
General Requirements on SPAL
 V2.1.1

R3.0 Rev 0001

1 of 22 Document ID 009:AUTOSAR_SRS_SPAL_General

Document Title General Requirements on
SPAL

Document Owner AUTOSAR GbR
Document Responsibility AUTOSAR GbR
Document Identification No 009
Document Classification Auxiliary

Document Version 2.1.1
Document Status Final
Part of Release 3.0
Revision 0001

Document Change History
Date Version Changed by Change Description
31.10.2007 2.1.1 AUTOSAR

Administration
• Document meta information extended
• Small layout adaptations made

24.01.2007 2.1.0 AUTOSAR
Administration

• Updated the use case in BSW12092
• Deleted the supporting material in

BSW12077 since it was referencing a
rejected requirement BSW12161

• Legal disclaimer revised
• “Advice for users” revised
• “Revision Information” added

18.01.2006 2.0.0 AUTOSAR
Administration

• Split the document. Each SPAL driver
now has its own requirements
document.

• Changed the wake-up requirements.
• Added 3 requirements
• Changed 9 requirements
• Rejected 5 requirements

09.07.2005 1.0.0 AUTOSAR
Administration

Initial release

- AUTOSAR confidential -

General Requirements on SPAL
 V2.1.1

R3.0 Rev 0001

2 of 22 Document ID 009:AUTOSAR_SRS_SPAL_General

Page left intentionally blank

- AUTOSAR confidential -

General Requirements on SPAL
 V2.1.1

R3.0 Rev 0001

3 of 22 Document ID 009:AUTOSAR_SRS_SPAL_General

Disclaimer

Any use of these specifications requires membership within the AUTOSAR
Development Partnership or an agreement with the AUTOSAR Development
Partnership. The AUTOSAR Development Partnership will not be liable for any use of
these specifications.

Following the completion of the development of the AUTOSAR specifications
commercial exploitation licenses will be made available to end users by way of
written License Agreement only.

No part of this publication may be reproduced or utilized in any form or by any
means, electronic or mechanical, including photocopying and microfilm, without
permission in writing from the publisher.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Copyright © 2004-2006 AUTOSAR Development Partnership. All rights reserved.

Advice to users of AUTOSAR Specification Documents:

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).
Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary items
are licensed under the same rules as applicable to the AUTOSAR Standard.

- AUTOSAR confidential -

General Requirements on SPAL
 V2.1.1

R3.0 Rev 0001

4 of 22 Document ID 009:AUTOSAR_SRS_SPAL_General

Table of Contents

1 Scope of this Document .. 6

2 Requirements Guidelines .. 7

2.1 Requirements quality.. 7
2.2 Requirements identification .. 7
2.3 Requirements structure .. 7

3 Acronyms and abbreviations ... 9

4 Related Documentation ... 10

4.1 Deliverables of AUTOSAR ... 10
4.2 Related standards and norms .. 10

4.2.1 HIS .. 10

5 Conceptual Issues... 11

5.1 General Rules .. 11
5.2 List of drivers not affected by the clock frequency...................................... 11
5.3 MCAL relevant ECU Power Modes .. 11
5.4 Wake-up Scenarios .. 11
5.5 Scheduling and integration of drivers ... 12

6 Requirement Specification... 13

6.1 General Requirements ... 13
6.1.1 Functional Requirements .. 13

6.1.1.1 Configuration.. 13
6.1.1.1.1 [BSW12263] Object code compatible configuration concept 13
6.1.1.1.2 [BSW12056] Configuration of notification mechanisms 13
6.1.1.1.3 [BSW12267] Configuration of wake-up sources 14

6.1.1.2 Initialization .. 14
6.1.1.2.1 [BSW12057] Driver module initialization 14
6.1.1.2.2 [BSW12125] Initialization of hardware resources 14
6.1.1.2.3 [BSW12163] Driver module de-initialization.............................. 15
6.1.1.2.4 [BSW12461] Responsibility for register initialization 15
6.1.1.2.5 [BSW12462] Provide settings for register initialization.............. 16
6.1.1.2.6 [BSW12463] Combine and forward settings for register
initialization... 16
6.1.1.2.7 [BSW12068] MCAL initialization sequence............................... 16
6.1.1.2.8 [BSW12069] Wake-up notification of ECU State Manager 17

