
Requirements on CAN
 V2.3.0

R3.0 Rev 7

Document Title Requirements on CAN
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 001
Document Classification Auxiliary

Document Version 2.3.0
Document Status Final
Part of Release 3.0
Revision 7

Document Change History
Date Version Changed by Change Description
10.09.2010 2.3.0 AUTOSAR

Administration
 BSW01017 requirement for CAN

polling/interrupt mode removed
 Legal disclaimer revised

29.11.2007 2.2.0 AUTOSAR
Administration

 Requirements added for new Modul
Can State Manager (add Chapter 4.4)

 Document meta information extended
 Small layout adaptations made

24.01.2007 2.1.2 AUTOSAR
Administration

 “Advice for users” revised
 “Revision Information” added

18.12.2006 2.1.1 AUTOSAR
Administration

 PDF file corrections made

04.12.2006 2.1.0 AUTOSAR
Administration

 Architecture design change: CAN
Transceiver Driver is now layered below
CAN Interface

 Extended 11/29 bit Identifier support in
CAN Interface

 Added N_SA in BSW01069 and
BSW01074

 Legal disclaimer revised

1 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

Document Change History
Date Version Changed by Change Description
01.04.2006 2.0.0 AUTOSAR

Administration
CAN Driver, CAN Interface
 Optimized timing behavior for

transmission (multiplexed transmission,
priority based transmission,
transmission cancellation)

 Support of Standard and Extended CAN
Identifiers on one network

CAN Transport Layer
 Multiple connections mechanism,
 Support of ISO-15765-4,
 Support of Connection specific time out

values
 Support of different addressing modes

in parallel

CAN Transceiver Driver
 Requirements for CAN Transceiver

Driver added
31.05.2005 1.0.0 AUTOSAR

Administration
Initial release

2 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).

Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary
items are licensed under the same rules as applicable to the AUTOSAR Standard.

3 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

Table of Contents

1 Scope of this document ... 6

2 How to read this document.. 7

2.1 Conventions used... 7
2.2 Requirements structure .. 8

3 Acronyms and abbrevations .. 9

4 Requirements Specification... 10

4.1 Non functional requirements for CAN Driver and Interface together 10
4.1.1 [BSW01125] Data throughput read direction....................................... 10
4.1.2 [BSW01126] Data throughput write direction 10
4.1.3 [BSW01139] CAN Controller specific Initialization 11

4.2 CAN Driver ... 11
4.2.1 Non-functional requirements ... 11

4.2.1.1 [BSW01033] Usage of SPAL General Requirements 11
4.2.1.2 [BSW01034] Hardware abstraction.. 12
4.2.1.3 [BSW01035] Multiple CAN Controller Support 12

4.2.2 Functional Requirements .. 12
4.2.2.1 Configuration.. 12
4.2.2.2 Initialization .. 16
4.2.2.3 Normal Operation... 17
4.2.2.4 Shutdown Operation .. 22
4.2.2.5 Fault Operation .. 22

4.3 CAN Interface (Hardware Abstraction) ... 23
4.3.1 Non-functional requirements ... 23

4.3.1.1 [BSW01121] Interfaces of the CAN Interface module 23
4.3.1.2 [BSW01001] Hardware Independence... 23

4.3.2 Functional Requirements .. 24
4.3.2.1 Configuration.. 24
4.3.2.2 Initialization .. 26
4.3.2.3 Normal Operation... 27
4.3.2.4 Shutdown Operation .. 35
4.3.2.5 Fault Operation .. 35

4.4 CAN State Manager ... 35
4.4.1 Non-functional requirements ... 36

4.4.1.1 [BSW01142] Control flow abstraction of CAN networks............... 36
4.4.1.2 [BSW01014] Network configuration abstraction........................... 36

4.4.2 Functional Requirements .. 36
4.4.2.1 Configuration.. 36
4.4.2.2 Initialization .. 37
4.4.2.3 Normal Operation... 37
4.4.2.4 Shutdown Operation .. 38
4.4.2.5 Fault Operation .. 38

4.5 Transport Layer CAN ... 38
4.5.1 Non-functional requirements ... 38

4 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

4.5.1.1 [BSW01065] Usage of ISO 15765-2 and ISO 15765-4
specifications ... 38
4.5.1.2 [BSW01111] CAN Transport Layer Interfaces 39
4.5.1.3 [BSW01112] Independent interface ... 39
4.5.1.4 [BSW01120] Multiple CAN Transport Layer instances................. 40

4.5.2 Functional Requirements .. 40
4.5.2.1 Configuration.. 40
4.5.2.2 Initialization .. 43
4.5.2.3 Normal Operation... 44

4.6 CAN Bus Transceiver Driver .. 46
4.6.1 Functional Overview.. 46
4.6.2 Remarks to the CAN Bus Transceiver Driver 47

4.6.2.1 Explicitly uncovered CAN Bus Transceiver functionality 48
4.6.2.2 System Basis Chip and CAN Bus Transceiver Driver 48

4.6.3 Functional Requirements .. 48
4.6.3.1 Configuration.. 48
4.6.3.2 Initialization .. 50
4.6.3.3 Normal Operation... 51
4.6.3.4 Shutdown Operation .. 55
4.6.3.5 Fault Operation .. 56

4.6.4 Non-Functional Requirements (Qualities) ... 56
4.6.4.1 Timing Requirements... 56

5 References .. 58

5.1 Deliverables of AUTOSAR ... 58
5.2 Related standard and norms .. 58

5.2.1 ISO.. 58
5.3 Related Example Transceiver Data Sheets.. 58

5 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

1 Scope of this document

This document specifies the requirements for the following Basic Software Modules
(module names in brackets):

 CAN Driver (Can)
 CAN Interface (CanIf)
 CAN State Manager (CanSM)
 CAN Transport Layer (CanTp)
 CAN Bus Transceiver Driver (CanTrcv)

6 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

2 How to read this document

Each requirement has its unique identifier starting with the prefix “BSW” (for “Basic
Software”). For any review annotations, remarks or questions, please refer to this
unique ID rather than chapter or page numbers!

2.1 Conventions used

In requirements, the following specific semantics are used (taken from Request for
Comment RFC 2119 from the Internet Engineering Task Force IETF)

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119. Note that the requirement
level of the document in which they are used modifies the force of these words.

 MUST: This word, or the terms "REQUIRED" or "SHALL", mean that the
definition is an absolute requirement of the specification.

 MUST NOT: This phrase, or the phrase „SHALL NOT“, means that the
definition is an absolute prohibition of the specification.

 SHOULD: This word, or the adjective "RECOMMENDED", mean that there
may exist valid reasons in particular circumstances to ignore a particular item,
but the full implications must be understood and carefully weighed before
choosing a different course.

 SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED" mean
that there may exist valid reasons in particular circumstances when the
particular behavior is acceptable or even useful, but the full implications
should be understood and the case carefully weighed before implementing
any behavior described with this label.

 MAY: This word, or the adjective „OPTIONAL“, means that an item is truly
optional. One vendor may choose to include the item because a particular
marketplace requires it or because the vendor feels that it enhances the
product while another vendor may omit the same item. An implementation,
which does not include a particular option, MUST be prepared to interoperate
with another implementation, which does include the option, though perhaps
with reduced functionality. In the same vein an implementation, which does
include a particular option, MUST be prepared to interoperate with another
implementation, which does not include the option (except, of course, for the
feature the option provides.)

7 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

2.2 Requirements structure

Each module specific chapter contains a short functional description of the Basic
Software Module. Requirements of the same kind within each chapter are grouped
under the following headlines (where applicable):

Functional Requirements:
- Configuration (which elements of the module need to be configurable)
- Initialization
- Normal Operation
- Shutdown Operation
- Fault Operation
- ...

Non-Functional Requirements:
- Timing Requirements
- Resource Usage
- Usability
- Output for other WPs (e.g. Description Templates, Tooling,...)
- ...

8 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

3 Acronyms and abbrevations

Acronym: Description:
CAN
Communication
Matrix

Describes the complete CAN network:
 Participating nodes
 Definition of all CAN PDUs (Identifier, DLC)
 Source and Sinks for PDUs

Format is defined in other AUTOSAR workpackage
Physical Channel

A physical channel represents an interface to the CAN Network. Different
physical channels of the CAN Hardware Unit may access different networks.

L-PDU CAN (Data Link Layer) Protocol Data Unit. Consists of Identifier, DLC and Data
(L-SDU).

L-SDU CAN (Data Link Layer) Service Data Unit. Data that is transported inside the L-
PDU.

Hardware Object A Hardware Object is defined as message buffer inside the CAN RAM of the
CAN Hardware Unit. Also often called Message Object

Hardware Object
Handle

The hardware object handle (HOH) is defined and provided by the CAN Driver.
Typically each HOH represents a hardware object.
The HOH is used as parameter by the CAN Interface Layer for transmit and read
requests to the CAN Driver.

L-PDU Handle

The L-PDU handle is defined and placed inside the CAN Interface Layer.
Typically each handle represents a L-PDU or a range of L-PDUs, and is a
constant structure with information for Tx/Rx processing.

CAN Controller A CAN controller serves exactly one physical channel. See Figure "Typical CAN
HW Unit" in CAN Interface SWS.

CAN Hardware
Unit

A CAN hardware unit may consist of one or multiple CAN controllers of the same
type and one or multiple CAN RAM areas. The CAN hardware unit is either on-
chip, or an external device. The CAN hardware unit is represented by one CAN
Driver. See Figure "Typical CAN HW Unit" in CAN Interface SWS.

Multiplexed
Transmission

Usage of three TX HW objects, which are represented as one transmit entity
(Hardware Object Handle) to the upper layer. Used for Outer Priority Inversion
avoidance

Inner Priority
Inversion

Transmission of a high-priority L-PDU is prevented by the presence of a pending
low-priority L-PDU in the same physical channel.

Outer Priority
Inversion

Occurs when a time gap is between two consecutive TX L-PDU transmissions.
In this case a lower priority L-PDU from another node can prevent sending the
next L-PDU because the higher priority L-PDU can't participate in the running bus
arbitration because it comes too late.

Bus A bus represents a CAN or LIN network. A bus has a given physical behavior
(e.g. CAN low-speed or high-speed). A bus may support wakeup via bus or is
“always on”.

N-PDU Network Protocol Data Unit of the CAN Transport Layer
N-SDU Service Data Unit of the CAN Transport Layer. Data that is transported inside the

N-PDU.
static configuration Configuration, that is not changeable during runtime. This means that a

configuration is typically done once during startup phase of the ECU.
This concern is independent from the possibilities to introduce the configuration
parameters into the ECU itself: Pre-Compile-Time, Link-Time or Post-Build-Time

9 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

4 Requirements Specification

4.1 Non functional requirements for CAN Driver and Interface

together

This chapter describes requirements that shall be fulfilled by the CAN Driver and
CAN Interface together.

4.1.1 [BSW01125] Data throughput read direction

BMW Initiator:
2005-03-02 Date:
The CAN stack shall ensure not to lose messages in receive direction. Short Description:
New Type:
High Importance:
The CAN stack shall ensure that the HW receive buffer is read out in a time
frame that no message is lost for a bus load of 100% with a payload of 1
byte

Description:

It shall be possible to work with message bursts without loss of data. This
requirement intentionally uses CAN frames with 1 byte payload. They
produce more overhead to process them than longer ones. 0 byte
messages are seldom used.
Hint: Of course this doesn't imply that the general usage of 0 Byte
messages is forbidden

Rationale:

See rationale Use Case:
-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.1.2 [BSW01126] Data throughput write direction

BMW Initiator:
2005-03-02 Date:
The CAN stack shall be able to produce 100% bus load. Short Description:
New Type:
High Importance:
The CAN stack shall be able to produce 100% bus load (except gaps
resulting due to not using multiplexed HW transmit buffers). This
requirement intentionally uses CAN frames with 1 byte payload. They
produce more overhead to process them than longer ones. 0 byte
messages are seldom used.
Hint: Of course this doesn't imply that the general usage of 0 Byte
messages is forbidden

Description:

Service the maximum speed of the used CAN bus. Rationale:
See rationale Use Case:
-- Dependencies:
-- Conflicts:
-- Supporting Material:

10 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

4.1.3 [BSW01139] CAN Controller specific Initialization

VW / IAV Initiator:
27.02.2006 Date:
The CAN Interface and Driver shall offer a CAN Controller specific interface
for initialization

Short Description:

New Type:
Medium Importance:
This service shall initialize the CAN Controller specific configuration like
e.g. parameters concerning Baud Rate (BSW01038).
This service is typically used for re-initialization after e.g. BusOff, but not
explicitly restricted to that case.
This function call shall only return without error if the CAN driver's state
machine is in STOPPED mode. The selection of one out of several
configuration sets shall be supported by passing a parameter with the API

Description:

Basic functionality. Rationale:
-- Use Case:
See description Dependencies:
-- Conflicts:
-- Supporting Material:

4.2 CAN Driver

The CAN Driver offers uniform interfaces for the above user of this layer, the CAN
Interface. The CAN Driver hides the hardware specific properties of the related CAN
Controller as far as possible and reasonable.

For a detailed functional description and interface definition see CAN Driver
Specification [Can].

4.2.1 Non-functional requirements

4.2.1.1 [BSW01033] Usage of SPAL General Requirements

CAS Initiator:
06.07.2004 Date:
The CAN Driver shall fulfill the general requirements for Basic Software
Modules as specified in AUTOSAR_SRS_SPAL.

Short Description:

New Type:
Medium Importance:
Based on Requirements in Document AUTOSAR_SRS_SPAL version
2.0.0

Description:

Re-use of requirements valid for all Drivers Rationale:
CAN Driver is in the same layer as other Drivers (SCI, SPI). Therefore the
CAN driver shall fulfill the general SPAL requirements also.

