
SOME/IP Protocol Specification
AUTOSAR FO R24-11

Document Title SOME/IP Protocol Specification
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 696

Document Status published
Part of AUTOSAR Standard Foundation
Part of Standard Release R24-11

Document Change History
Date Release Changed by Description

2024-11-27 R24-11
AUTOSAR
Release
Management

• Protocol updates for interoperability
issues between AP and CP regarding
SOME/IP Error responses

• Added configurable timer for
SOME/IP-TP reception timeout time

• Editorial Changes

2023-11-23 R23-11
AUTOSAR
Release
Management

• Clarifications in Payload Compatibility
Rules table

• Changed [PRS_SOMEIP_00163] to
allow sharing of local endpoint between
different required service instances of
the same service

• Made length field required in dynamic
arrays

• Editorial Changes
5

1 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

4

2022-11-24 R22-11
AUTOSAR
Release
Management

• Clarification of SOME/IP-TP
segmentation

• Removed
implementsSOMEIPStringHandling

• [PRS_SOMEIP_00300] extended by
uint64

• Corrected serialization with BOM in
[PRS_SOMEIP_00374]

• Corrected multiple Bugs in
[PRS_SOMEIP_00043],
[PRS_SOMEIP_00739],
[PRS_SOMEIP_00043],
[PRS_SOMEIP_00241],
[PRS_SOMEIP_00101],
[PRS_SOMEIP_00942] and
[PRS_SOMEIP_00922]

• Added [PRS_SOMEIP_00245] to correct
mismatch in size of Method-ID

• Editorial Changes

2021-11-25 R21-11
AUTOSAR
Release
Management

• Added Restriction of Server Connection
from Clients

• Added Restriction of Client Connection
to Server

• Clarification on String Handling in
SOME/IP

• SOME/IP Header shall be encoded in
network byte order

• Editorial Changes
5

2 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

4

2020-11-30 R20-11
AUTOSAR
Release
Management

• Removed Draft Status from TLV
Requirements

• Fixed discrepancies between SWS and
PRS

• Clarified usage of length field

• Restricted alignment of variable length
arrays to 8, 16, 32, 64, 128 or 256 Bits

• Editorial Changes

2019-11-28 R19-11
AUTOSAR
Release
Management

• Added

– Support for unit64 / sint64

– Error-Codes for E2E-Protection

• Clarify

– Serialization of fixed length array data

– Support for Data Accumulation feature

– Contradicting requirements

• Introduce
implementsLegacyStringSerialization
tag (as successor of
implementsSOMEIPStringHandling)

• Editorial Changes

• Changed Document Status from Final to
published

2019-03-29 1.5.1
AUTOSAR
Release
Management

• No content changes

2018-10-31 1.5.0
AUTOSAR
Release
Management

• Backward-incompatibility statement
removed

• Some statements improved

2018-03-29 1.4.0
AUTOSAR
Release
Management

• Improved traceability

2017-12-08 1.3.0
AUTOSAR
Release
Management

• No content changes

5

3 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

4

2017-10-27 1.2.0
AUTOSAR
Release
Management

• Editorial changes

2017-03-31 1.1.0
AUTOSAR
Release
Management

• Serialization of Structured Datatypes
and Arguments with Identifier and
optional members

2016-11-30 1.0.0
AUTOSAR
Release
Management

• Initial Release

4 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

5 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

Contents

1 Introduction and overview 8

1.1 Protocol purpose and objectives . 8
1.2 Applicability of the protocol . 8

1.2.1 Constraints and assumptions 8
1.3 Dependencies . 9
1.4 Document Structure . 9

2 Protocol Requirements 10

2.1 Requirements Traceability . 10

3 Acronyms and Abbreviations 14

4 Protocol specification 16

4.1 Specification of SOME/IP Message Format (Serialization) 16
4.1.1 Limitation . 16
4.1.2 Header . 16

4.1.2.1 Message ID [32 Bit] 18
4.1.2.2 Method ID [16 Bit] . 18
4.1.2.3 Length [32 Bit] . 19
4.1.2.4 Request ID [32 Bit] . 19
4.1.2.5 Protocol Version [8 Bit] 22
4.1.2.6 Interface Version [8 Bit] 23
4.1.2.7 Message Type [8 Bit] 23
4.1.2.8 Return Code [8 Bit] . 24
4.1.2.9 Payload [variable size] 25

4.1.3 Endianess . 25
4.1.4 Serialization of Data Structures 26

4.1.4.1 Basic Datatypes . 28
4.1.4.2 Structured Datatypes (structs) 29
4.1.4.3 Structured Datatypes and Arguments with Identifier

and optional members (’TLV’) 30
4.1.4.4 Strings . 39
4.1.4.5 Arrays . 42
4.1.4.6 Enumeration . 46
4.1.4.7 Bitfield . 46
4.1.4.8 Union / Variant . 47

4.1.5 De-serialization of Data Structures 49
4.1.5.1 Structured DataTypes (structs) 49
4.1.5.2 Structured Datatypes and Arguments with Identifier

and optional members (’TLV’) 50
4.1.5.3 Strings . 51
4.1.5.4 Arrays . 52
4.1.5.5 Enumeration . 53
4.1.5.6 Bitfield . 53

6 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

4.1.5.7 Union / Variant . 53
4.2 Specification of SOME/IP Protocol . 54

4.2.1 Transport Protocol Bindings . 54
4.2.1.1 UDP Binding . 55
4.2.1.2 TCP Binding . 56
4.2.1.3 Multiple Service-Instances 59
4.2.1.4 Transporting large SOME/IP messages of UDP

(SOME/IP-TP) . 60
4.2.2 Request/Response Communication 68
4.2.3 Fire&Forget Communication 70
4.2.4 Notification Events . 71

4.2.4.1 Strategy for sending notifications 72
4.2.5 Fields . 72
4.2.6 Error Handling . 73

4.2.6.1 Return Code . 75
4.2.6.2 Error Message . 76
4.2.6.3 Error Processing Overview 77
4.2.6.4 Communication Errors and Handling of Communica-

tion Errors . 79
4.3 Compatibility Rules for Interface Version 79

5 Configuration Parameters 85

6 Protocol usage and guidelines 86

6.1 Choosing the transport protocol . 86
6.2 Security Considerations for SOME/IP . 86

A Change history of AUTOSAR traceable items 88

A.1 Traceable item history of this document according to AUTOSAR Re-
lease R24-11 . 88

A.1.1 Added Specification Items in R24-11 88
A.1.2 Changed Specification Items in R24-11 88
A.1.3 Deleted Specification Items in R24-11 89

A.2 Traceable item history of this document according to AUTOSAR Re-
lease R23-11 . 89

A.2.1 Added Specification Items in R23-11 89
A.2.2 Changed Specification Items in R23-11 90
A.2.3 Deleted Specification Items in R23-11 90

A.3 Traceable item history of this document according to AUTOSAR Re-
lease R22-11 . 90

A.3.1 Added Specification Items in R22-11 90
A.3.2 Changed Specification Items in R22-11 91
A.3.3 Deleted Specification Items in R22-11 91

7 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

1 Introduction and overview

This protocol specification specifies the format, message sequences and seman-
tics of the AUTOSAR Protocol "Scalable service-Oriented MiddlewarE over IP
(SOME/IP)".

SOME/IP is an automotive/embedded communication protocol which supports remote
procedure calls, event notifications and the underlying serialization/wire format. The
only valid abbreviation is SOME/IP. Other abbreviations (e.g. Some/IP) are wrong and
shall not be used.

1.1 Protocol purpose and objectives

SOME/IP was created as existing solutions were not compatible to automotive use
cases as well as incompatible to the AUTOSAR Classic Platform architecture. The
major design goals were as follows:

• Fulfills the hard requirements regarding resource consumption of embedded
ECUs

• Is compatible through as many use-cases and communication partners as possi-
ble

• Compatible with AUTOSAR at least on the wire-format level; i.e., SOME/IP was
introduced with minimal architecture changes in the AUTOSAR Classic Platform.

• Provides the features required by automotive use-cases

• Is scalable from tiny to large platforms

1.2 Applicability of the protocol

SOME/IP shall be implemented on different operating system (i.e., AUTOSAR,
GENIVI/COVESA, and OSEK) and even embedded devices without operating system.
SOME/IP shall be used for inter-ECU Client/Server Serialization. An implementation
of SOME/IP allows AUTOSAR to parse the RPC PDUs and transport the parameters
to the application.

1.2.1 Constraints and assumptions

The "Support for serialization of extensible data structs" has been introduced - which
SOME/IP serializers based on AUTOSAR Foundation Standard 1.0.0 (AUTOSAR Clas-
sic Standard 4.3.0) as well as most non-AUTOSAR implementations cannot process.

8 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

To indicate this interoperability issue [PRS_SOMEIP_00220] requires to increase the
major interface version of the respective serialized data.

1.3 Dependencies

There are no dependencides to AUTOSAR SWS modules.

1.4 Document Structure

The SOME/IP PRS will describe the following two aspects of SOME/IP.

Specification of SOME/IP on wire-format (Serialization)

• Structure of Header Format

• How the different data types are serialized as per SOME/IP

Specification of Protocol for Event and RPC-based communication

• Transport Protocol

• Rules that govern the RPC for SOME/IP

In addition to this document, the PRS SOME/IP-SD [1] describes the Service Discovery
and other functionalities of SOME/IP.

9 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

2 Protocol Requirements

2.1 Requirements Traceability

Requirement Description Satisfied by

[RS_SOMEIP_00002] SOME/IP protocol shall provide
service-based communication

[PRS_SOMEIP_00703] [PRS_SOMEIP_00909]
[PRS_SOMEIP_00946] [PRS_SOMEIP_00947]

[RS_SOMEIP_00003] SOME/IP protocol shall provide
support of multiple versions of a
service interface

[PRS_SOMEIP_00053] [PRS_SOMEIP_00758]
[PRS_SOMEIP_00937] [PRS_SOMEIP_00938]

[RS_SOMEIP_00004] SOME/IP protocol shall support event
communication

[PRS_SOMEIP_00925] [PRS_SOMEIP_00926]

[RS_SOMEIP_00005] SOME/IP protocol shall support
different strategies for event
communication

[PRS_SOMEIP_00183]

[RS_SOMEIP_00006] SOME/IP protocol shall support
uni-directional RPC communication

[PRS_SOMEIP_00171] [PRS_SOMEIP_00382]
[PRS_SOMEIP_00924]

[RS_SOMEIP_00007] SOME/IP protocol shall support
bi-directional RPC communication

[PRS_SOMEIP_00920] [PRS_SOMEIP_00921]
[PRS_SOMEIP_00922] [PRS_SOMEIP_00923]
[PRS_SOMEIP_00927] [PRS_SOMEIP_00928]

[RS_SOMEIP_00008] SOME/IP protocol shall support error
handling of RPC communication

[PRS_SOMEIP_00055] [PRS_SOMEIP_00058]
[PRS_SOMEIP_00187] [PRS_SOMEIP_00188]
[PRS_SOMEIP_00189] [PRS_SOMEIP_00190]
[PRS_SOMEIP_00191] [PRS_SOMEIP_00195]
[PRS_SOMEIP_00537] [PRS_SOMEIP_00539]
[PRS_SOMEIP_00576] [PRS_SOMEIP_00614]
[PRS_SOMEIP_00701] [PRS_SOMEIP_00757]
[PRS_SOMEIP_00901] [PRS_SOMEIP_00902]
[PRS_SOMEIP_00903] [PRS_SOMEIP_00904]
[PRS_SOMEIP_00905] [PRS_SOMEIP_00910]

[RS_SOMEIP_00009] SOME/IP protocol shall support field
communication

[PRS_SOMEIP_00179] [PRS_SOMEIP_00180]
[PRS_SOMEIP_00181] [PRS_SOMEIP_00182]
[PRS_SOMEIP_00183] [PRS_SOMEIP_00909]

[RS_SOMEIP_00010] SOME/IP protocol shall support
different transport protocols
underneath

[PRS_SOMEIP_00137] [PRS_SOMEIP_00139]
[PRS_SOMEIP_00140] [PRS_SOMEIP_00141]
[PRS_SOMEIP_00142] [PRS_SOMEIP_00154]
[PRS_SOMEIP_00160] [PRS_SOMEIP_00378]
[PRS_SOMEIP_00379] [PRS_SOMEIP_00382]
[PRS_SOMEIP_00535] [PRS_SOMEIP_00706]
[PRS_SOMEIP_00707] [PRS_SOMEIP_00708]
[PRS_SOMEIP_00709] [PRS_SOMEIP_00710]
[PRS_SOMEIP_00711] [PRS_SOMEIP_00720]
[PRS_SOMEIP_00721] [PRS_SOMEIP_00722]
[PRS_SOMEIP_00723] [PRS_SOMEIP_00724]
[PRS_SOMEIP_00725] [PRS_SOMEIP_00726]
[PRS_SOMEIP_00727] [PRS_SOMEIP_00728]
[PRS_SOMEIP_00729] [PRS_SOMEIP_00730]
[PRS_SOMEIP_00731] [PRS_SOMEIP_00732]
[PRS_SOMEIP_00733] [PRS_SOMEIP_00734]
[PRS_SOMEIP_00735] [PRS_SOMEIP_00736]
[PRS_SOMEIP_00738] [PRS_SOMEIP_00740]
[PRS_SOMEIP_00741] [PRS_SOMEIP_00742]
[PRS_SOMEIP_00743] [PRS_SOMEIP_00744]
[PRS_SOMEIP_00745] [PRS_SOMEIP_00746]
[PRS_SOMEIP_00747] [PRS_SOMEIP_00749]
[PRS_SOMEIP_00750] [PRS_SOMEIP_00751]
[PRS_SOMEIP_00752] [PRS_SOMEIP_00753]
[PRS_SOMEIP_00754] [PRS_SOMEIP_00940]
[PRS_SOMEIP_00942] [PRS_SOMEIP_00943]

5

10 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

4
Requirement Description Satisfied by

[RS_SOMEIP_00011] SOME/IP protocol shall support
messages of different lengths

[PRS_SOMEIP_00722]

[RS_SOMEIP_00012] SOME/IP protocol shall support
session handling

[PRS_SOMEIP_00521] [PRS_SOMEIP_00533]
[PRS_SOMEIP_00720] [PRS_SOMEIP_00721]
[PRS_SOMEIP_00739] [PRS_SOMEIP_00935]
[PRS_SOMEIP_00936]

[RS_SOMEIP_00014] SOME/IP protocol shall support
handling of protocol errors on
receiver side