6.1.1.3 Normal Operation... 17
6.1.1.3.1 [BSW157] Notification mechanisms of drivers and handlers..... 17
6.1.1.3.2 [BSW12169] Control of operation mode 18
6.1.1.3.3 [BSW12063] Raw value mode .. 18
6.1.1.3.4 [BSW12075] Use of application buffers 18
6.1.1.3.5 [BSW12129] Resetting of interrupt flags................................... 19

6.1.1.4 Fault Operation .. 19
6.1.1.4.1 [BSW12064] Change of operation mode during running operation
 .. 19

- AUTOSAR confidential -

General Requirements on SPAL
 V2.1.1

R3.0 Rev 0001

5 of 22 Document ID 009:AUTOSAR_SRS_SPAL_General

6.1.1.4.2 [BSW12448] Behavior after development error detection 20
6.1.1.5 Shutdown Operation .. 20

6.1.1.5.1 [BSW12067] Setting of wake-up conditions 20
6.1.2 Non-Functional Requirements (Qualities) ... 20

6.1.2.1 Timing requirements .. 21
6.1.2.1.1 [BSW12077] Non-blocking implementation............................... 21
6.1.2.1.2 [BSW12078] Runtime and memory efficiency........................... 21

6.1.2.2 Software design requirements ... 21
6.1.2.2.1 [BSW12092] Access to drivers ... 21
6.1.2.2.2 [BSW12265] Configuration data shall be kept constant 22

6.1.2.3 Process requirements .. 22
6.1.2.3.1 [BSW12264] Specification of configuration items 22

- AUTOSAR confidential -

General Requirements on SPAL
 V2.1.1

R3.0 Rev 0001

6 of 22 Document ID 009:AUTOSAR_SRS_SPAL_General

1 Scope of this Document

This document specifies general requirements on Basic Software Modules of the
following software layers:

• Microcontroller Abstraction Layer
• ECU Abstraction Layer

Those modules are of the following type:

• Drivers for µC-internal and external peripherals
• Handlers
• Interfaces

The selection of modules is derived from the WP1.1.2 BSW Module List and Layered
Architecture. The following modules are in scope:

• Memory drivers and interfaces (internal/external EEPROM, Flash, Flash
EEPROM Emulation)

• I/O drivers (PORT, ADC, DIO, PWM, ICU)
• I/O Hardware Abstraction
• ECU onboard communication drivers and handlers (SPI)
• System drivers (internal/external Watchdog, MCU, GPT, RAM test)

Constraints

First scope for specification of requirements on basic software modules are systems
which are not safety relevant. For this reason safety requirements are assigned to
medium priority.

- AUTOSAR confidential -

General Requirements on SPAL
 V2.1.1

R3.0 Rev 0001

7 of 22 Document ID 009:AUTOSAR_SRS_SPAL_General

2 Requirements Guidelines

Existing specifications shall be referenced (in form of a single requirement).
Differences to these specifications are specified as additional requirements.

2.1 Requirements quality

All Requirements shall have the following properties:

• Redundancy
Requirements shall not be repeated within one requirement or in other
requirements

• Clearness
All requirements shall allow one possibility of interpretation only. Only
technical terms of the glossary may be used.

• Atomicity
Each Requirement shall only contain one requirement. A Requirement is
atomic if it cannot be split up in further requirements.

• Testability
Requirements shall be testable by analysis, review or test.

• Traceability
The source and status of a requirement shall be visible at all times.

2.2 Requirements identification

Each requirement has its unique identifier starting with the prefix “BSW” (for “Basic
Software”). For any review annotations, remarks or questions please refer to this
unique ID rather than chapter or page numbers!

2.3 Requirements structure

Each chapter shall be structured in the following way:

Functional Requirements:
- Configuration (which elements of the module need to be configurable)
- Initialization
- Normal Operation
- Shutdown Operation
- Fault Operation
- ...

- AUTOSAR confidential -

General Requirements on SPAL
 V2.1.1

R3.0 Rev 0001

8 of 22 Document ID 009:AUTOSAR_SRS_SPAL_General

Non-Functional Requirements:
- Timing Requirements
- Resource Usage
- Usability
- Output for other WPs (e.g. Description Templates, Tooling,...)
- ...

- AUTOSAR confidential -

General Requirements on SPAL
 V2.1.1

R3.0 Rev 0001

9 of 22 Document ID 009:AUTOSAR_SRS_SPAL_General

3 Acronyms and abbreviations

Acronyms and abbreviations that have a local scope are not contained in the
AUTOSAR glossary. These must appear in a local glossary.

