AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

Document Title

Specification of CAN Interface

Document Owner

AUTOSAR

Document Responsibility

AUTOSAR

Document Identification No 012

Document Classification Standard
Document Version 3.2.0
Document Status Final
Part of Release 3.0
Revision 7
Document Change History
Date Version |Changed by Change Description
15.09.2010 | 3.2.0 |AUTOSAR e Removed appearance of
Administration CANIF733_Conf in the document. Links
to CANIF733_Conf replaced by links to
CANIF246 which is the global
configuration container of
CANIF_PUBLIC_TXCONFIRM_POLLIN
G_SUPPORT
e Changed second parameter of
<User_RxIndication> from SduDataPtr to
PdulnfoPtr within the whole document.
e Deleted SWS Items CANIF029,
CANIF129 and CANIF130
e [BSWO01017] has been removed.
e Entered function
Canlf_GetTxConfirmationState
e Entered description and SWSltemlds
CANIF739 and CANIF740
e |egal disclaimer revised
28.01.2010 | 3.1.0 |AUTOSAR e Added: CANIF300, CANIF301,

Administration

CANIF_HRHRANGE_CANIDTYPE
Changed description of function
parameter of <User_RxIndication>
(CanNm)

Changed CANIF038, 3rd and 4th
paragraph of chapter 7.19.1, Figure 13,
Figure 15. Deleted:
CANIF_WAKEUP_EVENT_API,
CANIF270, bullet point 4 of 2nd
paragraph of chapter 7.24, bullet point 4
of CANIF126

Legal disclaimer revised

1of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

Document Change History

Date Version |Changed by Change Description
29.01.2008 | 3.0.1 |AUTOSAR e Replaced chapter 10 content with
Administration generated tables from AUTOSAR
MetaModel.
12.12.2007 | 3.0.0 |AUTOSAR e Interface abstraction: network related
Administration interface changed into a controller related
one
e Wakeup mechanism completely
reworked, APIs added & changed for
Wakeup
¢ Initialization changed (flat initialization)
e Scheduled main functions skipped due to
changed BSW Scheduler responsibility
e Document meta information extended
e Small layout adaptations made
31.10.2007 [2.1.0 AUTOSAR e Header file structure changed
Administration | ¢ Support of mixed mode operation
(StandardCAN & Extended CAN in
parallel on one network) added
e Support of CAN Transceiver according
AUTOSAR_WP1.1.2 SoftwareArchitect
ure.ppt
e API <User>_DlIcErrorNotification deleted
e Pre-compile/Link-Time/Post-Built
definiton for configuration parameters
partly changed
e Re-entrant interface call allowed for
certain APIs
e Support of AUTOSAR BSW Scheduler
added
e Support of memory mapping added
e Configuration container structure
reworked
e Various of clarification extensions and
corrections
26.06.2006 |2.0.0 AUTOSAR Second Release
Administration
31.06.2005 |1.0.0 AUTOSAR Initial Release

Administration

2 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.

For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).

Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary
items are licensed under the same rules as applicable to the AUTOSAR Standard.

3 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V3.2.0
R3.0Rev 7

Table of Contents
1 Introduction and fUNCLIONAl OVEIVIEWcouieeee e 10
2 Acronyms and ADDreviations.................uuiiiiiiiiiiiiiii 12
3 Related dOCUMENTALION.ee e 14
3.1 INPUELAOCUMENTS ... 14
3.2 Related standards and NOIMISce e 15
4 Constraints and aSSUMPLIONScoovviiiiiiiiiee e e e e e e eeeeennnes 16
4.1 [T 1= 1A 0] o F TR 16
4.2 Applicability to car domains...........cooooviiiiiiiiiiiii 16
5 Dependencies to other modules...............oueiiiiiiiiiiiiic e 17
5.1 Upper ProtoCOl LAYEIS........ccooiiiieeeeeeeeeeee e 18
5.2 Initialization: Ecu State Manager............ccoevvviiiiiiiiee e 18
5.3 Mode Control: CAN State Manager.........coooeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 18
5.4 Lower layers: CAN DIVELccooiiiiiiei e 18
55 Lower layers: CAN TranSCeIVEr DIIVENccoovvviiiiiiiiie e e eeeeenes 19
5.6 CONfIQUIALIONccoiiiiiiiie e 20
57 e StTUCTUIE e e e 21
5.7.1 COde file SIUCTUIE ..o 21
5.7.2 Header file StTUCTUIE ... o e 21
Requirements traceabilityccoooeiiiiiiiii e 24
Functional SPECIfICALIONcuuuiiiiiee e e e e e e e e e eeeenes 30
7.1 General funCtioNality.........ccccooiiiiiiiiiiii e 30
7.2 Hardware object handles............ooooooiiiiii i 31
7.3 Static CAN L-PDU handIEscouooeeeieeeee e, 32
7.4 Dynamic CAN transmit L-PDU handles...........coooooeiiiiiie, 33
7.5 Physical Channel VIEWcoooiiiiiiiiii e 33
7.6 CAN NArAWArE UNIt ... oo 35
7.7 BasicCAN and FUIICAN receplionccouviiiiiiiiiiee e 36
7.8 [T 11742 1 Lo o TR 37
7.9 Transmit data flOWc.ooeie e, 39
7.10 TranSMIt FEQUESTcoeeeeeeeeee e 40
7.11 TransSmit CONfIrMATION 41
7.11.1 Confirmation after tranSMISSION.........ueee et 41
7.11.2 Confirmation of transmit cancellationc..covveee oo, 41
7.12 Transmit DUFFEING cooeeueeeii e 42
7.12.1 GeNEIral DENAVION e 42
7.12.2 BUfer CRarACeIISTICS . e u e 44
7.12.2.1 Storage of L-PDUs in the transmit bufferccccoooeeeeiiiiiinnnnns 44
7.12.2.2 Storage of L-PDUs is prohibited..............cccooviiiiiiiiiiniieeeeeiiiinn, 44
7.12.2.3 Get L-PDU with the highest priofity...........ccccvvviviiiiiiieeeeeeeeiinn, 44
7.12.2.4 Remove transSmitted L-PDUc.oouiinieieeee e 44
7.12.2.5 Initialization of transmit BUTfers.......cooee v 44
7.12.3 Data integrity of transmit buffers ..., 44
7.13 TransSmit CANCEIATION .. c..eeeeeee e 45
4 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

Vv3.2.0

R3.0 Rev 7

7.13.1 Hardware transmit cancellation not supported or not used 45
7.13.2 Hardware transmit cancellation supported and used 45
7.14 Receive data floW ..o 47
7.14.1 Location of PDU data buffers ..., 47
7.14.2 Receive data floOW........cccccevviiiiiiiiiiii 48
7.15 ReCeIVe INAICALION ...ceeveiiiiie e 50
7.16 Read reCceived dataccoooeeeeiieeeeeeeeeeeeee e 51
7.17 Read NotificatioN StAUSccoiiiiiiiiiiiie e 51
A T B - = W] (=0 | PP 52
7.19 CAN CONtroller MOUEuiiieeiieeeeie e 53
7.19.1 General funCtioNalitycovvveiiiiiieiee e 53
7.19.2 CAN Controller operation MOdESuuuiiiiiiiiiiiiiiiiiiine e eeeeeiieeaann 53
7.19.2.1 CANIF_CS_UNINIT ..ottiiiiiiiiiiiiiiiiiiiiiiiiiiiiieesieeeeeeeeeeeseeeeneeeee. 53
7.19.2.2 CANIF_CS_STOPPEDuuttuuiuiiiiiiiiiiiieiiiiiiiiiiiieieennnneennnnnnn. 53
7.19.2.3 CANIF_CS_STARTED.......tttttiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieees 55
7.19.2.4 CANIF_CS _SLEEP.......uttiiiiiiiiiiiiiiiiiiiiiiiiiiiiie e 55

A R T S T = 1 U O L R 56
7.19.3 Controller mode tranSItioNScoooiieiiiiiiiiinee e 57
7.19.4 Wakeup and validated wakeup eVENtS.........cccoeeeevvveeviviiiiieeeeeeeeeennnnnns 58
7.20 PDU channel mode CONtroluuuiiiiiiiiiiiiii e 59
7.20.1 PDU Channel groUPSccovevuiiiiiiieeeeeeeeeiiiie e e e e e e e e e e e e e eeannnns 59
7.20.2 PDU channel MOUESccoouiiiiiiiiiee e 60
7.20.2.1 OFFLINE MOQE.......uuutiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiieieiiebeneeeeeeeeeeeeennnees 60
20 I © | N | I N 1V o o = 61
7.20.2.3 ONLINE/OFFLINE Mode for TX/Rx pathccccvvvviiviiiiiiiiinnnee. 61
7.20.2.4 OFFLINE ACTIVE MOUEccuuuuiiuiiiiiinnneiuneeninnnnnnnesnnnnnnnnnnnnnnnnnnnes 61
7.21 Software reCeiVe filter ... 62
7.21.1 Software filtering CONCEPL........uii i 62
7.21.2 Software filter algorithms..........ccooooe e, 63
7.22 DLC CRECKuiiee e 63
7.23 L-PDU dispatcher to Upper [ayerscoccovviviiiiiiiiee e 64
7.24 POllING MOAE ..o e 64
7.25 Multiple CAN DriVer SUPPOIT....ccvviiiiiieee e et e e e e e e e e e e eenanns 65
7.25.1 Transmit requests by using multiple CAN Drivers........cccceeeeeeeeeeennnns 66
7.25.2 Notification mechanism by using multiple CAN Drivers...........ccccc....... 67
7.25.3 Mapping table for multiple CAN Driver handling.................coeeevvvennnnnn 70
7.26 Error ClassifiCationcoooeeee e 71
A A = ¢ (o g0 1= (=Tox 1o o [P PPTR 72
7.28 Error NOUTICALION ..coceeeeeeee e 72
7.29 Code VErSION CRECK........coii i 72
8 API SPECIICALIONt i e e e aaaaaaa 73
8.1 IMPOIEA LY PES. .. ittt 73
S 0 I RS = g o =T £ I £/ 11 73
8.1.2 COM SPECITIC LYPES .ottt 73
8.1.3 ECUM SPECITIC LYPES ..o 73
8.1.4 CAN SPECITIC LYPES ..ot 73
S Y/ o =T 0 1= 11 011 1o £ 73
8.2.1 Canlf_ConfIgTYPE .. .coeeeeiiiie e 73
8.2.2 Canlf_ControllerConfigTyPe......coueieeieeeeeeiiiiie e e e e e 74

5 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

Vv3.2.0

R3.0 Rev 7

8.2.3 Canlf_ControllerMOdETYPE ..uuuuiiiieeieeeeeicee e 74
8.2.4 Canlf_ChannelSetMOodeTYPEcooviiiiiiiee e 75
8.2.5 Canlf_ChannelGetMOdeTYPE.....cciiie e 75
8.2.6 Canlf_NOUFSIAtUSTYPE ..ovveiiieeee e 76
8.2.7 Canlf_TransceiVerMOdeTYPecooiiei i e e e e 76
8.2.8 Canlf_TrcvWakeUpREASONTYPEcouvuuiiiieeeeieeeiiiiieee et 76
8.2.9 Canlf_TrcvWaKeupMoOdeTYPE....coiii e e e e e e 77
8.3 FUuNction definitioNsSiiiiiiiiiie e 77
8.3. 1 CaNnIf_INiecccciiiiiiii 77
8.3.2 Canlf_INIECONLIOIET ... 78
8.3.3 Canlf_SetControllerMOode...........coovvviiieiiiiieeeee e 78
8.3.4 Canlf_GetControllerMOdeoooeiiiiiiiiieeeeeeeeee e 79
8.3.5 Canlf _TranSMIL.........cooviiiie e e e 79
8.3.6 Canlf_ReadRXPAUDALA............ccuviiiiiiiiie e 80
8.3.7 Canlf ReadTXNOLIfSIAtUScooeiiiiiiiieeiiiieeeeee e 81
8.3.8 Canlf_ReadRXNOtIfSTAtUScooeiiiiiiiiie e 82
8.3.9 Canlf_SetPAUMOAE.........coooiiiie e 82
8.3.10 Canlf_GetPAUMOUEcoouiiiiiiiiiee e 83
8.3.11 Canlf _GetVersionINfo.........ccoeiiiiiii e 84
8.3.12 Canlf_SetDynamiCTXIduuuuiiiiiiiiiiiii e 84
8.3.13 Canlf _SetTransCeiVEIMOUEccoeviiiiiieeeiiieeeeee e 85
8.3.14 Canlf_GetTransCeiVerMOdecoooiiiiiiiiiiiiieee e 85
8.3.15 Canlf_GetTrcvWakeUpREASONcccvvvvveiiiiiieeeeeeeeeeiiiee e e e e 86
8.3.16 Canlf_SetTransceiverWakeupModeccooovieiiiiiiiiiiiiineeeeeeeeeeiiiinnnn 87
8.3.17 Canlf_CheCKWaKEUPcevuuriiiiiei et 88
8.3.18 Canlf_CheckValidation.............ccoooiiiiiiiiiiiiii e 89
8.4 Call-out NOLIfICALIONScoee e 90
8.4.1 Canlf_TXCoNfIMALIONoiiiiiiiieii e 90
8.4.2 Canlf _RXINAICALION.........uiiiiiiiiee e e 90
8.4.3 Canlf_CancelTXConfirmationcooieeiiiiiiiiiiii e 91
8.4.4 Canlf_ControllerBUSOffouiiiiiiieeeeece e 92
8.5 EXpecCted INTErTACESuiiii i 93
8.5.1 Mandatory INTEIfAaCES.........oeuvueiiii e e 93
8.5.2 OptioNal INTEITACESceeviieiiiie e 93
8.5.3 Configurable interfacescccooviiiiiiiiieiiicie e 94
8.5.3.1 <User_TxConfirmation> (PDU Router, CanNm, CanTp).............. 94
8.5.3.2 <User_RxIndication> (PDU ROULEN)ccuvriiiiieeeeieiieiiiiee e 95
8.5.3.3 <User_RxIndication> (CanNM)cccorriiiiiiiiiiiieeeeeeeeeiiie e 96
8.5.34 <User_RxIndication> (CanTP)cceeeeeeeeiiieeiiiiiiiieeeeeeeeeeeiinee e 97
8.5.3.5 <User_ControllerBusOff> (CanSM)ceeiiiiiiiiiiiiiiiiiineeeee, 98
8.5.3.6 <User_SetWakeupEvent> (ECUM)covviiiiiiiiiiiieieeee e 98
8.5.3.7 <User_ValidationWakeupEvent> (ECUM)...........ccevvviiiiiiiinneeeeeee. 99

O SeqUENCE AIAQIAIMScceeeeiiiiiiie e e e e e et e e e e e e e e et e e e e e e e e eeeaaaaanseaeeaeeeennens 100
9.1 Transmit request (SiNgle CAN DIVEI).....cccoiiiiiiiiiiiiee e 100
9.2 Transmit request (multiple CAN DIIVEIS).........uuiiiiiieeiiieieiiiiie e e e 102
9.3 Transmit confirmation (interrupt MOde)couuuviiiiiiriiiiiiii e, 104
9.4 Transmit confirmation (polling MOde)coevvviiiiiiiiiiiiieeee e, 105
9.5 Transmit confirmation (with buffering)c.veeeiiii 106
9.6 Transmit cancellation (with buffering)...........oceeiiiiiii 108
6 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

Vv3.2.0

R3.0 Rev 7

9.7 Receive indication (interrupt MOde).........ccoovrviiiiiiiiie e 110
9.8 Receive indication (Polling MOde)ccooeiiiiiiiiiiiiii e 112
9.9 Read received datacceeeeeiei e 114
9.10 Start CAN NEIWOIK.......uuuueiiiie et e e e e e eeeeeees 116
9.11 Stop & sleep CAN NEIWOIKccoevieiiiiiiee e e e e e eeenes 118
9.12 BUSOff NOLIFICATION .eeeeiiiiiii e e 120
9.13 BUSOMf FECOVEIY.....coeeeeeeeeie ettt e e e e e e e e e eeennes 121
10 Configuration SPeCIfICAION...........cuuuuuiiie e 123
10.1 How to read this Chapterccooiiiiiiiiii e 123
10.1.1 Configuration and configuration parametersccccvvvviiieeeeeeeeennns 123
L10.1.2 ValiANtS oo 123
10.1.3 CONTAINEIS. ..ttt e e e et a e e e e e e e e eatba s e e e e e eeeeenne 124
10.1.4 Specification template for configuration parameters 124
10.2 Containers and configuration parametersccccoeveeeeiiieeiiiiiineeeeeeeeeenns 125
L10.2.1 ValiANTS oo 127
10.2.2 CanlinterfaceConfigurationocooivieiiiiiiiinnne e 127
10.2.3 CaninterfacePrivateConfigurationueeiiieeeiiieeeiiiieiee e eeeeeeenns 127
10.2.4 CaninterfacePublicConfiguration............ccouuuuiiiiinieiiiiiiie e 128
10.2.5 CanlnterfacelnitConfiguration..............cccevveviiiiiiie e e 130
10.2.6 CanlinterfaceTXPduConfigurationccouuuuuiiiinniiiiiiiiiiieee e 131
10.2.7 CanlinterfaceRxPduConfiguration................uuueiiieeeeiieeeiiiiiieeeeeeeeeeanns 134
10.2.8 CaninterfaceDispatcherConfigurationccceeeeiiiiiiiiiiiiinneeeeeeee. 136
10.2.9 CaninterfaceControllerConfiguration..............cccoeeeeeeiiiiiiiiiiiiiieeeeeee, 137
10.2.10 CaninterfacelnitControllerConfigurationcccccevvvvuiiinneenieeennns 138
10.2.11 CanlinterfaceDriverConfigurationcccceevieeeiieieiiiiiiiieeeeeeeeennns 139
10.2.12 CanlinterfaceTransceiverDriverConfiguration............ccccccceeeeeeeeennee. 140
10.2.13 CanlinterfacelnitHohConfigurationcccceeeeiiiiiiiiiiiiiie e, 141
10.2.14 CaninterfaceHthConfigurationcocouuuiiiiiniiiiiiiiii e 142
10.2.15 CanlnterfaceHrhConfigurationoouviiiiieeeiiiieecce e 143
10.2.16 CaninterfaceHrhRangeConfigurationccccceeeeiiiiiiiiinnneeeeeeeee, 144
10.3 Published infOrmation................uuiiiiii e 145
11 Changes tO release 2.1.... oo 146
11.1 Deleted SWS ITEIMSuuuiiiiiiiiiiiiiiiiiiiiiiiii bbb beaannnne 146
11.2 Replaced SWS ITEIMSuuvuiiiii it eeeeeeees 146
11.3 Changed SWS itEIMScuuuiiiii e et e e e e e e et e e e e e eeeanens 146
11.4 Added SWS IEIMS .. .ot e et e e e e eeaeees 146
7 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7
1 Introduction and functional overview

CANIF143: This specification describes the functionality, APl and the configuration
for the AUTOSAR Basic Software module CAN Interface.

The CAN Interface is located between the low level CAN device drivers (CAN Driver
and Transceiver Driver) and the upper communication service layers (i.e. CAN State
Manager, CAN Network Management, CAN Transport Protocol, PDU Router). It
represents the interface to the services of the CAN Driver for the upper
communication layers.

The CAN Interface provides a unique interface to manage different CAN hardware
device types like CAN controllers and CAN transceivers used by the defined ECU
hardware layout. Thus multiple underlying internal and external CAN controllers/CAN
transceivers can be controlled by the CAN State Manager based on a physical CAN
channel related view.

System
Services
CAN Generic NM
State Interface / NM
Manager GW

CAN Generic
NM

@
o)
(]
=
]
=
=
8
IS
L
=
5
=
=
5]
O

CAN Transceiver
Driver

DIO driver SPI driver CAN driver

External
CAN controller

Figure 1 AUTOSAR CAN Layer Model (see [1])

8 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

The CAN Interface consists of all CAN hardware independent tasks, which belongs
to the CAN communication device drivers of the corresponding ECU. Those
functionality is implemented once in the CAN Interface, so that underlying CAN
device drivers only focus on access and control of the corresponding specific CAN
hardware device.

The CAN Interface fulfils main control flow and data flow requirements of the PDU
Router and upper layer communication modules of the AUTOSAR COM stack:
transmit request processing, transmit confirmation / receive indication / error
notification and start / stop of a CAN controller and thus waking up / participating on a
network. Its data processing and notification API to is based on CAN L-PDUs,
whereas die APIs for control and mode handling provides a CAN controller related
view.

In case of transmit requests the CAN Interface completes the L-PDU transmission
with corresponding parameters and relays the CAN L-PDU via the appropriate CAN
Driver to the CAN controller. At reception the CAN Interface distributes the received
L-PDUs to the upper layer. The assignment between receive L-PDU and upper layer
is statically configured. At transmit confirmation the CAN Interface is responsible for
the notification of upper layers about successful transmission.

The CAN Interface provides CAN communication abstracted access to the CAN
Driver and CAN Transceiver Driver services for control and supervision of the CAN
network. The CAN Interface forwards downwards the status change requests from
the CAN State Manager to the lower layer CAN device drivers, and upwards the CAN
Driver / CAN Transceiver Driver events are forwarded by the CAN Interface to e.g.
the corresponding NM module.

9 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the CAN
Interface Layer that are not included in the AUTOSAR glossary.

Acronym:

Description:

Buffering

Buffer for a single data unit, for example CAN ID, DLC and SDU, is
stored at a dedicated memory address in RAM.

CAN communication matrix

Describes the complete CAN network:
= Participating nodes
= Definition of all CAN PDUs (identifier, DLC)
= Source and Sinks for PDUs

CAN controller

A CAN controller is a CPU on-chip or external standalone hardware
device. One CAN controller is connected to one physical channel.

CAN device driver

Generic term of CAN Driver and CAN Transceiver Driver.

CAN hardware unit

A CAN Hardware unit may consist of one or multiple CAN controllers
of the same type and one, two or multiple CAN RAM areas. The CAN
hardware unit is located on-chip or as external device. The CAN
hardware unit is represented by one CAN Diriver.

CAN L-PDU CAN Protocol Data Unit. Consists of an identifier, DLC and data
(SDU).

CAN L-SDU CAN Service Data Unit. Data that are transported inside the CAN L-
PDU.

FIFO First-In-First-Out

Hardware object

A CAN hardware object is defined as a PDU buffer inside the CAN
RAM of the CAN hardware unit / CAN controller.

Hardware receive handle
(HRH)

The Hardware Receive Handle (HRH) is defined and provided by the
CAN Driver. Each HRH typically represents just one hardware object.
The HRH is used as a parameter by the CAN Interface Layer for i.e.
software filtering.

Hardware transmit handle
(HTH)

The Hardware Transmit Handle (HTH) is defined and provided by the
CAN Driver. Each HTH typically represents just one or multiple
hardware objects that are configured as hardware transmit buffer pool.

Inner priority inversion

Transmission of a high-priority L-PDU is prevented by the presence of
a pending low-priority L-PDU in the same transmit hardware object.

L-PDU handle

The L-PDU handle is defined as integer type and placed inside the
CAN Interface layer. Typically each handle represents an L-PDU,
which is a constant structure with information for Tx/Rx processing.

L-PDU channel group

Group of CAN L-PDUs, which belong to just one underlying network.
Usually they are handled by one upper layer module.

Outer priority inversion

A time gap occurs between two consecutive transmit L-PDUs.

In this case a lower priority L-PDU from another node can prevent
sending the own higher priority L-PDU. Here the higher priority L-PDU
cannot participate in arbitration during network access because the
lower priority L-PDU already won the arbitration.

Physical channel

A physical channel represents an interface from a CAN controller to
the CAN Network. Different physical channels of the CAN hardware
unit may access different networks.

Abbreviation:

Description:

BSW Basic Software

CANIF CAN Interface

DLC Data Length Code (part of CAN L-PDU that describes the SDU length)
DLL Data Link Layer

HOH CAN hardware object handle

HRH CAN hardware receive handle

10 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V3.2.0
R3.0 Rev 7
HTH CAN hardware transmit handle
ISR Interrupt service routine
L-PDU Protocol Data Unit for the data link layer (DLL)
L-SDU Service Data Unit for the data link layer (DLL)
PDU Protocol Data Unit
SDU Service Data Unit
11 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V3.2.0
R3.0 Rev 7

3 Related documentation
12 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

3.1
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

13 of 177

V3.2.0
R3.0 Rev 7

Input documents

List of Basic Software Modules
AUTOSAR_BasicSoftwareModules.pdf

Layered Software Architecture
AUTOSAR_LayeredSoftwareArchitecture.pdf

General Requirements on Basic Software Modules
AUTOSAR_SRS_General.pdf

Specification of Standard Types
AUTOSAR_SWS_StandardTypes.pdf

Specification of Communication Stack Types
AUTOSAR_SWS_ ComStackTypes.pdf

Specification of ECU Configuration
AUTOSAR_ECU_Configuration.pdf

Requirements on CAN
AUTOSAR_SRS_CAN.pdf

Specification of CAN Driver
AUTOSAR_SWS_CAN_Driver.pdf

Specification of CAN Transceiver Driver
AUTOSAR_SWS_CAN_TransceiverDriver.pdf

Specification of CAN Transport Layer
AUTOSAR_SWS_CAN_TP.pdf

Specification of CAN State Manager
AUTOSAR_SWS_CAN_StateManager.pdf

Specification of CAN Network Management
AUTOSAR_SWS_CAN_NM.pdf

Specification of Generic Network Management
AUTOSAR_SWS_Generic_NM.pdf

Specification of Communication
AUTOSAR_SWS_COM.pdf

Specification of ECU State Manager
AUTOSAR_SWS_ ECU_StateManager.pdf

Specification of BSW Scheduler
AUTOSAR_SWS_BSW_Scheduler.pdf

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

Vv3.2.0
R3.0Rev 7
[17] AUTOSAR Basic Software Module Description Template,
AUTOSAR_BSW_Module_Description.pdf
14 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

3.2 Related standards and norms
[18] 1S011898 — Road vehicles - controller area network (CAN)

[19] 1S014229-1 Unified diagnostic services (UDS) - Part 1: Specification and
Requirements (ISO DIS 26.05.2004)

[20] 1SO15765-2 Diagnostics on controller area network (CAN) - Part 2: Network
layer services

[21] 1S0O15765-3 Diagnostics on controller area network (CAN) - Part 3:
Implementation of unified diagnostic services (UDS on CAN)

15 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V3.2.0
R3.0 Rev 7

4 Constraints and assumptions

16 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0Rev 7
4.1 Limitations

The CAN Interface can be used for CAN communication only and is specifically
designed to operate with one or multiple underlying CAN Drivers and CAN
Transceiver Drivers. Several CAN Driver modules covering different CAN hardware
units are represented by just one generic interface as specified in the CAN Driver
specification. As well in the same manner several CAN Transceiver Driver modules
covering different CAN transceiver devices are represented by just one generic
interface as specified in the CAN Transceiver Driver specification. Other protocols
than CAN (i.e. LIN or FlexRay) are not supported.

17 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

4.2 Applicability to car domains

The CAN Interface can be used for all domain applications always when the CAN
protocol is used.

18 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

5 Dependencies to other modules

This section describes the relations to other modules within the AUTOSAR basic
software architecture. It contains brief descriptions of configuration information and
services, which are required by the CAN Interface Layer from other modules.

cmp Can Stack
ComServices
Com «mandatory» | «module»
«realize» CansSM
II
. ’
«realize» a F «realize»
Com Cok —_ «module» y /
A «mandalory»I Com oo /
I /
" /
«optional> CanSM_Cbk
fm PduR_Com / -
1 i / G
| «realize» / ’
1 7 ’
H .
/ A
gl EPTU TS i «re/allze» gl
ionall ’ g
«module» opt y» o/ / <«module>»
PduR oo | «ealize» «mandatory» , ol oo
g /
T N / / |
«realize» N PduR_CanTp // / «realize»
N / /
N / /
Y 7/
N / ’
v «use N / g =7
" «use» -
PAuR_Canif “~. eiEEll / 5 -7 canTp ook
AN AN ¥4 I' -7
< ~ 7 7 -
N N ’ -
ComHwWA RS N . / ad
N 7, 7
~ N <
) \\) II 3 Q
~ 4 _
~ 4 «use»
«use» / -7
N ’ e
S Cain If / e Can;l’rcv
AN < «realize» ,l s -7 «realize»
S ~ ’I -7
Canlf «module»
oo CanTrcv oo
T
| L
| «realize» «realize»
1
1
1
1
«use»
|
i Canlf_Cbk CanTrcv_Cbk
i A
T AN
1
CombDrivers : , |
T t
1
1
1
«manqatory»
1
|
1
«realize» :
1
«module»
«Peripheral»
CanController

Figure 2 CANIF dependencies in AUTOSAR BSW

19 of 177
- AUTOSAR confidential -

Document ID 012: AUTOSAR_SWS_CAN_Interface

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

5.1 Upper Protocol Layers

CANIF193: Inside the AUTOSAR BSW architecture the upper layers of the CAN
Interface are represented by the PDU Router, CanNm, CanTp, CanSM and EcuM.

CANIF037: The AUTOSAR BSW architecture indicates, that the application data
buffers are located in the upper layer which they belong to. Direct access to these
buffers is prohibited. The buffer location is passed by the CAN Interface from or to
the CAN Driver during transmission and reception. During execution of these
transmission/reception indication services buffer location is passed. Data integrity is
guaranteed by used of lock mechanisms each time the buffer has been
accessed. See [7.18 Data integrity].

CANIF192: The API used by the CAN Interface consists of notification services as
basic agents for the transfer of CAN related data (i.e. CAN ID, CAN DLC) to the
target upper layer. The call parameters of these services points to the information
buffered in the CAN Driver or they refer directly to the CAN hardware.

20 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

5.2 Initialization: Ecu State Manager

CANIF283: The EcuM initializes the Canlf (refer to [15] Specification of ECU State
Manager).

21 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

5.3 Mode Control: CAN State Manager

CANIF299: The CanSM is responsible for mode control management of alll
supported CAN controllers, for startup, wakeup and as well for sleep transitions.

22 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

5.4 Lower layers: CAN Driver

CANIF034: The main lower layer CAN device driver is represented by the CAN
Driver (see [8] Specification of CAN Driver). The CAN Interface has a close relation
to the CAN Driver as a result of its position in the AUTOSAR Basic Software
Architecture. Events detected and processed by the CAN Driver are forwarded to the
CAN Interface.

CANIF267: The CAN Interface passes operation mode requests of the CanSM to the
corresponding underlying CAN controllers. The CAN Driver provides a hardware
abstracted access to the CAN controller only, but control of operation modes is done
only in CanSM, neither in CAN Driver nor in CANIF.

CANIF191: The CAN Driver provides a normalized L-SDU to ensure hardware
independence of the CAN Interface. The pointer to this normalized L-SDU points
either to a temporary buffer (for e.g. data normalizing) or the CAN hardware
dependent to the CAN Driver. For the CAN Interface the kind of L-SDU buffer is
invisible.

CANIF038: The CAN Interface provides notification services used by the CAN Driver
in all notifications scenarios, for example: transmit confirmation, receive indication
and BusOff notification.

CANIF106: In case of using multiple CAN Drivers serving different interrupt vectors
these call-out services mentioned above must be re-entrant, refer to [7.25 Multiple
CAN Driver support].

CANIF133: The call-out services called by the CAN Driver are declared and
implemented inside the CAN Interface. The call-out services called by the CAN
Interface are declared and placed inside the appropriate upper communication
service layer, for example PduR, CanNm, CanTp.

CANIF271: The number of configured CAN controllers does not necessarily belong
to the number of used CAN transceivers. In case multiple CAN controllers of a
different types operate on the same CAN network, one CAN transceiver and CAN
Transceiver Driver is sufficient, whereas dependent to the type of the CAN controller
devices one or two different CAN Drivers are needed (see 7.5 Physical channel
view).

23 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7
5.5 Lower layers: CAN Transceiver Driver

CANIF266: The second available lower layer CAN device driver is represented by
the CAN Transceiver Driver (see [9] Specification of CAN Transceiver Driver).

CANIF268: Operation mode control of the CAN transceiver device is done by each
CAN transceiver driver itself. The CAN Interface just maps all APIs of several
underlying CAN Transceiver Drivers to a unique one, thus CanSM is able to trigger a
transition of the corresponding CAN transceiver modes. No control or handling
functionality belonging to CAN Transceiver Driver is done inside the CAN Interface.

CANIF277: The CAN Interface Layer maps the following services of all underlying
CAN Transceiver Drivers to one unique interface. These are further described in the
CAN Transceiver Driver SWS (see [9]Specification of CAN Transceiver Driver):

= Unique CAN Transceiver Driver mode request and read services to manage
the operation modes of each underlying CAN transceiver device.

» Read service for CAN transceiver wakeup reason support.

= Mode request service to enable/disable/clear wakeup event state of each used
CAN transceiver.

24 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

5.6 Configuration

CANIF035: The CAN Interface design is optimized to manage CAN protocol specific
capabilities and handling of the used underlying CAN controller.

The following standardized information is therefore retrieved from the CAN Driver
configuration:

= Number of CAN controllers. The number of CAN controllers is necessary for
dispatching of transmit and receive L-PDUs and for the control of the status of
the available CAN Drivers.

= Number of hardware object handles. To supervise transmit requests the CAN
Interface needs to know the number of HTHs and the assignments between
each HTH and the corresponding CAN controller.

» Range of received CAN IDs passing hardware acceptance filter for each
hardware object. The CAN Interface uses fixed assignments between HRHs
and L-PDUs to be received in the corresponding hardware object to conduct a
search algorithm (see 7.21 Software receive filter)

CANIF190: The CAN Interface Layer needs information about all used upper
communication service layers and L-PDUs to be dispatched. The following
information has to be set up at configuration time for integration of the CAN Interface
module inside the AUTOSAR COM stack:

» Transmitting upper layer module and transmit I-PDU for each transmit L-PDU.
=> Used for dispatching of transmit confirmation services.

» Receiving upper layer module and and receive I-PDU for each receive L-PDU.
=> Used for L-PDU dispatching during receive indication.

CANIF036: The CAN Interface Layer needs the description of the controller and the
own ECU, which is connected to one or multiple CAN networks. The following
information is therefore retrieved from the CAN communication matrix, part of the
AUTOSAR system configuration:

= All L-PDUs received on each physical channel of this ECU.
=> Used for software filtering and receive L-PDU dispatch
= All L-PDUs that shall be transmitted by each physical channel on this ECU.
=> Used for the transmit request and transmit L-PDU dispatch
» Properties of these L-PDUs (ID, DLC).
=> Used for software filtering, receive indication services, DLC check
» Transmitter for each transmit L-PDU (i.e. PduR, CanNm, CanTp).
=> Used for the transmit confirmation services
» Receiver for each receive L-PDU (i.e. PduR, CanNm, CanTp)
=> Used for the L-PDU dispatch
= Symbolic L-PDU name.
=> Used for the representation of Rx/Tx data buffer addresses

25 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

5.7 File structure
5.7.1 Code file structure
CANIF151: The code file structure shall not be defined within this specification

completely. Here it shall be pointed out that the code-file structure shall include the
following files named:

= Canlf_<X>.c - for implementation of the provided functionality. The
extensions <X> is optional for usage of multiple C-files.
= Canlf_Cfg.c - for pre-compile time configurable parameters and

» Canlf_Lcfg.c - forlink time configurable parameters.

= Canlf_Pbcfg.c - for post build time configurable parameters.
All of these files shall contain all link time and post-build time configurable
parameters.

CANIF152: The API of all used underlying CAN Drivers must be known latest at link-
time.

The location of the API is provided for pre-compile time configuration either by using
of external declaration in includes of all CAN Drivers public header files can_<x>_h
or by the Canlf_Cfg.c.

The location of the API is provided for link time configuration by a set of function
pointers for each CAN Driver. The values for these pointers are given at link time.

