
- AUTOSAR Confidential -

Layered Software Architecture

Page 2 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Document Information

Document Title Layered Software Architecture
Document Owner AUTOSAR GbR

Document Responsibility AUTOSAR GbR
Document Identification No 053
Document Classification Auxiliary

Document Version 2.2.0
Document Status Final
Part of Release 3.0
Revision 0001

Page 4 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Document Change History
Date Version Changed by Change Description
15.11.2007 2.2.0 AUTOSAR

Administration
• Updates based on new wakeup/startup concepts
• Detailed explanation for post-build time configuration
• "Slimming" of LIN stack description
• ICC2 figure
• Document meta information extended
• Small layout adaptations made

06.02.2007 2.1.0 AUTOSAR
Administration

• ICC clustering added.
• Document contents harmonized
• Legal disclaimer revised
• Release Notes added
• “Advice for users” revised
• “Revision Information” added

21.03.2006 2.0.0 AUTOSAR
Administration

Rework Of:
• Error Handling
• Scheduling Mechanisms
More updates according to architectural decisions in R2.0

31.05.2005 1.0.1 AUTOSAR
Administration

Correct version released

09.05.2005 1.0.0 AUTOSAR
Administration

Initial release

Document Information

Page 5 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Page left intentionally blank

Page 6 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Disclaimer

Any use of these specifications requires membership within the AUTOSAR Development Partnership or an agreement with the
AUTOSAR Development Partnership. The AUTOSAR Development Partnership will not be liable for any use of these
specifications.

Following the completion of the development of the AUTOSAR specifications commercial exploitation licenses will be made
available to end users by way of written License Agreement only.

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying and microfilm, without permission in writing from the publisher.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Copyright © 2004-2007 AUTOSAR Development Partnership. All rights reserved.

Advice to users of AUTOSAR Specification Documents:
AUTOSAR Specification Documents may contain exemplary items (exemplary reference models, "use cases", and/or references
to exemplary technical solutions, devices, processes or software).

Any such exemplary items are contained in the Specification Documents for illustration purposes only, and they themselves are
not part of the AUTOSAR Standard. Neither their presence in such Specification Documents, nor any later documentation of
AUTOSAR conformance of products actually implementing such exemplary items, imply that intellectual property rights covering
such exemplary items are licensed under the same rules as applicable to the AUTOSAR Standard.

Page 7 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

ID: 00 – Overview

Overview

Part 1 – Introduction, Scope and Limitations
Part 2 – Overview of Software Layers
Part 3 – Contents of Software Layers
Part 4 – Interfaces

4.1 General Rules
4.2 Error Handling and Reporting Concept
4.3 Interaction of Layers – Example “Memory”
4.4 Interaction of Layers – Example “Communication”
4.5 Interaction of Layers – Example “ECU State Manager”

Part 5 – Configuration
Part 6 – Scheduling
Part 7 – Implementation Conformance Classes

Page 8 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

ID: 01 – Layered Software Architecture

Part 1 – Introduction, Scope and Limitations

Page 9 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 1 – Introduction, Scope and Limitations
ID: 01-01

Purpose of this document
The Layered Software Architecture maps the identified modules of the Basic Software Module List to software layers and shows
their relationship.

This document does not contain requirements. It is a document summarizing architectural decisions and discussions of AUTOSAR.
The examples given are not meant to be complete in all respects.

This document focuses on static views of a conceptual layered software architecture. This document does not specify a structural
software architecture with detailed static and dynamic interface descriptions. This is included in the specifications of the basic
software modules.

The functionality and requirements of the Basic Software modules are specified in the module specific requirement and specification
documents.

Inputs and requirements
This document has been generated based on following documents:

Basic Software Module List
Specification of Virtual Functional Bus
Several views of automotive ECU software architectures

Page 10 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 1 – Introduction, Scope and Limitations
ID: 01-02

In Scope:
Automotive ECUs having the following properties:

Strong interaction with hardware (sensors and actuators)
Connection to vehicle network via CAN, LIN or FlexRay
Microcontrollers from 16 to 32 bit with limited resources of Flash and RAM (compared with Enterprise Solutions)
Real Time Operating System
Program execution from internal or external flash memory

Not in scope:
High end embedded applications like HMI Head Unit with High end Operating Systems like WinCE, VxWorks, QNX
containing

Middleware concepts like OSGI, CORBA
Graphics library
Java Virtual Machine
E-Mail client
Communication systems like Bluetooth, USB, Ethernet
Communication protocols like TCP/IP
Flash file system
Dynamic linking and loading of software
Multi processor support in terms of dynamic load balancing

Extensibility:
This SW Architecture is a generic approach. Modules can be added or existing ones can be extended in functionality, but their

configuration has to be considered in the automatic Basic SW configuration process!
Complex drivers can easily be added
Further Layers cannot be added

Page 11 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

ID: 02 – Layered Software Architecture

Part 2 – Overview of Software Layers

Page 12 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 2 – Overview of Software Layers
ID: 02-01 Simplified Component View

ECU-Hardware

AUTOSAR Runtime Environment (RTE)

Actuator
Software

Component

AUTOSAR
Interface

Application
Software

Component

Sensor
Software

Component

Application
Software

Component

..............

AUTOSAR
Software

Basic Software
Standardized

Interface

AUTOSAR
Interface

AUTOSAR
Interface

AUTOSAR
Interface

Microcontroller
Abstraction

AUTOSAR
Software

Component

Standard
Software Standardized

AUTOSAR
Interface

Services

Standardized
Interface

ECU
Abstraction

AUTOSAR
Interface

Standardized
Interface

Complex
Device
Drivers

AUTOSAR
Interface

API 2
VFB & RTE
relevant

Standardized
Interface

Communication

Standardized
Interface

Standardized
Interface

Operating
System

API 1
RTE
relevant

API 0

Standardized
Inteface

API 3 Private
Interfaces inside
Basic Software

possible

Interface

Note: This figure is incomplete with respect to the possible interactions between the layers. Please refer to slide ID 04-003 for additional details.

Page 13 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 2 – Overview of Software Layers
ID: 02-02 Layered View: Coarse

Complex
Drivers

Microcontroller

Microcontroller Abstraction Layer

Services Layer

Application Layer

AUTOSAR Runtime Environment (RTE)

ECU Abstraction Layer

Page 14 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 2 – Overview of Software Layers
ID: 02-03 Layered View: Detailed

Complex
Drivers

Microcontroller

AUTOSAR Runtime Environment (RTE)

Microcontroller Drivers Memory Drivers I/O Drivers

I/O Hardware Abstraction

Memory Hardware
Abstraction

Memory ServicesSystem Services

Onboard Device
Abstraction

Communication Drivers

Communication
Hardware Abstraction

Communication Services

Application Layer

Page 15 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 2 – Overview of Software Layers
ID: 02-04 Introduction to Basic Software Layers (1)

Co
mpl
ex
Dri
ver
s

Microcontroller

Microcontroller Abstraction Layer

Application Layer

RTE

ECU Abstraction Layer

The Microcontroller Abstraction Layer is the lowest software layer of the Basic Software.
It contains internal drivers, which are software modules with direct access to the µC internal peripherals and memory mapped µC
external devices.

Task:
Make higher software layers independent of µC

Properties:
Implementation: µC dependent
Upper Interface: standardizable and µC independent

Page 16 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 2 – Overview of Software Layers
ID: 02-05 Introduction to Basic Software Layers (2)

The ECU Abstraction Layer interfaces the drivers of the Microcontroller Abstraction Layer. It also contains drivers for external
devices.
It offers an API for access to peripherals and devices regardless of their location (µC internal/external) and their connection to the
µC (port pins, type of interface)

Task:
Make higher software layers independent of ECU hardware layout

Properties:
Implementation: µC independent, ECU hardware dependent
Upper Interface: µC and ECU hardware independent, dependent on signal type

Co
mpl
ex
Dri
ver
s

Microcontroller

Microcontroller Abstraction Layer

Application Layer

RTE

ECU Abstraction LayerECU Abstraction Layer

Page 17 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 2 – Overview of Software Layers
ID: 02-06 Introduction to Basic Software Layers (3)

The Services Layer is the highest layer of the Basic Software which also applies for its relevance for the application software: while
access to I/O signals is covered by the ECU Abstraction Layer, the Services Layer offers

Operating system functionality
Vehicle network communication and management services
Memory services (NVRAM management)
Diagnostic Services (including UDS communication, error memory and fault treatment)
ECU state management

Task:
Provide basic services for application and basic software modules.

Properties:
Implementation: partly µC, ECU hardware and application specific
Upper Interface: µC and ECU hardware independent

Co
mpl
ex
Dri
ver
s

Microcontroller

Microcontroller Abstraction Layer

Application Layer

RTE

ECU Abstraction Layer

Services Layer

ECU Abstraction Layer

Page 18 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 2 – Overview of Software Layers
ID: 02-07 Introduction to Basic Software Layers (4)

The RTE is a layer providing communication services to the application software (AUTOSAR Software Components and/or
AUTOSAR Sensor/Actuator components).

Above the RTE the software architecture style changes from “layered“ to “component style“. The AUTOSAR Software Components
communicate with other components (inter and/or intra ECU) and/or services via the RTE.