Acronym: Description:
CS Chip Select
DIO Digital Input Output
ECU Electric Control Unit
HIS Herstellerinitiative Software
ICU Interrupt Capture Unit
MAL Old name of Microcontroller Abstraction Layer (replaced by MCAL

because ‘MAL’ is a French term meaning ‘bad’)
MCAL Microcontroller Abstraction Layer
MCU Microcontroller Unit
MMU Memory Management Unit
Master A device controlling other devices (slaves, see below)
Slave A device being completely controlled by a master device
NMI Non Maskable Interrupt
OS Operating System
PLL Phase Locked Loop
PWM Pulse Width Modulation
RX Reception (in the context of bus communication)
SPAL Standard Peripheral Abstraction Layer (The name of this working

group)
SFR Special Function Register
RTE Runtime Environment
WP Work Package

Acronym: Description:
STD Standard
REQ Requirement
UNINIT Uninitialized (= not initialized)

As this is a document from professionals for professionals, all other terms are
expected to be known.

- AUTOSAR confidential -

General Requirements on SPAL
 V2.1.1

R3.0 Rev 0001

10 of 22 Document ID 009:AUTOSAR_SRS_SPAL_General

4 Related Documentation

4.1 Deliverables of AUTOSAR

AUTOSAR Glossary
https:/svn2.autosar.org/repos2/22_Releases
AUTOSAR_Glossary.pdf

AUTOSAR Layered Software Architecture
https:/svn2.autosar.org/repos2/22_Releases
AUTOSAR_LayeredSoftwareArchitecture.pdf

AUTOSAR General Requirements on Basic
https:/svn2.autosar.org/repos2/22_Releases
AUTOSAR_SRS_General.pdf

Specification of ECU State Manager
https:/svn2.autosar.org/repos2/22_Releases
AUTOSAR_SWS_ECU_StateManager.pdf

4.2 Related standards and norms

4.2.1 HIS

[5] HIS API I/O Driver Specification V2.1.3

- AUTOSAR confidential -

https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases

General Requirements on SPAL
 V2.1.1

R3.0 Rev 0001

11 of 22 Document ID 009:AUTOSAR_SRS_SPAL_General

5 Conceptual Issues

5.1 General Rules

1. Don’t do anything within our callbacks that exceeds 50 µs runtime this will
affect the system performance too much.

2. Each driver specification is designed so that the driver itself will take care of
atomicity and data integrity for data inside of the driver.

3. Application buffers shall be passed as pointers from the user to the driver.

5.2 List of drivers not affected by the clock frequency

The clock frequency is a parameter that has a very large influence to most of the
drivers included in WP4.2.2.1. Below is a list of the software modules that do not
have a direct dependency on the clock frequency:

• PORT
• DIO
• RAM test

Conclusion: Most of the drivers have a strong dependency of the clock frequency
therefore it is very important to carefully consider the influence across the whole
system when configuring each software component.

5.3 MCAL relevant ECU Power Modes

The drivers included in WP 4.2.2.1 shall support the ECU power modes defined in
the Specification of ECU State Manager.
Different clock modes have to be supported. All drivers shall support re-initialization
with different configuration settings. Please refer to the document “ECU State
Manager”.

5.4 Wake-up Scenarios

Due to different timing requirements (e.g. ECUs that wake up cyclically and only
check some inputs and go to sleep again as fast as possible) different initialization
procedures are necessary. Examples:

• Initialization after Wake-up
• Initialization after Power On Reset

Conclusion: It is not possible to have a standard wake-up sequence. This sequence
depends on the microcontroller hardware and the system requirements. Current
specified concept allows for a standardized way to handle wake-up signaling and
offers the possibility to customize the actual wake-up sequence.

- AUTOSAR confidential -

General Requirements on SPAL
 V2.1.1

R3.0 Rev 0001

12 of 22 Document ID 009:AUTOSAR_SRS_SPAL_General

5.5 Scheduling and integration of drivers

Today, 90% of the functions of known ECUs are scheduled cooperatively. Reasons
are:

• Technical: Lower overhead (task switch time and task stack consumption) in
comparison to pre-emptive systems

• Technical: Better possibility to create a deterministic behavior
• Technical: It is easier to reach stable 95% system load with a cooperative

system than with a full pre-emptive
• Historical: Many ECUs are using a cooperative scheduling concept

For this reason, all drivers shall allow to be used within a cooperatively scheduled
system. They shall not implement blocking code and expect that they are pre-empted
by the operating system. Implementation hint: use state machines instead of linear
code.