[PRS_SOMEIP_00195] [PRS_SOMEIP_00378]
[PRS_SOMEIP_00576] [PRS_SOMEIP_00614]
[PRS_SOMEIP_00910]

[RS_SOMEIP_00015] SOME/IP protocol shall support
multiple instances of a service

[PRS_SOMEIP_00138] [PRS_SOMEIP_00162]
[PRS_SOMEIP_00163]

[RS_SOMEIP_00016] SOME/IP protocol shall support
combining multiple RPC methods,
events and fields in one service

[PRS_SOMEIP_00245] [PRS_SOMEIP_00366]
[PRS_SOMEIP_00755]

[RS_SOMEIP_00017] SOME/IP protocol shall support
grouping events into eventgroups

[PRS_SOMEIP_00365] [PRS_SOMEIP_00366]

[RS_SOMEIP_00018] SOME/IP protocol shall support
grouping fields in eventgroups

[PRS_SOMEIP_00366]

[RS_SOMEIP_00021] SOME/IP protocol shall identify RPC
methods of services using unique
identifiers

[PRS_SOMEIP_00034]

[RS_SOMEIP_00022] SOME/IP protocol shall identify
events of services using unique
identifiers

[PRS_SOMEIP_00034]

[RS_SOMEIP_00023] SOME/IP protocol shall identify event
groups of services using unique
identifiers

[PRS_SOMEIP_00034]

[RS_SOMEIP_00024] SOME/IP protocol shall define
reserved identifiers

[PRS_SOMEIP_00191] [PRS_SOMEIP_00907]

[RS_SOMEIP_00025] SOME/IP protocol shall support the
identification of callers of an RPC
using unique identifiers

[PRS_SOMEIP_00043] [PRS_SOMEIP_00044]
[PRS_SOMEIP_00532] [PRS_SOMEIP_00702]
[PRS_SOMEIP_00703]

[RS_SOMEIP_00026] SOME/IP protocol shall define the
endianness of header and payload

[PRS_SOMEIP_00368] [PRS_SOMEIP_00369]
[PRS_SOMEIP_00759]

[RS_SOMEIP_00027] SOME/IP protocol shall define the
header layout of messages

[PRS_SOMEIP_00030] [PRS_SOMEIP_00031]
[PRS_SOMEIP_00034] [PRS_SOMEIP_00042]
[PRS_SOMEIP_00043] [PRS_SOMEIP_00046]
[PRS_SOMEIP_00050] [PRS_SOMEIP_00051]
[PRS_SOMEIP_00052] [PRS_SOMEIP_00053]
[PRS_SOMEIP_00055] [PRS_SOMEIP_00058]
[PRS_SOMEIP_00141] [PRS_SOMEIP_00245]
[PRS_SOMEIP_00365] [PRS_SOMEIP_00366]
[PRS_SOMEIP_00367] [PRS_SOMEIP_00521]
[PRS_SOMEIP_00532] [PRS_SOMEIP_00533]
[PRS_SOMEIP_00701] [PRS_SOMEIP_00702]
[PRS_SOMEIP_00703] [PRS_SOMEIP_00704]
[PRS_SOMEIP_00723] [PRS_SOMEIP_00724]
[PRS_SOMEIP_00725] [PRS_SOMEIP_00726]
[PRS_SOMEIP_00727] [PRS_SOMEIP_00728]
[PRS_SOMEIP_00739] [PRS_SOMEIP_00755]
[PRS_SOMEIP_00757] [PRS_SOMEIP_00931]
[PRS_SOMEIP_00932] [PRS_SOMEIP_00933]
[PRS_SOMEIP_00934] [PRS_SOMEIP_00935]
[PRS_SOMEIP_00936] [PRS_SOMEIP_00940]
[PRS_SOMEIP_00941]

5

11 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

4
Requirement Description Satisfied by

[RS_SOMEIP_00028] SOME/IP protocol shall specify the
serialization algorithm for data

[PRS_SOMEIP_00101] [PRS_SOMEIP_00130]
[PRS_SOMEIP_00210] [PRS_SOMEIP_00211]
[PRS_SOMEIP_00212] [PRS_SOMEIP_00213]
[PRS_SOMEIP_00214] [PRS_SOMEIP_00216]
[PRS_SOMEIP_00220] [PRS_SOMEIP_00569]
[PRS_SOMEIP_00611] [PRS_SOMEIP_00612]
[PRS_SOMEIP_00613] [PRS_SOMEIP_00712]
[PRS_SOMEIP_00921] [PRS_SOMEIP_00923]

[RS_SOMEIP_00029] SOME/IP protocol shall specify how
data in the payload are aligned

[PRS_SOMEIP_00222] [PRS_SOMEIP_00569]
[PRS_SOMEIP_00611] [PRS_SOMEIP_00612]
[PRS_SOMEIP_00613] [PRS_SOMEIP_00730]

[RS_SOMEIP_00030] SOME/IP protocol shall support
transporting integer data types

[PRS_SOMEIP_00065] [PRS_SOMEIP_00300]
[PRS_SOMEIP_00615] [PRS_SOMEIP_00705]

[RS_SOMEIP_00031] SOME/IP protocol shall support
transporting boolean data type

[PRS_SOMEIP_00065] [PRS_SOMEIP_00615]

[RS_SOMEIP_00032] SOME/IP protocol shall support
transporting float data types

[PRS_SOMEIP_00065] [PRS_SOMEIP_00615]

[RS_SOMEIP_00033] SOME/IP protocol shall support
transporting structured data types

[PRS_SOMEIP_00077] [PRS_SOMEIP_00079]
[PRS_SOMEIP_00300] [PRS_SOMEIP_00370]
[PRS_SOMEIP_00371] [PRS_SOMEIP_00705]
[PRS_SOMEIP_00712] [PRS_SOMEIP_00900]

[RS_SOMEIP_00034] SOME/IP protocol shall support
transporting union data types

[PRS_SOMEIP_00118] [PRS_SOMEIP_00119]
[PRS_SOMEIP_00121] [PRS_SOMEIP_00122]
[PRS_SOMEIP_00123] [PRS_SOMEIP_00126]
[PRS_SOMEIP_00127] [PRS_SOMEIP_00129]
[PRS_SOMEIP_00130] [PRS_SOMEIP_00906]
[PRS_SOMEIP_00907] [PRS_SOMEIP_00915]
[PRS_SOMEIP_00916]

[RS_SOMEIP_00035] SOME/IP protocol shall support
transporting one-dimensional and
multi-dimensional array data types

[PRS_SOMEIP_00099] [PRS_SOMEIP_00101]

[RS_SOMEIP_00036] SOME/IP protocol shall support
transporting array data types with a
fixed length

[PRS_SOMEIP_00099] [PRS_SOMEIP_00101]
[PRS_SOMEIP_00381] [PRS_SOMEIP_00917]
[PRS_SOMEIP_00944]

[RS_SOMEIP_00037] SOME/IP protocol shall support
transporting array data types with
flexible length

[PRS_SOMEIP_00107] [PRS_SOMEIP_00114]
[PRS_SOMEIP_00375] [PRS_SOMEIP_00376]
[PRS_SOMEIP_00377] [PRS_SOMEIP_00919]
[PRS_SOMEIP_00945]

[RS_SOMEIP_00038] SOME/IP protocol shall support
transporting string types with a fixed
length

[PRS_SOMEIP_00084] [PRS_SOMEIP_00085]
[PRS_SOMEIP_00086] [PRS_SOMEIP_00087]
[PRS_SOMEIP_00372] [PRS_SOMEIP_00373]
[PRS_SOMEIP_00374] [PRS_SOMEIP_00760]
[PRS_SOMEIP_00911] [PRS_SOMEIP_00912]
[PRS_SOMEIP_00913] [PRS_SOMEIP_00948]

[RS_SOMEIP_00039] SOME/IP protocol shall support
transporting string data types with
flexible length

[PRS_SOMEIP_00089] [PRS_SOMEIP_00090]
[PRS_SOMEIP_00091] [PRS_SOMEIP_00092]
[PRS_SOMEIP_00093] [PRS_SOMEIP_00094]
[PRS_SOMEIP_00095] [PRS_SOMEIP_00914]

[RS_SOMEIP_00040] SOME/IP protocol shall support
providing the length of a serialized
data element in the payload

[PRS_SOMEIP_00042] [PRS_SOMEIP_00079]
[PRS_SOMEIP_00094] [PRS_SOMEIP_00208]
[PRS_SOMEIP_00221] [PRS_SOMEIP_00370]
[PRS_SOMEIP_00945]

[RS_SOMEIP_00041] SOME/IP protocol shall provide
support of multiple versions of the
protocol

[PRS_SOMEIP_00050] [PRS_SOMEIP_00051]
[PRS_SOMEIP_00052]

5

12 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

4
Requirement Description Satisfied by

[RS_SOMEIP_00042] SOME/IP protocol shall support
unicast and multicast based event
communication

[PRS_SOMEIP_00930]

[RS_SOMEIP_00050] SOME/IP protocol shall support
serialization of extensible data structs

[PRS_SOMEIP_00201] [PRS_SOMEIP_00202]
[PRS_SOMEIP_00203] [PRS_SOMEIP_00204]
[PRS_SOMEIP_00205] [PRS_SOMEIP_00206]
[PRS_SOMEIP_00208] [PRS_SOMEIP_00210]
[PRS_SOMEIP_00211] [PRS_SOMEIP_00212]
[PRS_SOMEIP_00213] [PRS_SOMEIP_00214]
[PRS_SOMEIP_00216] [PRS_SOMEIP_00217]
[PRS_SOMEIP_00220] [PRS_SOMEIP_00221]
[PRS_SOMEIP_00222] [PRS_SOMEIP_00223]
[PRS_SOMEIP_00224] [PRS_SOMEIP_00225]
[PRS_SOMEIP_00226] [PRS_SOMEIP_00227]
[PRS_SOMEIP_00228] [PRS_SOMEIP_00229]
[PRS_SOMEIP_00230] [PRS_SOMEIP_00231]
[PRS_SOMEIP_00241] [PRS_SOMEIP_00242]
[PRS_SOMEIP_00243] [PRS_SOMEIP_00244]
[PRS_SOMEIP_00380]

[RS_SOMEIP_00051] SOME/IP protocol shall provide
support for segmented transmission
of large data

[PRS_SOMEIP_00367] [PRS_SOMEIP_00729]
[PRS_SOMEIP_00730] [PRS_SOMEIP_00731]
[PRS_SOMEIP_00732] [PRS_SOMEIP_00733]
[PRS_SOMEIP_00734] [PRS_SOMEIP_00735]
[PRS_SOMEIP_00736] [PRS_SOMEIP_00738]
[PRS_SOMEIP_00740] [PRS_SOMEIP_00741]
[PRS_SOMEIP_00742] [PRS_SOMEIP_00743]
[PRS_SOMEIP_00744] [PRS_SOMEIP_00745]
[PRS_SOMEIP_00746] [PRS_SOMEIP_00747]
[PRS_SOMEIP_00749] [PRS_SOMEIP_00750]
[PRS_SOMEIP_00751] [PRS_SOMEIP_00752]
[PRS_SOMEIP_00753] [PRS_SOMEIP_00754]

Table 2.1: Requirements Tracing

13 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

3 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the SOME/IP
specification that are not included in the [2, AUTOSAR glossary].

Abbreviation / Acronym: Description:

Byte Order Mark
The byte order mark (BOM) is a Unicode character, U+FEFF byte
order mark (BOM), whose appearance as a magic number at the
start of a text stream is used to indicate the used encoding.

Method A method, procedure, function, or subroutine that is called/in-
voked.

Parameters input, output, or input/output arguments of a method or an event

Remote Procedure Call (RPC) A method call from one ECU to another that is transmitted using
messages

Request a message of the client to the server invoking a method

Response a message of the server to the client transporting results of a
method invocation

Request/Response communica-
tion a RPC that consists of request and response

Event
A uni-directional data transmission that is only invoked on
changes or cyclically and is sent from the producer of data to
the consumers.

Field A field does represent a status and thus has an valid value at all
times on which getter, setter and notifier act upon.

Notification Event An event message of the notifier of a field.
Getter A Request/Response call that allows read access to a field.
Setter A Request/Response call that allows write access to a field.

Notifier Sends out event message with the fields value on change, on
epsilon change, or cyclically based on configuration.

Service A logical combination of zero or more methods, zero or more
events, and zero or more fields.

Service Interface the formal specification of the service including its methods,
events, and fields

Eventgroup A logical grouping of events and notification events of fields inside
a service in order to allow subscription

Service Instance Implementation of a service, which can exist more than once in
the vehicle and more than once on an ECU

Server The ECU offering a service instance shall be called server in the
context of this service instance.

Client The ECU using the service instance of a server shall be called
client in the context of this service instance.

Fire and Forget Requests without response message are called fire&forget.

User Datagram Protocol A standard network protocol using a simple connectionless com-
munication model.

Union A data structure that dynamically assumes different data types.

non-extensible (standard) struct
A struct which is serialized without tags. At most, new members
can be added in a compatible way at the end of the struct and
optional members are not possible.

extensible struct
A struct which is serialized with tags. New members can be
added in a compatible way at arbitrary positions and optional
members are possible.

TLV Tag Length Value

14 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

Abbreviation / Acronym: Description:

Table 3.1: Acronyms and Abbreviations

15 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

4 Protocol specification

SOME/IP provides service oriented communication over a network. It is based on
service definitions that list the functionality that the service provides. A service can
consist of combinations of zero or multiple events, methods and fields.

Events provide data that are sent cyclically or on change from the provider to the sub-
scriber.

Methods provide the possibility to the subscriber to issue remote procedure calls which
are executed on provider side.

Fields are combinations of one or more of the following three

• a notifier which sends data from the provider to the subscribers on change, on
epsilon change, or cyclically based on configuration.

• a getter which can be called by the subscriber to explicitly query the provider for
the value

• a setter which can be called by the subscriber when it wants to change the value
on provider side

The major difference between the notifier of a field and an event is that events are
only sent on change, the notifier of a field additionally sends the data directly after
subscription.

4.1 Specification of SOME/IP Message Format (Serialization)

Serialization describes the way data is represented in protocol data units (PDUs) as
payload of either UDP or TCP messages, transported over an IP-based automotive
in-vehicle network.

4.1.1 Limitation

Reordering of out-of-order segments of a SOME/IP message is not supported.