Use Case:

AUTOSAR_SRS_SPAL Dependencies:
General Requirements of SPAL doesn't have a stable state Conflicts:
-- Supporting Material:

11 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

4.2.1.2 [BSW01034] Hardware abstraction

SV Initiator:
30.06.2004 Date:
The CAN Driver shall offer a Hardware independent interface. Short Description:
New Type:
Medium Importance:
The Interface between CAN Driver and CAN Interface shall be independent
from underlying hardware.
The implementation of the CAN Driver is hardware dependent and statically
configurable

Description:

Portability Rationale:
Same CAN Interface implementation can be used for different µCs. Use Case:
BSW01001 Dependencies:
-- Conflicts:
-- Supporting Material:

4.2.1.3 [BSW01035] Multiple CAN Controller Support

SV Initiator:
30.06.2004 Date:
The CAN Driver shall support multiple CAN controllers of the same CAN
hardware unit.

Short Description:

New Type:
Medium Importance:
The CAN Driver shall support multiple CAN controllers inside one CAN
Hardware unit.
It shall be possible Pre-Compile-Time to de-select an unused CAN
Controller

Description:

Coverage of hardware capabilities Rationale:
Devices exist on the market that incorporate several CAN controller in one
device.

Use Case:

BSW01053 Dependencies:
-- Conflicts:
-- Supporting Material:

4.2.2 Functional Requirements

4.2.2.1 Configuration

4.2.2.1.1 [BSW01036] CAN Identifier Length (Standard / Extended)

Configuration

SV Initiator:
30.06.2004 Date:
The CAN Driver shall support Standard Identifier and Extended Identifier Short Description:
New Type:
Medium Importance:

Description: The CAN driver shall be able to operate with both standard and extended
CAN Identifiers on one CAN Controller if supported by CAN Hardware.
Each hardware object shall be statically and individually configurable for
one of the both identifier types if supported by CAN Hardware.

12 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

All L-PDUs sent and received over that CAN controller shall be conform
this configuration.
The CAN Driver shall support reception and transmission of L-PDUs with
Standard and Extended ID, including both at the same time on one
Hardware Object.
The configuration parameters shall be allowed to be of types Pre-Compile-
Time, Link-Time or Post-Build-Time
CAN Standard Coverage Rationale:
CAN Standard allows Standard and Extended Identifier. Different projects
might require the usage of Extended CAN IDs in addition to Standard CAN
IDs due to the lack of remaining StandardCAN IDs.

Use Case:

BSW01016 Dependencies:
-- Conflicts:
-- Supporting Material:

4.2.2.1.2 [BSW01037] Hardware filter configuration

SV Initiator:
30.06.2004 Date:
The CAN driver shall allow the static configuration of the hardware
reception filter

Short Description:

New Type:
Medium Importance:
HW supported filtering of receive L-PDUs shall be configurable. The
configuration shall be done during initialization phase. Reconfiguration
during normal operation shall only be possible in STOPPED mode.
It shall be allowed for the configuration parameters to be of types Pre-
Compile, Link-Time or Post-Build

Description:

Coverage of hardware capabilities Rationale:
CAN controller allow filtering of messages inside hardware. That reduces
the software load caused by messages not relevant for the ECU.

Use Case:

BSW01018 Dependencies:
-- Conflicts:
-- Supporting Material:

4.2.2.1.3 [BSW01038] Bit Timing Configuration

CAS Initiator:
06.07.2004 Date:
The bit timing of each CAN Controller shall be configurable Short Description:
New Type:
Medium Importance:
The bit timing and thus the Baud Rate of each CAN controller served by the
CAN Driver shall be configurable
The following list describes typical attributes:

 Propagation delay
 Tseg1
 Tseg2
 Samples/bit
 SJW

The configuration parameters shall be allowed to be of types Pre-Compile-
Time, Link-Time or Post-Build-Time

Description:

CAN Standards coverage, coverage of hardware capabilities Rationale:
Use Case: CAN Standard doesn't specify one baud rate -> baud rate is project
13 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

specific. Possible configuration of the timing parameters is hardware
dependent
BSW01139 Dependencies:
-- Conflicts:
-- Supporting Material:

4.2.2.1.4 [BSW01039] CAN Hardware Object Handle definitions

CAS Initiator:
06.07.2004 Date:
Hardware Object Handles shall be provided for the CAN Interface in the
static configuration file.

Short Description:

New Type:
Medium Importance:
All available hardware object handles shall be defined in the ECU
configuration description. The syntax of the public part shall be
standardized, because that is the configuration interface to the CAN
Interface
The configuration parameters shall be allowed to be of types Pre-Compile-
Time, Link-Time or Post-Build-Time

Description:

Coverage of hardware capabilities, configuration interface to CAN InterfaceRationale:
For an optimized co-operation of software and hardware filtering and
optimized usage of underlying hardware the CAN Interface needs to know
the available hardware resources and their configuration.

Use Case:

BSW01016 Dependencies:
-- Conflicts:
-- Supporting Material:

4.2.2.1.5 [BSW01040] HW Transmit Cancellation configuration

CAS Initiator:
06.07.2004 Date:
The CAN driver shall allow the static enabling or disabling of transmit
cancellation

Short Description:

New Type:
Medium Importance:
Hardware transmit cancellation shall be statically enabled or disabled
It shall be made public in the configuration file, whether the hardware
supports transmit cancellation or not.
The configuration parameters shall be allowed to be of type Pre-Compile-
Time only

Description:

The CAN Driver cancels autonomously if a transmit request with higher
priority comes from the CAN Interface. In this case the CAN Interface is
notified that the pending transmission was cancelled

Rationale:

-- Use Case:
BSW01016, BSW01133 Dependencies:
-- Conflicts:
-- Supporting Material:

14 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

4.2.2.1.6 [BSW01058] Configuration of Multiplexed Transmission

Volcano Initiator:
20.07.2004 Date:
It shall be configurable whether Multiplex Transmission is used Short Description:
New Type:
Medium Importance:
The Multiplexed Transmission feature shall be Pre-Compile-Time
configurable. This feature shall only be supported if the underlying CAN
Controller supports Multiplexed Transmission

Description:

-- Rationale:
Outer priority inversion can be avoided Use Case:
BSW01134 Dependencies:
-- Conflicts:
-- Supporting Material:

4.2.2.1.7 [BSW01062] Configuration of polling mode/interrupt driven mode

SV Initiator:
20.07.2004 Date:
Each event for each CAN Controller shall be configurable to be detected by
polling or by an interrupt

Short Description:

New Type:
Medium Importance:
Each possible event of each CAN Controller shall be Pre-Compile-Time
configurable to be in one of the following two modes
Polling:
The CAN Driver represents a periodically called task. It polls the CAN
Controller. The appropriate notifications are called based upon the events
that occurred.
The CAN interrupt for the appropriate event is disabled in that mode.

Interrupt driven:
The CAN Controller notifies the CAN Driver of detected HW events by way
of an interrupt.

CAN Hardware Unit implementations may differ in regards to which events
may be reported by interrupts or can only be polled -> The configuration for
polling or interrupt shall be done inside the driver

Description:

Coverage of hardware capabilities Rationale:
Polling mode is required when a deterministic timing behavior (response
time) is needed. For example for motor management systems.

Use Case:

-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.2.2.1.8 [BSW01135] Configuration of multiple TX Hardware Objects

CAS / VW Initiator:
11.10.2005 Date:
Configuration of multiple TX Hardware Objects Short Description:
New Type:

Importance: Medium

15 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

It shall be possible to configure one or several TX Hardware Objects,
where each Hardware Object is represented by it's own Hardware Object
Handle.
(Not to be mixed-up with multiplexed transmission)

The selection of the TX Hardware Object is done by the caller of the
transmit request service, with a parameter that identifies the Hardware
Object Handle

This requires that the hardware allows configuration of several TX
Hardware Objects.

The configuration shall be allowed to be of types Pre-Compile, Link-Time or
Post-Build

Description:

Basic functionality Rationale:
Support of typical CAN Controller capabilities: Configuration of several Full-
CAN Transmit Objects and several Basic-CAN Transmit Objects as well as
one Basic-CAN Transmit Object and several Full-CAN Transmit objects
etc.

Use Case:

BSW01058, BSW01049 Dependencies:
-- Conflicts:
-- Supporting Material:

4.2.2.2 Initialization

4.2.2.2.1 [BSW01041] CAN Driver Module Initialization

CAS Initiator:
06.07.2004 Date:
The CAN Driver shall implement an interface for initialization Short Description:
New Type:
Medium Importance:
The CAN Driver shall implement an interface for initialization.
This service shall initialize all module global variables and all Registers of
the CAN Hardware Unit and its Controller(s).
This function shall only be called once during startup

Description:

Basic functionality Rationale:
A CAN Hardware Unit has registers that must be set according the static
configuration. Some register values belong to one single CAN controller
some influence the complete unit

Use Case:

BSW12057 of SPAL SRS Dependencies:
-- Conflicts:
-- Supporting Material:

4.2.2.2.2 [BSW01042] Selection of static configuration sets

SV Initiator:
30.06.2004 Date:
The CAN Driver shall support dynamic selection of configuration sets. Short Description:
New Type:
Medium Importance:

Description: The CAN Driver shall support the dynamic selection of one static
configuration set out of a list of configuration sets. This shall be done by a

16 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

parameter passed via the initialization interface.
Refer to CAN Driver SWS for a detailed view of parameters.
To switch to another configuration set shall only be possible if the CAN
driver's state machine is in STOPPED mode.
Hints: The selection of the appropriate configuration set itself as well as the
way to incorporate the configuration sets into the ECU (Post-Build, Pre-
Compile) are not affected by this requirement
Support of different configurations during runtime Rationale:
Use different configuration sets with e.g. different CAN IDs depending on
different mounting positions of the ECU

Use Case:

BSW12062 of SPAL SRS Dependencies:
-- Conflicts:
-- Supporting Material:

4.2.2.3 Normal Operation

4.2.2.3.1 [BSW01043] Enable/disable CAN interrupts

SV Initiator:
30.06.2004 Date:
The CAN Driver shall provide a service to en-/disable interrupts of the CAN
Controller.

Short Description:

New Type:
Medium Importance:
The CAN Driver shall offer services for enabling and disabling all interrupts
generated by a CAN controller

 Disabling means: Disable all interrupts of the related CAN
Controller

 Enabling means: Re-enable all interrupts which were disabled
before

Description:

Basic functionality, ensure data consistency Rationale:
Used to disable asynchronous interruptions by a CAN Driver event. Use Case:
-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.2.2.3.2 [BSW01059] Data Consistency of received L-PDUs

Vector Initiator:
20.07.2004 Date:
The CAN Driver shall guarantee data consistency of received L-PDUs Short Description:
New Type:
Medium Importance:
The CAN Driver shall guarantee that the data inside a Hardware Object is
not overwritten while it is copied

Description:

Basic functionality Rationale:
A newly arrived message may overwrite the CAN Hardware buffer during
the data is read out of the CAN Controller. This may lead to inconsistent
data. Therefore the Driver shall ensure that inconsistent data is not copied.

Use Case:

-- Dependencies:
-- Conflicts:

Supporting Material: --

17 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

4.2.2.3.3 [BSW01045] Reception Indication Service

SV Initiator:
30.06.2004 Date:
The CAN Driver shall offer a reception indication service. Short Description:
New Type:
Medium Importance:
The CAN Driver shall notify the CAN Interface about a successful
reception.
The notification is done by call of a static callback function implemented
inside the CAN Interface.
The Notification includes the following information:

 CAN Identifier
 DLC
 CAN Hardware Object
 Pointer to SDU data

Description:

Basic functionality, CAN Standards coverage Rationale:
According the CAN Service primitive, the reception of a received CAN
frame shall be indicated to the next upper layer. This Service here is used
by the CAN Interface (on indication it notifies the next upper layer and
copies the received data)

Use Case:

BSW01003 Dependencies:
-- Conflicts:
-- Supporting Material:

4.2.2.3.4 [BSW01049] Dynamic transmission request service

SV Initiator:
30.06.2004 Date:
The CAN Driver shall provide a dynamic transmission request service Short Description:
New Type:
Medium Importance:
The CAN Driver API shall provide a dynamic transmission request service
(called by CAN Interface). The DLC and ID of the L-PDU are given as
parameter.

The CAN Interface provides following parameters:

 CAN Hardware Object Handle (implies the CAN Controller)
 L-PDU:

o Pointer L-SDU source
o CAN Identifier
o DLC

Description:

Basic functionality, CAN Standards coverage Rationale:
Basic-CAN transmit hardware objects Use Case:
BSW01008 Dependencies:
-- Conflicts:
-- Supporting Material:

4.2.2.3.5 [BSW01051] Transmission Confirmation

Initiator: SV
18 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

30.06.2004 Date:
The CAN Driver shall provide a transmission confirmation service Short Description:
New Type:
Medium Importance:
The CAN driver shall notify the CAN Interface about a successful
transmission. Successful transmission means in this case, that at least one
receiver acknowledged the CAN frame and it has not been disturbed by an
error.
The notification is done by call of a static call-back function implemented
inside the CAN Interface

Description:

Basic functionality, CAN Standards coverage Rationale:
According the CAN Service primitive, the transmission of a CAN frame
shall be confirmed.