- AUTOSAR confidential -

General Requirements on SPAL
 V2.1.1

R3.0 Rev 0001

13 of 22 Document ID 009:AUTOSAR_SRS_SPAL_General

6 Requirement Specification

6.1 General Requirements

This chapter contains general requirements which apply to all modules of the
Microcontroller and ECU Abstraction Layers, but not necessarily to Basic Software
Modules of other layers.

6.1.1 Functional Requirements

6.1.1.1 Configuration

6.1.1.1.1 [BSW12263] Object code compatible configuration concept

Initiator: WP4.2.2.1.12
Date: 06.12.2005
Short Description: Object code compatible configuration concept
Type: Changed
Importance: High
Description: The implementation of all driver modules shall allow the configuration of the

following module parameter types at link time:
• values written to hardware registers
• values used within the driver module (e.g. timings)
• callback functions

Those parameters shall be placed in a module external initialization data
structure.

Rationale: Delivery of driver modules as object code
Use Case: Internal development models of e.g. SVDO and Hella
Dependencies: [BSW12264] Specification of configuration items

[BSW12062] Selection of static configuration sets
Conflicts: --
Supporting Material: Sophisticated software design techniques are necessary to achieve similar

scalability and resource efficiency like source code.

6.1.1.1.2 [BSW12056] Configuration of notification mechanisms

Initiator: BMW
Date: 03.05.2004
Short Description: Configuration of notification mechanisms.
Type: New
Importance: High
Description: All driver modules shall allow the static configuration of notification

mechanisms.
Pointers to callback functions shall not be passed via the API.

Rationale: Flexibility and scalability
Use Case: Give the possibility to run a driver within a protected operating system.

Callbacks passed by the API and “pointing anywhere” cannot be used within
a protected OS.
MISRA recommends avoiding dynamic pointers to functions.

Dependencies: --
Conflicts: --

- AUTOSAR confidential -

General Requirements on SPAL
 V2.1.1

R3.0 Rev 0001

14 of 22 Document ID 009:AUTOSAR_SRS_SPAL_General

Supporting Material: BMW Specification MCAL V1.0a, MISRA-C.

6.1.1.1.3 [BSW12267] Configuration of wake-up sources

Initiator: WP4.2.2.1.12
Date: 31.08.2004
Short Description: Configuration of wake-up sources
Type: New
Importance: High
Description: Wakeup sources shall be initialized by MCAL drivers and/or the MCU driver.

Possible wake-up sources are e.g. reset, watchdog, NMI, interrupt etc.
Rationale: Allow the configuration of MCU to wake-up.
Use Case: The GPT interrupt is enabled by the GPT driver and should wake-up the

MCU from Idle/Sleep/Stop mode.
Dependencies: --
Conflicts: --
Supporting Material: --

6.1.1.2 Initialization

6.1.1.2.1 [BSW12057] Driver module initialization

Initiator: BMW
Date: 03.05.2004
Short Description: Driver module initialization.
Type: Changed (Sentence ‘Running functions shall be cancelled with an error

code’ removed because very hard to implement)
Importance: High
Description: All driver modules shall implement an interface for initialization.

This service shall initialize all module global variables and those SFRs that
are used by this module.

Rationale: Basic functionality.
Use Case: --
Dependencies: [BSW12125] Initialization of hardware resources
Conflicts: --
Supporting Material: BMW Specification MCAL V1.0a, MAL1.0.0

6.1.1.2.2 [BSW12125] Initialization of hardware resources

Initiator: BMW
Date: 12.07.2004
Short Description: Initialization of hardware resources
Type: Changed (conflicts with existing requirement)
Importance: High
Description: All driver modules shall only initialize the configured resources. Resources

that are not configured in the configuration file shall not be touched.
Rationale: Allow integration with complex drivers without resource conflicts.
Use Case: Timer channels 0..3 are used by the GPT driver, timer channels 4..6 are

used by complex drivers
Dependencies: BSW12057 Driver module initialization

- AUTOSAR confidential -

General Requirements on SPAL
 V2.1.1

R3.0 Rev 0001

15 of 22 Document ID 009:AUTOSAR_SRS_SPAL_General

Conflicts: --
Supporting Material: --

6.1.1.2.3 [BSW12163] Driver module de-initialization

Initiator: WP4.2.2.1.12
Date: 07.07.2004
Short Description: Driver module de-initialization.
Type: Changed (Sentence ‘Running functions shall be cancelled with an error

code’ removed because very hard to implement)
Importance: High
Description: All driver modules shall implement an interface for de-initialization.

