
Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

Document Title Specification of CAN Transport
Layer

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 014
Document Classification Standard

Document Version 2.3.0
Document Status Final
Part of Release 3.0
Revision 7

Document Change History
Date Version Changed by Change Description
15.09.2010 2.3.0

AUTOSAR
Administration

 Removed CanTp228
 Updated CanTp246, CanTp248
 Legal disclaimer revised

03.12.2007 2.2.0

AUTOSAR
Administration

 Addition of transmit cancellation
feature

 DataLength check only for too small
DLC (CanTp220)

 Restriction on mapping of N-Pdu
(CanTp248)

 Document meta information extended
 Small layout adaptations made

24.01.2007 2.1.1 AUTOSAR
Administration

 “Advice for users” revised
 “Revision Information” added

04.12.2006 2.1.0 AUTOSAR
Administration

 Clarification and correction of error
management: list of
production/development error and
behavior in case of error

 Addition of CanTp166 and CanTp167
to avoid blocking situation in case of
no buffer provided by upper layer

 Remove of CanTpRxWftMax of
container CanTpTxNSdu

 1 parameter added for the call of
Det_ReportError

 Add header files inclusions
 Addition of CanTpNSa container in

configuration chapter
 Legal disclaimer revised

27.04.2006 2.0.0 AUTOSAR
Administration

Document structure adapted to common
Release 2.0 SWS Template.

1 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

Document Change History
Date Version Changed by Change Description
21.06.2005 1.0.0 AUTOSAR

Administration
Initial Release

2 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).

Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary
items are licensed under the same rules as applicable to the AUTOSAR Standard.

3 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

Table of Contents

1 Introduction and functional overview ... 7

2 Acronyms and abbreviations ... 10

3 Related documentation.. 13

3.1 Input documents... 13
3.2 Related standards and norms .. 14

4 Constraints and assumptions .. 15

4.1 Limitations .. 15
4.2 Applicability in automotive domain ... 15

5 Dependencies on other modules... 16

5.1 AUTOSAR architecture basic concepts.. 16
5.1.1 CAN Transport Layer connection(s).. 16
5.1.2 CAN Transport Layer interactions ... 16
5.1.3 Processing mode .. 17
5.1.4 Data consistency... 17
5.1.5 Static configuration.. 17
5.1.6 PDU Router services... 18
5.1.7 CAN Interface services ... 18

5.2 File structure .. 18
5.2.1 Code file structure ... 18
5.2.2 Header file structure.. 18
5.2.3 Design Rules... 20

6 Requirements traceability .. 21

7 Functional specification ... 27

7.1 Services provided to upper layer .. 27
7.1.1 Initialization and shutdown .. 27
7.1.2 Transmit request ... 29
7.1.3 Transmit cancellation .. 29

7.2 Services provided to the lower layer... 30
7.2.1 Transmit confirmation.. 30
7.2.2 Reception indication.. 30

7.3 Internal behavior... 31
7.3.1 N-SDU Reception.. 31
7.3.2 N-SDU Transmission .. 33
7.3.3 Buffer strategy... 35
7.3.4 No Protocol parameter setting services .. 39
7.3.5 Tx and Rx data flow .. 39
7.3.6 Relationship between CAN NSduId and CAN LSduId......................... 40
7.3.7 Concurrent connection .. 41
7.3.8 N-PDU padding ... 42
7.3.9 Handling of unexpected N-PDU arrival ... 43

7.4 Error classification .. 44
7.5 Error detection.. 46
7.6 Error notification ... 46

4 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

8 API specification.. 49

8.1 Imported types.. 49
8.2 Type definitions .. 49

8.2.1 CanTp_CancelReasonType.. 49
8.3 Function definitions .. 50

8.3.1 CanTp_Init... 50
8.3.2 CanTp_ GetVersionInfo .. 50
8.3.3 CanTp_Shutdown ... 51
8.3.4 CanTp_Transmit ... 52
8.3.5 Main Function.. 54

8.4 Call-back notifications .. 54
8.4.1 CanTp_RxIndication.. 55
8.4.2 CanTp_TxConfirmation ... 55

8.5 Expected Interfaces.. 56
8.5.1 Mandatory Interfaces .. 56
8.5.2 Optional Interfaces .. 56

9 Sequence diagrams .. 57

9.1 SF N-SDU received and no buffer provided ... 57
9.1.1 Assumptions.. 57
9.1.2 Sequence diagram .. 57
9.1.3 Transition description .. 58

9.2 Successful SF N-PDU reception .. 59
9.2.1 Assumptions.. 59
9.2.2 Sequence diagram .. 59
9.2.3 Transition description .. 60

9.3 Transmit request of SF N-SDU .. 60
9.3.1 Assumptions.. 60
9.3.2 Sequence diagram .. 61
9.3.3 Transition description .. 62

9.4 Transmit request of larger N-SDU.. 63
9.4.1 Assumptions.. 63
9.4.2 Sequence diagram .. 64
9.4.3 Transition description .. 65

9.5 Large N-SDU Reception... 66
9.5.1 Assumptions.. 66
9.5.2 Sequence diagram .. 67
9.5.3 Transition description .. 68

10 Configuration specification... 69

10.1 How to read this chapter .. 69
10.1.1 Configuration and configuration parameters 69
10.1.2 Variants... 69
10.1.3 Containers... 70
10.1.4 Specification template for configuration parameters 70

10.2 Containers and configuration parameters .. 72
10.2.1 Variants... 72
10.2.2 CanTp ... 72
10.2.3 CanTpGeneral... 72
10.2.4 CanTpRxNSdu .. 73

5 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

10.2.5 CanTpRxNPdu .. 76
10.2.6 CanTpTxFcNPdu .. 77
10.2.7 CanTpTxNSdu .. 77
10.2.8 CanTpTxNPdu .. 80
10.2.9 CanTpRxFcNPdu .. 80
10.2.10 CanTpNTa... 81
10.2.11 CanTpNSa... 81

10.3 Published Information... 82

11 Changes to Release 1 ... 83

11.1 Deleted SWS Items.. 83
11.2 Replaced SWS Items ... 83
11.3 Changed SWS Items.. 84
11.4 Added SWS Items.. 84

12 Changes during SWS Improvements by Technical Office 86

12.1 Deleted SWS Items.. 86
12.2 Replaced SWS Items ... 86
12.3 Changed SWS Items.. 86
12.4 Added SWS Items.. 86

6 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

1 Introduction and functional overview

This specification defines the functionality, API and the configuration of the
AUTOSAR Basic Software module CAN Transport Layer (CanTp).

CanTp is the module between the PDU Router and the CAN Interface module (see
Figure 1). The main purpose of the CAN TP module is to segment and reassemble
CAN I-PDUs longer than 8 bytes.
The PDU Router deploys AUTOSAR COM and DCM I-PDUs onto different
communication protocols. The routing through a network system type (e.g. CAN, LIN
and FlexRay) depends on the I-PDU identifier. The PDU Router also determines if a
transport protocol has to be used or not. Lastly, this module carries out gateway
functionality, when there is no rate conversion.
CAN Interface (CanIf) provides equal mechanisms to access a CAN bus channel
regardless of its location (µC internal/external). From the location of CAN controllers
(on chip / onboard), it extracts the ECU hardware layout and the number of CAN
drivers. Because CanTp only handles transport protocol frames (i.e. SF, FF, CF and
FC PDUs), depending on the N-PDU ID, the CAN Interface has to forward an I-PDU
to CanTp or PduR.

7 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

 Communi
cation

Manager Signals

Figure 1 : AUTOSAR Communication Stack

According to AUTOSAR basic software architecture, CanTp provides services for:

- Segmentation of data in transmit direction;
- Reassembling of data in receive direction;
- Control of data flow;
- Detection of errors in segmentation sessions.
- Transmit cancellation

It is an AUTOSAR decision to base basic software module specifications on existing
standards, thus this AUTOSAR CAN Transport Layer specification is based on the
international standard ISO 15765, which is the most used standard in the automotive
domain.

Generic
NM

AUTOSAR
COM

Communication HW Abstraction

FlexRay Interface CAN Interface LIN Interface
(incl. LIN TP)

PDU Router

N-PDU

NM
o

dule M

NM Data

Communication Drivers

FlexRay Driver CAN Driver LIN Low Level Driver

FlexRay TP

I-PDU

DCM

Diagnostic
Communication

Manager

I-PDU

CAN TP

I-PDU

Í-PDU I-PDU I-PDU

I-PDU

Generic
NM

Generic

NM

N
M

M
odule

NM

Module

PDU
multi-
plexer

I-PDU

N-PDU

L-PDU L-PDU L-PDU

8 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

ISO 15765 (containing four sections) describes two applicable CAN Transport Layer
specifications: ISO 15765-2 for OEM enhanced diagnostics [13] and ISO 15765-4 for
OBD diagnostics [15]. Concerning the transport layer, ISO 15765-4 (the section of
ISO 15765 which also covers the data link layer and physical layer) is in accordance
with ISO 15765-2 with some restrictions/additions. In order that there is no
incompatibility problem between ISO 15765-2 and ISO 15765-4, differences will be
solved by the CAN Transport Layer configuration.

Although CAN transport protocol is mainly used for vehicle diagnostic systems, it has
also been developed to deal with requirements from other CAN based systems
requiring a transport layer protocol.

9 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

2 Acronyms and abbreviations

The prefix notation used in this document, is as follows:

Prefix: Description:

Relative to AUTOSAR COM Interaction Layer I-
L- Relative to the CAN Interface module which is equivalent to the Logical Link

Control (the upper part of the Data Link Layer – the lower part is called Media
Access Control)

N- Relative to the CAN Transport Layer which is equivalent to the OSI Network
Layer.

All acronyms and abbreviations, which are specific to the CAN Transport Layer and
are therefore not contained in the AUTOSAR glossary, are described in the following:

Acronym: Description:
CAN L-SDU This is the SDU of the CAN Interface module. It is similar to CAN N-PDU but

from the CAN Interface module point of view.
CAN LSduId This is the unique identifier of a SDU within the CAN Interface. It is used for

referencing L-SDU’s routing properties.
Consequently, in order to interact with the CAN Interface through its API, an
upper layer uses CAN LSduId to refer to a CAN L-SDU Info Structure.

CAN N-PDU This is the PDU of the CAN Transport Layer. It contains a unique identifier, data
length and data (protocol control information plus the whole N-SDU or a part of
it).

CAN N-SDU This is the SDU of the CAN Transport Layer. In the AUTOSAR architecture, it is
a set of data coming from the PDU Router.

CAN N-SDU Info
Structure

This is a CAN Transport Layer internal constant structure that contains specific
CAN Transport Layer information to process transmission, reception,
segmentation and reassembly of the related CAN N-SDU.

CAN NSduId Unique SDU identifier within the CAN Transport Layer. It is used to reference N-
SDU’s routing properties.
Consequently, to interact with the CAN Transport Layer via its API, an upper
layer uses CAN NSduId to refer to a CAN N-SDU Info Structure.

I-PDU This is the PDU of the AUTOSAR COM module.
PDU In layered systems, it refers to a data unit that is specified in the protocol of a

given layer. This contains user data of that layer (SDU) plus possible protocol
control information.
Furthermore, the PDU of layer X is the SDU of its lower layer X-1 (i.e. (X)-PDU =
(X-1)-SDU).

PduInfoType This type refers to a structure used to store basic information to process the
transmission\reception of a PDU (or a SDU), namely an pointer to its payload in
RAM and the corresponding length (in bytes).

SDU In layered systems, this refers to a set of data that is sent by a user of the
services of a given layer, and is transmitted to a peer service user, whilst
remaining semantically unchanged.

Abbreviation: Description:
BS Block Size
Can CAN Driver module
CAN CF CAN Consecutive Frame N-PDU
CAN FC CAN Flow Control N-PDU
CAN FF CAN First Frame N-PDU
CAN SF CAN Single Frame N-PDU

10 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

Abbreviation: Description:
CanIf CAN Interface
CanTp CAN Transport Layer
CanTrcv CAN Transceiver module
CF See “CAN CF”
Com AUTOSAR COM module
Dcm Diagnostic Communication Manager module
DEM Diagnostic Event Manager
DET Development Error Tracer
DLC Data Length Code (part of CAN PDU that describes the SDU length)
FC See “CAN FC”
FF See “CAN FF”
FIM Function Inhibition Manager
Mtype Message Type (possible value: diagnostics, remote diagnostics)
N_AI Network Address Information (see ISO 15765-2).
N_Ar Time for transmission of the CAN frame (any N-PDU) on the receiver side (see

ISO 15765-2).
N_As Time for transmission of the CAN frame (any N-PDU) on the sender side (see

ISO 15765-2).
N_Br Time until transmission of the next flow control N-PDU (see ISO 15765-2).
N_Bs Time until reception of the next flow control N-PDU (see ISO 15765-2).
N_Cr Time until reception of the next consecutive frame N-PDU (see ISO 15765-2).
N_Cs Time until transmission of the next consecutive frame N-PDU (see ISO 15765-2).
N_Data Data information of the transport layer
N_PCI Protocol Control Information of the transport layer
N_SA Network Source Address (see ISO 15765-2).
N_TA Network Target Address (see ISO 15765-2).
N_TAtype Network Target Address type (see ISO 15765-2).
OBD On-Board Diagnostic
PDU Protocol Data Unit
PduR PDU Router
SDU Service Data Unit

The following table contains some of the concepts, which are useful in this work:

Definitions: Description:
Development
Error Tracer

The Development Error Tracer is merely a support to SW development and
integration and is not contained in the production code. The API is defined, but the
functionality can be chosen and implemented by the developer according to his
specific needs.

Diagnostic
Event Manager

The Diagnostic Event Manager is a standard AUTOSAR module which is available
in the production code and whose functionality is specified in the AUTOSAR
project.

Extended
addressing
format

A unique CAN identifier is assigned to each combination of N_SA, N_TAtype and
Mtype. N_TA is filed in the first data byte of the CAN frame data field. N_PCI and
N_Data are filed in the remaining bytes of the CAN frame data field.

Full-duplex Point-to-point communication between two nodes is possible in both directions at
any one time.

Function
Inhibition
Manager

The Function Inhibition Manager (FIM) stands for the evaluation and assignment of
events to the required actions for Software Components (e.g. inhibition of specific
“monitoring functions”). The DEM informs and updates the Function Inhibition
Manager (FIM) upon changes of the event status in order to stop or release
functional entities according to assigned dependencies. An interface to the
functional entities is defined and supported by the Mode Manager. The FIM is not
part of the DEM.

11 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

Definitions: Description:
Functional
addressing

In the transport layer, functional addressing refers to N-SDU, of which parameter
N_TAtype (which is an extension to the N_TA parameter [13] used to encode the
communication model) has the value functional.
This means the N-SDU is used in 1 to n communications. Thus with the CAN
protocol, functional addressing will only be supported for Single Frame
communication.

In terms of application, functional addressing is used by the external (or internal)
tester if it does not know the physical address of an ECU that should respond to a
service request or if the functionality of the ECU is implemented as a distributed
server over several ECUs. When functional addressing is used, the communication
is a communication broadcast from the external tester to one or more ECUs (1 to n
communication).

Use cases are (for example) broadcasting messages, such as “ECUReset” or
“CommunicationControl”

OBD communication will always be performed as part of functional addressing.

Half-duplex Point-to-point communication between two nodes is only possible in one direction
at a time.

Multiple
connection

The CAN Transport Layer should manage several transport protocol
communication sessions at a time.

Normal
addressing
format

A unique CAN identifier is assigned to each combination of N_SA, N_TA,
N_TAtype and Mtype. N_PCI and
N_Data are filed in the CAN frame data field.

Physical
addressing

In the transport layer, physical addressing refers to N-SDU, of which parameter
N_TAtype (which is an extension of the N_TA parameter [13] used to encode the
communication model) has the value physical.
This means the N-SDU is used in 1 to 1 communication, thus physical addressing
will be supported for all types of network layer messages.

In terms of application, physical addressing is used by the external (or internal)
tester if it knows the physical address of an ECU that should respond to a service
request. When physical addressing is used, a point to point communication takes
place (1 to 1 communication).

Use cases are (for example) messages, such as “ReadDataByIdentifier” or
“InputOutputControlByIdentifier”

Single
connection

The CAN Transport Layer will only manage one transport protocol communication
session at a time.

12 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

3 Related documentation

3.1 Input documents

[1] List of Basic Software Modules,
AUTOSAR_BasicSoftwareModules.pdf

[2] Layered Software Architecture,

AUTOSAR_LayeredSoftwareArchitecture.pdf

[3] General Requirements on Basic Software Modules,

AUTOSAR_SRS_General.pdf

[4] Specification of ECU Configuration,
AUTOSAR_ECU_Configuration.pdf

[5] Glossary
AUTOSAR_Glossary.pdf

[6] Requirements on CAN

AUTOSAR_SRS_CAN.pdf

[7] Specification of CAN Interface

AUTOSAR_SWS_CAN_Interface.pdf

[8] API Specification of Development Error Tracer

AUTOSAR_SWS_DET.pdf

[9] Specification of Function Inhibition Manager

AUTOSAR_SWS_FIM.pdf

[10] Specification of PDU Router

AUTOSAR_SWS_PDU_Router.pdf

13 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

[11] Specification of Diagnostic Event Manager (DEM)
AUTOSAR_SWS_DEM.pdf

[12] AUTOSAR Basic Software Module Description Template,
 AUTOSAR_BSW_Module_Description.pdf

3.2 Related standards and norms

[13] ISO 15765-2 (2004-10-12), Road vehicles — Diagnostics on Controller Area

Networks (CAN) — Part2: Network layer services

[14] ISO 15765-3 (2004-10-06), Road vehicles — Diagnostics on Controller Area

Networks (CAN) — Part3: Implementation of diagnostic services

[15] ISO 15765-4 (2005-01-04), Road vehicles — Diagnostics on Controller Area

Networks (CAN) — Part4: Requirements for emissions-related systems

14 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

4 Constraints and assumptions

4.1 Limitations

The AUTOSAR architecture defines communication system specific transport layers
(CanTp, LinTp including LinIf, FlexRayTp). Thus the CAN Transport Layer only
covers CAN transport protocol specifics.