CANIF149: Constants and functions used internally by the CAN Interface without
connection to the configuration files are declared in Canlf source file(s).

CANIF117: The include file structure can be constructed as shown in [CANIF141:].

5.7.2 Header file structure

CANIF116: The CAN Interface shall offer a header file Canl¥.h, which includes all
types and interfaces. This header file only contains extern declarations of constants,
global data, type definitions and services that are specified in chapter [8 API
specification].

26 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V3.2.0
R3.0Rev 7
CANIF141:
Std_Types.h
includes
ComStack_Types.h
Dem_IntErrid.h A
d bol .
(Event Id Symbols) CAN Interface includes
A
includes Canlf_Cfg.h Canlf_Types.h
Dem.h includes
includes .
includes
includes (if development
error detection is turned on) Canlf.h
Det.h includes
\ includes
MemMap.h <inC|“deS Canlf.c Canlf_Cfg.c
includes i
includes mCIL.JdeS
<Module>_Canlf.h ¥ v (optional)
Canlf_Cbk.h Can_A.h
- Can_B.h
<Module>_Cbk.h includes CanTrcv_A.h
(optional) =
CanTrcv_B.h
Can_A.c
Can_B.c

Figure 3 Code and include file structure

CANIF121: The CAN Interface shall offer a header file Canlf _Cbk.h, which
declares the call-out functions called by the CAN Driver.

CANIF122: The CAN Interface includes all necessary configuration data by the
header files

= Canlf.h — for declaration of the provided interface functions
= Canlf_Cbk.h —for declaration of the provided callout functions
= Canlf_Cfg.h —for pre-compile time configurable parameters and

= Canlf_Lcfg.h - forlink build time configurable parameters
= Canlf_Pbcfg.h —for post build time configurable parameters

27 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

CANIF279: The CAN Interface shall include all headers files <Module.h> of those
modules, from which declarations of API services or type definitions are needed:
= Can_A.h/Can_B.h - for services and type definitions of the CAN Driver
= CanTrcv_A.h/CanTrcv_B.h. — for services and type definitions of the CAN
Transceiver Driver

= Dem.h — for services of the Diagnostic Event Manager (DEM)
= Det.h — for services of the Development Error Tracer (DET - optional)
= EcuM.h —for callout declarations of the ECU State Manager

= ComStack Types.h for COM related type definitions

= Note: The following header files are indirectly included by
ComStack _Types.h:

0 Std Types.h — for AUTOSAR standard types
o Platform_Types.h - for platform specific types
o Compiler.h — for compiler specific language extensions

CANIF208: The CAN Interface shall include all headers files <Modulle>_Canlf.h
of those upper layer modules, from which declarations of only CAN Interface related
API services or type definitions are needed:

= PduR_Canlf.h —for services and callout declarations of the PDU Router

CANIF233: The CAN Interface shall include all header files <Modulle Cbk.h>, in
which the callback functions called by the CAN Interface at the upper layers are
declared:

= CanSM_Cbk.h - for callout declarations of the CAN State Manager

= CanNm_Cbk.h - for callout declarations of the CanNm

= CanTp_Cbk.h —for callout declarations of the CanTp

CANIF280: The CAN Interface shall include all header files <Modulle Cfg.h>,
which contains the confiuguration data used by the CAN Interface:
= Can_A Cfg.h/Can_B Cfg.h - for configuration data of the CAN Driver
= CanTrcv_A Cfg.h/CanTrcv_B_Cfg.h. — for configuration data of the CAN
Transceiver Driver
» Pdur_Cfg.h - for PduR configuration data (e.g. PduR target PDU Ids)
= CanNm_Cfg.h —for CanNm configuration data (e.g. CanNm target PDU Ids)
= CanTp_Cfg.h —for CanTp configuration data (e.g. CanTp target PDU Ids)

CANIF150: The CAN Interface shall include the file Dem.h. By this way reporting
production errors as well as the required Event Id symbols are included. This
specification defines the name of the Event Id symbols (see CANIF207), which are
provided by XML to the DEM configuration tool. The DEM configuration tool assigns
ECU dependent values to the Event Id symbols and publishes the symbols in
Dem_IntErrid.h.

CANIF278: The CAN Interface shall include the file MemMap - h in case the mapping
of code and data to specific memory sections via memory mapping file is needed for
CAN Interface implementation.

28 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

6 Requirements traceability

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

Document: General Requirements on Basic Software Modules [3]

CANIF148:

Requirement Satisfied by
[BSWO00344] Reference to link-time configuration | CANIF228
[BSWO00404] Reference to post build time CANIF228
configuration

[BSWO00405] Reference to multiple configuration | CANIF002

sets

[BSWO00345] Pre-Build Configuration

Fulfilled by configuration parameter definitions in
chapter 10.

The configuration parameters are described in a
general way.

[BSW159] Tool-based configuration

CANIF104

[BSW167] Static configuration checking

CANIF131

[BSW171] Configurability of optional functionality

Fulfilled by configuration parameter definitions in
chapter 10.

The configuration parameters are described in a
general way.

[BSW170] Data for reconfiguration of SW-
components

Not applicable
(no interface to AUTOSAR SW Components)

[BSWO00380] Separate C-Files for configuration
parameters

CANIF151

[BSWO00419] Separate C-Files for pre-compile CANIF151
time configuration parameters

[BSWO00381] Separate configuration header file CANIF122
for pre-compile time parameters

[BSWO00412] Separate H-File for configuration CANIF122

parameters

[BSWO00383] List dependencies of configuration
files

CANIF141, CANIFO66

[BSW00384] List dependencies to other modules

CANIF193, CANIF034

[BSWO00387] Specify the configuration class of
call-out function

Fulfilled by API definitions in chapter 8.

[BSW00388] Introduce containers

Fulfilled by configuration parameter definitions in
chapter 10.

[BSWO00389] Containers shall have names

Fulfilled by configuration parameter definitions in
chapter 10.

[BSWO00390] Parameter content shall be unique
within the module

Fulfilled by configuration parameter definitions in
chapter 10.

[BSWO00391] Parameter shall have unique names

Fulfilled by configuration parameter definitions in
chapter 10.

[BSWO00392] Parameters shall have a type

Fulfilled by configuration parameter definitions in
chapter 10.

[BSWO00393] Parameters shall have a range

Fulfilled by configuration parameter definitions in
chapter 10.

[BSWO00394] Specify the scope of the parameters

Fulfilled by configuration parameter definitions in
chapter 10.

[BSWO00395] List the required parameters (per
parameter)

Fulfilled by configuration parameter definitions in
chapter 10.

[BSWO00396] Configuration classes

Fulfilled by configuration parameter definitions in
chapter 10.

[BSW00397] Pre-compile-time parameters

Fulfilled by configuration parameter definitions in
chapter 10.

[BSW00398] Link-time parameters

Fulfilled by configuration parameter definitions in
chapter 10.

29 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

[BSWO00399] Loadable Post-build time parameters

Fulfilled by configuration parameter definitions in
chapter 10.

[BSWO00400] Selectable Post-build time

Fulfilled by configuration parameter definitions in

parameters chapter 10.

[BSWO00402] Published information Fulfilled by sequence diagrams in
chapter 9.

[BSWO00375] Natification of wake-up reason CANIF013

[BSW101] Initialization interface CANIF001

[BSWO00416] Sequence of Initialization

Not applicable
(no initialization dependencies for this module)

[BSWO00406] Check module initialization

Fulfilled by API definitions in chapter 8.

[BSW168] Diagnostic Interface of SW

Not applicable

components (this module does not support a special diagnostic
interface)
[BSWO00407] Function to read out published CANIF158

parameters

[BSW00423] Usage of SW-C template to describe
BSW modules with AUTOSAR Interfaces

Not applicable
(this module does not provide an AUTOSAR
interface)

[BSWO00424] BSW main processing function task
allocation

Not applicable
(requirement on system design, not on a single
module)

[BSWO00425] Trigger conditions for schedulable
objects

Not applicable
(requirement on system configuration, not on a
single module)

[BSWO00426] Exclusive areas in BSW modules

Not applicable
(no exclusive areas specified for this module)

[BSWO00427] ISR description for BSW modules

Not applicable
(this module does not provide any ISRs)

[BSWO00428] Execution order dependencies of
main processing functions

Fulfilled by description of scheduled functions in
chapter 8.5

[BSWO00429] Restricted BSW OS functionality
access

Not applicable
(this module doesn’t use any OS objects or
services)

[BSW00431] The BSW Scheduler module
implements task bodies

Fulfilled by API definitions in chapter 8.

[BSWO00432] Modules should have separate main
processing functions for read/receive and
write/transmit data path

CANIF128

[BSWO00433] Calling of main processing functions

Not applicable
(requirement on the BSW scheduler module)

[BSWO00434] The Schedule Module shall provide
an API for exclusive areas

Not applicable
(requirement on the BSW scheduler module)

[BSWO00336] Shutdown interface

Not applicable
(architecture decision)

[BSWO00337] Classification of errors CANIF017
[BSWO00338] Detection and Reporting of CANIF019
development errors

[BSWO00369] Do not return development error CANIF018
codes via API

[BSWO00339] Reporting of production relevant CANIF020

error status

[BSWO00417] Reporting of Error Events by Non-
Basic Software

Not applicable
(this is a basic software module)

[BSWO00323] API parameter checking CANIF022
[BSWO004] Version check CANIF021
[BSWO00409] Header files for production code CANIF153
error IDs

[BSWO00385] List possible error notifications CANIF207

30 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

[BSWO00386] Configuration for detecting an error

CANIF018, CANIFO019, CANIF156

[BSW161] Microcontroller abstraction

CANIF035, CANIFO036, CANIF143

[BSW162] ECU layout abstraction

CANIF035, CANIFO036, CANIF143

[BSWO005] No hard coded horizontal interfaces CANIF133
within MCAL
[BSWO00415] User dependent include files CANIF208

[BSW164] Implementation of interrupt service
routines

CANIF006, CANIFOO7

[BSWO00325] Runtime of interrupt service routines

CANIF098, CANIF135

The runtime is not totally under control of the CAN
Interface, because they are called to the upper
layers.

[BSW00326] Transition from ISRs to OS tasks

Not applicable
(When a transition from ISR to OS task is done, it
will be defined in COM Stack SWS)

[BSWO00342] Usage of source code and object
code

CANIF228 (post build configuration)

[BSWO00343] Specification and configuration of
time

Not applicable
(no internal scheduling policy)

[BSW160] Human-readable configuration data

Fulfilled by configuration parameter definitions in
chapter 10.

The configuration parameters are described in a
general way.

[BSWO007] HIS MISRA C

Not applicable
(requirement on implementation, not on
specification)

[BSWO00300] Module nhaming convention

Fulfilled by API definitions in chapter 8.

[BSWO00413] Accessing instances of BSW
modules

Fulfilled by API definitions in chapter 8.

[BSWO00347] Naming separation of different
instances of BSW drivers

CANIF028

[BSWO00305] Self-defined data types naming
convention

Fulfilled by type definitions in chapter 8.2.

[BSWO00307] Global variables naming convention

Not applicable
(requirement on implementation, not on
specification)

[BSWO00310] APl naming convention

Fulfilled by API definitions in chapter 8.

[BSWO00373] Main processing function naming
convention

CANIF004

[BSWO00327] Error values naming convention CANIF120
[BSWO00335] Status values naming convention CANIF136, CANIF137, CANIF138
[BSWO00350] Development error detection CANIF019

keyword

[BSWO00408] Configuration parameter naming
convention

Fulfilled by configuration parameter definitions in
chapter 10.

[BSWO00410] Compiler switches shall have

Fulfilled by configuration parameter definitions in

defined values chapter 10.
[BSWO00411] Get version info keyword CANIF158
[BSWO00346] Basic set of module files CANIF141
[BSW158] Separation of configuration from CANIF141

implementation

[BSWO00314] Separation of interrupt frames and
service routines

Not applicable
(this module does not provide any ISRs)

[BSWO00370] Separation of call-out interface from
API

CANIF141

[BSWO00435] Module Header File Structure for the
Basic Software Scheduler

CANIF241

[BSW00436] Module Header File Structure for the

31 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

Basic Software Memory Mapping

[BSWO00370] Separation of call-out interface from | CANIF141
API

[BSWO00348] Standard type header CANIF142
[BSWO00353] Platform specific type header CANIF142

(automatically included with Standard types)

[BSWO00361] Compiler specific language
extension header

CANIF142
(automatically included with Standard types)

[BSWO00301] Limit imported information

CANIF141

[BSWO00302] Limit exported information

[BSWO00328] Avoid duplication of code

Not applicable
(requirement on implementation, not on
specification)

[BSWO00312] Shared code shall be reentrant

CANIF065, CANIFQ77

[BSWO006] Platform independency CANIF143
[BSWO00357] Standard API return type Fulfilled by API definitions in chapter
8.32.

[BSWO00377] Module Specific API return type

CANIF136, CANIF137, CANIF138

[BSWO00304] AUTOSAR integer data types

Fulfilled by type and API definitions in chapter 8.1
and 8.2

[BSWO00355] Do not redefine AUTOSAR integer
data types

Fulfilled by type and API definitions in chapter 8.1
and 8.2

[BSW00378] AUTOSAR Boolean type

Not applicable
(no Boolean types used)

[BSWO00306] Avoid direct use of compiler and
platform specific keywords

Not applicable
(requirement on implementation, not on
specification)

[BSWO00308] Definition of global data

Not applicable
(requirement on implementation, not on
specification)

[BSWO00309] Global data with read-only constraint

Not applicable
(requirement on implementation, not on
specification)

[BSWO00371] Do not pass function pointers via API

Fulfilled by API definitions in chapter 8.3

[BSWO00358] Return type of init() functions

CANIF001

[BSWO00414] Parameter of init function

CANIF001

[BSWO00376] Return type and parameters of main
processing functions

CANIF004

[BSWO00359] Return type of call-out functions

Fulfilled by call-out APIs in chapter 8.4.

[BSWO00360] Parameters of call-out functions

Fulfilled by call-out APIs in chapter 8.4.

[BSWO00329] Avoidance of generic interfaces

No generic interface used

The content of functions might be configuration
dependent. The scope of function is always
defined

[BSWO00330] Usage of macros instead of
functions

Not applicable
(requirement on implementation, not on
specification)

[BSWO00331] Separation of error and status values

CANIF120
CANIF136, CANIF137, CANIF138

[BSWO009] Module User Documentation

Fulfilled by the complete documentation.

[BSWO00401] Documentation of multiple instances
of configuration parameters

Fulfilled by configuration parameter definitions in
chapter 10.

[BSW172] Compatibility and documentation of
scheduling strategy

Not applicable
(no internal scheduling policy)

BSWO010] Memory resource documentation

Not applicable
(requirement on implementation, not on
specification)

[BSWO00333] Documentation of call-out function
context

Fulfilled by call-out APIs in chapter 8.4.

32 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

V3.2.0

R3.0 Rev7
[BSWO00374] Module vendor identification CANIF016
[BSWO00379] Module identification CANIF016
[BSWO003] Version identification CANIF016
[BSWO00318] Format of module version CANIF016
[BSWO00321] Enumeration of module version CANIF016

numbers

[BSWO00341] Microcontroller compatibility
documentation

Not applicable
(no microcontroller dependent module)

[BSWO00334] Provision of XML file

Not applicable
(requirement on implementation, not on
specification)

Document: Requirements on CAN [4]

Requirement Satisfied by
[BSWO01033] Basic Software General CANIF148
Requirements

[BSWO01125] Data throughput read direction CANIF112
[BSWO01126] Data throughput write direction CANIF161
[BSWO01139] CAN Controller specific Initialization | CANIF002
[BSWO01129] Receive Data Interface for CAN CANIF196

Interface and CAN Driver Module

[BSWO01121] Interfaces of the CAN Interface
module

CANIF034, CANIF266

[BSW01014] Network configuration abstraction

See all APIs in chapter
8.3 Function definitions

[BSW01001] HW independence CANIF023
[BSWO01015] Network Database Information CANIF104
Import

[BSWO01016] Interface to CAN Driver configuration | CANIF066
[BSW01018] Software Filter CANIF030
[BSW01019] DLC Check configuration CANIF031
[BSW01020] Tx Buffer configuration CANIF071
[BSWO01021] CAN Interface Module Power-On CANIF001
Initialization

[BSW01022] Dynamic selection of static CANIF092
configuration sets

[BSW01023] Power-On Initialization Sequence CANIF032
[BSW01002] Rx PDU dispatching CANIF024
[BSW01003] Reception indication dispatcher CANIF012
[BSWO01114] Data Consistency of transmit L- CANIF033
PDUs

[BSWO01004] Software Filtering for L-PDU CANIF025
reception

[BSWO01005] DLC check for L-PDU reception CANIF026
[BSWO01006] Rx L-PDU enable/disable CANIF096
[BSW01007] Tx L-PDU dispatching CANIF028
[BSW01008] Transmission request service CANIF005
[BSWO01009] Transmission confirmation service CANIF00Q7
[BSWO01011] Tx buffering CANIF068
[BSWO01013] Tx L-PDU enable/disable service CANIF096
[BSWO01027] CAN controller Mode Select service | CANIF003
[BSW01028] CAN controller State Service CANIF093
[BSWO01032] Wake-up Notification CANIF013
[BSW01061] Dynamic Tx Handles CANIF185
[BSW01024] DLC Error Notification Skipped to due bug #14340
[BSW01029] Bus-off naotification CANIF014

33 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

[BSWO01130] Read Status Interface of CAN
Interface

CANIF200

[BSWO01131] Mixed mode of natification and
polling mechanism

CANIF197, CANIF203

[BSWO01136] Natification of first received CAN CANIF182
message
[BSWO01129] Receive Data Interface for CAN CANIF194
Interface
[BSWO01140] Support of Standard and Extended | CANIF281

Identifiers

[BSWO01141] Support of both Standard and
Extended Identifiers on one network (optional
feature)

CANIF243, CANIF261

34 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V3.2.0
R3.0 Rev 7

7 Functional specification
35 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

7.1 General functionality

CANIFO041: The services of the CAN Interface can be divided into the following main
groups:

Initialization

Transmit request services
Transmit confirmation services
Reception indication services
Network mode control services
PDU mode control services

CANIF042: Possible applications:

1. Interrupt mode
The CAN Driver processes interrupts triggered by the CAN controller. The CAN
Interface, which is event based, is notified when the event occurs. In this case the
relevant CAN Interface services is called within the corresponding ISRs in the
CAN Diriver.

2. Polling mode

The CAN Driver is triggered by the BSW Scheduler and performs subsequent
processes (polling mode). In this case Can_MainFunction<Write/
Read/BusOff/Wakeup/Transceiver>() must be called periodically within a
defined time interval. The CAN Interface is notified by the CAN Driver about
events (reception, transmission, BusOff), that occurred in one of the CAN
controllers, equally to the interrupt driven operation. The CAN Driver is
responsible for the update of the corresponding information which belongs to the
occurred event in the CAN controller, for example reception of an L-PDU.

3. Mixed mode: interrupt and polling driven CAN Driver
The functionality can be divided between interrupt driven and polling driven
operation mode depending on the used CAN controllers.
Examples: Polling driven FullCAN reception and interrupt driven BasicCAN
reception, polling driven transmit and interrupt driven reception, etc.

This specification describes an unique interface, which is valid for all three types of
operation modes. Summarized the CAN Interface works in the same why, either if
any events are processed on interrupt, task level or mixed. The only difference is the
call context and probably the way of interruption of the notifications: pre-emptive or
co-operative. All services are performed in accordance with the configuration.

The following paragraphs describe the functionality of the CAN Interface.

36 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

7.2 Hardware object handles

CANIF023: Hardware object handles (HOH) for transmission (HTH) as well as for
reception (HRH) represent an abstract reference to a CAN RAM structure that
contains CAN related parameters such as CAN ID, DLC and data. Based on this
CAN hardware buffer abstraction each hardware object is referenced in the CAN
Interface independent of the CAN hardware buffer layout. The HOH is used as a
parameter in the calls of the CAN Driver interface services and is provided by the
CAN Diriver's configuration and used by the CAN Driver as identifier for
communication buffers of the CAN mailbox.

The CAN Interface acts only as user of the Hardware object handle but does not
interpret it on the basis of hardware specific information. The CAN Interface therefore
remains independent of hardware.

CANIF043: Each CAN controller can provide a pool of hardware objects in the CAN
mailbox. These can be logically linked to form one entire pool of hardware objects
(multiplexed hardware objects).

CANIF044: Two types of Hardware object handles are used in the CAN Interface to
enable access to the CAN Driver: Hardware Receive Handle (HRH) and Hardware
Transmit Handle (HTH).

CANIF291: The HRH represents a logical reception unit. This unit consists of just
one hardware object used for the reception. HRH, which is dependent on the settings
of the acceptance masks, is marked as a BasicCAN or a FullCAN receive unit which
determines the usage of software filtering. Each CanRxPduld is assigned to one
single HRH. Thus if multiple HRHs are used, each HRH belongs to a single or fixed
group of CanRxPduld.

CANIF292: The HTH represents a hardware objects configured for transmission
purposes and for the corresponding CAN controller. Each CanTxPduld is assigned to
one single HTH. Thus if multiple HTHs are used, each HTH belongs to a single or
fixed group of CanTxPdulds.

CANIF115: All HRH and HTH handles of one CAN Driver has an own numbering
area. The dedicated HRH and HTHs handles are derived from the configuration set
of the CAN Driver(s). The definition of HTH/HRH inside the numbering area and
hardware objects is up to the CAN Driver. It has to be ensured by configuration, that
no overlapping of several numbering areas of multiple CAN Drivers is allowed.

CANIF123: The HRH can be configured to receive
= one single CAN ID (FullCAN)
= agroup of single CAN IDs (BasicCAN)
= arange/area of CAN IDs (BasicCAN) or
= all CAN IDs.

37 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

7.3 Static CAN L-PDU handles

CANIF045: The CAN Interface offers general access to the CAN L-PDU related data
for upper layers. This access is achieved by the L-PDU handle. The L-PDU handle
refers to data structures, which consists of attributes describing the L-PDU. There are
two kinds of attributes: CAN PCI and CAN Interface specific attributes.

CAN Interface specific attributes CAN Protocol Control Information (PCI)
Method of SW filtering CAN Identifier (ID)

Direction of L-PDU (Tx, Rx) Data Length Code (DLC)

Physical channel (refer to [7.20.1 PDU channel | Reference to the data (SDU)

groups))

HTH/HRH of the CAN controller

Target ID for the corresponding upper layer

Type of receive L-PDU (FullCAN, BasicCAN)

Table 1 Attributes used in CAN Interface

For the optimization of further processing a part of this information can be
represented by the L-PDU handle itself.

CANIF046: Each L-PDU and thus each L-PDU handle is dedicated to one CAN
controller only. This relation is used in order to ensure the correct dispatch at
transmission and reception. In this manner the CAN Interface is able to reconstruct
the CAN contoller from the L-PDU handle.

CANIF047: The CAN Interface supports activation and deactivation of all L-PDUs
belonging to one CAN network for transmission as well as for reception (CANIF027).
For L-PDU mode control refer to [7.20 PDU channel mode control].

CANIF048: Each L-PDU handle is associated with an upper layer in order to ensure
the correct dispatch service during reception, transmission confirmation and data
access.

Each upper layer can use the L-PDU handles to serve different CAN controllers
simultaneously.

CANIF236: According to the PDU architecture defined for the entire AUTOSAR
communication stack (see [2] Layered Software Architecture), the usage of L-PDUs
is split in two different ways:

a) For transmission request and transmission/reception polling APl the upper
layer uses the CAN L-PDU Id defined by the CAN Interface as parameter.

b) For all call-out APIs, which are invoked by the CAN interface at the upper
layers, the CAN Interface passes the target PDU-Id defined by each upper
layer as parameter.

In principle: the caller must use the defined target PDU Id of the callee.

CANIF239: If power on initialization is not performed, no L-PDUs are transmitted and
DET is informed. Thus no uninitialized data can be transmitted on the network.

38 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7
7.4 Dynamic CAN transmit L-PDU handles

CANIF185: Dynamic transmit L-PDUs make possible to reconfigure during runtime
the CAN identifier to be used for the corresponding L-PDU handle.

CANIF186: The maximum number of dynamic transmit L-PDU handles shall be set
pre-compile time by the configuration parameter
CANIF_NUMBER_OF DYNAMIC_CANTXPDUIDS. This parameter can be updated
during post-build time.

CANIF187: The confirmation notification belongs to the L-PDU handle, thus it can not
be changed. The data length code (DLC) and the pointer to the data buffer is
determined by the upper layer during Canlf_Transmit().

CANIF188: The CAN identifier shall be reconfigured by
Canlf_SetDynamicTxld(). Most significant bit of CAN-ID must be set to one
while passing extended CAN-ID to support mixed mode of operation.

Hint:This function may not be interrupted by Canlf_Transmit() in case of the
same L-PDU handle is affected. This way ensures data integrity of the CAN identifier.
This has to be ensured by the upper layer of Canlif.

CANIF238: The CAN identifiers of the dynamic transmit CAN L-PDUs shall only be
initialized by Canlf_Init(). Canlf_InitController() has no effect on
dynamic transmit L-PDUs to avoid re-initialization of dynamic transmit L-PDUs’ CAN
identifiers by upper layer users.

39 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

7.5 Physical channel view

CANIF049: The CAN Interface API represents a view on all managed physical CAN
channels. Those are used by the CAN State Manager to provide a network view to
the COM Manager used to perform wakeup and sleep request for all physical
channels connected to a single network. A physical channel is linked with one CAN
controller and one CAN transceiver, whereas one or multiple physical channels may
be connected to a single network.

CANIF170: The CAN Interface passes status information provided by the CAN Driver
and CAN Transceiver Driver separately for each physical channel as status
information for the CAN State Manager (refer to 8.5.3 Configurable interfaces), which
has to manage the network specific operation mode.

CANIF272: During this notification process the CAN Interface passes the original
CAN controller or CAN Transceiver parameter to the CAN State Manager.

CAN NM A COM Manager CAN NM B

EFT

Erll B e

Figure 4: Physical channel view definition example A

CANIF105: The CAN Interface supports multiple physical CAN channels. These
have to be distinguished by the CAN State Manager for network control. The CAN
Interface API provides request and read control for multiple underlying physical CAN
channels.

40 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

CANIF169: Moreover the CAN Interface does not consider dedicated types of CAN
physical layers (i.e. low-speed CAN or high-speed CAN), to which one or multiple
CAN controllers are connected.

Physical channel view

CAN Interface

CAN driver O

CAN controller 0 CAN controller 1

Same types of
CAN controllers

Figure 5: Physical channel view definition example B

41 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

7.6 CAN hardware unit

CANIF209: The CAN hardware unit combines one or multiple CAN controllers of the
same type, which may be located on-chip or as external standalone devices. Each
CAN hardware unit is served by the corresponding CAN Driver.

If different types of CAN controllers are used, also different types of CAN Drivers
have to be applied with a unified API to the CAN Interface. The CAN Interface
collects information about the types and number of CAN controllers and their
hardware objects in its mapping tables at configuration time. This allows transparent
and hardware independent access to the CAN controller from upper layers
(CANIF023) (refer to [7.25 Multiple CAN Driver support]).

CANIF210: The following figure shows a CAN hardware unit consisting of two CAN
controllers of the same type connected to two physical channels:

=i =
= =1

Figure 6 Typical CAN hardware unit

42 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7
7.7 BasicCAN and FullCAN reception

CANIF050: An appropriately configured hardware object for FUllCAN operation only
enables transmission or reception of a single CAN ID. Accordingly BasicCAN
operation of one hardware object enables to send or receive a range of CAN IDs.

CANIF164: The hardware acceptance filter is a significant attribute to be configured
of each hardware object. It is used in combination with subsequent software filtering
at BasicCAN reception to filter out receive L-PDUs, which are not part in the list of
predefined receive L-PDUs of the local ECU. For FullCAN reception the hardware
acceptance filter must be configured for full match to the received CAN Identifier.

CANIFO051: The CAN Interface distinguishes between BasicCAN and FullCAN
handling for activation of software filtering. Thus it derives the corresponding
configuration of the CAN hardware objects by CAN Driver's configuration setup. It
defines the number and order of transmit and receive hardware objects, configures
the hardware objects for optimal BasicCAN/FullCAN reception and transmission and
allows free setting of acceptance filters for each BasicCAN objects.

CANIF211: The main difference between BasicCAN and FullCAN operation is in the
need of a Software Filtering mechanism (CANIF025) at reception of incoming PDUs
over BasicCAN hardware objects. At this time the appropriate software filtering
algorithm is executed in dependence on whether a PDU reception took place in a
receive BasicCAN hardware object. At configuration time the relation between
FullCAN/BasicCAN reception and HRH is stored in the CAN Driver's public
configuration setup. The CAN Interface thus derives BasicCAN or FullCAN reception
strategy based on the HRH passed by the API call-out Canlf_RxIndication().

CANIF108: Using an appropriate hardware acceptance filter configuration allows
using BasicCAN receive objects for special upper layer use cases, i.e. diagnostic L-
PDU reception. In this case the CAN Interface detects a reception event in a
BasicCAN object configured for a special L-PDU or a range of special L-PDUs by the
HRH of the Canlf_RxIndication() call-out service. This functionality can only be
established, if the CAN controller mailbox is able to be configured appropriately.
Therefore this functionality depends on the CAN controller type and its configuration.

CANIF107: BasicCAN operation is optional due to it is not necessary, if there are
less receive L-PDUs than available receive FUullCAN Obijects.

CANIF165: Usage of multiple BasicCAN and FullCAN receive objects are supported,
if provided by the underlying CAN controllers. BasicCAN and FullCAN objects can be
used in parallel..

CANIF243: Basically the CAN Interface can be configured to support reception either
of 11 bit StandardCAN or 29 bit ExtendedCAN CAN identifiers on one network. While
passing CAN-ID to CAN Driver during Canlf_Transmit, most significant bit of the
extended CAN-ID shall be set to one to distinguish between standard and extended.

43 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

CANIF281: If needed, StandardCAN and ExtendedCAN shall be also supported as
mixed mode operation, whereas both identifier types can be used mixed at the same
time on the network. By that way, the BasicCAN/FuUllCAN hardware objects have to
be separately configured for either StandardCAN or ExtendedCAN operation. This is
an optional feature. This feature can be realized by different variants of
implementations, no configuration option is available.

CANIF261: To support the usage of cheap BasicCAN CAN controllers mixed mode
operation is supported also for a single receive BasicCAN hardware object. In that
case the software search algorithm (see 7.21 Software receive filter) must be able to
deal with both type of CAN identifiers.

44 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

7.8 Initialization

CANIF032: The CAN Interface provides different API services for both global and
controller specific CAN controller initialization. CAN controller specific initialization
way is necessary in order to ensure different startup behaviors of CAN controllers
that are connected to different CAN networks.

CANIF085: The initialization process is executed by the call of Canlf_Init() for
global initialization. During the initialization process the global variables and data
structures are initialized including flags and buffers only. The CAN Drivers and the
CAN Transceiver Drivers are initialized separately.

CANIF293: All CAN controllers and all the configured buffers in the CAN Interface of
all Tx/Rx L-PDUs can be (re-)initialized by the call of Canlf_InitController().
That means, that this call itself initiates also the controller specific initialization of
underlying CAN Drivers. Subsequently the CAN Interface calls the corresponding
CAN Driver initialization services.

The API service Canlf_InitController() makes it possible to change the
setup of all CAN controller of one CAN network after initialization. For those use
cases multiple CAN controller configurations have to be set up during configuration
time for each CAN controller.

CANIF086: The CAN Interface expects, that after Initialization of the CAN Driver the
CAN controller shall remain in STOPPED Mode. In this mode it is neither able to
transmit nor receive CAN L-PDUs.

CANIF092: Initialization processes shall only take place in STOPPED and UNINT
mode. UNINIT mode is left only if global initialization once after reset is requested,
whereas in STOPPED mode both initialization APIs for global initialization can be
used (refer to [7.19.2.1CANIF_CS_UNINIT]). If initialization is performed in
STARTED mode, the CAN Interface will perform the transition to STOPPED mode.

45 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

ad Activity Diagram /

ConfigSet_CAN_0_0

CAN_0O

ConfigSet CAN 0 1

Set default config set (e.g. CAN_0_0)

ConfigSet_CAN_1 0

CAN_1

ConfigSet CAN_1 1

ConfigSet CAN_1_2

’ Set default config set (e.g. CAN_1_1)

Call by
Application

Canlf_Init

~ C@/

®

End of Canlf_Init

Default Values

Figure 7 Controller specific initialization of CAN Interface and CAN Driver

The figure above shows the relationship between configuration sets CAN_0/CAN_1
referring to different CAN Drivers and configuration sets CAN_0 0, CAN_0_1 and
CAN_1 0 CAN_1 1 referring to single CAN controllers.

46 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7
7.9 Transmit data flow

CANIF160: The transmission API of the CAN Interface is based on L-PDU handles.
Each transmit request is initiated by the calling of the CAN Interface service
Canlf_Transmit(). The access to the L-PDU specific data is organized by
= transmit L-PDU Handle and
» a reference to a structure with PDU related data: SDU length and pointer to the
L-SDU.

ad Transmit data flow

CAN Interface Upper layers call Canlf_Transmit()

Call of Can_Write()

CAN Hardware is free?

CAN Driver

LAl

[No]

[Yes]

CAN Controller «datastore» «datastore»
Copy data into Copy data into Can Interface

CAN hardware transmit buffer

Buffer is free
Set transmit request in
CAN controller

Can_Write() and Canlf_Transmit() return

Figure 8 Transmit data flow

CANIF161: The CAN Interface holds all information about hardware objects
configured for transmission purposes. It calls an interface service Can_Write(),
provided by the CAN Driver, with the transmit Hardware object handle as a
parameter. The requested CAN controller is identified by this handle. The
Can_Write() service carries out the hardware dependent operations and sets up
the transmit request in the CAN controller. If no free hardware objects are available
at time of the transmit request, the CAN Driver Can_Write() service returns
CAN_BUSY and the transmit request is inserted in the transmit buffer. If no resources

47 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

are available in the transmit buffer (refer to [7.12 Transmit buffering]) or the CAN
controller is in STOP mode, the transmit request Canlf_Transmit() returns
E NOT_OK and the production error CANIF_E FULL TX BUFFER respectively
CANIF_E_STOPPED is raised. In this case the upper layer is responsible for the
repeating of the transmit request.

CANIF162: A successful transmission will be indicated to the upper layer by call of
the appropriate upper layer confirmation call-out service
<User_TxConfirmation>().

The reference to the L-PDU specific data is organized via pointer on an L-PDU
structure used as a parameter. This structure contains L-PDU specific data like
L-SDU length and pointer on L-SDU buffer. This interface enables design with central
placed L-SDU buffers in the CAN Interface as well as with distributed placed L-PDU
buffers in the upper layers.

CANIF163: The CAN Interface temporarily stores L-PDUs to be transmitted only in
case of locked CAN controller hardware.

48 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

7.10 Transmit request

The transmit request API (CANIF005) is a common interface for upper layers to send
PDUs on the CAN network. The upper communication layers initiate the transmission
only via the CAN Interface services without direct access to the CAN Driver. The
initiated transmit request is successfully completed, if the CAN Driver could write the
L-PDU data into the CAN hardware.

CANIFO082: If no hardware resources were available at the time of initiation, the state
of the transmit request obtains the state "pending” and the complete L-PDU including
the L-SDU is temporarily stored in the CAN Interface. When the previous
transmission is completed and hardware resources are released the subsequent
transmit requests are carried out. If no hardware and also no software buffers are
available the transmit request is rejected immediately (refer to [7.12 Transmit]).

The upper layer uses the CAN Interface service Canlf_Transmit() to initiate a
transmit request.

The CAN Interface offers two parameters inside the Canlf_Transmit() service
only to localize the L-SDU buffers in the upper layer and make them not global.
These are L-PDU Handle and pointer on the L-PDU Structure which contains all
related parameters like SDU length and pointer to the L-SDU buffer.