This service shall reset all module global variables and all SFRs that are
used by this module to their default reset value.
Values of registers which are not writeable are excluded.

Rationale: Shut down the module. Create the same conditions like before initialization.
Empty queues.

Use Case: --
Dependencies: --
Conflicts: --
Supporting Material: HIS I/O Driver Specification

6.1.1.2.4 [BSW12461] Responsibility for register initialization

Initiator: WP4.2.2.1.12
Date: 30.08.2005
Short Description: Responsibility for register initialization
Type: New
Importance: High
Description: The following rules regarding initialization of controller registers shall apply to

all driver implementations:
1. If the hardware allows for only one usage of the register, the

driver module implementing that functionality is responsible for
initializing the register

2. If the register can affect several hardware modules and if it is an
I/O register it shall be initialized by the PORT driver

3. If the register can affect several hardware modules and if it is not
an I/O register it shall be initialized by the MCU driver

4. One-time writable registers that require initialization directly after
reset shall be initialized by the startup code

5. All other registers shall be initialized by the startup code
Rationale: Unambiguous initialization of controller registers, no changes in driver

implementation needed for different configurations.
Use Case: 1) All registers concerning the flash module shall be initialized by

the flash driver
2) I/O Registers that can be used either for CAN, ADC or DIO shall

be initialized by the PORT driver
3) Registers that affect the clock settings of different hardware

modules shall be initialized by the MCU driver
4) Registers affecting the mapping of the register set, RAM or

EEPROM shall be initialized in the startup code
Dependencies: --
Conflicts: --

- AUTOSAR confidential -

General Requirements on SPAL
 V2.1.1

R3.0 Rev 0001

16 of 22 Document ID 009:AUTOSAR_SRS_SPAL_General

Supporting Material: I/O register: Everything that can affect the functionality of a port pin.

6.1.1.2.5 [BSW12462] Provide settings for register initialization

Initiator: WP4.2.2.1.12
Date: 30.08.2005
Short Description: Provide settings for register initialization
Type: New
Importance: High
Description: The implementers of the respective driver modules have to publish all

register initialization settings in the driver modules documentation.
Rationale: The configurator (human or tool responsible for configuring the software)

needs to get the register settings of the register that are not initialized
directly by the driver

Use Case: --
Dependencies: BSW12461

Conflicts: --
Supporting Material: --

6.1.1.2.6 [BSW12463] Combine and forward settings for register initialization

Initiator: WP4.2.2.1.12
Date: 30.08.2005
Short Description: Combine and forward settings for register initialization
Type: New
Importance: High
Description: The configurator shall combine all initialization settings from different drivers

and check them for consistency (dependency and conflict).

If this check is successful it shall forward those combined settings to the
module that is responsible for initializing the hardware.

If there are any inconsistencies, the configurator has to raise an error and
the system build process has to be restarted.

Rationale: Make sure all controller registers are used in a consistent way and all driver
requirements on register initialization settings are fulfilled.

Use Case: --
Dependencies: BSW12461

BSW12462

Conflicts: --
Supporting Material: --

6.1.1.2.7 [BSW12068] MCAL initialization sequence

Initiator: WP4.2.2.1.12
Date: 26.05.2004
Short Description: MCAL initialization sequence
Type: New
Importance: High
Description: The modules of the MCAL shall be initialized in the following sequence:

1. disable global interrupts
2. initialize overall registers (MCAL system module)
3. initialize all drivers

- AUTOSAR confidential -

General Requirements on SPAL
 V2.1.1

R3.0 Rev 0001

17 of 22 Document ID 009:AUTOSAR_SRS_SPAL_General

4. global interrupts may be enabled
Rationale: Defined initialization sequence without side effects.
Use Case: Power On Reset
Dependencies: --
Conflicts: --
Supporting Material: --

6.1.1.2.8 [BSW12069] Wake-up notification of ECU State Manager

Initiator: WP4.2.2.1.12
Date: 26.05.2004
Short Description: Wake-up notification of ECU State Manager
Type: New
Importance: High
Description: All drivers of the SPAL that wake up from a wake-up interrupt shall report the

wake-up reason to the ECU State Manager via the IO hardware abstraction.