4.1.2 Header

[PRS_SOMEIP_00030]
Upstream requirements: RS_SOMEIP_00027

dThe structure of header layout shall consist of

• Message ID (Service ID/Method ID) [32 Bits]

16 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

• Length [32 Bits]

• Request ID (Client ID/Session ID) [32 Bits]

• Protocol Version [8Bits]

• Interface Version [8 Bits]

• Message Type [8 Bits]

• Return Code [8 Bits]

c

[PRS_SOMEIP_00030] is shown in Table 4.1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Message ID (Service ID / Method ID) [32 Bit]

Length [32 Bit]

Request ID (Client ID / Session ID) [32 Bit]

Protocol Version [8 Bit] Interface version [8 Bit] Message Type [8 Bit] Return Code [8 Bit]

Payload [variable size]

Table 4.1: SOME/IP Header Format

[PRS_SOMEIP_00941]
Upstream requirements: RS_SOMEIP_00027

dIn case of E2E communication protection being applied, the E2E header is placed
after Return Code, depending on the chosen Offset value for the E2E header. The
default Offset value is 64 bit, which puts the E2E header exactly between Return Code
and Payload.c

[PRS_SOMEIP_00941] ss shown in the Table 4.2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Message ID (Service ID / Method ID) [32 Bit]

Length [32 Bit]

Request ID (Client ID / Session ID) [32 Bit]

Protocol Version [8 Bit] Interface version [8 Bit] Message Type [8 Bit] Return Code [8 Bit]

E2E Header (variable size/ Dependent on selected E2E profile]

Payload [variable size]

Table 4.2: SOME/IP Header and E2E header Format

17 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00031]
Upstream requirements: RS_SOMEIP_00027

dFor interoperability reasons the header layout shall be identical for all implementations
of SOME/IP. The fields are presented in transmission order i.e. the fields on the top left
are transmitted first.c

4.1.2.1 Message ID [32 Bit]

[PRS_SOMEIP_00034]
Upstream requirements: RS_SOMEIP_00021, RS_SOMEIP_00022, RS_SOMEIP_00023, RS_-

SOMEIP_00027

dThe Message ID shall be a 32 Bit identifier that is used to identify

• the RPC call to a method of an application

• or to identify an event.

c

Note: The assignment of the Message ID is up to the user / system designer. However,
the Message ID is assumed be unique for the whole system (i.e. the vehicle).

4.1.2.2 Method ID [16 Bit]

[PRS_SOMEIP_00245]
Upstream requirements: RS_SOMEIP_00016, RS_SOMEIP_00027

dThe Message ID header field shall be structured into a 16 Bit Service ID header field
(to distinguish up to 216 services) and a 16 bit Method ID header field to distinguish
up to 216 service elements (namely methods and/or events). This structuring of the
Message ID header field is illustrated as shown in [PRS_SOMEIP_00755].c

Note: It is common practise and recommended to split the ID space of the Method ID
between Methods and Events/Notifications. Methods would be in the range 0x0000-
0x7FFF (first bit of Method-ID is 0) and Events/Notifications would use the range
0x8000-0x8FFF (first bit of the Method-ID is 1).

[PRS_SOMEIP_00755] Message ID header field
Upstream requirements: RS_SOMEIP_00016, RS_SOMEIP_00027

d

18 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

Service ID [16 Bit] Method ID [16
Bit]

c

Eventgroup is a logical grouping of events and notification events of fields inside a
service in order to allow subscription.

[PRS_SOMEIP_00365]
Upstream requirements: RS_SOMEIP_00027, RS_SOMEIP_00017

dA SOME/IP Eventgroup shall at least contain one event.c

[PRS_SOMEIP_00366]
Upstream requirements: RS_SOMEIP_00027, RS_SOMEIP_00016, RS_SOMEIP_00017, RS_-

SOMEIP_00018

dEvents as well as field notifiers shall be mapped to at least one SOME/IP Eventgroup.c

4.1.2.3 Length [32 Bit]

[PRS_SOMEIP_00042]
Upstream requirements: RS_SOMEIP_00027, RS_SOMEIP_00040

dLength field shall contain the length in Byte starting from Request ID/Client ID until
the end of the SOME/IP message.c

4.1.2.4 Request ID [32 Bit]

The Request ID allows a server and client to differentiate multiple parallel uses of the
same method, getter or setter.

[PRS_SOMEIP_00043]
Upstream requirements: RS_SOMEIP_00025, RS_SOMEIP_00027

dThe Request ID shall be unique for a request-response pair to differentiate between
multiple calls of the same method.c

19 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00704]
Upstream requirements: RS_SOMEIP_00027

dWhen generating a response message, the provider shall copy the Request ID from
the request to the response message.c

Note:
This allows the client to map a response to the issued request even with more than one
request outstanding.

[PRS_SOMEIP_00044]
Upstream requirements: RS_SOMEIP_00025

dRequest IDs must not be reused until the response has arrived or is not expected to
arrive anymore (timeout).c

Structure of the Request ID

[PRS_SOMEIP_00046] Request ID
Upstream requirements: RS_SOMEIP_00027

d

Client ID [16 Bits] Session ID [16 Bits]

c

Note:
This means that the implementer of an ECU can define the Client-IDs as required by
his implementation and the provider does not need to know this layout or definitions
because he just copies the complete Request-ID in the response.

[PRS_SOMEIP_00702]
Upstream requirements: RS_SOMEIP_00025, RS_SOMEIP_00027

dThe Client ID is the unique identifier for the calling client inside the ECU. The Client
ID allows an ECU to differentiate calls from multiple clients to the same method.c

[PRS_SOMEIP_00703]
Upstream requirements: RS_SOMEIP_00002, RS_SOMEIP_00025, RS_SOMEIP_00027

dThe Session ID is a unique identifier that allows to distinguish sequential messages
or requests originating from the same sender from each other.c

20 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00532]
Upstream requirements: RS_SOMEIP_00025, RS_SOMEIP_00027

dThe Client ID shall also support being unique in the overall vehicle by having a con-
figurable prefix or fixed value (e.g. the most significant byte of Client ID being the
diagnostics address or a configured Client ID for a given application/SW-C).c

For example:

Client ID Prefix [8
Bits]

Client ID [8 Bits] Session ID [16 Bits]

Table 4.3: Example of Client ID

[PRS_SOMEIP_00932]
Upstream requirements: RS_SOMEIP_00027

dIn case Session Handling is not active, the Session ID shall be set to 0x00.c

[PRS_SOMEIP_00933]
Upstream requirements: RS_SOMEIP_00027

dIn case Session Handling is active, the Session ID shall be set to a value within the
range [0x1, 0xFFFF].c

[PRS_SOMEIP_00934]
Upstream requirements: RS_SOMEIP_00027

dIn case Session Handling is active, the Session ID shall be incremented according to
the respective use case (detailed information about dedicated use cases is contained
in separate specification items (e.g., [PRS_SOMEIP_00533]).c

[PRS_SOMEIP_00533]
Upstream requirements: RS_SOMEIP_00012, RS_SOMEIP_00027

dRequest/Response methods shall use session handling with Session IDs. Session ID
should be incremented after each call.c

[PRS_SOMEIP_00521]
Upstream requirements: RS_SOMEIP_00012, RS_SOMEIP_00027

dWhen the Session ID reaches 0xFFFF, it shall wrap around and start again with 0x01c

21 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00739]
Upstream requirements: RS_SOMEIP_00012, RS_SOMEIP_00027

dFor request/response methods, a client has to ignore a response if the Session ID of
the response does not match the Session ID of the requestc

[PRS_SOMEIP_00935]
Upstream requirements: RS_SOMEIP_00012, RS_SOMEIP_00027

dFor notification messages, a receiver shall ignore the Session ID in case Session
Handling is not active.c

[PRS_SOMEIP_00936]
Upstream requirements: RS_SOMEIP_00012, RS_SOMEIP_00027

dFor notification messages, a receiver shall treat the Session ID according to the re-
spective use case (detailed information about dedicated use cases is contained in
separate specification items (e.g., [PRS_SOMEIP_00741]) in case Session Handling
is active.c

4.1.2.5 Protocol Version [8 Bit]

The Protocol Version identifies the used SOME/IP Header format (not including the
Payload format).

[PRS_SOMEIP_00052]
Upstream requirements: RS_SOMEIP_00027, RS_SOMEIP_00041

dProtocol Version shall be an 8 Bit field containing the SOME/IP protocol version.c

[PRS_SOMEIP_00050]
Upstream requirements: RS_SOMEIP_00027, RS_SOMEIP_00041

dThe Protocol Version shall be increased, for all incompatible changes in the SOME/IP
header. A change is incompatible if a receiver that is based on an older Protocol
Version would not discard the message and process it incorrectly.c

Note:
Message processing and error handling is defined in chapter 4.2.6.3 (error processing
overview)

Note:
The Protocol Version itself is part of the SOME/IP Header, therefore the position of the
protocol version in the header shall not be changed.

22 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

Note:
The Protocol Version shall not be increased for changes that only affect the Payload
format.

[PRS_SOMEIP_00051]
Upstream requirements: RS_SOMEIP_00027, RS_SOMEIP_00041

dThe Protocol Version shall be 1.c

4.1.2.6 Interface Version [8 Bit]

[PRS_SOMEIP_00053]
Upstream requirements: RS_SOMEIP_00003, RS_SOMEIP_00027

dInterface Version shall be an 8 Bit field that contains the Major Version of the Service
Interface.c

4.1.2.7 Message Type [8 Bit]

[PRS_SOMEIP_00055] Message Type field
Upstream requirements: RS_SOMEIP_00008, RS_SOMEIP_00027

d

Number Value Description
0x00 REQUEST A request expecting a response (even

void)
0x01 REQUEST_NO_RETURN A fire&forget request
0x02 NOTIFICATION A request of a notification/event callback

expecting no response
0x80 RESPONSE The response message
0x81 ERROR The response containing an error
0x20 TP_REQUEST A TP request expecting a response (even

void)
0x21 TP_REQUEST_NO_RETURN A TP fire&forget request
0x22 TP_NOTIFICATION A TP request of a notification/event call-

back expecting no response
0xa0 TP_RESPONSE The TP response message
0xa1 TP_ERROR The TP response containing an error

c

23 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00701]
Upstream requirements: RS_SOMEIP_00008, RS_SOMEIP_00027

dRegular request (message type 0x00) shall be answered by a response (message
type 0x80), when no error occurred. If errors occur an error message (message type
0x81) shall be sent.c

It is also possible to send a request that does not have a response message (mes-
sage type 0x01). For updating values through notification a callback interface exists
(message type 0x02).

[PRS_SOMEIP_00367]
Upstream requirements: RS_SOMEIP_00027, RS_SOMEIP_00051

dThe 3rd highest bit of the Message Type (=0x20) shall be called TP-Flag and shall be
set to 1 to signal that the current SOME/IP message is a segment. The other bits of
the Message Type are set as specified in this Section.c

Note:
Segments of the Message Type Request (0x00) have the Message Type (0x20), seg-
ments of the Message Type Response (0x80) have the Message Type (0xa0), and so
on. For details see (Chapter 4.2.1.4)

4.1.2.8 Return Code [8 Bit]

[PRS_SOMEIP_00058]
Upstream requirements: RS_SOMEIP_00008, RS_SOMEIP_00027

dThe Return Code shall be used to signal whether a request was successfully pro-
cessed. For simplification of the header layout, every message transports the field
Return Code. The allowed Return Codes for specific message types are shown
[PRS_SOMEIP_00757].c

[PRS_SOMEIP_00757] Return Codes
Upstream requirements: RS_SOMEIP_00008, RS_SOMEIP_00027

d

Message Type Allowed Return Codes
REQUEST N/A set to 0x00 (E_OK)
REQUEST_NO_RETURN N/A set to 0x00 (E_OK)
NOTIFICATION N/A set to 0x00 (E_OK)
RESPONSE See Return Codes in [PRS_SOMEIP_00191]
ERROR See Return Codes in [PRS_SOMEIP_00191]. Shall not be

0x00 (E_OK).

24 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

c

4.1.2.9 Payload [variable size]

In the payload field the parameters are carried. The serialization of the parameters will
be specified in the following section.

The size of the SOME/IP payload field depends on the transport protocol used.

[PRS_SOMEIP_00382] SOME/IP payload size using UDP
Upstream requirements: RS_SOMEIP_00006, RS_SOMEIP_00010

dWith UDP the SOME/IP payload size should be between 0 and 1400 Bytes. Payload
sizes greater than 1400 Bytes should be supported with TCP and segmentation of
payload (see also [PRS_SOMEIP_00730]).c

Note:
The recommendation to 1400 Bytes improves change compatibility on the protocol
stack (e.g. changing to IPv6 or adding security means).

Payload might consists of data elements for events or parameters for methods.

4.1.3 Endianess

[PRS_SOMEIP_00368]
Upstream requirements: RS_SOMEIP_00026

dAll SOME/IP Header Fields shall be encoded in network byte order (big endian).c

[PRS_SOMEIP_00759]
Upstream requirements: RS_SOMEIP_00026

dThe following fields in the payload of SOME/IP messages shall be encoded in network
byte order (big endian):

• the optional length field of extensible structs ([PRS_SOMEIP_00079]),

• the TLV tag ([PRS_SOMEIP_00203]) and the length field ([PRS_SOMEIP_-
00221]) of structured datatypes and arguments with identifier and optional mem-
bers,

• the optional length field for fixed length strings ([PRS_SOMEIP_00760]),

• the length field for dynamic length strings ([PRS_SOMEIP_00089]),

25 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

• the optional length field for extensible fixed length arrays ([PRS_SOMEIP_-
00944]),

• the length field of dynamic length arrays ([PRS_SOMEIP_00376]),

• the length field of unions ([PRS_SOMEIP_00126]),

• and the type field of unions ([PRS_SOMEIP_00129]).

c

[PRS_SOMEIP_00369]
Upstream requirements: RS_SOMEIP_00026

dThe byte order of the parameters inside the payload shall be defined by config-
uration. An exception is the tag for TLV (as defined by [PRS_SOMEIP_00202]
and [PRS_SOMEIP_00203]) which shall have byte order according to
[PRS_SOMEIP_00204] and [PRS_SOMEIP_00759].c

4.1.4 Serialization of Data Structures

The serialization is based on the parameter list defined by the interface specification.
The interface specification defines the exact position of all data structures in the PDU
and has to consider the memory alignment.

Alignment is used to align the beginning of data by inserting padding elements after
the data in order to ensure that the aligned data starts at certain memory addresses.

There are processor architectures which can access data more efficiently (i.e. master)
when they start at addresses which are multiples of a certain number (e.g multiples of
32 Bit).

[PRS_SOMEIP_00611]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00029

dAlignment of data shall be realized by inserting padding elements after the variable
size data if the variable size data is not the last element in the serialized data stream.c

Note:
Please note that the padding value is not defined.