Task:
Make AUTOSAR Software Components independent from the mapping to a specific ECU

Properties:
Implementation: ECU and application specific (generated individually for each ECU)
Upper Interface: completely ECU independent

Co
mpl
ex
Dri
ver
s

Microcontroller

Microcontroller Abstraction Layer

Application Layer

AUTOSAR Runtime Environment (RTE)

ECU Abstraction Layer

Services Layer

ECU Abstraction Layer

Page 19 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 2 – Overview of Software Layers
ID: 02-08 Introduction to Basic Software Layers (5)

The Basic Software can be subdivided into the following types of services:

Input/Output (I/O)
Standardized access to sensors, actuators and ECU onboard peripherals

Memory
Standardized access to internal/external memory (non volatile memory)

Communication
Standardized access to: vehicle network systems, ECU onboard communication systems and ECU internal SW

System
Provision of standardisable (operating system, timers, error memory) and ECU specific (ECU state management,
watchdog manager) services and library functions

Page 20 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Driver
A driver contains the functionality to control and access an internal or an external device.

Internal devices are located inside the microcontroller. Examples for internal devices are
Internal EEPROM
Internal CAN controller
Internal ADC

A driver for an internal device is called internal driver and is located in the Microcontroller Abstraction Layer.

External devices are located on the ECU hardware outside the microcontroller. Examples for external devices are
External EEPROM
External watchdog
External flash

A driver for an external device is called external driver and is located in the ECU Abstraction Layer. It accesses the external device
via drivers of the Microcontroller Abstraction Layer.

Example: a driver for an external EEPROM with SPI interface accesses the external EEPROM via the SPIHandlerDriver.

Exception:
The drivers for memory mapped external devices (e.g. external flash memory) may access the microcontroller directly. Those external
drivers are located in the Microcontroller Abstraction Layer because they are microcontroller dependent.

Part 2 – Overview of Software Layers
ID: 02-09 Introduction to Basic Software Module Types (1)

Page 21 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Interface
An Interface contains the functionality to abstract the hardware realization of a specific device for upper layers. It provides a generic
API to access a specific type of device independent on the number of existing devices of that type and independent on the hardware
realization of the different devices.

The interface does not change the content of the data.

In general, interfaces are located in the ECU Abstraction Layer.

Example: an interface for a CAN communication system provides a generic API to access CAN communication networks independent
on the number of CAN Controllers within an ECU and independent of the hardware realization (on chip, off chip).

Handler
A handler is a specific interface which controls the concurrent, multiple and asynchronous access of one or multiple clients to one or
more drivers. I.e. it performs buffering, queuing, arbitration, multiplexing.

The handler does not change the content of the data.

Handler functionality is often incorporated in the driver or interface (e.g. SPIHandlerDriver, ADC Driver).

Part 2 – Overview of Software Layers
ID: 02-10 Introduction to Basic Software Module Types (2)

Page 22 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 2 – Overview of Software Layers
ID: 02-11 Introduction to Basic Software Module Types (3)

Manager
A manager offers specific services for multiple clients. It is needed in all cases where pure handler functionality is not enough for
accessing and using drivers.

Besides handler functionality, a manager can evaluate and change or adapt the content of the data.

In general, managers are located in the Services Layer

Example: The NVRAM manager manages the concurrent access to internal and/or external memory devices like flash and
EEPROM memory. It also performs management of RAM mirrors, redundant, distributed and reliable data storage, data
checking, provision of default values etc. For details refer to the AUTOSAR requirements documents.

Page 23 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

ID: 03 – Layered Software Architecture

Part 3 – Contents of Software Layers

Page 24 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Microcontroller A
D

C

D
IO

C
C

U

I/O Drivers

P
O

R
T

D
riv

er

A
D

C
 D

riv
er

D
IO

 D
riv

er

P
W

M
 D

riv
er

IC
U

 D
riv

er

P
W

M

Part 3 – Contents of Software Layers
ID: 03-01 Scope: Microcontroller Abstraction Layer

LI
N

 o
r

S
C

I

C
A

N

S
P

I

E
E

P
R

O
M

FL
A

S
H

W
D

T

G
P

T

Microcontroller Drivers Communication DriversMemory Drivers

R
A

M
 T

es
t

C
A

N
 D

riv
er

in
te

rn
al

 E
E

P
R

O
M

 D
riv

er

in
te

rn
al

 F
la

sh
 D

riv
er

W
at

ch
do

g
D

riv
er

LI
N

 D
riv

er

M
C

U
 D

riv
er

Fl
ex

R
ay

D
riv

er

C
or

e
Te

st

G
P

T
D

riv
er

S
P

IH
an

dl
er

D
riv

er

The µC Abstraction Layer consists of the following module groups:

Communication Drivers
Drivers for ECU onboard (e.g. SPI) and vehicle communication (e.g. CAN). OSI-Layer: Part of Data Link Layer
I/O Drivers
Drivers for analog and digital I/O (e.g. ADC, PWM, DIO)
Memory Drivers
Drivers for on-chip memory devices (e.g. internal Flash, internal EEPROM) and memory mapped external memory devices (e.g.
external Flash)
Microcontroller Drivers
Drivers for internal peripherals (e.g. Watchdog, General Purpose Timer)
Functions with direct µC access (e.g. Core test)

Software
module

internal
peripheral

device

Group of
Software

modules of
similar type

M
C

U

P
ow

er
 &

C

lo
ck

 U
ni

t

Page 25 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 3 – Contents of Software Layers
ID: 03-02 Scope: Complex Drivers

A Complex Driver implements complex sensor evaluation and actuator control with direct access to the µC using specific interrupts
and/or complex µC peripherals (like PCP, TPU), e.g.
Injection control
Electric valve control
Incremental position detection

Task:
Fulfill the special functional and timing requirements for handling complex
sensors and actuators

Properties:
Implementation: highly µC, ECU and application dependent
Upper Interface: specified and implemented according to AUTOSAR (AUTOSAR interface)

Complex Drivers

E
le

ct
ric

 V
al

ve
 C

on
tro

l

In
je

ct
io

n
C

on
tro

l

In
cr

em
en

ta
l P

os
iti

on
 D

et
ec

tio
n

C
om

pl
ex

 D
ev

ic
e

D
riv

er
 X

Y

µC

e.
g.

 C
C

U

e.
g.

 P
C

P

e.
g.

 T
P

U

Example:

Microcontroller (µC)

Micro-controller
Drivers Memory Drivers

C
om

pl
ex

 D
riv

er
s

Communi-
cation Drivers

I/O
Drivers

Application Layer

Page 26 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 3 – Contents of Software Layers
ID: 03-04 Scope: Communication Hardware Abstraction

The Communication Hardware Abstraction is a group of modules which abstracts from the location of communication controllers
and the ECU hardware layout. For all communication systems a specific Communication Hardware Abstraction is required (e.g. for
LIN, CAN, FlexRay).
Example: An ECU has a microcontroller with 2 internal CAN channels and an additional on-board ASIC with 4 CAN controllers. The
CAN-ASIC is connected to the microcontroller via SPI.
The communication drivers are accessed via bus specific interfaces (e.g. CAN Interface).

Task:
Provide equal mechanisms to access a bus channel regardless of it‘s location
(on-chip / on-board)

Properties:
Implementation: µC independent, ECU hardware dependent and external device
dependent
Upper Interface: bus dependent, µC and ECU hardware independent

Communication Hardware Abstraction

CAN Interface

Driver for ext.
CAN ASIC

Example:

µC C
A

N

S
P

I

Communication Drivers

C
A

N
 D

riv
er

S
P

IH
an

dl
er

D
riv

er

C
om

pl
ex

 D
riv

er
s

Microcontroller (µC)

Micro-controller
Drivers Memory Drivers Communi-

cation Drivers

COM HW
Abstraction

I/O
Drivers

I/O HW
Abstraction

I/O Drivers

D
IO

 D
riv

er
D

IO

CAN
Trans-
ceiver
Driver

Application Layer

Page 27 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 3 – Contents of Software Layers
ID: 03-16 Scope: SPIHandlerDriver

The SPIHandlerDriver allows concurrent access of several clients to one or more SPI busses.

To abstract all features of a SPI microcontroller pins dedicated to Chip Select, those shall directly be handled by the SPIHandlerDriver.
That means those pins shall not be available in DIO Driver.

Example:

Memory Hardware
Abstraction

I/O Hardware Abstraction

µC SPI

Communication Drivers

SPIHandlerDriver

Driver for ext.
I/O ASIC

Driver for ext.
ADC ASIC

Onboard Device
Abstraction

External
Watchdog Driver

External
EEPROM

Driver

Page 28 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 3 – Contents of Software Layers
ID: 03-03 Scope: I/O Hardware Abstraction

The I/O Hardware Abstraction is a group of modules which abstracts from the location of peripheral I/O devices (on-chip or on-
board) and the ECU hardware layout (e.g. µC pin connections and signal level inversions). The I/O Hardware Abstraction does not
abstract from the sensors/actuators!

The different I/O devices are accessed via an I/O signal interface.

Task:
Represent I/O signals as they are connected to the ECU hardware (e.g. current, voltage, frequency).
Hide ECU hardware and layout properties from higher software layers.

Properties:
Implementation: µC independent, ECU hardware dependent
Upper Interface: µC and ECU hardware independent, dependent on signal type

specified and implemented according to AUTOSAR
(AUTOSAR interface)

COM Drivers

I/O Hardware Abstraction

I/O Signal Interface

Driver for ext.
I/O ASIC

Example:

µC

I/O Drivers

D
IO

 D
riv

er

S
P

IH
an

dl
er

D
riv

er
S

P
I

D
IO

Driver for ext.
ADC ASIC

A
D

C
 D

riv
er

A
D

C

C
om

pl
ex

 D
riv

er
s

Microcontroller (µC)

Micro-controller
Drivers Memory Drivers Communi-

cation Drivers
I/O

Drivers

I/O HW
Abstraction

Application Layer

Page 29 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 3 – Contents of Software Layers
ID: 03-05 Scope: Memory Hardware Abstraction

The Memory Hardware Abstraction is a group of modules which abstracts from the location of peripheral memory devices (on-chip
or on-board) and the ECU hardware layout.
Example: on-chip EEPROM and external EEPROM devices should be accessible via an equal mechanism.