Use Case:

BSW01009 Dependencies:
-- Conflicts:
ISO11898 Section 6.3.3 'Recovery management Supporting Material:

4.2.2.3.6 [BSW01053] CAN Controller Mode Select Service

SV Initiator:
30.06.2004 Date:
The CAN Driver shall provide a service to change the CAN controller mode.Short Description:
New Type:
Medium Importance:
The CAN Driver shall provide a service to change the mode of the specified
CAN controller.
The following states shall be supported:

o UNINIT – The CAN controller is not configured, typically the
registers are in reset state

o STOPPED – The CAN controller is configured but does not take
part in the CAN communication

o STARTED – The CAN controller is up and running
o SLEEP – The CAN controller is in sleep mode.

The corresponding CAN Driver SWS describes the possible state
transitions in detail

All necessary HW-initializations for the respective mode transition are done
inside this service

Description:

Basic functionality Rationale:
The CAN controller may be initialized for low power consumption in sleep
mode. This is done with this service for SLEEP transition.
In case of bus-off, the controller may be set in UNINIT state (typically reset
of controller) and set to running later on.

Use Case:

BSW01027 Dependencies:
-- Conflicts:
-- Supporting Material:

4.2.2.3.7 [BSW01054] Wake-up Notification

CAS Initiator:
06.07.2004 Date:
The CAN Driver shall provide a notification for wake-up events Short Description:

Type: New
19 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

Medium Importance:
The CAN driver shall notify the CAN Interface in case of a wake-up
interrupt. The notification is done by call of a static callback function
implemented inside the CAN Interface.

This functionality shall only be implemented, if CAN Hardware unit supports
sleep mode and a specific wakeup interrupt is available.
Even if the CAN Hardware supports it, this feature shall be Pre-Compile-
Time configurable

Description:

Basic functionality Rationale:
Any state transition is notified to the CAN Interface. The CAN Interface
forwards this notification to the responsible layer (typically the COM
Manager)

Use Case:

BSW01032 Dependencies:
-- Conflicts:
-- Supporting Material:

4.2.2.3.8 [BSW01122] Support for wakeup during sleep transition

VW/IAV (Vector) Initiator:
09.03.2005 Date:
The CAN driver shall support the situation where a wakeup by bus occurs
during the same time the transition to standby/sleep is in progress

Short Description:

New Type:
High Importance:
Wakeup by bus is always asynchronous to the internal transition to sleep.
In worst case, the wakeup occurs during the transition to sleep. This
situation must be covered by the software design and explicitly tested for
each ECU.

Assuming this worst case, the driver shall raise the Wake-up Notification
immediately after the API to enter the standby/sleep mode has finished.

Hint: In case the ECU hardware has the capability to notify one wakeup
reason from different hardware components e.g. Transceiver and
Controller, it's up to the system configuration to select one source

Description:

Safe wakeup and sleep handling. Rationale:
All busses with a wakeup by bus are affected. Use Case:
-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.2.2.3.9 [BSW01132] Mixed mode for notification detection on CAN HW

(Interrupt and Polling)

SV Initiator:
4.8.2005 Date:
The CAN driver shall be able to detect notification events message object
specific by CAN-Interrupt and polling

Short Description:

New Type:
High Importance:

Description: Dependent on configuration the detection of any reception, transmission or
error event shall be done by release a CAN Interrupt and by Polling through
the CAN driver. Both mechanisms shall be configurable for each message

20 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

object if supported by CAN Hardware
Polling the CAN HW globally leads to the problem, that the polling rate
belongs to the CAN message with the shortest cycle time, which may result
in very high runtimes. Notification by interrupt offers the possibility to react
real time. This is useful especially on messages with very short cycle times.

Rationale:

Gateway / CCP / Network Layer <=> Intersystem communication. Time
triggered complex device drivers, which have strong restrictions to
guarantee fixed reaction times and which shall ensure predictable behavior.

Use Case:

Only possible, if the CAN controller supports message object specific
configuration of interrupt usage.

Dependencies:

-- Conflicts:
-- Supporting Material:

4.2.2.3.10 [BSW01133] HW Transmit Cancellation support

CAS Initiator:
06.07.2004 Date:
The CAN driver shall support the HW Transmit Cancellation Short Description:
New Type:
Medium Importance:
The CAN driver shall support the Cancellation of a pending Transmit
Request if HW Transmit Cancellation and Multiplexed Transmission are
supported by hardware

Description:

The CAN Driver cancels autonomously if a transmit request with higher
priority comes from the CAN Interface. In this case the CAN Interface is
notified that the pending transmission was cancelled

Rationale:

This requirement is necessary to enable the CAN stack to guarantee
message latency (GML). This requirement is only useful for
standardization, if there is also a requirement for the entire COM stack, that
the overall network description has to be optimized due to ensure GML.

Use Case:

BSW01040, BSW01134 Dependencies:
-- Conflicts:
-- Supporting Material:

4.2.2.3.11 [BSW01134] Multiplexed transmission

CAS / VW Initiator:
11.10.2005 Date:
The CAN Driver shall support multiplexed transmission Short Description:
New Type:
Medium Importance:

Description: The CAN Driver shall support multiplexed transmission if supported by the
underlying CAN Controller

Definition of 'multiplexed transmission': Three TX HW objects are
represented as one Transmit entity (Hardware Object Handle) to the upper
layer. This avoids gaps between consecutive sending of L-PDUs.

This feature option shall only be implemented when the CAN Hardware
fulfills the following requirements:
[The three HW objects are represented as single register set OR
the hardware provides registers that identify a free buffer]
AND
[The L-PDUs are sent out in the order of their priority]

21 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

Outer priority inversion can be avoided Rationale:
Basic-CAN transmit hardware objects Use Case:
BSW01058 Dependencies:
-- Conflicts:
-- Supporting Material:

4.2.2.4 Shutdown Operation

There is no shutdown operation necessary for the CAN Driver. All needed actions are
covered by BSW01053 already.

4.2.2.5 Fault Operation

4.2.2.5.1 [BSW01055] Bus-off notification

CAS Initiator:
06.07.2004 Date:
The CAN Driver shall provide a notification for bus-off state Short Description:
New Type:
Medium Importance:
The CAN driver shall notify the CAN Interface if the CAN Controller goes in
bus-off state. The notification is done by call of a static callback function
implemented inside the CAN Interface.

Description:

Basic functionality Rationale:
Any state transition is notified to the CAN Interface. The CAN Interface
forwards this notification to the responsible layer.

Use Case:

BSW01029 Dependencies:
-- Conflicts:
-- Supporting Material:

4.2.2.5.2 [BSW01060] No automatic bus-off recovery

Vector Initiator:
20.07.2004 Date:
The CAN driver shall not recover from bus-off automatically Short Description:
New Type:
Medium Importance:
The bus-off recovery shall be software driven. If an automatic bus-off
recovery is implemented in the hardware it has to be suppressed by
software e.g. force CAN controller to reset state within the bus off interrupt
service routine

Description:

Basic functionality Rationale:
A software-controlled recovery allows other nodes to communicate without
the damaged node disturbing the bus for some time period

Use Case:

-- Dependencies:
-- Conflicts:
-- Supporting Material:

22 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

4.3 CAN Interface (Hardware Abstraction)

The CAN Interface provides standardized interfaces to provide the communication
with the CAN bus system of an ECU. The APIs are independent from the specific
CAN Controllers and Transceivers and their access through the responsible Driver
layer. The CAN Interface is able to access one or more CAN Drivers and CAN
Transceiver Drivers via one uniform interface.

For a detailed functional description and interface definition see CAN Interface
Specification [CanIf].

4.3.1 Non-functional requirements

4.3.1.1 [BSW01121] Interfaces of the CAN Interface module

WP1.1.2 Initiator:
01.09.2004 Date:
CAN Interface shall be the interface layer between the underlying CAN
Driver(s) and CAN transceiver Driver(s) and Upper Layers.

Short Description:

New Type:
High Importance:
The CAN Interface is the single interface for all upper Layers for CAN
operation.
The CAN Interface is the single user of the CAN Driver and the CAN
Transceiver Driver.

Description:

Interfaces and interaction Rationale:
Different upper layers (as described in
AUTOSAR_WP1.1.2_SoftwareArchitecture) may access the same CAN
Hardware Unit. Also more than one CAN Hardware Unit with their
corresponding drivers (internal and external) may exist in one ECU.
Users of the CAN Interface may be the PDU Router, CAN Transport Layer,
Network Management and CAN State Manager

Use Case:

-- Dependencies:
-- Conflicts:
AUTOSAR_WP1.1.2_SoftwareArchitecture Supporting Material:

4.3.1.2 [BSW01001] Hardware Independence

SV, CAS, DC Initiator:
30.06.2004 Date:
The CAN Interface implementation and interface shall be independent from
underlying CAN Controller and CAN Transceiver.

Short Description:

New Type:
High Importance:
The implementation may depend on the amount of available resources of
the underlying hardware (i.e. number of CAN Controllers, Hardware Object
Handles, HW cancellation allowed) but the Hardware Abstraction Layer
encapsulates different mechanisms of hardware access.

Description:

Portability and reusability. Rationale:
Encapsulate implementation details of a specific CAN controller from higher
software layers.

Use Case:

Dependencies: - BSW161 (General Requirements on Basic Software Modules)

23 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

- BSW01034
-- Conflicts:
-- Supporting Material:

4.3.2 Functional Requirements

4.3.2.1 Configuration

4.3.2.1.1 [BSW01015] Network Database Information Import

CAS Initiator:
06.07.2004 Date:
The CAN Interface configuration shall be able to import information from
CAN communication matrix.

Short Description:

New Type:
Medium Importance:
The static configuration of the CAN Interface shall be based on information
from the CAN communication matrix. The following information shall be
extracted from the CAN communication matrix:

 Individual RX L-PDUs for each CAN Controller – identified by CAN
ID

 RX L-PDU ranges for each CAN Controller
 All TX L-PDUs for each CAN Controller – identified by CAN ID
 TX L-PDU ranges for each CAN Controller
 Upper layer client for each L-PDU (-range)
 DLC for each L-PDU (-range)

The configuration parameters shall be allowed to be of types Pre-Compile,
Link-Time or Post-Build

Description:

Common Database for CAN Network Rationale:
The communication matrix is used to describe all messages in a network
and their sender and receiver. This information can be taken to configure
the software filter algorithm, the DLC check and the notifications for the
CAN Interface.

Use Case:

-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.3.2.1.2 [BSW01016] Interface to CAN Driver configuration

CAS Initiator:
06.07.2004 Date:
The CAN Interface shall have an interface to the static configuration
information of the CAN Driver

Short Description:

New Type:
Medium Importance:
The CAN Interface and its code configurator/generator shall be able to read
the CAN Driver configuration inside the ECU configuration description

Description:

Flexibility and scalability Rationale:
Optimization of software filtering according configured hardware filters Use Case:
BSW01036, BSW01039 Dependencies:
-- Conflicts:

Supporting Material: --

24 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

4.3.2.1.3 [BSW01018] Software Filter

CAS Initiator:
06.07.2004 Date:
The CAN Interface shall allow the configuration of its software reception
filter Pre-Compile-Time as well as Link-Time and Post-Build-Time

Short Description:

New Type:
Medium Importance:
All L-PDUs that are not filtered by HW-Filters and are not defined as
receive L-PDUs in the network database need to be rejected by a filter
implemented in software.

Description:

Basic functionality Rationale:
Messages that shall not be received by the ECU, but could not be filtered
by hardware filters, shall be filtered by software in the CAN Interface.

Use Case:

BSW01037, BSW01004, BSW01039 Dependencies:
-- Conflicts:
-- Supporting Material:

4.3.2.1.4 [BSW01019] DLC check configuration

CAS Initiator:
06.07.2004 Date:
It shall be Pre-Compile-Time configurable whether a DLC check is
performed or not

Short Description:

New Type:
Medium Importance:
It shall be Pre-Compile-Time configurable whether the DLC check – global
for each CAN controller – is performed

Description:

Basic Functionality Rationale:
Turning off the DLC check improves the exchangeability of older ECUs,
where IDs stay the same but SDU length differs

Use Case:

-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.3.2.1.5 [BSW01020] TX-Buffer configuration

CAS Initiator:
06.07.2004 Date:
The TX-Buffer shall be statically configurable Short Description:
New Type:
Medium Importance:
It shall be configurable Pre-Compile-Time, whether one or no buffer per L-
PDU shall be available

Description:

-- Rationale:
Different properties are necessary to realize different variants of ECUs Use Case:
BSW01011 Dependencies:
-- Conflicts:
-- Supporting Material:

25 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

4.3.2.2 Initialization

4.3.2.2.1 [BSW01021] CAN Interface Module Power-On Initialization

CAS Initiator:
06.07.2004 Date:
The CAN Interface shall implement an interface for initialization. Short Description:
New Type:
Medium Importance:
The CAN Interface shall implement an interface for initialization.
This service shall initialize all module global variables and call the
initialization function of the underlying CAN Driver

Description:

Basic functionality. Rationale:
A CAN Interface has static variables that need to be initialized, before the
CAN Interface can be used.

Use Case:

-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.3.2.2.2 [BSW01022] Dynamic selection of static configuration sets

CAS Initiator:
06.07.2004 Date:
The CAN Interface shall support the selection of configuration sets. Short Description:
New Type:
Medium Importance:
The CAN Interface shall support the selection of one configuration set out
of a list of different static configuration sets. This shall be done by a
parameter passed via the initialization interface.
This is typically done once during startup

Description:

Support of different configurations during runtime Rationale:
Another module (independently from CanIf) checks the startup conditions
e.g. depending on the mounting position in the car, selects the appropriate
configuration set. This is then passed to the CanIf

Use Case:

-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.3.2.2.3 [BSW01023] Power-on initialization Sequence

CAS Initiator:
06.07.2004 Date:
CAN Interface initialization sequence Short Description:
New Type:
Medium Importance:

Description: The CAN Interface shall be initialized in the following sequence:
1. Initialize global variables
2. Reset flags
3. Call of CAN Driver initialization routine

This sequence has to be executed in this order, because the CAN Interface
has to be operable before CAN Driver (and thus the communication

26 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

started)
Defined initialization sequence without side effects. Rationale:
Power on reset Use Case:
-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.3.2.3 Normal Operation

4.3.2.3.1 [BSW01002] Rx-L-PDU dispatching

SV Initiator:
30.06.2004 Date:
The CAN Interface shall be responsible for the dispatching of the received
PDUs.