The CAN Interface performs following actions for L-PDU transmission:
= Request based transmit handling,
= CAN Driver and hardware object routing

The Canlf_Transmit() service returns E_NOT_OK, if previously the CAN Interface
was not initialized or the all transmit hardware objects contains pending transmit
requests and no transmit buffering was configured [7.12 Transmit buffering].

49 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

7.11 Transmit confirmation
7.11.1 Confirmation after transmission

The upper communication layer may be notified about the performed transmission
via the CAN Interface confirmation services after the successful completion of the
transmission (CANIF007). A previous transmit request is processed successfully, if at
least one remote ECU in the network acknowledges the transmitted CAN Frame in
the CAN acknowledge slot. The CAN Interface is notified by the CAN Driver by call of
Canlf_TxConfirmation(). The call-out service <User_TxConfirmation>()
implemented by the notified upper layer will subsequently be called by the CAN
Interface, if this service is enabled at configuration time for transmission confirmation.

CANIF053: An upper communication layer can be configured to process the
confirmations with a single or multiple call-out services for different L-PDUs or groups
of L-PDUs. All that services are called by the CAN Interface at confirmation of the
corresponding L-PDU transmission. The transmit L-PDU Handle enables the
dispatch between different confirmation services associated to the upper layer target.
This assignment is made statically during configuration.

CANIF109: A single transmit L-PDU can only be assigned to one single confirmation
call-out service Please refer to [10.2.8 CanlinterfaceDispatcherConfiguration].

For L-PDU confirmation the CAN Interface Layer performs protocol dispatching for
the upper layers (CANIF028).

CANIF740: If CANIF_PUBLIC_TXCONFIRM_POLLING_SUPPORT (see CANIF246)
is enabled, the Canlf shall buffer the information about a received TxConfirmation per
CAN controller, if the controller is in state CANIF_CS STARTED.

7.11.2 Confirmation of transmit cancellation

CANIF054: Some CAN controllers provide cancellation of the pending transmit
request inside its transmit object of the CAN controller. This is used to prevent inner
priority inversion. A pending transmit request within a hardware object is canceled
and exchanged by an L-PDU with higher priority. The CAN Driver detects a
successful transmit cancellation by a corresponding confirmation interrupt or polling
dependent on the used CAN controller. The CAN Interface is informed by the
callback notification service Canlf_CancelTxConfirmation() and stores the
aborted old L-PDU inside its transmit buffer as long it is free .

For more details about transmission cancellation please refer to chapter [7.13
Transmit cancellation].

50 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0Rev 7
7.12 Transmit buffering
7.12.1 General behavior

CANIF103: The CAN Interface provides transmit buffers (located in global RAM) to
store whole L-PDUs, which are rejected by the CAN Driver at transmission request.
The CAN Driver can reject transmission requests, when no transmit hardware
resources (CAN RAM) are available within the corresponding CAN controller. No
hardware resources are available, if all hardware transmit objects are is use and the
priority of the new requested L-PDU is lower than all pending ones in the hardware
objects.

CANIF091: During the transmit confirmation the transmit buffer is analyzed handling
whether a pending transmit L-PDU is stored. The transmit confirmation handling is
executed either inside the confirmation interrupt service routine or at task level during
polling by Can_MainFunction_Transmit(). If pending transmit L-PDUs are
available in the transmit buffer, the CAN Interface initiates a new transmit request.
The CAN Driver writes it in the free hardware transmit object.

CANIF068: Generally the transmit buffer consists of single element L-PDU buffers.
Each L-PDU buffer (global RAM) is statically assigned to one transmit L-PDU handle
at configuration time. In this meaning the CAN Interface stores at maximum only just
one element per L-PDU in the transmit buffer. Consequently the recent transmit
request of a dedicated L-PDU overwrites old ones. This handling prevents, that
newer data stored in the transmit buffer may be overwritten from old ones.

f the order of various transmit requests of different L-PDUs shall be kept, transmit
requests of upper layers must be connected to previous transmit confirmation
notifications. That means, that a subsequent L-PDU is requested for transmission by
the upper layers only, if the transmit confirmation of the previous one was notified by
the CAN Interface.

Note: Additionally the order of transmit requests can vary depending on

= the number of configured hardware transmit objects and

= whether transmit cancellation is supported by the CAN controller or not to avoid
inner priority inversion (refer to [8]).

51 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

L-PDU buffer with
single elements

N
7§

V

L-PDU 1 L-PDU 2 L-PDU 3

Transmit requests to CAN
Driver in priority order

Figure 9 Overview about transmit buffer

CANIFO071: The behavior of the transmit buffer differs according to the configuration
setup. The following configuration options are provided by the CAN Interface to be
able to fulfill all requirements mentioned above.

= Option A: no buffer. Transmit L-PDUs from failed transmit requests are lost. The
API Canlf_Transmit() returns the value E_NOT_OK.

= Option B: L-PDU buffering. One L-PDU per element is stored.

CANIF063: The number of all transmit buffers depends on the number of used
transmit L-PDUs defined in the CAN network description file for this ECU. RAM
optimization: in case of using several transmit L-PDUs it is recommended not to
reserve statically one buffer per L-PDU to save RAM. Thus the total amount of
elements is configurable. Are less buffer elements configured than available transmit
L-PDUs, the L-PDU oriented buffer elements are dynamically assigned during
runtime to the transmit L-PDU pending for transmission. Nevertheless only one
element per L-PDU can be stored in the buffers.

CANIF282: Dynamic transmit L-PDUs have to be buffered based on the currently
used CAN ID. No overwrite of pending dynamic transmit L-PDUs with the same L-
PDU IDs and different CAN IDs may occur.

52 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

7.12.2 Buffer characteristics
7.12.2.1 Storage of L-PDUs in the transmit buffer

CANIF113: The CAN Interface tries to store a new transmit L-PDU in the transmit
buffer only, if

= the CAN Driver return CAN_BUSY during a call of Can_Write() or

» a pending transmit request was successfully aborted

7.12.2.2 Storage of L-PDUs is prohibited

CANIF069: Whenever

= transmit cancellation is enabled (see chapter [7.13 Transmit cancellation]),

= the CAN Driver notifies the CAN Interface about an aborted Tx L-PDU and

» the same transmit L-PDU from another upper layer's transmit request is already
stored in the transmit buffer, the 'old' aborted transmit L-PDU is not stored in the
transmit buffer and therefore is lost. Aborted transmit L-PDUs are only stored in the
transmit buffer, if the corresponding L-PDU buffer is free. This behavior ensures, that
always the most recent data is stored in the transmit buffer.

7.12.2.3 Get L-PDU with the highest priority

CANIFO70: The CAN Interface transmits L-PDUs stored in the transmit buffer in
priority order per each HTH.

7.12.2.4 Remove transmitted L-PDU

CANIF183: When the highest prior L-PDU stored in Tx buffer has to be transmitted
during execution of transmit confirmation and Can_Write() returns with success,
this L-PDU is removed immediately from the transmit buffer, before the transmit
confirmation returns. This behavior simplifies the choice of the new transmit L-PDU
stored in the transmit buffer.

7.12.2.5 Initialization of transmit buffers

CANIF184: At Canlf_Init()as well as in case of needed controller specific re-
initialization Canlf_InitControl ler()during the BusOff recovery the initialization
of the transmit buffers is processed. This is necessary to prevent transmission of old
data after restart of the CAN controller.

7.12.3 Data integrity of transmit buffers

CANIF033: Access events to the transmit buffer like storing a new L-PDU or
removing transmitted L-PDU can occur preemptively. Therefore the access to buffers
for all transmit L-PDUs takes place in critical sections (refer to CANIF065).

53 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

CANIFO076: If multiple CAN controllers are used, only the single buffer of the transmit
L-PDU to be stored must be locked, because all L-PDU buffers are organized
separately. This is valid for use cases with a single or multiple HTHSs.

54 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

7.13 Transmit cancellation

CANIFO083: All pending transmit requests are transmitted in priority order. The PDU
priority is implicitly defined by the CAN ID. Other priority definitions are prohibited to
avoid priority inversion at transmit request order. The abort of pending transmit L-
PDUs within the transmit hardware objects is necessary to avoid inner priority
inversion. The mechanism of the transmit processing differs, whether hardware
cancellation is supported or not.

7.13.1 Hardware transmit cancellation not supported or not used

CANIF175: The L-PDU request is stored in the temporary single element transmit
buffer, if the corresponding CAN hardware transmit buffers are busy. If a free
Hardware object is available, the L-PDU is directly transmitted using the
Can_Write() service of the CAN Driver.

Constraint: If all available hardware objects are busy and a L-PDU is pending for
transmission with a higher priority, this L-PDU is delayed until a hardware object is
released.

7.13.2 Hardware transmit cancellation supported and used

CANIF176: At time of a new transmit request the CAN Driver checks, whether a free
hardware object is available. If all hardware objects are in use, the CAN ID of the
requested L-PDU is compared with the CAN ID of all pending L-PDUs in the
hardware transmit objects. If the requested L-PDU has a higher priority than any
pending one, the transmission of lowest prioritized pending transmit L-PDU is
aborted and the new L-PDU is put in the hardware transmit object. The L-PDU to be
transmitted is stored in the transmit buffers. The CAN Driver confirms the transmit
cancellation by the callback service Canlf_CancelTxConfirmation() and
passes the old L-PDU back to the CAN Interface's transmit buffer. See UML diagram
in chapter [9.6].

CANIF114: In dependence of the used CAN controller and the traffic on the network
the cancellation of a pending transmit L-PDU inside a hardware object can occur
asynchronously. The transmit buffers are able to distinguish between aborted
transmit L-PDUs and new pending transmit L-PDUs. This is necessary to ensure to
keep the latest data of several pending transmit L-PDUs with the same L-PDU
handle (refer to CANIF113). In that way a successful cancelled L-PDU is lost, when
the L-PDU transmit buffer was already occupied by a new L-PDU of the same L-PDU
handle.

CANIF084: In case of a transmit confirmation or a transmit cancellation confirmation
from the CAN Driver the next stored transmit L-PDU with the highest priority is sent
out (see chapter [7.12 Transmit buffering]). Because of pre-emptive events of storing
and processing of pending transmit requests in the transmit confirmation context the
transmit request service is called re-entrant. Therefore the CAN Interface locks all
critical accesses by an internal semaphore mechanism or interrupt locks.

55 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

ad Transmit cancellation request/

CAN Interface ‘ Upper layers call Canlf_Transmit()
Call of Can_Write()
CAN Dxiver

CAN Hardware isfree?

NoO]
[ves [No]
Compare priority of new L-PDU and
the pending onesin CAN Hardware

«datastore»
CAN Controller Copy LPDUinto.
CAN hardware |
[New Tx L-PDU has higher priority than at
. ﬁ least one of the pending onesin the CAN
Can Dri
ver hardware]

Request cancellation of
[New Tx L-PDU has lower priority than all pending L-PDU with

Set transmit request in of the pending onesin the CAN hardware] lowest priority
CAN controller J/

[Can_Wite() retumswith E_BUSY]

«datastore»
Copy L-PDU into CAN Interface
transmit buffer

:

Canlf_Tranamit() retumswith E_OK

Figure 10 Transmit cancellation request

In case hardware cancellation is supported and BasicCAN transmission is used inner
priority inversion can be avoided and response time predictability thus can be
increased. At FUllCAN transmission hardware cancellation is not necessary to avoid
inner priority inversion. Please refer to the CAN Driver SWS for more details: [8]
Specification of CAN Driver.

CANIF177: Transmit cancellation can be enabled and disabled by configuration. This
feature can only be activated, as far as transmit buffers enabled. At configuration
time is must be prevented, that transmit cancellation can be enabled, whenever
transmit buffer configuration is disabled.

56 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR Specification of CAN Interface

V3.2.0
R3.0 Rev 7
ad Transmit cancellation confirmation /
Call
Canlf_TxCancelConfirmation()
Check, if there are pending Tx L-
PDUs of the same CanTxPdulD as)
the aborted one in the transmit [Transmit CAN Interface
buffer waiting for transmission. buffer is free]
«datastore»
= lled Copy data into
ance. © transmit buffer
transmit L-PDU -
islogt [Transmit buffer is full]
. . E Call Can_Write()
Tx L-PDU of highest priority,)
(lowest CAN D) is CAN Driver
transmitted out of the Tx
L-PDU buffer.
Copy L-PDU data into free
CAN hardware object
Can_Write() and
CanlfTxCancelConfirmation()
returns
Figure 11 Transmit cancellation confirmation
57 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

7.14 Receive data flow
7.14.1 Location of PDU data buffers

CANIFO57: According to the AUTOSAR Basic Software Architecture the SDU data
buffers are placed in the upper layer communication stacks, i.e. AUTOSAR COM,
CAN NM, CAN TP, DCM), where the corresponding data will be evaluated and
processed. This means, all transmit as well as all receive SDU buffers are located in
these upper layers.

7.14.2 Receive data flow

CANIF134: The usage of the hardware object handle as a parameter in the receive
indication call-out service Canlf_RxIndication()impacts the design of receive
data flow in the CAN Interface. The received data is hardware dependent (nibble and
byte ordering, access type) and allocated to the lowest layer in the communication
system — to the CAN Driver.

The hardware object handle serves as a link between the CAN Driver and the data
customer in the upper layer. The hardware object handle identifies one memory
hardware object, where a new CAN L-PDU was received. The target upper layer
memory buffer location is derived from the L-PDU Handle, when corresponding L-
PDU passed the software filtering, the L-PDU handle was identified and the DLC
Check was successfully carried out. In this way the hardware object handle from one
side and the L-PDU Handle from another provide a source and destination
information for the copying session.

CANIF098: Initially after detection of a reception event the CAN Driver stores the
incoming data in an own temporary buffer. If a separate L-SDU normalization is not
necessary according to the data structures of the used CAN controller, temporary
buffering can be omitted. Thus this feature is up to the CAN Driver. The CAN
interface is not able to recognize, whether the CAN Driver uses temporary buffering
or a direct hardware access.

CANIF112: The CAN hardware object of the CAN mailbox is locked (refer to
CANIF065) until the end of copy process to the temporary or upper layer buffer. The
hardware object will be immediately released after the receive indication call-out of
the CAN Interface returns to avoid loss of data.

CANIF135: In case temporary buffering is used the hardware object remains locked
until the data is read out and copied to the temporary buffer. Then the CAN controller
is able to perform the next occurred receive event. The pointer to this temporary
buffered L-SDU is used as a parameter in the call-out service <User_Rx
Indication>(). In this way the pointer on the received L-SDU reaches the data
customer in the upper layer. The indication service delivers the target L-PDU handle
as parameter. The destination memory buffer is reconstructed from the target L-PDU
handle and the communication layer starts data copy. The temporary buffer with the
currently received L-SDU is locked all time until the end of copying. After return of
CAN Interface's indication services the CAN Driver is responsible for unlocking.

58 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

CANIF146: In case no temporary buffer is used the hardware object remains locked
until the data is read out and the indication service returns. In this case the parameter
of the receive indication call-out refers to the locked CAN RAM with received data.

CANIF147: Both underlying components, CAN Driver and CAN Interface, access the
same temporary intermediate buffer, either the CAN RAM or the temporary buffer in
the CAN Driver. The CAN Driver may update the L-SDUs and the CAN Interface
service Canlf_RxIndication() is used to pass access location of the received
data to the upper layer. Before this notification is called, the CAN Driver is
responsible, that this temporary intermediate buffer (refer to [9.7 Receive indication
(interrupt mode)] and [9.8 Receive indication (polling mode)]) is locked.

59 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

CAN Controller Receive Interrupt

CAN Driver Data [Yes] «datastore»
normalization Temporary bufferin CAN
necessary? Driver
[No]

CAN Interface (Call Canlf_RxIndicationo)

Rx L-PDU [Yes,
X L- X
BasicCAN] -
received in Software filtering
BasicCAN ?,
[No, FullCAN]
[Yes] DLC
Check
enabled [L-PDU
2 passed]
[No]
DLC [No]
Check
failed

[L-PDU not passed]

Call Dem_ReportErrorStatus() with
Eventld == CANIF_E_INVALID_DLC

Call <User_RxIndication>() to
upper layers

«datastore»
Upper Layer Copy data to L-PDU
buffer

<User_RxIndication>() returns
Canlf_RxIndication() returns

Figure 12 Receive data flow

60 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

7.15 Receive indication

CANIF212: After successful reception of a new CAN L-PDU, which passed the
hardware acceptance filtering, it is evaluated for acceptance and prepared for later
access by the upper communication layers (CANIF012). Upper layers are notified
about this asynchronous event, if this CAN L-PDU is successfully detected and
accepted for further processing.

During the reception validation first of all the CAN ID of the received L-PDU is
compared with L-PDU IDs assigned for further processing in the local ECU. This
treatment is called Software Filtering and takes only place for BasicCAN reception
(refer to [7.7 BasicCAN and FullCAN reception]).

Afterwards DLC check is processed, if it was enabled during configuration. The DLC
Check compares the data length of the received L-PDU with the predefined
referenced data length. For further details please refer to chapter [7.22 DLC check].

If the L-PDU passes all validation mechanisms, it is dispatched and the
corresponding upper layer is notified. After notification the upper layer may access
the data in order to copy them into its own specified memory buffer.

CANIFO055: In the event triggered approach all above described operations will be
initiated on receive interrupt level. If the basic software runs in polling mode the CAN
Driver polling process is responsible for recognizing of new events like reception.
After detection of a new reception event the CAN Interface takes the control over the
subsequent processing by call of the service Canlf _RxIndication(). In
dependence to the used notification method (interrupt/polling), the call context of the
receive indication can differ: the receive interrupt service itself or an activated task,
which calls the corresponding services.

CANIF159: The mentioned note CANIFO053 in chapter [7.11 Transmit confirmation] is
significant for the receive indication processing too.

On L-PDU reception the CAN Interface Layer performs:

= Software Filtering (only BasicCAN),

= DLC check (optionally),

» Receive data dispatch and

= Protocol dispatching for upper layer receive indication.

CANIFO056: The upper layers are notified by <User_RxIndication>(). Depending
on the different needs of provided information (i.e. AUTOSAR COM, CAN TP) the
provided parameters of the corresponding API call-out services can differ. Therefore
the CAN Interface can handle several different types of indication call-out services.
Please refer to [8.5 Expected interfaces].

CANIF110: A single receive L-PDU can only be assigned to a single indication call-
out service.

61 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

7.16 Read received data

CANIF196: The read received data APl (CANIF194) is a common interface for upper
layers to read CAN L-PDUs previously received from the CAN network. The upper
communication layers initiate the receive request only via the CAN Interface services
without direct access to the CAN Driver. The initiated receive request is successfully
completed, if the CAN Interface write the received CAN L-PDU into the upper layer
buffer.

CANIF197: The API service Canlf_ReadRxPduData() makes possible to read out
data without dependence of reception event. When it is enabled at configuration,
necessarily no receive indication service for the same CAN L-PDU for data copy has
to be configured. If this indication notification is needed by the upper layer, it can be
enabled, too.

By this way the type of mechanism to receive CAN L-PDUs can be chosen at
configuration time according to the needs of the upper layer, where the
corresponding receive CAN L-PDU belongs to. For details please refer to [9.9 Read
received data].

CANIF198: Inside the CAN Interface a single static receive buffer is necessary for
each received CAN L-PDU. This buffer is reserved, if the receive request API is
enabled at pre-compile time configuration and the corresponding Rx buffer is enabled
for the receive L-PDU.

CANIF199: This buffer is filled after the L-PDU is successfully received after e.g.
passing the software filtering. During the call of Canlf_ReadRxPduData() the
receive buffer for BasicCAN L-PDUs is internally locked for access by the calling
upper layer.

62 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7
7.17 Read notification status

CANIF200: In addition to the notification call-outs the APl service
Canlf_ReadTxNotifStatus() is provided to read the transmit confirmation status
of any transmit CAN L-PDU. The API service Canlt_ReadRxNotifStatus() is
provided to read the receive indication status of any receive CAN L-PDU.

CANIF203: This API service can be enabled/disabled globally or per CAN L-PDU at
pre-compile time configuration.

CANIF204: If this API service is enabled, the CAN Interface sets the notification
status inside during call of Canlf_TxConfirmation() or Canlf_Rx
Indication()for all transmit and receive CAN L-PDUs.

CANIF205: The notification status is cleared after it is read by upper layer. That
means: when Canlf_Tx/RxReadNotifStatus()is called, the CAN L-PDU
notification status inside the CAN Interface is reset. This 'read-and-consume’
behavior ensures, that at least one successful transmit or receive event occurred
after last call of this service.

63 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

7.18 Data integrity

CANIF058: The CAN software stack determines which data coherency and
consistency strategy has to be used. The CAN Interface provides an automatic data
integrity mechanism, in which a read always returns the value written by the most
recent write. An attempt to update the data in the user memory buffers as well as in
the internal CAN Interface buffers shall be done with respect on possible changes
done in the context of an interrupt service routine or other preemptive events.
Preemptive events probably occur either from preemptive tasks, multiple CAN
interrupts, if multiple physical channels i.e. for gateways are used, or in case of other
peripherals or network systems interrupts, which have the needs to transmit and
receive CAN L-PDUs on the network.

Therefore the CAN Interface needs to guarantee internal data integrity.

For this purpose i.e. CAN controller interrupt locks may be used. If polling mode is
used also there can be a preempting process treatment that may interrupt the
subsequent running.

CANIF064: Handling of shared transmit and receive L-PDU buffers are critical issues
for the implementation of the CAN Interface. Therefore the CAN Interface must
ensure data integrity and thus use appropriate mechanisms for access to shared
resources like transmission/reception L-PDU buffers. Preemptive events, i.e.
transmission and reception event from other CAN controllers must be protected
against each other.

CANIF065: The CAN Interface may i.e. use the CAN Driver services to enable
(Can_EnableControllerinterrupts())and disable (Can_Disable-
Controllerinterrupts()) CAN interrupts and its notifications at entry and exit
of the critical sections separately for each CAN controller. If there are common
resources for multiple CAN controllers, the entire CAN Interrupts must be locked.
These sections must not take a long time in order to prevent serious performance
degradation. The copying of data, the change of static variables, counters and
semaphores shall thus be carried out in these critical sections. It is up to the
implementation to use appropriate mechanisms to guarantee data integrity,
interruptability and reentrancy.

CANIFQO77: The transmit request APl Canlf_Transmit() must be able to operate
re-entrant to allow multiple transmit request calls caused by different preemptive
events of different L-PDU Handles. The CAN Driver transmit request API
Can_Write()operates re-entrant as well.

64 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

7.19 CAN Controller mode
7.19.1 General functionality

CANIF059: The CAN Interface provides services for controlling the communication
mode of all supported CAN controllers represented by the underlying CAN Drivers.
That means that all CAN controllers are controlled by the corresponding provided API
services to request and read the current controller mode.

Like the other CAN Driver services even the CAN controller status information are
accessible only via the CAN Interface services.

The CAN controller status may be changed at request of the upper layer by the
calling of Canlf_SetControllerMode() service. The request is validated and
passed by the CAN Interface by the CAN Driver API to the addressed CAN controller
The consistent management of all CAN controller connected at one CAN network us
the task of the CAN State Manager. By this way the CAN State Manager is
responsible to set all CAN controllers of one CAN network sequentially to sleep mode
or to wake them up.

Because of CDD, the names of the callback functions of the Communication Services
are configurable (see chapter 8.6.3). In the following paragraph the usual functions of
CanSm and EcuM are mentioned.

When a CAN controller signals the network event “BusOff’, the Canlf function
Canlf_ControllerBusOff() is called, which in turn notifies the CanSm via the
callback function CanSm_Control lerBusOff(Controllerld).

When a CAN controller signals the network event “wake-up”, first of all the function
EcuM_CheckWakeup(wakeupSource) of the Integration Code is called, which in
turn calls the Canlf function Canlf_CheckWakeup(wakeupSource). Then the
Canlf checks, if wakeupSource is a CAN controller or a CAN transceiver. The wake-
up source then is checked by an appropriate function, if it has been the real wake-up
source (see CANIF181, CANIF285, necessary for multiple sources defined by
wakeupSource e.g. shared interrupt). If this check was positive for a wake-up
source, then the EcuM is notified by callback function
EcuM_SetWakeupEvent(sources).

When a wake-up event (detected by EcuM_SetWakeupEvent(sources)) shall be
validated, the activates corresponding CAN controller and CAN transceiver and calls
afterwards Canlf service Canlf_CheckVal idation(WakeupSource). If the wake-
up IS valid (see CANIF182, CANIF286), service
EcuM_Val idateWakeupEvent(WakeupSource) of EcuM is called.

The Communication Service which is called belongs to this service defined during
configuration (see CANIF250). In this way the EcuM module as well as the CanSm
module are able to control the system behaviour concerning the BusOff recovery or
wake-up procedure.

7.19.2 CAN Controller operation modes

65 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

The CAN Interface stores the operation mode of the CAN controllers according to
successful mode transitions after Can_SetControl lerMode(). According to the
requested operation mode by the CAN State Manager the CAN Interface translates
them into the right order of mode transitions for the CAN controller.

CANIF081: The needed network related state machine is implemented in the CAN
State Manager. Refer to [11] Specification of CAN State Manager. The CAN Interface
only stores the requested mode and executes the requested transition.

7.19.2.1 CANIF_CS_UNINIT

CANIF213: The CAN Interface is not initialized. The Ecu State Manager (EcuM) has

to consider, that also the CAN driver(s) and CAN Controller(s) shall also not be
initialized.

7.19.2.2 CANIF_CS_STOPPED

PowerOff

PowerOn Reset

CANIF_CS_UNINT

Canlf_Init()
Canlf_SetControllerMode
[CANIF_CS_STOPPED] / CANIF_CS_STOPPED \
@ + do/ Canlf_SetControllerMode(Controller, CAN_T_STOPPED)
Hi + on ewvent / Wakeup over CAN network
istory
1
1
1
1
1
Action: The CAN controller device isHALTED. The CAN
controller is not able to receive or to transmit CAN L-PDUs on the
network.
Precondition: the CAN transceiver must remain in normal mode.
It can be set in standby/sleep mode only after stop of the CAN
controller.
Figure 13 Activities of STOPPED mode transition
66 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

CANIF214: The CAN Interface suppresses subsequent transmit requests to the CAN
Driver because the CAN controller shall be prevented from sending CAN L-PDUs. If
the used CAN controller provides a STOPPED mode, it will be used.
Canlf_Transmit() returns E_NOT_OK. The PDU Mode is set to CANIF_OFFLINE
(refer to [7.20 PDU channel mode control]). All pending transmit requests are
canceled. All contents of transmit buffers are deleted. In the mode
CANIF_CS_STOPPED no CAN L-PDUs can be received.

CANIF298: STOPPED Mode is entered automatically for that CAN controller, where
a BusOff event has been signaled by the corresponding CAN Driver.

The paragraph below reflects 4 main important uses cases described below for
transition to CANIF_CS_STOPPED mode. Concerning each use case the occurred
event at the CAN Interface (call of it's API) and the subsequent required action is

explained:

Use Case Initialization:

Event: Canlf_InitQ

Action: Internal initialization of the CAN Interface.

Use Case STOP Network:
Event: Canlf_SetControllerMode(Controller, CANIF_CS STOPPED)
Action: Can_SetControllerMode(Controller, CAN_T _STOPPED)

Use Case WAKEUP Network:

Event: Canlf_SetControllerMode(Controller, CANIF_CS STARTED)
Action: Can_SetControllerMode(Controller, CAN_T_WAKEUP).

Use Case BusOFF:

Event: CAN controller went BusOFF

Action: CAN Diriver ensures, that CAN controller is STOPPED

7.19.2.3 CANIF_CS_STARTED

stm Mode CANIF_CS_STARTED /
Canlf_SetControllerMode
[CANIF_CS_STARTED] 4 CANIF_CS STARTED N\
@ + do/ Can_SetControllerMode(Contraller, CAN T _STARTED)
History
Action: CAN Controller device isgarted and is able to receive
and tranamit CAN PDUs on the network
Precondition: the CAN transceiver hasto be set in normal mode.
CAN Driver and CAN Interface are already initialized.
67 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7
Figure 14 Activities of STARTED mode transition

CANIF215: The controller is fully operational at the CAN network; all transmit
requests thus are passed to the CAN Driver. CAN L-PDUs can be received and are
notified to upper layers. The PDU mode is set to CANIF_ONLINE.

To start a network following API call event and subsequent action of the CAN
Interface is required to perform the transition to CANIF_CS_STARTED mode:

Use Case START Network:
Event: Canlf_SetControllerMode(Controller, CANIF_CS STARTED)
Action: Can_SetControllerMode(Controller, CAN_T STARTED)

7.19.2.4 CANIF_CS_SLEEP

Canlf_SetControllerMode
[CANIF_CS_SLEEP] /"~ CANIF_CS_SLEEP N\

@ + do/ Canlf_SetControllerMode(Conrtoller, CANIF_CS_SLEEP)

History
\

Canlf_ControllerWakeup() [On Event]
/Wakeup over CAN network

4 CANIF_CS_STOPPED N\

+ do/ Canlf_SetControllerMode(Controller, CAN_T_STOPPED)
+ on event / Wakeup over CAN network

Action: The CAN controller device is set to sleep mode. Afterwards the
CAN controller is able to wakeup the CPU, if dominat bits are detected
on the RX line.

Precondition: the CAN transceiver hasto be set low power mode and it
hasto provide a falling edge to dominat level at RX line.

Figure 15 Activities of SLEEP transition

68 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

CANIF216: The CAN controller is set to SLEEP mode and its own wakeup interrupts
are enabled, if supported. As long as wakeup functionality is not provided by the CAN
controller, the CAN Driver encapsulates it.

To set network to SLEEP following API call event and subsequent action of the CAN
Interface is required to perform the transition to CANIF_CS_SLEEP mode:

Use Case SLEEP Network:

Event: Canlf_SetControllerMode(Controller, CANIF_CS SLEEP)
Action: Can_SetControllerMode(Controller, CAN_T_SLEEP).

7.19.2.5 BUSOFF

BusOff is a transition from STARTED to STOPPED mode.

stm Event BUSOFF /

[Canif_ControllerBusOff()] / BUSOFF \
. + entry / BusOff event, call of Canlif_ControllerBusOff()
BusOff Event in CAN Hardware (do/ CanSM—mrdlerBUSOﬁO

BugOff isa trangtional gate.

Event: CAN controller goes automatically BusOff, if the
intemal TxEror counter exceeds 255. The CAN controller
notiifiesthe CAN driver about the BusOff event.

Action: the CAN controller hasto be regarted and is back
online after 128x11 recessve bitsreceived on the network

Figure 16 Activities of BUSOFF transition

CANIF739: If CANIF_PUBLIC_TXCONFIRM_POLLING_SUPPORT (see
CANIF246) is enabled, the Canlf shall clear the information about a TxConfirmation
(see CANIF740), when callback Canlf_ControllerBusOff(Controller) is
called.

7.19.3 Controller mode transitions

69 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

CANIFO078: The API for state change requests to the CAN controller behaves in a
synchronous manner without any asynchronous notification via call-out services. The
real transition to the requested mode occurs asynchronously based on setting of
transition requests in the CAN controller hardware, i.e. request for sleep transition
CANIF_CS_SLEEP. After successful change to SLEEP mode the CAN Driver service
Can_SetControllerMode() and as well the CAN Interface
Canlft_SetControllerMode()returns with E_OK. In case of an unsuccessful
mode transition the CAN Interface returns E_NOT_OK. Mode transitions
CANIF_CS STARTED and CANIF_CS_STOPPED are treated synchronously as well.
This synchronous behavior makes it possible for i.e. the CAN State Manager to
handle the mode transitions of the CAN networks.

CANIF093: The current CAN Interface operation mode can be polled from upper
layers by Canlf_GetControllerMode().

CANIF079: Sleep and Wakeup mode is not supported by all types of CAN
controllers.These modes are encapsulated by the CAN Driver by providing hardware
independent operation modes over its interface, which has to be managed by the
CAN Interface. Whereas the transitions to STARTED and STOPPED mode returns
synchronously without subsequent check, only during the request to sleep transition
the CAN Driver checks the underlying CAN controller, whether the sleep request was
executed successfully or not. In this case transition request returns immediately,
whereas the sleep transition of the CAN controller is delayed. The transition to sleep
mode is aborted after a fixed time the transition was not successful. The CAN Driver
may release directly a wakeup interrupt during the transition request, when CAN L-
PDUs are transmitted or received at the same time.

This treatment guarantees, that the CAN State Manager is informed immediately
about the transition to SLEEP mode for handling the CAN Transceiver and enabling
the wakeup interrupt.

CANIF080: After transition to STARTED mode CANIF_CS_STARTED all transmission
and reception events are processed. After request of STOPPED mode
CANIF_CS _STOPPED the CAN Interface suppresses all following transmission
requests and no reception events are further processed.

CANIF089: The CAN Interface distinguishes between internal initiated CAN
controller wake up request (internal request) and network wake up request (external
request). The first one is an internal synchronous request; the second is a CAN
controller event. Only network initiated wakeups are notified by the wakeup
notification as far as it is supported by the used CAN controllers.

CANIF090: If the physical ECU belongs to multiple networks, each CAN network

must be controlled by its own station management (CAN State Manager) and/or
network management (CAN NM).

7.19.4 Wakeup and validated wakeup events

70 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

CANIF227: If the ECU shall support wakeup over CAN network, regardless of the
used wakeup method (directly about CAN controller or CAN transceiver), the CAN
Driver and the corresponding CAN controller has to be set to SLEEP mode. Only this
mode ensures that the CAN controller is stopped, thus the wakeup interrupt can be
enabled.

CANIF180: The CAN Interface supports wakeup notification only, if
= underlying CAN controller provide wakeup support and wakeup is enabled by
CAN Driver configuration.
= underlying CAN transceiver provide wakeup support and wakeup is enabled
by CAN Transceiver Driver configuration.
= the CAN Interface is in the mode CANIF_CS SLEEP.

CANIF181: If wakeup support is enabled, CAN Interface is notified by the ECU
firmware about a general CAN wakeup event by the call-out service
Canlf_CheckWakeup(). This API is invoked in interrupt as well as in polling mode.

CANIF285: The CAN Interface queries at all CAN Drivers or CAN Transceivers
according to the configuration, which exact CAN hardware device caused the
wakeup event over CAN.

The corresponding device driver returns to the CAN Interface and provides the
requested wakeup device information. For details see respective UML diagram in the
chapter “CAN Wakeup Sequences” of document [15] Specification of ECU State
Manager.

CANIF231: After notification of a wakeup event the CAN Interface shall not start the
CAN controller automatically. The CAN State Manager must set the CAN Interface
from STOPPED into STARTED mode for the corresponding CAN controller. This is
required, because wakeup validation can take place only in STARTED mode to be
able to detect the first received CAN message after a wakeup event.

CANIF232: After a wakeup event occurred, the CAN Interface stores this wakeup
event until the wakeup event is validated. During validation of the wakeup event and
also during re-initialization of the CAN Interface all temporarily stored wakeup events
are reset.

Attention: the CAN Interface notifies the upper layers about received messages after
transition to CANIF_CS_STARTED. The CAN Interface does not wait for processing
notifications until a wakeup event was successfully validated.

CANIF226: Validation wakeup only takes place, if
= wakeup support is enabled.
= the CAN Interface is in the mode CANIF_CS_STARTED.

CANIF286: After CAN Interface has been notified by an wakeup event, it enables the
detection for CAN wakeup validation. Therefore the CAN Interface stores a
successful validation, whenever the indication callback is called by the CAN Driver to
notify about the first CAN L-PDU successful received after the wakeup event
occurred.