The memory drivers are accessed via memory specific abstraction/emulation modules (e.g. EEPROM Abstraction).
By emulating an EEPROM abstraction on top of Flash hardware units a common access via Memory Abstraction Interface to both
types of hardware is enabled.

Task:
Provide equal mechanisms to access internal (on-chip) and external (on-board)
memory devices and type of memory hardware (EEPROM, Flash).

Properties:
Implementation: µC independent, external device dependent
Upper Interface: µC, ECU hardware and memory device independent

COM Drivers

Memory Hardware Abstraction

Example:

µC

Memory Drivers

E
E

P
R

O
M

D

riv
er

S
P

IH
an

dl
er

D
riv

er
S

P
I

E
E

P
R

O
M

C
om

pl
ex

 D
riv

er
s

Microcontroller (µC)

Micro-controller
Drivers Memory Drivers

Memory HW
Abstraction

Communi-
cation Drivers

COM HW
Abstraction

I/O
Drivers

I/O HW
Abstraction

Application Layer

Fl
as

h
In

te
rn

al

Fl
as

h
 D

riv
er

E
xt

er
na

l
Fl

as
h

D

riv
er

Memory Abstraction Interface

External
EEPROM Driver

EEPROM Abstraction
Flash

EEPROM
Emulation

Page 30 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 3 – Contents of Software Layers
ID: 03-06 Scope: Onboard Device Abstraction

The Onboard Device Abstraction contains drivers for ECU onboard devices which cannot be seen as sensors or actuators like
internal or external watchdogs. Those drivers access the ECU onboard devices via the µC Abstraction Layer.

Task:
Abstract from ECU specific onboard devices.

Properties:
Implementation: µC independent, external device dependent
Upper Interface: µC independent, partly ECU hardware dependent

COM Drivers

Onboard Device Abstraction

Example:

µC

I/O Drivers

S
P

IH
an

dl
er

D
riv

er
S

P
I

in
te

rn
al

w

at
ch

do
g

dr
iv

er
W

dg

External
Watchdog Driver

C
om

pl
ex

 D
riv

er
s

Microcontroller (µC)

Micro-controller
Drivers Memory Drivers

Memory HW
Abstraction

Onboard Dev.
Abstraction

Communi-
cation Drivers

COM HW
Abstraction

I/O
Drivers

I/O HW
Abstraction

Application Layer

Watchdog Interface

Page 31 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 3 – Contents of Software Layers
ID: 03-07 Scope: Communication Services – General

The Communication Services are a group of modules for vehicle network communication (CAN, LIN and FlexRay). They are
interfacing with the communication drivers via the communication hardware abstraction.

Task:
1. Provide a uniform interface to the vehicle network for communication.
2. Provide uniform services for network management
3. Provide uniform interface to the vehicle network for diagnostic communication
4. Hide protocol and message properties from the application.

Properties:
Implementation: µC and ECU HW independent, partly dependent on bus type
Upper Interface: µC, ECU hardware and bus type independent

The communication services will be detailed for each relevant vehicle network system on the following pages.

C
om

pl
ex

 D
riv

er
s

Microcontroller (µC)

Micro-controller
Drivers Memory Drivers

Memory HW
Abstraction

Onboard Dev.
Abstraction

Communi-
cation Drivers

Communi-
cation

Services

COM HW
Abstraction

I/O
Drivers

I/O HW
Abstraction

Application Layer
Communication Services

<Bus specific>
Transport Protocol

PDU Router

DCM
Diagnostic

Com.
Manager

AUTOSAR
COM

<Bus
specific>

NMIPDU
Multiplexer

Color code: Bus specific modules are marked gray.

Generic NM
Interface

<Bus
specific>

State
Manager

Page 32 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

I/O Drivers

The CAN Communication Services are a group of modules for vehicle network
communication with the communication system CAN.

Task:
Provide a uniform interface to the CAN network. Hide protocol and message
properties from the application.

Properties:
Implementation: µC and ECU HW independent, partly dependent on CAN.
AUTOSAR COM, Generic NM Interface and Diagnostic Communication Manager
are the same for all vehicle network systems and exist as one instance per ECU.
Generic NM Interface contains only a dispatcher. No further functionality is
included. In case of gateway ECUs it is replaced by the NM GW which in addition
provides the functionality to synchronize multiple different networks (of the same
or different types) to synchronously wake them up or shut them down.
CAN Generic NM is specific for CAN networks and will be instantiated per CAN
vehicle network system. CAN Generic NM interface with CAN via underlying
network adapter (CAN NM).
The communication system specific Can State Manager handles the
communication system dependent Start-up and Shutdown features. Furthermore
it controls the different options of COM to send PDUs and to monitor signal
timeouts.
A signal gateway is part of AUTOSAR COM to route signals.
PDU based Gateway is part of PDU router.
IPDU multiplexing provides the possibility to add information to enable the
multiplexing of I-PDUs (different contents but same IDs).
Upper Interface: µC, ECU hardware and network type independent (goal)
For refinement of GW architecture please refer to slide 04-050.

Communication Services

Part 3 – Contents of Software Layers
ID: 03-08 Scope: Communication Stack – CAN

Communication Drivers

Communication Hardware Abstraction

CAN Driver

Driver for ext.
CAN ASIC

SPIHandler
Driver

CAN Transport
Protocol

PDU Router

DCM
Diagnostic

Com.
Manager

AUTOSAR
COM

CAN NM

µCSPI CAN

External
CAN Controller

CAN Interface

IPDU
multi-
plexer

CAN Transceiver
Driver

DIO Driver

Generic NM
Interface

CAN
State

Manager

Page 33 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Communication Hardware Abstraction

Communication Drivers

µC

The LIN Communication Services are a group of modules for vehicle network communication
with the communication system LIN.

Task:
Provide a uniform interface to the LIN network. Hide protocol and message properties from
the application.

Properties:

The LIN Communication Services contain:
A LIN 2.0 compliant communication stack with

Schedule table manager for transmitting LIN frames and to handle requests to switch to
other schedule tables.
Transport protocol, used for diagnostics
A WakeUp and Sleep Interface

An underlying LIN Driver:
• implementing the LIN protocol and adaptation the specific hardware
• Supporting both simple UART and complex frame based LIN hardware

Note: Integration of LIN into AUTOSAR:
The scheduler manager and its interfaces are used to decide the point of time to send a
LIN frame.
Lin Interface controls the WakeUp/Sleep API and allows the slaves to keep the bus awake
(decentralized approach).
The PDU router accesses the LIN Interface on PDU-Level, not on signal level.
The communication system specific LIN State Manager handles the communication
dependent Start-up and Shutdown features. Furthermore it controls the communication
mode requests from the Communication Manager. The LIN state manager also controls
the I-PDU groups by interfacing COM.
When sending a LIN frame, the LIN Interface requests the data for the frame (I-PDU) from
the PDU Router at the point in time when it requires the data (i.e. after sending the LIN
frame header).

SCI

LIN Driver

Part 3 – Contents of Software Layers
ID: 03-15 Scope: Communication Stack – LIN

Communication Services

PDU Router

DCM
Diagnostic

Com.
Manager

AUTOSAR
COM

LIN State
Manager

LIN Interface
(„LIN Master Communication Stack“)

Page 34 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

I/O Drivers

System
Services

Communication Services

Part 3 – Contents of Software Layers
ID: 03-09 Scope: Communication Stack – FlexRay

Communication Hardware Abstraction

Communication Drivers

FlexRay
NM

FlexRay
Transport
Protocol

PDU Router

The FlexRay Communication Services are a group of modules for vehicle
network communication with the communication system FlexRay.

Task:
Provide a uniform interface to the FlexRay network. Hide protocol and
message properties from the application.

Properties:
Implementation: µC and ECU HW independent, partly dependent on
FlexRay.
AUTOSAR COM, Generic NM Interface and Diagnostic Communication
Manager are the same for all vehicle network systems and exist as one
instance per ECU.
Generic NM Interface contains only a dispatcher. No further
functionality is included. In case of gateway ECUs, it is replaced by the
NM GW which in addition provides the functionality to synchronize
multiple different networks (of the same or different types) to
synchronously wake them up or shut them down.
FlexRay NM is specific for FlexRay networks and will be instantiated
per FlexRay vehicle network system.
The communication system specific FlexRay State Manager handles
the communication system dependent Start-up and Shutdown features.
Furthermore it controls the different options of COM to send PDUs and
to monitor signal timeouts.
A signal Gateway is part of AUTOSAR COM to route signals.
PDU based Gateway is part of PDU Router.
IPDU multiplexing provides the possibility to add information to enable
the multiplexing of I-PDUs (different contents but same IDs).

DCM
Diagnostic

Com.
Manager

AUTOSAR
COM

FlexRay Interface

IPDU
multi-
plexer

S
yn

cr
on

iz
at

io
n

an
d

Ti
m

e
S

er
vi

ce
Host µC Internal FlexRay Controller

Data lines
Control/status lines

External
FlexRay Controller
(e.g. MFR 4200)

External
FlexRay Transceiver

(e.g. TJA 1080)

Driver for internal FlexRay Controller

Driver for external
FlexRay Controller

Driver for FlexRay
Transceiver

SPIHandlerDriverDIO Driver

Generic
NM

Interface

FlexRay
State

Manager

Page 35 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 3 – Contents of Software Layers
ID: 03-10 Scope: Communication Services – LIN Slave

LIN Slave Application

Communication Drivers

LIN Communication
Stack

LIN Slaves usually are „intelligent“ actuators and slaves that are seen as black boxes. As they provide very little hardware capabilities
and resources it is not intended to shift AUTOSAR SW Components on LIN Slaves.