Short Description:

New Type:
Medium Importance:
The CAN Interface knows which upper layer is the addressee of a
successfully received L-PDU and makes a decision to which layer it
belongs. That's why the CAN Interface can redirect sequential L-PDU to its
destination

Description:

Basic functionality Rationale:
Provide access to received CAN data by different upper layers Use Case:
-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.3.2.3.2 [BSW01003] Reception indication dispatcher

SV Initiator:
30.06.2004 Date:
The appropriate higher communication stack shall be notified by the CAN
Interface about an occurred reception.

Short Description:

New Type:
Medium Importance:
The CAN driver will indicate each successfully received L-PDU. The
appropriate higher communication stack shall be notified by the CAN
Interface about an occurred reception. This routing of an indication event is
the task of the CAN Interface.
An indication is only a notification, where no data is transferred.
The information which L-PDU has been received shall be part of the
indication

Description:

Basic functionality, CAN Standards Coverage Rationale:
According the CAN Service primitive, the reception of a received CAN
frame shall be indicated to the next upper layer.

Use Case:

BSW01045 Dependencies:
-- Conflicts:
-- Supporting Material:

4.3.2.3.3 [BSW01114] Data Consistency of transmit L-PDUs

27 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

Review WP1.1.2 Initiator:
05.10.2004 Date:
Data Consistency of L-PDUs to transmit shall be guaranteed Short Description:
New Type:
Medium Importance:
During copying of transmit data it must be prevented that the corresponding
memory area is overwritten by upper layer

Description:

Data Consistency Rationale:
Upper Layer writes to a data area that is at the same read out for a CAN
transmission. This will lead to inconsistent data and therefore has to be
prevented

Use Case:

-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.3.2.3.4 [BSW01004] Software filtering for L-PDU reception

SV Initiator:
30.06.2004 Date:
Software filtering shall be implemented by the CAN Interface. Short Description:
New Type:
Medium Importance:
A L-PDU filtering based on the CAN Identifier shall be implemented by the
CAN Interface.
In case the received L-PDU did not pass the software filter, it will not further
be processed. The upper layer will not be notified

Description:

Basic functionality Rationale:
Messages that shall not be received by the ECU, but could not be filtered
by hardware filters, shall be filtered by software in the CAN Interface.

Use Case:

BSW01015, BSW01018, BSW01037, BSW01039 Dependencies:
-- Conflicts:
-- Supporting Material:

4.3.2.3.5 [BSW01005] DLC check for L-PDU reception

SV Initiator:
30.06.2004 Date:
The CAN Interface shall perform a check for correct DLC of received PDUsShort Description:
New Type:
Medium Importance:
The CAN Interface shall check the DLC of received L-PDUs that have
passed the SW filter. The DLC shall be larger or equal to the configured L-
PDU length. In case the received L-PDU did not pass the DLC check, it
shall not be further processed

Description:

Basic functionality Rationale:
Avoid data inconsistency because of incomplete L-SDU Use Case:
BSW01015 Dependencies:
-- Conflicts:
-- Supporting Material:

4.3.2.3.6 [BSW01006] Rx-L-PDU enable/disable service per CAN Controller

28 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

SV Initiator:
30.06.2004 Date:
The CAN Interface shall provide a service to enable/disable L-PDU
reception per CAN Controller.

Short Description:

New Type:
Medium Importance:
The API of the CAN Interface shall provide a service to enable/disable the
reception of all incoming L-PDUs belonging to one CAN Controller, that
normally would cause a receive indication (and data copy).
In case the received L-PDU is disabled, it will not further be processed. The
upper layer will not be notified.
This service is directly tunneled to the appropriate CAN driver

Description:

Basic functionality Rationale:
The COM Manager must be capable to suppress all reception event of the
corresponding CAN network
It is the complementary functionality to switching on/off the transmission
path.

Use Case:

BSW01013 Dependencies:
-- Conflicts:
-- Supporting Material:

4.3.2.3.7 [BSW01007] Tx-L-PDU dispatching

SV Initiator:
30.06.2004 Date:
The CAN Interface shall dispatch the transmission request by an upper
layer module to the desired CAN controller.

Short Description:

New Type:
Medium Importance:
In case the CAN Hardware Unit consists of more than one CAN controller
the CAN Interface shall dispatch the transmission request by an upper
layer module to the desired CAN controller

Description:

Basic functionality Rationale:
More than one on-chip CAN Controller on one ECU. Use Case:
-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.3.2.3.8 [BSW01008] Transmission request service

SV Initiator:
30.06.2004 Date:
The CAN Interface shall provide a transmission request service Short Description:
New Type:
Medium Importance:
The CAN Interface API shall provide a transmission request service.
The L-PDU is either forwarded to the CAN Driver or stored in the TX Buffer

Description:

Basic functionality, CAN Standards Coverage Rationale:
According the CAN Service primitive, a service for transmission shall be
provided.

Use Case:

BSW01011, BSW01020 Dependencies:
Conflicts: --

29 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

-- Supporting Material:

4.3.2.3.9 [BSW01009] Transmission confirmation service

SV Initiator:
30.06.2004 Date:
The CAN Interface shall provide a transmission confirmation dispatcher Short Description:
New Type:
Medium Importance:
The CAN Interface has to notify the appropriate upper layer modules about
successful transmission. Therefore the CAN Interface has to dispatch the
transmit confirmation after confirmation of the CAN driver.
It shall be statically configurable per PDU if the confirmation shall be
forwarded to upper layer or not

Description:

Basic functionality, CAN Standards Coverage Rationale:
According the CAN Service primitive, the transmission of a CAN frame
shall be confirmed.

Use Case:

BSW01051 Dependencies:
-- Conflicts:
-- Supporting Material:

4.3.2.3.10 [BSW01011] Tx buffering

SV Initiator:
30.06.2004 Date:
The CAN Interface shall provide a transmit buffer Short Description:
New Type:
Medium Importance:
The CAN Interface shall provide exactly one buffer for each transmit L-
PDU.
L-PDUs are stored only,

 if the CAN driver rejected the preceded transmit request because
of not available hardware resources

 in case that a pending transmit request was cancelled in the CAN
Driver

During Tx confirmation the L-PDU with the highest priority will be forwarded
to the CAN driver. The priority is defined by the CAN Identifier that belongs
to the transmit L-PDU. Only the newest instance of an L-PDU is stored in
an own buffer and older ones are overwritten
It shall be Pre-Compile-Time configurable whether the CanIf provides
transmit buffers or not

Description:

Basic functionality Rationale:
A message might not be sent out immediately because messages with
higher priority are pending.
Buffering of one instance per PDU is needed to ensure minimal delay times
per L-PDU.

Use Case:

BSW01020 Dependencies:
-- Conflicts:
-- Supporting Material:

4.3.2.3.11 [BSW01013] Tx-L-PDU enable/disable service per CAN Controller

Initiator: SV
30 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

30.06.2004 Date:
The CAN Interface shall provide a Tx-L-PDU enable/disable service per
CAN Controller.

Short Description:

New Type:
Medium Importance:
NMs require an additional software service to lock and unlock the
transmission of outgoing L-PDUs belonging to one CAN Controller. This
functionality has to be placed in the CAN Interface. Decision by WP1.1.2.

Description:

Basic functionality Rationale:
-- Use Case:
BSW01006 Dependencies:
-- Conflicts:
-- Supporting Material:

4.3.2.3.12 [BSW01027] CAN Controller Mode Select service

CAS Initiator:
06.07.2004 Date:
The CAN Interface shall provide a service to change the CAN Controller
mode.

Short Description:

New Type:
Medium Importance:
The CAN Interface shall provide a service to change the mode of the
specified CAN controller. This service is typically called by the NM with
respect on view of a physical channel. Restriction: a physical channel is
only represented by one CAN controller.
The following modes shall be supported:

 UNINIT
 STARTED
 STOPPED
 BUSOFF (not reachable by software)
 SLEEP

All necessary initializations for the respective mode transition is done inside
the CAN Driver. Possible state transitions are described in the
corresponding CAN Driver SWS

Description:

Basic functionality Rationale:
This service represents the interface for the CAN Driver Mode Select
service.

Use Case:

BSW01053 Dependencies:
-- Conflicts:
-- Supporting Material:

4.3.2.3.13 [BSW01028] CAN Controller State Service

CAS Initiator:
06.07.2004 Date:
The CAN Interface shall provide a service to query the CAN controller
state.

Short Description:

New Type:
Medium Importance:

Description: The CAN Interface shall provide a service to query the CAN controller
state. Please refer to the CAN Interface SWS document for details of the

31 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

possible states.
Hint: With this service the internal state of CAN Interface is polled. The
actual hardware state may differ in some situations for a certain time
Basic functionality Rationale:
May be used if CAN Controller doesn't provide interrupt service. Use Case:
-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.3.2.3.14 [BSW01032] Wake-up Notification

CAS Initiator:
06.07.2004 Date:
The CAN Interface shall report a wake-up notification of the CAN Driver. Short Description:
New Type:
Medium Importance:
When the CAN Interface detects a transition to active state (by CAN Driver
notification) a notification call-back function shall be called

Description:

Basic functionality Rationale:
-- Use Case:
BSW01054 Dependencies:
-- Conflicts:
-- Supporting Material:

4.3.2.3.15 [BSW01061] Dynamic TX Handles

SV Initiator:
20.07.2004 Date:
The CAN Interface shall provide dynamic TX Handles. Short Description:
New Type:
Medium Importance:
The CAN Interface shall provide dynamic TX Handles which can be
allocated by the upper layers. It shall be possible to change the ID and DLC
of a Dynamic TX Handle by the upper layers.
It shall be Pre-Compile-Time configured whether to use this feature or not

Description:

Communication with a blank or invalid L-PDU ID table Rationale:
Dynamically calculated TX IDs. Only ranges of IDs are allowed that are
known in the network. Thus there is no impact of the receiving node (no
dynamic RX Handles required). Typically used by TP, where the target
address is coded within the CAN Identifier. The target address can't be
statically defined

Use Case:

-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.3.2.3.16 [BSW01130] Receive Status Interface of CAN Interface

SV Initiator:
04.08.2005 Date:
Polling of notification state message based of CAN Interface Short Description:

Type: New

32 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

High Importance:
The CAN Interface shall additionally provide an Interface that the
notification state of messages can be polled by upper layers

Description:

Flexible integration
Avoid strong coupling and dependencies
Deterministic behavior of upper layers for time triggered behavior

Rationale:

The completion of a CAN transmit request command can be signaled not
only by a callback function, now also by a status information, which is
accessible via the module interface.
A fault occurred during the CAN transmit request (bus is blocked, CAN
controller is defective) can be signalized via an error hook.

Use Case:

[BSW 157] Notification mechanisms of modules of Microcontroller
Abstraction Layer

Dependencies:

-- Conflicts:
-- Supporting Material:

4.3.2.3.17 [BSW01131] Mixed mode of notification and polling mechanism

SV Initiator:
4.8.2005 Date:
The CAN Interface module shall provide the possibility to have polling and
callback notification mechanism in parallel.

Short Description:

New Type:
High Importance:
Beside callback notification mechanisms at the same time a "Read
Message Data" and "Read Message Status" API shall be able to be used.

Description:

It shall be possible, that upper layers can adapt the access to new data and
status of received CAN messages according to their needs and they are
not dependent to the network traffic.

Different CAN Interface clients have different needs for latencies
(notification mechanism provide a small latency time, a polling mechanism
provides a big latency time). Thus it shall be possible, to differentiate the
read data and notification mechanisms between the different CAN
message to be received.

Rationale:

Gateway / CCP / Network Layer <=> Intersystem communication. Time
triggered complex device drivers, which have strong restrictions to
guarantee fixed reaction times and which shall ensure predictable behavior.

Use Case:

[BSW 157] Notification mechanisms of modules of Microcontroller
Abstraction Layer

Dependencies:

-- Conflicts:
-- Supporting Material:

4.3.2.3.18 [BSW01136] Notification of first received CAN message

VW / IAV Initiator:
07.11.2005 Date:
Notification of first received and valid CAN message Short Description:
New Type:
High Importance:
The CAN Interface module shall provide the possibility to notify the upper
layer in case of the reception of the first valid CAN message after sleep
mode

Description:

Rationale: Reduce power consumption
33 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

An ECU was woken up by a bus event. If within a certain time no valid CAN
message is received, the EcuM assumes an erroneous wakeup e.g.
caused by a spike on the CAN bus lines and afterwards triggers the ECU to
go to sleep again

Use Case:

BSW09097 of ECU State Manager SRS Dependencies:
-- Conflicts:
-- Supporting Material:

4.3.2.3.19 [BSW01129] Receive Data Interface for CAN Interface

SV Initiator:
4.8.2005 Date:
The CAN Interface module shall provide a procedural interface to read out
data of single CAN messages by upper layers (Polling mechanism)

Short Description:

New Type:
High Importance:
After getting information about new received data (by call get status
interface BSW157) the upper layer must be able to read out data. Thus the
CAN Interface shall provide a corresponding API ('ReadMessageData()') to
read out data of received CAN messages.