71 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

CANIF182: The CAN Interface notifies the ECU State Manager about a validated
wakeup event by call of <User_ ValidationWakeupEvent>() during call of
Canlf_CheckVvalidation(). For details see respective UML diagram in the
chapter “CAN Wakeup Sequences” of document [15] Specification of ECU State
Manager.

72 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

7.20 PDU channel mode control
7.20.1 PDU channel groups

CANIF060: Each L-PDU is assigned to one dedicated physical CAN channel
connected to one CAN controller and one CAN network. By this way all L-PDUs
belonging to one physical channel can be controlled on the view of handling logically
single L-PDU channel groups. Those logical groups represent all L-PDUs of one
ECU connected to one underlying CAN network.

The figure below shows one possible usage of L-PDU channel group and its relation
to the upper layers and/or networks:

CANIFO088: An L-PDU can only be assigned to one channel group.

CANIF217: Typical users like PDU Router or the network management are
responsible for controlling the PDU operation modes.

CAN NM A CAN NM B

Channel Channel Channel Channel
Network 0 Network 0 Network 1 Network 1
TxPath RxPath TxPath RxPath

CAN Interface

CAN device drivers

CAN controller/ CAN controller/
transceiver 0 transceiver 1

Network A
Network B

Figure 17 Channel L-PDU groups

7.20.2 PDU channel modes

CANIF027: The CAN Interface provides services to prevent the processing of
= all transmit L-PDUs of the own ECU belonging to one logical channel,
= all receive L-PDUs of the own ECU belonging to one logical channel,

73 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

= all transmit and receive L-PDUs of the own ECU belonging to one logical
channel
= even all L-PDUs.

Every PDU mode change can be requested for transmission and reception path
separately or commonly. A change of the channel mode has only an effect during the
network mode CANIF_CS_STARTED (refer to [0:]). The change of the channel mode
is performed but in STOP, SLEEP or UNINIT state no L-PDUs are transmitted nor
received since the CAN controller is not in STARTED mode.

7.20.2.1 OFFLINE Mode

CANIF073: In offine mode all L-PDUs of the corresponding channel are prevented
for transmission and reception. Thus at transmission no transmit requests are passed
to the CAN Driver and no transmit confirmation notifications are processed. At
reception no receive indications to upper layers are executed. The transmit buffers
are cleared. Transmit requests return E_NOT_OK. The transmit path as well the
receive path is offline. This is the default channel mode after initialization.

CANIF118: The BusOff natification is automatically and thus implicitly suppressed
due to in OFFLINE mode no L-PDUs can be transmitted and thus the CAN controller
IS not able to go in BusOff mode (CAN specification). If pending L-PDUs in the CAN
hardware are transmitted after change to OFFLINE mode and BusOff occurs, the
BusOff notification is not suppressed. The wakeup notification is not affected
concerning mode changes between ONLINE/OFFLINE.

7.20.2.2 ONLINE Mode

CANIFOQ74: Probably appearing confirmations from previous transmit requests to the
CAN Diriver released in Tx online mode are not suppressed by the CAN Interface.

CANIFO075: The online mode enables the reception and/or the transmission path to
the CAN Driver. It re-activates the assignment of transmit and receive PDUs to a
defined physical channel. The online mode cancels the lock made by offline mode
call. Every change back to offine mode clears the transmit buffers. The appropriate
CAN Interface service is called Canlf_SetPduMode().

7.20.2.3 ONLINE/OFFLINE Mode for Tx/Rx path

CANIF096: The Tx/Rx online mode and the Tx/Rx offline mode only offers the
possibility to change the channel mode on the Rx/Tx paths separately. This modes
behave the same like online/offline, but only for the transmit L-PDUs or the receive L-
PDUs of the corresponding channel.

CANIF095: The CAN Interface provides information about the status of
‘online'/'offline’ service when required via the service Canlf_GetPduMode().

74 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUT(\ SAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

Figure 18 PDU channel mode control
7.20.2.4 OFFLINE ACTIVE Mode

CANIF072: The CAN Interface provides simulation of successful transmission by the
offline active mode. This mode only affects the transmission path. By this mode
confirmation handling is performed synchronously at the end of the transmit request,
but no transmit request is passed to the CAN Driver. On logical view the offline active
mode is a sub-mode of the offline mode, whereas it can be enabled in online as well
as in offline mode.

The offline active mode is enabled by call of Canlf_SetPduMode (CANIF_
SET_TX_OFFLINE_ACTIVE). This mode can be left by CANIF_SET_TX_ONLINE or
CANIF_SET_TX_OFFLINE.

This functionality is useful realizing special operating modes (i.e. diagnosis passive
mode) to avoid bus traffic without impact to the notification mechanism and thus is
typically used for diagnostic usage.

Note: During the Tx Offline Active mode the upper layer has to handle the execution
of the confirmations. The confirmation handling is executed immediately at the end of
the transmit request.

The figure above shows a diagram with possible L-PDU channel modes. Each L-
PDU channel can be offline (no transmission) or online (activated transmission). A
simulation of the successful sending (transmit confirmation) is supported in the offline
mode and called offline active mode. The default state of L-PDU channel in offline
mode thus is passive. No simulation of the successful transmission takes place.

75 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

7.21 Software receive filter

CANIF025: Not all L-PDUs, which may pass the hardware acceptance filter and
therefore are successful received in BasicCAN hardware objects, are defined as
receive L-PDUs and thus needed from the corresponding ECU. These L-PDUs are
filtered out and further software processing is prohibited.

CANIF094: Certain software filter algorithms are provided to optimize software filter
runtime. The approach of software filter mechanisms is to find out the corresponding
L-PDU handle from the HRH and CAN ID currently being processed. After the L-PDU
handle is found it enables upper layers to access L-PDU information directly.

7.21.1 Software filtering concept

CANIF234: The configuration tool handles the information about hardware
acceptance filter settings. The most important settings are the number of the L-PDU
hardware objects and their range. The outlet range defines, which receive L-PDUs
belongs to each hardware receive object. The following definitions are possible:

= a single receive L-PDU (FullCAN reception),
= a list of receive L-PDUs or

= one or multiple ranges of receive L-PDUs can be linked to a hardware receive
object (BasicCAN reception).

CANIF237: For definition of range reception it is necessary to define at least one Rx
L-PDU with the CAN Id inside the defined range. The range is defined by its upper
and lower limit CAN Id.

CANIF300: A range of CAN Ids which shall pass the software receive filter shall be
defined by its upper limit (see CANIF_HRHRANGE_UPPER_CANID) and lower limit
(see CANIF_HRHRANGE_LOWER_CANID) CAN Id.

CANIF301: Each configurable range of CAN Ids (see CANIF300), which shall pass
the software receive filter, shall be configurable either for STANDARD or EXTENDED
CAN Ids via CANIF_HRHRANGE_CANIDTYPE.

CANIF030: Receive L-PDUs are provided as constant structures statically generated
from the communication matrix. They are arranged according to the corresponding
hardware acceptance filter, so that there is one single list of receive CAN Identifiers
for every hardware receive object (HRH). The corresponding list can be derived by
the HRH, if multiple BasicCAN objects are used.

The subsequent filtering is the search through one list of multiple CAN Identifiers by
comparing them with the new received CAN Identifier. In case of a hit the receive L-
PDU handle is derived from the found CAN Identifier.

76 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V3.2.0
R3.0 Rev 7

Hardware
Receive Handle

4

Rcv Handle Nr. | | Rev Handle Nr. | | Rev Handle Nr. Rcv Handle Nr. Rcv Handle Nr. | | Rev Handle Nr. | | Rev Handle Nr. | | Rev Handle Nr.
CAN Id CAN Id CANId CAN Id CAN Id CAN Id CAN Id CAN Id
DLC DLC DLC DLC DLC DLC DLC DLC
Upper Layer ID | | Upper Layer ID | | Upper Layer ID Upper Layer ID Upper Layer ID | | Upper Layer ID | | Upper Layer ID | | Upper Layer ID
*destination *destination *destination *destination *destination *destination *destination *destination
list end flag=0 list end flag=C list end flag=1 list end flag=1 list end flag=0 list end flag=C list end flag=0 list end flag=1

Figure 19 Software filtering example

7.21.2 Software filter algorithms

CANIF097: The choice of suitable software search algorithms it is up to the
implementation. According to the wide range of possible receive BasicCAN
operations it is recommended to offer several search algorithms like linear search,

table search and/or hash search variants to provide the most optimal solution for
most use cases.

77 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

7.22 DLC check

CANIF026: The DLC of the received L-PDU is compared with the expected, statically
configured DLC for the received L-PDU. The statically defined DLC value shall be
derived from the size of used bytes inside this L-PDU. The DLC value may not be
necessarily that DLC value defined in the CAN communication matrix and used by
the sender of this CAN L-PDU. All CAN L-PDUs with a DLC equal or greater then the
expected DLC will be accepted.

CANIF297: The number of bytes that are later on copied corresponds to the
expected DLC of the received L-PDU, not to the current received DLC.

CANIF296: All upper protocol layers, which operate with a dynamic length and
managing the own data buffer for receive data, the DLC check shall be disabled by
setting DLC to NULL. In that case the DLC check always passes.

CANIF262: Also in case of DLC check is disabled, the data length passed the
indication notification to the upper layers, which copies the data to its own buffer
always shall correspond to the current received DLC value and not to the predefined
expected DLC. By this way always the current received data are copied although the
DLC check is disabled by setting the expected DLC value to NULL.

CANIF166: The expected DLC may be defined for one specific L-PDU or a group of
PDUs.

CANIF168: If the DLC check fails, only the DEM shall be notified. Other upper layers
are not informed. No receive indication is executed.

CANIF746: If the DLC Check is enabled and Canlf_RxIndication receives a PDU with
CanDlc smaller than the configured CanlfCanRxPduDlc, the Canlf shall notify the
DEM and not execute any receive execution functions.

CANIF031: The DLC Check shall be enabled or disabled globally by CAN Interface
configuration for all used CAN Driver.

78 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7
7.23 L-PDU dispatcher to upper layers

CANIF024: Upper Communication Layers use the unified interface of the CAN
Interface for transmission and reception.

At reception side each L-PDU handle belongs to one single upper layer as
destination for the corresponding receive L-PDU or group of such L-PDUs. This
relation is assigned statically at configuration time. The task of the L-PDU dispatcher
inside of the CAN Interface is to find out the customer for a received L-PDU and to
dispatch the indications towards the found upper layer.

At transmission side the L-PDU dispatcher has to find out the corresponding Tx
confirmation call-out service of the target upper layer.

Receive Indication as well as transmit confirmation notifications are processed via
the corresponding call-out services. These call-out services may exist several times
with different names defined in the notified upper layer modules. Thus every upper
layer module receiving CAN L-PDUs can be notified by its own indication service, for
example <User_RxIndication>().These services are statically configured,
depending on the layers that have to be served.

79 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

7.24 Polling mode

The polling mode provides handling of transmit, receive and error events occurred in
the CAN hardware without the usage of hardware interrupts. Thus the CAN Interface
and the CAN Driver provides services for detection and execution corresponding
hardware events.

The CAN Interface API's characteristic and syntax does not change in polling mode.
By this way upper layers are abstracted from the strategy to detect hardware events.
If different CAN Drivers are in use, the calling rates shall be harmonized during
configuration setup and system integration.

These services are able to detect new events that occurred in the CAN Hardware
since its last call. The CAN Interface notification services for forwarding of detected
events by the CAN Driver are the same like for interrupt operation:

» Receive service — detects new PDU reception events and calls
Canlf_RxIndication().
= Transmit service — controls new confirmations and calls

Canlf_TxConfirmation().
= Error service — detects errors occurred during PDU processing (BusOff) and
calls Canlf_ControllerBusOff().

Please refer to chapter [8.4] for further details to these notification callbacks.

The calling context of the notification callbacks differs between interrupt and polling
mode. Whereas in interrupt mode the notifications are performed on interrupt level,
these are invoked on task level in polling mode.

If any access to the CAN controller's mailbox is blocked, subsequent transmit
buffering takes place (refer [7.12 Transmit buffering]).

The Polling and Interrupt mode can be configured for each underlying CAN
controller.

80 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

7.25 Multiple CAN Driver support

CANIF028: A specific mapping is needed in the CAN Interface to cover multiple CAN
Drivers to provide a common interface to upper layers. Thus the CAN Interface must
dispatch all actions up-down to the APIs of the corresponding target CAN Driver and
underlying CAN controller(s) and as well the way down-up by providing multiple call-
out notifications on the CAN Interface for multiple CAN Drivers.

CANIF124: The naming convention is as follows:

<CAN Driver module name>_<vendorlID>_<Vendor specific APl name><driver
abbreviation>()

BSWO00347 specifies the naming convention.

CANIF224: The naming conventions can be used only in that case, if multiple
different CAN controller types on one ECU have to be supported. If only one
controller type is used, the original naming conventions without any <driver
abbreviation> extensions are sufficient.

sd Tx Request (Multiple CAN Drivers - simplified)/

Generic Canlf::Canlf| Can_A :Can «peripheral» Can_B :Can «peripheral»
Elements::Canlf User CanController A CanController B
oo :CanController :CanController

.1
alt CAN Controller A/B

[CAN Contfoller A used]
' Here the name of the called

! .
Std_ReturnType= Canlf_Transmit(CanTxPduld,PdulnfoPtr) function hasto be EXIGHUEUIAEI

__-4---| distinguish the two Can driver:
,,,,,,,,,, i..e. Can_Write_A(...)

Can_ReturnType= Can_Write(Hth ,?'-dulnfo)

Copy L-PDU in CAI\'I
Hardware A !
Copy L-PDU in CAN
Hardware A

Can_Write
Canlf_Transmit
H Here the name of the called
[CAN Contrpller B used] E function hasto be extended to
! distinguish the two Can drivers|
Std_RetumType= Canlf_Transmit(CanTxPduld,PdulnfoPtr) O Sy 15> G IAE [6)

- [
Can_RetumType= Can_Write(Hth,Pdulnfo) |

Copy L-PDU in CAN

Hardware B i

-
Copy L-PDU in CAN
Hardware B

Can_Write

Canlf_Transmit

Figure 20 Transmission request with multiple CAN Drivers - simplified

CANIF235: The support for multiple CAN Drivers can be enabled and disabled by
the configuration parameter CANIF_MULTIPLE_DRIVER_SUPPORT.

81 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

7.25.1 Transmit requests by using multiple CAN Drivers

CANIF125: Each transmit L-PDU handle affords deriving the corresponding CAN
controller and implicitly the CAN Driver serving the affected hardware unit. Resolving
of these dependencies is possible because of the construction of the CAN controller
handle: it combines CAN Driver handle and the corresponding CAN controller in the
hardware unit.

At configuration time a mapping table per used CAN Driver with references (function
pointers) on its API services for the CAN Interface shall be provided. The CAN
Interface needs only to select the corresponding CAN Driver in order to call the
correct APl service. The sequence diagram below demonstrates two transmit
requests directed to the different CAN Drivers. For an example refer to [7.25.3
Mapping table for multiple CAN Driver handling] below.

A CAN controller handle will be mapped to the CAN controller local logical name
(index) and then to the CAN controller handle dedicated to each CAN controller. This
mapping is done during configuration phase.

Note: This is only an example. Finally it is up to the implementation to access the
correct APIs of the underlying CAN Drivers.

Example:

Operations called Description

Canlf_Transmit Upper layer initiates a transmit request. The PDU ID is used for tracing the

requested CAN controller and then to serving the hardware unit.

Pduld_1, . . .
* = The number of the hardware unit is relevant for the dispatch as it is used as
PdulnfoPtr_1 . . . ; .

) index for the array with pointer to functions. At first the number of the PDU
group will be extracted from the Pduld_1. Each PDU group refers to a
network and thus as well the hardware unit number and the CAN controller
number.

The hardware unit number points on an instance of the CAN Driver in the
table. This table, created at configuration time, contains all API services
configured for the used hardware unit(s). One of these services is the
requested transmit service.

Can_Write_A Request for transmission to the CAN_Driver_A serving i.e. CAN controller

(#1 within the "A" hardware unit.

Hth,
*PdulnfoPtr_1

)

Hardware request All L-PDU data will be set in Hardware of i.e. CAN controller #0 within
hardware unit "A" and the transmit request enabled.

82 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V3.2.0
R3.0 Rev7

Operations called Description

Canlf_Transmit Upper layer initiates transmit request. The parameter transmit handle leads
to another CAN controller and then to another hardware unit.

Pduld_2, . . -
* The number of the hardware unit is relevant for the dispatch as it is used as
PdulnfoPtr_2 . ; . ; .

) index for the array with pointer to functions. At first the number of the PDU
group will be extracted from the Pduld_2. Each PDU group refers to a
network and thus as well to the hardware unit number and to the CAN
controller number.

The hardware unit number points on an instance of the CAN Driver in the
table. This table, created at configuration time, contains all API services
configured for the used hardware unit(s). One of these services is the
requested transmit service.

Can_Write_B Request for transmission to the CAN_Driver_B serving i.e. CAN controller

(#1 within the "B" hardware unit.

Hth,
*PdulnfoPtr_2

)

Hardware request All L-PDU data will be set in the Hardware of i.e. the CAN controller #1
within hardware unit "B" and the transmit request enabled.

7.25.2 Notification mechanism by using multiple CAN Drivers

CANIF126: Every notification call-out service invoked by the CAN Drivers at the CAN
Interface exists multiple times, if multiple CAN Drivers are used in a single ECU. This
means, that each used CAN Driver calls 'it's own' call-out service at the CAN
Interface. The CAN interface must provide all call-out service unique for each
underlying CAN Driver. Thus the HRH parameter is unique at the scope of each CAN
Driver. Following call-out/callback services are affected:

= Canlf_TxConfirmation

= Canlf_RxIndication

= Canlf _ControllerBusOff

= Canlf_CancelTxConfirmation

CANIF127: Example: on reception side the corresponding call-out routine of the CAN
Driver being triggered by the reception events is called at the CAN Interface. If the
CAN Interface underlies two CAN Dirivers, two Canlf_RxIndication() routines
has to be provided. At configuration time the relation between call-out service and
used CAN Driver has to be set up.

83 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

sd RxIndication (Multiple CAN Drivers - simplified)/

<
d

<£anlster_RxIndication>(CanR<PduId.SduPtr
Bl

Received L-PDU validation check (SWFiltering, DLC Ch

eck)

Generic Canlf::Canlf Can_A:Can Can_B:Can «Peripheral»
Elements:Canlf User Hardware::CanController
oo
T T T T T
1 1 1 1 1
]]]]]
| | o | | |
1 i Naming Convention: 1 Iy i
E E Canlf_Rxindication_A H Faeoellve Intemupt H
1 1 1
] l .]
' Canlf_RxIndication(Hrh,Canld,CanDic,CanSduPtr) '
o :
| < |
1 1
i i
! Exemplary cgll: Received L-PDU '
' parameters differ for [validation check (SW '
| User=CanTp i : Filtering, DLC Check) |
]]
<CanlifUser_Rxindication>(CanRxPduld, SduPtr E
- :
]
i
Copy Data '
T
1
Copy Data \
e mmmm e m] 5 S L oo R N R ,: ___________________
]
<Canlf_User_Rxindication> > i
L e =Rt !
Canlf_Rxindication 1
! L _xndication ___ > !
i i i
: : FaeoeI Interrupt
ve
: : LR ivelntemupt)
1 1 1 1
1 1 1 1
i i Naming Convention: i i .
i i Canlf_Rxindication_B i i < Receive Intermupt
| | |
! ! Canlf_Rxindication(Hrh,Canld,CanDlc,CanSduPtr)
]
1
1
]
1
]
1
]
1
]
1

.<

<CanlfUser_RxIndication> >

R

Receive Interupt

-

84 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

sd RxIndication (Multiple CAN Drivers - simplified)/

Generic
Elements::Canlf User

Exemplary call:
parameters differ for

«module» Can_B :Can «Peripheral»

Canlf::Canlf

Can_A :Can
Hardware::CanController

Naming Convention: Receive Int ¢
Canlf_RxIndication_A | |< €cejve nterup

CanIfﬁRLIndication(Hrh,C:anld,CanDIc,CanSduPtr)

Rl

Received L-PDU
validation check (SW

User=CanTp [Filtering, DLC Check)
<User_RxIndication>(\C§\nRdeuId,PduInfoPlr)
-
Copy Data
Copy Data

<User_RxIndication>

<User_RxIndication>(CanRxPduld,PdulnfoPtr)|

Canlf_RxIndication

Receive Interrupt

Naming Convention: .
Canlf_Rxindication_B < Receive Interrupt

\
_Can If_RxIndication(Hrh,Canld,CanDlc,CanSduPtr)
-]

Received L-PDU validation check (SW Filtering, DLC Check)

Rl

Copy data

Copy data

<User_RxIndication>

Canlf_RxIndication

Receive Interrupt

R —

R
R

Figure 21 Receive interrupt with multiple CAN Drivers - simplified

Operations called

Description

Receive Interrupt

The CAN controller 1 signals a successful reception and triggers a
receive interrupt. The ISR of CAN Driver A is invoked.

Canlf_RxIndication_A
(Hrh_3, Canld_1,
CanDlc_8,
*CanSduPtr_1)

The reception is indicated to the CAN Interface by calling of
Canlf_RxIndication_A(). The HRH specifies the CAN RAM
hardware object and the corresponding CAN controller (Hrh_3),
which contains the received L-PDU. The temporary buffer is
referenced to the CAN Interface by *CanSduPtr 1.

Validation check
(SW Filtering, DLC Check)

The Software Filtering checks, whether the received L-PDU will be
processed on a local ECU. If not, the received L-PDU is not indicated
to upper layers. Further processing is suppressed.

If the L-PDU is found, the DLC of the received L-PDU is compared
with the expected, statically configured one for the received L-PDU.

85 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

Operations called

Description

<User_RxIndication>
(CanRxPduld_,
*PdulnfoPtr)

The corresponding receive indication service of the upper layer is
called. This signals a successful reception to the target upper layer.
The parameter CanRxPduld specifies the L-PDU, the second
parameter is the reference on the temporary buffer within the L-SDU.

Receive Interrupt

The CAN controller 2 signals a successful reception and triggers a
receive interrupt. The ISR of CAN Driver B is invoked.

Canlf _RxIndication_B
(Hrh_3, Canld_5,
CanDlc_8,
*CanSduPtr_2)

The reception is indicated to the CAN Interface by calling of
Canlf_RxIndication_B(). The HRH specifies the CAN RAM
hardware object and the corresponding CAN controller (Hrh_3),
which contains the received L-PDU. The temporary buffer is
referenced to the CAN Interface by *CanSduPtr_2.

Validation check
(SW Filtering, DLC Check)

The Software Filtering checks, whether the received L-PDU will be
processed on a local ECU. If not, the received L-PDU is not indicated
to upper layers. Further processing is suppressed.

If the L-PDU is found, the DLC of the received L-PDU is compared
with the expected, statically configured one for the received L-PDU.

<User_RxIndication>
(CanRxPduld,
*PdulnfoPtr)

The corresponding receive indication service of the upper layer is
called. This signals a successful reception to the target upper layer.
The parameter CanRxPduld specifies the L-PDU, the second
parameter is the reference on the temporary buffer within the L-SDU.

7.25.3 Mapping table for multiple CAN Driver handling

CANIF062: A table with addresses to all CAN Driver API services is the basis to
provide a unique driver interface to the CAN Interface. This table makes the
assignment from two different driver interfaces to one single driver interface (with
prefix (Can_).

In case of L-PDU handle based APIs, the corresponding CAN Driver has to be
derived from the L-PDU handle. Afterwards the CAN Driver number is used as an
index for the table with function pointers. The parameters have correspondingly to be
translated: i.e. L-PDU handle => HTH/HRH, Canld, Dlc.

CAN Interface

Canlf_InitController (Network=0) Canlf_InitCantroller (Network=1)

Canlf_Transmit (CanTxPduld=7,..) Canlf_Transmit (CanTxPduld=22,..)

/ Mapping T/able with CAN Driver(s))K\PI References \

Can_Init_/A (Controller=0)
Can_Wrijte_A (HTH=5,..)

Can_Init_B (Controller=0)
Can_Write_B (HTH=5,..)

Controller: 0
HTH: 0..1

CAN Driver A

. Controller: 0..1
CAN Driver B~ "1 0 3

Figure 22 HTH Assignment with multiple CAN Drivers

86 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

Each CAN Driver supports a certain number of underlying CAN controllers and a
fixed number of HTHs. Each CAN Driver has got an own numbering area, which
starts always at 0 for controller and HTH.

87 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

AUTO SAR

7.26 Error classification

CANIFO017: This chapter lists and classifies all errors that can be detected within this
software module. Each error shall be classified according to relevance (development
/ production) and related error code. For development errors, a value shall be
defined.

CANIF153: Values for production code Event Ids are assigned externally by the
configuration of the Dem. They are published in the file Dem_IntErrid.h and

included via Dem_.h.

CANIF154: Development error values are of type uint8.

CANIF120: The naming of errors has to be compliant to BSW000327.

CANIF207:

Type or error Relevance Related error code Value

API service called with invalid | Development CANIF_E_PARAM_CANID 10

parameter CANIF_E_PARAM_DLC 11
CANIF_E_PARAM_HRH 12
CANIF_E_PARAM_CHANNEL 13
CANIF_E_PARAM_CONTROLLER 14
CANIF_E_PARAM_WAKEUPSOURCE | 15

API service called with invalid | Development CANIF_E_PARAM_POINTER 20

pointer

API service used without Development CANIF_E_UNINIT 30

module initialization

Requested API operationis | Development CANIF_E_NOK_NOSUPPORT 40

not supported

API service called with invalid | Production CANIF_TRCV_E_TRANSCEIVER Assigned

transceiver parameter by DEM

API service called with invalid | Development CANIF_TRCV_E_TRCV_NOT_STAN |60

parameter for CAN DBY

transceiver operation mode

API service called with invalid | Development CANIF_TRCV_E_TRCV_NOT_NORM | 70

parameter for CAN AL

transceiver operation mode

Transmit PDU ID invalid Development CANIF_E_INVALID_TXPDUID 80

Receive PDU ID invalid Development CANIF_E_INVALID_RXPDUID 90

Failed DLC Check Production CANIF_E_INVALID DLC Assigned

by DEM

CAN Interface is in Production CANIF_E_STOPPED Assigned

STOPPED mode by DEM

Transmit buffers full Production CANIF_E_FULL_TX_ BUFFER Assigned

by DEM

88 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

7.27 Error detection

CANIF018: The detection of development errors is configurable (ON / OFF) at pre-
compile time. The switch CANIF_DEV_ERROR_DETECT (see chapter [10
Configuration specification]) shall activate or deactivate the detection of all
development errors.

CANIF019: If the CANIF_DEV_ERROR_DETECT switch is enabled API checking is
enabled. The detailed description of the detected errors can be found in chapter [7.26
Error classification] and chapter [8 API specification)].

CANIF155: The detection of production code errors cannot be switched off.

CANIF295: When requested API operations are not supported, those errors are
recognized as development error by CANIF_E NOK_NOSUPPORT.

89 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7
7.28 Error notification

CANIF156: Detected development errors shall be reported to Det_ReportError
service of the Development Error Tracer (DET), if the pre-processor switch
CANIF_DEV_ERROR_DETECT is set (see chapter 10).

CANIF020: Production errors shall be reported to the Diagnostic Event Manger
(DEM). They shall not be used as the return value of the called function.

CANIF223: For all defined production errors it is only required to report the event,
when an error or diagnostic relevant event (e.g. state changes, no L-PDU events)
occurs. Any status has not to be reported.

CANIF119: Additional errors that are detected because of specific implementation
and/or specific hardware properties shall be added in the CAN Interface specific
implementation specification. The classification and enumeration shall be compatible
to the errors listed above.

90 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

7.29 Code version check

CANIF021: The CAN Interface files checks the consistency between the header, C
and configuration files during compilation according to BSW004. This is to guarantee
the consistency of the files and the code generator to the same release.

91 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V3.2.0
R3.0 Rev 7

8 API specification
92 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

Vv3.2.0
R3.0 Rev 7
8.1 Imported types
CANIF142:
8.1.1 Standard types
In this chapter all used types included from the Std_Types.h are listed:
» Std_ReturnType
= Std_VersioninfoType
8.1.2 COM specific types
In this chapter all used types included from the ComStackTypes.h are listed:
* PduldType
= PdulLengthType
» PdulnfoType
8.1.3 EcuM specific types
The following type of the EcuM shall be used:
= EcuM_WakeupSourceType
8.1.4 CAN specific types
The following type of the CAN Driver shall be used:
= Can_IdType
= Can_PduType
93 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V3.2.0
R3.0 Rev7
8.2 Type definitions
8.2.1 Canlf_ConfigType
CANIF144:
Type: struct
Range: Implementation The contents of the initialization data structure are CAN
Specific Interface specific.
Description: This type of the external data structure shall contain the post build initialization

data for the CAN Interface for all underlying CAN Drivers.

The definition of CAN Interface public parameters shall contain:
e Number of transmit L-PDUs
e Number of receive L-PDUs
e Number of dynamic transmit L-PDU handles

The definition for each L-PDU handles shall contain:

Handle for transmit L-PDUs

Handle for receive L-PDUs

Name for transmit L-PDUs

Name for receive L-PDUs

CAN Identifier for static and dynamic transmit L-PDUs
CAN Identifier for receive L-PDUs

DLC for transmit L-PDUs

DLC for receive L-PDUs

Data buffer for receive L-PDUs in case of polling mode
Network towards each L-PDU belongs to.

Transmit L-PDU handle type

8.2.2 Canlf_ControllerConfigType

CANIF145:
Type: Struct
Range: Implementation The contents of the initialization data structure are CAN
Specific Interface specific for initialization of all CAN controllers
related to the CAN network.
Description: This type of the external data structure shall contain the post build initialization

data for the CAN Interface for all underlying CAN Drivers.

The definition of CAN Interface public parameters shall contain:
e Number of transmit L-PDUs
e Number of receive L-PDUs
e Number of dynamic transmit L-PDU handles

The definition for each L-PDU handles shall contain:

Handle for transmit L-PDUs

Handle for receive L-PDUs

Name for transmit L-PDUs

Name for receive L-PDUs

CAN Identifier for transmit L-PDUs

CAN Identifier for receive L-PDUs

DLC for transmit L-PDUs

DLC for receive L-PDUs

Data buffer for receive L-PDUs in case of polling mode

94 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V3.2.0
R3.0 Rev 7

e Network towards each L-PDU belongs to.
e Transmit L-PDU handle type

Attention: dynamic transmit L-PDUs are not part of this type definition.

8.2.3 Canlf_ControllerModeType

CANIF136:

Type:

Enumeration

Range:

CANIF_CS_UNINIT = O UNINIT mode. Default mode of the CAN Driver and
all CAN controllers connected to one CAN network
after power on.

CANIF_CS_STOPPED STOPPED mode. At least one of all CAN controllers
connected to one CAN network is halted and does not
operate on the network.

CANIF_CS_STARTED STARTED mode. All CAN controllers connected to
one CAN network are started by the CAN Driver and
in full-operational mode.

CANIF_CS_SLEEP SLEEP mode. At least one of all CAN controllers
connected to one CAN network are set into the
SLEEP mode and can be woken up by request of the
CAN Driver or by a network event (must be supported
by CAN hardware)

Description:

Operating modes of the CAN network and CAN Driver

8.2.4 Canlf_ChannelSetModeType

CANIF137:
Type: Enumeration
Range: CANIF_SET _OFFLINE = 0 Channel shall be set to the offline mode
=> no transmission and reception
CANIF_SET_RX_OFFLINE Receive path of the corresponding channel
shall be disabled
CANIF_SET_RX_ONLINE Receive path of the corresponding channel
shall be enabled
CANIF_SET_TX_OFFLINE Transmit path of the corresponding channel
shall be disabled
CANIF_SET_TX_ONLINE Transmit path of the corresponding channel
shall be enabled
CANIF_SET _ONLINE Channel shall be set to online mode
=> full operation mode
CANIF_SET_TX_OFFLINE_ACTIV Transmit path of the corresponding channel
E shall be set to the offline active mode
=> notifications are processed but transmit
requests are blocked.
Description: Request for PDU channel group. The request type of the channel defines it's

transmit or receive activity. Communication direction (transmission and/or
reception) of the channel can be controlled separately or together by upper
layers.

8.2.5 Canlf_ChannelGetModeType

95 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V3.2.0
R3.0 Rev7
CANIF138:
Type: Enumeration
Range: CANIF_GET_OFFLINE = 0 Channel is in the offline mode
=> no transmission and reception
CANIF_GET_RX_ONLINE Receive path of the corresponding channel
is enabled and transmit path is disabled.
CANIF_GET_TX_ONLINE Transmit path of the corresponding channel
is enabled and receive path is disabled.
CANIF_GET_ONLINE Channel is in the online mode
=> full operation mode
CANIF_GET_OFFLINE_ACTIVE Transmit path of the corresponding channel
is in the offline active mode
=> transmit notifications are processed but
transmit requests are blocked.
The receive path is disabled.
CANIF_GET_OFFLINE_ACTIVE_R Transmit path of the corresponding channel
X_ONLINE is in the offline active mode
=> transmit notifications are processed but
transmit requests are blocked.
The receive path is enabled.
Description: Status of the PDU channel group. Current mode of the channel defines its

transmit or receive activity. Communication direction (transmission and/or
reception) of the channel can be controlled separately or together by upper
layers.

8.2.6 Canlf_NotifStatusType

CANIF201.:
Type: typedef enum
Range: CANIF_NO_NOTIFICATION = O No transmit or receive event occurred for
the requested L-PDU.
CANIF_TX_RX_NOTIFICATION The requested Rx/Tx CAN L-PDU was
successfully transmitted or received.
Description: Return value of CAN L-PDU notification status.

8.2.7 Canlf_TransceiverModeType

CANIF263:
Type: Enumeration
CANIF_TRCV_MODE_NORMAL = O Transceiver mode NORMAL
CANIF_TRCV_MODE_STANDBY Transceiver mode STANDBY
CANIF_TRCV_MODE_SLEEP Transceiver mode SLEEP
Description: Operating modes of the CAN Transceiver Driver.

8.2.8 Canlf_TrcvWakeupReasonType

CANIF264.

Type: Enumeration

Range: CANIF_TRCV_WU_ERROR = 0 Due to an error wake up reason was not
detected. This value may only be reported
when error was reported to DEM before.

96 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

CANIF_TRCV_WU_NOT_SUPPORTED

The transceiver does not support any
information for the wake up reason.

CANIF_TRCV_WU_BY_BUS

The transceiver has detected, that the
network has caused the wake up of the
ECU.

CANIF_TRCV_WU_INTERNALLY

The transceiver has detected, that the
network has woken up by the ECU via a
request to NORMAL mode.

CANIF_TRCV_WU_RESET

The transceiver has detected, that the
“wake up”is due to an ECU reset.

CANIF_TRCV_WU_POWER_ON

The transceiver has detected, that the
“wake up” is due to an ECU reset after
power on.

Description:

This type shall be used to specify the wake up reason detected by the CAN

transceiver in detail.

8.2.9 Canlf_TrcvWakeupModeType

CANIF275:
Type: Enumeration
Range: CANIF_TRCV_WU_ENABLE = 0 The notification for wakeup events is
enabled on the addressed network.
CANIF_TRCV_WU_DISABLE The notification for wakeup events is
disabled on the addressed network.
CANIF_TRCV_WU_CLEAR A stored wakeup event is cleared on the
addressed network.
Description: This type shall be used to specify the wake up reason detected by the CAN

transceiver in detail.

97 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

8.3 Function definitions

8.3.1 Canlf Init
Service name: Canlf Init
Syntax: void Canlf_Init

(

const Canlf _ConfigType *ConfigPtr

)
Service ID: 0x01
Sync/Async: Synchronous
Reentrancy: Non re-entrant

ConfigPtr Pointer to configuration parameter set, used e.g. for post

build parameters

Parameters (out):

Return value:

Description:

CANIF001: This service initializes internal and external interfaces of the CAN
Interface for the further processing. All underlying CAN controllers and CAN
transceivers still remain not operational.

