types

This chapter describes the data types which will be used in the port interfaces for
single block requests and notifications.

The data types Uint8 and Boolean used in the interfaces refer to the basic
AUTOSAR data types.

The data type RequestResultType indicates the result of a read or write request
which are defined by the SW-C Description as follows:

IntegerType RequestResultType {
 upperLimit = 0
 lowerLimit = 5
};

Via an associated CompuMethod the following constants are
defined within this type:
 0 -> NVM_REQ_OK
 1 -> NVM_REQ_NOT_OK
 2 –> NVM_REQ_PENDING

3 -> NVM_INTEGRITY_FAILED
 4 -> NVM_REQ_BLOCK_SKIPPED
 5 –> NVM_REQ_NV_INVALIDATED

For the use cases described in chapter 13.2.3.3, we need a type DstPtrType to
pass the address of the local buffer:
ArrayType DstPtrType
{
 elementType = Uint8;
 maxNumberOfElements = <xx>;
};

Where <xx> denotes the size of the used buffer, which must be equal or
bigger than the size of the data block associated with the port interface
in which the buffer is used.

This solution may result in slightly different interfaces if different buffer sizes are
used. This is the only possibility to describe the situation in the current SWCT
because it is not possible to specify a pointer type. It is assumed that for operations
which can be invoked concurrently, the RTE will generate just a pointer (of type uint*)
and allocates no additional buffer so that the resulting C-code will be as efficient as a
direct function call passing a pointer.

Note that for read/write operations which do not need a local buffer, the client has to
pass a zero pointer instead of the buffer address.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

113 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

13.3.1.3 Port Interface

All single block operations (with the exception of SetBlockProtection which is
discussed in chapter 13.3.3) are put into one single port interface in order to minimize
the number of ports and names needed in the XML description.

The operations correspond to the function calls of the NVRAM C-API (notation in
pseudo code; must be transferred into XML). Compared to the C-function, we do not
need the “NvM_” prefix in the names because the names given here will show up in
the XML not as global entities but as part of an interface description.

The notation of possible error codes resulting from server calls follows the approach
in the meta-model. It is a matter of the RTE specification [9] how those error codes
will be passed via the actual API.

ClientServerInterface NvMService {
 PossibleErrors {
 E_NOT_OK = 1
 };

 // the next operation is always provided

GetErrorStatus(OUT RequestResultType RequestResultPtr);

// the next two operations are always available, but are needed
// only for “data set” block types. Thus they shall be provided in
// the interface only for those block types
SetDataIndex(IN Uint8 DataIndex);
GetDataIndex(OUT Uint8 DataIndexPtr);

// this operation is only provided via optional configuration
// NvmSetRamBlockStatusApi
SetRamBlockStatus(IN Boolean BlockChanged);

// the next three operations are only provided for
// NVRAM API configuration class 2 and 3
ReadBlock(IN DstPtrType DstPtr, ERR{E_NOT_OK});
WriteBlock(IN DstPtrType SrcPtr, ERR{E_NOT_OK});
RestoreBlockDefaults(IN DstPtrType DstPtr, ERR{E_NOT_OK});

// the next two operations are only provided for
// NVRAM API configuration class 3
EraseBlock(ERR{E_NOT_OK});
InvalidateNvBlock(ERR{E_NOT_OK});

};

Note that in the interface of each Require Port of the client, only those operations
must be present which the client actually requires for that block.
On the other hand, in the interface of the Provide Port, only those operations will be
provided, which actually have to be configured for the NVRAM Service on a specific
ECU. Because some of the operations are optional, they may not always be

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

114 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

provided. The optional parts are indicated by comments in the pseudo-code and
must currently be configured manually in the XML Specification4.

Note that via compatibility rules, a Require Port can be connected to a Provide Port
providing more operations than actually needed, but not the other way round.

Note also, that due to the optional parts, different variants of this interface may exist
on the same ECU. In this case, it may be required to make the interface name unique
by attaching suffixes to its name. A rule for this is however not standardized.

13.3.1.4 Ports

Figure 23 shows how AUTOSAR Software components (single or multiple instances)
are connected by means of service ports to the NvM module.

Figure 23: Example of SW-Cs connected to the NVRAM via service ports. On the left side, there
are two instances of component SWCTypeA and one instance of component SWCTypeB. The

Port names on the left side are only for illustration. No notification ports or administrative ports
are configured.