The described function shall be Pre-Compile-Time selectable

Description:

Flexibility (The layer above should have the possibility to decide when and
if data should be transferred /(data flow is controlled by upper layer
Avoid strong coupling and dependencies (see Rationale of BSW 157)
There are applications with deterministic behavior inside time triggered
software systems. Deterministic behavior can only be ensured if these
applications aren't interrupted by bus events

Rationale:

The notification of the completion of a CAN message reception event can
be used to read out the data at point of time the upper layers needs it.
Using the API the data are accessed either from the CAN Hardware buffer
or from the shadow buffer of the CAN driver. This intermediate buffer
needed e.g. data normalization for the 'GetMessageData()' API shall be
configurable for each CAN Rx Identifier.

Use Case:

[BSW 157] Notification mechanisms of modules of Microcontroller
Abstraction Layer [approved]
This requirement is equal to reopen the requirement BSW01026

Dependencies:

-- Conflicts:
-- Supporting Material:

4.3.2.3.20 [BSW01140] Support of Standard and Extended Identifiers

VW / IAV Initiator:
17.10.2006 Date:
The CAN Interface shall support both Standard (11bit) and Extended
(29bit) Identifiers

Short Description:

New Type:
High Importance:
The CAN Interface shall support Standard and Extended Identifiers. It shall
be configurable per network whether Standard or Extended Identifiers are
supported

Description:

Standard CAN 2.0b functionality Rationale:
 Use Case:

Dependencies: BSW01141

34 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

-- Conflicts:
-- Supporting Material:

4.3.2.3.21 [BSW01141] Support of both Standard and Extended Identifiers on

one network (optional feature)

VW / IAV Initiator:
17.10.2006 Date:
The CAN Interface shall support both Standard (11bit) and Extended
(29bit) Identifiers at same time on one network

Short Description:

New Type:
High Importance:
This requirement describes an implementation variant beyond BSW01140:
The CAN Interface shall be able to support Standard and Extended
Identifiers at same time on one network (=mixed mode support).
Due to significant consequences on code efficiency and complexity, this
feature shall be optional.
In case of not purchasing this feature, BSW01140 is still valid.

Description:

-- Rationale:
Usage of cheap Basic CAN Controllers in CAN networks with both Identifier
types

Use Case:

BSW01036 Dependencies:
-- Conflicts:
-- Supporting Material:

4.3.2.4 Shutdown Operation

There is no shutdown operation necessary for the CAN Interface

4.3.2.5 Fault Operation

4.3.2.5.1 [BSW01029] Bus-off notification

CAS Initiator:
06.07.2004 Date:
The CAN Interface shall report bus-off state of a device to an upper layer Short Description:
New Type:
Medium Importance:
When the CAN Interface detects a bus-off state (by CAN Driver state
change notification) a notification call-back function shall be called that is
implemented in CAN State Manager.

Description:

Basic functionality Rationale:
Any state transition is notified by the CAN Interface. The bus-off notification
is typically handled by the CAN State Manager.

Use Case:

BSW01055 Dependencies:
-- Conflicts:
-- Supporting Material:

4.4 CAN State Manager

35 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

4.4.1 Non-functional requirements

4.4.1.1 [BSW01142] Control flow abstraction of CAN networks

All Initiator:
24.07.2007 Date:
The CAN State Manager shall offer a network abstract API to upper layer Short Description:
New Type:
Medium Importance:
The interface of CAN State Manager to the upper layer (ComM) shall be a
network abstract interface.
The CAN State Manager shall handle the states of peripherals assigned to
a network. It shall perform following actions to control the states of the
peripherals CAN controller(s) and CAN Transceiver(s):

 Init
 Start
 Stop
 WakeUp
 Sleep
 BusOff Recovery

Description:

Abstraction between Com Manager and networks Rationale:
The bus state manager controls the states of the network specific
peripherals of each network.

Use Case:

-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.4.1.2 [BSW01014] Network configuration abstraction

SV Initiator:
30.06.2004 Date:
The CAN State Manager shall offer a network configuration independent
interface for upper layers

Short Description:

New Type:
High Importance:
The interface of the CAN State Manager to upper layers shall be
independent from the network configuration.

Description:

Layer Concept. Information hiding. Rationale:
Encapsulation of hardware dependencies within CAN Driver and Interface.
Modules accessing the CAN State Manager don't need to be hardware
specific

Use Case:

-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.4.2 Functional Requirements

4.4.2.1 Configuration

4.4.2.1.1 [BSW01143] BusOff recovery time

36 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

All Initiator:
24.07.2007 Date:
The CAN State Manager shall support a configurable BusOff recovery time.Short Description:
New Type:
Medium Importance:
The CAN State Manager shall control the BusOff recovery algorithm. The
time between the CAN Controller detects a BusOff event and the restart of
the communication shall configurable.

Description:

Basic functionality Rationale:
Delay of communication after BusOff detection to overcome temporay bus
disturbance.

Use Case:

-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.4.2.2 Initialization

4.4.2.2.1 [BSW01144] Power-On Initialization

All Initiator:
24.07.2007 Date:
The CAN State Manager shall implement an interface for initialization Short Description:
New Type:
High Importance:
The CAN State Manager shall provide an interface to initialize the
communication mode at power-on. The communication mode for
initialisation shall be configurable. It shall be possible to start up with full
communication mode, with silent communication mode or with no
communication mode.

Description:

Basic functionality Rationale:
Different kinds of communication behaviours of ECUs after power-on (listen
only until application needs full communication capability or immediate full
communication capability).

Use Case:

-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.4.2.3 Normal Operation

4.4.2.3.1 [BSW01145] Management of CAN devices

All Initiator:
24.07.2007 Date:
The CAN State Manager shall control the assigned CAN Devices Short Description:
New Type:
High Importance:
The CAN State Manager shall start and stop the CAN Devices and shall
prepare them for sleep.

Description:

Complexity of CAN Interface is reduced Rationale:
Split of data and control flow Use Case:
-- Dependencies:

Conflicts: --

37 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

-- Supporting Material:

4.4.2.4 Shutdown Operation

There is no shutdown operation necessary for the CAN State Manager

4.4.2.5 Fault Operation

4.4.2.5.1 [BSW01146] Bus-off recovery and error handling

All Initiator:
24.07.2007 Date:
The CAN State Manager shall contain a CAN BusOff recovery algorithm for
each used CAN Controller

Short Description:

New Type:
High Importance:
The CAN State Manager shall control the CAN BusOff recovery by a
algorithm. It shall report the production error “CAN BusOff” to the
Diagnostic Event Manager. It shall report a specific "CAN BusOff"-
production error for each configured CAN network, if recovery is not
possible within a configurable time.

Description:

Network controller specific error and bus state management Rationale:
See Rationale Use Case:
-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.5 Transport Layer CAN

This chapter describes the requirements for the CAN Transport Layer [CanTp].

The AUTOSAR CAN Transport Layer generally bases on the ISO 15765-2 and ISO
15765-4 specifications.

4.5.1 Non-functional requirements

4.5.1.1 [BSW01065] Usage of ISO 15765-2 and ISO 15765-4 specifications

All Initiator:
02.08.2004 Date:
The AUTOSAR CAN Transport Layer shall be based on ISO 15765-2 and
15765-4 specifications.

Short Description:

New Type:
High Importance:

Description: If no requirement is explicitly added or excluded, the implementation of the
AUTOSAR CAN Transport Layer shall follow the ISO 15765-2 specification
for OEM enhanced (diagnostics or applicative) communication and ISO

38 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

15765-4 for on-board diagnostics (OBD) communication
Reuse of existing standards for AUTOSAR BSW.
The ISO 15765-2 and 15765-4 specifications are the most used CAN
Transport Layer in automotive area.

Rationale:

Transport protocol on CAN according to ISO 15765-2:
- Segmentation of data in transmit direction
- Collection of data in receive direction
- Control of data flow
- Detection of errors (message loss/doubling/sequence)

The network layer described in ISO 15765-4 specification is in accordance
with ISO 15765-2 with some restrictions/additions.
Refer to the AUTOSAR CAN Transport Protocol software specification for
the appropriate version

Use Case:

-- Dependencies:
-- Conflicts:
ISO 15765-2 and ISO 15765-4 specifications Supporting Material:

4.5.1.2 [BSW01111] CAN Transport Layer Interfaces

WP1.1.2 Initiator:
10.09.2004 Date:
The CAN Transport Layer shall be the interface layer between PDU Router
and CAN Interface for CAN messages needing transport protocol
functionalities.

Short Description:

New Type:
High Importance:
The CAN Transport Layer is used by the PDU Router to transmit and
receive CAN messages coming from the Diagnostic Communication
Manager.
Because the PDU Router communicates through both CAN Transport and
CAN Interface, their two interfaces shall be coherent (i.e. if they provide a
similar primitive, for example Transmit, parameters of those primitives must
be as similar as possible).
To process transmission the CAN Transport module uses services of the
CAN Interface

Description:

Interfaces and interaction Rationale:
By using coherent API (homogeneity of service parameters and so on) the
readability and maintainability of source code are improved.

Use Case:

BSW01118 Dependencies:
-- Conflicts:
AUTOSAR_WP1.1.2_SoftwareArchitecture Supporting Material:

4.5.1.3 [BSW01112] Independent interface

PSA Initiator:
10.09.2004 Date:
The CAN Transport Layer interface shall be independent of its internal
communication configuration.

Short Description:

New Type:
High Importance:

Description: The CAN Transport Layer shall offer the PDU Router an interface that is
completely independent to its internal communication configuration (N_TA
value, extended or normal addressing mode, functional or physical

39 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

addressing, etc.) and implementation.
The interface shall just deal with PDU identifiers and data units (N-SDU)
properties
Layered Software Architecture. Information hiding. Common interface for all
applications

Rationale:

-- Use Case:
[BSW01014] Dependencies:
-- Conflicts:
-- Supporting Material:

4.5.1.4 [BSW01120] Multiple CAN Transport Layer instances

WP1.1.2 Initiator:
02.12.2004 Date:
Multiple CAN Transport Layer instances. Short Description:
New Type:
High Importance:
It shall be possible to configure the number of instances of the CAN
Transport Layer per ECU

Description:

The number of CAN Transport instances is variable and independent from
physical CAN Channels (0 to n CanTp instances might be mapped to one
CAN Channel).

Rationale:

See rationale. Use Case:
-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.5.2 Functional Requirements

4.5.2.1 Configuration

4.5.2.1.1 [BSW01066] Concurrent connection configuration

All Initiator:
02.08.2004 Date:
Concurrent connection configuration. Short Description:
New Type:
Medium Importance:
The AUTOSAR CAN Transport Layer shall be statically configurable to
support either single or multiple connections in an optimizing way. This
configuration is done Pre-Compile-Time

Description:

When an ECU enables gateway capabilities, it must handle different
message transmissions concurrently across distinct sub-networks. So the
AUTOSAR Transport Layer allows concurrent connections.
But, most ECU's will only need single connection for diagnostic, which has
to be implemented in an optimizing way.

Rationale:

The use case is to provide both single and multiple connections in an
optimizing way to save runtime and code size.

Use Case:

-- Dependencies:
Conflicts: --

40 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

-- Supporting Material:

4.5.2.1.2 [BSW01068] Unique identifier of N-SDU

PSA Initiator:
11.08.2004 Date:
The CAN Transport Layer shall identify each N-SDU with a unique
identifier.

Short Description:

New Type:
High Importance:
The CAN Transport Layer identifies each N-SDU with a unique identifier.
So the upper layer can address a N-SDU without any assumption on the
addressing mode configuration of the CAN-TP. Furthermore, a symbolic
name may be assigned for each N-SDU identifier value to simplify usage of
the API

Description:

Independence of upper layer with the CAN-TP configuration. Rationale:
The PDU-Router can manipulate all N-SDUs (FlexRay, CAN and LIN)
regardless addressing mode particularity of its underlying protocols.

Use Case:

-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.5.2.1.3 [BSW01069] CAN address information and N-SDU identifier mapping

PSA Initiator:
11.08.2004 Date:
CAN address information and N-SDU identifier mapping Short Description:
New Type:
High Importance:
CAN address information and N-SDU identifier shall have a one-to-one
driven association.
In other words, each CAN address information (the CAN identifier plus, in
case of extended addressing mode, the N_TA and N_SA) is statically
associated with a unique N-SDU identifier, and vice versa.
Of course, the CAN frame and its corresponding N-SDU must have the
same direction (Rx or Tx).
One ECU shall be able to accept different N_TAs for the same CAN ID

Description:

A N-SDU identifier is used to transmit or receive only one kind of
applicative message. So a N-SDU identifier is associated with only one
CAN address information. And a CAN address information is linked to only
one N-SDU identifier.

Rationale:

Use Case: To transmit or receive an applicative message, the CAN Transport
Layer only needs the data and the N-SDU identifier.

 Partitioning of functions among multiple ECUs, therefore an ECU
can belong to different functional groups

-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.5.2.1.4 [BSW01071] Unique identifier of N-PDU

41 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

PSA Initiator:
11.08.2004 Date:
The CAN Transport Layer shall identify each N-PDU (also called L-SDU)
with a unique identifier.

Short Description:

New Type:
High Importance:
The CAN Transport Layer identifies each N-PDU with a unique identifier.
Because the CAN-TP uses the CAN Interface for transmission and
reception of N-PDU, these handles shall be unique in both layers. So some
common configuration check is needed.
Furthermore, a symbolic name may be assigned for each identifier value to
simplify the implementation

Description:

Each CAN identifier correspond to only one N-PDU identifier of the CAN
Transport Layer. So a N-PDU may be completely identified by an identifier.