26 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

Example: Structure with 5 Members
- Member1: UINT16
- Member2: One dimensional variableSize Array with uint8 elements
- Member3: UINT32
- Member4: UINT64
- Member5: One dimensional variableSize Array with uint8 elements

SOME/IP Header

UINT16 Lengthfield
(16Bit)

uint8 uint8 uint8 uint8

uint8 uint8 uint8 uint8 Padding

UINT32 UINT64

UINT64 Lengthfield
(16Bit)

uint8 uint8

uint8 uint8 uint8 uint8

<———————————————————————————————–>
64 bit

Table 4.4: SOME/IP Padding Example 01

Example: Structure with 5 Members
- Member1: UINT16
- Member2: One dimensional variableSize Array with uint8 elements
- Member3: UINT32
- Member4: UINT64
- Member5: One dimensional variableSize Array with uint8 elements

SOME/IP Header

UINT16 Lengthfield
(16Bit)

uint8 uint8 uint8 Padding

UINT32 UINT64

UINT64 Lengthfield
(16Bit)

uint8 uint8

uint8 uint8 uint8 uint8 uint8 uint8

<———————————————————————————————–>
64 bit

Table 4.5: SOME/IP Padding Example 02

27 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00569]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00029

dAlignment shall always be calculated from start of SOME/IP message.c

[PRS_SOMEIP_00612]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00029

dThere shall be no padding behind fixed length data elements to ensure alignment of
the following data.c

Note:
If data behind fixed length data elements shall be padded, this has to be explicitly
considered in the data type definition.

[PRS_SOMEIP_00613]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00029

dThe alignment of data behind variable length data elements shall be 8, 16, 32, 64,
128 or 256. Bits.c

4.1.4.1 Basic Datatypes

[PRS_SOMEIP_00065] Supported basic Data Types
Upstream requirements: RS_SOMEIP_00030, RS_SOMEIP_00031, RS_SOMEIP_00032

d

Type Description Size [bit] Remark
boolean TRUE/FALSE value 8 FALSE (0), TRUE (1)
uint8 unsigned Integer 8
uint16 unsigned Integer 16
uint32 unsigned Integer 32
uint64 unsigned Integer 64
sint8 signed Integer 8
sint16 signed Integer 16
sint32 signed Integer 32
sint64 signed Integer 64
float32 floating point number 32 IEEE 754 binary32 (Single Preci-

sion)
float64 floating point number 64 IEEE 754 binary64 (Double Preci-

sion)

c

The Byte Order is specified for each parameter by configuration.

28 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00615]
Upstream requirements: RS_SOMEIP_00030, RS_SOMEIP_00031, RS_SOMEIP_00032

dFor the evaluation of a Boolean value only the lowest bit of the uint8 is interpreted and
the rest is ignored.c

4.1.4.2 Structured Datatypes (structs)

The serialization of a struct shall be close to the in-memory layout. This means, only
the parameters shall be serialized sequentially into the buffer. Especially for structs it
is important to consider the correct memory alignment.

Example:

Struct_1

uint32 a

float32 b[2]

Struct_2 c Struct_2

uint32 d

float32 e[2]

Struct_3 f

serialization

uint32 a

float32 b_1

float32 b_2

uint32 d

float32 e_1

float32 e_2

…

Figure 4.1: Serialization of Structs

[PRS_SOMEIP_00077]
Upstream requirements: RS_SOMEIP_00033

dThe SOME/IP implementation shall not automatically insert dummy/padding data.c

[PRS_SOMEIP_00079]
Upstream requirements: RS_SOMEIP_00033, RS_SOMEIP_00040

dAn optional length field of 8, 16 or 32 Bit may be inserted in front of the Struct de-
pending on the configuration.c

[PRS_SOMEIP_00370]
Upstream requirements: RS_SOMEIP_00033, RS_SOMEIP_00040

dThe length field of the struct shall describe the number of bytes this struct occupies
for SOME/IP transport.c

29 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00712]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00033

dThe serialization of structs shall follow the depth-first-traversal of the structured data
type.c

4.1.4.3 Structured Datatypes and Arguments with Identifier and optional mem-
bers (’TLV’)

To achieve enhanced forward and backward compatibility, an additional Data ID can
be added in front of struct members or method arguments. The receiver then can
skip unknown members/arguments, i.e. where the Data ID is unknown. New member-
s/arguments can be added at arbitrary positions when Data IDs are transferred in the
serialized byte stream.

Moreover, the usage of Data IDs allows describing structs and methods with optional
members/arguments. Whether a member/argument is optional or not, is defined in the
data definition.

Whether an optional member/argument is actually present in the struct/method or not,
must be determined during runtime. How this is realized depends on the used pro-
gramming language or software platform (e.g. using a special available flag, using a
special method, using pointers which might be null, ...).

[PRS_SOMEIP_00201]
Upstream requirements: RS_SOMEIP_00050

dA Data ID shall be unique within the direct members of a struct or arguments of a
method.c

Note:
Please note that a Data ID does not need to be unique across different structs or
methods.

Note:
Please note that neither the AUTOSAR Methodology nor AUTOSAR CP RTE, nor
AUTOSAR AP ara::com support the definition or usage of optional method arguments
at the time being.

[PRS_SOMEIP_00230]
Upstream requirements: RS_SOMEIP_00050

dA Data ID shall be defined either for all members of the same hierarchical level of a
struct or for none of them.c

30 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00231]
Upstream requirements: RS_SOMEIP_00050

dA Data ID shall be defined either for all arguments of a method or for none of them.c

In addition to the Data ID, a wire type encodes the datatype of the following member.
Data ID and wire type are encoded in a so-called tag.

[PRS_SOMEIP_00202]
Upstream requirements: RS_SOMEIP_00050

dThe length of a tag shall be two bytes.c

[PRS_SOMEIP_00203]
Upstream requirements: RS_SOMEIP_00050

dThe tag shall consist of

• reserved (Bit 7 of the first byte)

• wire type (Bit 6-4 of the first byte)

• Data ID (Bit 3-0 of the first byte and bit 7-0 of the second byte)

c

Refer to the Figure 4.2 for the layout of the tag. Bit 7 is the highest significant bit of a
byte, bit 0 is the lowest significant bit of a byte.

Wire Type
Data ID (Higher

Sig. Part)
Data ID (Lower Sig. Part) Length Field (8/16/32 bit) Member Data ...

Byte n Byte n + 1 Byte n + 2 ...

7 0 7 0 7/15/31 0

re
s
e
rv

e
d

Figure 4.2: Tag Layout

[PRS_SOMEIP_00204]
Upstream requirements: RS_SOMEIP_00050

dThe lower significant part of the Data ID of the member shall be encoded in bits 7-0
of the second byte of the tag. The higher significant part of the Data ID of the member
shall be encoded in bits 3-0 of the first byte.c

Example:
The Data ID of the member is 0x04F2. Then bits 3-0 of the first byte are set to 0x4.
The second byte is set to 0xF2.

31 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00205] Wire Type and type of following data
Upstream requirements: RS_SOMEIP_00050

d

Wire Type Following Data
0 8 Bit Data Base data type
1 16 Bit Data Base data type
2 32 Bit Data Base data type
3 64 Bit Data Base data type
4 Complex Data Type: Array, Struct,

String, Union with length field of
static size (configured in data defi-
nition)

5 Complex Data Type: Array, Struct,
String, Union with length field size 1
byte (ignore static definition)

6 Complex Data Type: Array, Struct,
String, Union with length field size 2
byte (ignore static definition)

7 Complex Data Type: Array, Struct,
String, Union with length field size 4
byte (ignore static definition)

c

Note:
wire type 4 ensures the compatibility with the current approach where the size of length
fields is statically configured. This approach has the drawback that changing the size
of the length field during evolution of interfaces is always incompatible. Thus, wire
types 5, 6 and 7 allow to encode the size of the used length field in the transferred byte
stream. A serializer may use this, if the statically configured size of the length field is
not sufficient to hold the current size of the data struct.

[PRS_SOMEIP_00206]
Upstream requirements: RS_SOMEIP_00050

dIf the wire type is set to 5, 6 or 7, the size of the length field defined in the data
definition shall be ignored and the size of the length field shall be selected according
to the wire type.c

If a Data ID is configured for a member of a struct/argument of a method, a tag shall
be inserted in the serialized byte stream.

Note:
regarding the existence of Data IDs, refer to [PRS_SOMEIP_00230] and
[PRS_SOMEIP_00231].

32 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00212]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00050

dIf the datatype of the serialized member/argument is a basic datatype (wire types 0-3)
and a Data ID is configured, the tag shall be inserted directly in front of the member/ar-
gument. No length field shall be inserted into the serialized stream.c

[PRS_SOMEIP_00213]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00050

dIf the datatype of the serialized member/argument is not a basic datatype (wire type
4-7) and a Data ID is configured, the tag shall be inserted in front of the length field.c

[PRS_SOMEIP_00214]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00050

dIf the datatype of the serialized member/argument is not a basic datatype and a Data
ID is configured, a length field shall always be inserted in front of the member/argu-
ment.c

Rationale:
The length field is required to skip unknown members/arguments during deserializa-
tion.

[PRS_SOMEIP_00221]
Upstream requirements: RS_SOMEIP_00040, RS_SOMEIP_00050

dThe length field shall always contain the length up to the next tag of the struct.c

[PRS_SOMEIP_00208]
Upstream requirements: RS_SOMEIP_00040, RS_SOMEIP_00050

dIf the members/arguments itself are of type struct, there shall be exactly one length
field. The length field is added according to requirements [PRS_SOMEIP_00079] and
[PRS_SOMEIP_00370].c

[PRS_SOMEIP_00225]
Upstream requirements: RS_SOMEIP_00050

dIf the members/arguments itself are of type dynamic length string, there shall
be exactly one length field. The length field is added according to re-
quirements [PRS_SOMEIP_00089], [PRS_SOMEIP_00090], [PRS_SOMEIP_00093],
[PRS_SOMEIP_00094] and [PRS_SOMEIP_00095].c

33 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00224]
Upstream requirements: RS_SOMEIP_00050

dIf the members/arguments itself are of type fixed length string, there shall be exactly
one length field corresponding to dynamic length strings.c

Note:
when serialized without tag, fixed length strings do not have a length field. For the
serialization with tag, a length field is also required for fixed length strings in the same
way as for dynamic length strings.

[PRS_SOMEIP_00227]
Upstream requirements: RS_SOMEIP_00050

dIf the members/arguments itself are of type dynamic length array, there shall be
exactly one length field. The length field is added according to requirements
[PRS_SOMEIP_00376], [PRS_SOMEIP_00107], [PRS_SOMEIP_00377] with a size
of 8, 16 or 32 bit.c

[PRS_SOMEIP_00226]
Upstream requirements: RS_SOMEIP_00050

dIf the members/arguments itself are of type fixed length array, there shall be exactly
one length field corresponding to dynamic length arrays.c

[PRS_SOMEIP_00228]
Upstream requirements: RS_SOMEIP_00050

dIf the members/arguments itself are of type union, there shall be exactly one length
field. The length field is added according to requirements [PRS_SOMEIP_00119],
[PRS_SOMEIP_00121] with a size of 8,16 or 32 bit.c

[PRS_SOMEIP_00229]
Upstream requirements: RS_SOMEIP_00050

dIf the members/arguments itself are of type union, the length field shall cover the size
of the type selector field, data and padding bytes.c

Note:
For the serialization without tags, the length field of unions does not cover the type
selector field (see [PRS_SOMEIP_00126]). For the serialization with tags, it is required
that the complete content of the serialized union is covered by the length field.

34 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00210]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00050

dA member of a non-extensible (standard) struct which is of type extensible struct, shall
be serialized according to the requirements for extensible structs.c

[PRS_SOMEIP_00211]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00050

dA member of an extensible struct which is of type non-extensible (standard) struct,
shall be serialized according to the requirements for standard structs.c

[PRS_SOMEIP_00222]
Upstream requirements: RS_SOMEIP_00029, RS_SOMEIP_00050

dThe alignment of variable length data according to [PRS_SOMEIP_00611] shall al-
ways be 8 bit.c

Rationale:
When alignment greater 8 bits is used, the serializer may add padding bytes after
variable length data. The padding bytes are not covered by the length field. If the
receiver does not know the Data ID of the member, it also does not know that it is
variable length data and that there might be padding bytes.

[PRS_SOMEIP_00241]
Upstream requirements: RS_SOMEIP_00050

dIf TLV is used the size of the length field for arrays, structs, unions and strings shall
be greater than 0.c

Rationale:
The TLV serialization requires the usage of length fields. When wire type 4 is used, the
length field size must be statically configured. When wire types 5-7 (dynamic length
field size) are used, the static configuration of the length field size must also be present
since not all length fields are preceded by a tag, e.g. structs contained in an array or
the top-level struct contained in a SOME/IP event. Not using length fields here would
result in ambiguities.

[PRS_SOMEIP_00242]
Upstream requirements: RS_SOMEIP_00050

dThe configured size of the length field for arrays, structs, unions and strings shall be
identical.c

35 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

Rationale:
In case of an unknown member or argument, the deserializer cannot determine the
actual datatype of the member/argument when wire type 4 is used.

[PRS_SOMEIP_00243]
Upstream requirements: RS_SOMEIP_00050

dThe size of the length field shall be configured for the top-level struct or method re-
quest/response. All arrays, unions, structs and strings used within a struct or all ar-
guments within a method shall inherit the size of the length field from the top-level
definition.c

Rationale:
In case of an unknown member or argument, the deserializer needs to know the size of
the length field when wire type 4 is used. The easiest way is that the size of the length
field is then only defined at the top-level element.

[PRS_SOMEIP_00244]
Upstream requirements: RS_SOMEIP_00050

dOverriding the size of the length field at a subordinate array, union, struct or string or
at an individual method argument shall not be allowed.c

[PRS_SOMEIP_00216]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00050

dThe serializer shall not include optional members/arguments in the serialized byte
stream if they are marked as not available.c

[PRS_SOMEIP_00220]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00050

dIf the serialization with tags will be introduced for an existing service interface where
tags have not been used, the major interface version shall be incremented and used to
indicate this.c

Note:
The receiver only handles received messages that match all configured val-
ues of Message ID, Protocol Version, Interface Version and Message-Type (see
[PRS_SOMEIP_00195]).