On the NvM module side, there is one port per NVRAM block providing all the
services of the interface NvMService described above. Each client has one port for
requiring those services for each NVRAM block associated with that client.
The ports providing the services are named according to the BlockID:
PS2, PS3, … ,PS7

These names are examples, they are not standardized. It is not essential, that these
ports are numbered consecutively, but the numbers should match the NVRAM blocks
for documentation purposes.

4 By introducing a property concept in the meta-model, the optional parts may in future be controlled
by other model elements. For this, the relation between the Service requirements of an SWC and the
Service ports of an SWC must be explicitly modeled.

NVRAMManager

 PS2

PS3

PS4

PS5

PS6

PS7

SWC3:
SWCTypeB

NVPortX

NVPortY

SW-C2:
SWCTypeA

NVPort1

 NVPort2

SW-C1:
SWCTypeA

NVPort1

NVPort2

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

115 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Hint for the developers of the client components:

There are two ways of accessing the NvM Service ports via the RTE. The selection
of one alternative is an implementation decision independent of the specification of
the NVRAM Service.

1) Use the “direct API” of the RTE. In the client code, each single block operation will

show up as a separate call to the RTE which can be optimized to “zero overhead”
function invocation under certain conditions (source code of the client is available
and the client is a single-instance component). In case of optimization, there will
be a macro for each operation and each block. Each macro will be expanded to a
direct call of the NvM module.

2) Use the “indirect API” of the RTE. The client code will call the single block
operations via a “port handle”. This port handle can be accessed by an array
index which in this case identifies the NVRAM blocks used by this client. This
approach offers less potential for code size optimization in the RTE, but the port
handle allows for a more compact handling in the client code, e.g. if iteration over
NVRAM blocks is required. Note that the ports accessed via this kind of API must
have the same port interface, i.e. the optional parts must be the same.

For more explanation of the direct and indirect API see [9].

13.3.2 Ports and Port Interface for Notifications

Some block requests which can be initiated by client requests are performed
asynchronously (with respect to the requesting call) and can be configured to throw
“notifications” to indicate the completion (or error) of such a request. The reason is
the relatively slow access time of the storage medium.

As a first glance a pair of request/notification looks like an asynchronous client/server
communication described in [7], chapter 4.1.7.2. But it cannot be modeled that way,
because in an asynchronous client/server communication, the server operation in
itself is always synchronous whereas for the NvM module, the request of an action,
the actual performing of it and the notification are asynchronous activities. Another
reason is that the notifications are optional.

Therefore it is required to model the notification by a separate connection and thus
separate ports on both service and SW component side.

The NvM module on C-code level does not pass a block ID with the callback but
allows configuring a separate callback address for each block. This means that on
the modeling level we need one separate (optional) notification port for each single
block. As a consequence, the existence of notification ports in the SW-C Description
of the NVRAM Service must be configured per ECU.

For the notification ports, a client/server interface is used, because we have to
transmit two values. A drawback of this approach (in comparison to sender/receiver)
is that a badly implemented SW-C could block the NvM module for an unacceptable
amount of time. To minimize this risk there are two possibilities:

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

116 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

 Design rules for the implementation of such notifications by the SW-Cs
 Configuring the notification interface as asynchronous client/server would

allow decoupling of the invocation in the SW-C from the implementation of the
notification function. As this involves a more complicated protocol, this shall
however be used only in special cases and is not part of the standardization of
this Service.

The notification has to pass the following arguments:

 A “Service ID” which indicates which one of the asynchronous services
triggered via the operations of Interface NvMService (see above) the
notification belongs to.

 A JobRequestResult indicating success or failure of the service.

The Pseudo-Code for the notification interface (which has to be translated into XML)
is:

ClientServerInterface NvMNotifyJobFinished {

JobFinished(IN Uint8 ServiceId,
 IN RequestResultType JobResult);

};

The Pseudo-Code for the init block notification interface (which has to be
translated into XML) is:

ClientServerInterface NvMNotifyInitBlock
{
InitBlock();

};

It is recommended to name the ports providing the notifications via this interface
according to the BlockID (but this is no standard), for example:
PN2, PN3,…

Interrupt context: „This routine might be called in interrupt context, depending on the
calling function.“ (see Chapter 0).

This requirement is consistent with current RTE requirements if the interrupt context
is not propagated ”above“ the RTE. This must be handled by the RTE generation.
Currently (in AUTOSAR 2.1), it is not possible to indicate this condition in the SWC
Description of the Service. As a workaround, the runnable implementing the callback
in the client component must be marked in this case as “canBeInvokedConcurrently
= FALSE”. Note that this is only a workaround because this condition should be
handled independently of the SWC description of the client components.