Rationale:

For optimization reasons, the CAN N-PDU identifier may be different to the
CAN identifier.

Use Case:

-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.5.2.1.5 [BSW01073] Fixed N-PDU data length

Valeo Initiator:
24.08.2004 Date:
The CAN Transport Layer shall be statically configured to pad unused
bytes of PDU.

Short Description:

New Type:
High Importance:
The CAN Transport Layer shall be statically configurable per connection
whether to pad unused bytes or not. This affects the last Consecutive
Frame (CF), Single Frames (SF) and Flow Control (FC). In case of padding
they will always contain 8 bytes (DLC = 8)

Description:

Fulfill requirements of legislated OBD communication (ISO 15765-4) and let
this feature optional for OEM enhanced diagnostics and applicative
communication.

Rationale:

For a full compatibility with old ECUs. Use Case:
[BSW01005] [BSW01086] Dependencies:
-- Conflicts:
-- Supporting Material:

4.5.2.1.6 [BSW01074] Transport connection properties

PSA Initiator:
11.08.2004 Date:
The Transport connection properties shall be statically configured. Short Description:
New Type:
High Importance:

Description: The CAN Transport connection configuration shall statically assign
properties of each N-SDU:

- Its unique identifier
- Communication direction: sender or receiver
- Minimum length of the N-SDU
- Associated N-PDU identifier

42 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

- Physical (1 to 1 communication) or functional (1 to n
communication) addressing

- Addressing modes: Normal or extended
- In case of an extended addressing mode connection: N_TA and

N_SA values
At runtime the CAN TP module must have all the needed information to
manage a transport connection.

Rationale:

This information can be used at generation time to check the network
configuration with a TP point of view.

Use Case:

-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.5.2.1.7 [BSW01117] Only half-duplex communication is supported

COM Task Force Initiator:
02.12.2004 Date:
Only half-duplex communication is supported Short Description:
New Type:
High Importance:
The CAN Transport Layer shall only support half-duplex communication for
each connection.
The CAN Transport Layer shall be able to manage a reception and a
transmission at same time on different connections but not on one
connection

Description:

If both half and full-duplex is possible in one implementation, the need for
resources and runtime will be increased significantly.

Rationale:

Reduce resource and price of ECU. Use Case:
-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.5.2.2 Initialization

4.5.2.2.1 [BSW01075] CAN Transport Layer Initialization

PSA Initiator:
11.08.2004 Date:
The CAN Transport Layer shall implement an interface for initialization. Short Description:
New Type:
Medium Importance:
The CAN Transport Layer implements an interface for initialization.
This service shall initialize all global variables of the module and set all
transport protocol connections in a default state (Idle)

Description:

Basic functionality. Rationale:
Set Transport Layer software to a defined state Use Case:
-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.5.2.2.2 [BSW01076] CAN Transport Layer Availability

43 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

PSA Initiator:
11.08.2004 Date:
The CAN Transport Layer services shall not be operational before
initializing the module.

Short Description:

New Type:
Medium Importance:
Before using the transmission capabilities of the CAN Transport Layer, it
shall be initialized. If it is not the case, the services have to return an error
and a development error shall be reported

Description:

Basic functionality. Rationale:
To avoid usage of the module without a complete initialization this could
cause the transmission of corrupted frames.

Use Case:

-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.5.2.3 Normal Operation

4.5.2.3.1 [BSW01078] Support a subset of ISO 15765-2 addressing modes

All Initiator:
02.08.2004 Date:
The AUTOSAR CAN Transport Layer shall only support a subset of ISO
15765-2 addressing mode.

Short Description:

New Type:
High Importance:
The AUTOSAR CAN Transport Layer supports only the Normal and
Extended addressing modes.

Hint: The ISO specification 15765-4(2004-11-09) which describes the
legislated on-board diagnostics (OBD) requires the usage of only the
normal addressing format in the case of 11 bit CAN identifiers and only the
normal fixed addressing format in the case of 29 bit CAN identifiers.
So this requirement implies that an AUTOSAR ECU cannot provide 29 bit
CAN identifiers legislated-OBD communication

Description:

Define an addressing mode subset to avoid ambiguous specifications and
simplify the CAN transport layer implementation.

Rationale:

These two addressing modes are the most used in automotive area. Use Case:
-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.5.2.3.2 [BSW01079] Compliance with CAN Interface notifications

All Initiator:
02.08.2004 Date:
The CAN Transport Layer shall be compliant with the CAN Interface
module notifications.

Short Description:

New Type:
High Importance:

Description: The CAN Transport Layer shall only implement the CAN Interface
notification services concerning TP messages:

44 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

- Reception notification
- Tx confirmation

Hint: BusOff management is handled by the CAN State Manager
In AUTOSAR architecture, the CAN Transport Layer is placed between the
PDU Router and the CAN Interface.

Rationale:

The CAN Transport Layer has to support the notification services called by
the CAN Interface.

Use Case:

Reception notification [BSW01003]
Tx confirmation [BSW01009]

Dependencies:

-- Conflicts:
-- Supporting Material:

4.5.2.3.3 [BSW01081] Connection specific timeout values

All Initiator:
24.08.2004 Date:
The value of CAN Transport protocol timeouts shall be statically
configurable for each connection.

Short Description:

New Type:
High Importance:
All the defined timeout of the ISO 15765-2 specification are statically
configurable for each connection
The configuration parameters shall be allowed to be of types Pre-Compile-
Time, Link-Time or Post-Build-Time

Description:

To adapt the timeout value to the ECU application domain. Rationale:
The communication constraints may be totally different between a
diagnostics connection and an applicative one (e.g. display data).

Use Case:

-- Dependencies:
-- Conflicts:
ISO 15765-2 specification Supporting Material:

4.5.2.3.4 [BSW01082] Error handling

All Initiator:
02.08.2004 Date:
Error handling Short Description:
New Type:
High Importance:
If an unexpected N-PDU is received by the CAN Transport Layer, it shall
respect the behavior defined in chapter “unexpected arrival of network
protocol data unit” of the ISO-15765-2 specification. For others errors, the
CAN-TP just aborts the segmentation session

Description:

To define the layer behavior on error. Rationale:
What happens when receiving the third CF frame instead of the second
one?

Use Case:

-- Dependencies:
-- Conflicts:
ISO 15765-2 specification Supporting Material:

4.5.2.3.5 [BSW01086] Data padding value of unused bytes

45 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

Valeo Initiator:
24.08.2004 Date:
If the CAN Transport Layer is statically configured to have CAN frame with
fixed data length (DLC = 8), all unused bytes do not need to have a specific
value.

Short Description:

New Type:
High Importance:
When the CAN Transport Layer is configured to have fixed data length, the
PDUs are sent without initializing the unused bytes

Description:

Setting unused data in the last frame to a specific value will result in
increased runtime and resources needs within the µC.

Rationale:

The ISO 15765-4 recommendation for OBD communication explicitly says
that CAN DLC contained in every diagnostic CAN frame shall always be set
to eight and that unused data bytes of a CAN frame are undefined.

Use Case:

[BSW01073] Dependencies:
-- Conflicts:
ISO 15765-4 §7 Supporting Material:

4.5.2.3.6 [BSW01116] Usage of different addressing modes in parallel

PSA Initiator:
07.10.2004 Date:
The AUTOSAR CAN Transport Layer shall be able to manage both normal
and extended modes in parallel.

Short Description:

New Type:
Medium Importance:
When the CAN Transport Layer is configured to support more than one
connection, it should also be possible to configure if it has to deal with both
normal and extended addressing mode in parallel or only one of the normal
or extended addressing mode

Description:

Do not constrain communication capabilities when concurrent connection is
allowed. But let it as an OEM specific decision.

Rationale:

A CAN sub-network could mix connection with either normal or extended
addressing mode e.g. usage of OBD (normal addressing) and UDS
(extended addressing) in parallel

Use Case:

BSW01120 Dependencies:
-- Conflicts:
-- Supporting Material:

4.6 CAN Bus Transceiver Driver

4.6.1 Functional Overview

The CAN bus transceiver driver is responsible to handle the CAN transceivers on an
ECU according to the expected state of the bus specific NM in relation to the current
state of the whole ECU.

The transceiver is a hardware device, which mainly transforms the logical on/off
signal values of the µC ports to the bus compliant electrical levels, currents and
timings. Within an automotive environment there are mainly three different CAN
physics used. These physics are ISO11898 for high-speed CAN (up to 1Mbd),
46 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

ISO11519 for low-speed CAN (up to 125kBd). Both are regarded in AUTOSAR,
whereas SAE J2411 for single-wire CAN is not.

In addition, the transceivers are often able to detect electrical malfunctions like wiring
issues, ground offsets or transmission of too long dominant signals. Depending on
the interface they flag the detected error summarized by a single port pin or very
detailed via SPI.

Some transceivers also support power supply control and wakeup via the bus. A lot
of different wakeup/sleep and power supply concepts are available on the market
with focus to best-cost optimized solution for a given task.
Latest developments are so called SystemBasisChips (SBC) where not only the CAN
and/or LIN transceivers but also power-supply control and advanced watchdogs are
implemented in one housing and are controlled via one interface (typically an SPI).

A typical CAN transceiver is the TJA1054 for a low-speed CAN bus. The same state
transition model is also used in TJA1041 (high-speed CAN with support for wakeup
via CAN) and could be transferred also to a lot of other products on the market.

Transceiver Wakeup Reason
The transceiver driver is able to store the local view on who has requested the
wakeup: bus or software.
- Bus: The bus has caused the wakeup.
- Internally: The wakeup has been caused by a software request to the driver.
- Sleep: The transceiver is in operation mode sleep and no wakeup has been

occurred.

4.6.2 Remarks to the CAN Bus Transceiver Driver

CAN bus transceivers are very different in their behavior and supported features. The
range starts with very simple CAN transceivers, which are “always on”, includes
transceivers with support for advanced limp home handling and error detection and
ends with so called system basis chips (SBC) which contain internally multiple CAN
bus transceivers, watchdog, voltage regulators and more.
The size of transceiver data sheets is from few pages to more than 80 pages and the
additional application notes for the devices are nearly countless.

The target of this document is to specify interfaces and behavior, which is applicable
to most current and future CAN bus transceivers on the market for nearly all use
cases. If it could be reached that at least the “user” of the bus transceiver
functionality, typically the AUTOSAR NM and the AUTOSAR Communication
Manager, are bus independent and therefore reusable, will be great.

It will not be possible to cover all possible combinations of bus transceivers with all
conceivable power concepts within one AUTOSAR implementation.

47 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

4.6.2.1 Explicitly uncovered CAN Bus Transceiver functionality

Some CAN bus transceivers offer additional functionality to improve e.g. ECU self
test or enhanced error detection capability for diagnostics.

ECU self test and enhanced error detection are not defined within AUTOSAR and
requiring such functionality in general will lock out most currently used (and cheap)
transceiver devices. Therefore features like “ground shift detection”, “selective
wakeup”, “slope control” and others are not supported within this requirement. A
general and “open” API like IOControl() is not applicable (and accepted) within
AUTOSAR due to portability and reuse.

4.6.2.2 System Basis Chip and CAN Bus Transceiver Driver

A system basis chip (SBC) contains beside the CAN bus transceivers additional
hardware related to power control and safety (e.g. multiple voltage regulators and a
watchdog) and even more features (e.g. persistent memory).

In the AUTOSAR concept, a separate manager/driver/handler (in AUTOSAR called:
Interface) is responsible for each identified hardware device. Therefore additional
manager/driver/handler covers the functionality inside a SBC beside the bus
transceiver driver (e.g. Watchdog Manager, non-volatile memory manager, power
control driver, …). Due to the shared communication access and the (security-
related) restrictions within this communication, independent handling of each SBC-
sub-functionality will not be possible.
This will lead to the situation that either a SBC could not be used within an
AUTOSAR compliant ECU or (the better solution) a specialized
manager/driver/handler for the SBC functionality with all APIs of each single domain
has to be used.
4.6.3 Functional Requirements

4.6.3.1 Configuration

4.6.3.1.1 [BSW01090] Configuration Data for CAN Bus Transceiver

Vector Initiator:
30.08.2004 Date:
The bus transceiver driver package shall offer configuration parameters
that are needed to configure the driver for a given bus and the supported
notifications.

Short Description:

New Type:
Medium Importance:

Description: Typical parameters are:
- Max. supported baudrate of each bus to enable the detection of
configuration errors
- Wakeup by bus
- Transceiver control via SPI or port pin
- Call context of the notification functions (ISR, polling) to enable detection
of necessary data consistency mechanisms during configuration time
Please refer to the corresponding software specification for a more detailed
view

48 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

Basic functionality for transceiver configuration. Rationale:
-- Use Case:
ECU configuration description Dependencies:
-- Conflicts:
-- Supporting Material:

4.6.3.1.2 [BSW01091] Support for more than one CAN Bus Transceiver

Vector Initiator:
30.08.2004 Date:
The CAN bus transceiver driver shall support the configuration for more
than one bus

Short Description:

New Type:
High Importance:
The driver shall be able to support multiple CAN busses on the ECU.
It must be possible to configure the used transceiver type independently for
each bus. This includes also mixed systems with e.g. two CANs using
different bus physics.
Only Pre-Compile-Time configuration shall be possible

Transceiver handling depends strongly on the used device. Therefore each
transceiver may need its own implementation within the driver and only
known and supported devices could be selected.
A general solution for the transceiver driver for all use cases might not be
possible.

By default each CAN controller is attached to an own bus and needs
therefore an own bus transceiver.