Notifications come from SPAL-drivers and shall be handled within the IO
hardware abstraction module before the wake up reason is sent to the ECU
state manager.

Implementation hint:
Usually this notification is done from the ISR of the wake-up.

Rationale: The ECU State Manager needs the wake-up reason. It allows guaranteeing
low consumption. For the ICU for instance, it avoids the report of non valid
wake-up reasons (spikes).

Use Case: The ISR of the associated wake-up interrupt calls the wake-up report
function of the ECU State Manager if wake-up occurs.

Dependencies: --
Conflicts: --
Supporting Material: --

6.1.1.3 Normal Operation

6.1.1.3.1 [BSW157] Notification mechanisms of drivers and handlers

Initiator: BMW
Date: 10.02.2004
Short Description: Notification mechanisms of drivers and handlers
Type: New
Importance: High
Description: All drivers and handlers of the AUTOSAR Basic Software shall implement

the following notification mechanisms (configurable per module) for use
within the Basic Software:

• Polling (by reading a status information)
• Callback functions
• Error reporting function of the Development Error Tracer
• Event reporting function of the Diagnostic Event Manager

Rationale: Flexible integration
Avoidance of strong coupling and dependencies

Use Case: The completion of an EEPROM write command can be signaled via a
callback function or by setting status information (which is accessible via the

- AUTOSAR confidential -

General Requirements on SPAL
 V2.1.1

R3.0 Rev 0001

18 of 22 Document ID 009:AUTOSAR_SRS_SPAL_General

module interface).

A fault occurred during EEPROM writing (cell defective) can be signaled to
the Diagnostic Event Manager.

Dependencies: Review annotation #35 of Mr. Schumpelt/Bosch
Conflicts: --
Supporting Material: --

6.1.1.3.2 [BSW12169] Control of operation mode

Initiator: WP4.2.2.1.12
Date: 07.07.2004
Short Description: Control of operation mode
Type: New
Importance: High
Description: All driver modules that provide different operation modes shall provide a

service for mode selection.
This service allows switching from one operation mode to another operation
mode without the need of de-initialization and new initialization.

Rationale: Allow operation mode changes where a full de-initialization and a new
initialization would cause not desired artifacts.

Use Case: Switch EEPROM driver from normal mode to burst mode
Dependencies: [BSW12064] Change of operation mode during running operation
Conflicts: --
Supporting Material: --

6.1.1.3.3 [BSW12063] Raw value mode

Initiator: BMW
Date: 03.05.2004
Short Description: Raw value mode
Type: New
Importance: High
Description: All driver modules shall only support raw value mode. In this mode values

passed via the API services are used directly without further scaling.
Rationale: Scaling and adaptation to physical values is task of the ECU Abstraction

Layer.
Raw value mode provides the highest performance.

Use Case: The I/O Hardware Abstraction converts a raw ADC value to a scaled value
(e.g. voltage) and the other way round.

Dependencies: --
Conflicts: --
Supporting Material: BMW Specification MCAL V1.0a, MAL1.6.0

6.1.1.3.4 [BSW12075] Use of application buffers

Initiator: CAS
Date: 27.05.2004
Short Description: Use of application buffers
Type: New

- AUTOSAR confidential -

General Requirements on SPAL
 V2.1.1

R3.0 Rev 0001

19 of 22 Document ID 009:AUTOSAR_SRS_SPAL_General

Importance: High
Description: All drivers with random streaming capabilities (memory drivers) shall use

application buffers. The caller shall not change the data during job
processing of the driver.

Rationale: Minimal RAM consumption, runtime efficiency
Use Case: The EEPROM write service gets a pointer to the source data to be written.

During EEPROM write operation the driver reads data from the application
buffer. The EEPROM driver does not provide an own data buffer.

Dependencies: --
Conflicts: --
Supporting Material: --

6.1.1.3.5 [BSW12129] Resetting of interrupt flags

Initiator: CAS
Date: 07.06.2004
Short Description: Resetting of interrupt flags
Type: New
Importance: High
Description: The ISRs shall be responsible for resetting the interrupt flags and calling the

according notification function.
Rationale: The notification functions can be user defined and therefore not allowed to

have direct access to hardware.
Use Case: --
Dependencies: --
Conflicts: --
Supporting Material: --

6.1.1.4 Fault Operation

6.1.1.4.1 [BSW12064] Change of operation mode during running operation

Initiator: BMW
Date: 03.05.2004
Short Description: Change of operation mode during running operation
Type: Changed (adapted to operation mode)
Importance: High
Description: All driver modules shall raise an error if the change of the operation mode

leads to degradation of running operations.
The running operation shall be maintained.