36 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

Example for serializing structures with tags

struct myStruct

 unit8 a /* Data ID = 0 */

 uint8 b /* Data ID = 1 */

 struct c /* Data ID = 2 */

 uint8 c1

 uint8 c2

 struct c3

 uint8 c31

 struct c32

 uint8 c321

 uint8[] c322

 uint8 c323

 uint8 c33

 uint8[]c4

 uint8 c5

 uint8 d /* Data ID = 3 */

 struct e /* Data ID = 4 */

 uint8 e1

 uint8 e2

 uint8 f /* Data ID = 5 */

 uint8 g /* Data ID = 6 */

myStruct_length

a_tag = 0x0000

a

b_tag = 0x0001

b

c_tag = 0x4002

c_length

c1

c2

c3_length

c31

c32_length

c321

c322_length

c322

…

c323

c33

c4_length

c4

…

c5

d_tag = 0x0003

d

e_tag = 0x4004

e_length

e1

e2

f_tag = 0x0005

f

g_tag = 0x0006

g

Figure 4.3: Example 01 for serializing structures with tags

37 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

struct myStruct

 unit8 a

 uint8 b

 struct c

 uint8 c1

 uint8 c2

 struct c3

 uint8 c31 /* Data ID = 0 */

 struct c32 /* Data ID = 2 */

 uint8 c321

uint8[] c322

uint8 c323

 uint8 c33 /* Data ID = 1 */

 uint8[]c4

 uint8 c5

 uint8 d

 struct e

 uint8 e1

 uint8 e2

 uint8 f

 uint8 g

myStruct_length

a

b

c_length

c1

c2

c3_length

c31_tag = 0x0000
c31

c32_tag = 0x4002
c32_length

c321

c322_length

c322

…

c323

c33_tag = 0x0001
c33

c4_length

c4

…

c5

d

e_length

e1

e2

f

g

Figure 4.4: Example 02 for serializing structures with tags

struct myStruct

 unit8 a

 uint8 b

 struct c

 uint8 c1

 uint8 c2

 struct c3

 uint8 c31

 struct c32

 uint8 c321 /* Data ID = 2 */

uint8[] c322 /* Data ID = 1 */

uint8 c323 /* Data ID = 0 */

 uint8 c33

 uint8[]c4

 uint8 c5

 uint8 d

 struct e

 uint8 e1

 uint8 e2

 uint8 f

 uint8 g

myStruct_length

a

b

c_length

c1

c2

c3_length

c31

c32_length

c321_tag = 0x0002
c321

c322_tag = 0x4001
c322_length

c322

…

c323_tag = 0x0000
c323

c33

c4_length

c4

…

c5

d

e_length

e1

e2

f

g

Figure 4.5: Example 03 for serializing structures with tags

38 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

Example for serialization of arguments with tags

SOME/IP Header (Request)

a_tag = 0x0000

a

b_tag = 0x0002

b
c_tag = 0x4003

c_length
c

...

SOME/IP Header (Response)

d_tag = 0x2000

d

e_tag = 0x0001

e

uint8 myFunction (IN uint8 a, IN uint8 b, IN myStruct c, OUT uint32 d, OUT uint8 e)
 /* Data ID = 0 */ /* Data ID = 2 */ /* Data ID = 3 */ /*Data ID = 0 */ /*Data ID = 1 */

Figure 4.6: Example for serialization of arguments with tags

Note:
In the example Figure 4.6 there is no additional length field between the end of the
SOME/IP header and the first tag. This would be redundant to the message length
field in the SOME/IP header.

4.1.4.4 Strings

Following requirements are common for both fixed length and dynamic length strings.

[PRS_SOMEIP_00372]
Upstream requirements: RS_SOMEIP_00038

dDifferent Unicode encoding shall be supported including UTF-8, UTF-16BE and UTF-
16LE.c

[PRS_SOMEIP_00948]
Upstream requirements: RS_SOMEIP_00038

dUTF-8 strings shall be zero terminated with a "\0" character. This means they shall
end with a 0x00 Byte.c

39 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00084]
Upstream requirements: RS_SOMEIP_00038

dUTF-16LE and UTF-16BE strings shall be zero terminated with a "\0" character. This
means they shall end with (at least) two 0x00 Bytes.c

[PRS_SOMEIP_00085]
Upstream requirements: RS_SOMEIP_00038

dUTF-16LE and UTF-16BE strings shall have an even length.c

[PRS_SOMEIP_00086]
Upstream requirements: RS_SOMEIP_00038

dUTF-16LE and UTF-16BE strings having an odd length the last byte shall be ignored.c

[PRS_SOMEIP_00087]
Upstream requirements: RS_SOMEIP_00038

dAll strings shall always start with a Byte Order Mark (BOM) in the first three (UTF-8)
or two (UTF-16) bytes of the to be serialized array containing the string. The BOM shall
be included in fixed-length-strings as well as dynamic-length strings. BOM allows the
possibility to detect the used encoding.c

4.1.4.4.1 Strings (fixed length)

[PRS_SOMEIP_00760]
Upstream requirements: RS_SOMEIP_00038

dStrings with fixed length may start with an optional length field.c

[PRS_SOMEIP_00373]
Upstream requirements: RS_SOMEIP_00038

dStrings shall be terminated with a "\0"-character despite having a fixed length.c

[PRS_SOMEIP_00374]
Upstream requirements: RS_SOMEIP_00038

dThe length of the string (this includes the "\0") in Bytes has to be specified in the data
type definition.c

40 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

4.1.4.4.2 Strings (dynamic length)

[PRS_SOMEIP_00089]
Upstream requirements: RS_SOMEIP_00039

dStrings with dynamic length shall start with a length field. The length is measured in
Bytes.c

[PRS_SOMEIP_00090]
Upstream requirements: RS_SOMEIP_00039

dThe length field is placed before the BOM, and the BOM is included in the length.c

[PRS_SOMEIP_00091]
Upstream requirements: RS_SOMEIP_00039

dString are terminated with a "\0".c

Note:
The maximum number of bytes of the string (including termination with "\0") shall also
be derived from the data type definition.

[PRS_SOMEIP_00092]
Upstream requirements: RS_SOMEIP_00039

d[PRS_SOMEIP_00084], [PRS_SOMEIP_00085] and [PRS_SOMEIP_00086] shall
also be valid for strings with dynamic length.c

[PRS_SOMEIP_00093]
Upstream requirements: RS_SOMEIP_00039

dDynamic length strings shall have a length field of 8, 16 or 32 Bits. This shall be
determined by configuration.c

[PRS_SOMEIP_00094]
Upstream requirements: RS_SOMEIP_00039, RS_SOMEIP_00040

dIf not configured the length of the length field that is added in front of the string is 32
Bits (default length of length field).c

[PRS_SOMEIP_00095]
Upstream requirements: RS_SOMEIP_00039

dThe length of the Strings length field is not considered in the value of the length field;
i.e. the length field does not count itself.c

41 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

4.1.4.5 Arrays

4.1.4.5.1 Arrays (fixed length)

Fixed length arrays are easier for use in very small devices. Dynamic length arrays
might need more resources on the ECU using them.

[PRS_SOMEIP_00944]
Upstream requirements: RS_SOMEIP_00036

dArrays with fixed length may start with an optional length field.c

Note: Overruns of fixed-size arrays can only be detected with a length field.

One-dimensional

[PRS_SOMEIP_00099]
Upstream requirements: RS_SOMEIP_00035, RS_SOMEIP_00036

dThe one-dimensional arrays with fixed length "n" shall carry exactly "n" elements
of the same type. An optional length field may preceed the first element (see
[PRS_SOMEIP_00944].c

Note: If a length field is defined for a specific fixed-length array, then this array is rep-
resented on the bus as a composite of the length field and the collection of n elements
of the same data type.

The layout of [PRS_SOMEIP_00099] is shown in Figure 4.7.

42 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

LengthField
(optional)

Element_1 Element_2 Element_n…

LengthField + n*e

element size e

Element_3
1

Static Array [n]

n*e

Figure 4.7: One-dimensional array (fixed length)

Multidimensional

[PRS_SOMEIP_00101]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00035, RS_SOMEIP_00036

dThe serialization of multidimensional arrays follows the in-memory layout of multidi-
mensional arrays in the C/C++ programming language (row-major order).c

Note: If a length field is defined for a specific multidimensional fixed-length array, then
this array is represented on the bus as a composite of a length field and n collections
consisting each of a length field and m elements of the same data type.

The layout of [PRS_SOMEIP_00101] is shown in Figure 4.8.

43 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

LengthField
(optional)

Element_1

…

LengthField + n*(LengthField + m*e)

e

Static Array [n][m]

n*(LengthField + m*e)

Element_n

LengthField
(optional)

E1,1 E1,m

m*e

Element_2

…
LengthField
(optional)

E2,1 E2,m …

Figure 4.8: Multidimensional array (fixed length)

4.1.4.5.2 Dynamic Length Arrays

[PRS_SOMEIP_00375]
Upstream requirements: RS_SOMEIP_00037

dThe layout of arrays with dynamic length shall be based on the layout of fixed length
arrays.c

[PRS_SOMEIP_00376]
Upstream requirements: RS_SOMEIP_00037

dA length field at the beginning of a dynamic length array shall be used to specify the
length of the array in Bytes.c

[PRS_SOMEIP_00107]
Upstream requirements: RS_SOMEIP_00037

dDynamic length arrays shall have a length field with a length of 8, 16 or 32 Bits. This
shall be determined by configuration.c

[PRS_SOMEIP_00377]
Upstream requirements: RS_SOMEIP_00037

dThe length does not include the size of the length field.c

44 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

Note:
If the length of the length field is set to 0 Bits, the number of elements in the array has
to be fixed; thus, being an array with fixed length.

The layout of dynamic arrays is shown in Figure 4.9 and Figure 4.10.

Figure 4.9: One-dimensional array (dynamic length)

In the one-dimensional array one length field is used, which carries the number of bytes
used for the array.

The number of static length elements can be easily calculated by dividing by the size
of an element.

In the case of dynamical length elements the number of elements cannot be calculated,
but the elements must be parsed sequentially.

Figure 4.10 shows the structure of a Multidimensional Array of dynamic length.

Element_a[1][j…k_1]

L_1 [Bytes]

Length n

32 Bit

E1,1 E1,2 E1,k_1 … L_1

Element_a[2][j…k_2]

E1,1 E1,2 E1,k_2 … L_2

32 Bit

…

L_2 [Bytes]
32 Bit

n [Bytes]

Figure 4.10: Multidimensional array (dynamic length)

45 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00114]
Upstream requirements: RS_SOMEIP_00037

dIn multidimensional arrays every sub array of different dimensions shall have its own
length field.c

If static buffer size allocation is required, the data type definition shall define the maxi-
mum length of each dimension.

Rationale: When measuring the length in Bytes, complex multi-dimensional arrays can
be skipped over in deserialization.

SOME/IP also supports that different length for columns and different length for rows
in the same dimension. See k_1 and k_2 in Figure 4.10. A length indicator needs to
be present in front of every dynamic length array. This applies for both outer and all
inner/nested arrays.

[PRS_SOMEIP_00945]
Upstream requirements: RS_SOMEIP_00037, RS_SOMEIP_00040

dIf not configured the length of the length field that is added in front of the dynamic
length array is 32 Bits (default length of length field).c

4.1.4.6 Enumeration

[PRS_SOMEIP_00705]
Upstream requirements: RS_SOMEIP_00030, RS_SOMEIP_00033

dEnumerations are not considered in SOME/IP. Enumerations shall be transmitted as
unsigned integer datatypes.c

4.1.4.7 Bitfield

[PRS_SOMEIP_00300]
Upstream requirements: RS_SOMEIP_00033, RS_SOMEIP_00030

dBitfields shall be transported as unsigned datatypes uint8/uint16/uint32/uint64.c

The data type definition will be able to define the name and values of each bit.

46 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

4.1.4.8 Union / Variant

There are use cases for defining data as unions on the network where the payload can
be of different data types.

A union (also called variant) is such a parameter that can contain different types of
data. For example, if one defines a union of type uint8 and type uint16, the union shall
carry data which are a uint8 or a uint16.

Which data type will be transmitted in the payload can only be decided during execu-
tion. In this case, however, it is necessary to not only send the data itself but add an
information about the applicable data type as a form of "meta-data" to the transmission.

By the means of the attached meta-data the sender can identify the applicable data
type of the union and the receiver can accordingly access the data properly.

[PRS_SOMEIP_00118]
Upstream requirements: RS_SOMEIP_00034

dA union shall be used to transport data with alternative data types over the network.c

[PRS_SOMEIP_00119] Union (length field, type selector field and payload)
Upstream requirements: RS_SOMEIP_00034

d

Length field [32, 16, 8, 0 bit]
Type selector field [32, 16, 8 bit]
Payload including padding [length of padding = value of length field - actual payload length]

c

[PRS_SOMEIP_00126]
Upstream requirements: RS_SOMEIP_00034

dThe length field shall define the size of the payload and padding in bytes and does
not include the size of the length field and type selector field.c

Note:
The padding can be used to align following data in the serialized data stream if config-
ured accordingly.

[PRS_SOMEIP_00121]
Upstream requirements: RS_SOMEIP_00034

dThe length of the length field shall be defined by configuration and shall be 32, 16, 8,
or 0 bitsc

47 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00122]
Upstream requirements: RS_SOMEIP_00034

dA length of the length field of 0 Bit means that no length field will be written to the
PDU.c

[PRS_SOMEIP_00123]
Upstream requirements: RS_SOMEIP_00034

dIf the length of the length field is 0 Bit, all types in the union shall be of the same
length.c

[PRS_SOMEIP_00129]
Upstream requirements: RS_SOMEIP_00034

dThe type selector field shall specify the payload type of the payload.c

[PRS_SOMEIP_00127]
Upstream requirements: RS_SOMEIP_00034

dThe length of the type selector field shall be defined by configuration and shall be 32,
16, or 8 bits.c

[PRS_SOMEIP_00906]
Upstream requirements: RS_SOMEIP_00034

dPossible values of the type selector field shall be defined by the configuration for each
union separately.c

[PRS_SOMEIP_00907]
Upstream requirements: RS_SOMEIP_00024, RS_SOMEIP_00034

dThe value 0 of the type selector field shall be reserved for the NULL type. In this case
the length of the payload shall be 0.c

Note:
This denotes an empty union.

[PRS_SOMEIP_00130]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00034

dThe payload is serialized depending on the type in the type selector field.c

In the following example a length of the length field is specified as 32 Bits. The union
shall support a uint8 and a uint16 as data. Both are padded to the 32 bit boundary
(length=4 Bytes).

48 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

A uint8 will be serialized like shown in Table 4.6.

Length = 4 Bytes
Type = 1
uint8 Padding 0x00 Padding 0x00 Padding 0x00

Table 4.6: Example: uint8

A uint16 will be serialized like shown in Table 4.7.