LIN Slave ECUs can be integrated into the AUTOSAR VFB using their Node Capability Descriptions. They are seen as non-
AUTOSAR ECUs. Please reference to the VFB specification.

That means: LIN Slaves can be connected as complete ECUs. But they are not forced to use the AUTOSAR SW Architecture.
Perhaps they can use some standard AUTOSAR modules (like EEPROM, DIO).
Reason: LIN slaves usually have very limited memory resources or are ASICs with „hard-coded“ logic.

µC SCI

Page 36 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 3 – Contents of Software Layers
ID: 03-12 Scope: Memory Services

The Memory Services consist of one module, the NVRAM Manager. It is responsible for the management of non volatile data
(read/write from different memory drivers). The application expects a RAM mirror as data interface for fast read access.

Task: Provide non volatile data to the application in a uniform way. Abstract from memory locations and properties. Provide
mechanisms for non volatile data management like saving, loading, checksum protection and verification, reliable storage etc.

Properties:
Implementation: µC and ECU hardware independent, highly configurable
Upper Interface: µC and ECU hardware independent

specified and implemented according to AUTOSAR
(AUTOSAR interface)

Example:

Memory Services

NVRAM Manager
C

om
pl

ex
 D

riv
er

s

Microcontroller (µC)

Micro-controller
Drivers Memory Drivers

Memory HW
Abstraction

Onboard Dev.
Abstraction

Memory
Services

Communi-
cation Drivers

Communi-
cation Services

COM HW
Abstraction

I/O
Drivers

I/O HW
Abstraction

Application Layer

Page 37 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 3 – Contents of Software Layers
ID: 03-13 Scope: System Services

The System Services are a group of modules and functions which can be used by modules of all layers. Examples are Real Time
Operating System (which includes timer services), Error Manager and Library Functions (like CRC, interpolation etc.).
Some of these services are µC dependent (like OS), partly ECU hardware and application dependent (like ECU State Manager) or
hardware and µC independent.

Task:
Provide basic services for application and
basic software modules.

Properties:
Implementation: partly µC, ECU hardware and

application specific
Upper Interface: µC and ECU hardware independent

C
om

pl
ex

 D
riv

er
s

Microcontroller (µC)

Micro-controller
Drivers Memory Drivers

Memory HW
Abstraction

Onboard Dev.
Abstraction

Memory
ServicesSystem Services

Communi-
cation Drivers

Communi-
cation Services

COM HW
Abstraction

I/O
Drivers

I/O HW
Abstraction

Application Layer

System Services

B
S

W
 S

ch
ed

ul
er

FI
M

Fu
nc

tio
n

In
hi

bi
tio

n
M

an
ag

er

Example:

CRC Lib

Interpolation Lib

Crypto Lib

Bit Lib

Other Libs

Flash Check

W
at

ch
do

g
M

an
ag

er

D
ev

el
op

m
en

t E
rro

r
Tr

ac
er

D
E

M
D

ia
gn

os
tic

 E
ve

nt

M
an

ag
er

C
om

m
un

ic
at

io
n

M
an

ag
er

A
U

TO
S

A
R

 O
S

S
yn

ch
ro

ni
za

tio
n

S
er

vi
ce

E
C

U
 S

ta
te

 M
an

ag
er

Page 38 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 3 – Contents of Software Layers
ID: 03-14 Scope: Sensor/Actuator AUTOSAR Software Components

The Sensor/Actuator AUTOSAR Software Component is a specific type of AUTOSAR Software Component for sensor evaluation
and actuator control. Though not belonging to the AUTOSAR Basic Software, it is described here due to its strong relationship to local
signals. It has been decided to locate the Sensor/Actuator SW Components above the RTE for integration reasons (standardized
interface implementation and interface description). Because of their strong interaction with raw local signals, relocatability is restricted.
Tasks and interfaces are similar to that of a Complex Driver. Examples of tasks of a Sensor/Actuator Component are switch
debouncing, battery voltage monitoring, DC motor control, lamp control etc.

Task:
Abstract from the specific physical properties of sensors
and actuators.

Properties:
Implementation: µC and ECU HW independent,
sensor and actuator dependent

C
om

pl
ex

 D
riv

er
s

Microcontroller (µC)

Memory HW
Abstraction

RTE

Communi-
cation Drivers

Communi-
cation Services

COM HW
Abstraction

I/O
Drivers

I/O HW
Abstraction

Micro-controller
Drivers

Onboard Dev.
Abstraction

System Services

Application Layer

Memory Drivers

Memory
Services

Application Layer

Actuator
Software

Component

Sensor
Software

Component

Example:

RTE

Basic Software

Interfaces to (e.g.)
• I/O HW Abstraction (access to I/O signals)
• Memory Services (access to calibration data)
• System Services (access to Error Manager)

Page 39 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

ID: 04-001 – Layered Software Architecture

Part 4 – Interfaces
4.1 General Rules

Page 40 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 4 – Interfaces
ID: 04-004 Type of Interfaces in AUTOSAR

AUTOSAR Interface

An "AUTOSAR Interface" defines the information exchanged between software
components and/or BSW modules. This description is independent of a specific
programming language, ECU or network technology. AUTOSAR Interfaces are
used in defining the ports of software-components and/or BSW modules. Through
these ports software-components and/or BSW modules can communicate with
each other (send or receive information or invoke services). AUTOSAR makes it
possible to implement this communication between Software-Components and/or
BSW modules either locally or via a network.

Standardized AUTOSAR Interface

A "Standardized AUTOSAR Interface" is an "AUTOSAR Interface" whose syntax
and semantics are standardized in AUTOSAR. The "Standardized AUTOSAR
Interfaces" are typically used to define AUTOSAR Services, which are
standardized services provided by the AUTOSAR Basic Software to the application
Software-Components.

Standardized Interface

A "Standardized Interface" is an API which is standardized within AUTOSAR
without using the "AUTOSAR Interface" technique. These "Standardized
Interfaces" are typically defined for a specific programming language (like "C").
Because of this, "standardized interfaces" are typically used between software-
modules which are always on the same ECU. When software modules
communicate through a "standardized interface", it is NOT possible any more to
route the communication between the software-modules through a network.

Page 41 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 4.1 – Interfaces: General Rules
ID: 04-002 General Interfacing Rules

Horizontal Interfaces

• Services Layer: horizontal interfaces are allowed
Example: Error Manager saves fault data using the
NVRAM manager

• ECU Abstraction Layer: horizontal interfaces are allowed

• A complex driver may use all other BSW modules

• µC Abstraction Layer: horizontal interfaces are not
allowed. Exception: configurable notifications are allowed
due to performance reasons.

Microcontroller (µC)

Vertical Interfaces

• One Layer may access all interfaces of the SW layer below

• Bypassing of one software layer should be avoided

• Bypassing of two or more software layers is not allowed

• Bypassing of the µC Abstraction Layer is not allowed

• A module may access a lower layer module of another
layer group (e.g. SPI for external hardware)

AUTOSAR
SW Comp

1

AUTOSAR
SW Comp

3

AUTOSAR
SW Comp

4

AUTOSAR
SW Comp

5

All layers may interact with system services.

Page 42 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 4.1 – Interfaces: General Rules
ID: 04-003 Layer Interaction Matrix

This matrix shows the possible interactions between AUTOSAR Basic Software layers

“is allowed to use”
”is not allowed to use”

Δ“restricted use (callback only)”

The matrix is read row-wise:
Example: “I/O Drivers are allowed

to use System Services and
Hardware, but no other layers”.

(gray background indicates “non-Basic Software” layers)

uses

S
ys

te
m

 S
er

vi
ce

s

M
em

or
y

Se
rv

ic
es

C
om

m
un

ic
at

io
n

Se
rv

ic
es

C
om

pl
ex

 D
riv

er
s

I/O
 H

ar
dw

ar
e

Ab
st

ra
ct

io
n

O
nb

oa
rd

 D
ev

ic
e

Ab
st

ra
ct

io
n

M
em

or
y

H
ar

dw
ar

e
Ab

st
ra

ct
io

n

C
om

m
un

ic
at

io
n

H
ar

dw
ar

e
Ab

st
ra

ct
io

n

M
ic

ro
co

nt
ro

lle
r D

riv
er

s

M
em

or
y

D
riv

er
s

C
om

m
un

ic
at

io
n

D
riv

er
s

I/O
 D

riv
er

s

AUTOSAR SW Components / RTE
System Services
Memory Services
Communication Services
Complex Drivers
I/O Hardware Abstraction
Onboard Device Abstraction
Memory Hardware Abstraction
Communication Hardware Abstraction
Microcontroller Drivers Δ Δ
Memory Drivers
Communication Drivers
I/O Drivers Δ Δ

Page 43 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

ID: 04-007 – Layered Software Architecture

Part 4 – Interfaces
4.2 Error Handling and Reporting Concept

Page 44 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 4.2 – Interfaces: Error Handling and Reporting Concept
ID: 04-009 Error Classification (1)

Types of errors

Hardware errors / failures
Root cause: Damage, failure or ‚value out of range‘, detected by software
Example 1: EEPROM cell is not writable any more
Example 2: Output voltage of sensor out of specified range

Software errors
Root cause: Wrong software or system design, because software itself can never fail.
Example 1: wrong API parameter (EEPROM target address out of range)
Example 2: Using not initialized data

System errors
Example 1: CAN receive buffer overflow
Example 2: time-out for receive messages

Page 45 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 4.2 – Interfaces: Error Handling and Reporting Concept
ID: 04-010 Error Classification (2)

Time of error occurrence according to product life cycle

Development
Those errors shall be detected and fixed during development phase. In most cases, those errors are software errors. The
detection of errors that shall only occur during development can be switched off for production code (by static configuration
namely preprocessor switches).