In some cases more than one CAN controller is attached to the same bus
to increase the number of mailboxes. Two alternatives appear:

a) These CAN controllers share the same bus transceiver
b) Each CAN controller has an own bus transceiver

Case a) is covered within this spec and shall be supported by this
AUTOSAR driver.
Case b) is a very rarely used setup and is therefore not covered by this
driver

Description:

Basic functionality for transceiver configuration Rationale:
Multi bus systems, e.g. CAN-CAN gateways Use Case:
ECU resource template Dependencies:
-- Conflicts:
-- Supporting Material:

4.6.3.1.3 Configuration of bus operation mode after initialization for each CAN

Bus Transceiver

Vector Initiator:
30.08.2004 Date:
The bus transceiver driver shall support the independent configuration of
the bus operation mode for each supported bus.

Short Description:

New Type:
High Importance:

Description: Due to the different startup requirements on a multiple CAN bus ECU, the
CAN transceiver driver shall support the independent pre-selection of the

49 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

bus operation mode to which each transceiver is set during the driver
initialization
Basic functionality for transceiver configuration Rationale:
Multi bus systems Use Case:
See needs described for CAN interface, ECU state manager, ComManager
and NM.

Dependencies:

-- Conflicts:
-- Supporting Material:

4.6.3.1.4 [BSW01095] Configuration “Notification for Wakeup by bus”

Vector Initiator:
30.08.2004 Date:
The bus transceiver driver shall support the compile time configuration of
one notification to an upper layer for change notification for “wakeup by
bus” events.

Short Description:

New Type:
High Importance:
One wakeup by bus event notification shall be supported to one higher
layer. The upper layer shall be configurable during compile time.

If a transceiver does not support “wakeup by bus”, this notification is never
called for this bus

Description:

Efficient coupling between bus transceiver driver and upper layers. Rationale:
See BSW01106 Use Case:
Upper layer, i.e. one of (bus specific) NM or ECU state manager.
BSW01106

Dependencies:

-- Conflicts:
-- Supporting Material:

4.6.3.2 Initialization

4.6.3.2.1 [BSW01096] API to initialize the CAN Bus Transceiver Driver

Vector Initiator:
30.08.2004 Date:
The bus transceiver driver shall provide an API to initialize the driver
internally and set then all attached transceivers in their pre-selected
operation modes.

Short Description:

New Type:
High Importance:
The driver must be initialized during the power-up/reset sequence of the
ECU.
Depending on the used drivers to control the transceivers (e.g. DIO, SPI),
they must be already available and working when the transceiver driver is
initialized.
The wakeup reason has to be detected and stored during the execution of
the driver initialization, too

Description:

Set bus transceivers and driver in a pre-defined and known state Rationale:
Basic functionality for transceiver control. Use Case:

Dependencies: SPI and DIO driver initialization.
[BSW01103]
The bus transceiver driver setup information must provide the necessary

50 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

configuration data to enable the generation tool to select the appropriate
control mechanism (e.g. SPI, I/O ports) and to guarantee the correct
allocation of the necessary communication resources and initialization
sequences.
-- Conflicts:
-- Supporting Material:

4.6.3.3 Normal Operation

4.6.3.3.1 [BSW01097] CAN Bus Transceiver driver API shall be synchronous

Vector Initiator:
30.08.2004 Date:
The bus transceiver driver API shall be synchronous. Short Description:
New Type:
High Importance:
The bus transceiver driver API shall execute the requested action
immediately and shall deliver the result state immediately to the caller.

This will ease up the implementation of wakeup and sleep concepts within
the AUTOSAR BSW stack

Description:

Better usage of transceiver functionality in the complex AUTOSAR BSW
environment.

Rationale:

Atomic transition to other operation mode; easier and better abstraction for
upper layers like the ECU state manager or ComManager.
Improved testability compared to asynchronous handling.

Use Case:

ECU state manager, NM. SPAL in case a transceiver is connected via SPI Dependencies:
-- Conflicts:
-- Supporting Material:

4.6.3.3.2 [BSW01098] API to request operation mode StandBy

Vector Initiator:
30.08.2004 Date:
The bus transceiver driver shall support an API to send the addressed
transceiver into its Standby mode.

Short Description:

New Type:
High Importance:
Many transceivers support the transition to the Sleep mode only via the
transition to Standby mode. In addition, some power concepts have the
need to set the transceiver to Standby only instead of Sleep mode.

Not all transceivers will support such a state. If this is true for a given
device, the driver shall confirm the state transition with success

Description:

Implementation of ECU low power modes with wakeup via bus and internal.Rationale:
The upper service layers agreed together with other nodes to set the bus
into the sleep mode. The transceiver shall be switched now to a state
where the wakeup via bus is supported and the power consumption is as
low as possible for the current state of the ECU.

Use Case:

[BSW01099] Dependencies:
-- Conflicts:
-- Supporting Material:

51 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

4.6.3.3.3 [BSW01099] API to request operation mode Sleep

Vector Initiator:
30.08.2004 Date:
The bus transceiver driver shall support an API to send the addressed
transceiver into its Sleep mode.

Short Description:

New Type:
High Importance:
The transition to sleep mode will be requested with this API.

Not all transceivers will support such a state. If this is true for a given
device, the drive shall confirm the state transition with success

Description:

Implementation of ECU low power modes with wakeup via bus and internal.Rationale:
The upper service layers agreed together with other nodes to set the bus
into the sleep mode. The transceiver is already in StandBy and shall be
switched to Sleep with lowest power consumption.
Please note that the state sleep of the transceiver is often similar to the
state “unpowered” of the ECU.

Use Case:

[BSW01098] Dependencies:
-- Conflicts:
-- Supporting Material:

4.6.3.3.4 [BSW01100] API to request operation mode Normal

Vector Initiator:
30.08.2004 Date:
The bus transceiver driver shall support an API to send the addressed
transceiver into its Normal mode.

Short Description:

New Type:
High Importance:
All transceivers support this state due to it’s the “working state” Description:
Communication! Rationale:
All communication must be enable to communicate. Use Case:
-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.6.3.3.5 [BSW01101] API to read out current operation mode

Vector Initiator:
30.08.2004 Date:
The bus transceiver driver shall support an API to read out the current
operation mode of the transceiver of a specified bus within the ECU.

Short Description:

New Type:
High Importance:
The current operation mode of the transceiver will be necessary for upper
layers (e.g. diagnostics). The API shall always return the current state seen
by the transceiver driver (this may be a locally stored state, too)

Description:

State access to transceiver driver Rationale:
Check for current operational mode during development and via diagnostic
command.

Use Case:

Dependencies: --
52 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

-- Conflicts:
-- Supporting Material:

4.6.3.3.6 [BSW01103] API to read out wakeup reason

Vector Initiator:
30.08.2004 Date:
The bus transceiver driver shall support an API to read out the reason of
the last wakeup of a specified bus within the ECU.

Short Description:

New Type:
High Importance:
The transceiver driver shall be able to store the local view “who has
requested the wakeup: bus or internally”.
- Bus: The bus has caused the wakeup.
- Internally: The wakeup has been caused by software
- Sleep: The transceiver is in operation mode sleep and no wakeup has

been occurred.
The wakeup reason should be “sleep” when the operation mode is not
Normal and no wakeup has been occurred.
When a wakeup has occurred, the API shall always return the first detected
wakeup reason (e.g. if a wakeup by bus occurs and than nearly at the
same time an internal wakeup, the wakeup reason is “bus”.).
After leaving the operation mode Normal, the wakeup reason shall be set to
“sleep” again

Description:

Detection of wakeup reason during development and via diagnostic
command. May also be used by the NM or ECU state manager.

Rationale:

-- Use Case:
(Bus specific) NM, diagnostics, ECU state manager Dependencies:
-- Conflicts:
-- Supporting Material:

4.6.3.3.7 [BSW01106] Wakeup by bus notification for upper layer

Vector Initiator:
30.08.2004 Date:
The bus transceiver driver shall call the appropriate callback function of
EcuM in case a wakeup by bus event is detected

Short Description:

New Type:
High Importance:
The CAN Bus Transceiver Driver gets a wake up by bus events either
through a notification of a lower layer or through polling lower layers. In
these cases bus transceiver driver will call appropriate API of EcuM to hand
over the event.
It shall be possible to support more than one bus within the ECU with this
notification.
This requirement only applies for transceivers with the appropriate wakeup
capability

Description:

Efficient coupling between bus transceiver driver and upper layers. Rationale:
Use Case: The bus transceiver detects a wakeup condition on the bus and shows this

to the µC via e.g. a port pin.
Further handling depends on current ECU state. Assumed the ECU is
halted, the change on the port may terminate the HALT statement and let
the processor continue its work. The assigned port interrupt will be
executed and this handler is called. Now, the transceiver driver will store
the wakeup reason and give the call via this notification to e.g. the NM to let

53 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

the NM decide how to handle the event.

See [BSW01095] Configuration “Notification for Wakeup by bus” for details,
too.
Upper layer, i.e. one of (bus specific) NM or ECU state manager.
BSW01095, BSW01138

Dependencies:

-- Conflicts:
-- Supporting Material:

4.6.3.3.8 [BSW01138] Wakeup by bus callback for lower layers

Valeo Initiator:
28.11.2005 Date:
The CAN Bus Transceiver Driver shall provide one callback function for
lower layer ICU Driver for wake up by bus events

Short Description:

New Type:
High Importance:
ICU driver shall call this API in case of wake up by bus events. One
parameter of this function shall refer to the CAN bus which has caused the
wakeup by bus event.

This API shall be compile time configurable and only available if the
corresponding bus transceiver has wakeup capability.
If support of wake up by bus is disabled or wake up by bus events are
polled this functions shall be removed.

Description:

Efficient coupling between lower layers and bus transceiver driver. Rationale:
Notification of wake up by bus events by lower layer. Use Case:
BSW01106 Dependencies:
-- Conflicts:
-- Supporting Material:

4.6.3.3.9 [BSW01107] Support for wakeup during sleep transition

Vector Initiator:
30.08.2004 Date:
The CAN Transceiver Driver shall support the situation where a wakeup by
bus occurs during the same time the transition to standby/sleep is in
progress

Short Description:

New Type:
High Importance:
Wakeup by bus is always asynchronous to the internal transition to sleep.
In worst case, the wakeup occurs during the transition to sleep. This
situation must be covered by the software design and explicitly tested for
each ECU.

The driver shall create a wakeup notification by bus immediately after the
API to enter the standby/sleep mode has finished.
The calling/controlling component (NM or ECU state manager) must be
capable to handle the wakeup immediately after requesting the
standby/sleep

Description:

Safe wakeup and sleep handling. Rationale:
All busses with a wakeup by bus are affected. Use Case:
-- Dependencies:
-- Conflicts:

Supporting Material: --

54 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

4.6.3.3.10 [BSW01115] Support API for enable/disable and clear wakeup events

Vector Initiator:
11.10.2004 Date:
The bus transceiver driver shall support an API to enable and disable the
wakeup notification for each bus separately.

Short Description:

New Type:
High Importance:
To enable upper layers to command the bus transceiver safe into its
standby and/or sleep state, an additional API to disable and enable the
wakeup notification is necessary.

If the notification is disabled, driver shall not perform the notification but
store the event internally until the notification is enabled again. The
notification shall then be processed immediately.
It shall be possible to clear a pending wakeup event. If no further wakeup
event occurs, no notification shall be performed after enabling the
notification again. If a further wakeup event occurs it shall be notified

Description:

Safe wakeup and sleep handling. Rationale:
All busses with a wakeup by bus are affected. Use Case:
-- Dependencies:
-- Conflicts:
-- Supporting Material:

4.6.3.4 Shutdown Operation

4.6.3.4.1 [BSW01108] Safe system startup and shutdown for CAN Bus

Transceiver Driver

Vector Initiator:
30.08.2004 Date:
The bus transceiver driver shall support the AUTOSAR ECU state manager
in a way that a safe system startup and shutdown is possible.

Short Description:

New Type:
High Importance:
In general, for startup the bus transceivers shall not be enabled until the
power supply is available and stable to prevent errors on the bus. Also the
communication hardware and driver must not be enabled until the
transceiver is configured into its normal operation mode.

For shutdown, the communication must be stopped according to the
AUTOSAR NM algorithm, the CAN/LIN drivers must be stopped and then
the transceivers may be set to standby/sleep, too. The correct sequence
depends on the used bus and the wakeup sleep concept of AUTOSAR

Description:

Safe system start up and shut down Rationale:
Systems with support for wakeup by bus. Use Case:
ECU state manager Dependencies:
-- Conflicts:

Supporting Material: See joint work group meeting WP4.2.2.1.1 and WP4.2.2.1.9 on 2005-01-

55 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

11/12 for results.

4.6.3.5 Fault Operation

4.6.3.5.1 [BSW01109] CAN Bus Transceiver Driver must check transceiver

control

Vector Initiator:
30.08.2004 Date:
The bus transceiver driver shall check the control communication to the
transceiver and the reaction of the transceiver for correctness.

Short Description:

New Type:
Medium Importance:
Depending on the supported transceiver device, the driver shall check the
correctness of the executed control communication and the operation mode
a transceiver is in.
A separation of errors according to [BSW00337] shall be done

Description:

Diagnostics and trouble shooting Rationale:
1) Detection of defect or misbehaving transceiver hardware
2) Detection of corrupted SPI communication

The check shall only be applied to errors within the transceiver or the
transceiver control communication (ports or SPI), i.e. errors caused by
malfunction of the µC, SW or a defect transceiver device.
“Errors” caused by the “outer world” (e.g. disturbed bus lines or ground
offsets) are not in the scope of this API.