The CAN Transport Layer has an interface to a single underlying CAN Interface
Layer and a single upper PDU Router module.

According to the AUTOSAR release plan, this CAN Transport Layer specification has
the following restriction:

- CAN Transport Layer runs only in an event triggered mode,
- No reception cancellation.

Furthermore, to significantly reduce resources and runtime this CAN Transport Layer
implementation does not support full-duplex communication.

4.2 Applicability in automotive domain

The CAN Transport Layer can be used for all domains whenever the CAN
communication system is connected to the appropriate ECU.

15 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

5 Dependencies on other modules

This section sets out relations between the CanTp and other AUTOSAR basic
software modules. It contains short descriptions of some AUTOSAR basic concepts,
configuration information and services, which are required by the CanTp from other
modules.

5.1 AUTOSAR architecture basic concepts

5.1.1 CAN Transport Layer connection(s)

In the AUTOSAR architecture final release, transport protocol facilities will be used to
transport both diagnostic (e.g. OBD and UDS protocols) and AUTOSAR COM I-
PDUs 1 . Therefore, the CanTp module is able to deal with multiple connections
simultaneously (i.e. multiple segmentation sessions in parallel).

The maximum number of simultaneous connections is statically configured. This
configuration has an important impact on complexity and resource consumption
(CPU, ROM and RAM) of the code generated, because resources (e.g. Rx and Tx
state machines, variables used to work on N-PCI data and so on) have to be
reserved for each simultaneous access.

To allow the user to choose which I-PDUs could be received (or sent)
simultaneously, each N-SDU identifier will be internally routed through a configured
CanTp “connection channel”. Since a “connection channel” is not accessible
externally, all necessary information (see chapter 10.2) to transfer an N-SDU will be
linked to the N-SDU identifier (e.g. “connection channel” number, timeouts,
addressing format, and so on).

5.1.2 CAN Transport Layer interactions

The figure below shows the interactions between CanTp, PduR and CanIf modules.

The CanTp’s upper interface offers the PduR module global access, to transmit and
receive data. This access is achieved by CAN N-SDU identifier (CAN NSduId). CAN
NSduId refers to a constant data structure which consists of attributes describing
CAN N-SDU. Each CAN N-SDU specific data structure may contain attributes such
as: type of N-SDU (Tx or Rx), its addressing format, L-SDU identifier of this message
or other attributes that are useful for implementation.

16 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

1 Usage of CAN Transport Layer for AUTOSAR COM I-PDUs is planned for AUTOSAR Phase 2.

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

PduR PduR

Figure 2: CAN Transport Layer interactions

5.1.3 Processing mode

The AUTOSAR communication stack supports both polling and event triggering
mode. Therefore, each communication layer can receive information from its lower
layer and propagate information to its upper layer by different mechanisms.
In the case of the CAN Transport Layer, only the event triggering mode is supported.

5.1.4 Data consistency

To optimize the communication stack, AUTOSAR limits the CAN Transport Layer
buffering capacity. Therefore, the CanTp copies N-SDU payload directly from the
upper layer (e.g. DCM or PDU Router – in the case of 1:1 TP routing) to the CAN
driver and vice-versa. Thus to guarantee data consistency, the upper layer will
observe the following rules:

- At transmission time, the N-SDU data payload will remain unchanged, from
transmit request until transmit confirmation has been received

- At reception time, the N-SDU data access will be locked, from buffer allocation
request until the reception indication or the next buffer allocation request has
been received

5.1.5 Static configuration

At runtime the CAN Transport module must have all information required to manage
transport connection. Therefore, the following properties should be statically
configured:
 Number of CAN N-SDU
 Unique identifier of each CAN N-SDU
 Communication direction of each CAN N-SDU (Tx or Rx)
 Addressing type of each CAN N-SDU (physical or functional)

CanTp
N-PCI

N-PDU

CanIf

N-SDU N-SDU

L-SDU

CanTp

CanIf

L-SDU

N-PDU N-PCI

N-PDU

17 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

 Addressing format of each connection (standard or extended) and, in the case
of extended addressing format, the N_TA value

 Associated CAN L-SDU identifier of each CAN N-SDU identifier and if
necessary (multiple frame segmentation session) the CAN L-SDU identifier
used to transmit the CAN FC N-PDU

 Minimum length of the N-SDU

The configuration of the CAN Transport Layer can be performed during compilation
or post-build (See chapter 10).

5.1.6 PDU Router services

The CAN Transport Layer declares and requests certain callback functions to confirm
transmission, confirm transmission cancellation and notify reception of a message
from/to the PDU-Router, and request a buffer, to reassemble segmented frames:
 PduR_CanTpRxIndication
 PduR_CanTpProvideRxBuffer
 PduR_CanTpProvideTxBuffer
 PduR_CanTpTxConfirmation

For more information about these functions, refer to the PDU Router module
specification [10].

5.1.7 CAN Interface services

The CAN Transport Layer uses the following services of the CAN Interface to
transmit CAN N-PDUs:
 CanIf_Transmit

For more information about this function, refer to the CAN Interface module
specification [7].

5.2 File structure

5.2.1 Code file structure

CanTp159: The code file structure will not be completely defined within this
specification. At this point it should be noted, that the code-file structure should
include the following files:

- CanTp_Lcfg.c – for parameters configurable at link time
- CanTp_PBcfg.c – for parameters, which are configurable post-build.

These files will contain all link time and post-build configurable parameters.

5.2.2 Header file structure

18 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

AUTOSAR specifies that an ECU can be created from modules provided as object
code, source code (generated or not) and even mixed.
The decision to provide a module as object code or source code is based on a
compromise between IP protection, test coverage, code efficiency and configurability
at system generation time. Thus depending on the configurability requirements of the
OEM, suppliers may deliver the CanTp module as object code, generated code or
source code.

The header file structure defined in this section allows the separation of platform,
compiler and implementation specific definitions and declarations from general
definitions, as well as the separation of source code and configuration.

CanTp156: The CanTp module shall construct its include file structure as shown in
Figure 3.

includes

CanTp_Cbk.h

includes

ComStack_Types.h CanTp_Cfg.h

includes

Std_Types.h

includes

includes

Dem.h

includes

CanTp.h

Det.h

includes (if development error
detection is turned on)

includes Dem_IntErrId.h
(Event Id Symbols)

CanTp.c

includes

includes

SchM_CanTp.h MemMap.h

Figure 3: File Structure

Global data types and functions that are only used internally by the CAN Transport
Protocol, are given in CanTp.c

CanTp219: CanTp.c shall include CanTp.h

CanTp157: The file CanTp.h shall only contain 'external' declarations of constants,
global data, type definitions and services that are specified in the CAN Transport
Protocol SWS.

CanTp001: CanTp_Cfg.h shall define constant and customizable data for module
configuration at pre-compile time.

19 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

CanTp221: CanTp.h shall include CanTp_Cfg.h

CanTp165: BSW scheduler information is included via SchM_CanTp.h.

CanTp160: References to c-configuration parameters (link time and post-build time)
will be placed in a separate h-file. The h-file should be the same as pre-compilation
parameters.

CanTp024: Each header and C file of the CanTp module shall provide the possibility
of version identification of the CAN Transport module by
CANTP_MAJOR_VERSION, CANTP_MINOR_VERSION and
CANTP_PATCH_VERSION.

Version number macros can then be used for checking and reading out the software
version of a software module, during compile-time and run-time.

CanTp130: The module shall include the Dem.h file. By this inclusion the APIs to
report errors as well as the required Event Id symbols are included. This specification
defines the name of the Event Id symbols which are provided by XML to the DEM
configuration tool. The DEM configuration tool assigns ECU dependent values to the
Event Id symbols and publishes the symbols in Dem_IntErrId.h.

5.2.3 Design Rules

CanTp150: The CanTp module’s source (as long as it is written in C) shall conform
to the HIS subset of the MISRA C Standard.

CanTp151: The CanTp module’s source shall not use compiler and platform specific
keywords

CanTp152: The CanTp module’s source shall indicate all global data with read-only
properties by explicitly assigning the keyword const.

CanTp153: The CanTp module may use macros (instead of functions) where source
code is used and runtime is critical.

CanTp155: The CanTp module shall not define global data in header files (If global
variables have to be used, the definition should take place in the C file)

CanTp158: The CanTp module’s source shall not be processor and compiler
dependent.

20 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

6 Requirements traceability

Document: General Requirements on Basic Software Modules [3]

Functional general requirements
Requirement Satisfied by
[BSW00344] Reference to link-time configuration Not applicable

(This module does not use Link Time
configuration parameters)

[BSW00404] Reference to post build time
configuration

Not applicable
(requirement on implementation, not on
specification)

[BSW00405] Reference to multiple configuration
sets

Not applicable
(This module does not use multiple configuration
sets)

[BSW00345] Pre-Build Configuration CanTp001 chapter 10

[BSW159] Tool-based configuration CanTp146
[BSW167] Static configuration checking CanTp147
[BSW171] Configurability of optional functionality chapter 10
[BSW170] Data for reconfiguration of SW-
components

Not applicable.
(Requirement on SWC module)

[BSW380] Separate C-File For configuration
parameters

CanTp159

[BSW00419] Separate C-Files for pre-compile
time configuration parameters

Not applicable
(No “const” pre-compile time parameter)

[BSW381] Separate configuration header file for
pre-compile time parameters

CanTp001

[BSW412] Separate H-File for configuration
parameters

CanTp156

[BSW382] Not-used configuration elements need
to be listed

Not applicable
(there are no not-used configuration elements for
this module)

[BSW383] List dependencies of configuration files Not applicable
(this module does not use configuration files from
other modules)

[BSW384] List dependencies to other modules Fulfilled by chapter 5
[BSW385] List possible error notifications CanTp101
[BSW386] Configuration for detecting an error CanTp101
[BSW387] Specify the configuration class of
callback function

Fulfilled by chapter 8.4

[BSW388] Introduce containers Fulfilled by configuration chapter 10
[BSW389] Containers shall have names Fulfilled by configuration chapter 10
[BSW390] Parameter content shall be unique
within the module

Fulfilled by configuration chapter 10

[BSW391] Parameter shall have unique names Fulfilled by configuration chapter 10
[BSW392] Parameters shall have a type Fulfilled by configuration chapter 10
[BSW393] Parameters shall have a range Fulfilled by configuration chapter 10
[BSW394] Specify the scope of the parameters Fulfilled by configuration chapter 10
[BSW395] List the required parameters (per
parameter)

Fulfilled by configuration chapter 10

[BSW396] Configuration classes Fulfilled by configuration chapter 10
[BSW397] Pre-compile-time parameters Not applicable

(definition)
[BSW398] Link-time parameters Not applicable

(definition)

21 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

[BSW399] Loadable Post-build time parameters Not applicable
(definition)

[BSW400] Selectable Post-build time parameters Not applicable
(definition)

[BSW402] Published information CanTp140
[BSW00375] Notification of wake-up reason Not applicable

(this module does not provide any reason for
wake-up)

[BSW101] Initialization interface CanTp208
[BSW00416] Sequence of Initialization Not applicable

(requirement on system design, not on a single
module)

[BSW406] Check module initialization CanTp161
[BSW168] Diagnostic Interface of SW
components

Not applicable
(this module does not support a special diagnostic
interface)

[BSW407] Function to read out published
parameters

CanTp162 CanTp163

[BSW00423] Usage of SW-C template to describe
BSW modules with AUTOSAR Interfaces

Not applicable.
(This module has no interface with RTE)

[BSW00424] BSW main processing function task
allocation

CanTp164

[BSW00425] Trigger conditions for schedulable
objects

Not covered. New template needed

[BSW00426] Exclusive areas in BSW modules Not covered. New template needed
[BSW00427] ISR description for BSW modules Not applicable.

(this module does not provide any ISRs)
[BSW00428] Execution order dependencies of
main processing functions

Not applicable.
(This module has only 1 MainFunction)

[BSW00429] Restricted BSW OS functionality
access

Not applicable
(this module doesn’t use any OS objects or
services)

[BSW00431] The BSW Scheduler module
implements task bodies

Not applicable
(requirement on the BSW scheduler module)

[BSW00432] Modules should have separate main
processing functions for read/receive and
write/transmit data path

Not applicable.
(Mainfunction is used to manage time)

[BSW00433] Calling of main processing functions Not applicable
(requirement on the BSW scheduler module)

[BSW00434] The Schedule Module shall provide
an API for exclusive areas

Not applicable
(requirement on the BSW scheduler module)

[BSW00336] Shutdown interface CanTp010
[BSW00337] Classification of errors CanTp101
[BSW00338] Detection and Reporting of
development errors

[BSW00369] Do not return development error
codes via API

CanTp021

[BSW00339] Reporting of production relevant
errors and exceptions

CanTp008 CanTp100

[BSW00421] Reporting of production relevant
error events

CanTp100

[BSW00422] Debouncing of production relevant
error status

Not applicable.
(DEM requirement)

[BSW00420] Production relevant error event rate
detection

Not applicable.
(DEM requirement)

[BSW00417] Reporting of Error Events by Non-
Basic Software

Not applicable
(This module is a BSW module)

[BSW00323] API parameter checking CanTp132
[BSW004] Version check CanTp024 CanTp140

22 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

[BSW00435] Header File Structure for the Basic
Software Scheduler

CanTp156

[BSW00436] Module Header File Structure for the
Basic Software Memory Mapping

CanTp156

Non-functional general requirements

Software Architecture Requirements
Requirement Satisfied by
[BSW161] Microcontroller abstraction Not applicable

(requirement on AUTOSAR architecture, not a
single module)

[BSW162] ECU layout abstraction Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[BSW00324] Do not use HIS Library Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[BSW005] No hard coded horizontal interfaces
within MCAL

See paragraph 5.1.6 & 5.1.7

[BSW00415] User dependent include files Not applicable
(no interface for specifics)

[BSW166] BSW Module interfaces See paragraph 5.2
Software Integration Requirements
Requirement Satisfied by
[BSW164] Implementation of interrupt service
routines

Fulfilled by API definitions in chapter 8

[BSW00325] Runtime of interrupt service
routines

Not applicable
(this module does not provide any ISRs)

[BSW00326] Transition from ISRs to OS tasks Not applicable
(this module does not provide any ISRs)

[BSW00342] Usage of source code and object
code

Not applicable
(requirement on implementation, not on
specification)

[BSW00343] Specification and configuration of
time

Fulfilled by configuration chapter 10

[BSW160] Human-readable configuration data Fulfilled by configuration chapter 10
Software Module Design Requirements
Software quality
Requirement Satisfied by
[BSW007] HIS MISRA C CanTp150
Naming conventions
Requirement Satisfied by
[BSW00300] Module naming convention Fulfilled by API definitions in chapter 8
[BSW00413] Accessing instances of BSW
modules

Not applicable.
(Only 1 instance of CanTp allowed)

[BSW00347] Naming separation of different
instances of BSW drivers

Not applicable.
(For driver only.)

[BSW00347] Naming separation of drivers Not applicable
(For driver only.)