Production / series
Those errors are hardware errors and software exceptions that cannot be avoided and are also expected to occur in production
code.

Influence of error on system

Severity of error (impact on the system)
No influence
Functional degradation
Loss of functionality

Failure mode in terms of time
Permanent errors
Transient / sporadic errors

Page 46 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 4.2 – Interfaces: Error Handling and Reporting Concept
ID: 04-011 Error Reporting – Alternatives

Each basic software module distinguishes between two types of errors:

1. Development Errors
The detection and reporting can be statically switched on/off

2. Production relevant errors and exceptions
This detection is ‚hard coded‘ and always active.

There are several alternatives to report an error (detailed on the following slides):

Via API
Inform the caller about success/failure of an operation.

Via statically definable callback function (notification)
Inform the caller about failure of an operation

Via central Error Hook (Development Error Tracer)
For logging and tracing errors during product development. Can be switched off for production code.

Via central Error Function (AUTOSAR Diagnostic Event Manager)
For error reaction and logging in series (production code)

Page 47 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 4.2 – Interfaces: Error Handling and Reporting Concept
ID: 04-013 Error Reporting via API

Error reporting via API
Informs the caller about failure of an operation by returning an error status.

Basic return type
Success: E_OK (value: 0)
Failure: E_NOT_OK (value: 1)

Specific return type
If different errors have to be distinguished for production code, own return types have to be defined. Different errors shall only be
used if the caller can really handle these. Specific development errors shall not be returned via the API. They can be reported to the
Development Error Tracer (see 04-014).

Example: services of EEPROM driver
Success: EEP_E_OK
General failure (service not accepted): EEP_E_NOT_OK
Write Operation to EEPROM was not successful: EEP_E_WRITE_FAILED

Page 48 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 4.2 – Interfaces: Error Handling and Reporting Concept
ID: 04-014 Error Reporting – Introduction

Error reporting via Diagnostic Event Manager (DEM)
For reporting production / series errors.
Those errors have a defined reaction depending on the configuration of this ECU, e.g.:

Writing to error memory
Disabling of ECU functions (e.g. via Function Inhibition Manager)
Notification of SW-Cs

The Diagnostic Event Manager is a standard AUTOSAR module which is always available in production code and whose functionality
is specified within AUTOSAR.

Error reporting via Development Error Tracer (DET)
For reporting development errors.
The Development Error Tracer is mainly intended for tracing and logging errors during development. Within the Development Error

Tracer many mechanisms are possible, e.g.:
Count errors
Write error information to ring buffer in RAM
Send error information via serial interface to external logger
Infinite Loop, Breakpoint

The Development Error Tracer is just a help for SW development and integration and is not necessarily contained in the production
code. The API is specified within AUTOSAR, but the functionality can be chosen/implemented by the developer according to his
specific needs.

The detection and reporting of development errors to the Development Error Tracer can be statically switched on/off per module
(preprocessor switch or two different object code builds of the module).

Page 49 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 4.2 – Interfaces: Error Handling and Reporting Concept
ID: 04-017 Error Reporting – Diagnostic Event Manager

API
The Diagnostic Event Manager has semantically the following API:
Dem_ReportErrorStatus(EventId, EventStatus)

Problem: the error IDs passed with this API have to be ECU wide defined, have to be statically defined and have to occupy a
compact range of values for efficiency reasons. Reason: The Diagnostic Event Manager uses this ID as index for accessing ROM
arrays.

Error numbering concept: XML based error number generation
Properties:

Source and object code compatible
Single name space for all production relevant errors
Tool support required
Consecutive error numbers Error manager can easily access ROM arrays where handling and reaction of errors is defined

Process:
1. Each BSW Module declares all production code relevant error variables it needs as “extern”
2. Each BSW Module stores all error variables that it needs in the ECU configuration description (e.g. CAN_E_BUS_OFF)
3. The configuration tool of the Diagnostic Event Manager parses the ECU configuration description and generates a single file

with global constant variables that are expected by the SW modules (e.g. const Dem_EventIdType CAN_E_BUS_OFF=7;
or #define CAN_E_BUS_OFF ((Dem_EventIdType) 7))

4. The reaction to the errors is also defined in the Error Manager configuration tool. This configuration is project specific.

Page 50 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 4.2 – Interfaces: Error Handling and Reporting Concept
ID: 04-018 Error Reporting – Development Error Tracer (1)
API
The Development Error Tracer has syntactically the following API:
Det_ReportError(uint16 ModuleId, uint8 InstanceId, uint8 ApiId, uint8 ErrorId)

Error numbering concept
ModuleId (uint16)

The ModuleId contains the AUTOSAR module ID from the Basic Software Module List.
As the range is 16 Bit, future extensions for development error reporting of application SW-C are possible. The Basic SW uses
only the range from 0..255.

InstanceId (uint8)
The Instance ID represents the identifier of an indexed based module starting from 0. If the module is a single instance module it
shall pass 0 as an instance ID.

ApiId (uint8)
The API-IDs are specified within the software specifications of the BSW modules. They can be #defines or constants defined in
the module starting with 0.

ErrorId (uint8)
The Error-IDs are specified within the software specifications of the BSW modules. They can be #defines defined in the module‘s
header file.

If there are more errors detected by a particular software module which are not specified within the AUTOSAR module software
specification, they have to be documented in the module documentation.

All Error-IDs have to be specified in the BSW description.

Page 51 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

ID: 04-020 – Layered Software Architecture

Part 4 – Interfaces
4.3 Interaction of Layers – Example “Memory”

Page 52 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 4.3 – Interfaces: Interaction of Layers – Example “Memory”
ID: 04-021 Introduction

The following pages explain using the example „memory“:

How do the software layers interact?

How do the software interfaces look like?

What is inside the ECU Abstraction Layer?

How can abstraction layers be implemented efficiently?

Page 53 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Memory Hardware Abstraction

Memory Abstraction Interface

Part 4.3 – Interfaces: Interaction of Layers – Example “Memory”
ID: 04-022 Example and First Look

COM Drivers

µC

SPIHandlerDriver

SPI

External
EEPROM Driver

Memory Services

NVRAM
Manager

External
EEPROM

External
Watchdog

Onboard Device
Abstraction

SPISPICS CS

External
Watchdog Driver

System Services

Watchdog
Manager

Wdg_Trigger()

Spi_ReadIB()
Spi_WriteIB()

MemIf_Read()
MemIf_Write()

This example shows how the NVRAM Manager and the Watchdog
Manager interact with drivers on an assumed hardware
configuration:

The ECU hardware includes an external EEPROM and an external
watchdog connected to the microcontroller via the same SPI.

The SPIHandlerDriver controls the concurrent access to the SPI
hardware and has to give the watchdog access a higher priority than
the EEPROM access.

The microcontroller includes also an internal flash which is used in
parallel to the external EEPROM. The EEPROM Abstraction and the
Flash EEPROM Emulation have an API that is semantically
identical.

The Memory Abstraction Interface can be realized in the following
ways:

routing during runtime based on device index (int/ext)
routing during runtime based on the block index (e.g. > 0x01FF =

external EEPROM)
routing during configuration time via ROM tables with function

pointers inside the NVRAM Manager (in this case the Memory
Abstraction Interface only exists „virtually“)

EEPROM
Abstraction

Memory Drivers

Internal
Flash Driver

Flash

Fls_Read()
Fls_Write()

Flash EEPROM
Emulation

Fee_Read()
Fee_Write()

Watchdog Interface

WdgIf_Trigger()

Page 54 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 4.3 – Interfaces: Interaction of Layers – Example “Memory”
ID: 04-023 Closer Look at Memory Hardware Abstraction

Architecture Description
The NVRAM Manager accesses drivers via the Memory Abstraction
Interface. It addresses different memory devices using a device
index.

Interface Description
The Memory Abstraction Interface could have the following interface
(e.g. for the write function):

Std_ReturnType MemIf_Write
(

uint8 DeviceIndex,
uint16 BlockNumber,
uint8 *DataBufferPtr

)

The EEPROM Abstraction as well as the Flash EEPROM Emulation
could have the following interface (e.g. for the write function):

Std_ReturnType Ea_Write
(

uint16 BlockNumber,
uint8 *DataBufferPtr

)

Memory Hardware Abstraction

Memory Abstraction Interface

Flash
EEPROM Emulation

EEPROM Abstaction

Memory Services

NVRAM
Manager

MemIf_Write(
DeviceIndex,
BlockNumber,
DataBufferPtr)

Fee_Write(
BlockNumber,
DataBufferPtr)

Ea_Write(
BlockNumber,
DataBufferPtr)

Nvm_Write(BlockIndex)

Page 55 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 4.3 – Interfaces: Interaction of Layers – Example “Memory”
ID: 04-024 Implementation of Memory Abstraction Interface (1)

Situation 1: only one NV device type used
This is the usual use case. In this situation, the Memory Abstraction could be implemented as a simple macro which neglects the
DeviceIndex parameter. The following example shows the write function only:

File MemIf.h:
#include “Ea.h“ /* for providing access to the EEPROM Abstraction */

...