Use Case:

[BSW00337], [BSW00338], [BSW00339] Dependencies:
-- Conflicts:
-- Supporting Material:

4.6.4 Non-Functional Requirements (Qualities)

4.6.4.1 Timing Requirements

4.6.4.1.1 [BSW01110 CAN Bus Transceiver driver must handle transceiver

specific timing requirements

Vector Initiator:
30.08.2004 Date:
The bus transceiver driver shall handle the transceiver specific timing
requirements internally.

Short Description:

New Type:
High Importance:

Description: The communication between the µC and the transceiver is performed via
ports or SPI or both. If ports are used, applying values in a predefined
sequence and with a given timing to the ports are used to communicate
and change the hardware operation modes. These sequences and timings
must be handled within the bus transceiver driver.

Small times like the 50µs for TJA1054 “reaction time of go-to-sleep
command” may be implemented as a wait loop inside the driver.
Disadvantages are that this time is lost for the other software and the wait
time depends on the used µC and e.g. system clock.
Large wait times (e.g. >200µs) may require an asynchronous API of the
bus transceiver driver. Disadvantage is then that the complete API and

56 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

usage will be different for such a hardware device
Correct handling of used transceiver Rationale:
E.g. toggling a port pin performs the transition from StandBy to Sleep for
the TJA1054. The port value must be kept for at least 50µs to guarantee
the transceiver has detected and handled the request in hardware.

Use Case:

-- Dependencies:
In case large timings are to be handled, a conflict with the requirement
[BSW01097] will occur. The conclusion of the review was to require the
transceiver and the driver to be able to switch the operation mode in
between a given time (e.g. 200µs). If this is not possible, the transceiver will
be marked as “not AUTOSAR compatible” and is therefore not supported
by this driver. If more experience with AUTOSAR is available, a “version 2”
may support such devices then, too.

Conflicts:

-- Supporting Material:

57 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

Requirements on CAN
 V2.3.0

R3.0 Rev 7

58 of 58 Document ID 001:AUTOSAR_SRS_CAN
- AUTOSAR confidential -

5 References

5.1 Deliverables of AUTOSAR

[Can] Specification of CAN Driver
AUTOSAR_SWS_CAN_Driver.pdf

[CanIf] Specification of CAN Interface
AUTOSAR_SWS_CAN_Interface.pdf

[CanSM] Specification of CAN State Manager
AUTOSAR_SWS_CAN_StateManager.pdf

[CanTp] Specification of CAN Transport Layer
AUTOSAR_SWS_CAN_TP.pdf

[CanTrcv] Specification of CAN Transceiver Driver
AUTOSAR_SWS_CAN_TransceiverDriver.pdf

[SrsSpal] General Requirements on SPAL
AUTOSAR_SRS_SPAL_General.pdf

[SrsGeneral] General Requirements on Basic Software Modules
AUTOSAR_SRS_General.pdf

5.2 Related standard and norms

5.2.1 ISO

ISO 15765-2(2004-10-12), Road vehicles — Diagnostics on Controller Area

Networks (CAN) — Part2: Network layer services

ISO 15765-3(2004-10-06), Road vehicles — Diagnostics on Controller Area

Networks (CAN) — Part3: Implementation of diagnostic services

ISO 15765-4(2005-01-04), Road vehicles — Diagnostics on Controller Area

Networks (CAN) — Part4: Requirements for emissions-related systems

5.3 Related Example Transceiver Data Sheets

See current data sheets for e.g. ST L9669, Freescale MC33389, Philips TJA1054
(CAN LowSpeed), TJA1041 (CAN HighSpeed)

	Scope of this document
	2 How to read this document
	2.1 Conventions used
	2.2 Requirements structure

	3 Acronyms and abbrevations
	4 Requirements Specification
	4.1 Non functional requirements for CAN Driver and Interface together
	4.1.1 [BSW01125] Data throughput read direction
	4.1.2 [BSW01126] Data throughput write direction
	4.1.3 [BSW01139] CAN Controller specific Initialization

	4.2 CAN Driver
	4.2.1 Non-functional requirements
	4.2.1.1 [BSW01033] Usage of SPAL General Requirements
	4.2.1.2 [BSW01034] Hardware abstraction
	4.2.1.3 [BSW01035] Multiple CAN Controller Support

	4.2.2 Functional Requirements
	4.2.2.1 Configuration
	4.2.2.1.1 [BSW01036] CAN Identifier Length (Standard / Extended) Configuration
	4.2.2.1.2 [BSW01037] Hardware filter configuration
	4.2.2.1.3 [BSW01038] Bit Timing Configuration
	4.2.2.1.4 [BSW01039] CAN Hardware Object Handle definitions
	4.2.2.1.5 [BSW01040] HW Transmit Cancellation configuration
	4.2.2.1.6 [BSW01058] Configuration of Multiplexed Transmission
	4.2.2.1.7 [BSW01062] Configuration of polling mode/interrupt driven mode
	4.2.2.1.8 [BSW01135] Configuration of multiple TX Hardware Objects

	4.2.2.2 Initialization
	4.2.2.2.1 [BSW01041] CAN Driver Module Initialization
	4.2.2.2.2 [BSW01042] Selection of static configuration sets

	4.2.2.3 Normal Operation
	4.2.2.3.1 [BSW01043] Enable/disable CAN interrupts
	4.2.2.3.2 [BSW01059] Data Consistency of received L-PDUs
	4.2.2.3.3 [BSW01045] Reception Indication Service
	4.2.2.3.4 [BSW01049] Dynamic transmission request service
	4.2.2.3.5 [BSW01051] Transmission Confirmation
	4.2.2.3.6 [BSW01053] CAN Controller Mode Select Service
	4.2.2.3.7 [BSW01054] Wake-up Notification
	4.2.2.3.8 [BSW01122] Support for wakeup during sleep transition
	4.2.2.3.9 [BSW01132] Mixed mode for notification detection on CAN HW (Interrupt and Polling)
	4.2.2.3.10 [BSW01133] HW Transmit Cancellation support
	4.2.2.3.11 [BSW01134] Multiplexed transmission

	4.2.2.4 Shutdown Operation
	4.2.2.5 Fault Operation
	4.2.2.5.1 [BSW01055] Bus-off notification
	4.2.2.5.2 [BSW01060] No automatic bus-off recovery

	4.3 CAN Interface (Hardware Abstraction)
	4.3.1 Non-functional requirements
	4.3.1.1 [BSW01121] Interfaces of the CAN Interface module
	4.3.1.2 [BSW01001] Hardware Independence

	4.3.2 Functional Requirements
	4.3.2.1 Configuration
	4.3.2.1.1 [BSW01015] Network Database Information Import
	4.3.2.1.2 [BSW01016] Interface to CAN Driver configuration
	4.3.2.1.3 [BSW01018] Software Filter
	4.3.2.1.4 [BSW01019] DLC check configuration
	4.3.2.1.5 [BSW01020] TX-Buffer configuration

	4.3.2.2 Initialization
	4.3.2.2.1 [BSW01021] CAN Interface Module Power-On Initialization
	4.3.2.2.2 [BSW01022] Dynamic selection of static configuration sets
	4.3.2.2.3 [BSW01023] Power-on initialization Sequence

	4.3.2.3 Normal Operation
	4.3.2.3.1 [BSW01002] Rx-L-PDU dispatching
	4.3.2.3.2 [BSW01003] Reception indication dispatcher
	4.3.2.3.3 [BSW01114] Data Consistency of transmit L-PDUs
	4.3.2.3.4 [BSW01004] Software filtering for L-PDU reception
	4.3.2.3.5 [BSW01005] DLC check for L-PDU reception
	4.3.2.3.6 [BSW01006] Rx-L-PDU enable/disable service per CAN Controller
	4.3.2.3.7 [BSW01007] Tx-L-PDU dispatching
	4.3.2.3.8 [BSW01008] Transmission request service
	4.3.2.3.9 [BSW01009] Transmission confirmation service
	4.3.2.3.10 [BSW01011] Tx buffering
	4.3.2.3.11 [BSW01013] Tx-L-PDU enable/disable service per CAN Controller
	4.3.2.3.12 [BSW01027] CAN Controller Mode Select service
	4.3.2.3.13 [BSW01028] CAN Controller State Service
	4.3.2.3.14 [BSW01032] Wake-up Notification
	4.3.2.3.15 [BSW01061] Dynamic TX Handles
	4.3.2.3.16 [BSW01130] Receive Status Interface of CAN Interface
	4.3.2.3.17 [BSW01131] Mixed mode of notification and polling mechanism
	4.3.2.3.18 [BSW01136] Notification of first received CAN message
	4.3.2.3.19 [BSW01129] Receive Data Interface for CAN Interface
	4.3.2.3.20 [BSW01140] Support of Standard and Extended Identifiers
	4.3.2.3.21 [BSW01141] Support of both Standard and Extended Identifiers on one network (optional feature)

	4.3.2.4 Shutdown Operation
	4.3.2.5 Fault Operation
	4.3.2.5.1 [BSW01029] Bus-off notification

	4.4 CAN State Manager
	4.4.1 Non-functional requirements
	4.4.1.1 [BSW01142] Control flow abstraction of CAN networks
	4.4.1.2 [BSW01014] Network configuration abstraction

	4.4.2 Functional Requirements
	4.4.2.1 Configuration
	4.4.2.1.1 [BSW01143] BusOff recovery time

	4.4.2.2 Initialization
	4.4.2.2.1 [BSW01144] Power-On Initialization

	4.4.2.3 Normal Operation
	4.4.2.3.1 [BSW01145] Management of CAN devices

	4.4.2.4 Shutdown Operation
	4.4.2.5 Fault Operation
	4.4.2.5.1 [BSW01146] Bus-off recovery and error handling

	4.5 Transport Layer CAN
	4.5.1 Non-functional requirements
	4.5.1.1 [BSW01065] Usage of ISO 15765-2 and ISO 15765-4 specifications
	4.5.1.2 [BSW01111] CAN Transport Layer Interfaces
	4.5.1.3 [BSW01112] Independent interface
	4.5.1.4 [BSW01120] Multiple CAN Transport Layer instances

	4.5.2 Functional Requirements
	4.5.2.1 Configuration
	4.5.2.1.1 [BSW01066] Concurrent connection configuration
	4.5.2.1.2 [BSW01068] Unique identifier of N-SDU
	4.5.2.1.3 [BSW01069] CAN address information and N-SDU identifier mapping
	4.5.2.1.4 [BSW01071] Unique identifier of N-PDU
	4.5.2.1.5 [BSW01073] Fixed N-PDU data length
	4.5.2.1.6 [BSW01074] Transport connection properties
	4.5.2.1.7 [BSW01117] Only half-duplex communication is supported

	4.5.2.2 Initialization
	4.5.2.2.1 [BSW01075] CAN Transport Layer Initialization
	4.5.2.2.2 [BSW01076] CAN Transport Layer Availability

	4.5.2.3 Normal Operation
	4.5.2.3.1 [BSW01078] Support a subset of ISO 15765-2 addressing modes
	4.5.2.3.2 [BSW01079] Compliance with CAN Interface notifications
	4.5.2.3.3 [BSW01081] Connection specific timeout values
	4.5.2.3.4 [BSW01082] Error handling
	4.5.2.3.5 [BSW01086] Data padding value of unused bytes
	4.5.2.3.6 [BSW01116] Usage of different addressing modes in parallel

	4.6 CAN Bus Transceiver Driver
	4.6.1 Functional Overview
	4.6.2 Remarks to the CAN Bus Transceiver Driver
	4.6.2.1 Explicitly uncovered CAN Bus Transceiver functionality
	4.6.2.2 System Basis Chip and CAN Bus Transceiver Driver

	4.6.3 Functional Requirements
	4.6.3.1 Configuration
	4.6.3.1.1 [BSW01090] Configuration Data for CAN Bus Transceiver
	4.6.3.1.2 [BSW01091] Support for more than one CAN Bus Transceiver
	4.6.3.1.3 Configuration of bus operation mode after initialization for each CAN Bus Transceiver
	4.6.3.1.4 [BSW01095] Configuration “Notification for Wakeup by bus”

	4.6.3.2 Initialization
	4.6.3.2.1 [BSW01096] API to initialize the CAN Bus Transceiver Driver

	4.6.3.3 Normal Operation
	4.6.3.3.1 [BSW01097] CAN Bus Transceiver driver API shall be synchronous
	4.6.3.3.2 [BSW01098] API to request operation mode StandBy
	4.6.3.3.3 [BSW01099] API to request operation mode Sleep
	4.6.3.3.4 [BSW01100] API to request operation mode Normal
	4.6.3.3.5 [BSW01101] API to read out current operation mode
	4.6.3.3.6 [BSW01103] API to read out wakeup reason
	4.6.3.3.7 [BSW01106] Wakeup by bus notification for upper layer
	4.6.3.3.8 [BSW01138] Wakeup by bus callback for lower layers
	4.6.3.3.9 [BSW01107] Support for wakeup during sleep transition
	4.6.3.3.10 [BSW01115] Support API for enable/disable and clear wakeup events

	4.6.3.4 Shutdown Operation
	4.6.3.4.1 [BSW01108] Safe system startup and shutdown for CAN Bus Transceiver Driver

	4.6.3.5 Fault Operation
	4.6.3.5.1 [BSW01109] CAN Bus Transceiver Driver must check transceiver control

	4.6.4 Non-Functional Requirements (Qualities)
	4.6.4.1 Timing Requirements
	4.6.4.1.1 [BSW01110 CAN Bus Transceiver driver must handle transceiver specific timing requirements

	5 References
	5.1 Deliverables of AUTOSAR
	5.2 Related standard and norms
	5.2.1 ISO

	5.3 Related Example Transceiver Data Sheets