[BSW00305] Self-defined data types naming
convention

Fulfilled by type definitions in chapter 8

[BSW00307] Global variables naming convention Not applicable
(no global variables are specified for this module)

[BSW00310] API naming convention CanTp003
[BSW00373] Main processing function naming
convention

CanTp164

[BSW00327] Error values naming convention CanTp101

23 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

[BSW00335] Status values naming convention Fulfilled by API definitions in chapter 8
[BSW00350] Development error detection
keyword

CanTp006

[BSW00408] Configuration parameter naming
convention

Fulfilled by configuration chapter 10

[BSW00410] Compiler switches shall have
defined values

Fulfilled by configuration chapter 10

[BSW00411] Get version info keyword Fulfilled by configuration chapter 10

Module file structure

Requirement Satisfied by
[BSW00346] Basic set of module files CanTp156
[BSW158] Separation of configuration from
implementation

CanTp156 CanTp001

[BSW00314] Separation of interrupt frames and
service routines

Not applicable
(this module does not provide any ISRs)

[BSW00370] Separation of callback interface
from API

CanTp156

Standard header files

Requirement Satisfied by
[BSW00348] Standard type header See Section 8.1
[BSW00353] Platform specific type header CanTp002
[BSW00361] Compiler specific language
extension header

Not applicable
(requirement on implementation, not on
specification)

Module Design

Requirement Satisfied by
[BSW00301] Limit imported information CanTp156
[BSW00302] Limit exported information CanTp157
[BSW00328] Avoid duplication of code Not applicable

(requirement on implementation, not on
specification)

[BSW00312] Shared code shall be reentrant Fulfilled by API definitions in chapter 8
[BSW006] Platform independency CanTp158

Types and keywords

Requirement Satisfied by
[BSW00357] Standard API return type Fulfilled by API definitions in chapter 8
[BSW00377] Module Specific API return type Fulfilled by API definitions in chapter 8
[BSW00304] AUTOSAR integer data types Fulfilled by API definitions in chapter 8
[BSW00355] Do not redefine AUTOSAR integer
data types

Fulfilled by API definitions in chapter 8

[BSW00378] AUTOSAR Boolean type Not applicable (Not used)
[BSW00306] Avoid direct use of compiler and
platform specific keywords

CanTp151

24 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

Global data

Requirement Satisfied by
[BSW00308] Definition of global data CanTp155
[BSW00309] Global data with read-only
constraint

CanTp152

Interface and API

Requirement Satisfied by
[BSW00371] Do not pass function pointers via
API

Fulfilled by API definitions in chapter 8

[BSW00358] Return type of init() functions CanTp208
[BSW00414] Parameter of init function CanTp208
[BSW00376] Return type and parameters of
main processing functions

CanTp164

[BSW00359] Return type of callback functions Fulfilled by API definitions in chapter 8
[BSW00360] Parameters of callback functions Fulfilled by API definitions in chapter 8
[BSW00329] Avoidance of generic interfaces Fulfilled by API definitions in chapter 8
[BSW00330] Usage of macros instead of
functions

CanTp153

[BSW00331] Separation of error and status
values

Chapter 7.1.1 and CanTp101

Software Documentation Requirements

Requirement Satisfied by
[BSW009] Module User Documentation Fulfilled by the whole document
[BSW00401] Documentation of multiple
instances of configuration parameters

Fulfilled by configuration chapter 10

[BSW172] Compatibility and documentation of
scheduling strategy

Not applicable.
(There is no scheduler in the CAN TP)

BSW010] Memory resource documentation Not applicable.
(requirement on implementation, not on
specification)

[BSW00333] Documentation of callback function
context

Fulfilled by API definitions in chapter 8

[BSW00374] Module vendor identification CanTp140
[BSW00379] Module identification CanTp140
[BSW003] Version identification CanTp024 CanTp140
[BSW00318] Format of module version
[BSW00321] Enumeration of module version
numbers

Not applicable.
(requirement on implementation, not on
specification)

[BSW00341] Microcontroller compatibility
documentation

Not applicable.
(requirement on implementation, not on
specification)

[BSW00334] Provision of XML file Not applicable.
(requirement on implementation, not on
specification)

25 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

Document: AUTOSAR requirements on Basic Software, cluster CAN

Requirement Satisfied by
[BSW01065] CanTp033
Usage of ISO 15765-2 specifications
[BSW01065]
Usage of ISO 15765-4 specifications

See Section 7

[BSW01066]
Concurrent connection configuration

CanTp096 CanTp120 CanTp121 CanTp122
CanTp123 CanTp124

[BSW01068]
Unique identifier of N-SDU

CanTp035

[BSW01069]
CAN address information and N-SDU identifier
mapping

CanTp035

[BSW01071]
Unique identifier of N-PDU

CanTp035

[BSW01073]
Fixed N-PDU data length

CanTp040 CanTp098 CanTp116

[BSW01074]
Transport connection properties

CanTp137 CanTp138

[BSW01075]
CAN Transport Layer Initialization

CanTp170, CanTp030

[BSW01076]
CAN Transport Layer Availability

CanTp031

[BSW01078]
Support a subset of ISO 15765-2 addressing
modes formats

CanTp035 CanTp137 CanTp138

[BSW01079]
Compliance with CAN Interface notifications

CanTp019 CanTp020

[BSW01081]
Connection specific timeout values

CanTp137 CanTp138

[BSW01082]
Error handling

CanTp057

[BSW01086]
Data padding value of unused bytes

CanTp059

[BSW01111]
CAN Transport Layer Interfaces

This requirement is a specification recommendation
fulfilled by chapter 8

[BSW01112]
Independent interface

This requirement is a specification recommendation
fulfilled by chapter 8

[BSW01116]
Usage of different addressing modes formats in
parallel

CanTp137 CanTp138 CanTp139

[BSW01117]
Only half-duplex communication is supported

CanTp057

[BSW01120]
Multiple CAN Transport Layer instances

Multiple connections supported and therefore only
one instance required.

26 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

7 Functional specification

This section provides a description of the CAN Transport Layer functionality. It
explains the services provided to the upper and lower layers and the internal
behavior of the CAN Transport Layer.

The CanTp module offers services for segmentation, transmission with flow control,
and reassembly of messages. Its main purpose is to transmit and receive messages
that may or may not fit into a single CAN frame. Messages that do not fit into a single
CAN frame are segmented into multiple parts, such that each can be transmitted in a
single CAN frame.

While reading this document, it is necessary to bear in mind, that this module will
follow the recommendations ISO 15765-2 (OEM enhanced diagnostics [13]) and
should be able to fulfill ISO 15765-4 (Requirements for emissions-related systems
[15]).

CanTp033: If a recommendation of ISO 15765-2 is not explicitly excluded in the
SWS, the CanTp module shall follow this recommendation.

For further descriptions of SF, FF, CF and FC frames, network layer timing
parameters, and further functionalities of CAN Transport Layer please refer to the
ISO 15765-2 specification [13].

ISO 15765-4 is a particular case of ISO-15765-2. Therefore, the CAN Transport
Layer will be configurable, in order to be able to adapt the module to all ISO 15765-4
use cases (e.g. specific timing, padding configuration, addressing mode). See
chapter 10, Configuration specification, for details.

7.1 Services provided to upper layer

The service interface of the CanTp module can be divided into the following main
categories:
 Initialization and shutdown
 Communication services

The following paragraphs describe the functionality of each services category.

7.1.1 Initialization and shutdown

CanTp027: The CanTp module shall have two internal states, CANTP_OFF and
CANTP_ON.

CanTp168: The CanTp module shall be in the CANTP_OFF state after power up.

CanTp169: In the state CANTP_OFF, the CanTp shall allow an update of the
postbuild configuration.

27 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

CanTp170: The CanTp module shall change to the internal state CANTP_ON when
the CanTp has been successfully initialized with CanTp_Init().

CanTp238: The CanTp module shall performed segmentation and reassembly tasks
only when the CanTp is in the CANTP_ON state.

CanTp030: The function CanTp_Init shall initialize all global variables of the
module and sets all transport protocol connections in a sub-state of CANTP_ON, in
which neither segmented transmission nor segmented reception are in progress (Rx
thread in state CANTP_RX_WAIT and Tx thread in state CANTP_TX_WAIT).

The COM Manager module should call the function CanTp_Init()before using the
CanTp functionalities.

CanTp031: If development error detection for the CanTp module is enabled: The
CanTp module shall raise an error (CANTP_E_UNINIT) when the PDU Router or
CAN Interface tries to use any function (except CanTp_GetVersionInfo) before the
function CanTp_Init has been called.

CanTp111: If called when the CanTp module is in the global state CANTP_ON, the
function CanTp_Init shall return the module to state Idle (state = CANTP_ON, but
neither transmission nor reception are in progress) and the module shall loose all
current connections.

CanTp010: The function CanTp_Shutdown shall stop the CanTp module properly.

The COM Manager module shall call the function CanTp_Shutdown().

The following figure summarizes all of the above requirements:

28 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

stm CanTp life cyle

CANTP_ON

[Rx Connection Channel]

[Tx Connection Channel]

[Other Connection Channel]

Ini t

Ini t

CANTP_RX_WAIT CANTP_RX_PROCESSING

CANTP_TX_WAIT CANTP_TX_PROCESSING

CANTP_OFF

- Based on the same substates: CANTP_Xx_WAIT and CANTP_Xx_PROCESSING,

- Based on the same transitions: Receive/transmit and no more N-PDU.

[no more N-PDU expected]

PowerUp

PowerDown

CanTp_Ini t ()

CanTp_Shutdown ()

Receive N-PDU

CanTp_Init ()
[without error]

CanTp_Ini t ()
[with error]

PowerDown

CanTp_Shutdown()

[no more N-SDU to transmit]

T ransmit N-SDU

Figure 4: CAN Transport Layer life cycle

7.1.2 Transmit request

The transmit operation, CanTp_Transmit(), will allow upper layers to ask for data
transfer using CAN transport protocol facilities (segmentation, extended addressing
format and so on).

CanTp176: The function CanTp_Transmit() shall be asynchronous.

CanTp177: The CanTp module shall notify its upper layer if the N-SDU transfer is
fully processed (successfully or not).

CanTp072: The function CanTp_Transmit() shall reject the transmit request and
return the status value E_NOT_OK if there is no hardware resource available.

7.1.3 Transmit cancellation

The transmit cancellation feature allows the upper layer to cancel a transmission in
progress.

Use case: Cancel a diagnostic transmission due to the reception of another
diagnostic protocol with higher priority.

29 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

CanTp242: This feature shall be (de)activated by static configuration (parameter
CanTpTc). Transmit Cancellation is triggered by the call of
CanTp_CancelTransmitRequest().

CanTp243: After the call of the service CanTp_CancelTransmitRequest(), the
transfer on this connection shall be aborted

CanTp244: The Api PduR_CanTpTxConfirmation() shall be called after a transmit
cancellation with value NTFRSLT_E_CANCELATION_OK

Note that if a transfer is in progress, that will generate a time-out error on the receiver
side.

7.2 Services provided to the lower layer

According to the AUTOSAR specification of the communication stack, the CAN
Transport Layer provides the following two callback functions to the Can interface:
CanTp_TxConfirmation() and CanTp_RxIndication().

7.2.1 Transmit confirmation

CanTp074: The CanIf module shall call the transmit confirmation function to notify
the CAN Transport Layer that a CAN frame transmission, requested by the CanTp,
has been performed successfully. The L-PDU identifier is associated with the call in
order to identify the corresponding transmission.

CanTp075: If the transmit confirmation is not received after a maximum time (equal
to N_As), the CanTp module shall act as if it had received an unsuccessful
transmission confirmation and any late confirmation shall be ignored. The CanTp
module shall cancel (internally) the failed transmission.

CanTp076: For confirmation calls, the CanTp module shall provide the function
CanTp_TxConfirmation().

7.2.2 Reception indication

CanTp077: The CanIf module shall call the reception indication function to notify the
CanTp module that a new CAN N-PDU frame (i.e. a transport protocol frame) has
been received.

The reception indication can be performed in ISR context according to CanIf
configuration.

CanTp078: For reception indication, the CanTp module shall provide
CanTp_RxIndication().

30 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

7.3 Internal behavior

The internal operation of the CAN Transport Layer provides basic mechanisms in
order to perform the main purpose of this module, which is to transfer diagnostic
messages in a single CAN frame or in multiple CAN frames.

The entire behavior of the CAN Transport Layer will be event triggered, so that
CanTp can processes transfer of N-SDU (respectively L-SDU) coming from the PDU
Router (respectively CAN Interface) directly.

7.3.1 N-SDU Reception

To optimize communication stack resources, it has been decided to provide the CAN
Transport Layer with limited buffering capacity.

CanTp079: When receiving an SF or an FF N-PDU, the CanTp module shall notify
the upper layer (PDU Router) about this reception and request an Rx buffer to
process the frame reassembly. These two operations shall be performed using the
PduR_CanTpProvideRxBuffer() function.

CanTp166: At the reception of a FF or a SF, the CanTp module shall start a time-out
N_Br before requesting a Rx buffer. If a buffer has not been provided before the timer
elapsed, the CanTp module shall abort the communication.

CanTp080:The Rx buffer provided can be smaller than the expected N-SDU data
length. In this case, when the current buffer has been filled up with data, the CanTp
module shall request another buffer by calling the
PduR_CanTpProvideRxBuffer() service again.

To avoid confusion, it should be clarified that the expression “request a buffer” is not
related to dynamic memory allocation. This expression simply means the upper layer
makes a buffer available to the CAN Transport Layer (i.e. the Rx buffer is locked until
CanTp calls either PduR_CanTpRxIndication() or
PduR_CanTpProvideRxBuffer()).

If the upper layer cannot provide a buffer because of an error (e.g. in the gateway
case it may indicate that the transport session to the destination network has been
broken) or a resource limitation (e.g. N-SDU length exceeds the maximum buffer size
of the upper layer), the PduR_CanTpProvideRxBuffer() function returns
BUFREQ_E_NOT_OK or BUFREQ_E_OVFL.

CanTp081: After the reception of a First Frame, if the function
PduR_CanTpProvideRxBuffer returns BUFREQ_E_NOT_OK or BUFREQ_E_OVFL
to the CanTp module, the CanTp module shall send a Flow Control N-PDU with
overflow status (FC(OVFLW)) and abort the N-SDU reception. If the error occurs
after a Consecutive Frame reception, the Flow Control frame shall not be sent

31 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

If the upper layer temporarily has no Rx buffer available, the
PduR_CanTpProvideRxBuffer() function returns BUFREQ_E_BUSY.

CanTp082: If the function PduR_CanTpProvideRxBuffer returns
BUFREQ_E_BUSY to the CanTp module, the CanTp module shall suspend the N-SDU
reception by sending the next Flow Control N-PDU with status WAIT (i.e. FC(WT)).

CanTp222: Before expiration of the N_Br timer (ISO 15765-2 specification defines
the following performance requirement: (N_Br+N_Ar) < 0.9*N_Bs timeout), the
CanTp module shall call the service to provide an Rx buffer again during the next
processing of the MainFunction. If the buffer request is delayed again, the CanTp
module shall send a new FC(WAIT).

CanTp223: The CanTp module shall send a maximum of WFTmax consecutive
FC(WAIT) N-PDU. If this number is reached, the CanTp module shall abort the
reception of this N-SDU (the receiver did not send any FC N-PDU, so the N_Bs timer
expires on the sender side and then the transmission is aborted) and a receiving
indication with NTFRSLT_E_NOT_OK occurs.

CanTp224: When the Rx buffer is finally provided, the CanTp module shall send a
Flow Control N-PDU with ClearToSend status (FC(CTS)) and shall carry on the
reception of the Consecutive Frame N-PDUs.

CanTp084: When the transport reception session is completed (successfully or not)
the CanTp module shall call the upper layer notification service
PduR_CanTpRxIndication().

With regard to FF N-PDU reception, the content of the Flow Control N-PDU depends
on the PduR_CanTpProvideRxBuffer() service result.
CanTp064: Furthermore, it should be noted that when receiving a FF N-PDU, the
Flow Control shall only be sent after having the result of the
PduR_CanTpProvideRxBuffer() service.

It is important to note that FC N-PDU will only be sent after every block, composed of
a number BS (Block Size) of consecutive frames.

CanTp067: If the Rx buffer provided is smaller than the entire N-SDU data length
and its length is not a multiple of BS*7 (or BS*6 in case of extended addressing
format), the CanTp module shall temporarily change the BS value to fill up the buffer
reception completely. The desired behavior is described in the following picture

32 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

Figure 5: Management of the BS value

7.3.2 N-SDU Transmission

As described in chapter 7.1.2, the upper layer asks for the transmission of a N-SDU
by calling CanTp_Transmit(). The parameters of CanTp_Transmit()describe
the CAN NSduId and a reference to a PduInfoType that indicates the full Tx N-SDU
length given.

CanTp225: The function CanTp_Transmit shall only use the SduLength information
within the PduInfoType parameter and shall not use the pointer to the payload N-
SDU data.

CanTp226: After a transmission request from the upper layer, the CanTp module
shall call PduR_CanTpProvideTxBuffer at least once to request the necessary
transmit buffer.

CanTp167: After a transmission request from upper layer, the CanTp module shall
start time-out N_Cs before requesting a Tx buffer. If a buffer has not been provided
before the timer elapsed, the CanTp module shall abort the communication.

The Tx buffer provided can be smaller than the full Tx N-SDU data length.

CanTp086: If the Tx buffer provided to the CanTp module is smaller than the full Tx
N-SDU data length and when the entire content of this buffer has been sent, the
CanTp module shall request another buffer by calling the function
PduR_CanTpProvideTxBuffer()again.

33 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

CanTp117: If the data in the Tx buffer cannot be sent completely, the CanTp layer
shall request a new buffer from the upper layer and shall buffer the remaining bytes
that have not been sent yet.

If the upper layer cannot provide a Tx buffer because of an error (e.g. in the gateway
case it may indicate that the transport session to the destination network has been
broken), the PduR_CanTpProvideTxBuffer() function returns
BUFREQ_E_NOT_OK.

CanTp087: If PduR_CanTpProvideTxBuffer() returns BUFREQ_E_NOT_OK, the
CanTp module shall abort the transmit request and notify the upper layer of this
failure by calling the callback function PduR_CanTpTxConfirmation() with the
result NTFRSLT_E_NOT_OK.

If upper layer temporarily has no Tx buffer available, the
PduR_CanTpProvideTxBuffer() function returns BUFREQ_E_BUSY.

CanTp184: If the PduR_CanTpProvideTxBuffer() function returns
BUFREQ_E_BUSY, the CanTp module shall later (implementation specific) retry to
receive a buffer.

CanTp185: If no buffer is provided before the expiration of the N_Cs timer (ISO
15765-2 specification defines the following performance requirement: (N_Cs+N_As)
< 0.9*N_Cr timeout), the CanTp module shall abort this transmission session and
notify the upper layer of this failure by calling the callback function
PduR_CanTpTxConfirmation with the result NTFRSLT_E_NOT_OK.

The API PduR_CanTpProvideTxBuffer() contains a parameter length used for
the recovery mechanism. Because ISO 15765-2 does not support such a
mechanism, the CAN Transport Layer does not implement any kind of recovery.
Thus, the length parameter is always set to zero (0) and upper layers can return a
buffer of free length.

CanTp186: The CanTp module shall set the length parameter in the call to
PduR_CanTpProvideTxBuffer to zero (0).

CanTp089: When the Tx buffer is provided, the CanTp module shall resume the
transmission of the N-SDU.

CanTp090: When the transport transmission session is successfully completed, the
CanTp module shall call a notification service of the upper layer,
PduR_CanTpTxConfirmation(), with the result NTFRSLT_OK.

34 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

7.3.3 Buffer strategy

Because CanTp has limited buffering capability, the N-SDU payload, which is to be
transmitted, is not copied internally and the N-PDU received is not reassembled
internally.