13.3.3 Ports and Port Interfaces for Administrative Operations

Administrative functions which are not needed for “normal” use cases are put into a
separate port interface. Currently it contains only the operation “SetBlockProtection”.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

117 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

The port interface is defined as follows. It does not specify error codes:

ClientServerInterface NvMAdministration {

// the next operation is only provided for NVRAM API configuration
// class 3; besides of that it should only be required by a client
// for special use cases, e.g. if a block protection has to be
// removed during initiating of EOL data
SetBlockProtection(IN Boolean ProtectionEnabled);

};

For the purpose of this document, ports providing this interface have the name
PAdmin<nn> for a port identifier <nn>.

13.3.4 Summary of all Ports

We end up with the following structure for the AUTOSAR Interface of the NvM
module:

 For access from “normal” application components above the RTE:
o For each memory block:

 One port with a client-server interface providing all block-related
services for that block (except SetBlockProtection).

 Optional: A port with a client-server interface requiring a callback
related to notifications for that block.

 For administrative purposes from above the RTE:
o For each memory block:

 Optional: One port with a client-server interface providing
administrative services for that block

We indicate this as follows in pseudo code:

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

118 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Service NvM
{

// the entries in the next section will be defined only, if they
// are actually required by client service ports

 ProvidePort NvMService PS2;
ProvidePort NvMService PS3;
ProvidePort NvMService PS4;

 …
// the entries in the next section will be defined only, if the
// notification sinks are actually provided by client service ports

 RequirePort NvMNotify PN2;
 RequirePort NvMNotify PN3;
 RequirePort NvMNotify PN4;
 …

// the entries in the next section will be defined only, if they
// are actually required by client service ports, i.e. in special
// cases, where SetBlockProtection is needed

 ProvidePort NvMAdmin PAdmin2;
ProvidePort NvMAdmin PAdmin3;

 ProvidePort NvMAdmin PAdmin4;
 …
};

It is obvious that the existence of all these port definitions depends on the ECU. But
also the port interfaces itself are in general ECU dependent because they contain
optional parts as shown before. But they consist of standardized elements (operation
prototypes, data types).

13.4 Access to the Memory Blocks

The NvM module does not specify how its clients actually access the RAM block.
This is the private responsibility of each client. This especially holds true for the
structure and semantics of the block content.

However, the current meta model allows the SW-C to specify the overall features of
its NVRAM blocks (identifier, size, criticality, existence of ROM defaults etc..). For
details see the specification of PortAnnotation. The NVRAM service has to be
configured in response to those configurations given in the SW-C descriptions of its
clients. The configuration parameters of the NVRAM Service are however more
concrete (it has for example a “block management type”) whereas the SW-C
template defines the requirements on such a service in a more feature-related way.

The following is only relevant if the client uses a “RAM mirror” (use cases 13.2.3.1
and 13.2.3.2): From the viewpoint of the client, each block of its RAM mirror shall be
modeled as a PerInstanceMemory. The RTE will then handle static allocation of
those memory regions. In order to get access to one of its memory blocks in RAM,
the client has to use the RTE API: “Rte_Pim” (see [9]).

By this, the client gets a correctly typed handle to the memory section.There is no
need to standardize the name of the memory section because the RTE expands it
with the component and/or instance name in order to avoid name clashes.

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

119 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

Note the start address and size of the C data object associated with the
PerInstanceMemory sections must be harmonized with the configuration of the
NVRAM block descriptors in the ECU configuration description. This issue is not part
of this Specification.

13.5 InternalBehavior

The NvM module specification does not standardize the basic type to be used for
identifying the NVRAM blocks since the needed binary size is ECU dependent. This
type has to be defined for a specific ECU as follows:

IntegerType BlockIdType {
 lowerLimit = 2;
 upperLimit = <xx>;
 };

// Where <xx> = 2^(16- NVM_DATASET_SELECTION_BITS)-1
// see NVMRAM manager SWS for explanation)

This type does not show up in the service ports of the client components because the
block identifier is implemented as port defined argument value (see chapter 13.5)
which is part of the InternalBehavior of the NVRAM Service. So the ECU dependency
of BlockIdType is not visible for the clients.

Values 0 and 1 have special internal meaning and must not be used as identifiers for
“normal” NVRAM blocks.