This service is called only ECU State Manager (EcuM).

If a NULL pointer is passed for *ConfigPtr to this function the default
configuration shall be used.

In case only one configuration setup is used, a NULL pointer is sufficient to
choose the one static existing configuration setup.

Development errors:
- Invalid values of *ConfigPtr will be reported to the development error tracer
(CANIF_E_PARAM_POINTER) only for post built use cases.

Caveats:

Configuration:

8.3.2

Canlf_InitController

Service name:

Canlf_InitController

Syntax:

void Canlf_InitController

(
uint8 Controller,
uint8 Configurationlndex
)
Service ID: 0x02
Sync/Async: Synchronous
Reentrancy: Non re-entrant

Parameters (in):

Controller CAN controller requested for initialization

Configurationindex Index to controller related configuration setup

Parameters (out):

Return value:

Description:

CANIF002: This service initializes in the CAN Interface the configured buffers of all
Tx/Rx L-PDUs of the corresponding CAN controller. Different sets of static
configuration may have been configured. A logical number is assigned to each set
statically.

The parameter Configurationlndex selects the configuration set that is used for
initialization. The CAN controller still remains not operational and neither sends nor

98 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

receives CAN L-PDUs.

CANIF022: Development errors:

- Invalid values of Control ler or Configurationlndex will be reported to the
development error tracer (CANIF_E_PARAM_CONTROLLER or
CANIF_E_PARAM_POINTER) only for post built use cases.

- If the CAN Interface was not initialized before invoking of Canl1¥_Init(), the
call of this function will be reported to the development error tracer
(CANIF_E_UNINIT). No initialization will be executed.

Caveats:

CAN identifiers of dynamic transmit L-PDUs are not initialized by invoking this API.

Configuration:

ID of the CAN controller is published inside the configuration description of the CAN
Interface. At configuration time the relation has to be set up between the CAN
Interface configuration set and the available corresponding CAN controller
configuration sets by the CAN Driver configuration.

8.3.3 Canlf_SetControllerMode

Service name:

Canlf SetControllerMode

Syntax:

Std_ReturnType Canlf_SetControllerMode

(
uints Controller,
Canlf_ControllerModeType ControllerMode
)
Service ID: 0x03
Sync/Async: Asynchronous
Reentrancy: Non re-entrant

Parameters (in):

Controller CAN controller requested for mode transition

ControllerMode Requested mode transition

Parameters (out):

Return value:

E OK Network mode request has been accepted

E _NOT_OK Network mode request has not been accepted

Description:

CANIF003: This service calls the corresponding CAN Driver service for changing
of the CAN controller mode. It initiates a transition to the requested CAN
controller mode of one or multiple CAN controllers.

This service calls Can_SetControl lerMode(Controller, Transition)
for the requested CAN controller.

Development errors:

- If the CAN Interface was not initialized before, the call of this function will be
reported to the development error tracer (CANIF_E_UNINIT). The function
returns with E_NOT_OK.

- Invalid values of Control ler will be reported to the development error tracer
(CANIF_E_PARAM_CONTROLLER) only for post built use cases.

Caveats:

Re-entrant calls of this API are allowed only for different controller Identifiers.
The CAN Driver must be initialized after Power ON.
The CAN Interface must be initialized after Power ON.

Configuration:

ID of the CAN controller is published inside the configuration description of the
CAN Interface.

8.3.4 Canlf_GetControllerMode

99 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

Service name:

Canlf GetControllerMode

Syntax:

Std_ReturnType Canlf_GetControllerMode

(
uint8 Controller,
Canlf_ControllerModeType *ControllerModePtr
)
Service ID: 0x04
Sync/Async: Synchronous
Reentrancy: Non re-entrant

Parameters (in):

Controller CAN controller requested for current operation

mode

Parameters (out):

Canlf_ControllerModePtr Pointer to a memory location, where the current

mode of the CAN network will be stored.

Return value:

E OK Controller mode request has been accepted

E _NOT_OK Controller mode request has not been accepted

Description:

CANIF229: Service reports about the current status of the requested CAN
controller.

Development errors:

- Invalid values of Control ler will be reported to the development error tracer
(CANIF_E_PARAM_CONTROLLER).

- Ifthe CAN Interface was not initialized before, the call of this function will be
reported to the development error tracer (CANIF_E_UNINIT). The function
returns with E_NOT_OK.

Caveats:

The CAN Driver must be initialized after Power ON.
The CAN Interface must be initialized after Power ON.

Configuration:

ID of the CAN controller is published inside the configuration description of the
CAN Interface Layer.

8.3.5 Canlf_Transmit

Service name:

Canlf Transmit

Syntax:

Std_ReturnType Canlf _Transmit

(
PduldType CanTxPduld,
const PdulnfoType *PdulnfoPtr
)
Service ID: 0x05
Sync/Async: Synchronous
Reentrancy: Re-entrant
Parameters (in) |CanTxPduld L-PDU handle of CAN L-PDU to be transmitted.
This handle specifies the corresponding CAN L-PDU ID
and implicitly the CAN Driver instance as well as the
corresponding CAN controller device.
PdulnfoPtr Pointer to a structure with CAN L-PDU related data: DLC
and pointer to CAN L-SDU buffer
Parameters (out): | --
Return value: E OK Transmit request has been accepted
E _NOT_OK Transmit request has not been accepted

Description:

CANIFOQ05: This service initiates a request for transmission of the CAN L-PDU
specified by the CanTxPduld and CAN related data in the L-PDU structure. The
corresponding CAN controller and HTH have to be resolved by the CanTxPduld.
A transmit request has not been accepted, if the controller mode is not STARTED
and/or the channel mode at least for the transmit path is not online or offline

100 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V3.2.0
R3.0 Rev 7

active.
One call of this function results in one call of Can_Write(Hth, *Pdulnfo).

Development errors:

- Invalid values of CanTxPduld or PdulnfoPtr will be reported to the
development error tracer (CANIF_E_INVALID_TXPDUID or
CANIF_E PARAM _POINTER).

- If the CAN Interface was not initialized before, the call of this function will be
reported to the development error tracer (CANIF_E_UNINIT). The function
returns with E_NOT_OK.

Caveats:

During the call of this API the buffer of PdulnfoPtr is controlled by the CAN
Interface may not be accessed for read/write from another call context. After
return of this call the ownership changes to the upper layer.

The CAN Interface must be initialized after Power ON.

Configuration:

8.3.6 Canlf_ReadRxPduData

Service name:

Canlf ReadRxPduData

Syntax:

Std_ReturnType Canlf_ReadRxPduData

PduldType CanRxPduld,
PdulnfoType *PdulnfoPtr

)

Service ID:

0x06

Sync/Async:

Synchronous

Reentrancy:

Non re-entrant

Parameters (in)

CanRxPduld Receive L-PDU handle of CAN L-PDU.
This handle specifies the corresponding CAN L-PDU ID
and implicitly the CAN Driver instance as well as the
corresponding CAN controller device.

Parameters (out):

PdulnfoPtr Pointer to a structure with CAN L-PDU related data: DLC
and pointer to CAN L-SDU buffer

Return value:

E OK Request for L-PDU data has been accepted

E_NOT_OK No valid data has been received.

Description:

CANIF194: This service provides the CAN DLC and the received data of the
requested CanRxPduld to the calling upper layer.

A request has not been accepted, if the network mode is not STARTED and/or
the channel mode at least for the receive path online or offline active.

Development errors:

- Invalid values of CanRxPduld or PdulnfoPtr will be reported to the
development error tracer (CANIF_E_INVALID_RXPDUID or
CANIF_E_PARAM_POINTER).

- If the CAN Interface was not initialized before, the call of this function will be
reported to the development error tracer (CANIF_E_UNINIT). The function
returns with E_NOT_OK.

Caveats:

During the call of this API the buffer of PdulnfoPtr is controlled by the CAN
Interface may not be accessed for read/write from another call context. After
return of this call the ownership changes to the upper layer.

This APl must not be used for CanRxPdulds, which are defined to receive
multiple CAN-Ids (range reception).

The CAN Interface must be initialized after Power ON.

Configuration:

This API can be enabled or disabled at pre-compile time configuration by the
configuration parameter CANIF_READRXPDU DATA API.

101 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

8.3.7

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

Canlf _ReadTxNotifStatus

Service name:

Canlf ReadTxNotifStatus

Syntax:

Canlf_NotifStatusType Canlf_ReadTxNotifStatus

(
PduldType CanTxPduld
)
Service ID: 0x07
Sync/Async: Synchronous
Reentrancy: Non re-entrant
Parameters (in) |CanTxPduld L-PDU handle of CAN L-PDU to be transmitted.

This handle specifies the corresponding CAN L-
PDU ID and implicitly the CAN Driver instance as
well as the corresponding CAN controller device.

Parameters (out):

Return value:

CanlT_NotifStatusType Current notification status of the corresponding

CAN L-PDU.

Description: CANIF202: This service provides the status of the static or dynamic CAN Tx L-
PDU requested by CanTxPduld. This API service notifies the upper layer about
any transmit confirmation event to the corresponding requested CAN L-PDU.
During this call the CAN Tx L-PDU noatification status is reset inside the CAN
Interface.

Development errors:

- Invalid values of CanTxPduld will be reported to the development error tracer
(CANIF_E_INVALID_TXPDUID). Error cases:
= CanTxPduld is out of range or
= no status information was configured for this CAN Tx L-PDU.

- If the CAN Interface was not initialized before, the call of this function will be
reported to the development error tracer (CANIF_E_UNINIT). The function
returns with E_NOT_OK.

Caveats: The CAN Interface must be initialized after Power ON.

Configuration:

This API can be enabled or disabled at pre-compile time configuration globally by
the parameter CANIF_READTXPDU NOTIFY_ STATUS API.

8.3.8 Canlf_ReadRxNotifStatus

Service name:

Canlf ReadRxNotifStatus

Syntax:

Canlf _NotifStatusType Canlf _ReadRxNotifStatus

PduldType CanRxPduld
)
Service ID: 0x08
Sync/Async: Synchronous
Reentrancy: Non re-entrant
Parameters (in) |CanRxPduld L-PDU handle of CAN L-PDU to be received.

This handle specifies the corresponding CAN L-
PDU ID and implicitly the CAN Driver instance as
well as the corresponding CAN controller device.

Parameters (out):

Return value:

CanlT_NotifStatusType Current notification status of the corresponding

CAN Rx L-PDU.

102 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

Description:

CANIF230: This service provides the status of the CAN Rx L-PDU requested by
CanRxPduld. This API service notifies the upper layer about any receive
indication event to the corresponding requested CAN L-PDU.

During this call the CAN Rx L-PDU notification status is reset inside the CAN
Interface.

Development errors:

- Invalid values of CanRxPduld will be reported to the development error
tracer (CANIF_E_INVALID_RXPDUID). Error cases:
= CanRxPduld is out of range or
= Status for CanRxPdu ld was requested whereas

CANIF_READRXPDU_DATA_API is disabled

= no status information was configured for this CAN Rx L-PDU.

- If the CAN Interface was not initialized before, the call of this function will be
reported to the development error tracer (CANIF_E_UNINIT). The function
returns with E_NOT_OK.

Caveats:

This API must not be used for CanRxPdulds, which are defined to receive
multiple CAN-Ids (range reception).
The CAN Interface must be initialized after Power ON.

Configuration:

This API can be enabled or disabled at pre-compile time configuration globally by
the parameter CANIF_READRXPDU NOTIFY_ STATUS API.

8.3.9 Canlf_SetPduMode

Service name:

Canlf SetPduMode

Syntax:

Std_ReturnType Canlf_SetPduMode

(
uint8 Controller,
Canlf_ChannelSetModeType PduModeRequest
)
Service ID: 0x09
Sync/Async: Synchronous
Reentrancy: Non re-entrant

Parameters (in)

Controller All PDUs of the own ECU connected to the

corresponding physical CAN controller are addressed.

PduModeRequest Requested PDU mode change (see

Canlf ChannelSetModeType)

Parameters (out):

Return value:

E OK Request for mode transition has been accepted

E _NOT_OK Request for mode transition has not been accepted

Description:

CANIF008: This service sets the requested mode at all L-PDUs of the predefined
logical PDU channel. This channel parameter can be derived from Controller.

Development errors:

- Invalid values of Control ler will be reported to the development error
tracer (CANIF_E_PARAM_CONTROLLLER).

- Ifthe CAN Interface was not initialized before, the call of this function will be
reported to the development error tracer (CANIF_E_UNINIT). The function
returns with E_NOT_OK.

Caveats:

Re-entrant calls of this API are allowed only for different channel Identifiers.
The CAN Interface must be initialized after Power ON.

Configuration:

The channel mode is configurable by CANIF_CANTXPDUID_CONTROLLER/
CANIF_CANRXPDUID CONTROLLER.

103 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

8.3.10 Canlf_GetPduMode

Service name:

Canlf GetPduMode

Syntax:

Std_ReturnType Canlf_GetPduMode

(
uints Controller,
Canlf_PduGetModeType *PduModePtr
)
Service ID: Ox0A
Sync/Async: Synchronous
Reentrancy: Non re-entrant

Parameters (in)

Controller All PDUs of the own ECU connected to the
corresponding physical CAN controller are

addressed.

Parameters (out):

PduModePtr Pointer to a memory location, where the current

mode of the logical PDU channel will be stored.

Return value:

E OK Pdu mode request has been accepted

E _NOT_OK Pdu request has not been accepted

Description:

CANIFO009: This service reports the current mode of the requested Pdu channel

Development errors:

- Invalid values of Control ler will be reported to the development error
tracer (CANIF_E_PARAM_CONTROLLER).

- If the CAN Interface was not initialized before, the call of this function will be
reported to the development error tracer (CANIF_E_UNINIT). The function
returns with E_NOT_OK.

Caveats:

The CAN Interface must be initialized after Power ON.

Configuration:

8.3.11 Canlf_GetVersioninfo

Service name:

Canlf _GetVersioninfo

Syntax:

void Canlf_GetVersionlnfo

Std_VersionlnfoType *VersionInfo
)
Service ID [hex]: [0x0B
Sync/Async: Synchronous
Reentrancy: Non re-entrant

Parameters (in):

Parameters (out):

Versioninfo Pointer to where to store the version information of this

module.

Return value:

Description:

CANIF158: This service returns the version information of this module. The
version information includes:

- Module Id

- VendorlId

- Vendor specific version numbers (BSW00407).

If source code for caller and callee of this function is available this function should
be realized as a macro. The macro should be defined in the modules header file.

104 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

Caveats:

Configuration:

This function shall be pre compile time configurable On/0ff by the configuration
parameter CANIF_VERSION_INFO_API.

8.3.12 Canlf_SetDynamicTxId

Service name:

Canlf SetDynamicTxId

Syntax:

void Canlf_SetDynamicTxlId

PduldType CanTxPduld,
Can_1dType Canld
)
Service ID [hex]: [0x0C
Sync/Async: Synchronous
Reentrancy: Non re-entrant
Parameters (in): |CanTxPduld L-PDU handle of CAN L-PDU for transmission.
This ID specifies the corresponding CAN L-PDU ID and
implicitly the CAN Driver instance as well as the
corresponding CAN controller device.
Canld Standard/Extended CAN ID of CAN L-PDU that shall be

transmitted

Parameters (out):

Return value:

Description: CANIF189: This service reconfigures the corresponding CAN identifier of the
requested CAN L-PDU.

Development errors:

- Invalid values of CanTxPduld and Canld will be reported to the development
error tracer (CANIF_E_INVALID_TXPDUID or CANIF_E_PARAM_CANID)

- Ifthe CAN Interface was not initialized before, the call of this function will be
reported to the development error tracer (CANIF_E_UNINIT). No
reconfiguration of Tx Canld will be executed.

Caveats: The CAN Interface must be initialized after Power ON.

This function may not be interrupted by Canlf_Transmit(), if the same L-PDU
ID is handled.

Configuration:

This function shall be pre compile time configurable On/0ff by the configuration
parameter CANIF_SETDYNAMICTXID_API.

8.3.13 Canlf_SetTransceiverMode

Service name:

Canlf _SetTransceiverMode

Syntax:

Std_ReturnType Canlf_SetTransceiverMode

¢ uint8 Transceiver,
Canlf_TransceiverModeType TransceiverMode
Service ID [hex]: ())XOD
Behavior: Synchronous
Reentrancy: Non re-entrant
Parameters (in): | Transceiver CAN transceivers requested for mode transition
TransceiverMode Requested mode transition

105 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

Parameters (out):

Return value:

V3.2.0
R3.0 Rev7
E OK Will be returned, if the transceiver state has been
changed to the requested mode.
E _NOT_OK Will be returned, if the transceiver state change has

failed or the parameter is out of the allowed range. The
previous state has not been changed.

Description: CANIF287: This API requests actual state of CAN Transceiver Driver. For more
details, please refer to the [9] Specification of CAN Transceiver Driver.

This service calls CanTrcv_SetOpMode (Transceiver, *OpMode) for the

corresponding requested CAN transceiver.

Development errors:

- Invalid values of transceiver or transceiver mode will be reported to
the development error tracer (CANIF_TRCV_E_TRANSCEIVER,
CANIF_TRCV_E_TRCV_NOT_STANDBY or
CANIF_TRCV_E_TRCV_NOT_NORMAL)

- If the CAN Interface was not initialized before, the call of this function will be
reported to the development error tracer (CANIF_E_UNINIT). The function
returns with E_NOT_OK.

Caveats: This API shall be applicable to all CAN transceivers with all values independent, if

the transceiver hardware supports these modes or not. This is to ease up the view
of the Can Interface to the assigned physical CAN channel. If the mode is not
supported, the return value shall be E_OK.

Configuration:

The number of supported transceiver types for each network is set up in the
configuration phase. If no transceiver is used, this API shall not be provided.

8.3.14 Canlf_GetTransceiverMode

Service name:

Canlf GetTransceiverMode

Syntax:

Std_ReturnType Canlf_GetTransceiverMode

(
uint8 Transceiver,
Canlf_TransceiverModeType *TransceiverModePtr
)
Service ID [hex]: | OxOE
Behavior: Synchronous
Reentrancy: Non re-entrant
Parameters (in): | Transceiver CAN transceivers requested for mode
transition
Parameters (out): | TransceiverModePtr Requested mode transition
Return value: E_OK Transceiver mode request has been
accepted
E _NOT_OK Transceiver mode request has not been
accepted

Description:

CANIF288: This API returns actual state of CAN Transceiver Driver. For more
details, please refer to the [9] Specification of CAN Transceiver Driver.

This service calls CanTrcv_GetOpMode (Transceiver, *OpMode) for the
corresponding requested CAN transceiver.

Development errors:

- Invalid values of transceiver will be reported to the development error
tracer (CANIF_TRCV_E_TRANSCEIVER)

- If the CAN Interface was not initialized before, the call of this function will be

106 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

reported to the development error tracer (CANIF_E_UNINIT). The function
returns with E_NOT_OK.

Caveats:

See Canlf_Init() for the provided state after the CAN Transceiver Driver
initialization till the first operation mode change request.

Configuration:

The number of supported transceiver types for each network is set up in the
configuration phase. If no transceiver is used, this API shall not be provided.

8.3.15 Canlf_GetTrcvWakeupReason

Service name:

Canlf GetTrcvWakeupReason

Syntax:

Std_ReturnType Canlf_GetTrcvWakeupReason
(

Transceiver
*TrcvWuReasonPtr

uints
Canlf_TrcvWakeupReasonType
)

Service ID [hex]:

OxOF

Behavior:

Synchronous

Reentrancy:

Non re-entrant

Parameters (in):

Transceiver The handle identifies the CAN transceiver to which

the API call has to be applied.

Parameters (out):

TrcvWuReasonPtr Requested transceiver wakeup reason

Return value:

E OK Transceiver mode request has been accepted

E _NOT_OK Transceiver mode request has not been accepted

Description:

CANIF289: This API returns the reason for the wake up that the CAN transceiver
has detected. The ability to detect and differentiate the possible wakeup reasons
depends strongly on the CAN transceiver hardware. For more details, please
refer to the [9] Specification of CAN Transceiver Driver.

This service calls CanTrcv_GetBusWuReason (Transceiver, Reason) for
the corresponding requested CAN transceiver.

Development errors:

- CANIF_TRCV_E_TRCV_NOT_STANDBY

- If the CAN Interface was not initialized before, the call of this function will be
reported to the development error tracer (CANIF_E_UNINIT). The function
returns with E_NOT_OK.

Caveats:

Please be aware, that if more than one network is available, each network may
report a different wake up reason. E.g. if an ECU has CAN, a wake up by CAN
may occur and the incoming data may cause an internal wake up for another
CAN network.

This API has a “per network” view and does not vote the more important reason
or sequence internally. The same may be true if e.g. one transceiver controls the
power supply and the other is just powered or un-powered. Then one may be
able to return CANIF_TRCV_WU_POWER_ON, whereas the other may state e.g.
CANIF_TRCV_WU_RESET.

Itis up to the EcuM to decide, how to handle that wake up information.

Configuration:

The number of supported transceiver types for each network is set up in the
configuration phase. If no transceiver is used, this API shall not be provided.

8.3.16 Canlf_SetTransceiverWakeupMode

Service name:

Canlf_SetTransceiverWakeupMode

107 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

V3.2.0
R3.0 Rev 7
Syntax: Std_ReturnType Canlf_SetTransceiverWakeupMode
¢ uint8 Transceiver
Canlf_TrcvWakeupModeType TrcvWakeupMode
Service ID [hex]: gxlo
Behavior: Synchronous
Reentrancy: Non re-entrant
Parameters (in): | Transceiver The handle identifies the CAN transceiver to which the API
call has to be applied.
TrcvWakeupMode Requested transceiver wakeup reason
Parameters (out): | --
Return value: E OK Will be returned, if the wakeup state has been changed to
the requested mode.
E _NOT_OK Will be returned, if the wakeup state change has failed or

the parameter is out of the allowed range. The previous
state has not been changed.

Description:

CANIF290: This API enables, disables and clears the notification for wakeup
events on the addressed network. For more details, please refer to the [9]
Specification of CAN Transceiver Driver.

This service calls CanTrcv_SetWakeupMode (Transceiver,
TrcvWakeupMode) for the corresponding requested CAN transceiver.

Enabled: if the CAN Transceiver Driver has a stored wakeup event pending for
the addressed network, the notification is executed within the API call or
immediately after (depending on the implementation).

Disabled: li it is required by the transceiver device and the underlying
communication, the driver has to detect the wakeup events nevertheless and
stores it internally to raise the event, when the wakeup notification is enabled
again.

Clear: Clearing of wakeup events have to be used, when the wake up notification
is disabled to clear all stored wake up events under control of the higher layer.

Development errors:
CANTRCV_E_UNINIT: not yet initialized

Caveats:

The implementation may be e.g. disabling the interrupt source for the wake up. If
the interrupt is level triggered a pending interrupt is automatically stored and
raised after enabling the notification again.

It is very important not to lose wake up events during the disabled period.

Configuration:

The number of supported transceiver types for each network is set up in the
configuration phase. If no transceiover is used, this API shall not be provided.

8.3.17 Canlf_CheckWakeup

Service name:

Canlf CheckWakeup

Syntax:

Std_ReturnType Canlf_CheckWakeup

EcuM_WakeupSourceType WakeupSource
)
Service ID: 0x11
Sync/Async: Synchronous
Reentrancy: Re-entrant

108 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

V3.2.0
R3.0 Rev7
WakeupSource Source device, who initiated the wakeup event: CAN
controller or CAN transceiver
Parameters (out): | --
Return value: E OK Will be returned, if the check wakeup request has been
accepted.
E _NOT_OK Will be returned, if the check wakeup request has not

been accepted.

Description:

CANIF219: This Service checks, whether an underlying CAN driver or CAN
Transceiver driver already signals an wakeup event by the CAN network

This service shall evaluate the WakeupSource parameter to get the information,
which dedicate wakeup source needs to be checked, either a CAN transceiver or
controller device. Depending on this information the function
Canlf_CheckWakeup shall either call the function Can_Cbk_ CheckWakeup()
or CanTrcv_CB_WakeupByBus () with the parameter addressing the correct
hardware device causing the wakeup event.

If one of these called functions has detected a wakeup by CAN (return value
E_OK), the service Canlf_CheckWakeup() shall call the API
EcuM_SetWakeupEvent() for the respective Wakeup Source.

This service is called by the ECU Firmware. In dependence of the parameter
value the CAN Interface notifies the CAN Driver or the CAN Transceiver Driver
about the wakeup event. This service is implemented by the CAN Interface. It is
called in case of a mode change notification of the CAN controller or the CAN
transceiver.

Development errors:

- Invalid values of WakeupSource will be reported to the development error
tracer (CANIF_E_PARAM_WAKEUPSOURCE).

- If the CAN Interface was not initialized before, the call of this function will be
reported to the development error tracer (CANIF_E_UNINIT). The function
returns with E_NOT_OK.

Caveats:

The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).

The CAN Interface must be initialized after Power ON.

This call-out service is re-entrant for multiple CAN controller usage.

Configuration:

This wake up service is configurable by CANIF_WAKEUP_SUPPORT, which
depends on the used CAN controller type and the used wakeup strategy. This
callback may not be supported, if no wakeup shall be used.

8.3.18 Canlf_CheckValidation

Service name:

Canlf_Checkvalidation

Syntax: Std_ReturnType Canlf_Checkvalidation
EcuM_WakeupSourceType WakeupSource
)
Service ID: 0x12
Sync/Async: Synchronous
Reentrancy: Re-entrant
Parameters (in): |WakeupSource Source device, who initiated the wakeup event has to be

validated: CAN controller or CAN transceiver

Parameters (out):

109 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V3.2.0
R3.0 Rev 7
Return value: E OK Will be returned, if the check validation request has been
accepted.
E_NOT_OK Will be returned, if the check validation request has not
been accepted.
Description: CANIF178: This service is performed to validate a previous wakeup event. This

service is called by the ECU Firmware. The CAN Interface checks inside this
service, whether a L-PDU was successful received inn the meantime.

CANIF179: The validation call return, whether the first CAN L-PDU reception
event after a wakeup event has been occurred on the corresponding CAN
network. In that case EcuM_Val idateWakeupEvent() is called within the
validation result.

For different upper layer users different service names shall be used. This type of
indication call-out service is mainly designed for the ECU State Manager module.

Development errors:

- Invalid values of WakeupSource will be reported to the development error
tracer (CANIF_E_PARAM_WAKEUPSOURCE).

- If the CAN Interface was not initialized before, the call of this function will be
reported to the development error tracer (CANIF_E_UNINIT).). The function
returns with E_NOT_OK.

Caveats: The CAN Driver must be initialized after Power ON.

The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).

This call-out service is re-entrant for multiple CAN controller/CAN network usage.

Configuration: The responsible layers for the copying of the data are statically configurable. If no
validation is needed, this API can be omitted by disable of
CANIF_WAKEUP_VALIDATION.

The wakeup validation APl name for validated wakeup events belonging to the
EcuM module must be configured to EcuM_Val idateWakeupEvent().

8.3.19 Canlf_GetTxConfirmationState

CANIF734:
Service name: [Canif GetTxConfirmationState
Syntax: Canlf_NotifStatusType Canlf_GetTxConfirmationState(
uint8 CanController
D
Service ID[hex]: [0x19
Sync/Async: Synchronous
Reentrancy: [Reentrant (Not for the same controller)
. [cancontroller bstracted Canlf Controllerld which is assigned to a
Parameters (in): IéAN controller
Parameters None
(inout):
Parameters (out): [None
_ [CanIf_NotifStatusType |Combined TX confirmation status for all TX PDUs of
Return value:
the CAN controller
Description: This service reports, if any TX confirmation has been done for the whole CAN
controller since the last CAN controller start.

CANIF735: If the CAN Interface module was not initialized before calling
Canlf_GetTxConfirmationState() and if development error detection is
enabled (i.e. CANIF_DEV_ERROR_DETECT equals ON), then the service Canlf_
GetTxConfirmationState() shall report development error code
CANIF_E_UNINIT to the Det_ReportError service of the DET module.

110 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

CANIF736: If parameter Controllerld of Canlf_GetTxConfirmationState()
has an invalid value and if development error detection is enabled (i.e.
CANIF_DEV_ERROR_DETECT equals ON), then the function
Canlf_GetTxConfirmationState() shall report development error code
CANIF_E_PARAM_CONTROLLERID to the Det_ReportError service of the DET
module.

CANIF737: Caveats of CanlT_GetTxConfirmationState():
e The call context is either on task level (polling mode).
e The Canlf must be initialized after Power ON.

CANIF738: Configuration of Canlf_GetTxConfirmationState(): If BusOff
Recovery of CanSm doesn’t need the status of the Tx confirmations (see CANIF740),
this API can be omitted by disabling of
CANIF_PUBLIC_TXCONFIRM_POLLING_SUPPORT (see CANIF246).

111 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

8.4 Call-out notifications

This is a list of functions provided for other modules. The function prototypes of the
callback functions shall be provided in the file canif_cbk.h.

8.4.1

Canlf_TxConfirmation

Service name:

Canlf TxConfirmation

Syntax:

void Canlf_TxConfirmation

PduldType CanTxPduld
Service ID: 0x13
Sync/Async: Synchronous
Reentrancy: Re-entrant
Parameters (in): [CanTxPduld L-PDU handle of CAN L-PDU successfully transmitted.

This ID specifies the corresponding CAN L-PDU ID and
implicitly the CAN Driver instance as well as the
corresponding CAN controller device.

Parameters (out):

Return value:

Description:

CANIFO0Q7: This service is implemented in the CAN Interface and called by the
CAN Diriver after the CAN L-PDU has been transmitted on the CAN network.
Within this service, the CAN Driver passes back the CanTxPduld to the CAN
Interface, which it got from Can_Write(Hth, *Pdulnfo).

This call-out service is implemented as many times as underlying CAN Drivers
are used. In that case one transmit confirmation call-out is assigned to one
underlying CAN Driver.

Then following naming convention has to be considered:
Canlf_TxConfirmation_<CAN_Driver>.

For further details please refer to chapter [7.25 Multiple CAN Driver support].

Development errors:

- Invalid values of CanTxPduld will be reported to the development error
tracer (CANIF_E_PARAM_LPDU).

- Ifthe CAN Interface was not initialized before, the call of this function will be
reported to the development error tracer (CANIF_E_UNINIT). No Tx
confirmation handling will be executed.

Caveats:

The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).

This call-out service is re-entrant for multiple CAN controller usage.

The CAN Interface must be initialized after Power ON.

Configuration:

Transmit confirmation can be enabled or disabled by configuration. It is always
enabled, if transmit buffers are used.

8.4.2

Canlf_RxIndication

Service name:

Canlf RxIndication

Syntax:

void Canlf _RxIndication

(

uints8 Hrh,

112 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

V3.2.0
R3.0 Rev7
Can_1dType Canld,
uints CanDlc,
const uint8 *CanSduPtr
)
Service ID: 0x14
Sync/Async: Synchronous
Reentrancy: Re-entrant
Parameters (in): |Hrh ID of the corresponding hardware object
Range:
e 0..(total number of
Hardware Receive Handles — 1)
Canld Standard/Extended CAN ID of CAN L-PDU that has been
successfully received
CanDIc Data length code (length of CAN L-PDU payload)
*CanSduPtr Pointer to received L-SDU (payload)

Parameters (out):

Return value:

Description:

CANIFO006: This service is implemented in the CAN Interface and called by the
CAN Driver after a CAN L-PDU has been received. Within this service, the CAN
Interface translates the Canld into the configured target PDU ID and routes this
indication to the configured upper layer target service(s).

This call-out service is implemented as many times as underlying CAN Drivers
are used. In that case one receive indication call-out is assigned to one
underlying CAN Driver.

Then following naming convention has to be considered:
Canlf_RxIndication_<CAN_Driver>.

For further details please refer to chapter [7.25 Multiple CAN Driver support].

Development errors:

- Invalid values of Hrh, Canld, CanDIlc or *CanSduPtr will be reported to
the development error tracer (CANIF_E_PARAM_HRH, CANIF_E_
PARAM_CANID, CANIF_E PARAM DLC or CANIF_E_PARAM_POINTER).

- If the CAN Interface was not initialized before, the call of this function will be
reported to the development error tracer (CANIF_E_UNINIT). No Rx
indication handling will be executed.

Caveats:

The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).

This call-out service is re-entrant for multiple CAN controller usage.

The CAN Interface must be initialized after Power ON.

Configuration:

CAN L-PDUs have to be assigned to the corresponding receive indication
service.

8.4.3 Canlf_CancelTxConfirmation

Service name:

Canlf CancelTxConfirmation

Syntax:

void Canlf_CancelTxConfirmation

113 of 177

(
const Can_PduType *PdulnfoPtr
)
Service ID: 0x15
Sync/Async: Synchronous
Reentrancy: Re-entrant

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

Parameters (in)

*PdulnfoPtr Pointer to a structure with CAN L-PDU related data: L-
PDU handle of the successfully aborted CAN L-PDU,

CAN identifier, DLC and pointer to CAN L-SDU buffer.

Parameters (out):

Return value:

Description: CANIF101: This service is implemented in the CAN Interface and called by the
CAN Driver after a previous request for cancellation of a pending L-PDU transmit
request was successfully performed.

This callback service is implemented as many times as underlying CAN Drivers

are used. In that case one cancel transmit confirmation callback is assigned to

one underlying CAN Driver.

Then following naming convention has to be considered:

Canlf_CancelTxConfirmation_<CAN_Driver>.

For further details please refer to chapter [7.25 Multiple CAN Driver support].

Development errors:

- Invalid values of CanTxPduld will be reported to the development error
tracer (CANIF_E_PARAM_LPDU).

- If the CAN Interface was not initialized before, the call of this function will be
reported to the development error tracer (CANIF_E_UNINIT). No Tx
cancellation handling will be executed.

Caveats: The call context is either on interrupt level (interrupt mode) or on task level

(polling mode).
The CAN Interface must be initialized after Power ON.

Configuration:

This function shall be pre compile time configurable On/0Tf by the configuration
parameter CANIF_TRANSMIT_CANCELLATION.

8.4.4 Canlf_ControllerBusOff

Service name:

Canlf ControllerBusOff

Syntax: void Canlf_ControllerBusOff
(
uint8 Controller
)
Service ID: 0x16
Sync/Async: Synchronous
Reentrancy: Re-entrant

Parameters (in):

Controller CAN controller, where a BusOff occurred.

Parameters (out):

Return value:

Description:

CANIF218: This service indicates a CAN controller BusOff event referring to the
corresponding CAN controller. (CANIF014)

This call-out service is called by the CAN Driver and implemented in the CAN
Interface. It is called in case of a mode change notification of the CAN Driver.

This call-out service is implemented as many times as underlying CAN Drivers
are used. In that case one BusOff notification is assigned to one underlying CAN
Driver.

Then following naming convention has to be considered:
Canlf_ControllerBusOff_<CAN_Driver>.

For further details please refer to chapter [7.25 Multiple CAN Driver support].

Development errors:
- Invalid values of control ler will be reported to the development error

114 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

tracer (CANIF_E_PARAM_CONTROLLER).

- If the CAN Interface was not initialized before, the call of this function will be
reported to the development error tracer (CANIF_E_UNINIT). No BusOff
notification will be executed.

Caveats: The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).

The CAN Interface must be initialized after Power ON.

This call-out service is re-entrant for multiple CAN controller usage.

Configuration: ID of the CAN controller is published inside the configuration description of the
CAN Interface.

115 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

8.5 Expected interfaces

Specification of CAN Interface

V3.2.0
R3.0 Rev 7

In this chapter all interfaces required from other modules are listed.

8.5.1 Mandatory interfaces

CANIF040: This chapter defines all interfaces which are required to fulfill the core

functionality of the module.