Further comment:
This error condition shall never happen in correct system designs.

Rationale: --
Use Case: The SPI EEPROM operation mode is changed during a running SPI

communication sequence.
Dependencies: [BSW12169] Control of operation mode
Conflicts: --
Supporting Material: BMW Specification MCAL V1.0a, MAL1.5.2

- AUTOSAR confidential -

General Requirements on SPAL
 V2.1.1

R3.0 Rev 0001

20 of 22 Document ID 009:AUTOSAR_SRS_SPAL_General

6.1.1.4.2 [BSW12448] Behavior after development error detection

Initiator: WP4.2.2.1.12
Date: 20.01.2005
Short Description: Behavior after development error detection
Type: New (general concept missing)
Importance: High
Description: In case of a development error detection, all driver modules shall

• report the error to the Development Error Tracer (DET)
• skip the desired functionality (leave service without any action)
• in case of standard return value return E_NOT_OK
• in case of arbitrary return values (e.g. Dio_ReadPort) return 0

Rationale: Uniform behavior of all SPAL modules.
Avoid processing of wrong API parameters and thus avoid damage to
hardware or dangerous system behavior.

Use Case: The development error detection is enabled for a Driver.
The driver service is called with a faulty input parameter value. The service
shall NOT process the command (which might result in a serious
malfunction).

Dependencies: SRS BSW General:
[BSW00338] Detection and Reporting of development errors
[BSW00369] Do not return development error codes via API
[BSW00323] API parameter checking

This SRS:
[BSW157] Notification mechanisms of drivers and handlers

Conflicts: --
Supporting Material: --

6.1.1.5 Shutdown Operation

6.1.1.5.1 [BSW12067] Setting of wake-up conditions

Initiator: BMW
Date: 18.05.2004
Short Description: Setting of wake-up conditions.
Type: new
Importance: High
Description: All driver modules shall set their wake-up conditions depending on the

selected operation mode.
Rationale: Allow enabling of module specific wake-up interrupts.
Use Case: Example:

The ECU state manager switches the ECU power mode to
‘ECU_POWERMODE_SLEEP’.
The modules ‘GPT’ and ‘ICU’ enable specific wake-up interrupts according
to their configuration related to ‘ECU_POWERMODE_SLEEP’.

Dependencies: [BSW12169] Control of operation mode
Conflicts: --
Supporting Material: BMW Specification MCAL V1.0a, MAL1.5.0

6.1.2 Non-Functional Requirements (Qualities)

- AUTOSAR confidential -

General Requirements on SPAL
 V2.1.1

R3.0 Rev 0001

21 of 22 Document ID 009:AUTOSAR_SRS_SPAL_General

6.1.2.1 Timing requirements

6.1.2.1.1 [BSW12077] Non-blocking implementation

Initiator: CAS
Date: 27.05.2004
Short Description: Non-blocking implementation
Type: Changed (13.04.2005: Note added)
Importance: High
Description: All drivers shall provide a non blocking implementation.

Note: ‘blocking implementation’ in this requirement means ‘insensible,
uncooperative usage of processor time’ like long term loops.

Rationale: Avoid undetermined waiting times. Allow all drivers to be used within a
cooperatively scheduled system.

Use Case: The waiting loop for the ‘ADC Conversion Ready Flag’ shall have an
additional timeout condition.

Dependencies: --
Conflicts: --
Supporting Material: --

6.1.2.1.2 [BSW12078] Runtime and memory efficiency

Initiator: CAS
Date: 27.05.2004
Short Description: Runtime and memory efficiency
Type: New
Importance: High
Description: The drivers shall be coded in a way that is most efficient in terms of memory

and runtime resources.
Rationale: Avoid waste of resources.
Use Case: Usage of the driver in embedded automotive systems.
Dependencies: --
Conflicts: --
Supporting Material: --

6.1.2.2 Software design requirements

6.1.2.2.1 [BSW12092] Access to drivers

Initiator: WP4.2.2.1.12
Date: 27.05.2004
Short Description: Access to drivers
Type: New
Importance: High
Description: If a driver is controlled by a handler or a manager, it is not allowed to bypass

the handler/manager and access the driver’s API directly.

If a driver does not have a handler/manager above, it may be accessed
directly.