The CAN Transport Layer works directly on the memory area of the upper layers
(e.g. PduR, DCM, or COM). To access these memory areas, the CAN Transport
Layer uses the indicator returned by the PduR_CanTpProvideTxBuffer() or
PduR_CanTpProvideRxBuffer() functions.
Thus, to guarantee data consistency, the upper layer should lock this memory area
until an indication occurs.
When a transmit buffer is locked, the upper layer must not write data inside the buffer
area.
When a receiving buffer is locked the CAN Transport Layer does not guarantee data
consistency of the buffer. The upper layer should neither read nor write data in the
buffer area.

sm Buffer lock

LOCK

UNLOCK

PduR_CanTpProvideTxBuffer
return = BUFREQ_OK

call of PduR_CanTpProvideTxBuffer
 OR
call of PduR_CanTpTxConfirmation

LOCK

UNLOCK

PduR_CanTpProvideRxBuffer
return = BUFREQ_OK

call of PduR_CanTpProvideRxBuffer
 OR
 call of PduR_CanTpRxIndication

Transmit Buffer Receiving Buffer

Figure 6: Tx and Rx Buffer locking

CanTp227: The PduR module shall lock the buffer when it returns a status
BUFREQ_OK to a PduR_CanTpProvideTxBuffer() or
PduR_CanTpProvideRxBuffer() call and shall keep the buffer locked until the
CAN transport Layer requests a new buffer (PduR_CanTpProvideTxBuffer() or
PduR_CanTpProvideRxBuffer() call) or when a confirmation or indication
(PduR_CanTpTxConfirmation() or PduR_CanTpRxIndication() call) occurs.

35 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

The following figure provides an example, to summarize the process of sending a
frame, with a length of 50 bytes and two sub-buffers of 25 bytes.

Figure 7: Example of transmit process

No sending, waiting for data

00CF / 2 bytes
22CF / 7 bytes
99CF / 7 bytes

1616CF / 7 bytes
2323CF / 7 bytes

530CF / 7 bytes
1237CF / 7 bytes
1944FF / 6 bytes

in the
provided

buffer
in the SDU

Remaining bytes

curent frame
and length

No sending, waiting for data

00CF / 2 bytes
22CF / 7 bytes
99CF / 7 bytes

1616CF / 7 bytes
2323CF / 7 bytes

530CF / 7 bytes
1237CF / 7 bytes
1944FF / 6 bytes

in the
provided

buffer
in the SDU

Remaining bytes

current frame
and length

*(buf, length=25)

Store the 5 remainig
bytes, and request a
new buffer

Use the 5 stored
bytes, then complete
the frame with bytes
from the new buffer

Start sending data.

PduR CanTp

CanTp_Transmit (id, *(data, length=50)) 1

*(buf, length=25)

PduR_CanTpProvideTxBuffer (id, *(*(buf,
length)), 0)
 2

3

PduR_CanTpProvideTxBuffer (id, *(*(buf,
length)), 0) N_Cs

4

5

36 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

1: The PduR asks for the transmission of 50 data bytes
2: The CanTp asks the PduR for the data by requesting the buffer containing the
payload data. The PduR provides a buffer of 25 bytes (by conception in this example,
it is not able to provide a buffer of 50 bytes directly)
3: The CanTp starts the transmission of the payload data. After the second
consecutive frame transmission, there are still 5 data bytes available in the buffer. As
a consecutive frame will contain 7 data bytes, the CanTp should request a new buffer
from the PduR, in order to have enough data to send. Therefore, it should store the 5
data bytes available and afterwards request the buffer.
4: The CanTp asks the PduR for the data, by requesting the buffer containing the
next payload data. The PduR provides a buffer of 25 bytes
5: The CanTp continues the transmission of the payload data.

This figure shows the necessity for CAN Transport Layer to use a local buffer to store
some data before requesting a new buffer.
The new buffer should be provided before the N_Cs timer expires. To extend this
timing constraint, the CAN Transport Layer could use a larger internal buffer and
request the next buffer (PduR_CanTpProvideTxBuffer()) before the current
buffer is empty (or not sufficient to transmit a complete consecutive frame).

The next figure is an example of an N-SDU receiving 49 bytes, with two buffers of 25
bytes provided.

37 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

PduR_CanTpProvideRxBuffer (id,
length=49, *(*(buf, length)))

CanTp_RxIndication (id, *(data, length))
CanIf CanTp PduR

022CF / 7 bytes

No receiving, waiting for available buffer.

10CF / 2 bytes
21CF / 7 bytes
98CF / 7 bytes

16 15CF / 7 bytes

529CF / 7 bytes
12 36CF / 7 bytes
19 43FF / 6 bytes

in the
provided

buffer
in the SDU

Remaining bytes
received

frame and
length

022CF / 7 bytes

No receiving, waiting for available buffer.

10CF / 2 bytes
21CF / 7 bytes
98CF / 7 bytes

16 15CF / 7 bytes

529CF / 7 bytes
12 36CF / 7 bytes
19 43FF / 6 bytes

in the
provided

buffer
in the SDU

Remaining bytes
received

frame and
length

2 bytes have to be
stored in a local
buffer.

Copy the 2 stored bytes
in the new buffer, then

Compute the next BS.

Free bytes in the buffer: 25
Bytes remaining in SDU: 43

 BS = 3 (maximum)

PduR_CanTpProvideRxBuffer (id,

length=49, *(*(buf, length)))

*(buf, length=25)

*(buf, length=25)

44

…

33

compute the next BS.

1

2

3

4

Free bytes in the buffer: 23
Bytes remaining in SDU: 22 5

BS = 4 (or 0)

PduR_CanTpRxIndication (id, OK)PduR_CanTpRxIndication (id, OK)

The last byte(s) of
the last buffer
is(are) not used.

FlowControl, Wait

FlowControl, CTS with BS=xx 6

Figure 8: Example of receiving process

1: The CanIf notifies a new reception with CanTp_RxIndication(). The CanTp asks
the PduR for a buffer in order to store the received data.
2: The PduR provides a buffer of 25 bytes (by conception in this example, it is not
able to provide a buffer of 49 bytes directly)
3: The CanTp manages the payload data reception until the buffer is full (on the third
consecutive frame). On this third consecutive frame the CAN Transport Protocol can
only store 5 bytes in the buffer. Therefore, it should request a new buffer and
temporarily store the remaining 2 bytes in a local buffer.
4: The CanTp asks the PduR for a new buffer in order to store the data received
subsequently.
5: The CanTp copies the 2 bytes, temporarily stored in local buffer, to the buffer
provided by the PduR and manages the payload data reception until the end of
reception.
6: The CanTp informs the PduR of the end of reception by a call to
PduR_CanTpRxIndication().
The CAN Transport Layer will compute the BS values (See CanTp067) depending
on:
- maximum configured value for this N-SDU,
38 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

- number of free bytes inside the buffer provided,
- amount of receiving bytes.

When the last buffer is returned to the upper layer (PduR_CanTpRxIndication()), the
last bytes (in the example just the last byte) could be unused.

The upper layer shall take care identify these unused bytes with the knowledge of the
total N-SDU length (function parameter of PduR_CanTpProvideRxBuffer()).

Another solution to avoid unused bytes is for the upper layer to provide the last buffer
with the exact length, which should be received.

If the BS value is equal to 0 the buffer should be sized to a value equal or larger than
the number of bytes to be received.

7.3.4 No Protocol parameter setting services

CanTp091: The CanTp module shall not support optional primitives (proposed in ISO
15765-2 specification) for the dynamic setting of some transport protocol internal
parameters (STmin and BS) by application. Thus, STmin and BS values shall only be
set statically N-SDU by N-SDU.

The configured BS value is only a maximum value. For reasons of buffer length, the
CAN Transport Layer can adapt the BS value within the limit of the configured
maximum value.

7.3.5 Tx and Rx data flow

The following figures show examples of an un-segmented message transmission and
a segmented one.

Figure 9: Example of single part message

39 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

Figure 10: Example of multiple parts message

Flow control is used to adjust the sender to the capabilities of the receiver. The main
usage of this transport protocol is peer-to-peer communication (i.e. 1 to 1
communication – physical addressing [13]).

CanTp092: The CanTp module shall provide 1 to n communication (i.e. functional
addressing [13]), in the form of functionality to SF N-PDUs (and only SF N-SDU).

The configuration tool shall check whether it is only SF N-PDUs that have been
configured with a functional addressing property.

CanTp093: If a multiple segmented session occurs (on both receiver and sender
side) with a handle whose communication type is functional, the CanTp module shall
reject the request and generate, if the development error detection is enabled, a
development error CANTP_E_PARAM_CONFIG.

7.3.6 Relationship between CAN NSduId and CAN LSduId

This chapter describes the connection that exists between CAN NSduId and CAN
LSduId, in order to make transmission and reception of transport protocol data units
possible.

CanTp035: A CAN NSduId shall only be linked to one CAN LSduId that is used to
transmit SF, FF, FC and CF frames.
However, if the message is configured to use an extended addressing format, the
CanTp module must fill the first byte of each transmitted segment (SF, FF and CF)
with the N_TA value. Therefore a CAN NSduId may also be related to a N_TA value.

FC protocol data units give receivers the possibility of controlling senders’ data flow
by authorizing or delaying transmission of subsequent CF N-PDUs. For extended
addressing format, the first data byte of the FC also contains the N_TA value.

40 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

CanTp094: Thus the CAN LSduId of a FC frame combined with its N_TA value (e.g.
the N_AI) shall only identify one CAN NSduId.

In the reception direction, the first data byte value of each (SF, FF or CF) transport
protocol data unit will be used to determine the relevant N-SDU.
CanTp095: Therefore, in extended addressing N-PDU reception, the CanTp module
shall extract the N-TA value to establish the related N-SDU.

The following figure summarizes these discussions.

cd Data Model

N-SDU NSduId N_AI

N_TALSduIdL-SDU

FC SF FF CF

Constraint:
- SF, FF and CF use the same LSduId
- FC uses a different LSduId

11

1..*

1

1

0..1

1 11 1

Figure 11: Possible links between NSduId and LSduId

7.3.7 Concurrent connection

In this second release document, the CAN Transport Layer will only be used for
diagnosis communication (i.e. the CanTp is used to transfer DCM I-PDU). However,
the CAN Transport Layer is able to manage several connections simultaneously (e.g.
a UDS and an OBD request can be received at the same time).

CanTp096: The CanTp module shall support several connections simultaneously

CanTp120: It shall be possible to configure concurrent connections in the CanTp
module. The connection channels are only destined for CAN TP internal use, so they
are not accessible externally. All the necessary information (Channel number, Timing
parameter …) is configured inside the CAN Transport Layer module.

CanTp121: Each N-SDU is statically linked to one connection channel. This
connection channel represents an internal path, for the transmission or receiving of
the N-SDU. A connection channel is attached to one or more N-SDU.

41 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

CanTp122: Each connection channel is independent of the other connection
channels. This means that a connection channel uses its own resources, such as
internal buffer, timer, or state machine.

CanTp190: The CanTp module shall route the N-SDU through the correctly
configured connection channel.

Note that this mechanism does not allow for the receiving or the transmission of N-
SDU with the same identifier in parallel, because each N-SDU is linked to only one
connection channel.

If a user wants to dedicate a specific connection channel to only one N-SDU, they
should assign this connection channel to one N-SDU only during the configuration
process.

If a connection channel is assigned to multiple N-SDUs, then resources are shared
between different N-SDUs, and the CAN Transport Layer will reject transmission or
abort receiving, if no free connection channels are available.

The number of connection channels is not directly configurable. It will be determined
by the configuration tools during the configuration process, by analyzing the N-
SDU/Channel routing table.

CanTp123: If the configured transmit connection channel is in use (state
CANTP_TX_PROCESSING), the CanTp module shall reject new transmission requests
linked to this channel. To reject a transmission, CanTp returns E_NOT_OK when the
upper layer asks for a transmission with the CanTp_Transmit() function.

CanTp124: If the configured receiving connection channel is in use (state
CANTP_RX_PROCESSING), on reception of new data (First Frame reception) the
CanTp module shall abort the reception in progress and shall process the received
frame as the start of a new reception.

CanTp248: A Tx N-PDU Id shall not be used on two or more different connection
channels. An Rx N-PDU Id can only be used on two or more different connection
channels if extended addressing is used in relation with this N-PDU Id.

7.3.8 N-PDU padding

To guarantee complete compatibility with all upper layer requirements concerning the
frame data length (e.g. OBD requires data length to always be set to 8 bytes,
however UDS does not), the padding activation is configurable at pre-compile time.

CanTp114: The CanTp module shall allow configuration of the padding activation at
pre-compile time, by using parameter CanTpRxPaddingActivation.

CanTp040: If the CanTpRxPaddingActivation parameter is set to ON, the CanTp
module shall only transfer N-PDU with a length of eight bytes (i.e. DLC = 8) between
the CanTp and the CanIf. Thus, a received N-PDU shorter than 8 bytes will be
considered corrupt by CanTp
42 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

CanTp098: If the CanTpRxPaddingActivation parameter is set to OFF, the
CanTp module shall check the frame data length. If a frame is received with an
unexpected datalength (check only for too short DLCs), the frame shall be ignored.

CanTp116: In both padding and no padding modes, the CanTp module shall only
transfer used data bytes to the upper layer.

CanTp059 To improve transfer time, the CanTp module shall send unused byte(s)
without any initialization.

7.3.9 Handling of unexpected N-PDU arrival

The behavior of the CAN Transport Layer on unexpected N-PDU arrival is greatly
dependent on the communication direction type of the processing N-SDU.

CanTp057: If unexpected frames are received, the CanTp module shall behave
according to the table below.

This table considers the actual CanTp internal status (CanTp status) and the
requirement to not support full-duplex communication. It must be understood, that the
received N-PDU contains the same address information (N_AI) as the reception or
transmission, which may be in progress at the time the N_PDU is received.

43 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

CanTp Reception of
status SF N-PDU FF N-PDU CF N-PDU FC N-PDU Unknow

n
N-PDU

Segment
ed

Transmit
in

progress

Ignore Ignore Ignore If awaited,
process the FC
N-PDU,
otherwise
ignore it.

Ignore

Segment
ed

Receive
in

progress

Terminate the
current
reception,
report an
indication, with
parameter
Result set to
NTFRSLT_E_N
OT_OK, to the
upper layer,
and process
the SF N-PDU
as the start of a
new reception

Terminate the
current reception,
report an
indication, with
parameter Result
set to
NTFRSLT_E_NO
T_OK, to the
upper layer, and
process the FF
N-PDU as the
start of a new
reception

Process the CF
N-PDU in the on-
going reception and
perform the
required checks
(e.g. SN in right
order)

Ignore Ignore

Idle2 Process the SF
N-PDU as the
start of a new
reception

Process the FF
N-PDU as the
start of a new
reception

Ignore Ignore Ignore

Table 1: Handling of unexpected N-PDU arrivals

7.4 Error classification

This section describes how the CanTp module has to manage the several error
classes that may occur during the life cycle of this basic software.

The general requirements document of AUTOSAR [3] specifies that all basic
software modules must distinguish (according to the product life cycle) two error
types:

- Development errors: these errors should be detected and fixed during
development phase. In most cases, these errors are software errors. The
detection errors that should only occur during development can be switched
off for production code (by static configuration, namely preprocessor
switches).

- Production errors: these errors are hardware errors and software exceptions
that cannot be avoided and are expected to occur in the production (i.e.
series) code.

44 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

2 Idle = CANTP_ON.CANTP_RX_WAIT and CANTP_ON.CANTP_TX_WAIT

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

CanTp008: On errors and exceptions, the CanTp module shall not modify its current
module state (see Figure 4: CAN Transport Layer life cycle) but shall simply report
the error event.

In case of production error, the Diagnostic Event Manager module (via the Function
Inhibition Manager) will perform the appropriate action (e.g. status modification of the
calling module).

CanTp192: Values for production code Event Ids are assigned externally by the
configuration of the Dem. They are published in the file Dem_IntErrId.h and included
via Dem.h.

CanTp101: Development error values are of type uint8.

Type or error Relevance Related error code Value

[hex]
API service called with
wrong parameter(s) :
When CanTp_Transmit is
called for a none
configured TX I-Pdu
On any Null-Pointer given
on API calls

Development

Could be a combination of:
CANTP_E_PARAM_CONFIG
CANTP_E_PARAM_ID
CANTP_E_PARAM_ADDRESS

0x01
0x02
0x04

API service used without
module initialization :
On any API call except
CanTp_Init() and
CanTp_GetVersionInfo() if
CanTp is in state
CANTP_OFF"

Development CANTP_E_UNINIT 0x20

Invalid Transmit PDU
identifier
(e.g. a service is called with
an inexistent Tx PDU
identifier)

Development CANTP_E_INVALID_TX_ID 0x30

Invalid Receive PDU
identifier
(e.g. a service is called with
an inexistent Rx PDU
identifier)

Development CANTP_E_INVALID_RX_ID 0x40

Invalid Transmit buffer
address
(e.g. the Tx buffer address
is inaccessible or NULL)

Development CANTP_E_INVALID_TX_BUFFER 0x50

Invalid Receive buffer
address
(e.g. the Rx buffer address
is inaccessible or NULL)

Development CANTP_E_INVALID_RX_BUFFER 0x60

Invalid data length of the
transmit PDU
(e.g. a transmit N-SDU has
a length equal to zero)

Development CANTP_E_INVALID_TX_LENGTH 0x70

Invalid data length of the
receive PDU
(e.g. a receive FF N-PDU
has a FF_DL equal to zero)

Development CANTP_E_INVALID_RX_LENGTH 0x80

CanTp_Transmit() is called Development CANTP_E_INVALID_TATYPE 0x90

45 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

for a configured Tx I-Pdu
with functional
addressing and the length
parameter indicates, that
the message can not be
sent with a SF
Requested operation is not
supported

Production CANTP_E_OPER_NOT_SUPPORTED
Assigned by
DEM

Another error occurred
during a reception or a
transmission

Production CANTP_E_COMM
Assigned by
DEM

7.5 Error detection

CanTp006: The detection of development errors is configurable (ON / OFF) at pre-
compile time.
The switch CanTpDevErrorDetect (see chapter 10) should activate or deactivate
the detection of all development errors.