#define MemIf_Write(DeviceIndex, BlockNumber, DataBufferPtr) \
Ea_Write(BlockNumber, DataBufferPtr)

File MemIf.c:
Does not exist

Result:
No additional code at runtime, the NVRAM Manager virtually accesses the EEPROM Abstraction or the Flash Emulation directly.

Page 56 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 4.3 – Interfaces: Interaction of Layers – Example “Memory”
ID: 04-025 Implementation of Memory Abstraction Interface (2)

Situation 2: two or more different types of NV devices used
In this case the DeviceIndex has to be used for selecting the correct NV device. The implementation can also be very efficient by
using an array of pointers to function. The following example shows the write function only:

File MemIf.h:

extern const WriteFctPtrType WriteFctPtr[2];

#define MemIf_Write(DeviceIndex, BlockNumber, DataBufferPtr) \
WriteFctPtr[DeviceIndex](BlockNumber, DataBufferPtr)

File MemIf.c:
#include “Ea.h“ /* for getting the API function addresses */
#include “Fee.h“ /* for getting the API function addresses */
#include “MemIf.h“ /* for getting the WriteFctPtrType */

const WriteFctPtrType WriteFctPtr[2] = {Ea_Write, Fee_Write};

Result:
The same code and runtime is needed as if the function pointer tables would be inside the NVRAM Manager.
The Memory Abstraction Interface causes no overhead.

Page 57 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 4.3 – Interfaces: Interaction of Layers – Example “Memory”
ID: 04-026 Conclusion

Conclusions:

Abstraction Layers can be implemented very efficiently

Abstraction Layers can be scaled

The Memory Abstraction Interface eases the access of the NVRAM Manager to one or more EEPROM and Flash devices

The architectural targets and requirements are fulfilled

Page 58 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

ID: 04-040 – Layered Software Architecture

Part 4 – Interfaces
4.4 Interaction of Layers – Example “Communication”

Page 59 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Layer N-1

Layer N+1

TP

Explanation of terms:

SDU
SDU is the abbreviation of “Service Data Unit”. It is the data
passed by an upper layer, with the request to transmit the data. It
is as well the data which is extracted after reception by the lower
layer and passed to the upper layer.
A SDU is part of a PDU.

PCI
PCI is the abbreviation of “Protocol Control Information”. This
Information is needed to pass a SDU from one instance of a
specific protocol layer to another instance. E.g. it contains source
and target information.
The PCI is added by a protocol layer on the transmission side and
is removed again on the receiving side.

PDU
PDU is the abbreviation of “Protocol Data Unit”. The PDU contains
SDU and PCI.
On the transmission side the PDU is passed from the upper layer
to the lower layer, which interprets this PDU as its SDU.

Part 4.4 – Interfaces: Interaction of Layers – Example “Communication”
ID: 04-51 PDU Flow through the Layered Architecture

Layer N

data structure PDU

data structure SDUPCI

LayerN_Tx(*PDU);

void LayerN_Tx(*SDU);

LayerN+1_Tx(*PDU);

void LayerN+1_Tx(*SDU);

CAN IF

data structure SDUPCI

data structurePCI PDU

data structurePCI

data structure SDUPCI

data structurePCI PDU

Page 60 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 4.4 – Interfaces: Interaction of Layers – Example “Communication”
ID: 04-52 SDU and PDU Naming Conventions

Naming of PDUs and SDUs respects the following rules:

For PDU:
<bus prefix> <layer prefix> - PDU

For SDU
<bus prefix> <layer prefix> - SDU

The bus prefix and layer prefix are described in the following table:

Examples:
I-PDU or I-SDU
CAN FF N-PDU or FR CF N-SDU
LIN L-PDU or FR L-SDU

ISO Layer Layer
Prefix

AUTOSAR
Modules

PDU
Name

CAN prefix LIN prefix FlexRay prefix

Layer 6:
Presentation
(Interaction)

I COM, DCM I-PDU N/A

I PDU router,
PDU multiplexer

I-PDU N/A

Layer 3:
Network Layer

N TP Layer N-PDU CAN SF
CAN FF
CAN CF
CAN FC

LIN SF
LIN FF
LIN CF
LIN FC

FR SF
FR FF
FR CF
FR FC

Layer 2:
Data Link Layer

L Driver, Interface L-PDU CAN LIN FR

SF: Single Frame
FF: First Frame
CF: Consecutive Frame
FC: Flow Control

For details on the frame types,
please refer to the AUTOSAR
Transport Protocol specifications for
CAN, LIN and FlexRay.

Page 61 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 4.4 – Interfaces: Interaction of Layers – Example “Communication”
ID: 04-050 Generic Gateway and COM Layer Structure
Routing Components

PDU Router
Provides routing of PDUs between
different abstract communication
controllers and upper layers
Scale of the Router is ECU specific
(down to no size if e.g. only one
communication controller exists)
Provides TP routing on-the-fly. Transfer
of TP data is started before full TP data
is buffered.

COM
Provides routing of individual signals or
groups of signals between different I-
PDUs.

NM Gateway
Synchronization of Network States of
different communication channels
connected to an ECU via the network
managements handled by the NM
Gateway

Communication State Managers
Start and Shutdown the hardware units
of the communication systems via the
interfaces.
Control PDU groups

AUTOSAR
COM

Communication HW Abstraction

FlexRay Interface CAN Interface LIN Interface
(incl. LIN TP)

PDU Router

RTE

N-PDU

Communication
ManagerSignals

Communication Drivers

FlexRay Driver CAN Driver LIN Low Level Driver

FlexRay TP

I-PDU

DCM
Diagnostic

Communication
Manager

I-PDU1

CAN TP

I-PDU1

Í-PDU
I-PDU

I-PDU

N-PDU

L-PDU L-PDU L-PDU

IPDU
multi-
plexer

I-PDU

1 The Interface between PduR and Tp differs significantly compared to the interface between PduR and the Ifs.
In case of TP involvement a handshake mechanism is implemented allowing the transmission of I-Pdus > Frame size.

NM
Coordinator

Generic
NM interface

FlexRay
State

Manager

NM
Module

CAN State
Manager

LIN State
Manager

NM
ModuleNM

Module

Page 62 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

ID: 04-070 – Layered Software Architecture

Part 4 – Interfaces
4.5 Interaction of Layers –

Example “ECU State Manager”

Page 63 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 4.5 – Interfaces: Interaction of Layers – Example “ECU State Manager”
ID: 04-071 Interaction with ECU State Manager

ECU Abstraction Layer

RTE

Microcontroller Abstraction Layer

Service Layer (except communication stack)

B
S

W
 S

ch
ed

ul
er

E
C

U
 S

ta
te

 M
an

ag
er

Watchdog Manager

Communication Manager

C
al

l m
ai

n
fu

nc
tio

ns

an
d

ac
ce

ss

re
st

ric
te

d
ar

ea
s

NVRAM Manager
Job End Notification

initializes

initializes

initializes

Communication ServicesPost build selectable Configuration tables

1
2

DEM
ComM
WdgM

…

DEM

DET

R
ep

or
t E

rr
or

Report Error

S
to

re
 E

rr
or

s

initializes

Request/release
RUN

This figure does not show all interactions between all modules. It is a discussion base only.

3

DEM
ComM
WdgM

…

DEM
ComM
WdgM

…

CAN State Manager

FlexRay State Manager

LIN State Manager
initializes

Page 64 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

ID: 05 – Layered Software Architecture

Part 5 – Configuration

Page 65 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 5 – Configuration
ID: 05-000 Overview

The AUTOSAR Basic Software supports the following configuration classes:

1. Pre compile time
Preprocessor instructions
Code generation (selection or synthetization)

2. Link time
Constant data outside the module; the data can be configured after the module has been compiled

3. Post build time
Loadable constant data outside the module. Very similar to [2], but the data is located in a specific memory segment that
allows reloading (e.g. reflashing in ECU production line)
Single or multiple configuration sets can be provided. In case that multiple configuration sets are provided, the actually
used configuration set is to be specified at runtime.

In many cases, the configuration parameters of one module will be of different configuration classes.
Example: a module providing post build time configuration parameters will still have some parameters that are pre compile time
configurable.

Page 66 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 5 – Configuration
ID: 05-001 Pre Compile Time

Use cases
Pre compile time configuration would be chosen for

Enabling/disabling optional functionality
This allows to exclude parts of the source code that are not needed
Optimization of performance and code size
Using #defines results in most cases in more efficient code than access to constants or even access to constants via
pointers.
Generated code avoids code and runtime overhead.

Restrictions
The module must be available as source code
The configuration is static. To change the configuration, the module has to be recompiled

Required implementation
Pre compile time configuration shall be done via the module‘s two configuration files (*_Cfg.h, *_Cfg.c) and/or by code generation:
• *_Cfg.h stores e.g. macros and/or #defines
• *_Cfg.c stores e.g. constants

Nm.c

Nm_Cfg.h

includes

Nm_Cfg.c

uses
(optional)

Page 67 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 5 – Configuration
ID: 05-004 Pre Compile Time

Example 1: Enabling/disabling functionality
File Spi_Cfg.h:
#define SPI_DEV_ERROR_DETECT ON

File Spi_Cfg.c:
const uint8 myconstant = 1;

File Spi.c (available as source code):
#include “Spi_Cfg.h“ /* for importing the configuration parameters */

external const uint8 myconstant;

#if (SPI_DEV_ERROR_DETECT == ON)
Det_ReportError(Spi_ModuleId, 0, 3, SPI_E_PARAM_LENGTH); /* only one instance available */
#endif

Page 68 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 5 – Configuration
ID: 05-002 Pre Compile Time

Example 2: Event IDs reported to the DEM
XML configuration file of the NVRAM Manager:
Specifies that it needs the event symbol NVM_E_REQ_FAILED for production error reporting.