API function Module Description
Can_InitController CAN Driver Service for CAN controller specific
initialization of the CAN Hardware
unit.
Can_SetControl lerMode CAN Driver Service to initiate state transitions of
the corresponding CAN controller.
Can_DisableControllerinterrupts | CAN Driver Service for disabling the interrupts of
the CAN corresponding controller.
Can_EnableControllerinterrupts | CAN Driver Service for enabling the interrupts of
the CAN corresponding controller.
Can_Cbk_CheckWakeup CAN Driver Service to evaluate CAN controller
device, which caused a wakeup
Can_Write CAN Driver Service for transmitting CAN L-

PDUs.

CanTrcv_CB_WakeupByBus

Can Transceiver
Driver

Service to evaluate CAN transceiver
device, which caused a wakeup

CanSM_Control lerBusOff CAN Station Service to notify CanSM about an
Manager BusOff event
Dem_ReportErrorStatus DEM Reporting of production errors.

Function can also be used before
DEM is initialized.

8.5.2 Optional interfaces

CANIF294: This chapter defines all interfaces which are required to fulfill an optional

functionality of the module.

API function Module | Description

Configuration parameter
(description see chapter
10)

CanTrcv_SetOpMode | CanTrcv | Service to initiate
transitions of the corresponding | container
CAN transceiver.

state | Configuration parameters in

CanlnterfaceTransceiverDrive
rConfiguration

CanTrcv_GetOpMode | CanTrcv | Service to

read the current | Configuration parameters in
state of the corresponding CAN | container
transceiver.

CanlinterfaceTransceiverDrive
rConfiguration

CanTrcv_GetBusWuR | CanTrcv | Service to read the last wakeup | Configuration parameters in
eason reason of the corresponding | container
CAN transceiver.

CanlinterfaceTransceiverDrive
rConfiguration

Mode of

the

CanTrcv_SetWakeup | CanTrcv | Service to initiate wakeup mode | Configuration parameters in
corresponding CAN | container

116 of 177

- AUTOSAR confidential -

Document ID 012: AUTOSAR_SWS_CAN_ Interface

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

transceiver. CanlinterfaceTransceiverDrive
rConfiguration

CanTrcv_CheckWake | CanTrcv | Service to evaluate CAN | Configuration parameters in

up transceiver device, which | container
caused a wakeup CanlinterfaceTransceiverDrive
rConfiguration
Det_ReportError Det Development error notification CANIF_DEV_ERROR_DETECT

8.5.3 Configurable interfaces

In this chapter all interfaces are listed, where the target function of any upper layer to
be called has to be set up by configuration. These call-out services are specified and
implemented in the upper communication modules, which use the CAN Interface
according to the AUTOSAR BSW architecture. The specific call-out notification is
specified in the corresponding SWS document (see chapter [3 Related
documentation]).

As far the interface name is not specified to be mandatory, no call-out is performed, if
no APl name is configured. This chapter describes only the content of notification of
the call-out, the call context inside the CAN Interface and exact time by the call
event.

<User_NotificationName> - This condition is applied for such interface services
which will be implemented in the upper layer ('user’) and called by the CAN Interface.
This condition displays the symbolic name of the functional group in a call-out service
in the corresponding upper layer. Each upper layer can define no, one or several call-
out services for the same functionality (i.e. transmit confirmation). The dispatch is
ensured by the L-PDU ID.

8.5.3.1 <User_TxConfirmation> (PDU Router, CanNm, CanTp)

Service name: <User_TxConfirmation>
Syntax: void <User_TxConfirmation>

PduldType Can<User>TxPduld

)
Service ID: 0x17
Sync/Async: Synchronous
Reentrancy: Re-entrant

Parameters (in) |Can<User>Pduld Target PDU ID of CAN L-PDU transmitted successfully.
This handle specifies the corresponding CAN L-PDU ID
and implicitly the CAN Driver instance as well as the
corresponding CAN controller device.

Range: 0..(maximum number of PDU IDs received) — 1

Parameters(out): |--
Return value: --
Description: CANIFO011: This service confirms a previous successfully processed CAN
transmit request.
This call-out service is called by the CAN Interface and implemented by the
corresponding upper layer. It is called in case of a transmit confirmation of the
117 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

CAN Driver.

This type of confirmation call-out service is mainly designed for the PDU Router,
CanNm and CanTp module.

Caveats:

The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).
This call-out service is re-entrant for multiple CAN controller/CAN network usage.

Configuration:

This call-out service has to be configured by CANIF_USER_TX_CONFIRMATION.
If no upper layers are configured, no confirmation is executed.

If CANIF_TX_USER_TYPE is set to PduR, CanNm or CanTp, the corresponding
Tx confirmation call-out service defined and implemented in the corresponding
upper layer module will be called. In this case CANIF_USER_TX_CONFIRMATION
can be ignored.

8.5.3.2 <User_RxIndication> (PDU Router)

Service name:

<User_RxIndication>

Syntax:

void <User_RxIndication>

PduldType Can<User>RxPduld,
const PdulnfoType *PdulnfoPtr
)
Service ID: 0x18
Sync/Async: Synchronous
Reentrancy: Re-entrant

Parameters (in)

Can<User>RxPduld Target PDU ID of CAN L-PDU that has been received.
This handle identifies the data that has been received.
Range: 0..(maximum number of PDU IDs received by
this upper layer) — 1

PdulnfoPtr Contains the length (SduLength) of the received I-PDU
and a pointer to a buffer (SduDataPtr) containing the I-

PDU.

Parameters (out):

Return value:

Description:

CANIF012: This service indicates a successful reception of an L-PDU to e.g. the
PDU Router after passing all filters and validation checks.

This call-out service is called by the CAN Interface and implemented by the
configured upper layer (PDU Router). It is called in case of a receive indication
event (i.e. ISR is triggered) of the CAN Driver. The data shall be copied by the
corresponding upper layer via *PdulnfoPtr. In this case the L-PDU buffers are
not global and distributed in the corresponding upper layer.

This type of indication call-out service is mainly designed for the PDU Router
module.

Caveats:

Until this service returns the CAN Interface will not access *PdulnfoPtr. The
*PdulnfoPtr is only valid and can be used by upper layers until the indication
returns. CAN Interface guarantees that the number of configured bytes for this
CanRxPduld is valid.

The CAN Driver must be initialized after Power ON.

The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).This call-out service is re-entrant for multiple CAN controller/CAN
network usage.

118 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

Configuration:

This call-out service has to be configured by CANIF_USER_RX_INDICATION.
If no upper layers are configured, no indication is executed.

If CANIF_RX_USER_TYPE is set to PduR, the corresponding Rx indication call-out
service PduR_CanlfRxIndication()defined and implemented in the
corresponding PduR module will be called. In this case
CANIF_USER_RX_INDICATION can be ignored.

8.5.3.3 <User_RxIndication> (CanNm)

Service name:

<User_RxIndication>

Syntax:

void <User_RxIndication>

PduldType Can<User>RxPduld,
const PdulnfoType *PdulnfoPtr
)
Service ID: 0x19
Sync/Async: Synchronous
Reentrancy: Re-entrant
Can<User>RxPduld Target PDU ID of CAN L-PDU that has been received.
This handle identifies the data that has been received.
Range: 0..(maximum number of PDU IDs received) — 1
PdulnfoPtr Contains the length (SduLength) of the received I-PDU

and a pointer to a buffer (SduDataPtr) containing the I-
PDU.

Parameters (out):

Return value:

Description:

CANIF221: This service indicates a successful reception of a received L-PDU to
the upper layer after passing all filters and validation checks.

This call-out service is called by the CAN Interface and implemented by the
configured upper layer (CanNm). It is called in case of a receive indication event
(i.e. ISR is triggered) of the CAN Driver. The data is copied by the corresponding
upper layer via *PdulnfoPtr. In this case the L-PDU buffers are not global and
distributed in the corresponding upper layer.

This type of indication call-out service is mainly designed for the CanNm module.

Caveats:

Until this service returns the CAN Interface will not access *PdulnfoPtr. The
*PdulnfoPtr is only valid and can be used by upper layers until the indication
returns. CAN Interface guarantees that the number of configured bytes for this
Can<User>RxPduld is valid.

The CAN Driver must be initialized after Power ON.

The call context is either on interrupt level (interrupt mode) or on task level
(polling mode). This call-out service is re-entrant for multiple CAN controller/CAN
network usage.

Configuration:

This call-out service has to be configured by CANIF_USER_RX_INDICATION.
This call-out service is mandatory

If CANIF_RX_USER_TYPE is set to CanNm, the corresponding Rx indication call-
out service CanNm_RxIndication()defined and implemented in the
corresponding CanNm module will be called. In this case

CANIF_USER_RX_ INDICATION can be ignored.

119 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

8.5.3.4 <User_RxIndication> (CanTp)

Service name:

<User RxIndication>

Syntax:

void <User_ RxIndication>

PduldType Can<User>RxPduld,
const PdulnfoType *PdulnfoPtr
)
Service ID [hex]: [Ox1A
Sync/Async: Synchronous
Reentrancy: Re-entrant

Parameters (in):

Can<User>RxPduld Target PDU handle of CAN L-PDU that has been
received. Identifies the data that has been received.
Range: 0..(maximum number of PDU IDs received) — 1

PdulnfoPtr Pointer to structure with received L-SDU (payload) and

data length (DLC).

Parameters (out):

Return value:

Description: CANIF195: This function is called by the CAN Interface after a successful
reception of a receive CAN L-PDU belonging to e.g. the CanTp.
This call-out service is called by the Can Interface and implemented the
configured upper layer (CanTp). It shall be called in case of a receive indication of
CAN Diriver. The data shall be copied by the corresponding upper layer via the
PDU structure *PdulnfoPtr. In this case the L-PDU buffers are not global and
distributed in the e.g. CAN Transport Layer.
This type of indication call-out service is mainly designed for the CanTp module.
Caveats: Until this service returns the CAN Interface will not access *PdulnfoPtr. The

*PdulnfoPtr is only valid and can be used by upper layers until the indication
returns. CAN Interface guarantees that the number of configured bytes for this
Can<User>RxPduld is valid.

The CAN Driver must be initialized after Power ON.

The call context is either on interrupt level (interrupt mode) or on task level
(polling mode). This call-out service is re-entrant for multiple CAN controller/CAN
network usage.

Configuration:

This call-out service has to be configured by CANIF_USER_RX_INDICATION. If
no upper layers are configured, no indication is executed.

If CANIF_RX_USER_TYPE is set to CanTp, the corresponding Rx indication call-
out service CanTp_RxIndication()defined and implemented in the
corresponding CanTp module will be called. In this case

CANIF_USER_RX_ INDICATION can be ignored.

8.5.3.5 <User_ControllerBusOff> (CanSM)

Service name:

<User_ControllerBusOff>

Syntax:

void <User_ControllerBusOff>

(
)

uints Controller

Service ID:

0Ox1B

120 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

Sync/Async:

Synchronous

Reentrancy:

Re-entrant

Parameters (in):

Controller CAN network, where at least at one CAN controller a

BusOff occurred.

Parameters (out):

Return value:

Description: CANIF014: This service indicates a BusOff event at the notified CAN controller
device.
This call-out service is called by the CAN Interface and implemented by the CAN
State Manager as CanSM_Control lerBusOff() ([11] Specification of CAN
State Manager) or any other upper layer. It is called in case of a BusOff
notification Canlf_Control lerBusOff() of the CAN Driver.
For different upper layer users different service names shall be used. This type of
indication call-out service is mainly designed for the Communication Manager
module.

Caveats: The CAN Driver must be initialized after Power ON.

The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).

This call-out service is re-entrant for multiple CAN controller/CAN network usage.
Before re-initialization/restart during BusOff recovery is executed this call-out
service is performed only once in case of multiple BusOff events at CAN
controllers of the corresponding CAN network.

Configuration:

ID of the CAN network is published inside the configuration description of the
CAN Interface. This call-out service is mandatory and configured by CANIF_USER
BUSOFF_NOTIFICATION.

If the controller BusOff natification APl name for BusOff events belonging to the
CanSM module, it has to be configured to CanSM_Control 1erBusOff().

8.5.3.6 <User_SetWakeupEvent> (EcuM)

Service name:

<User SetWakeupEvent>

Syntax:

void <User_SetWakeupEvent>

EcuM_WakeupSourceType CanWakupEvents
)
Service ID: 0x1C
Sync/Async: Synchronous
Reentrancy: Re-entrant
Parameters (in): | CanWakupEvents Events to be validated. Every CAN network can be a

separate wakeup source.

Parameters (out):

Return value:

Description:

CANIF013: Service indicates a wake up event initiated from the CAN network
and detected by the CAN Driver ro CAN Transceiver Driver.

This call-out service is called by the CAN Interface and implemented by the upper
layer (EcuM_SetWakeupEvent() in ECU State Manager).

It is called only during call of Canl¥_CheckWakeup().

For different upper layer users different service names shall be used. This type of
indication call-out service is mainly designed for the ECU State Manager module.

Caveats:

The CAN Driver must be initialized after Power ON.

The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).

This call-out service is re-entrant for multiple CAN controller/CAN network usage.
Before re-initialization/restart is executed this call-out service is performed only

121 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

once in case of multiple wakeup events at CAN controllers of the corresponding
CAN network.

Configuration:

The responsible layers for the copying of the data are statically configurable. If no
upper layer call-out is configured no notification is configured by
CANIF_WAKEUP_SUPPORT.

If the wakeup notification APl name for wakeup events over CAN belonging to the
EcuM module, it has to be configured to EcuM_SetWakeupEvent().

8.5.3.7 <User_ValidationWakeupEvent> (EcuM)

Service name:

<User ValidationWakeupEvent>

Syntax:

void <User_ValidationWakeupEvent>

EcuM_WakeupSourceType CanWakeupEvents
)
Service ID: 0x1D
Sync/Async: Synchronous
Reentrancy: Re-entrant
Parameters (in): |CanWakeupEvents Validated CAN wakeup events. Every CAN network can

be a separate wakeup source.

Parameters (out):

Return value:

Description:

CANIF178: This notification is performed, when a previous wakeup event has
been validated. This call-out service is called by the CAN Interface and
implemented by the upper layer (EcuM_Val idateWakeupEvent() in ECU
State Manager).

CANIF179: The validation call-out is performed, only during call of
Canlf_CheckValidation() and whenever the first CAN L-PDU reception
event after a wakeup event has been occurred on the corresponding CAN
network.

For different upper layer users different service names shall be used. This type of
indication call-out service is mainly designed for the ECU State Manager module.

Caveats:

The CAN Driver must be initialized after Power ON.

The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).

This call-out service is re-entrant for multiple CAN controller/CAN network usage.

Configuration:

The responsible layers for the copying of the data are statically configurable. If no
upper layer call-out is configured by CANIF WAKEUP_VALIDATION_, no
notification is performed.

If the wakeup validation API name for validated wakeup events belonging to the
EcuM module, it has to be configured to EcuM_Val idateWakeupEvent().

122 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7
9 Sequence diagrams

The following sequence diagrams show the interaction between the CAN Interface
and the CAN Driver.

123 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

9.1 Transmit request (single CAN Driver)

sd Tx Request (Single CAN Driver)/

Generic Canlf::Canlf CombDrivers::Can «peripheral»
Elements::User Hardw are::CanController
oo

Std_RefumType:: Canlf_T ransmit(CanTdeuId,Pdl:JInfoPtr)

Can_RetunType:= Can_Write(ch,PduInfo)i
»

alt CAN Controller /

Copy L-PDU into CAN Hardware

< Copy L-PDU into CAN Hardware

[CAN ¢optroller hardware object is free]

Can_Write
<.---.-...----:_ ________________

[CAN ¢ohtroller hardware object is busy]

Can_Write
<.---.-...----.—_ ________________

ENTER CRITICAL
[i ; SECTION

e e

L
]
1
1
]
1
]
1
i
Insert L-PDU in transmit buffer |
1

LEAVE CRITICAL
[i ; SECTION

Canlf_Transmit

<.

-

Figure 23 Transmission request with a single CAN Driver

124 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

Activity

Description

Transmission request

The upper layer initiates a transmit request via the service
Canlf_Transmit(). The parameter CanTxPduld
identifies the requested L-PDU. The service performs
following steps:

- validation of the input parameter

- definition of the CAN controller to be used

The second parameter *PdulnfoPtr is a pointer on the
structure with transmit L-PDU related data such as
CanSduLength and *CanSduPtr.

Start transmission

Canlf_Transmit() requests a transmission and calls the
CAN Driver service Can_Write() with corresponding
processing of the HTH.

Hardware request

Can_Write(writes all L-PDU data in the CAN Hardware
(if it is free) and sets the hardware request for transmission.

E_OK from Can_Write service

Can_Write() returns E_OK to Canlf_Transmit().

E_BUSY from Can_Write service

If the CAN Driver detects, there are no free hardware
objects available, it returns CAN_E_BUSY to the CAN
Interface.

Copying into the buffer

The L-PDU of the rejected transmit request will be inserted
in the transmit buffer of the CAN Interface until the next
transmit confirmation.

E_OK from CAN Interface

Canlf_Transmit() returns E_OK to the upper layer.

125 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

9.2 Transmit request (multiple CAN Drivers)

sd Tx Request (Multiple CAN Drivers)/

Generic Canlf::Canlf
Elements::User

oo

Can_A :Can «peripheral»
CanController A

:CanController

Can_B :Can «peripheral»
CanController B

:CanController

alt CAN Controller A/B /

[CAN Contrpller A used]

:Std_RelumType:: Canlf_Transm \l(CanTdeu:Id, PdulnfoPtr)

Can_RetumType:= Can_Write(Hth,Pdulnfo) T

1
Here the namie of the called function hasto be
extended to digtinguish the two Can drivers, i..e.
CaniwmeiA!,..)

alt CAN Controller A hardware status /

[CAN controller hardware object is free]

[CAN controller hardware object in busy]

(e

B
ENTER CRITICAL

[;l SECTION

;l Insert L-PDU in transmit buffer

LEAVE CRITICAL
SECTION

Copy L-PDU in CAl
Hardware A

Can_Write

Can_Write

Canlf_Transmit

€ m e e o

[CAN Confyoller B used]

i
Std_ReturnType:= Canlf_Transmit(CanTxPduld,PdulnfoPtr)

MR

Here the name of the called function hasto be
extended to distinguish the two Can drivers, i..e.
Can_Write_B(...)

Can_RetumnType:= Can_Wrile(chﬁ(—iu\nfo.) i

alt CAN Controller B hardware status /

[CAN Qonroller hardware object is free]

[CAN controller hardware object is busy]

ENTER CRITICAL
SECTION

Insert L-PDU in transmit buffer

LEAVE CRITICAL
SECTION

Copy L-PDU in CAN
Hardware B

Copy L-PDU in CAN
Hardware B

RO RS [1

Canlf_Transmit

it

R

Figure 24 Transmission request with multiple CAN Drivers

126 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

First transmit request:

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

Activity Description
Transmission The upper layer initiates a transmit request via the service
request A Canlf_Transmit(). The parameter CanTxPduld

identifies the requested L-PDU. The service performs
following steps:

- validation of the input parameter

- definition of the CAN controller to be used (here: A)
The second parameter *PdulnfoPtr is a pointer on the
structure with transmit L-PDU related data such as
CanSduLength and *CanSduPtr.

Start transmission

Canlf_Transmit() requests a transmission and calls the
CAN Driver A service Can_Write_A() with corresponding
processing of the HTH.

Hardware request

Can_Write_AQwrites all L-PDU data in the CAN
Hardware A (if it is free) and sets the hardware request for
transmission.

E_OK from Can_Write service

Can_Write A(Q returns E_OK to
Canlf _Transmit().

E_BUSY from Can_Write service

If the CAN Driver A detects, there are no free hardware
objects available, it returns CAN_E_BUSY to the CAN
Interface.

Copying into the buffer

The L-PDU of the rejected transmit request will be inserted
in the transmit buffers of the CAN Interface until the next
transmit confirmation.

E_OK from CAN Interface

Canlf_Transmit() returns E_OK to the upper layer.

Second transmit request:

Activity Description
Transmission The upper layer initiates a transmit request via the service
request B Canlf_Transmit(). The parameter CanTxPduld

identifies the requested L-PDU. The service performs
following steps:

- validation of the input parameter

- definition of the CAN controller to be used (here: B)
The second parameter *PdulnfoPtr is a pointer on the
structure with receive L-PDU related data such as
CanSduLength and *CanSduPtr.

Start transmission

Canlf_Transmit() starts a transmission and calls the
CAN Diriver A service Can_Write_B() with corresponding
processing of the HTH.

Hardware request

Can_Write_BQwrites all L-PDU data in the CAN
Hardware B (if it is free) and sets the hardware request for
transmission.

E_OK from Can_Write service

Can_Write B(Q) returns E_OK to Canlf_Transmit().

E_BUSY from Can_Write service

If the CAN Driver B detects, there are no free hardware
objects available, it returns CAN_E_BUSY to the CAN
Interface.

Copying into the buffer

The L-PDU of the rejected transmit request will be inserted
in the transmit buffers of the CAN Interface until the next
transmit confirmation.

E_OK from CAN Interface

Canlf_Transmit() returns E_OK to the upper layer.

127 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

V3.2.0
R3.0 Rev 7
9.3 Transmit confirmation (interrupt mode)
sd TxConfirmation (Interrupt)/
Generic Canlf::Canlf CombDrivers:Can «peripheral»

Elements::User

Hardw are::CanController
(el o)

<user_TxConfirmation>(CanTxPduld)

<user_TxConfirmation>

T T
))
| |
! Transmit Interrupt !

Canlf_TxConfirmation(CanTxPduld)

_._____-_._._._._._-_._._._._._.>

Canlf_TxConfirmation

Transmit Interrupt

Figure 25 Transmit confirmation interrupt driven

Activity

Description

Transmit interrupt

The acknowledged CAN frame signals a successful
transmission to the receiving CAN controller and triggers
the transmit interrupt.

Confirmation to the CAN Interface

CAN Diriver calls the service Canlf_TxConfirmation().
The parameter CanTxPduld specifies the CAN L-PDU
previously sent by Can_Write().

The CAN diver must store the all in HTHs pending L-PDU
Ids in an array organized per HTH to avoid new search of
the L-PDU ID for call of Canlf_TxConfirmation().

Confirmation to upper layer

Calling of the corresponding upper layer confirmation
service <User_TxConfirmation>(). It signals a
successful L-PDU transmission to the upper layer.

128 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTO SAR Specification of CAN Interface

V3.2.0
R3.0 Rev 7
9.4 Transmit confirmation (polling mode)
sd TxConfirmation (Polling) /
Generic Canlf::Canlf «module» «Peripheral»
Q Elements:Canlf User Can:Can Hardware::CanController
BSW Scheduler i i
loop Cyclic Te:sk of Interface / ; ; ; ;
T 1 Can_MainFunction_Wite(! 1 :
H H g Checkfor pending TX H
: : confimations() ‘:
E E Checkfor pending TX o
! ! | _confmations)
alt Pending Tx confirmation : Canlf_TxConfirmation(PduldType) :
[Tx confirmétion ispending] L !
%(‘ﬁnlfUmLTxConfi rmation>(Pdul IdTypIe E
H_fﬁ"_"r%:r_x?:"frf:afe@_ |
N | B o Toconmmony |
[No Tx confjrmation is pending] H H
N i-------%cf_“ﬂa_in_@nc_ﬁen:_w_ﬂze_oi‘ _________________________
Figure 26 Transmit confirmation polling driven
Activity Description
Cyclic Task The service Can_MainFunction_Write()is called
CAN Driver by the BSW Scheduler.
Check for pending transmit Can_MainFunction_Write()checks the underlying
confirmations CAN controller(s) about pending transmit confirmations of
previously succeeded transmit events.
Transmit Confirmation The acknowledged CAN frame signals a successful
transmission to the sending CAN controller.
Confirmation to CAN Interface CAN Diriver calls the service Canlf_TxConfirmation()

The parameter CanTxPduld specifies the CAN L-PDU
previously sent by Can_Write().

The CAN diver must store the all in HTHs pending L-PDU
Ids in an array organized per HTH to avoid new search of
the L-PDU ID for call of Canlf_TxConfirmation().

Confirmation to upper layer Calling of the corresponding upper layer confirmation
service <User_TxConfirmation>(). It signals a
successful L-PDU transmission to the upper layer.

129 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

V3.2.0

R3.0 Rev 7
9.5 Transmit confirmation (with buffering)
sd TxConfirmation GBuffering)/
Generic Canlf::Canlf Can::Can «Peripheral»
Elements::User Hardware::CanController
oo oo
i i i Trangmit Confirmation Interrupt i
E E . Canlf_TxConfirmation(CanTxPduld)

ENTER CRITICAL SECTION/
LEAVE CRITICAL SECTION:

Thiscan either be a
semaphore mechanism usng
OS s=rvices, OS resources or
intenupt locks

e
e

ENTER
CRITICAL
SECTION

check tranamit
buffersfor other
pending L-PDU

alt Transmit Bufferi ng/

[Buffer isfilled]

Can_RetumType:= Can_Wfite(Hth,Pdulnfo)

Can_Wite

Remove L-PDU successfully
requegted for trangmission
from transmit buffer

Wfite L-PDU into CAN

Hardware

Wfite L-PDU into CAN

Hardware

[Buffer isempty

<'u95r_TxConfi mation>(CanTxPduld)|
el

e

P

<user_TxConfirmation>

LEAVE
CRITICAL
SECTION

Canlf_TxConfirmation

Transmit Confirmation Interrupt

130 of 177

Figure 27 Transmit confirmation with buffering

- AUTOSAR confidential -

Document ID 012: AUTOSAR_SWS_CAN_ Interface

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

Activity

Description

Transmit interrupt

The acknowledged CAN frame signals a successful
transmission to the receiving CAN controller and triggers
the transmit interrupt.

Confirmation to CAN Interface

CAN Driver calls the service Canlf_TxConfirmation().
The parameter CanTxPduld specifies the CAN L-PDU
previously transmitted by Can_Write().

The CAN diver must store the all in HTHs pending L-PDU
Ids in an array organized per HTH to avoid new search of
the L-PDU ID for call of Canlf_TxConfirmation().

ENTER CRITICAL SESSION

Protect transmit buffers from being corrupted. This can be
done using interrupt locks, OS resources or semaphores.

Check of transmit buffers

The transmit buffers of the CAN Interface checked, whether
a pending L-PDU is stored or not.

Transmit request passed to the CAN
Driver

In case of pending L-PDUs in the transmit buffers the
highest priority order the latest L-PDU is requested for
transmission by Can_Write(). It signals a successful L-
PDU transmission to the upper layer. Thus Can_Write()
can be called re-entrant.

Remove transmitted L-PDU from
transmit buffers

The L-PDU pending for transmission is removed from the
transmission buffers by the CAN Interface.

LEAVE CRITICAL SESSION

End of protection segment.

Confirmation to the upper layer

Calling of the corresponding upper layer confirmation
service <User_TxConfirmation>(). It signals a
successful L-PDU transmission to the upper layer.

131 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTO SAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

9.6 Transmit cancellation (with buffering)

sd Transmit Cancellation with Buffering/

Generic Canlf::Canlf Can:Can «Peripheral»
Elements:User Hardware::CanController

Std_RetumType= The CAN Driver stores
Canlf_Transmit(CanTxPduld, the L-PDUIDin a

PdulnfoPtr) comresponding array

Can_RetumType=
Can_Wite(Hth, Pdulnfo)

Search free hardware object !

alt CAN Controller mailbox i
Copy L-PDU into CAN Hardware

[CAN hardware transmit objed

kfree]

|z oy LDV into CAN Hardware

[CAN hardware transmit objed

s not free]

Compare Priority of new L-PDU

and pending onesin CAN
Hardware

alt Check priority of pending Tx LPDUs /

[New Tx L-PDU has lowr| priority than all of the pending onesin the CAN hafdinare]

Nothing to do

[New Tx L-PDU has higher priority than one of the pending onesin the CAN

Request Cancellation of pending L-PDU
with lower priority

SR v SR
ENTER CRITICAL SECTION/ ENTER :
LEAVE CRITICAL SECTION: ORITICAL
SECTION ATTENTION:
This can either be a ssmaphore)
mechanism using OS ==nvices, Insert Tx L-PDU Tx L-PDU iswitten in the Tx L-PDU
OS resources or intenupt lods nsert Tx L in buffer independent, if the L-PDU buffer

transmit buffer .

If the L-PDU buffer isnot free, old data
isovenwitten by fresh one.

CRITICAL
SECTION

Canlf_Transmit

Confimmation of cancelled transmit L-PDU

Canlf_Cancel TxConfiration(*PdulnfoPtr)

ENTER
CRITICAL
SECTION

Checkif there are pending Tx L-PDUs of the same
CanTxPduld asthe aborted one in the transmit buffer
waiting for transmisson

alt State of Tx L-PDU_/

[Tx L-PDU s already buffered] Huffer isfull] ATTENTION:
(=G DED If the Tx L-PDU is already buffered

in the CAN Interface, the cancelled
b—- -+ one must be thrown anay +{—-—-—- =
[Tx L-PDU is already buffered| Buffer is free] othenwise new data can be

ovenwitten by old one.
Insert Tx L-PDUin
[F transmit buffer

LEAVE

CRITICAL
L SECTION

Can_RetumType= Can_Wite(Hth,Pdulnfo)

Tx L-PDU of highest
priority (lowest CAN ID)
istranamitted out of the
Tx L-PDU buffer

Copy L-PDU into free CAN
hardware object

Copy L-PDU into free CAN

S Confimation of cancelled transmit L-PDU

Figure 28 Transmit cancellation

132 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

Activity

Description

Transmission request

The upper layer initiates a transmit request via the service
Canlf_Transmit(). The parameter CanTxPduld identifies the
requested L-PDU. The service performs following steps:

- validation of the input parameter

- definition of the CAN controller to be used

The second parameter *PdulnfoPtr is a pointer on the structure
with transmit L-PDU related data such as CanSdulLength and
*CanSduPtr.

Start transmission

CanlT_Transmit() requests a transmission and calls the CAN
Driver service Can_Write() with corresponding processing of
the HTH.

Hardware request

Can_Write()writes all L-PDU data in the CAN Hardware (if it is
free) and sets the hardware request for transmission.

E_OK from Can_Write service

Can_Write() returns E_OK to Canlf_Transmit().

E_BUSY from Can_Write
service without transmit abort

If the CAN Driver detects, there are no free hardware objects
available and the new transmit L-PDU has lower priority than all of
the pending ones in the CAN hardware, it returns CAN_E_BUSY to
the CAN Interface.

E_BUSY from Can_Write
service with transmit abort

If the CAN Driver detects, there are no free hardware objects
available and the new transmit L-PDU has higher priority than all
of the pending ones in the CAN hardware, it requested transmit
abort of the pending L-PDU in the CAN hardware with the lowest
priority and returns CAN_E_BUSY to the CAN Interface.

Transmit buffer

The CAN Interface stores the rejected L-PDU in the transmit
buffers.

E_OK from CAN Interface

Canlf_Transmit() returns E_OK to the upper layer.

Cancellation confirmation notification:

Activity

Description

Transmit cancellation
confirmation interrupt

The CAN controller signals a successful aborted CAN L-PDU. The
CAN Driver detects the abort confirmation event either by interrupt
or polling.

Confirmation to CAN
Interface

CAN Driver calls service Canlf_CancelTxConfirmation().
The parameter CanTxPduld specifies the CAN L-PDU successfully
aborted by the CAN Driver.

The CAN diver must store the all in HTHs pending L-PDU Ids in an
array organized per HTH to avoid new search of the L-PDU ID for
call of Canlf_CancelTxConfirmation().

ENTER CRITICAL SESSION

Protect transmit buffers from being corrupted. This can be done
using interrupt locks, OS resources or semaphores.

Check of transmit buffers

The transmit buffers of the CAN Interface checked, whether a
pending L-PDU of the same CanTxPduld is stored or not. If yes,
the cancelled L-PDU is lost. If not, the cancelled L-PDU is stored
in the transmit buffer.

Transmit request passed to
the CAN Driver

Pending L-PDUs in the transmit buffers with the highest priority
order is requested for transmission by Can_Write(). It signals a
successful L-PDU transmission to the upper layer. Thus
Can_Write() calls can occur re-entrant.

Remove transmitted L-PDU
from transmit buffers

The L-PDU pending for transmission is removed from the
transmission buffers by the CAN Interface.

LEAVE CRITICAL SESSION

End of protection segment.

Cancellation confirmation
finished

The cancellation confirmation call-out returns.

133 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

9.7 Receive indication (interrupt mode)

Specification of CAN Interface

V3.2.0
R3.0 Rev 7

sd RxIndication (Interrupt)/

Generic
Elements::Canlf User

DLC checkand software
filtering are only performed, if
enabled (configuration)

Invalidation of hardware object

«module» «module» «Peripheral»
Canlf::Canlf Can:Can Hardware::CanController
. Receive Interrupt
<<

Invalidation of hardware object

alt Temporary buffer usage/

[Temp. buffer used = Data normalizaj

n necessary]

Copy received L-PDU into temporla
»

Copy received L-PDU into tempor:

n

buffer

buffer

[Temp. buffer not used = Data normalli

ation not necessary]

Car'1If_RxIndication(Hrh,CanId,CanDIc,CanSdulPtr)
<

%

PDU assignment

Check (optional)

Software filtering (optional) and L.

[CAN L-PDU ID was found]: DLC|

<User_RxIndication>(CanRxPduld,PdulnfoPtr) Exemplary C?”:
- parameters differ for
User=CanTp
alt Temporary buffer usage/
[Temp. buffeused = Data normalization necessary]
Copy Data
Copy Data
[Temp. buffel not used = Data normalization not necessary] Copy Data
Copy Data
<User_RxIndication>
s Canlf_RxIndication
T Validation of hardware object
'
|
\ Validation of hardware object
'
i
i Receive Interrupt
: T L
]]]
' ' '
]]]
' ' '
Figure 29 Receive indication interrupt driven
134 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

Activity

Description

Receive Interrupt

The CAN controller signals a successful reception and
triggers a receive interrupt.

Invalidation of CAN hardware object,
provide CPU access to CAN mailbox

The CPU (CAN Driver) get exclusive access rights to the
CAN mailbox or at least to the corresponding hardware
object, where new data were received.

Buffering, normalizing

The L-SDU is normalized and is buffered in the temporary
buffer located in the CAN Driver. Each CAN Driver owns a
temporary buffer for every physical channel only if
normalizing of the data is necessary.

Indication to
CAN Interface

The reception is indicated to the CAN Interface by calling of
Canlf_RxIndication(). The HRH specifies the CAN
RAM hardware object and the corresponding CAN
controller, which contains the received L-PDU. The
temporary buffer is referenced to the CAN Interface by
*CanSduPtr.

Software Filtering

The Software Filtering checks, whether the received L-PDU
will be processed on a local ECU. If not, the received L-
PDU is not indicated to upper layers. Further processing is
suppressed.

DLC check

If the L-PDU is found, the DLC of the received L-PDU is
compared with the expected, statically configured one for
the received L-PDU.

Receive Indication to the upper layer

The corresponding receive indication service of the upper
layer is called. This signals a successful reception to the
target upper layer. The parameter CanPduld specifies the
L-PDU, the second parameter is the reference on the
temporary buffer within the L-SDU.

During is execution of this service the CAN hardware
buffers must be unlocked for CPU access/locked for CAN
controller access.

Validation of CAN hardware object,
allow access of CAN controller to
CAN mailbox

The CAN controller get back exclusive access rights to the
CAN mailbox or at least to the corresponding hardware
object, where new data were already being copied into the
upper layer buffer.