The InternalBehavior of the NVRAM Service is only seen by the local RTE. Besides
the definition of the block identifiers as port defined arguments, it must specify the
operation invoked runnables:

InternalBehavior NVRAMManager {

 // definition of associated operation-invoked RTE-events not shown
 // (it is done in the same way as for any SWC type)

 // section “runnable entities”:

RunnableEntity GetErrorStatus
symbol “NvM_GetErrorStatus”
canbeInvokedConcurrently = TRUE

RunnableEntity SetDataIndex
symbol “NvM_SetDataIndex”
canbeInvokedConcurrently = TRUE

RunnableEntity GetDataIndex

symbol “NvM_GetDataIndex”
canbeInvokedConcurrently = TRUE

RunnableEntity SetRamBlockStatus

symbol “NvM_SetRamBlockStatus”
canbeInvokedConcurrently = TRUE

Specification of NVRAM Manager
 V2.3.0

R3.0 Rev 7

120 of 120 Document ID 033: AUTOSAR_NVRAMManager
- AUTOSAR confidential -

RunnableEntity ReadBlock
symbol “NvM_ReadBlock”
canbeInvokedConcurrently = TRUE

RunnableEntity WriteBlock

symbol “NvM_WriteBlock”
canbeInvokedConcurrently = TRUE

RunnableEntity RestoreBlockDefaults

symbol “NvM_RestoreBlockDefaults”
canbeInvokedConcurrently = TRUE

RunnableEntity EraseNvBlock

symbol “NvM_EraseNvBlock”
canbeInvokedConcurrently = TRUE

RunnableEntity InvalidateNvBlock

symbol “NvM_InvalidateNvBlock”
canbeInvokedConcurrently = TRUE

RunnableEntity SetBlockProtection

symbol “NvM_SetBlockProtection”
canbeInvokedConcurrently = TRUE

 // for each port providing the NvMService Interface:

PortArgument {port= PS2, value.type=BlockIdType, value.value=2}
 …

PortArgument {port= PS<nn>, value.type=BlockIdType, value.value=<nn>}

// for each port providing the NvMAdministration Interface:
PortArgument {port= PAdmin<xx>, value.type=BlockIdType,

value.value=<xx>}
 …
 // end of section “runnable entities”
};

13.6 Configuration of the Block IDs

The Block IDs of the NvM module are modeled as “port defined argument values”.
Thus the configuration of those values is part of the input to the RTE generator. Pre-
compile configuration can be done by changing the XML specification for the
argument values on the NVRAM Service at ECU integration time. Note that the ports
visible on the client side are not affected by this.

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains
	4.3 Conflicts

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure

	5.2 Memory abstraction modules
	5.3 CRC module
	5.4 Capability of the underlying drivers

	6 Requirements traceability
	7 Functional specification
	7.1 Basic architecture guidelines
	7.1.1 Layer structure
	7.1.2 Addressing scheme for the memory hardware abstraction
	7.1.2.1 Examples of addressing scheme for the memory hardware abstraction

	7.1.3 Basic storage objects
	7.1.3.1 NV block
	7.1.3.2 RAM block
	7.1.3.3 ROM block
	7.1.3.4 Administrative block

	7.1.4 Block management types
	7.1.4.1 Block management types overview
	7.1.4.2 NVRAM block structure
	7.1.4.3 NVRAM block descriptor table
	7.1.4.4 Native NVRAM block
	7.1.4.5 Redundant NVRAM block
	7.1.4.6 Dataset NVRAM block
	7.1.4.7 NVRAM Manager API configuration classes

	7.1.5 Scan order / priority scheme

	7.2 General behavior
	7.2.1 Functional requirements
	7.2.2 Design notes
	7.2.2.1 NVRAM manager startup
	7.2.2.2 NVRAM manager shutdown
	7.2.2.3 (Quasi) parallel write access to the NvM module
	7.2.2.4 Avoid infinite loops
	7.2.2.5 NVRAM block consistency check
	7.2.2.6 Error recovery
	7.2.2.7 Recovery of a RAM block with ROM data
	7.2.2.8 Implicit recovery of a RAM block with ROM default data
	7.2.2.9 Explicit recovery of a RAM block with ROM default data
	7.2.2.10 Detection of an incomplete write operation to a NV block
	7.2.2.11 Termination of a single block request
	7.2.2.12 Termination of a multi block request
	7.2.2.13 General handling of asynchronous requests/ job processing
	7.2.2.14 NVRAM block write protection
	7.2.2.15 Validation and modification of RAM block data
	7.2.2.16 Communication and synchronization between application and NVRAM manager
	7.2.2.16.1 Write requests (NvM_WriteBlock)
	7.2.2.16.2 Read requests (NvM_ReadBlock)
	7.2.2.16.3 Restore default requests (NvM_RestoreBlockDefaults)
	7.2.2.16.4 Multi block read requests (NvM_ReadAll)
	7.2.2.16.5 Multi block write requests (NvM_WriteAll)
	7.2.2.16.6 Cancel Operation (NvM_CancelWriteAll)
	7.2.2.16.7 Modification of administrative blocks