CanTp132: If the CanTpDevErrorDetect switch is enabled API parameter
checking is enabled. The detailed description of the detected errors can be found in
chapter 7.4 and chapter 8.

CanTp133: The detection of production code errors cannot be switched off.

CanTp161: A static status variable, denoting whether a BSW module is initialized,
should be initialized with value 0 before any APIs of the BSW module are called.
The initialization function of the BSW modules will set the static status variable to a
value not equal to 0.
This variable is used to check if the module has been initialized before calling an API.

7.6 Error notification

CanTp134: Detected development errors will be reported to the error hook of the
Development Error Tracer (DET) if the pre-processor switch
CanTpDevErrorDetect is set.

CanTp193: Production errors shall be reported to Diagnostic Event Manager.

The Development Error Tracer module is merely an aid to BSW development and
integration. The API is defined, but the functionality can be chosen and implemented
according to the development needs (e.g. error count, send error information via a
serial interface to an external logger, and so on).

CanTp021: The CanTp module shall use the Development Error Tracer service [8]:
void Det_ReportError(ModuleId, InstanceId, ApiId, ErrorId) to
report development errors.

46 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

CanTp115: The header file of the CanTp module, CanTp.h, shall provide a module
ID, called CANTP_MODULE_ID sets, to the value 0x23.

The following figure describes how this function can be used when the Development
Error Tracer is on.

Figure 12: Development error reporting

As shown in the above figure, when a development error occurs the CanTp returns
the value E_NOT_OK. The error description is only reported via the API of the
Development Error Tracer module.

CanTp100: The CanTP module shall use the API services of the DEM module
software specification [11] to report production errors.

This DEM module dumps the error into the “error memory” and informs the FIM
module, which has a pre-defined reaction for the ECU (e.g. disabling ECU functions,
switching ECU mode, etc).

CanTp229: If the task was aborted (e.g. As, Bs, Cs, Ar, Br, Cr timeout), the CanTp
module shall call the DEM with EventId= CANTP_E_COM
EventStatus=DEM_EVENT_STATUS_PREFAILED.

47 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

CanTp230: The DEM shall use a debounce algorithm of type Counter based for
CanTp errors.

48 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

8 API specification

8.1 Imported types

In this chapter all types included from the following files are listed:

CanTp209:

Header file Imported Type
Dem_Types.h Dem_EventIdType
BufReq_Types.h BufReq_ReturnType
LinIf_Types.h PduInfoType
PrimitiveTypes.h PduInfoType

Std_ReturnType Std_Types.h
Std_VersionInfoType

FrTp_Types.h NotifResultType
PduIdType ComStack_Types.h
PduLengthType

In order to receive a consistent API for the AUTOSAR communication stack, basic
types have been defined. These types are used by the CAN Transport Layer to
communicate with the Pdu-Router and with the CAN Interface Layer.
For more information, these basic types are presented in depth in the AUTOSAR
COM stack API specification.
These AUTOSAR standard types will be used without any type redefinition.

CanTp002: If, for implementation reasons, some additional types have to be defined,
the CanTp module shall label these types as follows: CanTp_<TypeName>Type,
where <TypeName> is the name of this type adhering to the rules:

- No underscore usage
- First letter of each word upper case, consecutive letters lower case.

The CanTp module shall ensure that implementation-specific types are not "visible"
outside of CanTp. Otherwise, the complete architecture would be corrupted.

8.2 Type definitions

8.2.1 CanTp_CancelReasonType

Name: CanTp_CancelReasonType
Type: Enumeration

CANTP_CNLDO Cancel Transfer because data are outdated
CANTP_CNLNB Cancel Transfer because no further buffer can be provided

Range:

CANTP_CNLOR Cancel Transfer because of another reason
Description: The reason is sent to the other peer (not on receiver side in a 1:n connection) by the means

of an appropriate FC frame.

49 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

8.3 Function definitions

This is a list of functions provided for upper layer modules

CanTp003: The following provides the API Naming convention for the CanTp
services:

- The service name format is CanTp_<ServiceName>(…)
- <ServiceName>: is the name of the service primitive with first letter of each

word upper case and consecutive letters lower case

8.3.1 CanTp_Init

CanTp208:

CanTp_Init Service name:
void CanTp_Init(

)

Syntax:

0x01 Service ID[hex]:
Synchronous Sync/Async:
Non Reentrant Reentrancy:
None Parameters (in):
None Parameters

(inout):
None Parameters (out):
None Return value:
This function initialzes the CanTp module. Description:

After power up, CanTp is in a state called CANTP_OFF (see CanTp168). In this
state, the CanTp is not yet configured and therefore cannot perform any
communication task.

The function CanTp_Init initializes all global variables of the CAN Transport Layer
with the given configuration set and set it in the idle state (state = CANTP_ON but
neither transmission nor reception are in progress) (see CanTp170 and CanTp030).

The function CanTp_Init has no return value because configuration data errors
should be detected during configuration time (e.g. by the configuration tools).
Furthermore, if a hardware error occurs, it will be reported via the error manager
modules.

CanTp199: The CanTp module’s environment shall call CanTp_Init before using the
CanTp module for further processing.

8.3.2 CanTp_ GetVersionInfo

CanTp210:

CanTp_GetVersionInfo Service name:
Syntax: void CanTp_GetVersionInfo(

 Std_VersionInfoType* versioninfo

50 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

)
0x07 Service ID[hex]:
Synchronous Sync/Async:
Non Reentrant Reentrancy:
None Parameters (in):
None Parameters

(inout):
Parameters (out): versioninfo Indicator as to where to store the version information of this module.
Return value: None
Description: This function returns the version information of the CanTp module.

CanTp162: The function CanTp_GetVersionInfo shall return the version information
of this module. The version information includes:

- Module Id
- Vendor Id
- Vendor specific version numbers (BSW00407).
-

CanTp163: The function CanTp_GetVersionInfo shall be pre compile time
configurable (On/Off) by the configuration parameter:
CANTP_VERSION_INFO_API.

CanTp218: If source code for caller and callee of CanTp_GetVersionInfo is available,
the CanTp module should realize CanTp_GetVersionInfo as a macro, defined in the
module’s header file.

Note that the function CanTp_GetVersionInfo can be called before initialization of the
CanTp module.

8.3.3 CanTp_Shutdown

CanTp211:

CanTp_Shutdown Service name:
void CanTp_Shutdown(

)

Syntax:

0x02 Service ID[hex]:
Synchronous Sync/Async:
Non Reentrant Reentrancy:
None Parameters (in):
None Parameters

(inout):
None Parameters (out):
None Return value:

Description: This function to shutdown the CanTp module.

51 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

CanTp202: The function CanTp_Shutdown shall close all pending transport protocol
connections, free all resources and set the CanTp module into the CANTP_OFF
state.

CanTp200: The function CanTp_Shutdown shall not raise a notification about the
pending frame transmission or reception.

8.3.4 CanTp_Transmit

CanTp212:

CanTp_Transmit Service name:
Std_ReturnType CanTp_Transmit(
 PduIdType CanTpTxSduId,
 const PduInfoType* CanTpTxInfoPtr
)

Syntax:

0x03 Service ID[hex]:
Synchronous Sync/Async:

Reentrancy: Reentrant
CanTpTxSduId This parameter contains the unique CanTp module identifier of

the CAN N-SDU to be transmitted.
Range: 0..(maximum number of L-PDU IDs received) - 1 Parameters (in):

CanTpTxInfoPtr An indicator of a structure with CAN N-SDU related data: indicator
of a CAN N-SDU buffer and the length of this buffer.

Parameters
(inout):

None

None Parameters (out):

Return value:
Std_ReturnType E_OK: The request can be started successfully

E_NOT_OK: The request cannot be started (e.g. a transmit
request is in progress with the same N-SDU identifier)

Description: This service is used to request the transfer of segmented data.

52 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

CanTp231: If data length is less than 7 or 6 (depending on normal or extended
addressing format), the function CanTp_Transmit shall send a SF N-PDU.

CanTp232: If data length is greater than 7 or 6 (depending on normal or extended
addressing format), the function CanTp_Transmit shall initiate a multiple frame
transmission session.

CanTp204: The CanTp module shall notify the upper layer by calling the
PduR_CanTpTxConfirmation callback when the transmit request has been
completed.

CanTp205: The CanTp module shall abort the transmit request and call the
PduR_CanTpTxConfirmation callback function with the appropriate error result
value if an error occurred (over flow, N_As timeout, N_Bs timeout and so on).

CanTp206: The function CanTp_Transmit shall reject a request if the
CanTp_Transmit service is called for a N-SDU identifier which is being used in a
currently running CAN Transport Layer session.

Because CanTp has limited buffering capability, the N-SDU payload to be transmitted
is not copied internally. The CAN Transport Layer works on the memory area
referenced by the CAN N-SDU pointer obtained within the CanTpProvideTxBuffer
service.
Thus, to guarantee the data consistency, the upper layer (e.g. DCM, PduRouter or
AUTOSAR COM) must lock this memory area until the confirmation notification
occurs.

When the upper layer calls this function, only the data length information of the
structure indicated by CanTpTxInfoPtr has to be used. Its value indicates the payload
length of the N-SDU, which is to be transmitted.
To access a Tx buffer, the CAN Transport Layer should call the
PduR_CanTpProvideTxBuffer service.

8.3.4.1 CanTp_CancelTransmitRequest

CanTp246:

Service name: CanTp_CancelTransmitRequest
Syntax: Std_ReturnType CanTp_CancelTransmitRequest(

 PduIdType CanTpTxPduId,
 CanTp_CancelReasonType CanTpCancelReason
)

Service ID[hex]: 0x03
Sync/Async: Asynchronous
Reentrancy: Reentrant

Parameters (in): CanTpTxPduId This parameter contains the CAN TP instance unique identifier of the
CAN N-SDU which transfer has to be cancelled.

53 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

CanTpCancelReasonThe reason for cancellation
Parameters (inout): None
Parameters (out): None

Return value:

Std_ReturnType E_OK: Cancellation request of the transfer (sending or receiving) of
the specified CAN N-SDU is accepted.
E_NOT_OK: Cancellation request of the transfer of the specified
CAN N-SDU is rejected, e. g. cancellation is requested at the receiver
in an 1:n connection or in an unsegmented transfer at the receiver or
cancellation is not allowed for the corresponding channel.

Description: This service primitive is used to cancel the transfer of pending CAN N-SDUs. The
connection is identified by CanTpTxPduId.

This function has to be called with the PDU-Id of the CanTp, i. e. the upper layer has to
translate its own PDU-Id into the one of the TP for the corresponding message.

8.3.5 Main Function

CanTp213:

CanTp_MainFunction Service name:
void CanTp_MainFunction(

)

Syntax:

0x06 Service ID[hex]:
Synchronous Sync/Async:
Non Reentrant Reentrancy:
None Parameters (in):
None Parameters

(inout):
None Parameters (out):
None Return value:
The main function for scheduling the CAN TP. Description:

CanTp164: The main function for scheduling the CAN TP (Entry point for scheduling)
The main function will be called by the Schedule Manager or by the Free Running
Timer module according of the call period needed.

The function CanTp_MainFunction is affected by configuration parameter
CanTpMainFunctionPeriod.

8.4 Call-back notifications

54 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

The following is a list of functions provided for lower layer modules.

CanTp233: The CanTp module shall provide the function prototypes of the callback
functions in the file CanTp_Cbk.h

8.4.1 CanTp_RxIndication

CanTp214:

CanTp_RxIndication Service name:
void CanTp_RxIndication(
 PduIdType CanTpRxPduId,
 const PduInfoType* CanTpRxPduPtr
)

Syntax:

0x04 Service ID[hex]:
Synchronous Sync/Async:

Reentrancy: Reentrant
CanTpRxPduId ID of CAN L-PDU that has been received. Identifies the data that

has been received.
Range: 0..(maximum number of L-PDU IDs received) - 1 Parameters (in):

CanTpRxPduPtr Indicator of structure with received L-SDU (payload) and data
length

Parameters
(inout):

None

None Parameters (out):
None Return value:
This function is called by the CAN Interface after a successful reception of a Rx
CAN L-PDU.

Description:

CanTp019: The CanIf module shall call this function after a successful reception of a
Rx CAN L-PDU.

The data will be copied by the CanTp via the PDU structure PduInfoType. In this
case the L-PDU buffers are not global and are therefore distributed in the
corresponding CAN Transport Layer.

CanTp235: The function CanTp_RxIndication shall be callable in interrupt context (it
could be called from the CAN receive interrupt).

CanTp234: The function CanTp_RxIndication shall be implemented using a pre-
compile macro

8.4.2 CanTp_TxConfirmation

CanTp215:

CanTp_TxConfirmation Service name:
void CanTp_TxConfirmation(
 PduIdType CanTpTxPduId
)

Syntax:

0x05 Service ID[hex]:
Sync/Async: Synchronous

55 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

Reentrant Reentrancy:

Parameters (in):
CanTpTxPduId ID of CAN L-PDU that has been transmitted.

Range: 0..(maximum number of L-PDU IDs received) - 1
Parameters
(inout):

None

Parameters (out): None
None Return value:
All transmitted CAN frames belonging to the CAN Transport Layer will be
confirmed by this function.

Description:

CanTp020: The CanIf module shall call the function CanTp_TxConfirmation after the
TP related CAN Frame (SF, FF, CF, FC) has been transmitted through the CAN
network.

CanTp236: The function CanTp_TxConfirmation shall be callable in interrupt context
(it could be called from the CAN transmit interrupt).

CanTp237: The function CanTp_TxConfirmation shall be implemented using a pre-
compile macro

8.5 Expected Interfaces

In this chapter, all interfaces required from other modules are listed.

8.5.1 Mandatory Interfaces

This chapter defines all interfaces, which are required, in order to fulfill the core
functionality of the module.

CanTp216:

API function Description
PduR_CanTpProvideRxBuffer Provides Rx buffer for the CAN TP.
PduR_CanTpProvideTxBuffer Provides Tx buffer for the CAN TP.
PduR_CanTpRxIndication Rx indicator for the CAN TP
PduR_CanTpTxConfirmation Tx confirmation for the CAN TP
CanIf_Transmit --
Dem_ReportErrorStatus Reports errors to the DEM.

8.5.2 Optional Interfaces

This chapter defines the interface, which is required, in order to fulfill the optional
functionality of the module.

CanTp217:

API function Description
Det_ReportError Service to report development errors.

56 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

9 Sequence diagrams

The goal of this chapter is to make it easier to understand the CAN Transport Layer
by describing most of the more frequent and complicated use cases. Thus, the
following diagram sequences are not exhaustive and do not reflect all the specified
API possibilities.

9.1 SF N-SDU received and no buffer provided

9.1.1 Assumptions

- All input parameters are OK
- The N-SDU data length is smaller than or equal to 7 bytes (6 bytes in the case

of extended addressing format)
- Upper layer can not provide an Rx buffer

9.1.2 Sequence diagram

sd Receiv ed a SF and no buffer prov ided

«module»

PduR::PduR

CanIf::CanIf«module»

CanTp::CanTp

Status: proposed by TO as per SWS CanTp 1.4.0

Description:

Comments:

Comment:
When the lower layer receives a frame (here a
single frame), i t noti fies CanTp with
CanTp_RxIndication cal lback. CanTpRxPduId
represent the ID of L-PDU that has been
received, and CanTpRxPduPtr point to the
L-PDU payload and the L-PDU datalength

Comment:
The CAN T ransport Layer does an ID
translation and extract the useful data length
from the N-PDU payload.
Then i t asks i ts upper layer to provide a
buffer for this incoming data with
PduR_CanTpProvideRxBuffer cal lback.
TpSduLength is set to SF_DL (extract from
the N-PCI field). It indicates the overal l
amount of bytes to be received.

Comment:
Upper layer can not provide any buffer. So the
BUFREQ_E_NOT_OK value is returned.
The CanTp ends the CanTp_RxIndication
function without copying any data.

CanTp_RxIndication(CanTpRxPduId,CanTpRxPduPtr)

PduR_CanTpProvideRxBuffer(CanTpRxPduId,TpSduLength,PduInfoPtr)
:BufReq_ReturnType

PduR_CanTpProvideRxBuffer

CanTp_RxIndication

57 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

Note: This sequence diagram demonstrates the working of the CAN_Tp module only.
However, if the whole system is considered during such reception, more modules are
involved. Since this reception can be triggered in the context of CAN ISR, the
CAN_Tp operation should be as short as possible.

9.1.3 Transition description

Transition Name Description

CanTp_RxIndication
(

1 CanTpRxPduId,
 CanTpRxPduPtr
)

When the lower layer receives a frame (here a single
frame), it notifies CanTp by means of a
CanTp_RxIndication callback. CanTpRxPduId represents
the ID of L-PDU that has been received, and
CanTpRxPduPtr indicates the L-PDU payload and the L-
PDU datalength

2

PduR_CanTpProvideRx
Buffer(
 CanTpRxSduId,
 TpSduLength,
 PduInfoPtr
)

The CAN Transport Layer performs an ID translation and
extracts the useful data length from the N-PDU payload.
It then asks its upper layer to provide a buffer for this
incoming data with a PduR_CanTpProvideRxBuffer
callback.
TpSduLength is set to SF_DL (extracted from the N-PCI
field). It indicates the overall amount of bytes to be
received.

3 BUFREQ_E_NOT_OK

The upper layer cannot provide any buffer, so the
BUFREQ_E_NOT_OK value is returned.
The CanTp ends the CanTp_RxIndication function
without copying any data.