Rationale: Consistent access. Handlers and Managers shall not be bypassed.

- AUTOSAR confidential -

General Requirements on SPAL
 V2.1.1

R3.0 Rev 0001

22 of 22 Document ID 009:AUTOSAR_SRS_SPAL_General

- AUTOSAR confidential -

Use Case: The EEPROM driver is controlled exclusively by the NVRAM
Manager via the EEPROM Abstraction module and the Memory Abstraction
Interface.
No other form of access to the EEPROM driver’s API shall be allowed.

Dependencies: --
Conflicts: --
Supporting Material: --

6.1.2.2.2 [BSW12265] Configuration data shall be kept constant

Initiator: WP4.2.2.1.12
Date: 12.09.2004
Short Description: Configuration data shall be kept constant
Type: New
Importance: High
Description: The contents of the init structure passed to the module via the init function

shall be kept constant and available during runtime.

Comment:
Usually, this init data structure is located in ROM.

Rationale: The module could access this structure at any time.
Use Case: --
Dependencies: --
Conflicts: --
Supporting Material: --

6.1.2.3 Process requirements

6.1.2.3.1 [BSW12264] Specification of configuration items

Initiator: WP4.2.2.1.12
Date: 06.12.2005
Short Description: Specification of configuration items
Type: Changed
Importance: High
Description: The SWS (software specification) shall specify for each configuration

element
• whether it is configurable before or after compile time
• where this configuration item is located (init data structure,

configuration header file *_Cfg.h)
Rationale: Enable correct implementation of configuration parameters that allow for

object code delivery
Use Case: --
Dependencies: [BSW12263] Configuration after compile time
Conflicts: --
Supporting Material: --

	1 Scope of this Document
	2 Requirements Guidelines
	2.1 Requirements quality
	2.2 Requirements identification
	2.3 Requirements structure

	3 Acronyms and abbreviations
	4 Related Documentation
	4.1 Deliverables of AUTOSAR
	4.2 Related standards and norms
	4.2.1 HIS

	5 Conceptual Issues
	5.1 General Rules
	5.2 List of drivers not affected by the clock frequency
	5.3 MCAL relevant ECU Power Modes
	5.4 Wake-up Scenarios
	5.5 Scheduling and integration of drivers

	6 Requirement Specification
	6.1 General Requirements
	6.1.1 Functional Requirements
	6.1.1.1 Configuration
	6.1.1.1.1 [BSW12263] Object code compatible configuration concept
	6.1.1.1.2 [BSW12056] Configuration of notification mechanisms
	6.1.1.1.3 [BSW12267] Configuration of wake-up sources

	6.1.1.2 Initialization
	6.1.1.2.1 [BSW12057] Driver module initialization
	6.1.1.2.2 [BSW12125] Initialization of hardware resources
	6.1.1.2.3 [BSW12163] Driver module de-initialization
	6.1.1.2.4 [BSW12461] Responsibility for register initialization
	6.1.1.2.5 [BSW12462] Provide settings for register initialization
	6.1.1.2.6 [BSW12463] Combine and forward settings for register initialization
	6.1.1.2.7 [BSW12068] MCAL initialization sequence
	6.1.1.2.8 [BSW12069] Wake-up notification of ECU State Manager

	6.1.1.3 Normal Operation
	6.1.1.3.1 [BSW157] Notification mechanisms of drivers and handlers
	6.1.1.3.2 [BSW12169] Control of operation mode
	6.1.1.3.3 [BSW12063] Raw value mode
	6.1.1.3.4 [BSW12075] Use of application buffers
	6.1.1.3.5 [BSW12129] Resetting of interrupt flags

	6.1.1.4 Fault Operation
	6.1.1.4.1 [BSW12064] Change of operation mode during running operation
	6.1.1.4.2 [BSW12448] Behavior after development error detection

	6.1.1.5 Shutdown Operation
	6.1.1.5.1 [BSW12067] Setting of wake-up conditions

	6.1.2 Non-Functional Requirements (Qualities)
	6.1.2.1 Timing requirements
	6.1.2.1.1 [BSW12077] Non-blocking implementation
	6.1.2.1.2 [BSW12078] Runtime and memory efficiency

	6.1.2.2 Software design requirements
	6.1.2.2.1 [BSW12092] Access to drivers
	6.1.2.2.2 [BSW12265] Configuration data shall be kept constant

	6.1.2.3 Process requirements
	6.1.2.3.1 [BSW12264] Specification of configuration items