	7.2.2.17 Normal and extended runtime preparation of NVRAM blocks

	7.3 Error classification
	7.4 Error detection
	7.5 Error notification
	7.6 Version check

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 NvM_RequestResultType
	8.2.2 NvM_BlockIdType

	8.3 Function definitions
	8.3.1 Synchronous requests
	8.3.1.1 NvM_Init
	8.3.1.2 NvM_SetDataIndex
	8.3.1.3 NvM_GetDataIndex
	8.3.1.4 NvM_SetBlockProtection
	8.3.1.5 NvM_GetErrorStatus
	8.3.1.6 NvM_GetVersionInfo
	8.3.1.7 NvM_SetRamBlockStatus

	8.3.2 Asynchronous single block requests
	8.3.2.1 NvM_ReadBlock
	8.3.2.2 NvM_WriteBlock
	8.3.2.3 NvM_RestoreBlockDefaults
	8.3.2.4 NvM_EraseNvBlock
	8.3.2.5 NvM_CancelWriteAll
	8.3.2.6 NvM_InvalidateNvBlock

	8.3.3 Asynchronous multi block requests
	8.3.3.1 NvM_ReadAll
	8.3.3.2 NvM_WriteAll

	8.4 Call-back notifications
	8.4.1 Callback notification of the NvM module
	8.4.1.1 NVRAM Manager job end notification without error
	8.4.1.2 NVRAM Manager job end notification with error

	8.5 Scheduled functions
	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces
	8.6.3.1 Single block job end notification
	8.6.3.2 Multi block job end notification
	8.6.3.3 Callback function for block initialization

	8.7 API Overview

	9 Sequence Diagrams
	9.1 Synchronous calls
	9.1.1 NvM_Init
	9.1.2 NvM_SetDataIndex
	9.1.3 NvM_GetDataIndex
	9.1.4 NvM_SetBlockProtection
	9.1.5 NvM_GetErrorStatus
	9.1.6 NvM_GetVersionInfo

	9.2 Asynchronous calls
	9.2.1 Asynchronous call with polling
	9.2.2 Asynchronous call with callback
	9.2.3 Cancellation of a Multi Block Request

	10 Configuration specification
	10.1 How to read this chapter
	10.1.1 Configuration and configuration parameters
	10.1.2 Variants
	10.1.3 Containers

	10.2 Containers and configuration parameters
	10.2.1 Variants
	NvM
	NvmCommon
	NvmBlockDescriptor
	NvmTargetBlockReference
	NvmEaRef
	NvmFeeRef

	10.3 Common configuration options
	10.3.1 Published parameters

	11 Changes to Release 1
	11.1 Deleted SWS Items
	11.2 Replaced SWS Items
	11.3 Changed SWS Items
	11.4 Added SWS Items

	12 Changes during SWS Improvements
	12.1 Deleted SWS Items
	12.2 Replaced SWS Items
	12.3 Changed SWS Items
	12.4 Added SWS Items

	13 AUTOSAR Service implemented by the NVRAM Manger
	13.1 Scope of this Chapter
	13.1.1 Package

	13.2 Overview
	13.2.1 Architecture
	13.2.2 Requirements
	13.2.3 Use Cases
	13.2.3.1 Implicit Update and Restore of RAM Mirror
	13.2.3.2 Explicit Update and Restore of RAM Mirror
	13.2.3.3 Explicit Update and Restore via a Local Buffer

	13.3 Specification of the Ports and Port Interfaces
	13.3.1 Ports and Port Interface for Single Block Requests
	13.3.1.1 General Approach
	13.3.1.2 Data Types
	13.3.1.3 Port Interface
	13.3.1.4 Ports

	13.3.2 Ports and Port Interface for Notifications
	13.3.3 Ports and Port Interfaces for Administrative Operations
	13.3.4 Summary of all Ports

	13.4 Access to the Memory Blocks
	13.5 InternalBehavior
	13.6 Configuration of the Block IDs