Length = 4 Bytes
Type = 2
uint16 Padding 0x00 Padding 0x00

Table 4.7: Example: uint16

4.1.5 De-serialization of Data Structures

The de-serialization process need to inspect the payload (serialized byte stream) of
the received SOME/IP message. Thereby the de-serialization process need to identify
the elements within the received byte stream and compare the identified elements with
the configured data type(s) of the corresponding service interface (please note, the
data type is derived from the interface specification, which defines the exact position
of all data structures in a SOME/IP message). The possibility to identify elements in a
dedicated SOME/IP serialized byte stream depend on the interface specification and
the serialization properties. The serialization properties define among others:

• if structured data types are serialized with a length field in front

• if tag-length-value are used for encoding, which include data ids and the possi-
bility specify optional data members

The de-serialization process of a SOME/IP messages need to consider the received
message length and deal with a message length which may be larger or less then ex-
pected according the interface specification. This is needed to support backward com-
patible communication, where ECUs of a heterogeneous in-vehicle network (re-used
ECUs and new developed ECUs) communicate via SOME/IP serialized byte streams.
The subsequential chapters describe the expected behavior of the de-serialization pro-
cess.

4.1.5.1 Structured DataTypes (structs)

If more data then expected was received, then the de-serialization process should ac-
cept all received elements of the SOME/IP message payload which correspond to the
configured service interface data type and skip the unknown identified elements of the
de-serialized SOME/IP message payload. If less data then expected was received,
then the de-serialization should accept all know elements of the SOME/IP message

49 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

payload which correspond to the configured service interface data type and fill the
missing elements of the configured service interface data type with an specified com-
plementary default value (e.g. initial value).

[PRS_SOMEIP_00371]
Upstream requirements: RS_SOMEIP_00033

dIf the length is greater than the length of the struct as specified in the data type defi-
nition only the bytes specified in the data type shall be interpreted and the other bytes
shall be skipped based on the length field.c

[PRS_SOMEIP_00900]
Upstream requirements: RS_SOMEIP_00033

dIf the length is less than the sum of the lengths of all struct members and no comple-
mentary default value for the missing data can be provided locally by the receiver, the
deserialization shall be aborted and the message shall be treated as malformed.c

4.1.5.2 Structured Datatypes and Arguments with Identifier and optional mem-
bers (’TLV’)

If the de-serialization process detect an unkown optional member according the con-
figured service interface data type, then the de-serialization process should ignore this
member. If the de-serialization process detect a missing member/argument, which is
required according the configured service interface data type and a complementary
default value (e.g. initial value) is available, then the de-serialization process should
use the complementary default value for this missing member/argument. Otherwise
the SOME/IP message is treated as malformed.

[PRS_SOMEIP_00223]
Upstream requirements: RS_SOMEIP_00050

dThe deserializer shall ignore optional members/arguments which are not available in
the serialized byte stream.c

[PRS_SOMEIP_00217]
Upstream requirements: RS_SOMEIP_00050

dIf the deserializer reads an unknown Data ID (i.e. not contained in its data definition),
it shall skip the unknown member/argument by using the information of the wire type
and length field.c

50 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00380] Behaviour if a required member/argument is missing in
the received SOME/IP message

Upstream requirements: RS_SOMEIP_00050

dIf the deserializer cannot find a required (i.e. non-optional) member/argument defined
in its data definition in the serialized byte stream and a complementary default value for
this missing member/argument is available, then the available complementary default
value shall be used for this missing member/argument. Ohterwise the deserialization
shall be aborted and the message shall be treated as malformed.c

4.1.5.3 Strings

Strings could be configured with a fixed length or dynamic length. Independent a string
has fixed length or dynamic length configured, a serialized string, which is received
with a larger length than expected according the configured service interface data type,
should be treated as malformed. For strings with fixed length and received with a length
which is less than expected and this string is correctly terminated, the string should be
processed. Otherwise the message shall be treated as malformed.

4.1.5.3.1 Strings (fixed length)

[PRS_SOMEIP_00911]
Upstream requirements: RS_SOMEIP_00038

dIf the length of a string with fixed length is greater than expected (expectation shall
be based on the data type definition), the deserialization shall be aborted and the
message shall be treated as malformed.c

[PRS_SOMEIP_00912]
Upstream requirements: RS_SOMEIP_00038

dIf the length of a string with fixed length is less than expected (expectation shall be
based on the data type definition) and it is correctly terminated using "\0", it shall be
accepted.c

[PRS_SOMEIP_00913]
Upstream requirements: RS_SOMEIP_00038

dIf the length of a string with fixed length is less than expected (expectation shall be
based on the data type definition) and it is not correctly terminated using "\0", the
deserialization shall be aborted and the message shall be treated as malformed.c

51 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

Instead of transferring application strings as SOME/IP strings with BOM and "\0" ter-
mination, strings can also be transported as plain dynamic length arrays without BOM
and "\0" termination (see chapter 4.1.4.5.2). Please note that this requires the full string
handling (e.g. endianness conversion) to be done in the applications.

4.1.5.3.2 Strings (dynamic length)

[PRS_SOMEIP_00914]
Upstream requirements: RS_SOMEIP_00039

dIf the length of a string with variable length is greater than expected (expectation
shall be based on the data type definition), the deserialization shall be aborted and the
message shall be treated as malformed.c

4.1.5.4 Arrays

Arrays could be configured with a fixed length or dynamic length. Independent if an
array has fixed length or dynamic length configured, if a serialized array was received
with a larger length than expected according the configured service interface data type,
then all known elements according the configured service interface data type should
be considered and the remaining elements should be skipped by the de-serialization
process.

For arrays with fixed length and the de-serialization process detect a missing element,
which is required according the configured service interface data type and a comple-
mentary default value (e.g. initial value) is available, then the de-serialization process
should use the complementary default value for this missing member/argument. Oth-
erwise the SOME/IP message is treated as malformed.

4.1.5.4.1 Arrays (fixed length)

[PRS_SOMEIP_00917]
Upstream requirements: RS_SOMEIP_00036

dIf the length of a fixed length array is greater than expected (expectation shall be
based on the data type definition) only the elements specified in the data type shall be
interpreted and the other bytes shall be skipped based on the length field.c

52 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00381] Behaviour if a required element is missing in the received
SOME/IP message

Upstream requirements: RS_SOMEIP_00036

dIf the length of a fixed length array is less than expected (expectation shall be based
on the data type definition) and a complementary default value (e.g. initial value) for the
missing data can be provided locally by the receiver, then the deserialization consider
this complementary default value as value for the missing data. Otherwise the de-
serialization process shall be aborted and the message shall be treated as malformed.c

Note: Overruns of fixed-size arrays can only be detected with a length field.

4.1.5.4.2 Arrays (dynamic length)

[PRS_SOMEIP_00919]
Upstream requirements: RS_SOMEIP_00037

dIf the length of a variable length array is greater than expected (expectation shall be
based on the data type definition) only the elements specified in the data type shall be
interpreted and the other bytes shall be skipped based on the length field.c

4.1.5.5 Enumeration

No further requirements considered for the deserialization.

4.1.5.6 Bitfield

No further requirements considered for the deserialization.

4.1.5.7 Union / Variant

[PRS_SOMEIP_00915]
Upstream requirements: RS_SOMEIP_00034

dIf the length of a union is greater than expected (expectation shall be based on the
data type definition) only the bytes specified in the data type shall be interpreted and
the other bytes shall be skipped based on the length field.c

53 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00916]
Upstream requirements: RS_SOMEIP_00034

dIf the length of a union is less than expected (expectation shall be based on the
data type definition) it shall depend on the inner data type whether valid data can be
deserialized or the deserialization shall be aborted and the message shall be treated
as malformed.c

4.2 Specification of SOME/IP Protocol

This chapter describes the Remote Procedure Call(RPC), Event Notifications and Error
Handling of SOME/IP.

4.2.1 Transport Protocol Bindings

In order to transport SOME/IP messages different transport protocols may be used.
SOME/IP currently supports UDP and TCP. Their bindings are explained in the follow-
ing sections, while Chapter 6 discusses which transport protocol to choose.

[PRS_SOMEIP_00138]
Upstream requirements: RS_SOMEIP_00015

dIf a server runs different instances of the same service, messages belonging to differ-
ent service instances shall be mapped to the service instance by the transport protocol
port on the server side.c

For details of see Chapter 4.2.1.3

[PRS_SOMEIP_00535]
Upstream requirements: RS_SOMEIP_00010

dAll Transport Protocol Bindings shall support transporting more than one SOME/IP
message in a Transport Layer PDU (i.e. UDP packet or TCP segment).c

[PRS_SOMEIP_00142]
Upstream requirements: RS_SOMEIP_00010

dThe receiving SOME/IP implementation shall be capable of receiving unaligned
SOME/IP messages transported by UDP or TCP.c

Rationale:
When transporting multiple SOME/IP payloads in UDP or TCP the alignment of the

54 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

payloads can be only guaranteed, if the length of every payloads is a multiple of the
alignment size (e.g. 32 bits).

[PRS_SOMEIP_00140]
Upstream requirements: RS_SOMEIP_00010

dThe header format allows transporting more than one SOME/IP message in a single
packet. The SOME/IP implementation shall identify the end of a SOME/IP message by
means of the SOME/IP length field. Based on the packet length field, SOME/IP shall
determine if there are additional SOME/IP messages in the packet. This shall apply for
UDP and TCP transport.c

[PRS_SOMEIP_00141]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00027

dEach SOME/IP payload shall have its own SOME/IP header.c

[PRS_SOMEIP_00940]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00027

dOne Service-Instance can use the following setup for its communication of all the
methods, events, and notifications:

• up to one TCP connection

• up to one UDP unicast connection

• up to one UDP multicast connection

c

4.2.1.1 UDP Binding

[PRS_SOMEIP_00139]
Upstream requirements: RS_SOMEIP_00010

dThe UDP binding of SOME/IP shall be achieved by transporting SOME/IP messages
in UDP packets.c

[PRS_SOMEIP_00137]
Upstream requirements: RS_SOMEIP_00010

dSOME/IP protocol shall not restrict the usage of UDP fragmentation.c

55 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00943]
Upstream requirements: RS_SOMEIP_00010

dThe client and server shall use a single UDP unicast connection for all methods,
events, and notifications of a Service-Instance which are configured to be communi-
cated using UDP unicast.c

[PRS_SOMEIP_00942]
Upstream requirements: RS_SOMEIP_00010

dThe client and server shall use a single UDP multicast address combination ("connec-
tion") per eventgroup, which is configured to be communicated using UDP multicast.

If the same multicast address is shared between different service instances of the same
service, then the port number of the UDP multicast address combination used for each
of these service instances shall be different, at least on server side.c

Note: Please refer to [PRS_SOMEIP_00163] and the rational below [PRS_SOMEIP_-
00163] for detailed information.

4.2.1.2 TCP Binding

The TCP binding of SOME/IP is heavily based on the UDP binding. In contrast to the
UDP binding, the TCP binding allows much bigger SOME/IP messages and uses the
robustness features of TCP (coping with loss, reorder, duplication, etc.).

In order to lower latency and reaction time, Nagle’s algorithm should be turned off
(TCP_NODELAY).

[PRS_SOMEIP_00706]
Upstream requirements: RS_SOMEIP_00010

dWhen the TCP connection is lost, pending requests shall be handled if a timeout
occurred.c

Since TCP handles reliability, additional means of reliability are not needed.

[PRS_SOMEIP_00707]
Upstream requirements: RS_SOMEIP_00010

dThe client and server shall use a single TCP connection for all methods, events, and
notifications of a Service-Instance which are configured to be communicated using
TCP.c

56 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00708]
Upstream requirements: RS_SOMEIP_00010

dThe TCP connection shall be opened by the client, when the first method call shall be
transported or the client tries to receive the first notifications.c

The client is responsible for re-establishing the TCP connection whenever it fails.

[PRS_SOMEIP_00709]
Upstream requirements: RS_SOMEIP_00010

dThe TCP connection shall be closed by the client, when the TCP connection is not
required anymore.c

[PRS_SOMEIP_00710]
Upstream requirements: RS_SOMEIP_00010

dThe TCP connection shall be closed by the client, when all Services using the TCP
connections are not available anymore (stopped or timed out).c

[PRS_SOMEIP_00711]
Upstream requirements: RS_SOMEIP_00010

dThe server shall not stop the TCP connection when stopping all services. Give the
client enough time to process the control data to shutdown the TCP connection itself.c

Rational:
When the server closes the TCP connection before the client recognized that the TCP
is not needed anymore, the client will try to reestablish the TCP connection.

Allowing resync to TCP stream using Magic Cookies

[PRS_SOMEIP_00154]
Upstream requirements: RS_SOMEIP_00010

dIn order to allow testing tools to identify the boundaries of SOME/IP Message
transported via TCP, the SOME/IP Magic Cookie Message may be inserted into the
SOME/IP messages over TCP message stream at regular distances.c

[PRS_SOMEIP_00160]
Upstream requirements: RS_SOMEIP_00010

dThe layout of the Magic Cookie Messages shall consist of the followign fields:

• for communincation from Client to Server:

57 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

– Message ID (Service ID/Method ID): 0xFFFF 0000

– Length: 0x0000 0008

– Request ID (Client ID/Session ID): 0xDEAD BEEF

– Protocol Version: 0x01

– Interface Version: 0x01

– Message Type: 0x01

– Return Code: 0x00

• for communincation from Server to Client:

– Message ID (Service ID/Method ID): 0xFFFF 8000

– Length: 0x0000 0008

– Request ID (Client ID/Session ID): 0xDEAD BEEF

– Protocol Version: 0x01

– Interface Version: 0x01

– Message Type: 0x02

– Return Code: 0x00

c

The layout of the Magic Cookie Messages is shown in Figure 4.11.