135 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTO SAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

9.8 Receive indication (polling mode)

sd RxIndication (Polling) /

Generic «module» «module» «Peripheral»
Elements::Canlf User Canlf::Canlf Can::Can Hardware::CanController
oo

BSW Scheduler

loop Cyclic Task of Interface /

Can_MainFunction_Read()

Check for pending Rx indication

Check for pending Rx indication

alt Pending Rx indication

[Rx indicati¢n pending] Invalidation of hardware object
H

Invalidation of hardware object

alt Temporary buffer usage /

[Temp. buffer used :: Data normalization necessary]

Copy received L-PDU into temporary buffer;

Copy received L-PDU into temporary buffer

T

[Temp. buffer not uged = Data normalization not r vl Il

i
Canlf_RxIndication(Hrh,Can \d,CanDIc,CarI\SduPtr)

Software filtering (opti I) and L-PDU
assignment

DLC check and software
filtering are only performed, i
enbaled (configuration)
[CAN L-PDU ID was foun
DLC Check (optional)

<User_RxIndication>(CanRxPduld, PdulnfoPtr)

T Exemplary call: parameters
differ for User=CanTp

[Temp] Huffer used = Data normalization necessary]

alt Temporary buffer usage/

Copy data

t
Copy data
it A== s s

,,,,, e e O S

[Temp] Huffer not used = Data normalization not il

Copy data

Copy data
] I pydata | /]

<User_RxIndication>

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, >

Validation of hardware object

e — e] e .
[No Rx indidation pending]
'

| Can_MainFunction_Read() |
55ttt el ettt ittt sttt ittt ittt T

-ef-

Figure 30 Receive indication polling driven

Activity Description

Cyclic Task The service Can_MainFunction_Read()is called by the
CAN Driver BSW Scheduler.

Check for new received L-PDU Can_MainFunction_Read()checks the underlying CAN
controller(s) about new received L-PDUs.

Invalidation of CAN hardware object, | In case of a new receive event the CPU (CAN Driver) get

136 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

provide CPU access to CAN mailbox

exclusive access rights to the CAN mailbox or at least to
the corresponding hardware object, where new data were
received.

Buffering, normalizing

In case of a new receive event the L-SDU is normalized
and is buffered in the temporary buffer located in the CAN
Driver. Each CAN Driver owns such a temporary buffer for
every physical channel only if normalizing of the data is
necessary.

Indication to
CAN Interface

The reception is indicated to the CAN Interface by calling of
Canlf _RxIndication(). The HRH specifies the CAN
RAM hardware object and the corresponding CAN
controller, which contains the received L-PDU. The
temporary buffer is referenced to the CAN Interface by
*CanSduPtr.

Software Filtering

The Software Filtering checks, whether the received L-PDU
will be processed on a local ECU. If not, the received L-
PDU is not indicated to upper layers. Further processing is
suppressed.

DLC check

If the L-PDU is found, the DLC of the received L-PDU is
compared with the expected, statically configured one for
the received L-PDU.

Receive Indication to the upper layer

If configured, the corresponding receive indication service
of the upper layer is called. This signals a successful
reception to the target upper layer. The parameter
CanPduld specifies the L-PDU, the second parameter is
the reference on the temporary buffer within the L-SDU.
During is execution of this service the CAN hardware
buffers must be unlocked for CPU access/locked for CAN
controller access.

Validation of CAN hardware object,
allow access of CAN controller to
CAN mailbox

The CAN controller get back exclusive access rights to the
CAN mailbox or at least to the corresponding hardware
object, where new data were already being copied into the
upper layer buffer.

137 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTO SAR

9.9 Read received data

Specification of CAN Interface

V3.2.0
R3.0 Rev 7

sd Read received data /

Canlf_NotifStatusType

Generic Canlf::Canlf «module>» «Peripheral»
Elements:Canlf User Can::Can Hardware::CanController
oo

T T T T

1 1 1 1

1 1 1 1

1 1 1 i 1

1 1 < Receive Interrupt()

1 1

1 1

1 1 Invalidation of hardware object()

1 1

! ! [

i i | Invalidation of hardware object()

i i

1 1

1 1

: Canlf_Rxindication(uint8, Can_ldType, uint8, const

: iNt8*)

1 B

1

| S 6B [L-PDU reception in Basi cCAN]: Software

! eporanbiie filtering and L-PDU assignment()

H in CAN driver is]<__|

: used. C

1

i [CAN L-PDU ID was found]:DLC

! L Check)

1

1

1 Copy data to CANIF receive L-PDU buffer()

Notification isonly L il

Bemplary/call: performed, if enabled ! Copy data to CANIF receive L-PDU buffer()
parameters differ for (configured) €= —mmmmmmmm = e - o
User=CanTp

i Set Indication Flag()

1 ! L

] S B

i N !

<CanlfUser_RxIndication>(PduldType, const
uint8*y >
<CanlfUser_Rxindication>() >
Canlf_RxIndication() =)

i L] Validation of hardware object()

1 1

i i [

1 1 T

: : J'_ Validation of hardware object()

1 5 N D

1 1

! . Recsive iniempt) |

1 Canlf_ReadRxNotifStatus(PduldType) ;|

1

1

For trangmit CAN L-PDUs, the service
Canlf_ReadNotifStatus retumsthe
Confirmation flag status

Std_RetumType’

< Canlf_ReadRxNotifStatus))

Read Indication flag()

Reset Indication flag()

Canlf_ReadRxPdubData(PduldType, PdulnfoType*) H

< Canlf_ReadRxPduData()

ENTER
CRITICAL
SECTION)

1

Read data from
CANIF Rx buffer()

LEAVE
CRITICAL
SECTIONQ

T

M

-

S
S

138 of 177

Figure 31 Read received data

- AUTOSAR confidential -

Document ID 012: AUTOSAR_SWS_CAN_ Interface

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

Activity

Description

Receive Interrupt

The CAN controller signals a successful reception and
triggers a receive interrupt.

Invalidation of CAN hardware object,
provide CPU access to CAN mailbox

The CPU (CAN Driver) get exclusive access rights to the
CAN mailbox or at least to the corresponding hardware
object, where new data were received.

Buffering, normalizing

The L-SDU is normalized and is buffered in the temporary
buffer located in the CAN Driver. Each CAN Driver owns a
temporary buffer for every physical channel only if
normalizing of the data is necessary.

Indication to
CAN Interface

The reception is indicated to the CAN Interface by calling of
Canlf_RxIndication(). The HRH specifies the CAN
RAM hardware object and the corresponding CAN
controller, which contains the received L-PDU. The
temporary buffer is referenced to the CAN Interface by
*CanSduPtr.

Software Filtering

The Software Filtering checks, whether the received L-PDU
will be processed on a local ECU. If not, the received L-
PDU is not indicated to upper layers. Further processing is
suppressed.

DLC check If the L-PDU is found, the DLC of the received L-PDU is
compared with the expected, statically configured one for
the received L-PDU.

Copy data The data is copied out of the CAN hardware into the

receive CAN L-PDU buffers in the CAN Interface. During
access the CAN hardware buffers must be unlocked for
CPU access/locked fro CAN controller access.

Indication Flag

Set indication status flag for the received L-PDU in the
CAN Interface.

Receive Indication to the upper layer

The corresponding receive indication service of the upper
layer is called. This signals a successful reception to the
target upper layer. The parameter CanPduld specifies the
L-PDU, the second parameter is the reference on the
temporary buffer within the L-SDU.

Validation of CAN hardware object,
allow access of CAN controller to
CAN mailbox

The CAN controller get back exclusive access rights to the
CAN mailbox or at least to the corresponding hardware
object, where new data were already being copied into the
upper layer buffer.

Read indication status

Times later the upper layer can read the indication status
by call of Canlf_ReadRxNotifStatus(). This service
can also be used for transmit L-PDUs. Then it return the
confirmation status.

Reset indication status

Before Canlf_ReadRxNotifStatus() returns, the
indication status is reset.

Read received data

Times later the upper layer can read the received data by
call of Canl¥_ReadRxNotifStatus().

139 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTO SAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

9.10 Start CAN network

sd Start CAN Network

Generic Canlf::Canlf ComDrivers::Can «peripheral»
Elements::User

Hardware::CanController

oo

'
Std_ReturnType:= Canlf_SetControllerMode(Controller:
:CanNetwork,DeviceMode::CANIFicstTARTED)

»
'

alt Canlf Controller Mode /

[CANIF_CS_SLEEP] Can_ReturnType:= Can_SetControllerMode(Controller,Transition:
]

=CAN_T_STOP) ;

Disable Wakeup interrupt, if
[i: supported

Set CAN Controller to STOPPED modle, if
necessary 1

=T
Set CAN Controller to STOPPED mode, if
necessary

Can_SetControllerMode

Change to
[]:l CANIF_CS_STOPPED

[CANIF_CS_STOPPED]

[CANIF_CS_UNINIT]

In this mode this APl is not allowed to be used.
A development error shall be raised!

[CANIF_CS_STARTED]

Can_ReturnType:= Can_SetControllerMode(Controller, Transition:
=CAN_T_START) \

Start CAN Controller
Start CAN Controller J
Can_SetControllerMode
Change to E
CANIF_CS_STARTED !
Canlf_SetControllerMode i
Figure 32 Start CAN network
Activity Description
The upper layer initiates STARTED The upper layer calls CanlT_SetControllerMode
of the desired CAN controller (Controller, CANIF_CS_STARTED) to request
STARTED mode for the requested CAN network.
CAN Interface checks current The CAN Interface determines the current operation mode
operation mode for the corresponding requested CAN controller(s).
Operation mode is SLEEP In case of SLEEP the CAN Driver is requested for
STOPPED mode by call of Can_SetControl lerMode
(Controller, CAN T STOPPED).
CAN controller is set to STOPPED CAN controller is requested for STOPPED mode.
CAN Interface is set to STOPPED The CAN Interface's state machine changes to STOPPED
140 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

state.

Operation mode is UNINIT

In case of UNINIT an development error shall be raised! In
this mode this API is not allowed to be used!

CAN controller is requested for
STARTED mode transition

The CAN Interface requests the CAN Driver to initiate a
transition to STARTED by Can_SetControl lerMode
(Controller, CAN T STARTED).

CAN controller is set to STARTED
mode

The CAN Driver requests CAN controller for STARTED
mode.

CAN Driver checks if transition was
successful

Inside this call the CAN Driver remains until either the sleep
transition was successful or the hardware loop timer
elapses.

CAN Interface's corresponding CAN
controller is set to STARTED

After successful transition the CAN Interface changes the
corresponding CAN controller mode to STARTED mode.

141 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTO SAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

9.11 Stop & sleep CAN network

sd Stop & Sleep CAN Network/

Generic Canlf::Canlf Can:Can «Peripheral»

Elements:Canlf User Hardware::CanController
oo oo

StdiRetumlType= Canlf_SetControl Ierf\/lode(Canl\letV\D?(,Cbntrol lerMode:=CANIF_CS_SLEEP)

alt Canlif Controller Mode/

[CANIF_CS_STARTED] !
Can_RetumType= Can_SetControllerMode(Canl l\'letwongTrans'ti on:=CAN_T_STOP)

Set CAN Controller to STOPPED mox

de !
[
>

Set CAN Controller to STOPPED mod?J
----- [

Can_SetControllerMode H

Change to
[CANIF_CS_STOPPED

[CANIF_CS_STOPPED]

[CANIF_CS_UNINIT]
In this mode this API isnot allowed to be
used. A development error shall be raised!

[CANIF_CS_SLEEP]

Can_RetumType= Can_SetControllerMode(Canl l\'let\/\orkTrans'ti on:=CAN_T_SLEEP)

Set CAN Controller to SLEEP mode‘

L
Set CAN Controller to SLEEP mode JJ

Loop stops, if loop Checll< TJAN Controller /
- either the transition to Check CAN Controller, whether transition was successful
SLEEP mode was I N
successfull T
~Er t el loop timer Check CAN Controller, whether trandtion was successful
expires ||| kgt e e e 1
Enable Wakeup intenupt, if
supported
Can_SetControllerMode
|
Change to !
CANIF_CS_SLEEP !
1
Canlf_SetControllerMode '
L |
[1 1
1 1 1
Ll Ll Ll
Figure 33 Stop CAN network
142 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

Activity

Description

The upper layer initiates SLEEP of
the desired CAN controller

The upper layer calls Canlf_SetControl lerMode
(Controller, CANIF_CS_SLEEP) to request SLEEP
mode for the requested CAN network.

CAN Interface checks current
operation mode

The CAN Interface determines the current operation mode
for the corresponding requested CAN network.

Operation mode is STARTED

In case of STARTED the CAN Driver is requested for
STOPPED mode by call of Can_SetControl lerMode
(Controller, CAN T STOPPED).

CAN controller is set to STOPPED

CAN controller is requested for STOPPED mode.

CAN Interface is set to STOPPED

The CAN Interface's state machine changes to STOPPED
state.

Operation mode is UNINIT

In case of UNINIT an development error shall be raised! In
this mode this API is not allowed to be used!

CAN Driver is requested to initiate
SLEEP mode transition

The CAN Interface requests the CAN Driver to initiate
SLEEP transition by Can_SetControl lerMode
(Controller, CAN T SLEEP).

CAN controller is set to SLEEP
mode

The CAN Driver sets CAN controller in SLEEP mode.

CAN Driver checks if transition was
successful

Inside this call the CAN Driver stays until either the sleep
transition was successful or the hardware loop timer
elapses.

Wakeup interrupt is enabled

After successful transition to SLEEP the CAN Driver
enables the wakeup interrupt, if provided by the CAN
Driver.

CAN Interface changes to SLEEP
mode

The CAN Interface's state machine for the requested CAN
controller changes to SLEEP state.

143 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTO SAR

9.12 BusOff notification

Specification of CAN Interface

V3.2.0
R3.0 Rev 7

. <User_ControllerBusOff>(CanNetwork)

r

<User_ControllerBusOff>

]:L-queue"'

Canlf_ControllerBusOff

sd BusOff Notification /
Generic Canlf::Canlf ComDrivers::Can «peripheral»
Elements::User Hardw are::CanController
oo
BusOff Detection
<l
<
Set CAN Controller to STOPPED
mode, if necessary
Set CAN Controller to STOPPED
mode, if necessary
]] T
1 1
1 1
Canlf_ControllerBusOff(Controller)
<
Change to
[]4__| CANIF_CS_STOPPED

Transmit queues being
reset to avoid
transmission of old
L-PDUs after CAN
controller restart

BusOff Detection

o

o

Figure 34 BusOff notification

Activity

Description

BusOff detection interrupt

The CAN controller signals a BusOff event.

Stop CAN controller

CAN controller is set to STOPPED mode by the CAN

Driver, if necessary.

BusOff indication to CAN Interface

BusOff is notified to the CAN Interface by calling of

Canlf_ControllerBusOff()

(CanSM)

BusOff indication to upper layer

BusOff is notified to the upper layer by calling of
<User_ControllerBusOff>()

144 of 177

- AUTOSAR confidential -

Document ID 012: AUTOSAR_SWS_CAN_ Interface

AUTO SAR

9.13 BusOff recovery

R

Specification of CAN Interface

V3.2.0
3.0Rev7

sd BusOff Recovery /

Generic

Elements::User

Canlf::Canlf

oo

CombDrivers::Can

«peri
Hardware::

pheral»
CanController

opt if CAN Controller is BUSOFF/

BusOff Detection

Set CAN Controller to STOPPED m
necessary

ode, if

Set CAN Controllerto STOPPED m
necessary

ode, if

:
opt if CAN Controller is STOPPED/

<User_ControllerBusOff>(CanNetwork)

Canlf_ControllerBusOff(Controller)

<

-
-

<User_ControllerBusOff>

Change to
CANIF_CS_STOPPED

Reset transmit
-queue.

Transmit queues being
reset to avoid
transmission of old

Canlf_ControllerBusOff

St;(LRetu mType:= CanIfﬁSetControIIerMode(ControIIer,;Devi ceMode)

Canlf_SetControllerMode

-

L-PDUs after CAN
controller restart

BusOff Detection

R |

Can_ReturnType:= Can_SetControllerMode(Controller, Transition)

Can_SetControllerMode

< _——

reset

Reset CAN Controller, if
necessary

Processing of
CAN controller

the used CAN
controller device.

dependson

Reset CAN Controller, if
necessary

Start CAN Controller

Start CAN Controller

145 of 177

- AUTOSAR confidential -

Figure 35 BusOff recovery

Document ID 012: AUTOSAR_SWS_CAN_ Interface

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

Description

BusOff detection interrupt

The CAN controller signals a BusOff event.

Stop CAN controller

CAN controller is set to STOPPED mode by the CAN
Driver, if necessary

BusOff indication to CAN Interface

BusOff is notified to the CAN Interface by calling of
Canlf_ControllerBusOff () .The transmit buffers
inside the CAN Interface will be reset.

BusOff indication to upper layer

BusOff is notified to the upper layer by calling of
<User_ControllerBusOff>()

Upper Layer (CanSM) initiates
BusOff Recovery

After a time specified by the BusOff Recovery algorithm the
Recovery process itself in initiated by
Canlf_SetControllerMode

(Controller, CANIF_CS STARTED).

Reset of CAN controller

If necessary the CAN Driver resets the CAN controller by
Can_InitController(Controller,

Configurationlndex).

Restart of CAN controller

The driver restarts the CAN controller by call of
Can_SetControllerMode (Controller,

CAN_T_STARTED).

146 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into
containers. In order to support the specification chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
CAN Interface.

Chapter 10.3 specifies published information of the module CAN Interface.

147 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

10.1 How to read this chapter

In addition to this section, it is highly recommended to read the documents:
- [2] Layered Software Architecture
- [6] Specification of ECU Configuration
This document describes the AUTOSAR configuration methodology and the
AUTOSAR configuration meta model in detail.

The following is only a short survey of the topic and it will not replace the ECU
Configuration Specification document.

10.1.1 Configuration and configuration parameters

Configuration parameters define the variability of the generic part(s) of an
implementation of a module. This means that only generic or configurable module
implementation can be adapted to the environment (software/hardware) in use during
system and/or ECU configuration.

The configuration of parameters can be achieved at different times during the
software process: before compile time, before link time or after build time. In the
following, the term “configuration class” (of a parameter) shall be used in order to
refer to a specific configuration point in time.

10.1.2 Variants

Variants describe sets of configuration parameters. E.g., variant 1: only pre-compile
time configuration parameters; variant 2: mix of pre-compile- and post build time-
configuration parameters. In one variant a parameter can only be of one
configuration class.
10.1.3 Containers

Containers structure the set of configuration parameters. This means:
- all configuration parameters are kept in containers.
- (sub-) containers can reference (sub-) containers. It is possible to assign a
multiplicity to these references. The multiplicity then defines the possible
number of instances of the contained parameters.

10.1.4 Specification template for configuration parameters

The following tables consist of three sections:
- the general section
- the configuration parameter section
- the section of included/referenced containers

Pre-compile time - specifies whether the configuration parameter shall be
of configuration class Pre-compile time or not

148 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

Label Description

X The configuration parameter shall be of configuration class Pre-compile time.

-- The configuration parameter shall never be of configuration class Pre-compile time.

Link time - specifies whether the configuration parameter shall be
of configuration class Link time or not

Label Description

X The configuration parameter shall be of configuration class Link time.

-- The configuration parameter shall never be of configuration class Link time.

Post Build - specifies whether the configuration parameter shall be
of configuration class Post Build or not

Label Description

X The configuration parameter shall be of configuration class Post Build and no specific
implementation is required.

L Loadable - the configuration parameter shall be of configuration class Post Build and only

one configuration parameter set resides in the ECU.

Multiple - the configuration parameter shall be of configuration class Post Build and is
M selected out of a set of multiple parameters by passing a dedicated pointer to the init
function of the module.

- The configuration parameter shall never be of configuration class Post Build.

149 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed
meanings of the parameters describe chapter [7 Functional specification] and chapter
[8 API specification].

CANIF104: The listed configuration items can be derived from a network description
database, which is based on the EcuConfigurationTemplate. The configuration tool
shall extract all information to configure the CAN Interface.

CANIF131: The consistency of the configuration must be checked by the
configuration tool at configuration time. Configuration rules and constraints for
plausibility checks shall be performed during configuration time, where possible.

CANIF066: The CAN Interface has access to the CAN Driver configuration data. All
public CAN Driver configuration data are described in [8] Specification of CAN Driver.

CANIF132: These dependencies between CAN Driver and CAN Interface
configuration must be provided at configuration time by the configuration tools.

150 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

Specification of CAN Interface

AUTOSAR

V3.2.0
R3.0 Rev 7

0 = Az d i Ea |
« = Ao diynepaddn

BO4a0EI00 a0 W ElE]
TBRO0] IHAUED

e

JaulEu0 g qns+

0 = A1) dig|ngag s
« = fan dynppiaddn

« = figiat diynjpaddn
I = Az diy npiEan |

e[S MR IR
T Bung A0 e aEasUEl) uey

-

JBUIEIGD +

(RERSTETT T TEL
« = a1 diynpaddn

1= J=0IE 00 JUD] e 1R 4

=S FERN I ES]

ol

JEUIEIGa +

I = Az diy npisans |
« = figiat diynjpaddn

-

FOEUEII 0D a0 EIE

IET 15 | [P IR § U]

JAUIEI0D +

0 = dipaydiynyianna)
I = Apadiy niapzddn

-

EOE0EII o o uEIE]

TByuojuaEdsIgpuE]

JBUIEIGD +

0 = gz dignmane |
« = Az diynpaddn

>

JRUIEO QNS+

EIENE RN R

WIS S HHUED

POIE0EII0q a0 W EIE]
THHIOD GHAYED

AL TR TERT]
« = fay dynpyiaddn

JaUIEO g qns+

-

0 = digran| gy 0|
L« = A diynpgaddn

BOIs0EIIS] U0 WEIE §

TBROD =2 HIST IO R

-

1B UG NS+

FOiEUEIIoq o WEIE]
TBRUenp4 = HUED

JRUIEO QNS+

-

0 = fipran) digyngag ano|
o =Sy dignppaddn

FOIE0EIS] 1o WElE]
TBHuoanpdXHUE]

-

JENTE: UL 1

anl} = Jauiejunqua iiEnbyuoqa|dignw
| o= o dy npiano)
« = Az diynpaddn

FOiEUE o o uUEIE]

U REINB U0 U]

-

JEUIEIGa +

(RERSTETT T TEL
I = dpandiy niapaddn

E0aUEI0q IO EIE
TUCHEINDYICO] SIIgNd HUED

ol

JBUIEIGD +

I = Az diy npisans |
b = fyoydiy npaaddn

-

FOEUEII 0D a0 EIE
TUoEINEUe S EA I UED

JAUIEI0D +

0 = fipandiynpyizn
I =Apadiy npgi=ddn

FO=IMPeH: JU=]

Figure 36 Overview about CAN Interface configuration containers

Interface

Document ID 012: AUTOSAR_SWS_CAN

151 of 177

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0Rev 7
10.2.1 Variants

CANIF228:

VARIANT-PRE-COMPILE: Only pre compile time parameters.
VARIANT-LINK-TIME: Mix of pre compile- and link time parameters.
VARIANT-POST-BUILD: Mix of pre compile-, link time and post build time
parameters.

CANIF240: For post build time parameters the type “x” was chosen to allow both
variants of implementations with either loadable (“L”) or multiple (“M”) types of post
built parameters.

10.2.2 Canlf

Module Name Canlf

This container includes all necessary configuration sub-containers

iipe e Deserpion according the CAN Interface configuration structure.

Included Containers

Container Name Multiplicity|Scope / Dependency

, [This container contains the configuration (parameters) of all
*
CanlfControllerConfig L. addressed CAN controllers by each underlying CAN driver.

Callout functions with respect to the upper layers. This callout
CanlfDispatchConfig 0..1 [functions defined in this container are common to all
configured underlying CAN Drivers / CAN Transceiver Drivers.

1% Configuration parameters for all the underlying CAN drivers

CanlfDriverConfig are aggregated under this container.

[This container contains the init parameters of the CAN

: , . *
CanlfInitConfiguration 1. Interface.

This container contains the private configuration (parameters)

CanlfPrivateConfiguration 1 of the CAN Interface.

1 This container contains the public configuration (parameters)

CanlfPublicConfiguration of the CAN Interface.

[This container contains the configuration (parameters) of all
CanlfTransceiverDrvConfig 1.* addressed CAN transceivers by each underlying CAN
[Transceiver Driver.

10.2.3 CanlfPrivateConfiguration

SWS ltem CANIF245 :
Container Name CanlfPrivateConfiguration{CanlInterfacePrivateConfiguration }
— This container contains the private configuration (parameters) of the CAN
Description
Interface.
Configuration Parameters
SWS ltem --
Name CanlfDIcCheck {CANIF DLC CHECK}
Description Selects whether the DLC check is supported.
True: Enabled False: Disabled
Multiplicity 1
Type BooleanParamDef
Default value true
ConfigurationClass Pre-compile time X Al Variants
Link time --
Post-build time --
152 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

[Scope / Dependency

lscope: Module

SWS Item --

Name CanlfNumberOfTxBuffers {CANIF NUMBER_OF TXBUFFERS}

Description Defined the number of L-PDU elements for the transmit buffering. The Tx
L-PDU buffers shall be used to store an L-PDU once for each different L-
PDU handle. Range: 0..max. number of Tx L-PDUs to be used.
Default Value: NUMBER OF TX PDUS

Multiplicity 1

Type IntegerParamDef

Default value --

ConfigurationClass Pre-compile time X |All Variants
Link time --

Post-build time --

Scope / Dependency

scope: Module

SWS Item --
Name CanlfSoftwareFilterType {CANIF_SOFTWARE_FILTER TYPE}
Description Selects the desired software filter mechanism for reception only. Each
implemented software filtering method is identified by this enumeration
number.
Range: Types implemented software filtering methods
Multiplicity 1
Type EnumerationParamDef
Range BINARY Selects Binary Filter method.
INDEX Selects Index Filter method.
LINEAR Selects Linear Filter method.
TABLE Selects Table Filter method.
ConfigurationClass Pre-compile time X |All Variants
Link time --
Post-build time --

Scope / Dependency

scope: Module
dependency: BasicCAN reception must be enabled by CANIF_HRH_TYPE for

at least one HRH.

[No Included Containers

10.2.4 CanlfPublicConfiguration

SWS ltem

CANIF246 :

Container Name

CanlfPublicConfiguration{CanInterfacePublicConfiguration }

Description

This container contains the public configuration (parameters) of the CAN

Interface.

Configuration Parameters

SWS Item --

Name CanlfDevErrorDetect {CANIF DEV ERROR DETECT}

Description Enables and disables the development error detection and notification
mechanism.
True: Enabled False: Disabled

Multiplicity 1

Type BooleanParamDef

Default value true

ConfigurationClass Pre-compile time X |All Variants
Link time --

Post-build time --

153 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

[Scope / Dependency

lscope: Module |

SWS Item --
Name CanlfMultipleDriverSupport {CANIF_ MULTIPLE_DRIVER_SUPPORT}
Description Selects support for multiple CAN Drivers.
True: Enabled False: Disabled
Multiplicity 1
Type BooleanParamDef
Default value true
ConfigurationClass Pre-compile time X JAll Variants
Link time --
Post-build time --
Scope / Dependency scope: ECU
SWS Item --
Name CanlfNumberOfCanHwUnits {CANIF_ NUMBER_OF CAN_HW_UNITS}
Description Number of served CAN hardware units.
Range: 1..max. number of underlying supported CAN Hardware units
Multiplicity 1
Type IntegerParamDef
Default value 1
ConfigurationClass Pre-compile time X |[VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME, VARIANT-POST-
BUILD
Post-build time --
Scope / Dependency scope: ECU
SWS Item --
Name CanlfPublicTxConfirmPollingSupport
{CANIF PUBLIC_ TXCONFIRM POLLING SUPPORT}
Description Configuration parameter to enable/disable the API to poll for Tx
Confirmation state.
Multiplicity 1
Type BooleanParamDef

Default value

ConfigurationClass

Pre-compile time X JAll Variants
Link time --
Post-build time --

Scope / Dependency

scope: Canlf Module
dependency: CAN State Manager module

SWS Item --
Name CanlfReadRxPduDataApi {CANIF READRXPDU DATA API}
Description Enables / Disables the API Canlf_ReadRxPduData() for reading received
L-PDU data.
True: Enabled False: Disabled
Multiplicity 1
Type BooleanParamDef
Default value false
ConfigurationClass Pre-compile time X Al Variants
Link time --
Post-build time --
Scope / Dependency scope: ECU
SWS Item --
Name CanlfReadRxPduNotifyStatusApi

154 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

{CANIF_READRXPDU_NOTIF_STATUS API}

Description Enables and disables the API for reading the received L-PDU data.
[True: Enabled False: Disabled
Multiplicity 1
Type BooleanParamDef
Default value false
ConfigurationClass Pre-compile time X |All Variants
Link time --
Post-build time --
Scope / Dependency scope: ECU
SWS Item --
Name CanlfReadTxPduNotifyStatusApi
{CANIF_READTXPDU_NOTIF_STATUS API}
Description Enables and disables the API for reading the notification status of transmit
and receive L-PDUs.
True: Enabled False: Disabled
Multiplicity 1
Type BooleanParamDef
Default value false
ConfigurationClass Pre-compile time X JAll Variants
Link time --
Post-build time --
Scope / Dependency scope: ECU
SWS Item --
Name CanlfSetDynamicTxIdApi {CANIF SETDYNAMICTXID API}
Description Enables and disables the API for reconfiguration of the CAN Identifier for
each Transmit L-PDU.
True: Enabled False: Disabled
Multiplicity 1
Type BooleanParamDef
Default value false
ConfigurationClass Pre-compile time X JAll Variants
Link time --
Post-build time --
Scope / Dependency scope: ECU
SWS Item --
Name CanlfVersioninfoApi {CANIF_VERSION_INFO_API}
Description Enables and disables the API for reading the version information about the
CAN Interface.
True: Enabled False: Disabled
Multiplicity 1
Type BooleanParamDef
Default value true
ConfigurationClass Pre-compile time X |All Variants
Link time --

Post-build time --

Scope / Dependency

[No Included Containers

10.2.5 CanlfInitConfiguration

[SWS Item

[CANIF247 :

155 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

Container Name

Container]

CanlfinitConfiguration{CanlinterfacelnitConfiguration} [Multi Config

Description

[This container contains the init parameters of the CAN Interface.

Configuration Parameters

SWS Item --

Name CanlfConfigSet {CANIF_CONFIGSET}

Description Selects the CAN Interface specific configuration setup. This type of the
external data structure shall contain the post build initialization data for the
CAN Interface for all underlying CAN Dirvers. constant to
Canlf ConfigType

Multiplicity 1

Type StringParamDef

Default value

ConfigurationClass

Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

XXX

Post-build time

VARIANT-POST-BUILD

Scope / Dependency

scope: Module

SWS Item --

Name CanlfNumberOfCanRxPdulds {CANIF_ NUMBER_OF CANRXPDUIDS}

Description Total number of CanRxPdulds to be handled. Range: 0..max number of
defined CanRxPdulds

Multiplicity 1

Type IntegerParamDef

Default value

ConfigurationClass Pre-compile time X |[VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X |VARIANT-POST-BUILD
Scope / Dependency scope: ECU
SWS Item --
Name CanlfNumberOfCanTXPdulds {CANIF NUMBER_ OF CANTXPDUIDS}
Description Total number of CanTxPdulds to be handled. Range: 0..max number of
defined CanTxPdulds
Multiplicity 1
Type IntegerParamDef

Default value

ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME
Post-build time X |VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item --

Name CanlfNumberOfDynamicCanTXPdulds
{CANIF_NUMBER_OF DYNAMIC CANTXPDUIDS}

Description Total number of dynamic CanTxPdulds to be handled. Range: 0..max.
nember of defined CanTxPdulds

Multiplicity 1

Type IntegerParamDef

Default value

ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME
Post-build time X |VARIANT-POST-BUILD
Scope / Dependency scope: ECU

156 of 177

- AUTOSAR confidential -

Document ID 012: AUTOSAR_SWS_CAN_ Interface

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

Included Containers

Container Name

Multiplicity|Scope / Dependency

CanlfInitControllerConfig

0.* This container contains the references to the configuration
B setup of each underlying CAN driver.

CanlfInitHohConfig

This container contains the references to the configuration

*
0. setup of each underlying CAN Driver.

CanlfRxPduConfig

This container contains the configuration (parameters) of each
receive CAN L-PDU. The SHORT-NAME of
"CanlfRxPduConfig" container itself represents the symolic
name of Receive L-PDU.

0.*

CanlfTxPduConfig

This container contains the configuration (parameters) of each
transmit CAN L-PDU. The SHORT-NAME of
"CanlfTxPduConfig" container represents the symolic name of
[Transmit L-PDU.

10.2.6 CanlfTxPduConfig

SWS Item

CANIF248 :

Container Name

CanlfTxPduConfig{CanInterface TxPduConfiguration}

Description

This container contains the configuration (parameters) of each transmit
CAN L-PDU. The SHORT-NAME of "CanlfTxPduConfig" container
represents the symolic name of Transmit L-PDU.

Configuration Parameters

SWS Item --

Name CanlfCanTxPduld {CANIF_CANTXPDUID}

Description ECU wide unique, symbolic handle for transmit CAN L-PDU. The
CanlfCanTxPduld is configurable at pre-compile and post-built time.
Range: 0..max. number of CantTxPdulds

Multiplicity 1

Type IntegerParamDef (Symbolic Name generated for this parameter)

Default value --

ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X [VARIANT-LINK-TIME
Post-build time X |VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item --

Name CanlfCanTxPduldCanld {CANIF_CANTXPDUID CANID}

Description CAN Identifier of transmit CAN L-PDUs used by the CAN Driver for CAN L-
PDU transmission. Range: 11 Bit For Standard CAN Identifier ... 29 Bit For
Extended CAN identifier

Multiplicity 1

Type IntegerParamDef

Default value

ConfigurationClass

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

XXX

Post-build time VARIANT-POST-BUILD

Scope / Dependency

scope: Network

SWS Item --
Name CanlfCanTxPduldDIc {CANIF CANTXPDUID DLC}
Description Data length code (in bytes) of transmit CAN L-PDUs used by the CAN

Driver for CAN L-PDU transmission. The data area size of a CAN L-Pdu

can have a range from 0 to 8 hytes.

157 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

V3.2.0
R3.0 Rev7
Multiplicity 1
Type IntegerParamDef
Range 0..8

Default value

ConfigurationClass

Pre-compile time VARIANT-PRE-COMPILE

VARIANT-LINK-TIME

X
Link time X
Post-build time X

VARIANT-POST-BUILD

Scope / Dependency

scope: Network
dependency: CanlfNumberOfTxBuffers

SWS Item --
Name CanlfCanTxPduType {CANIF CANTXPDUID TYPE}
Description Defines the type of each transmit CAN L-PDU.
Multiplicity 1
Type EnumerationParambDef
Range DYNAMIC CAN 1D is defined at runtime.
STATIC CAN ID is defined at compile-time.
ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X IVARIANT-LINK-TIME
Post-build time X IVARIANT-POST-BUILD
Scope / Dependency scope: ECU
SWS ltem --
Name CanlfReadTxPduNotifyStatus {CANIF READTXPDU NOTIFY STATUS}
Description Enables and disables transmit confirmation for each transmit CAN L-PDU
for reading its notification status. True: Enabled False: Disabled
Multiplicity 1
Type BooleanParamDef
Default value false
ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME
Post-build time X |VARIANT-POST-BUILD

Scope / Dependency

scope: Module
dependency: CANIF_READTXPDU_NOTIFY_STATUS_API must be
enabled.

SWS Item --

Name CanlfTxPduldCanldType {CANIF_CANIFTXPDUID CANIDTYPE}

Description CAN lIdentifier of transmit CAN L-PDUs used by the CAN Driver for CAN L-
PDU transmission.

Multiplicity 1

Type EnumerationParambDef

Range EXTENDED CAN The CANID is of type Extended (29 bits)

STANDARD CAN The CANID is of type Standard (11 bits)

ConfigurationClass

Pre-compile time X [VARIANT-PRE-COMPILE
Link time X [VARIANT-LINK-TIME
Post-build time X [VARIANT-POST-BUILD

Scope / Dependency

scope: Network

SWS Item --

Name CanlfTxUserType {CANIF TX USER TYPE}

Description This parameter defines the type of the transmit confirmation call-out called to
the corresponding upper layer the used TargetTxPduld belongs to.