File Dem_Cfg.h (generated by DEM configuration tool):
typedef uint8 Dem_EventIdType; /* total number of events = 46 => uint8 sufficient */

#define FLS_E_ERASE_FAILED 1
#define FLS_E_WRITE_FAILED 1
#define FLS_E_READ_FAILED 1
#define FLS_E_UNEXPECTED_FLASH_ID 2
#define NVM_E_REQ_FAILED 3
#define CAN_E_TIMEOUT 4
...

File Dem.h:
#include “Dem_Cfg.h“ /* for providing access to event symbols */

File NvM.c (available as source code):
#include “Dem.h“ /* for reporting production errors */

Dem_ReportErrorStatus(NVM_E_REQ_FAILED, DEM_EVENT_STATUS_PASSED);

Page 69 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 5 – Configuration
ID: 05-003 Link Time

Use cases
Link time configuration would be chosen for

Configuration of modules that are only available as object code
(e.g. IP protection or warranty reasons)
Selection of configuration set after compilation but before linking.

Required implementation
1. One configuration set, no runtime selection

Configuration data shall be captured in external constants. These external constants are located in a separate file. The
module has direct access to these external constants.

Page 70 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 5 – Configuration
ID: 05-005 Link Time

Example 1: Event IDs reported to the DEM by a module (CAN Interface) that is available as object code only
XML configuration file of the CAN Interface:
Specifies that it needs the event symbol CANIF_E_INVALID_TXPDUID for production error reporting.

File Dem_Cfg.h (generated by DEM configuration tool):
typedef uint16 Dem_EventIdType; /* total number of events = 380 => uint16 required */

#define FLS_E_UNEXPECTED_FLASH_ID 1
#define NVM_E_REQ_FAILED 2
#define CAN_E_TIMEOUT 3
#define CANIF_E_INVALID_TXPDUID 4
...

File CanIf_Lcfg.c:
#include “Dem_Cfg.h”

const Dem_EventIdType CanIf_InvalidTxPduId = CANIF_E_INVALID_TXPDUID;

File CanIf.c (available as object code):
#include “Dem.h“ /* for reporting production errors */

Dem_ReportErrorStatus(CanIf_InvalidTxPduId, DEM_EVENT_STATUS_FAILED);

Note: the complete include file structure with all forward declarations is not shown here to keep the example simple.

Page 71 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 5 – Configuration
ID: 05-006 Link Time

Example 1: Event IDs reported to the DEM by a module (CAN Interface) that is available as object code only

Problem
Dem_EventIdType is also generated depending of the total number of event IDs on this ECU. In this example it is represented as
uint16. The Can Interface uses this type, but is only available as object code.

Solution
In the contract phase of the ECU development, a bunch of variable types (including Dem_EventIdType) have to be fixed and
distributed for each ECU. The object code suppliers have to use those types for their compilation and deliver the object code using
the correct types.

Page 72 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 5 – Configuration
ID: 05-007 Post Build Time

Use cases
Post build time configuration would be chosen for

Configuration of data where only the structure is defined but the contents not known during ECU build time
Configuration of data that is likely to change or has to be adapted after ECU build time
(e.g. end of line, during test & calibration)
Reusability of ECUs across different product lines (same code, different configuration data)

Restrictions
Implementation requires dereferencing which has impact on performance, code and data size

Required implementation

1. One configuration set, no runtime selection (loadable)
Configuration data shall be captured in external constant structs. These external structs are located in a separate memory
segment that can be individually reloaded.

2. 1..n configuration sets, runtime selection possible (selectable)
Configuration data shall be captured within external constant structs. These configuration structures are located in one
separate file. The module gets a pointer to one of those structs at initialization time. The struct can be selected at each
initialization.

Page 73 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 5 – Configuration
ID: 05-010 Post Build Time

Example 1 (Post Build Time loadable)
If the configuration data is fix in memory size and position, the module has direct access to these external structs.

PduR.c

PduR_PBcfg.c

LinkerCompiler PduR.o

PduR_PBcfg.o

Direct access
(via reference as given by
the pointer parameter of
PduR’s initialization function)

LinkerCompiler

Linker control file

Page 74 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 5 – Configuration
ID: 05-008 Post Build Time

Required implementation 2: Configuration of CAN Driver that is available as object code only; multiple configuration sets
can be selected during initialization time.
File Can_PBcfg.c:
#include “Can.h” /* for getting Can_ConfigType */
const Can_ConfigType MySimpleCanConfig [2] =
{

{
Can_BitTiming = 0xDF,
Can_AcceptanceMask1 = 0xFFFFFFFF,
Can_AcceptanceMask2 = 0xFFFFFFFF,
Can_AcceptanceMask3 = 0x00034DFF,
Can_AcceptanceMask4 = 0x00FF0000

},
{

…
}

};

File EcuM.c:
#include “Can.h“ /* for initializing the CAN Driver */
Can_Init(&MySimpleCanConfig[0]);

File Can.c (available as object code):
#include “Can.h“ /* for getting Can_ConfigType */

void Can_Init(Can_ConfigType* Config)
{

/* write the init data to the CAN HW */
};

Linker

Compiler

Binary file

Page 75 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 5 – Configuration
ID: 05-009 Variants

Different use cases require different kinds of configurability:

Example use cases:
Reprogrammable PDU routing tables in gateway (post build time configurable PDU Router required)
Statically configured PDU routing with no overhead (Pre-Compile time configuration of PDU Router required)

To allow the implementation of such different use cases in each BSW module for each module, up to 3 variants can be specified:
A variant is a dedicated assignment of the configuration parameters of a module to configuration classes
Within a variant a configuration parameter can be assigned to only ONE configuration class
Within a variant a configuration class for different configuration parameters can be different (e.g. Pre-Compile for development error
detection and post-build for reprogrammable PDU routing tables
It is possible and intended that specific configuration parameters are assigned to the same configuration class for all variants (e.g.
development error detection is in general pre-compile time configurable).

Page 76 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 5 – Configuration
ID: 05-011 Memory Layout Example: Postbuild Loadable (PBL)

For details, see Chapter “Post build implementation” in

“AUTOSAR_C_ImplementationRules.doc”

0x4710 &the_real_xx_configuration

0x4710 lower = 2

0x4712 upper =7

0x4714 more_data

…

0x4720 &the_real_yy_configuration

0x4720 Xx_data1=0815

0x4722 Yy_data2=4711

0x4724 more_data

…

0x8000 &index (=0x8000)

0x8000 &xx_configuration = 0x4710

0x8002 &yy_configuration = 0x4720

0x8004 &zz_configuration = 0x4730

…

Description where to find what is an overall agreement:
1. EcuM needs to know all addresses including index
2. The modules (xx, yy, zz) need to know their own

start address: in this case: 0x4710, 0x4720 …
3. The start addresses might be dynamic i.e. changes

with new configuration
4. When initializing a module (e.g. xx, yy, zz), EcuM

passes the base address of the configuration data
(e.g. 0x4710, 0x4720, 0x4730) to the module to
allow for variable sizes of the configuration data.

The modules data is agreed locally (in the module) only
1. The module (‘xx’, ‘yy’) knows its own start address

(to enable the implementer to allocate data section)
2. Only the module (‘xx’, ‘yy’) knows the internals of

its own configuration

EcuM defines the index:

Xx defines the modules configuration data:

Yy defines the modules configuration data:

Page 77 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 5 – Configuration
ID: 05-012 Memory Layout Example: Postbuild Multiple Selectable (PBM)

0x8000 &index[] (=0x8000)

0x8000 &xx_configuration = 0x4710

0x8002 &yy_configuration = 0x4720

0x8004 &zz_configuration = 0x4730

…

0x8008 &xx_configuration = 0x5000

0x800a &yy_configuration = 0x5400

0x800c &zz_configuration = 0x5200

…

0x8010 &xx_configuration = …

0x8012 &yy_configuration = …

0x8014 &zz_configuration = …

…

FL

FR

RL

As before, the description where to find what is an overall agreement
1. The index contains more than one description (FL, FR,..) in an array

(here the size of an array element is agreed to be 8)
2. There is an agreed variable containing the position of one description

selector = CheckPinCombination()
3. Instead of passing the pointer directly there is one indirection:

(struct EcuM_ConfigType *) &index[selector];
4. Everything else works as in PBL

For details, see Chapter “Post build implementation” in

“AUTOSAR_C_ImplementationRules.doc”

Page 78 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

ID: 06 – Layered Software Architecture

Part 6 – Scheduling

Page 79 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

BSW Scheduling shall
Assure correct timing behavior of the BSW, i.e., correct interaction of all BSW modules with respect to time
Be used to apply data consistency mechanisms

Single BSW modules do not know about
ECU wide timing dependencies
Scheduling implications
Most efficient way to implement data consistency

Centralize the BSW schedule in the BSW Scheduler implemented by the ECU/BSW integrator
Eases the integration task
Enables applying different scheduling strategies to schedulable objects

Preemptive, non-preemptive, ...
Enables applying different data consistency mechanisms
Enables reducing resources (e.g., minimize the number of tasks)

Restrict the usage of OS functionality
Only the Schedule Module shall use OS objects or OS services
(exceptions: EcuM and services: GetCounterValue and GetElapsedCounterValue of OS)
Rationale:

Scheduling of the BSW shall be transparent to the system (integrator)
Enables reducing the usage of OS resources (Tasks, Resources,...)
Enables re-using modules in different environments

Part 6 – Scheduling
ID: 06-001 Basic Scheduling Concepts of the BSW

Page 80 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

BSW Events
RecurringEvent
SporadicEvent

Yyy_MainFunction_Aaa

RTE

Microcontroller

Xxx_Isr_Yyy

Zzz_MainFunction_Aaa

Triggers
Main functions

Can be triggered in all layers by
RecurringEvents
SporadicEvents

Part 6 – Scheduling
ID: 06-003 Scheduling Objects and Triggers
BSW Scheduling objects

Main functions
n per module
located in all layers

Page 81 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Logical Architecture (Model)
Ideal concurrency
Unrestricted resources
Only real data dependencies

Scheduling objects
Trigger

BSW events
Sequences of scheduling objects
...