58 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

9.2 Successful SF N-PDU reception

9.2.1 Assumptions

- All input parameters are OK
- The N-SDU data length is smaller than or equal to 7 bytes (6 bytes in the case

of extended addressing format)
- The SF N-PDU is successfully received

9.2.2 Sequence diagram

sd Successful SF N-PDU reception

«module»

PduR::PduR

CanIf::CanIf«module»

CanTp::CanTp

Comment:
When the lower layer receives a frame (here
a single frame), i t noti fies CanTp with
CanTp_RxIndication cal lback.
CanTpRxPduId represent the ID of L-PDU
that has been received, and CanTpRxPduPtr
point to the L-PDU payload and the L-PDU
datalength

Comment:
Upper layer al locates and locks the
required Rx buffer. Then returns
BUFREQ_OK. Comment:

The CanTp copies the
received N-PDU payload
into the provided buffer

Comment:
When the copy is done, a Rx
indication is raised to upper layer.
Resul t is set to
NOT IF_RESULT_OK.

Comment:
CanTp ends the
CanTp_RxIndication
function.

Comment:
The CAN T ransport Layer does an ID
translation and extract the useful data
length from the N-PDU payload.
Then i t asks i ts upper layer to provide a
buffer for this incoming data wi th
PduR_CanTpProvideRxBuffer cal lback.
TpSduLength is set to SF_DL (extract
from the N-PCI field). It indicates the
overal l amount of bytes to be received.

Status: proposed by TO as per SWS CanTp 1.4.0

Description:

Comments:

CanTp_RxIndication(CanTpRxPduId,CanTpRxPduPtr)

PduR_CanTpProvideRxBuffer(CanTpRxPduId,TpSduLength,PduInfoPtr)
:BufReq_ReturnType

PduR_CanTpProvideRxBuffer

Copy data from driver to the
provided buffer

PduR_CanTpRxIndication(CanTpRxPduId,Resul t)

PduR_CanIfRxIndication

CanTp_RxIndication

Note: This sequence diagram demonstrates the working of the CAN_Tp module only.
However, if the whole system is considered during such reception, more modules are
59 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

involved. Since this reception can be triggered in the context of CAN ISR, the
CAN_Tp operation should be as short as possible.

9.2.3 Transition description

Transition Name Description

CanTp_RxIndication
(
 CanTpRxPduId, 1
 CanTpRxPduPtr
)

When the lower layer receives a frame (here a single
frame), it notifies CanTp by means of a
CanTp_RxIndication callback. CanTpRxPduId represents
the ID of the L-PDU that has been received, and
CanTpRxPduPtr indicates the L-PDU payload and the L-
PDU data length.

2

PduR_CanTpProvideRx
Buffer (
 CanTpRxSduId,
 TpSduLength,
 PduInfoPtr
)

The CAN Transport Layer performs an ID translation and
extract the useful data length from the N-PDU payload.
Then it asks its upper layer to provide a buffer for this
incoming data with a PduR_CanTpProvideRxBuffer
callback.
TpSduLength is set to SF_DL (extracted from the N-PCI
field). It indicates the overall amount of bytes to be
received.

3 BUFREQ_OK Upper layer allocates and locks the required Rx buffer.
Then returns BUFREQ_E_OK.

4 The CanTp copies the received N-PDU payload into the
buffer provided.

5

PduR_CanTpRxIndicat
ion (
 CanTpRxSduId,
 Result
)

When the copy is complete, an Rx indication is sent to the
upper layer. The result is set to NTFRSLT_OK.

6 CanTp ends the CanTp_RxIndication function.

9.3 Transmit request of SF N-SDU

9.3.1 Assumptions

- All input parameters are OK
- The N-SDU data length is smaller than or equal to 7 bytes (6 bytes in case of

extended addressing format)
- The transmission is successfully processed

60 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

9.3.2 Sequence diagram
sd Transmit request of SF N-PDU

«module»

PduR::PduR

CanIf::CanIf«module»

CanTp::CanTp

Comment:
The PDU Router needs (because of a request from the diagnostic control ler
module or a 1:1 T P routing i .e. the PduR itself) to transmit an I-PDU that
requires transport protocol functional i ty and whose data can be refers to with the
data structure information CanTpT xInfoPtr (see defini tion of type:
Std_PduInfoT ype).
So the PduR translates the I-PDU identi fier to find which transport layer to use
(CanT p, LinT p or FrT p), and what the associate N-SDU identi fier is (identi fier
translation). Then PduR cal ls the CanT p’s prim i tive CanT p_T ransmit.
This function shal l perform these fol lowing steps:
- Val idates input parameters and resource avai labi l i ty
- Searches out the useful information to process the transmit request in the
configuration set of this CanT p enti ty (e.g. SF/FF/CF N-PDU identi fier, FC N-PDU
identi fier, N_T A value, and so on)
- Launches an internal transmit task with parameters: CanT pT xSduId and
CanT pTxInfoPtr.

Note: only the length information wi thin the CanTpT xInfoPtr structure shal l be
analyzed. T he pointer to the payload data shal l be discarded.

Comment:
T he value E_OK is returned to
indicate upper layer that the
transm it request is accepted

Comment:
T he PduR_CanT pProvideT xBuffer is cal led to request the necessary transmit
buffer.
Length parameter is set to zero because CAN transport Layer dose not request a
specific length (no recovery mechanisms).Comment:

Upper layer al locates and locks
the required T x buffer. T hen
returns BUFREQ_OK.

Comment:
T he CanT p performed a translation from CanT pTxSduId to CanTxPduId. In case
of extended addressing format, concatenates the N-SDU payload with the N_T A
value.
And do a transmit request on the CanIf module.

Comment:
T he CanIf module can process the transmit request.

Comment:
The N-PDU is successful ly transm itted.
Resul t is normal ly set to NOT IF_RESULT _OK.

Comment:
Noti fy the PDU Router that the
N-SDU has be successful ly
transmitted. Consequently the
PduInfoT ype structure has to be
unlocked.
Result is set to
NOT IF_RESULT _E_OK.

Status: proposed by T O as per SWS CanT p 1.4.0

Description:

Comments:

CanT p_Transmit(return,CanT pTxSduId,CanT pTxInfoPtr)
:Std_ReturnT ype

Check
inputs

Activate a T P
Tx task

CanTp_T ransmit

PduR_CanT pProvideTxBuffer(CanT pTxPduId,PduInfoPtr,Length)
:BufReq_ReturnT ype

PduR_CanTpProvideT xBuffer

CanIf_T ransm it(CanTxPduId,PduInfoPtr) :
Std_ReturnT ype

CanIf_Transmit

CanTp_T xConfirmation(CanT pTxPduId)

PduR_CanTpT xConfirmation(CanT pT xPduId,Result)

PduR_CanT pTxConfi rmation

CanT p_TxConfi rmation

61 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

9.3.3 Transition description

Transition Name Description

1

CanTp_Transmit(
 CanTpTxSduId,
 CanTpTxInfoPtr
)

The PDU Router needs (because of a request from the
diagnostic controller module or a 1:1 TP routing – i.e. the
PduR itself) to transmit an I-PDU that requires transport
protocol functionality and whose data can be refered to
with the data structure information CanTpTxInfoPtr
(see definition of type: Std_PduInfoType).
Thus, the PduR translates the I-PDU identifier to establish
which transport layer to use (CanTp, LinTp or FrTp), and
what the associate N-SDU identifier is (identifier
translation). Then PduR calls the CanTp’s primitive
CanTp_Transmit.
This function will perform the following steps:

- Validates input parameters and resource
availability

- Searches for the useful information to process the
transmit request in the configuration set of this
CanTp entity (e.g. SF/FF/CF N-PDU identifier, FC
N-PDU identifier, N_TA value, and so on)

- Launches an internal transmit task with the
parameters: CanTpTxSduId and
CanTpTxInfoPtr.

Note: only information concerning length, within the
CanTpTxInfoPtr structure, will be analyzed. The payload
indicator data should be discarded.

2 E_OK The value E_OK is returned to indicate to the upper layer
that the transmit request is accepted

3

PduR_CanTpProvideTx
Buffer (

The PduR_CanTpProvideTxBuffer is called upon to
request the necessary transmit buffer. CanTpTxSduId,

 PduInfoPtr,
 Length=0
)

Length parameter is set to zero because the CAN
transport Layer does not request a specific length (no
recovery mechanism).

4 BUFREQ_OK Upper layer allocates and locks the required Tx buffer,
then returns BUFREQ_E_OK.

5

CanIf_Transmit(
 CanTxPduId,
 PduInfoPtr
)

The CanTp performs a translation from CanTpTxSduId to
CanTxPduId. In case of extended addressing format, it
concatenates the N-SDU payload with the N_TA value, to
perform a transmit request on the CanIf module.

6 E_OK The CanIf module can process the transmit request.

7

CanTp_TxConfirmatio
n(
 CanTpTxPduId,
)

The N-PDU is successfully transmitted.

8

PduR_CanTpTxConfirm
ation (
 CanTpTxSduId,
 Result
)

Notifies the PDU Router that the N-SDU has been
successfully transmitted. Consequently, the PduInfoType
structure has to be unlocked.
Result is set to NTFRSLT_OK.

62 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

9.4 Transmit request of larger N-SDU

9.4.1 Assumptions

- All input parameters are OK
- The N-SDU data length is larger than 7 bytes (6 bytes in case of extended

addressing format)
- The transmission is successfully processed

63 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

9.4.2 Sequence diagram

64 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

sd Transmit request of larger N-PDU

«module»

PduR::PduR

CanIf::CanIf«module»

CanTp::CanTp

loop N-SDU data transfer

[Sti l l data to be sent from this N-SDU]

opt Transmission of N-PDU

[Al l data from this buffer was sent and thereafter, end of the N-SDU payload not reached]

Status: proposed by TO as per SWS CanT p 1.4.0

Description:
1)
The PDU Router needs (because of a request from the diagnostic control ler module or a 1:1 TP routing i .e. the PduR i tsel f) to transmit an I-PDU that requires
transport protocol functional i ty and whose data can be refers to with the data structure information CanTpTxInfoPtr (see defini tion of type: Std_PduInfoType).
So the PduR translates the I-PDU identi fier to find which transport layer to use (CanTp, LinTp or FrTp), and what the associate N-SDU identi fier is (identi fier
translation). Then PduR cal ls the CanTp’s prim itive CanTp_T ransmit.
This function shal l perform these fol lowing steps:
- Val idates input parameters and resource avai labi l i ty
- Searches out the useful information to process the transm it request in the configuration set of this CanTp enti ty (e.g. SF/FF/CF N-PDU identi fier, FC N-PDU
identi fier, N_TA value, and so on)
- Launches an internal transmit task with param eters: CanTpTxSduId and CanTpTxInfoPtr.

Note: only the length information within the CanTpTxInfoPtr structure shal l be analyzed. The pointer to the payload data shal l be discarded.

2)
The PduR_CanTpProvideTxBuffer is cal led to request the necessary transmit buffer.
Length parameter is set to zero because CAN transport Layer dose not request a speci fic length (no recovery mechanisms).

3)
Upper layer al locates and locks the required T x buffer. T hen returns BUFREQ_OK.

4)
Within the task, CanTp cal ls CAN Interface by using CanIf_Transmit where CanTxPduId identi fy the L-SDU (a translation has to be done between the N-SDU Id
used by CanTp and the L-SDU Id used by CAN Interface), and PduInfoPtr point to data and thei r length.

5)
CanTp wait a confi rmation from CAN Interface (CanTp_TxConfirmation)

6)
If the PDU Router buffer is em pty or not sufficient for the next consecutive fram e, CanTp ask to PDU Router a new buffer with new data to be sent.
Length parameter is set to zero because CAN transport Layer dose not request a speci fic length (no recovery mechanisms).

7)
When al l data have been sent, or when an error occurs, CanTp noti fy PDU Router with PduR_CanTpTxConfirmation. CanTpTxPduId identi fy the N-SDU which
transm ission is confi rm ed, and result indicates i f transmission has been completed or not.

Notes:

CanTp_T ransmit(return,CanTpTxSduId,CanTpTxInfoPtr) :Std_ReturnType

check
inputs

Active a TP Tx
Task

CanTp_T ransmit

PduR_CanTpProvideTxBuffer(CanTpTxPduId,PduInfoPtr,Length) :BufReq_ReturnType

PduR_CanTpProvideTxBuffer

CanIf_T ransmit(CanTxPduId,PduInfoPtr) :
Std_ReturnType

CanIf_T ransmit

CanTp_TxConfirm ation(CanTpTxPduId)

CanTp_TxConfirmation

PduR_CanTpProvideTxBuffer(CanTpTxPduId,PduInfoPtr,Length) :BufReq_ReturnType

PduR_CanTpProvideTxBuffer

CanTp_TxConfirmation(CanTpTxPduId)

PduR_CanTpTxConfirm ation(CanTpTxPduId,Result)

PduR_CanTpTxConfi rmation

CanTp_TxConfirmation

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

9.4.3 Transition description

Transition Name Description

1

CanTp_Transmit (
 CanTpTxSduId,
 CanTpTxInfoPtr
)

The PDU Router needs (because of a request from the
diagnostic controller module or a 1:1 TP routing – i.e. the
PduR itself) to transmit an I-PDU that requires transport
protocol functionality and whose data can be referred to
with the data structure information CanTpTxInfoPtr
(see definition of type: Std_PduInfoType).
Thus, the PduR translates the I-PDU identifier to establish
which transport layer to use (CanTp, LinTp or FrTp), and
what the associate N-SDU identifier is (identifier
translation). Then PduR calls the CanTp’s primitive
CanTp_Transmit.
This function should perform the following steps:

- Validate input parameters and resource
availability

- Search for the useful information to process the
transmit request in the configuration set of this
CanTp entity (e.g. SF/FF/CF N-PDU identifier, FC
N-PDU identifier, N_TA value, and so on)

- Launch an internal transmit task with parameters:
CanTpTxSduId and CanTpTxInfoPtr.

Note: only information concerning length within the
CanTpTxInfoPtr structure will be analyzed. The indicactor
to the payload data should be discarded.

2

PduR_CanTpProvideTx
Buffer (
 CanTpTxSduId,
 PduInfoPtr,
 Length=0
)

The PduR_CanTpProvideTxBuffer is called upon to
request the necessary transmit buffer.
Length parameter is set to zero because the CAN
transport Layer does not request a specific length (no
recovery mechanism).

3 BUFREQ_OK The upper layer allocates and locks the required Tx buffer.
Then returns BUFREQ_OK.

4

CanIf_Transmit (
 CanTxPduId,
 PduInfoPtr
)

Within the task, CanTp calls the CAN Interface by using
CanIf_Transmit, where CanTxPduId identifies the L-
SDU (a translation has to be preformed between the N-
SDU Id used by CanTp and the L-SDU Id used by CAN
Interface), and PduInfoPtr indicator data and their length.

5

CanTp_TxConfirmatio
n(
 CanTpTxPduId,

)

CanTp awaits a confirmation from the CAN Interface
(CanTp_TxConfirmation)

If the PDU Router buffer is empty or not sufficient for the
next consecutive frame, CanTp asks the PDU Router for a
new buffer, with new data, to be sent. 6

PduR_CanTpProvideTx
Buffer (
 CanTpTxTxSduId,
 PduInfoPtr,
 Length=0
)

Length parameter is set to zero because the CAN
transport Layer does not request a specific length (no
recovery mechanism).

7

PduR_CanTpTxConfirm
ation (
 CanTpTxSduId,
 Result
)

When all data has been sent, or when an error occurs,
CanTp notifies the PDU Router by means of
PduR_CanTpTxConfirmation. CanTpTxPduId informs
the N-SDU which transmission has been confirmed, and
result indicates whether the transmission has been
completed or not.

65 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

9.5 Large N-SDU Reception

9.5.1 Assumptions

- All input parameters are OK
- The N-SDU data length is larger than 7 bytes (6 bytes in case of extended

addressing format)
- Reception is successfully processed

66 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

9.5.2 Sequence diagram

sd Reception of larger N-SDU

CanIf::CanIf«module»

PduR::PduR

«module»

CanT p::CanT p

alt CanTp task

[interrupt]

[cycl ic task]

Status: proposed by T O as per SWS CanT p 1.4.0

Description:
1)
When CAN Interface receives a frame (here a fi rst frame), CAN Interface noti fy CanT p wi th CanT p_RxIndication cal lback. CanT pRxPduId represent the ID of L-PDU
that has been received and CanTpRxPduPtr point to the L-SDU payload and the L-SDU datalength.

2)
CanTp ask PDU Router to provide a buffer for incoming data wi th PduR_CanT pProvideRxBuffer cal lback.

3)
CanTp store information about the provided buffer.

4)
CanTp activate a task for sending a FC with a Flow Status set at ContinueT oSend. (see step 8.)

5)
When CAN Interface receives a frame (here a consecutive frame), CAN Interface noti fy CanT p with CanTp_RxIndication cal lback. CanT pRxPduId represent the ID
of CAN frame that has been received and CanT pRxPduPtr point to the L-SDU payload.

6)
CanTp shall veri fy the sequence number and i f correct, i t copy the data to the buffer provided.

7)
Three cases can append :

[Normal Case]: the buffer is not ful l , and the received consecutive frame is not the last one. CanT p has nothing special to do.

[Buffer Ful l]: the buffer provided is ful l . CanT p ask for a new buffer to PDU Router by using PduR_CanT pProvideRxBuffer cal lback. If the resul t is correct, he store
pointer and length of this new buffer, else CanT p shal l send a wai t flow control and ask again a new buffer to PDU-Router. If there are extra bytes from the last CF,
they have to be store in this new buffer.

[Last CF Received]: this consecutive frame is the last (Total length inform ation was, as parameter, in the fi rst frame). CanTp shall noti fy PDU Router with
PduR_CanTpRxIndication cal lback.
When flow control needs to be sent, the CanT p cycl ic task shal l cal l CAN Interface by using

8)
CanIf_Transmi t and wai t confirmation from CAN Interface.