58 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

Protocol Version [8 bit]

=0x01

Interface Version [8 bit]

=0x01

Message Type [8 bit]

=0x01

Return Code [8 bit]

=0x00

Request ID (Client ID / Session ID) [32 bit]

= 0xDEAD BEEF

Length [32 bit]

= 0x0000 0008

Message ID (Service ID / Method ID) [32 bit]

(= 0xFFFF 0000)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

C
o
ve

re
d

b
y

L
e
n
g
th

Protocol Version [8 bit]

=0x01

Interface Version [8 bit]

=0x01

Message Type [8 bit]

=0x02

Return Code [8 bit]

=0x00

Request ID (Client ID / Session ID) [32 bit]

= 0xDEAD BEEF

Length [32 bit]

= 0x0000 0008

Message ID (Service ID / Method ID) [32 bit]

(= 0xFFFF 8000)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

C
ov

e
re

d
by

 L
e
n
gt

h

Client � Server:

Server � Client:

Figure 4.11: SOME/IP Magic Cookie Message for SOME/IP

4.2.1.3 Multiple Service-Instances

[PRS_SOMEIP_00162]
Upstream requirements: RS_SOMEIP_00015

dService-Instances of the same Service are identified through different Instance IDs. It
shall be supported that multiple Service-Instances reside on different ECUs as well as
multiple Service-Instances of one or more Services reside on one single ECU.c

[PRS_SOMEIP_00163]
Upstream requirements: RS_SOMEIP_00015

dWhile several Service-Instances of different Services shall be able to share the same
port number of the transport layer protocol used on both the provided/server and the
consumed/client side, multiple Service-Instances of the same Service on the pro-
vided/server side on one single ECU shall use different port numbers per Service-
Instance. Multiple Service-Instances of the same Service on the required/client side
on one single ECU may use the same port number per Service-Instance.c

Rationale: Normal SOME/IP (not SOME/IP-SD) messages do not carry the Service-
Instance ID as a dedicated field in the SOME/IP header. - Thus port numbers (and per-

59 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

haps the transport protocol) need to be used to distinguish different Service-Instance
of the same Service of a single ECU. This way a Service-Instance can be identified
through the combination of the Service ID combined with the endpoint information (i.e.,
IP-address, transport protocol (UDP/TCP), and port number). It is sufficient to use dif-
ferent port numbers for the different Service-Instances of the same Service on either
the server or the client side, since only a single difference in the 4-tuple <src IP, src
port, dst IP, dst port > is sufficient as a distinguishing criterion. As the server is the
one actually providing the different Service-Instances, the server is also the natural
place to handle the distinction. = > The server shall use different port numbers for
providing different Service-Instances of the same Service.

Recommendation: It is recommended that instances use the same port number for
UDP and TCP. If a Service-Instance uses UDP port x, only this Service-Instance of the
Service and not another Service-Instance of the same Service should use exactly TCP
port x for its Service provision.

4.2.1.4 Transporting large SOME/IP messages of UDP (SOME/IP-TP)

The UDP binding of SOME/IP can only transport SOME/IP messages that fit directly
into an IP packet. If larger SOME/IP messages need to be transported over UDP
(e.g. of 32 KB) the SOME/IP Transport Protocol (SOME/IP-TP) shall be used. The
SOME/IP message too big to be transported directly with the UDP binding shall be
called "original" SOME/IP message. The "pieces" of the original SOME/IP message
payload transported in SOME/IP-TP messages shall be called "segments".

Use TCP only if very large chunks of data need to be transported (> 1400 Bytes) and
no hard latency requirements in the case of errors exists

[PRS_SOMEIP_00720]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00012

dSOME/IP messages using SOME/IP-TP shall activate Session Handling (Session ID
must be unique for the original message).c

[PRS_SOMEIP_00721]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00012

dAll SOME/IP-TP segments shall carry the Session ID of the original message; thus,
they have all the same Session-ID.c

[PRS_SOMEIP_00722]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00011

dSOME/IP-TP segments shall have the TP-Flag of the Message Type set to 1.c

60 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00723]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00027

dSOME/IP-TP segments shall have a TP header right after the SOME/IP header (i.e.
before the SOME/IP payload) with the following structure (bits from highest to lowest):

• Offset [28 bits]

• Reserved Flag [1 bit]

• Reserved Flag [1 bit]

• Reserved Flag [1 bit]

• More Segments Flag [1 bit]

c

SOME-IP-TP-Header is as shown in Table 4.8.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Message ID (Service ID / Method ID) [32 Bit]

Length [32 Bit]

Request ID (Client ID / Session ID) [32 Bit]

Protocol Version [8 Bit] Interface version [8 Bit] Message Type [8 Bit] Return Code [8 Bit]

Offset [28 bit] RES
0 0 0

M

Payload [variable size]

Table 4.8: SOME/IP TP header

[PRS_SOMEIP_00931]
Upstream requirements: RS_SOMEIP_00027

dSOME/IP-TP Header shall be encoded in network byte order (big endian).c

[PRS_SOMEIP_00724]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00027

dThe Offset field shall transport the upper 28 bits of a uint32. The lower 4 bits shall be
always interpreted as 0.c

Note:
This means that the offset field can only transport offset values that are multiples of 16
bytes.

61 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00725]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00027

dThe Offset field of the TP header shall be set to the offset in bytes of the transported
segment in the original message.c

[PRS_SOMEIP_00726]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00027

dThe Reserved Flags shall be set to 0 by the sender and shall be ignored (and not
checked) by the receiver.c

[PRS_SOMEIP_00727]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00027

dThe More Segments Flag shall be set to 1 for all segments but the last segment. For
the last segment it shall be set to 0.c

[PRS_SOMEIP_00728]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00027

dThe SOME/IP length field shall be used as specified before. This means it covers the
first 8 bytes of the SOME/IP header and all bytes after that.c

Note:
This means that for a SOME/IP-TP message transporting a segment, the SOME/IP
length covers 8 bytes of the SOME/IP header, the 4 bytes of the TP header, and the
segment itself.

[PRS_SOMEIP_00729]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

dThe length of a segment must reflect the alignment of the next segment based on the
offset field. Therefore, all but the last segment shall have a length that is a multiple of
16 bytes.c

[PRS_SOMEIP_00730] Maximum segement length
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00029, RS_SOMEIP_00051

dIn accordance with the recommended payload size (see [PRS_SOMEIP_00382]), the
maximum length of a segment that is correctly aligned should be 1392 bytes.c

62 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00731]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

dSOME/IP-TP messages shall use the same Message ID (i.e. Service ID and Method
ID), Request ID (i.e. Client ID and Session ID), Protocol Version, Interface Version,
and Return Code as the original message.c

Note:
As described above the Length, Message Type, and Payload are adapted by SOME/IP-
TP.

Example

This example describes how an original SOME/IP message of 5880 bytes payload has
to be transmitted. The Length field of this original SOME/IP message is set to 8 + 5880
bytes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Message ID (Service ID / Method ID) [32 Bit]

0x0101 0009
Length [32 Bit]

= 8 + 5880

Request ID (Client ID / Session ID) [32 Bit]

0x0001 0005
Protocol Version [8 Bit]

0x01

Interface version [8 Bit]

0x01

Message Type [8 Bit]

b00000000 [0x00]

Return Code [8 Bit]

0x00

Payload [5880 Bytes]

0x00 0x00 0x30 0x00

0x00 0x01 0x02 0x03

...

Table 4.9: Example: Header of Original SOME/IP message

This original SOME/IP message will now be segmented into 5 consecutive SOME/IP
segments. Every payload of these segments carries at most 1392 bytes in this exam-
ple.

For these segments, the SOME/IP TP module adds additional TP fields (marked red).
The Length field of the SOME/IP carries the overall length of the SOME/IP segment
including 8 bytes for the Request ID, Protocol Version, Interface Version, Message Type
and Return Code. Because of the added TP fields (4 bytes), this Length information is
extended by 4 additional SOME/IP TP bytes.

The following figure provides an overview of the relevant SOME/IP header settings for
every SOME/IP segment:

63 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

Length (Bytes) Message Type [TP-Flag] Offset Value More Segment Flag

1st segment 8 + 4 + 1392 = 1404 TP-Flag = ’1’ 0 1

2nd segment 8 + 4 + 1392 = 1404 TP-Flag = ’1’ 87 1

3rd segment 8 + 4 + 1392 = 1404 TP-Flag = ’1’ 174 1

4th segment 8 + 4 + 1392 = 1404 TP-Flag = ’1’ 261 1

5th segment 8 + 4 + 312 = 324 TP-Flag = ’1’ 348 0

Table 4.10: Example: Overview of relevant SOME/IP TP headers

Note:
Please be aware that the value provided within the Offset Field is given in units of 16
bytes, i.e.: The Offset Value of 87 correspond to 1392 bytes Payload.

The complete SOME/IP headers of the SOME/IP segments message will look like this
in detail:

• The first 4 segments contain 1392 Payload bytes each with "More Segments
Flag" set to ’1’:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Message ID (Service ID / Method ID) [32 Bit]

0x0101 0009
Length [32 Bit]

8+4+1392 (1404)

Request ID (Client ID / Session ID) [32 Bit]

0x0001 0005
Protocol Version [8 Bit]

0x01

Interface version [8 Bit]

0x01

Message Type [8 Bit]

b00100000 [0x20]

Return Code [8 Bit]

0x00

Offset [28 bit] RES
0 0 0

M
1

Payload [1392 Bytes]

0x00 0x17 0x28 0x33

0x28 0x03 0x18 0x32

...

Table 4.11: Example: Header of the SOME/IP segments

• The last segment (i.e. #5) contains the remaining 312 Payload bytes of the origi-
nal 5880 bytes payload. This last segment is marked with "More Segments flag"
set to ’0’.

64 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Message ID (Service ID / Method ID) [32 Bit]

0x0101 0009
Length [32 Bit]

8+4+312 (324)

Request ID (Client ID / Session ID) [32 Bit]

0x0001 0005
Protocol Version [8 Bit]

0x01

Interface version [8 Bit]

0x01

Message Type [8 Bit]

b00100000 [0x20]

Return Code [8 Bit]

0x00

Offset [28 bit] RES
0 0 0

M
0

Payload [312 Bytes]

...

0x4d 0x65 0x67 0x61

0x6e 0x46 0x6f 0x78

Table 4.12: Example: Header of the last SOME/IP segments

Sender specific behavior

[PRS_SOMEIP_00732]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

dThe sender shall segment only messages that were configured to be segmented.c

[PRS_SOMEIP_00733]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

dThe sender shall send segments in ascending order.c

[PRS_SOMEIP_00734]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

dThe sender shall segment in a way that all segments with the More Segment Flag set
to 1 are of the same size.c

[PRS_SOMEIP_00735]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

dThe sender shall try to maximize the size of segments within limitations imposed by
this specification.c

65 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00736]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

dThe sender shall not send overlapping or duplicated segments.c

Receiver specific behavior

[PRS_SOMEIP_00738]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

dThe receiver shall match segments for reassembly based on the configured values of
Message-ID, Protocol-Version, Interface-Version and Message-Type (w/o TP Flag).c

[PRS_SOMEIP_00740]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

dIt shall be supported to reassemble multiple messages with the same Message ID but
sent from different clients (difference in Sender IP, Sender Port, or Client ID) in parallel.
This should be controlled by configuration and determines the amount of "reassembly
buffers".c

[PRS_SOMEIP_00741]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

dThe Session ID shall be used to detect the next original message to be reassembled.c

[PRS_SOMEIP_00742]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

dThe receiver shall start a new reassembly (and may throw away old segments that
were not successfully reassembled), if a new segment with a different Session-ID is
received.c

[PRS_SOMEIP_00743]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

dThe receiver should only reassemble up to its configured buffer size and skip the rest
of the message.c

[PRS_SOMEIP_00744]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

dOnly correctly reassembled message of up to the configured size shall be passed to
an application.c

66 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

Note:
This means that the implementation must make sure that all bytes of the message must
be bytes that were received and reassembled correctly. Counting non-overlapping,
non-duplicated bytes and comparing this to the length could be a valid check.

[PRS_SOMEIP_00379] .
Upstream requirements: RS_SOMEIP_00010

dThe receiver shall cancel the current assembly process, when no segement
has been received during a configured SOMEIPTP_REASSEMBLY_TIMEOUT (see
[PRS_SOMEIP_00378]) period.c

[PRS_SOMEIP_00745]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

dThe Return Code of the last segment used for reassembly shall be used for the re-
assembled message.c

[PRS_SOMEIP_00746]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

dDuring reassembling the SOME/IP TP segments into a large unsegmented message,
the Message Type shall be adapted, the TP Flag shall be reset to 0.c

[PRS_SOMEIP_00747]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

dThe receiver shall support reassembly of segments that are received in ascending
and descending order.c

[PRS_SOMEIP_00749]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

dWhen a missing segment is detected during assembly of a SOME/IP message, the
current assembly process shall be canceled.c

Note:
This means that reordering is not supported.

[PRS_SOMEIP_00750]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

dInterleaving of different segmented messages using the same buffer (e.g. only the
Session-ID and payload are different) is not supported.c

67 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

Note:
This prohibits that equal events (same Message-ID, IP-Addresses, ports numbers, and
transport protocol) arrive in the wrong order, when some of their segments get re-
ordered.

[PRS_SOMEIP_00751]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

dReordering of segments of completely different original messages (e.g. Message ID
is different) is not of concern since those segments go to different buffers.c

[PRS_SOMEIP_00752]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

dThe receiver shall correctly reassemble overlapping and duplicated segments by over-
writing based on the last received segment.c

[PRS_SOMEIP_00753]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

dThe receiver may cancel reassembly, if overlapping or duplicated segments change
already written bytes in the buffer, if this feature can be turned off by configuration.c

[PRS_SOMEIP_00754]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

dThe receiver shall be able to detect and handle obvious errors gracefully. E.g. cancel
reassembly if segment length of a segment with MS=1 is not a multiple of 16.c

Note:
This means that buffer overflows or other malfunction shall be prevented by the receiv-
ing code.

4.2.2 Request/Response Communication

One of the most common communication patterns is the request/response pattern.
One communication partner (Client) sends a request message, which is answered by
another communication partner (Server).

[PRS_SOMEIP_00920]
Upstream requirements: RS_SOMEIP_00007

dFor the SOME/IP request message the client has to do the following for payload and
header:

68 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

• Construct the payload

• Set the Message ID based on the method the client wants to call

• Set the Length field to 8 bytes (for the part of the SOME/IP header after the length
field) + length of the serialized payload

• Optionally set the Request ID to a unique number (shall be unique for client only)

• Set the Protocol Version according [PRS_SOMEIP_00052]

• Set the Interface Version according to the interface definition

• Set the Message Type to REQUEST (i.e. 0x00)

• Set the Return Code to 0x00

c

[PRS_SOMEIP_00921]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00007

dTo construct the payload of a request message, all input or inout arguments of the
method shall be serialized according to the order of the arguments within the signature
of the method.c

[PRS_SOMEIP_00922]
Upstream requirements: RS_SOMEIP_00007

dThe server builds the header of the response based on the header of the client’s
request and does in addition:

• Construct the payload

• take over the Message ID from the corresponding request

• Set the length to the 8 Bytes + new payload size

• take over the Request ID from the corresponding request

• Set the Message Type to RESPONSE (i.e. 0x80) or ERROR (i.e. 0x81)

• set Return Code to a return code according to [PRS_SOMEIP_00191].

c

[PRS_SOMEIP_00923]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00007

dTo construct the payload of a response message, all output or inout arguments of the
method shall be serialized according to the order of the arguments within the signature
of the method.c

69 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00927]
Upstream requirements: RS_SOMEIP_00007

dA server shall not sent a response message for a request with a specific Request ID
until the corresponding request message has been received.c

[PRS_SOMEIP_00928]
Upstream requirements: RS_SOMEIP_00007

dA client shall ignore the reception of a response message with a specific Request ID,
when the corresponding request message has not yet been sent completely.c

4.2.3 Fire&Forget Communication

Requests without response message are called fire&forget.