Multiplicity 1

Type EnumerationParambDef

158 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

V3.2.0
R3.0 Rev7
Range CAN NM CAN NM
CAN TP CAN TP
PDUR PDU Router
ConfigurationClass Pre-compile time X |VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME
Post-build time X [VARIANT-POST-BUILD
Scope / Dependency scope: ECU
SWS Item --
Name CanlfUserTxConfirmation {CANIF USER TX CONFIRMATION}
Description Name of target confirmation services to target upper layers (PduR, CanNm
and CanTp. If parameter is not configured then no call-out function is
provided by the upper layer for this Tx L-PDU.
Multiplicity 0..1
Type FunctionNameDef
Default value --
ConfigurationClass Pre-compile time X |[VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME, VARIANT-POST-
BUILD
Post-build time --
Scope / Dependency scope: ECU
SWS Item -
Name CanlfCanTxPduHthRef {CANIF_HTH_REF_ID}
Description Handle, that defines the hardware object or the pool of hardware objects
configured for transmission. The parameter refers HTH Id, to which the L-
PDU belongs to.
Multiplicity 0..*
Type Reference to CanlfHthConfi

ConfigurationClass

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

XXX

Post-build time VARIANT-POST-BUILD

Scope / Dependency

SWS Item -

Name PduldRef

Description Reference to the "global" Pdu structure to allow harmonization of handle
IDs in the COM-Stack.

Multiplicity 1

Type Reference to Pdu

ConfigurationClass Pre-compile time X |VARIANT-PRE-COMPILE
Link time --

Post-build time --

Scope / Dependency

[No Included Containers

10.2.7 CanlfRxPduConfig

SWS Item

CANIF249 :

Container Name

CanlfRxPduConfig{CanlInterfaceRxPduConfiguration}

Description

This container contains the configuration (parameters) of each receive
CAN L-PDU. The SHORT-NAME of "CanlfRxPduConfig" container itself
represents the symolic name of Receive L-PDU.

Configuration Parameters

159 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

V3.2.0
R3.0 Rev 7
SWS Item --
Name CanlfCanRxPduCanld {CANIF_ CANRXPDUID CANID}
Description CAN ldentifier of Receive CAN L-PDUs used by the CAN Interface. Exa:
Software Filtering. Range: 11 Bit For Standard CAN Identifier ... 29 Bit For
Extended CAN identifier
Multiplicity 1
Type IntegerParamDef

Default value

ConfigurationClass

Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

XXX

Post-build time

VARIANT-POST-BUILD

Scope / Dependency

scope: Network

SWS Item --

Name CanlfCanRxPduDlc {CANIF_CANRXPDUID DLC}

Description Data Length code of received CAN L-PDUs used by the CAN Interface.
Exa: DLC check. The data area size of a CAN L-PDU can have a range
from O to 8 bytes.

Multiplicity 1

Type IntegerParamDef

Range 0..8

Default value

ConfigurationClass

Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

XXX

Post-build time

VARIANT-POST-BUILD

Scope / Dependency

scope: Network

SWS Item --

Name CanlfCanRxPduld {CANIF_CANRXPDUID}

Description ECU wide unique, symbolic handle for receive CAN L-PDU. The
CanRxPduld is configurable at pre-compile and post-built time. It shall fulfill
IANSI/AUTOSAR definitions for constant defines. Range: 0..max. number
of defined CanRxPdulds

Multiplicity 1

Type IntegerParamDef (Symbolic Name generated for this parameter)

Default value --

ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X [VARIANT-LINK-TIME
Post-build time X |VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item --

Name CanlfReadRxPduData {CANIF_ READRXPDU_DATA}

Description Enables and disables the Rx buffering for reading of received L-PDU data.
True: Enabled False: Disabled

Multiplicity 1

Type BooleanParamDef

Default value false

ConfigurationClass Pre-compile time X |[VARIANT-PRE-COMPILE
Link time X |[VARIANT-LINK-TIME
Post-build time X |VARIANT-POST-BUILD

Scope / Dependency scope: ECU

dependency: CANIF CANPDUID |

READDATA_API must be enabled.

160 of 177

- AUTOSAR confidential -

Document ID 012: AUTOSAR_SWS_CAN_ Interface

AUTO SAR

Specification of CAN Interface

V3.2.0
R3.0 Rev 7
SWS Item --
Name CanlfReadRxPduNotifyStatus {CANIF_ READRXPDU_ NOTIFY_ STATUS}
Description Enables and disables receive indication for each receive CAN L-PDU for
reading its' notification status. True: Enabled False: Disabled
Multiplicity 1
Type BooleanParamDef
Default value false
ConfigurationClass Pre-compile time X |[VARIANT-PRE-COMPILE
Link time X [VARIANT-LINK-TIME
Post-build time X |VARIANT-POST-BUILD

Scope / Dependency

scope: Module
dependency: CANIF_READRXPDU_NOTIFY_STATUS_API must be
enabled.

SWS Item --

Name CanlfRxPduldCanldType {CANIF_ CANRXPDUID CANIDTYPE}

Description CAN Identtifier of receive CAN L-PDUs used by the CAN Driver for CAN L-
PDU reception.

Multiplicity 1

Type EnumerationParamDef

Range EXTENDED_CAN The CANID is of type Extended (29 bits)

STANDARD_CAN The CANID is of type Standard (11 bits)

ConfigurationClass

Pre-compile time X [VARIANT-PRE-COMPILE
Link time X IVARIANT-LINK-TIME
Post-build time X IVARIANT-POST-BUILD

Scope / Dependency

scope: Network

SWS Item --

Name CanlfRxUserType {CANIF RX USER TYPE}

Description This parameter defines the type of the receive indication call-outs called to

the corresponding upper layer the used TargetRxPduld belongs to.

Multiplicity 1

Type EnumerationParamDef

Range CAN_NM CAN NM

CAN_TP CAN TP

PDUR PDU Router
ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE

Link time X |VARIANT-LINK-TIME

Post-build time X [VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item --

Name CanlfUserRxIndication {CANIF USER RX INDICATION}

Description Name of target indication services to target upper layers (PduRouter,
CanNm, CanTp and ComplexDeviceDrivers). If parameter is 0 no call-out
function is configured.

Multiplicity 1

Type FunctionNameDef

Default value --

ConfigurationClass Pre-compile time X |VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME, VARIANT-POST-

BUILD

Post-build time --

Scope / Dependency

scope: ECU

161 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

V3.2.0
R3.0 Rev 7
SWS Item --
Name CanlfCanRxPduHrhRef {CANIF_HRH REF _ID}
Description The HRH to which Rx L-PDU belongs to, is referred through this
parameter.
Multiplicity 0..*
Type Reference to CanlfHrhConfi

ConfigurationClass

Pre-compile time VARIANT-PRE-COMPILE

VARIANT-LINK-TIME

X
Link time X
Post-build time X

VARIANT-POST-BUILD

Scope / Dependency

scope: Module
dependency: This information has to be derived from the CAN Driver
configuration.

SWS Item --

Name PduldRef

Description Reference to the "global" Pdu structure to allow harmonization of handle
IDs in the COM-Stack.

Multiplicity 1

Type Reference to Pdu

ConfigurationClass Pre-compile time X |All Variants
Link time --

Post-build time --

Scope / Dependency

[No Included Containers

10.2.8 CanlfDispatchConfig

SWS Item

CANIF250 :

Container Name

CanlfDispatchConfig{CanlInterfaceDispatcherConfiguration }

Description

Callout functions with respect to the upper layers. This callout functions
defined in this container are common to all configured underlying CAN

Drivers / CAN Transceiver Drivers.

Configuration Parameters

SWS Item --

Name CanlfBusOffNotification {CANIF USER BUSOFF NOTIFICATION}

Description Name of target BusOff notification services to target upper layers
(PduRouter, CanNm, CanTp and ComplexDeviceDrivers).

Multiplicity 1

Type FunctionNameDef

Default value --

ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME, VARIANT-POST-

BUILD

Post-build time --

Scope / Dependency

scope: ECU
dependency: Any natification call-out to upper layers must be configured.

SWS Item --

Name CanlfWakeupNotification {CANIF_USER_WAKEUP_NOTIFICATION}

Description Name of target wakeup notification services to target upper layers
(PduRouter, CanNm, CanTp and ComplexDeviceDrivers). If parameter is 0
no call-out function is configured.

Multiplicity 0..1

162 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

V3.2.0
R3.0 Rev7
Type FunctionNameDef
Default value --
ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME, VARIANT-POST-

BUILD

Post-build time --

Scope / Dependency

scope: ECU
dependency: Only if supported by CAN controller and enabled by CAN
Driver configuration.

SWS Item --

Name CanlfWakeupValidNotification
{CANIF_USER_WAKEUP_VALIDATION_NOTIFICATION}

Description Name of target wakeup validation notification services to target upper
layers (ECU State Manager). If parameter is 0 no call-out function is
configured.

Multiplicity 0..1

Type FunctionNameDef

Default value --

ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME, VARIANT-POST-

BUILD

Post-build time --

Scope / Dependency

scope: ECU
dependency: Only if supported by CAN controller and enabled by CAN
Driver configuration.

[No Included Containers

10.2.9 CanlfControllerConfig

SWS ltem

Container Name

CanlfControllerConfig{CanlinterfaceControllerConfiguration}

Description

This container contains the configuration (parameters) of all addressed
CAN controllers by each underlying CAN driver.

Configuration Parameters

SWS ltem --

Name CanlfWakeupSupport {CANIF WAKEUP SUPPORT}

Description Enables wakeup support and defines the source device of a wakeup event.
Multiplicity 1

Type EnumerationParambDef

Range CONTROLLER \Wakeup by CAN Controller is supported

NO WAKEUP No wakeup is supported

[TRANSCEIVER \Wakeup by CAN Transceiver is supported
ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE

Link time X [VARIANT-LINK-TIME, VARIANT-POST-BUILD

Post-build time --

Scope / Dependency

scope: Network

SWS Item --

Name CanlfControllerldRef

Description Logical handle of the underlying CAN controller to be served by the CAN
Interface. Range: 0..max. number of underlying supported

Multiplicity 0..*

163 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

ype

Reference to CanController

ConfigurationClass

Pre-compile time X [VARIANT-PRE-COMPILE

Link time X [VARIANT-LINK-TIME, VARIANT-POST

BUILD

Post-build time --

Scope / Dependency scope: ECU

SWS Item --

Name CanlfDriverNameRef {CANIF_DRIVER_REF_NAME}

Description Refers to the CAN Driver Name to which the controller belongs to. This
parameter refers to CanlfDriverConfig container.

Multiplicity 1

Type Reference to CanlfDriverConfig

ConfigurationClass Pre-compile time X |VARIANT-PRE-COMPILE
Link time X [VARIANT-LINK-TIME, VARIANT-POST-

BUILD

Post-build time --

Scope / Dependency

SWS Item --
Name CanlfInitControllerRef
Description Reference to the Init Controller Configuration.
Multiplicity 1
Type Reference to CanlfinitControllerConfig
ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME, VARIANT-POST-

BUILD

Post-build time --

Scope / Dependency

[No Included Containers

10.2.10 CanlfInitControllerConfig

SWS ltem

CANIF252 :

Container Name

CanlfInitControllerConfig{CanlnterfacelnitControllerConfiguration}

Description

This container contains the references to the configuration setup of each

underlying CAN driver.

Configuration Parameters

SWS Item --

Name CanlfControllerRefConfigSet {CANIF CONTROLLER REF CONFIGSET}

Description References the corresponding CAN Controller configuration setup of the
corresponding CAN Driver.

Multiplicity 1

Type Reference to CanController

ConfigurationClass

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

XXX

Post-build time VARIANT-POST-BUILD

Scope / Dependency

[No Included Containers

164 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

10.2.11 CanlfDriverConfig

SWS ltem

CANIF253 :

Container Name

CanlfDriverConfig{CanlnterfaceDriverConfiguration}

Description

Configuration parameters for all the underlying CAN drivers are
aggregated under this container.

Configuration Parameters

SWS Item --

Name CanlfBusoffNatification {CANIF BUSOFF NOTIFICATION}

Description Selects whether BusOff indication notification is supported. True: Enabled
False: Disabled

Multiplicity 1

Type BooleanParamDef

Default value true

ConfigurationClass Pre-compile time X |VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME, VARIANT-POST-

BUILD

Post-build time --

Scope / Dependency scope: ECU

SWS Item --

Name CanlfReceivelndication {CANIF_ RECEIVE INDICATION}

Description Selects whether receive indication notification is supported. True: Enabled
False: Disabled

Multiplicity 1

Type BooleanParamDef

Default value

ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME, VARIANT-POST-
BUILD
Post-build time --
Scope / Dependency scope: ECU
SWS Item --
Name CanlfTransmitCancellation {CANIF TRANSMIT CANCELLATION}
Description Selects whether transmit cancellation is supported. True: Enabled False:
Disabled
Multiplicity 1
Type BooleanParamDef

Default value

ConfigurationClass

Pre-compile time X |All Variants

Link time --

Post-build time --

Scope / Dependency

scope: Module
dependency: CANIF TRANSMIT BUFFER must be enabled

SWS Item --

Name CanlfTxConfirmation {CANIF TRANSMIT CONFIRMATION}
Description Selects whether transmit confirmation notification is supported.
Multiplicity 1

Type BooleanParamDef

Default value

ConfigurationClass

Pre-compile time X [VARIANT-PRE-COMPILE

Link time X |[VARIANT-LINK-TIME, VARIANT-POST

BUILD

165 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

Post-build time

Scope / Dependency

scope: Module

SWS Item --

Name CanlfWakeupNotification {CANIF_DRIVER WAKEUP_NOTIFICATION}

Description Selects whether wakeup indication notification is supported. True: Enabled
False: Disabled

Multiplicity 1

Type BooleanParamDef

Default value true

ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME, VARIANT-POST-

BUILD

Post-build time --

Scope / Dependency scope: ECU

SWS Item --

Name CanlfDriverNameRef {CANIF_DRIVER VENDOR_ID}

Description CAN Interface Driver Reference. This reference can be used to get any
information (Ex. Driver Name, Vendor ID) from the CAN driver. The CAN
Driver name can be derived from the ShortName of the CAN driver
module.

Multiplicity 1

Type Reference to CanGeneral

ConfigurationClass Pre-compile time X |All Variants
Link time --

Post-build time --

Scope / Dependency

SWS Item --
Name CanlfinitHohConfigRef
Description Reference to the Init Hoh Configuration
Multiplicity 1
Type Reference to CanlflnitHohConfig
ConfigurationClass Pre-compile time X |VARIANT-PRE-COMPILE
Link time X [VARIANT-LINK-TIME, VARIANT-POST-

BUILD

Post-build time --

Scope / Dependency

[No Included Containers

10.2.12 CanlfTransceiverDrvConfig

SWS ltem

CANIF273 :

Container Name

CanlfTransceiverDrvConfig{CanlInterfaceTransceiverDriverConfiguration}

Description

This container contains the configuration (parameters) of all addressed

CAN transceivers by each underlying CAN Transceiver Driver.

Configuration Parameters

SWS Item --
Name CanlfTrcvWakeupNotification
{CANIF TRANSCEIVER_WAKEUP NOTIFICATION}
Description Selects whether wakeup indication notification is supported. True: Enabled

166 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

V3.2.0
R3.0 Rev 7
False: Disabled
Multiplicity 1
Type BooleanParamDef
Default value false
ConfigurationClass Pre-compile time X |[VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME, VARIANT-POST-
BUILD
Post-build time --
Scope / Dependency scope: ECU
SWS Item --
Name CanlfTrcvldRef
Description Logical handle of the underlying CAN transceiver to be served by the CAN
Interface.
Multiplicity 0..*
Type Reference to CanTrcvChannel

ConfigurationClass

Pre-compile time X |[VARIANT-PRE-COMPILE

Link time X |[VARIANT-LINK-TIME, VARIANT-POST

BUILD

Post-build time

Scope / Dependency

scope: ECU

[No Included Containers

10.2.13 CanlfInitHohConfig

SWS ltem

CANIF257 :

Container Name

CanlflnitHohConfig

Description

This container contains the references to the configuration setup of each
underlying CAN Diriver.

Configuration Parameters

SWS Item --

Name CanlfRefConfigSet {CANIF_REF CONFIGSET}

Description Selects the CAN Interface specific configuration setup. This type of
external data structure shall contain the post build initialization data for the
CAN Interface for all underlying CAN Drivers.

Multiplicity 1

Type Reference to CanConfigSet

ConfigurationClass

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

XXX

Post-build time VARIANT-POST-BUILD

Scope / Dependency

scope: Module

Included Containers

Container Name Multiplicity|Scope / Dependency
i This container contains configuration parameters for each
*
CanlfHrhConfig 0. hardware receive object (HRH).
CanlfHthConfig 0..* [This container contains parameters related to each HTH.
10.2.14 CanlfHthConfig
SWS Item CANIF258 :

Container Name

CanlfHthConfig{CanlInterfaceHthConfiguration}

167 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

Description

[This container contains parameters related to each HTH.

Configuration Parameters

SWS Item --
Name CanlfHthType {CANIF HTH TYPE}
Description Transmission method of the corresponding HTH.
Multiplicity 1
Type EnumerationParamDef
Range BASIC_CAN For a BasicCAN HTH buffers have to be reserved
for buffering Tx L-PDUs. The size of Tx Queue is
specified in parameter CanlfNumberOfTxBuffers.
FULL_CAN The HTH is of type Full CAN. At the maximum
only one Tx L-PDU should be assigned to this type
of HTH.
ConfigurationClass Pre-compile time X |[VARIANT-PRE-COMPILE
Link time X [VARIANT-LINK-TIME, VARIANT-POST-BUILD
Post-build time --
Scope / Dependency scope: ECU

dependency: This information has to be derived from the CAN Driver
configuration

SWS Item -

Name CanlfCanControllerldRef {CANIF CONTROLLER REF ID}

Description Reference to controller Id to which the HTH belongs to. A controller can
contain one or more HTHSs.

Multiplicity 1

Type Reference to CanlfControllerConfi

ConfigurationClass Pre-compile time X |VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME, VARIANT-POST-

BUILD

Post-build time --

Scope / Dependency

SWS Item --

Name CanlfHthldSymRef {CANIF HTH_REF _ID}

Description [The parameter refers to a particular HTH object in the CAN Driver Module
configuration. The HTH id is unique in a given CAN Driver. The HTH Ids
are defined in the CAN Driver Module and hence it is derived from CAN
Driver Configuration.

Multiplicity 1

Type Reference to CanHardwareObject

ConfigurationClass Pre-compile time X |[VARIANT-PRE-COMPILE
Link time X [VARIANT-LINK-TIME, VARIANT-POST-

BUILD

Post-build time --

Scope / Dependency

[No Included Containers

10.2.15 CanlfHrhConfig

SWS ltem CANIF259 ;
Container Name CanlfHrhConfig{CanInterfaceHrhConfiguration}
Description This container contains configuration parameters for each hardware

168 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

[receive object (HRH).

Configuration Parameters

SWS Item --
Name CanlfHrhType {CANIF HRH TYPE}
Description Defines the HRH type i.e, whether its a BasicCan or FullCan. If BasicCan is
configured, software filtering is enabled.
Multiplicity 1
Type EnumerationParambDef
Range BASIC_CAN HRH is of type Basic CAN. More than one Rx L-
PDUs can be assigned to same BasicCAN HRH.
FULL_CAN HRH is of type Full CAN. At the maximum only
one Rx L-PDU can be assigned to FUllCAN type
of HRH.
ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X [VARIANT-LINK-TIME, VARIANT-POST-BUILD
Post-build time --

Scope / Dependency

SWS ltem --

Name CanlfSoftwareFilterHrh {CANIF SOFTWARE FILTER HRH}

Description Selects the hardware receive objects by using the HRH range/list from
CAN Driver configuration to define, for which HRH a software filtering has
to be performed at during receive processing. True: Software filtering is
enabled False: Software filtering is enabled

Multiplicity 1

Type BooleanParamDef

Default value true

ConfigurationClass Pre-compile time X |VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME, VARIANT-POST-

BUILD

Post-build time --

Scope / Dependency

scope: Module

SWS ltem --

Name CanlfCanControllerHrhidRef {CANIF CONTROLLER REF ID}

Description Reference to controller Id to which the HRH belongs to. A controller can
contain one or more HRHs.

Multiplicity 1

Type Reference to CanlfControllerConfi

ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME, VARIANT-POST-

BUILD

Post-build time --

Scope / Dependency

SWS ltem --

Name CanlfHrhildSymRef {CANIF HRH REF ID}

Description The parameter refers to a particular HRH object in the CAN Driver Module
configuration. The HRH id is unique in a given CAN Driver. The HRH Ids
are defined in the CAN Driver Module and hence it is derived from CAN
Driver Configuration.

Multiplicity 1

Type Reference to CanHardwareObject

169 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

ConfigurationClass

Specification of CAN Interface
Vv3.2.0
R3.0 Rev 7

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

XXX

Post-build time VARIANT-POST-BUILD

Scope / Dependency

Included Containers

Container Name

Multiplicity|Scope / Dependency

CanlfHrhRangeConfig

0.* Defines the parameters required for configuraing multiple
o CANID ranges for a given same HRH.

10.2.16 CanlfHrhRangeConfig

SWS Item

Container Name

CanlfHrhRangeConfig{CanlInterfaceHrhRangeConfiguration }

Description

Defines the parameters required for configuraing multiple CANID ranges
for a given same HRH.

Configuration Parameters

SWS Item --

Name CanlfRxPduLowerCanld {CANIF HRHRANGE LOWER CANID}

Description Lower CAN Identifier of a receive CAN L-PDU for identifier range
definition, in which all CAN Ids shall pass the software filtering.

Multiplicity 0..1

Type IntegerParamDef

Range 0 .. 2147483647 |

Default value

ConfigurationClass

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

XXX

Post-build time VARIANT-POST-BUILD

Scope / Dependency

scope: Module

SWS Item --

Name CanlfRxPduRangeCanldType {CANIF HRHRANGE CANIDTYPE}

Description Specifies whether a configured Range of CAN Ids shall only consider
standard CAN Ids or extended CAN Ids.

Multiplicity 1

Type EnumerationParambDef

Range EXTENDED |All the CANIDs are of type extended only (29 bit).
STANDARD |All the CANIDs are of type standard only (11bit).

ConfigurationClass Pre-compile time X |VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME
Post-build time X |VARIANT-POST-BUILD

Scope / Dependency

scope: Module

SWS Item --

Name CanlfRxPduUpperCanld {CANIF HRHRANGE_UPPER_CANID}

Description Upper CAN lIdentifier of a receive CAN L-PDU for identifier range
definition, in which all CAN Ids shall pass the software filtering.

Multiplicity 1

Type IntegerParamDef

Range 0 .. 2147483647 |

Default value

ConfigurationClass

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

170 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V3.2.0
R3.0 Rev 7
Post-build time [X |VARIANT-POST-BUILD
Scope / Dependency scope: Module
[No Included Containers
171 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
Vv3.2.0

R3.0 Rev 7

10.3 Published information

CANIF016: Published information contains data defined by the implementer of the
SW module that does not change when the module is adapted (i.e. configured) to the
actual HW/SW environment. It thus contains version and manufacturer information.

The following table lists configuration parameters that are published to be used in
other BSW modules.
The standard common published information like

vendorld (<Module>_VENDOR_ID),

moduleld (<Module>_ MODULE_ID),

arMajorVersion (<Module>_ AR_MAJOR_VERSION),
arMinorVersion (<Module>_ AR_MINOR_VERSION),
arPatchVersion (<Module>_ AR_PATCH_VERSION),
swMajorVersion (<Module> SW_MAJOR_VERSION),
swMinorVersion (<Module>_ SW_MINOR_VERSION),
swPatchVersion (<Module>_ SW_PATCH_VERSION),
vendorApilnfix (<Module>_VENDOR_API_INFIX)

is provided in the BSW Module Description Template (see [17] Figure 4.1 and Figure
7.1).

Additional published parameters are listed below if applicable for this module.

172 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V3.2.0
R3.0 Rev 7

11 Changes to release 2.1
173 of 177 Document ID 012: AUTOSAR_SWS_CAN_ Interface

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V3.2.0
R3.0 Rev 7

11.1 Deleted SWS items

SWS Item Rationale

CANIF029 #44290: deleted, since chapter 7.24 “Polling mode” is only informal

CANIF039 CAN Driver requirement

CANIF061 Only requirement ID deleted; text is just a hint

CANIF067 Network view now is provided by CAN State Manager

CANIF128 No scheduled wakeup APl anymore

CANIF129 #44290: deleted, since chapter 7.24 “Polling mode” is only informal

CANIF130 #44290: deleted, since chapter 7.24 “Polling mode” is only informal

CANIF241 No scheduled APl anymore

CANIF242 No scheduled APl anymore

CANIF265 Canlf WakeupSourceType deleted

CANIE269 Can Transceiver Driver APl invoked by Canlf (Polling is now done by BSW
Scheduler)

CANIF270 No callback function call by lower layers e.g. transceiver driver anymore

CANIF271 Network abstraction

CANIF272 Network abstraction

CANIF273 Network abstraction

CANIF274 Network abstraction

174 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTO SAR

11.2 Replaced SWS items

Specification of CAN Interface

V3.2.0
R3.0 Rev 7

SWS Item of Release 2

replaced by SWS ltem

Rationale

175 of 177

- AUTOSAR confidential -

Document ID 012: AUTOSAR_SWS_CAN_ Interface

AUTOSAR Specification of CAN Interface

V3.2.0
R3.0 Rev 7

11.3 Changed SWS items

SWS Item Rationale

CANIF026 Description improved for dynamic DLC usage

CANIF044 CANIF044 splitted into CANIF 044, CANIF291 and CANIF292
CANIF085

CAN Controller specific initialization is splitted up to CANIF293

176 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V3.2.0
R3.0 Rev 7

11.4 Added SWS items

SWS ltem Rationale

CANIF283 Dependencies to EcuM described

CANIF284 Dependencies to BSW Scheduler described

CANIF285 Pol]lng _CAN device driver according refined wakeup detection and
notification concept

CANIF286 Added for refined wakeup validation concept

CANIF287 Added for Canlf SetTransceiverMode

CANIF288 Added for Canlf GetTransceiverMode

CANIF289 Added for Canlf GetTrcvWakeupReason

CANIF290 Added for Canlf SetTransceiverWakeupMode

CANIF291 Splitted from CANIF044, HTH definition

CANIF292 Splitted from CANIF044, HRH definition

CANIF293 Splitted CANIF085, multiple CAN Controller in initialization

CANIF294 Optional interfaces

CANIF295 Added error classification

CANIF296 DLC check behavior with DLC=NULL

CANIF297 Number of bytes to be copied after DLC check

CANIF298 Change to STOPPED Mode in case of BusOff

CANIF299 Dependency to CanSM described.

CANIF734 Parameter for enabling/disabling the TxConfirmationState polling function;
#44976

CANIF735 Parameter for enabling/disabling the TxConfirmationState polling function;
#44976

CANIF736 Parameter for enabling/disabling the TxConfirmationState polling function;
#44976

CANIF737 Parameter for enabling/disabling the TxConfirmationState polling function;
#44976

CANIF738 Parameter for enabling/disabling the TxConfirmationState polling function;
#44976

CANIF739 Parameter for enabling/disabling the TxConfirmationState polling function;
#44976

CANIF740 Parameter for enabling/disabling the TxConfirmationState polling function;
#44976

CANIF746 PDU routing for PDUs with DLC smaller/larger than statically configured

177 of 177

Document ID 012: AUTOSAR_SWS_CAN_ Interface
- AUTOSAR confidential -

	1 0BIntroduction and functional overview
	2 1BAcronyms and Abbreviations
	3 2BRelated documentation
	3.1 11BInput documents
	3.2 12BRelated standards and norms

	4 3BConstraints and assumptions
	4.1 13BLimitations
	4.2 14BApplicability to car domains

	5 4BDependencies to other modules
	5.1 15BUpper Protocol Layers
	5.2 16BInitialization: Ecu State Manager
	5.3 17BMode Control: CAN State Manager
	5.4 18BLower layers: CAN Driver
	5.5 19BLower layers: CAN Transceiver Driver
	5.6 20BConfiguration
	5.7 21BFile structure
	5.7.1 76BCode file structure
	5.7.2 77BHeader file structure

	6 5BRequirements traceability
	7 6BFunctional specification
	7.1 22BGeneral functionality
	7.2 23BHardware object handles
	7.3 24BStatic CAN L-PDU handles
	7.4 25BDynamic CAN transmit L-PDU handles
	7.5 26BPhysical channel view
	7.6 27BCAN hardware unit
	7.7 28BBasicCAN and FullCAN reception
	7.8 29BInitialization
	7.9 30BTransmit data flow
	7.10 31BTransmit request
	7.11 32BTransmit confirmation
	7.11.1 78BConfirmation after transmission
	7.11.2 79BConfirmation of transmit cancellation

	7.12 33BTransmit buffering
	7.12.1 80BGeneral behavior
	7.12.2 81BBuffer characteristics
	7.12.2.1 156BStorage of L-PDUs in the transmit buffer
	7.12.2.2 157BStorage of L-PDUs is prohibited
	7.12.2.3 158BGet L-PDU with the highest priority
	7.12.2.4 159BRemove transmitted L-PDU
	7.12.2.5 160BInitialization of transmit buffers

	7.12.3 82B Data integrity of transmit buffers

	7.13 34BTransmit cancellation
	7.13.1 83BHardware transmit cancellation not supported or not used
	7.13.2 84BHardware transmit cancellation supported and used

	7.14 35BReceive data flow
	7.14.1 85BLocation of PDU data buffers
	7.14.2 86BReceive data flow

	7.15 36BReceive indication
	7.16 37BRead received data
	7.17 38BRead notification status
	7.18 39BData integrity
	7.19 40BCAN Controller mode
	7.19.1 87BGeneral functionality
	7.19.2 88B CAN Controller operation modes
	7.19.2.1 161B CANIF_CS_UNINIT
	7.19.2.2 162B CANIF_CS_STOPPED
	7.19.2.3 163B CANIF_CS_STARTED
	7.19.2.4 164BCANIF_CS_SLEEP
	7.19.2.5 165BBUSOFF

	7.19.3 89BController mode transitions
	7.19.4 90BWakeup and validated wakeup events

	7.20 41BPDU channel mode control
	7.20.1 91BPDU channel groups
	7.20.2 92BPDU channel modes
	7.20.2.1 166BOFFLINE Mode
	7.20.2.2 167BONLINE Mode
	7.20.2.3 168BONLINE/OFFLINE Mode for Tx/Rx path
	7.20.2.4 169BOFFLINE ACTIVE Mode

	7.21 42BSoftware receive filter
	7.21.1 93BSoftware filtering concept
	7.21.2 94BSoftware filter algorithms

	7.22 43BDLC check
	7.23 44BL-PDU dispatcher to upper layers
	7.24 45BPolling mode
	7.25 46BMultiple CAN Driver support
	7.25.1 95BTransmit requests by using multiple CAN Drivers
	7.25.2 96BNotification mechanism by using multiple CAN Drivers
	7.25.3 97BMapping table for multiple CAN Driver handling

	7.26 47BError classification
	7.27 48BError detection
	7.28 49BError notification
	7.29 50BCode version check

	8 7BAPI specification
	8.1 51BImported types
	8.1.1 98BStandard types
	8.1.2 99BCOM specific types
	8.1.3 100BEcuM specific types
	8.1.4 101BCAN specific types

	8.2 52BType definitions
	8.2.1 102BCanIf_ConfigType
	8.2.2 103BCanIf_ControllerConfigType
	8.2.3 104BCanIf_ControllerModeType
	8.2.4 105BCanIf_ChannelSetModeType
	8.2.5 106BCanIf_ChannelGetModeType
	8.2.6 107BCanIf_NotifStatusType
	8.2.7 108BCanIf_TransceiverModeType
	8.2.8 109BCanIf_TrcvWakeupReasonType
	8.2.9 110BCanIf_TrcvWakeupModeType

	8.3 53BFunction definitions
	8.3.1 111BCanIf_Init
	8.3.2 112BCanIf_InitController
	8.3.3 113BCanIf_SetControllerMode
	8.3.4 114BCanIf_GetControllerMode
	8.3.5 115BCanIf_Transmit
	8.3.6 116BCanIf_ReadRxPduData
	8.3.7 117BCanIf_ReadTxNotifStatus
	8.3.8 118BCanIf_ReadRxNotifStatus
	8.3.9 119BCanIf_SetPduMode
	8.3.10 120BCanIf_GetPduMode
	8.3.11 121BCanIf_GetVersionInfo
	8.3.12 122BCanIf_SetDynamicTxId
	8.3.13 123BCanIf_SetTransceiverMode
	8.3.14 124BCanIf_GetTransceiverMode
	8.3.15 125BCanIf_GetTrcvWakeupReason
	8.3.16 126BCanIf_SetTransceiverWakeupMode
	8.3.17 127BCanIf_CheckWakeup
	8.3.18 128BCanIf_CheckValidation
	8.3.19 CanIf_GetTxConfirmationState

	8.4 54BCall-out notifications
	8.4.1 129BCanIf_TxConfirmation
	8.4.2 130BCanIf_RxIndication
	8.4.3 131BCanIf_CancelTxConfirmation
	8.4.4 132BCanIf_ControllerBusOff

	8.5 55BExpected interfaces
	8.5.1 133BMandatory interfaces
	8.5.2 134BOptional interfaces
	8.5.3 135BConfigurable interfaces
	8.5.3.1 170B<User_TxConfirmation> (PDU Router, CanNm, CanTp)
	8.5.3.2 171B<User_RxIndication> (PDU Router)
	8.5.3.3 172B<User_RxIndication> (CanNm)
	8.5.3.4 173B<User_RxIndication> (CanTp)
	8.5.3.5 174B<User_ControllerBusOff> (CanSM)
	8.5.3.6 175B<User_SetWakeupEvent> (EcuM)
	8.5.3.7 176B<User_ValidationWakeupEvent> (EcuM)

	9 8BSequence diagrams
	9.1 56BTransmit request (single CAN Driver)
	9.2 57BTransmit request (multiple CAN Drivers)
	9.3 58BTransmit confirmation (interrupt mode)
	9.4 59BTransmit confirmation (polling mode)
	9.5 60BTransmit confirmation (with buffering)
	9.6 61BTransmit cancellation (with buffering)
	9.7 62BReceive indication (interrupt mode)
	9.8 63BReceive indication (polling mode)
	9.9 64BRead received data
	9.10 65BStart CAN network
	9.11 66BStop & sleep CAN network
	9.12 67BBusOff notification
	9.13 68BBusOff recovery

	10 9BConfiguration specification
	10.1 69BHow to read this chapter
	10.1.1 136BConfiguration and configuration parameters
	10.1.2 137BVariants
	10.1.3 138BContainers
	10.1.4 139BSpecification template for configuration parameters

	10.2 70BContainers and configuration parameters
	10.2.1 140BVariants
	CanIf
	CanIfPrivateConfiguration
	CanIfPublicConfiguration
	CanIfInitConfiguration
	CanIfTxPduConfig
	CanIfRxPduConfig
	CanIfDispatchConfig
	CanIfControllerConfig
	CanIfInitControllerConfig
	CanIfDriverConfig
	CanIfTransceiverDrvConfig
	CanIfInitHohConfig
	CanIfHthConfig
	CanIfHrhConfig
	CanIfHrhRangeConfig

	10.3 Published information

	11 10BChanges to release 2.1
	11.1 72BDeleted SWS items
	11.2 73BReplaced SWS items
	11.3 74BChanged SWS items
	11.4 75BAdded SWS items