Notes:

alt Indication

[normal case]

[Buffer ful l]

[Last CF received]

CanT p_RxIndication(CanTpRxPduId,CanTpRxPduPtr)PduR_CanTpProvideRxBuffer(CanT pRxPduId,T pSduLength,PduInfoPtr)
:BufReq_ReturnType

PduR_CanT pProvideRxBuffer Store Pointer
and Length

Copy data from
driver to buffer
provided

Activate T P T x
task

CanT p_RxIndication

CanTp_RxIndication(CanT pRxPduId,CanT pRxPduPtr)

Copy data from
driver to buffer
provided

PduR_CanT pProvideRxBuffer(CanT pRxPduId,T pSduLength,PduInfoPtr)
:BufReq_ReturnT ype

PduR_CanT pProvideRxBuffer

Store Pointer and
Length

If necessary, copy non-stored
extra bytes to the new buffer

PduR_CanTpRxIndication(CanTpRxPduId,Result)

PduR_CanT pRxIndication

CanT p_RxIndication

CanIf_Transmi t(CanTxPduId,PduInfoPtr) :Std_ReturnT ype

CanIf_T ransmit

CanTp_TxConfi rmation(CanT pTxPduId)

CanTp_TxConfirmation

67 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

Note : This sequence diagram demonstrates the working of the CAN_Tp module
only. However, if the whole system is considered in such reception, more modules
are involved. Since this reception can be triggered in the context of a CAN ISR, the
CAN Tp operation should be as short as possible.

9.5.3 Transition description

Transition Name Description

CanTp_RxIndication
(

1 CanTpRxPduId,
 CanTpRxPduPtr
)

When the CAN Interface receives a frame (here a first
frame), it notifies CanTp by means of a
CanTp_RxIndication callback. CanTpRxPduId
represents the ID of L-PDU that has been received and
CanTpRxPduPtr indicates payload and L-SDU
datalength to the L-SDU.

2

PduR_CanTpProvideRx
Buffer (
 CanTpRxSduId,
 TpSduLength,
 PduInfoPtr
)

CanTp asks the PDU Router to provide a buffer for
incoming data by means of a
PduR_CanTpProvideRxBuffer callback.

3 CanTp stores information about the buffer provided.

4 CanTp activates a task for sending an FC with a Flow
Status set to ContinueToSend. (see step 8.)

5

CanTp_RxIndication
(
 CanTpRxPduId,
 CanTpRxPduPtr
)

When the CAN Interface receives a frame (here a
consecutive frame), CAN Interface notifies CanTp by
means of a CanTp_RxIndication callback.
CanTpRxPduId represents the ID of the CAN frame that
has been received and CanTpRxPduPtr indicates
payload to the L-SDU.

6 CanTp will verify the sequence number and if correct,
copy the data to the buffer provided.

7

Nothing

or

PduR_CanTpProvideRx
Buffer (
 CanTpRxSduId,
 TpSduLength,
 PduInfoPtr
)

Or

PduR_CanTpRxIndicat
ion (
 CanTpRxSduId,
 Result
)

Three cases can append :

– [Normal Case]: the buffer is not full, and the
received consecutive frame is not the last one.
CanTp has nothing special to do.

– [Buffer Full]: the buffer provided is full. CanTp

asks the PDU Router for a new buffer by means
of a PduR_CanTpProvideRxBuffer callback. If
the result is correct, it stores the indication and
length of this new buffer. Otherwise CanTp sends
a wait flow control and asks the PDU-Router once
again for a new buffer. If there are extra bytes
from the last CF, they have to be stored in this
new buffer.

– [Last CF Received]: this consecutive frame is the

last (Total length information is known using the
FF_DL parameter in the first frame). CanTp
notifies PDU Router by means of a
PduR_CanTpRxIndication callback.

8

When flow control needs to be sent, the CanTp cyclical
task should call the CAN Interface by using
CanIf_Transmit and await confirmation from the CAN
Interface.

68 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

10 Configuration specification

This chapter defines configuration parameters and their clustering into containers. In
order to support the specification, Chapter 10.1 describes fundamentals.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
CAN Transport Layer.

Chapter 10.3 specifies published information for the module CAN Transport Layer

CanTp146: The listed configuration items can be derived from a network description
database, which is based on the EcuConfigurationTemplate. The configuration tool
should extract all information to configure the CAN Transport Protocol.

CanTp147: The consistency of the configuration must be checked by the
configuration tool at configuration time. Configuration rules and constraints for
plausibility checks will be performed where possible, during configuration time.

10.1 How to read this chapter

In addition to this section, it is highly recommended to read the documents:

- AUTOSAR Layered Software Architecture [2]
- AUTOSAR ECU Configuration Specification [4]. This document describes the

AUTOSAR configuration methodology and the AUTOSAR configuration
metamodel in detail.

The following is only a short survey of the topic and will not replace the ECU
Configuration Specification document.

10.1.1 Configuration and configuration parameters

Configuration parameters define the variability of the generic part(s) of an
implementation of a module. This means that only generic or configurable module
implementation can be adapted to the environment (software/hardware) in use during
system and/or ECU configuration.
The configuration of parameters can be achieved at different times during the
software process: before compile time, before link time or after build time. In the
following, the term “configuration class” (of a parameter) will be used in order to refer
to a specific point in time during configuration.

10.1.2 Variants

Variants describe sets of configuration parameters. E.g. variant 1: only pre-compile
time configuration parameters, variant 2: mix of pre-compile- and post build time-
configuration parameters. In one variant, a parameter can only be of one
configuration class.

69 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

10.1.3 Containers

Containers structure the set of configuration parameters. This means:

- all configuration parameters are kept in containers.
- (sub-) containers can reference (sub-) containers. It is possible to assign a

multiplicity to these references. This multiplicity defines the possible number of
occurrences of the contained parameters.

10.1.4 Specification template for configuration parameters

The following tables consist of three sections:

- general section
- configuration parameter section
- section of included/referenced containers

 SWS Item
Identifies the container with a name Container Name
Explains the intention and content of the container. Description

Configuration Parameters

Identifies the parameter by name. Name
Explains the intention of the configuration parameter. Description

Type or Unit Specifies the type of parameter (e.g., uint8..uint32) or specifies the
unit of the parameter (e.g., ms)

Range Specifies the range (or
possible values) of the
parameter (e.g., 1..15,
ON,OFF)

Describes the value(s) or range(s).

Pre-compile see3 Refer here to (a) variant(s).
Link time see4 Refer here to (a) variant(s).

Configuration Class

5seePost Build Refer here to (a) variant(s).
Scope Describes the scope of the parameter.

The scope describes the impact of the configuration parameter: Does
the setting affect only one instance of the module (instance), all
instances of this module (module), the ECU or a network?

Possible values of scope :
instance, module, ECU, network

Dependency Describes the dependencies with respect to the scope.

3 see the explanation below this table - Pre-compile time
4 see the explanation below this table - Link time

70 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

5 see the explanation below this table - Post Build

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

Included Containers

Container Name Multiplicity Scope / Dependency
Reference a valid
(sub)container by its
name.

Specifies the
number of
possible
instances of the
referenced
container and its
contained
configuration
parameters.

Possible values:
<multiplicity>
<min_multiplicity..
max_multiplicity>

Pre-compile time - specifies whether the configuration parameter will be

of the configuration class Pre-compile time or not

Label Description

Describes the scope of the referenced sub-
container.
The scope describes the impact of the
configuration parameter: Does the setting affect
only one instance of the module (instance), all
instances of this module (module), the ECU or a
network?

Possible values of scope :
instance, module, ECU, network>

Describes the dependencies with respect to the
scope.

x The configuration parameter will be of configuration class Pre-compile time.
-- The configuration parameter will never be of configuration class Pre-compile time.

Link time - specifies whether the configuration parameter will be

of configuration class Link time or not

Label Description
x The configuration parameter will be of configuration class Link time.
-- The configuration parameter will never be of configuration class Link time.

Post Build - specifies whether the configuration parameter will be

of configuration class Post Build or not

Label Description
The configuration parameter will be of configuration class Post Build and no specific
implementation is required.

x

Loadable - the configuration parameter will be of configuration class Post Build and only
one configuration parameter set resides in the ECU.

L

Multiple - the configuration parameter will be of configuration class Post Build and is
selected from a set of multiple parameters by passing a dedicated pointer to the init
function of the module.

M

-- The configuration parameter will never be of configuration class Post Build.

71 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed
meanings of the parameters are described in Chapters 7 and 8.

10.2.1 Variants

Variant 1: all parameters are configured at compile time.
Variant 2: some parameters are configured at compile time, some parameters are
configured at post build time.

10.2.2 CanTp

CanTp Module Name
Configuration of the CanTp (CAN Transport Protocol) module. Module Description

Included Containers
Container Name MultiplicityScope / Dependency

This container contains the general configuration parameters
of the CanTp module. 1 CanTpGeneral

The following parameters needs to be configured for each
CAN N-SDU that the CanTp module shall receive.

CanTpRxNSdu 0..*

The following parameters needs to be configured for each
CAN N-SDU that the CanTp module shall transmitt.

CanTpTxNSdu 0..*

10.2.3 CanTpGeneral
SWS Item CanTp238 :
Container Name CanTpGeneral{CanTpConfiguration}

This container contains the general configuration parameters of the CanTp
module.

Description

Configuration Parameters

CanTp239 : SWS Item
CanTpDevErrorDetect {CANTP_DEV_ERROR_DETECT} N ame
Switches the Development Error Detection and Notification ON or OFF Description

Multiplicity 1
BooleanParamDef Type

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency scope: Module

SWS Item CanTp240 :

CanTpMainFunctionPeriod {CANTP_MAIN_FUNCTION_PERIOD} N ame
Allow to configure the time for the MainFunction (as float in seconds).
Please note: This configuration value shall be equal to the value in the
ScheduleManger module.

Description

Multiplicity 1
FloatParamDef Type

Range 0.0 .. 0.255
Default value --
ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

72 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

-- Link time
L Post-build time VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item CanTp242 :

CanTpTc {CANTP_TC} N ame
Preprocessor switch for enabling Transmit Cancellation. Description

Multiplicity 1
BooleanParamDef Type

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency scope: ECU

No Included Containers

10.2.4 CanTpRxNSdu
SWS Item CanTp137 :

CanTpRxNSdu{RxNsdu} Container Name
The following parameters needs to be configured for each CAN N-SDU
that the CanTp module shall receive.

Description

Configuration Parameters

CanTp242 : SWS Item
CanTpAddressingFormat {CANTP_ADDRESSING_FORMAT} N ame
Declares which communication addressing mode is supported for this Rx N-
SDU. Enum values: CanTpStandard. To use normal addressing format.
CanTpExtended. To use extended addressing format.

Description

Multiplicity 1
Type EnumerationParamDef

CANTP_EXTENDED Extended addressing format Range

Standard addressing format CANTP_STANDARD

X Pre-compile time All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency scope: Module

SWS Item CanTp243 :

CanTpBs {CANTP_BS} N ame
Sets the maximum number of N-PDUs the CanTp receiver allows the
sender to send, before waiting for an authorization to continue
transmission of the following N-PDUs.For further details on this parameter
value see ISO 15765-2 specification. Note: For reasons of buffer length,
the CAN Transport Layer can adapt the BS value within the limit of this
maximum BS

Description

Multiplicity 1
IntegerParamDef Type

Default value --
Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

L Post-build time VARIANT-POST-BUILD
Scope / Dependency scope: Module

73 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

SWS Item CanTp244 :
CanTpNar {CANTP_NAR} N ame
Value in seconds of the N_Ar timeout. N_Ar is the time for transmission of
a CAN frame (any N_PDU) on the receiver side.

Description

Multiplicity 1
FloatParamDef Type

Default value --
Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

L Post-build time VARIANT-POST-BUILD
Scope / Dependency scope: Module

SWS Item CanTp245 :

CanTpNbr {CANTP_NBR} N ame
Value in seconds of the performance requirement for (N_Br + N_Ar). N_Br
is the elapsed time between the receiving indication of a FF or CF or the
transmit confirmation of a FC, until the transmit request of the next FC.

Description

Multiplicity 1
FloatParamDef Type

Default value --
Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

L Post-build time VARIANT-POST-BUILD
Scope / Dependency scope: Module

SWS Item CanTp246 :

CanTpNcr {CANTP_NCR} N ame
Value in seconds of the N_Cr timeout. N_Cr is the time until reception of
the next Consecutive Frame N_PDU.

Description

Multiplicity 1
FloatParamDef Type

Default value --
Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

L Post-build time VARIANT-POST-BUILD
Scope / Dependency scope: Module

SWS Item CanTp247 :

CanTpRxChannel {CANTP_RX_CHANNEL} N ame
Link to the Rx connection channel, which has to be used for receiving this
N-PDU.

Description

Multiplicity 1
IntegerParamDef Type

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency scope: Module

SWS Item CanTp248 :

CanTpRxDl {CANTP_DL} N ame
Description Data Length Code of this RxNsdu. In case of variable message length, this

value indicates the minimum data length. Depending on SF or FF N-SDU
the value will be limited to 7 (6 for an extended addressing format) and
4095 respectively.

74 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

Multiplicity 1
IntegerParamDef Type

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency scope: Module

SWS Item CanTp249 :

CanTpRxPaddingActivation {CANTP_PADDING_ACTIVATION} N ame
Defines if the receive frame uses padding or not. Definition of enumeration
values: CanTpOn: The N-PDU received uses padding for SF, FC and the last
CF. (N-PDU length is always 8 bytes) CanTpOff: The N-PDU received does
not use padding for SF, CF and the last CF. (N-PDU length is dynamic)

Description

Multiplicity 1
Type EnumerationParamDef

CANTP_OFF Padding is not used Range
CANTP_ON Padding is used

X Pre-compile time All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency scope: Module

SWS Item CanTp250 :

CanTpRxTaType {CANTP_TA_TYPE} N ame
Declares the communication type of this Rx N-SDU. Description

Multiplicity 1
Type EnumerationParamDef

CANTP_FUNCTIONAL Functional request type Range

Physical request type CANTP_PHYSICAL

X Pre-compile time All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency scope: Module

SWS Item CanTp251 :

CanTpRxWftMax {CANTP_WFTMAX} N ame
This parameter indicates how many Flow Control wait N-PDUs can be
consecutively transmitted by the receiver. It is local to the node and is not
transmitted inside the FC protocol data unit. CanTpRxWftMax is used to
avoid sender nodes being potentially hooked-up in case of a temporarily
reception inability on the part of the receiver nodes, whereby the sender
could be waiting continuously.

Description

Multiplicity 1
IntegerParamDef Type

Default value --
Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

L Post-build time VARIANT-POST-BUILD
Scope / Dependency scope: Module

SWS Item CanTp252 :

CanTpSTmin {CANTP_STMIN} N ame
Description Sets the duration of the minimum time the CanTp sender shall wait

between the transmissions of two CF N-PDUs. For further details on this

75 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

parameter value see ISO 15765-2 specification.
Multiplicity 1

IntegerParamDef Type
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

L Post-build time VARIANT-POST-BUILD
Scope / Dependency scope: Module

SWS Item CanTp241 :

CanTpRxNSduRef N ame
Reference to a Pdu in the COM-Stack. Description

Multiplicity 1
Type Reference to Pdu

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-POST-BUILD

ConfigurationClass

-- Post-build time
Scope / Dependency

Included Containers
Container Name MultiplicityScope / Dependency

Contains the parameters needed to configure each RxNSdu or
TxNSdu with CanTpAddressingFormat set to CanTpExtended.0..1 CanTpNSa

The following parameters need to be configured for each
RxNsdu or TxNsdu with the CanTpAddressingFormat set to
CanTpExtended.

CanTpNTa 0..1

Used for grouping of the ID of a PDU and the Reference to a
PDU.

CanTpRxNPdu 1

Used for grouping of the ID of a PDU and the Reference to a
PDU.

CanTpTxFcNPdu 0..1

10.2.5 CanTpRxNPdu
SWS Item CanTp256 :
Container Name CanTpRxNPdu

Used for grouping of the ID of a PDU and the Reference to a PDU. Description
Configuration Parameters

CanTp258 : SWS Item
CanTpRxNPduId {CANTP_RXNPDU_ID} N ame
The N-PDU identifier attached to the RxNsdu is identified by
CanTpRxNSduId. Each RxNsdu identifier is linked to only one SF/FF/CF
N-PDU identifier. Nevertheless, in the case of extended addressing format,
the same N-PDU identifier can be used for several N-SDU identifiers. The
distinction is made by the N_TA value (first data byte of SF or FF frames).

Description

Multiplicity 1
IntegerParamDef (Symbolic Name generated for this parameter) Type

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency scope: module

SWS Item CanTp257 :

CanTpRxNPduRef N ame
Description Reference to a Pdu in the COM-Stack.

76 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

Multiplicity 1
Type Reference to Pdu

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

L Post-build time VARIANT-POST-BUILD
Scope / Dependency

No Included Containers

10.2.6 CanTpTxFcNPdu
SWS Item CanTp259 :

CanTpTxFcNPdu Container Name
Used for grouping of the ID of a PDU and the Reference to a PDU. Description

Configuration Parameters

CanTp260 : SWS Item
CanTpTxFcNPduRef N ame
Reference to a Pdu in the COM-Stack. Description

Multiplicity 1
Type Reference to Pdu

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

L Post-build time VARIANT-POST-BUILD
Scope / Dependency

No Included Containers

10.2.7 CanTpTxNSdu
SWS Item CanTp138 :

CanTpTxNSdu{TxNsdu} Container Name
The following parameters needs to be configured for each CAN N-SDU
that the CanTp module shall transmitt.

Description

Configuration Parameters

CanTp262 : SWS Item
CanTpAddressingMode {CANTP_ADDRESSING_MODE} N ame
Declares which communication addressing format is supported for this
TxNsdu. Definition of Enumeration values: CanTpStandard to use normal
addressing format. CanTpExtended to use extended addressing format (the
N_TA container of this TxNsdu will be used).