Technical Architecture (Implementation)
Restricted concurrency
Restricted resources
Real data dependencies
Dependencies given by restrictions

OS objects
Tasks
ISRs
Alarms
Resources
OS services

Sequences of scheduling objects within tasks
Sequences of tasks
...

Mapping of scheduling objects to OS Tasks
Specification of sequences of scheduling objects within tasks
Specification of task sequences
Specification of a scheduling strategy
...

Transformation

Part 6 – Scheduling
ID: 06-004 Transformation Process (1)

Page 82 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Logical Architecture (Model) Technical Architecture (Schedule Module SchM)

Task1 {

...
}

Yyy_MainFunction_Aaa();

Xxx_MainFunction_Aaa();

Zzz_MainFunction_Bbb();

Mapping of scheduling objects to OS Tasks
Specification of sequences of scheduling objects within tasks

Yyy_MainFunction_Aaa();

Xxx_MainFunction_Aaa();

Zzz_MainFunction_Bbb();

Transformation

Part 6 – Scheduling
ID: 06-006 Transformation Process – Example 1

Page 83 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Logical Architecture (Model) Technical Architecture (Schedule Module SchM)

Task2 {
...

...
}

Xxx_MainFunction_Bbb();

Task3 {
...

...
}

Yyy_MainFunction_Bbb();

Mapping of scheduling objects to OS Tasks

Xxx_MainFunction_Bbb();

Transformation

Yyy_MainFunction_Bbb();

Part 6 – Scheduling
ID: 06-007 Transformation Process – Example 2

Page 84 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Access to resources by different and concurrent entities of the implemented technical architecture
(e.g., main functions and/or other functions of the same module out of different task contexts)

Xxx_Module

Yyy_Module

Xxx_MainFunction();

Yyy_MainFunction();

resource

Yyy_ AccessResource();

Logical Architecture (Model) Technical Architecture (Schedule Module SchM)

?

Data consistency strategy to be used
Sequence
Interrupt blocking
Cooperative Behavior
Semaphores (OSEK Resources)
Copies of ...
...

Transformation

Part 6 – Scheduling
ID: 06-008 Data Consistency – Motivation

Page 85 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Xxx_MainFunction();

Yyy_MainFunction();

resource

Yyy_ AccessResource();

Xxx_Module

Logical Architecture (Model) /

Data consistency is ensured by
Interrupt blocking

Transformation

Task2

Task1

Technical Architecture (Schedule Module SchM)
#define SchM_Enter_<mod>(XYZ) DisableAllInterrupts
#define SchM_Exit_<mod>(XYZ) EnableAllInterrupts

Implementation of Schedule Module SchM

Yyy_AccessResource() {
...
SchM_Enter_xxx_(XYZ)
<access_to_shared_resource>
SchM_Exit_xxx(XYZ)
...

}

Yyy_MainFunction() {
...
SchM_Enter_yyy_(XYZ)
<access_to_shared_resource>
SchM_Exit_yyy(XYZ)
...

}

Part 6 – Scheduling
ID: 06-009 Data Consistency – Example 1 – “Critical Sections” Approach

Page 86 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Xxx_MainFunction();

Yyy_MainFunction();

resource

Yyy_ AccessResource();

Xxx_Module

Logical Architecture (Model) /

Data consistency is ensured by
Sequence

Transformation

Task2

Task1

Technical Architecture (Schedule Module SchM)
#define SchM_Enter_<mod>(XYZ) /* nothing required */
#define SchM_Exit_<mod>(XYZ) /* nothing required */

Implementation of Schedule Module SchM

Yyy_AccessResource() {
...
SchM_Enter_xxx_(XYZ)
<access_to_shared_resource>
SchM_Exit_xxx(XYZ)
...

}

Yyy_MainFunction() {
...
SchM_Enter_yyy_(XYZ)
<access_to_shared_resource>
SchM_Exit_yyy(XYZ)
...

}

Part 6 – Scheduling
ID: 06-009 Data Consistency – Example 2 – “Critical Sections” Approach

Page 87 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

ID: 07 – Layered Software Architecture

Part 7 – Implementation Conformance Classes

Page 88 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 7 – Implementation Conformance Classes
ID: 07-01 ICC3

Complex
Drivers

Microcontroller

AUTOSAR Runtime Environment (RTE)

Microcontroller Drivers Memory Drivers I/O Drivers

I/O Hardware Abstraction

Memory Hardware
Abstraction

Memory ServicesSystem Services

Onboard Device
Abstraction

Communication Drivers

Communication
Hardware Abstraction

Communication Services

Application Layer

P
O

R
T

D
riv

er

A
D

C
 D

riv
er

D
IO

 D
riv

er

P
W

M

D
riv

er

IC
U

 D
riv

er

R
A

M
 T

es
t

C
A

N
 D

riv
er

in
te

rn
al

E

E
P

R
O

M

D
riv

er

in
te

rn
al

Fl

as
h

D
riv

er

W
at

ch
do

g
D

riv
er

LI
N

 D
riv

er

M
C

U
 D

riv
er

Fl
ex

R
ay

D
riv

er

C
or

e
Te

st

G
P

T
D

riv
er

S
P

IH
an

dl
er

D
riv

er

MemIf
EA Fee

I/O Signal Interface

Driver for
ext.

I/O ASIC

Driver for
ext.

ADC ASIC

WdgIf

TP

DCMCOM

NM
IPDU

NM
If

ext. Drv

xxx Interface

Trcv.

NVRAM Manager

B
S

W
 S

ch
ed

ul
er

Fu
nc

tio
n

In
hi

bi
tio

n
M

an
ag

er

W
at

ch
do

g
M

an
ag

er

D
ev

el
op

m
en

t
E

rro
r T

ra
ce

r

D
ia

gn
os

tic
 E

ve
nt

M

an
ag

er

C
om

m
un

ic
at

io
n

M
an

ag
er

A
U

TO
S

A
R

 O
S

S
yn

ch
ro

ni
za

tio
n

S
er

vi
ce

Ti
m

e
S

er
vi

ce

E
C

U
 S

ta
te

M

an
ag

er

Not all ICC3 modules shown

PDU Router

… ICC3 module functional groups

Page 89 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 7 – Implementation Conformance Classes
ID: 07-02 ICC2

Complex
Drivers

AUTOSAR Runtime Environment (RTE)*

I/O Hardware
Abstraction

Application Layer

CAN

Com
Services

FlexRay LINO
S

MOST is currently not included

IPDUM*

Watch-
dog

ECU Hardware

MemIf

EA Fee

P
O

R
T

D
riv

er

A
D

C

D
riv

er

D
IO

D

riv
er

P
W

M

D
riv

er

IC
U

D

riv
er

R
A

M
 T

es
t

CAN Driver E
E

P
R

O
M

D

riv
er

Fl
as

h
D

riv
er

W
at

ch
do

g
D

riv
er

LIN Driver

M
C

U

D
riv

er

FlexRay Driver C
or

e
Te

st

G
P

T
D

riv
er

S
P

IH
an

dl
er

D
riv

er

COM
WdgM

Memories

NvM

CAN Interface FR Interface LIN Interface

LIN
NM

FR
TP

FR
NM

CAN
TP

CAN
NM

DiagnosticsMode EcuM

N
M

 If
CAN St Mgr FR St Mgr LIN St Mgr

IPDUM C
om

M
C

A
N

Tr

an
sc

ei
ve

r

Fl
ex

R
ay

Tr
an

sc
ei

ve
r

Debug

DET

SchM

SchM

WdgIf

FI
M

D
E

M

D
C

M

PDU Router

… ICC3 module ICC2 clusters

The clustering shown in this document is the one defined by the project so far.
AUTOSAR is currently not restricting the clustering on ICC2 level to dedicated
clusters as many different constraint and optimization criteria might lead to different
ICC2 clusterings. There might be different AUTOSAR ICC2 clusterings against which
compliancy can be stated based on a to be defined approach for ICC2 conformance.

Page 90 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.0

R3.0 Rev 0001

Document ID 053

Part 7 – Implementation Conformance Classes
ID: 07-02 ICC1

Proprietary software
AUTOSAR Runtime Environment (RTE)

Application Layer

ECU Hardware

AUTOSAR conformant bus behavior

	Layered Software Architecture
	Document Information
	Document Change History
	Disclaimer
	Overview
	Part 1 – Introduction, Scope and Limitations
	Part 2 – Overview of Software Layers
	Part 4 – Interfaces
	Part 5 – Configuration
	Part 6 – Scheduling
	7 – Implementation Conformance Classes