Description

Multiplicity 1
Type EnumerationParamDef

CANTP_EXTENDED Extended addressing format Range
CANTP_STANDARD Standard addressing format

X Pre-compile time All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency scope: Module

SWS Item CanTp263 :

CanTpNas {CANTP_NAS} N ame
Value in second of the N_As timeout. N_As is the time for transmission of
a CAN frame (any N_PDU) on the part of the sender.

Description

Multiplicity 1

77 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

FloatParamDef Type
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

L Post-build time VARIANT-POST-BUILD
Scope / Dependency scope: Module

SWS Item CanTp264 :

CanTpNbs {CANTP_NBS} N ame
Value in seconds of the N_Bs timeout. N_Bs is the time of transmission
until reception of the next Flow Control N_PDU.

Description

Multiplicity 1
FloatParamDef Type

Default value --
Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

L Post-build time VARIANT-POST-BUILD
Scope / Dependency scope: Module

SWS Item CanTp265 :

CanTpNcs {CANTP_NCS} N ame
Value in seconds of the performance requirement of (N_Cs + N_As). N_Cs
is the time which elapses between the transmit request of a CF N-PDU
until the transmit request of the next CF N-PDU.

Description

Multiplicity 1
FloatParamDef Type

Default value --
Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

L Post-build time VARIANT-POST-BUILD
Scope / Dependency scope: Module

SWS Item CanTp266 :

CanTpTxChannel {CANTP_TX_CHANNEL} N ame
Link to the connection channel which has to be used for transmission of
this N-PDU.

Description

Multiplicity 1
IntegerParamDef Type

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency scope: Module

SWS Item CanTp267 :

CanTpTxDl {CANTP_DL} N ame
Data Length Code of this TxNsdu. In case of variable length message, this
value indicates the minimum data length.

Description

Multiplicity 1
IntegerParamDef Type

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency scope: Module

78 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

SWS Item CanTp268 :

CanTpTxNSduId {CANTP_TXNSDU_ID} N ame
Unique identifier to a structure that contains all useful information to
process the transmission of a TxNsdu.

Description

Multiplicity 1
IntegerParamDef (Symbolic Name generated for this parameter) Type

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency scope: Module

SWS Item CanTp269 :

CanTpTxPaddingActivation {CANTP_PADDING_ACTIVATION} N ame
Defines if the transmit frame use padding or not. Definition of Enumeration
values: CanTpOn The transmit N-PDU uses padding for SF, FC and the last
CF. (N-PDU length is always 8 bytes) CanTpOff The transmit N-PDU does not
use padding for SF, CF and the last CF. (N-PDU length is dynamic)

Description

Multiplicity 1
Type EnumerationParamDef

CANTP_OFF Padding is not used Range
CANTP_ON Padding is used

X Pre-compile time All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency scope: Module

SWS Item CanTp270 :

CanTpTxTaType {CANTP_TA_TYPE} N ame
Declares the communication type of this TxNsdu. Enumeration values:
CanTpPhysical. Used for 1:1 communication. CanTpFunctional. Used for 1:n
communication.

Description

Multiplicity 1
Type EnumerationParamDef

CANTP_FUNCTIONAL Functional request type Range

Physical request type CANTP_PHYSICAL

X Pre-compile time All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency scope: Module

SWS Item CanTp261 :

CanTpTxNSduRef N ame
Reference to a Pdu in the COM-Stack. Description

Multiplicity 1
Type Reference to Pdu

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-POST-BUILD

ConfigurationClass

-- Post-build time
Scope / Dependency

Included Containers
Container Name MultiplicityScope / Dependency

79 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

Contains the parameters needed to configure each RxNSdu or
TxNSdu with CanTpAddressingFormat set to CanTpExtended.0..1 CanTpNSa

The following parameters need to be configured for each
RxNsdu or TxNsdu with the CanTpAddressingFormat set to
CanTpExtended.

CanTpNTa 0..1

Used for grouping of the ID of a PDU and the Reference to a
PDU.

CanTpRxFcNPdu 0..1

Used for grouping of the ID of a PDU and the Reference to a
PDU.

CanTpTxNPdu 1

10.2.8 CanTpTxNPdu
SWS Item CanTp274 :
Container Name CanTpTxNPdu

Used for grouping of the ID of a PDU and the Reference to a PDU. Description
Configuration Parameters

CanTp275 : SWS Item
CanTpTxNPduRef N ame
Reference to a Pdu in the COM-Stack. Description

Multiplicity 1
Type Reference to Pdu

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

X Post-build time VARIANT-POST-BUILD
Scope / Dependency

No Included Containers

10.2.9 CanTpRxFcNPdu
SWS Item CanTp271 :

CanTpRxFcNPdu Container Name
Used for grouping of the ID of a PDU and the Reference to a PDU. Description

Configuration Parameters

CanTp273 : SWS Item
CanTpRxFcNPduId {CANTP_RXFC_NPDU_ID} N ame
N-PDU identifier attached to the FC N-PDU of this TxNsdu identified by
CanTpTxNSduId. Each TxNsdu identifier is linked to one Rx FC N-PDU
identifier only. However, in the case of extended addressing format, the
same FC N-PDU identifier can be used for several N-SDU identifiers. The
distinction is made by means of the N_TA value (first data byte of FC
frames).

Description

Multiplicity 1
IntegerParamDef (Symbolic Name generated for this parameter) Type

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency scope: Module

SWS Item CanTp272 :

CanTpRxFcNPduRef N ame
Reference to a Pdu in the COM-Stack. Description

Multiplicity 1
Type Reference to Pdu
80 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

L Post-build time VARIANT-POST-BUILD
Scope / Dependency

No Included Containers

10.2.10 CanTpNTa
SWS Item CanTp139 :

CanTpNTa{N_Ta} Container Name
The following parameters need to be configured for each RxNsdu or
TxNsdu with the CanTpAddressingFormat set to CanTpExtended.

Description

Configuration Parameters

CanTp255 : SWS Item
CanTpNTa {CANTP_NTA} N ame
If an RxNsdu or a TxNsdu is configured for extended addressing format,
this parameter contains the transport protocol target address's value.

Description

Multiplicity 1
IntegerParamDef Type

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency scope: Module

No Included Containers

10.2.11 CanTpNSa
SWS Item CanTp253 :

CanTpNSa{N_Sa} Container Name
Contains the parameters needed to configure each RxNSdu or TxNSdu
with CanTpAddressingFormat set to CanTpExtended.

Description

Configuration Parameters

CanTp254 : SWS Item
CanTpNSa {CANTP_NSA} N ame
If an RxNSdu ora TxNSdu is configured for extended addressing format,
this parameter contains the transport protocol source address's value.

Description

Multiplicity 1
IntegerParamDef Type

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency

No Included Containers

81 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

10.3 Published Information

Published information contains data defined by the implementer of the SW module
that does not change when the module is adapted (i.e. configured) to the actual
HW/SW environment. It thus contains version and manufacturer information.

The standard common published information like

vendorId (<Module>_VENDOR_ID),
moduleId (<Module>_MODULE_ID),
arMajorVersion (<Module>_AR_MAJOR_VERSION),
arMinorVersion (<Module>_ AR_MINOR_VERSION),
arPatchVersion (<Module>_ AR_PATCH_VERSION),
swMajorVersion (<Module>_SW_MAJOR_VERSION),
swMinorVersion (<Module>_ SW_MINOR_VERSION),
swPatchVersion (<Module>_ SW_PATCH_VERSION),
vendorApiInfix (<Module>_VENDOR_API_INFIX)

is provided in the BSW Module Description Template (see [12] Figure 4.1 and Figure
7.1).

Additional published parameters are listed below if applicable for this module.

82 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

11 Changes to Release 1

11.1 Deleted SWS Items

SWS Item Rationale
CanTp004 Requirement obsolete
CanTp015 Covered by CanTp001
CanTp026 Requirement obsolete
CanTp036 Requirement obsolete
CanTp037 Requirement obsolete
CanTp038 Requirement obsolete
CanTp039 Requirement obsolete
CanTp097 Multiple connection now is available
CanTp099 Requirement partly wrong

No need for DEM status DEM_EVENT_STATUS_PREPASSED –
RfC40397

CanTp288

11.2 Replaced SWS Items

SWS Item of
Release 1

replaced by
SWS Item

Rationale

CanTp005 CanTp101 Covered by CanTp101
CanTp007 CanTp101 Covered by CanTp101
CanTp025 CanTp140 modification of type
CanTp041 CanTp137 Grouping of requirement and modification of name
CanTp042 CanTp138 Grouping of requirement and modification of name
CanTp043 CanTp137 Grouping of requirement and modification of name
CanTp044 CanTp138 Grouping of requirement and modification of name
CanTp045 CanTp137 Grouping of requirement and modification of name
CanTp046 CanTp138 Grouping of requirement and modification of name
CanTp047 CanTp137 Grouping of requirement and modification of name
CanTp048 CanTp138 Grouping of requirement and modification of name
CanTp049 CanTp137 Grouping of requirement and modification of name
CanTp050 CanTp138 Grouping of requirement and modification of name
CanTp051 CanTp139 Grouping of requirement and modification of name
CanTp052 CanTp139 Grouping of requirement and modification of name
CanTp053 CanTp138 Grouping of requirement and modification of name
CanTp054 CanTp137 Grouping of requirement and modification of name
CanTp056 CanTp138 Grouping of requirement and modification of name
CanTp060 CanTp138 Grouping of requirement and modification of name
CanTp061 CanTp137 Grouping of requirement and modification of name
CanTp062 CanTp138 Grouping of requirement and modification of name
CanTp063 CanTp137 Grouping of requirement and modification of name

CanTp065
CanTp140

Grouping of requirement and modification of name

CanTp066
CanTp140

Grouping of requirement and modification of name

CanTp068 CanTp137 Grouping of requirement and modification of name
CanTp069 CanTp138 Grouping of requirement and modification of name
CanTp108 CanTp137 Grouping of requirement and modification of name
CanTp109 CanTp138 Grouping of requirement and modification of name
CanTp113 CanTp137 Grouping of requirement and modification of name

83 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

11.3 Changed SWS Items

SWS Item Rationale
CanTp001 File structure deleted and reported to CanTp156

Modification of the figure : addition of CanTp_Shutdown call in
CANTP_OFF

CanTp010

CanTp019
Addition of Range value for parameter
Change CanTpRxPduPtr parameter to const

CanTp020 Addition of Range value for parameter
CanTp032 Addition of ISO 15765-4 reference
CanTp040 Change of parameter name
CanTp074 Requirement that CanIf confirms only successful transmission confirmation
CanTp075 Requirement for the CAN Tp behavior in case of transmission time-out

Requirement when the CAN Tp has to call again for a buffer to be
provided

CanTp082

CanTp096 Addition of several connection management
CanTp114 Requirement that it is a pre-compile time configuration

11.4 Added SWS Items

SWS Item Rationale
CanTp156 File structure from CanTp001 reworked in this requirement
CanTp119 ISO 15765-4
CanTp120 Concurrent connections
CanTp121 Concurrent connections
CanTp122 Concurrent connections
CanTp123 Concurrent connections
CanTp124 Concurrent connections
CanTp130 Dem.h file inclusion
CanTp132 CanTpDevErrorDetect switch
CanTp133 Production error detection
CanTp134 Development Error Tracer
CanTp137 RxNsDu Configuration
CanTp138 RxNsDu Configuration
CanTp139 CanTpNTa Configuration
CanTp140 Published information Configuration
CanTp146 Configuration tool
CanTp147 Configuration tool
CanTp150 Design rules
CanTp151 Design rules
CanTp152 Design rules
CanTp153 Design rules
CanTp155 Design rules
CanTp158 Design rules
CanTp156 File structure
CanTp157 CanTp.h file
CanTp158 Can Tp source code
CanTp159 Configuration files
CanTp160 Reference to c-configuration parameters
CanTp161 Initialization status variable
CanTp162 CanTp_GetVersionInfo Api
CanTp163 CanTp_GetVersionInfo Api

84 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

CanTp164 MainFunction Api

85 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

12 Changes during SWS Improvements by Technical
Office

12.1 Deleted SWS Items

SWS Item Rationale
CanTp118 No requirement, just description -> ID removed but text kept
CanTp016 No requirement, just description -> ID removed but text kept
CanTp014 No requirement, just description -> ID removed but text kept
CanTp022 No requirement, just description -> ID removed but text kept
CanTp034 No requirement, just description -> ID removed but text kept
CanTp032 No requirement, just description -> ID removed but text kept
CanTp119 No requirement, just description -> ID removed but text kept
CanTp070 No requirement, just description -> ID removed but text kept
CanTp073 No requirement, just description -> ID removed but text kept
CanTp012 No requirement, just description -> ID removed but text kept
CanTp013 No requirement, just description -> ID removed but text kept
CanTp085 No requirement, just description -> ID removed but text kept
CanTp112 No requirement, just description -> ID removed but text kept
CanTp058 No requirement, just description -> ID removed but text kept
CanTp135 No requirement for CanTp, text remove

12.2 Replaced SWS Items

SWS Item of
Release 1

replaced by
SWS Item

Rationale

CanTp028 CanTp168, CanTp169 Made requirement atomic
CanTp029 CanTp170 Made requirement atomic (part became normal

text)
CanTp071 CanTp176, CanTp177 Made requirement atomic
CanTp088 CanTp184, CanTp185 Made requirement atomic
CanTp018 CanTp199 Made requirement atomic
CanTp011 CanTp200, CanTp202 Made requirement atomic
CanTp083 CanTp222, CanTp223,

CanTp224
Made requirement atomic

CanTp110 CanTp225, CanTp226 Made requirement atomic
CanTp103 CanTp231, CanTp232 Made requirement atomic

12.3 Changed SWS Items

Many requirements have been changed to improve understandability without
changing the technical contents.

12.4 Added SWS Items

SWS Item Rationale
CanTp186 Requirement for CanTp module
CanTp190 Requirement for CanTp module
CanTp192 Standard template requirement

86 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.3.0

R3.0 Rev 7

87 of 87 Document ID 014: AUTOSAR_SWS_CAN_TP
 - AUTOSAR confidential -

CanTp193 Standard template requirement
CanTp204 Requirement for function CanTp_Transmit
CanTp205 Requirement for function CanTp_Transmit
CanTp206 Requirement for function CanTp_Transmit
CanTp208 UML Model linking of CanTp_Init
CanTp209 UML Model linking of imported types
CanTp210 UML Model linking of CanTp_GetVersionInfo
CanTp211 UML Model linking of CanTp_Shutdown
CanTp212 UML Model linking of CanTp_Transmit
CanTp213 UML Model linking of CanTp_MainFunction
CanTp214 UML Model linking of CanTp_RxIndication
CanTp215 UML Model linking of CanTp_TxConfirmation
CanTp216 UML Model linking of mandatory interfaces
CanTp217 UML Model linking of optional interfaces
CanTp218 Gave ID to existing requirement
CanTp219 Gave ID to existing requirement
CanTp220 Gave ID to existing requirement
CanTp221 Gave ID to existing requirement
CanTp227 Gave ID to existing requirement
CanTp229 Gave ID to existing requirement
CanTp230 Gave ID to existing requirement
CanTp233 Gave ID to existing requirement
CanTp234 Gave ID to existing requirement
CanTp235 Gave ID to existing requirement
CanTp236 Gave ID to existing requirement
CanTp237 Gave ID to existing requirement
CanTp238 Gave ID to existing requirement

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	4 Constraints and assumptions
	5 Dependencies on other modules
	5.1.1 CAN Transport Layer connection(s)
	5.1.2 CAN Transport Layer interactions
	5.1.3 Processing mode
	5.1.4 Data consistency
	5.1.5 Static configuration
	5.1.6 PDU Router services
	5.1.7 CAN Interface services
	5.2.1 Code file structure
	5.2.2 Header file structure
	5.2.3 Design Rules

	6 Requirements traceability
	7 Functional specification
	7.1.1 Initialization and shutdown
	7.1.2 Transmit request
	7.1.3 Transmit cancellation
	7.2.1 Transmit confirmation
	7.2.2 Reception indication
	7.3.1 N-SDU Reception
	7.3.2 N-SDU Transmission
	7.3.3 Buffer strategy
	7.3.4 No Protocol parameter setting services
	7.3.5 Tx and Rx data flow
	7.3.6 Relationship between CAN NSduId and CAN LSduId
	7.3.7 Concurrent connection
	7.3.8 N-PDU padding
	7.3.9 Handling of unexpected N-PDU arrival

	8 API specification
	8.2.1 CanTp_CancelReasonType
	8.3.1 CanTp_Init
	8.3.2 CanTp_ GetVersionInfo
	8.3.3 CanTp_Shutdown
	8.3.4 CanTp_Transmit
	8.3.5 Main Function
	8.4.1 CanTp_RxIndication
	8.4.2 CanTp_TxConfirmation
	8.5.1 Mandatory Interfaces
	8.5.2 Optional Interfaces

	9 Sequence diagrams
	9.1.1 Assumptions
	9.1.2 Sequence diagram
	9.1.3 Transition description
	9.2.1 Assumptions
	9.2.2 Sequence diagram
	9.2.3 Transition description
	9.3.1 Assumptions
	9.3.2 Sequence diagram
	9.3.3 Transition description
	9.4.1 Assumptions
	9.4.2 Sequence diagram
	9.4.3 Transition description
	9.5.1 Assumptions
	9.5.2 Sequence diagram
	9.5.3 Transition description

	10 Configuration specification
	10.1.1 Configuration and configuration parameters
	10.1.2 Variants
	10.1.3 Containers
	10.1.4 Specification template for configuration parameters
	10.2.1 Variants
	CanTp
	CanTpGeneral
	CanTpRxNSdu
	CanTpRxNPdu
	CanTpTxFcNPdu
	CanTpTxNSdu
	CanTpTxNPdu
	CanTpRxFcNPdu
	CanTpNTa
	CanTpNSa

	11 Changes to Release 1
	12 Changes during SWS Improvements by Technical Office