[PRS_SOMEIP_00924]
Upstream requirements: RS_SOMEIP_00006

dFor the SOME/IP request-no-return message the client has to do the following for
payload and header:

• Construct the payload

• Set the Message ID based on the method the client wants to call

• Set the Length field to 8 bytes (for the part of the SOME/IP header after the length
field) + length of the serialized payload

• Optionally set the Request ID to a unique number (shall be unique for client only)

• Set the Protocol Version according [PRS_SOMEIP_00052]

• Set the Interface Version according to the interface definition

• Set the Message Type to REQUEST_NO_RETURN (i.e. 0x01)

• Set the Return Code to 0x00

c

[PRS_SOMEIP_00171]
Upstream requirements: RS_SOMEIP_00006

dFire & Forget messages shall not return an error. Error handling and return codes
shall be implemented by the application when needed.c

70 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

4.2.4 Notification Events

Notifications describe a general Publish/Subscribe-Concept. Usually the server pub-
lishes a service to which a client subscribes. On certain cases the server will send the
client an event, which could be for example an updated value or an event that occurred.

SOME/IP is used only for transporting the updated value and not for the publishing and
subscription mechanisms. These mechanisms are implemented by SOME/IP-SD.

[PRS_SOMEIP_00925]
Upstream requirements: RS_SOMEIP_00004

dFor the SOME/IP notification message the server has to do the following for payload
and header:

• Construct the payload

• Set the Message ID based on the event the server wants to send

• Set the Length field to 8 bytes (for the part of the SOME/IP header after the length
field) + length of the serialized payload

• Set the Client ID to 0x00. Set the Session ID according to
[PRS_SOMEIP_00932], [PRS_SOMEIP_00933], and [PRS_SOMEIP_00521].
In case of active Session Handling the Session ID shall be incremented upon
each transmission.

• Set the Protocol Version according [PRS_SOMEIP_00052]

• Set the Interface Version according to the interface definition

• Set the Message Type to NOTIFICATION (i.e. 0x02)

• Set the Return Code to 0x00

c

[PRS_SOMEIP_00926]
Upstream requirements: RS_SOMEIP_00004

dThe payload of the notification message shall consist of the serialized data of the
event.c

[PRS_SOMEIP_00930]
Upstream requirements: RS_SOMEIP_00042

dWhen more than one subscribed client on the same ECU exists, the system shall han-
dle the replication of notifications in order to save transmissions on the communication
medium.c

71 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

This is especially important, when notifications are transported using multicast mes-
sages.

4.2.4.1 Strategy for sending notifications

For different use cases different strategies for sending notifications are possible. The
following examples are common:

• Cyclic update — send an updated value in a fixed interval (e.g. every 100 ms for
safety relevant messages with Alive)

• Update on change — send an update as soon as a "value" changes (e.g. door
open)

• Epsilon change — only send an update when the difference to the last value is
greater than a certain epsilon. This concept may be adaptive, i.e. the prediction is
based on a history; thus, only when the difference between prediction and current
value is greater than epsilon an update is transmitted.

4.2.5 Fields

A field represents a status and has a valid value. The consumers subscribing for the
field instantly after subscription get the field value as an initial event.

[PRS_SOMEIP_00179]
Upstream requirements: RS_SOMEIP_00009

dA field shall be a combination of getter, setter and notification event.c

[PRS_SOMEIP_00180]
Upstream requirements: RS_SOMEIP_00009

dA field without a setter and without a getter and without a notifier shall not exist. The
field shall contain at least a getter, a setter, or a notifier.c

[PRS_SOMEIP_00181]
Upstream requirements: RS_SOMEIP_00009

dThe getter of a field shall be a request/response call that has an empty payload in the
request message and the value of the field in the payload of the response message.c

72 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00182]
Upstream requirements: RS_SOMEIP_00009

dThe setter of a field shall be a request/response call that has the desired value of the
field in the payload of the request message and the value that was set to the field in
the payload of the response message.c

Note:
If the value of the request payload was adapted (e.g. because it was out of limits) the
adapted value will be transported in the response payload.

[PRS_SOMEIP_00909]
Upstream requirements: RS_SOMEIP_00002, RS_SOMEIP_00009

dThe notifier shall send an event message that transports the value of the field to the
client when the client subscribes to the field.c

[PRS_SOMEIP_00183]
Upstream requirements: RS_SOMEIP_00005, RS_SOMEIP_00009

dThe notifier shall send an event message that transports the value of a field and shall
follow the rules for events. Sending strategies include on change, on epsilon change,
and cyclic sending.c

4.2.6 Error Handling

Error handling can be done in the application or the communication layer below. There-
fore SOME/IP supports two different mechanisms:

• Return Codes in the Response Messages of methods

• Explicit Error Messages

Which one of both is used, depends on the configuration.

[PRS_SOMEIP_00901]
Upstream requirements: RS_SOMEIP_00008

dReturn Codes in the RESPONSE Messages (Message Type 0x80) of methods shall
be used to transport application errors and the response data of a method from the
provider to the caller of a method. Message Type RESPONSE 0x80 shall be used
in cases where no additional/extended error information (apart from the error code
encoded in the Return Code field) needs to be propagated to the caller.c

73 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

Note:
Please be aware that return codes of the Request and Response methods are not
treated as errors from the point of view of SOME/IP. This means that the message type
is still 0x80 if a request/response method exits with a return code not equal to 0x00
(message type is still 0x80 if ApplicationError of AUTOSAR ClientServerOperation is
different from E_OK).

[PRS_SOMEIP_00902]
Upstream requirements: RS_SOMEIP_00008

dExplicit Error Messages shall be used to transport application errors and the response
data or generic SOME/IP errors from the provider to the caller of a method.c

[PRS_SOMEIP_00903]
Upstream requirements: RS_SOMEIP_00008

dIf more detailed error information (apart from an error code encoded in the Return
Code field) needs to be propagated to the caller, an ERROR message (Message type
0x81) shall be used. The payload of the Error Message shall be filled with serialized
error specific data, e.g. an exception string, or other error information. This additional
error information shall be modeled in the interface description, or defined by the stan-
dard.c

This can be used to handle all different application errors that might occur in the server.
In addition, problems with the communication medium or intermediate components
(e.g. switches) may occur, which have to be handled e.g. by means of reliable trans-
port.

All messages have a return code field in their header. (See chapter 4.1.2)

[PRS_SOMEIP_00904]
Upstream requirements: RS_SOMEIP_00008

dOnly responses (Response Messages (message type 0x80) and Error Messages
(message type 0x81) shall use the return code field to carry a return code to the request
(Message Type 0x00) they answer.c

[PRS_SOMEIP_00905]
Upstream requirements: RS_SOMEIP_00008

dAll other messages than 0x80 and 0x81 shall set this field to 0x00.c

For message type see Chapter 4.1.2.7.

74 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

4.2.6.1 Return Code

[PRS_SOMEIP_00187]
Upstream requirements: RS_SOMEIP_00008

dThe return code shall be UINT8.c

[PRS_SOMEIP_00191] Return Codes
Upstream requirements: RS_SOMEIP_00008, RS_SOMEIP_00024

d

ID Name Description
0x00 E_OK No error occurred
0x01 E_NOT_OK An unspecified error occurred
0x02 E_UNKNOWN_SERVICE The requested Service ID is unknown.
0x03 E_UNKNOWN_METHOD The requested Method ID is unknown. Service ID is

known.
0x04 E_NOT_READY Service ID and Method ID are known. Application

not running.
0x05 E_NOT_REACHABLE System running the service is not reachable (inter-

nal error code only).
0x06 E_TIMEOUT A timeout occurred (internal error code only).
0x07 E_WRONG_PROTOCOL_

VERSION
Version of SOME/IP protocol not supported

0x08 E_WRONG_INTERFACE_
VERSION

Interface version mismatch

0x09 E_MALFORMED_MESSAGE Deserialization error, so that payload cannot be de-
serialized.

0x0a E_WRONG_MESSAGE_TYPE An unexpected message type was received (e.g.
REQUEST_NO_RETURN for a method defined as
REQUEST).

0x0b E_E2E_REPEATED Repeated E2E calculation error
0x0c E_E2E_WRONG_SEQUENCE Wrong E2E sequence error
0x0d E_E2E Not further specified E2E error
0x0e E_E2E_NOT_AVAILABLE E2E not available
0x0f E_E2E_NO_NEW_DATA No new data for E2E calculation present.
0x10 -
0x1f

RESERVED Reserved for generic SOME/IP errors. These errors
will be specified in future versions of this document.

0x20 -
0x5E

RESERVED Reserved for specific errors of services and meth-
ods. These errors are specified by the interface
specification.

c

Generation and handling of return codes shall be configurable.

75 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00539]
Upstream requirements: RS_SOMEIP_00008

dA SOME/IP error message (i.e. return code 0x01 - 0x1f) shall not be answered with
an error message.c

4.2.6.2 Error Message

For more flexible error handling, SOME/IP allows a different message layout specific
for Error Messages instead of using the message layout of Response Messages.

The recommended layout for the exception message is the following:

• Union of specific exceptions. At least a generic exception without fields needs to
exist.

• Dynamic Length String for exception description.

Rationale: The union gives the flexibility to add new exceptions in the future in a type-
safe manner. The string is used to transport human readable exception descriptions to
ease testing and debugging.

[PRS_SOMEIP_00188]
Upstream requirements: RS_SOMEIP_00008

dThe receiver of a SOME/IP message shall not return an error message for events/no-
tifications.c

[PRS_SOMEIP_00189]
Upstream requirements: RS_SOMEIP_00008

dThe receiver of a SOME/IP message shall not return an error message for fire&forget
methods.c

[PRS_SOMEIP_00537]
Upstream requirements: RS_SOMEIP_00008

dThe receiver of a SOME/IP message shall not return an error message for events/no-
tifications and fire&forget methods if the Message Type is set incorrectly to Request or
Response.c

[PRS_SOMEIP_00190]
Upstream requirements: RS_SOMEIP_00008

dFor Request/Response methods the error message shall copy over the fields of the
SOME/IP header (i.e. Message ID, Request ID, and Interface Version) but not the

76 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

payload. In addition Message Type and Return Code have to be set to the appropriate
values.c

4.2.6.3 Error Processing Overview

[PRS_SOMEIP_00576]
Upstream requirements: RS_SOMEIP_00008, RS_SOMEIP_00014

dError handling shall be based on the message type received (e.g. only methods
can be answered with a return code) and shall be checked in a defined order of
[PRS_SOMEIP_00195].c

[PRS_SOMEIP_00910]
Upstream requirements: RS_SOMEIP_00008, RS_SOMEIP_00014

dFor SOME/IP messages received over UDP, the following shall be checked:

• The UDP datagram size shall be at least 16 Bytes (minimum size of a SOME/IP
message)

• The value of the length field shall be less than or equal to the remaining bytes in
the UDP datagram payload

If one check fails, a malformed error shall be issued.c

[PRS_SOMEIP_00195]
Upstream requirements: RS_SOMEIP_00008, RS_SOMEIP_00014

dSOME/IP messages shall be checked by error processing. This does not include the
application based error handling but just covers the error handling in messaging and
RPC.c

An overview of the error processing is shown in Figure 4.12.

77 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

Figure 4.12: Message Validation and Error Handling in SOME/IP

[PRS_SOMEIP_00614]
Upstream requirements: RS_SOMEIP_00008, RS_SOMEIP_00014

dWhen one of the errors specified in [PRS_SOMEIP_00195] occurs while receiving
SOME/IP messages over TCP, the receiver shall check the TCP connection and shall
restart the TCP connection if needed.c

Rational:
Checking the TCP connection might include the following:

• Checking whether data is received for e.g. other Eventgroups.

• Sending out a Magic Cookie message and waiting for the TCP ACK.

78 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

• Reestablishing the TCP connection

4.2.6.4 Communication Errors and Handling of Communication Errors

When considering the transport of RPC messages different reliability semantics exist:

• Maybe — the message might reach the communication partner

• At least once — the message reaches the communication partner at least once

• Exactly once — the message reaches the communication partner exactly once

When using the above terms, in regard to Request/Response the term applies to both
messages (i.e. request and response or error).

While different implementations may implement different approaches, SOME/IP cur-
rently achieves "maybe" reliability when using the UDP binding and "exactly once" reli-
ability when using the TCP binding. Further error handling is left to the application.

For "maybe" reliability, only a single timeout is needed, when using request/response
communication in combination of UDP as transport protocol. Figure 4.13 shows the
state machines for "maybe" reliability. The client’s SOME/IP implementation has to
wait for the response for a specified timeout. If the timeout occurs SOME/IP shall
signal E_TIMEOUT to the client application.

processing

reqReceived

waitingForResponse

/ sendReq rspReceived

rspTimeout

/ sendRsp

Error: NoResponse

Client

Server

Figure 4.13: State Machines for Reliability "Maybe"

For "exactly once" reliability the TCP binding may be used, since TCP was defined to
allow for reliable communication.

4.3 Compatibility Rules for Interface Version

The Interface Version identifies the Payload format. The Payload format is affected by

79 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

• the Service Interface specification

• the serialization configuration (e.g. usage of variable size arrays, size of length
fields, padding, TLV, SOME/IP-TP).

[PRS_SOMEIP_00937]
Upstream requirements: RS_SOMEIP_00003

dThe Interface Version shall be increased for any of the following reasons:

• incompatible changes in the Payload format

• incompatible changes in the service behaviour

• required by application design

c

Note: The Interface Version shall not be increased for compatible changes in the Pay-
load format.

[PRS_SOMEIP_00938]
Upstream requirements: RS_SOMEIP_00003

dThe rules in [PRS_SOMEIP_00758] shall define the compatibility of changes of the
payload format. For complex data types the rules shall be applied recursively. X de-
notes a compatible change, an empty cell denotes an incompatible change.c

Note:
This table is based on the specification of the SOME/IP protocol. As a rule of thumb,
interfaces are compatible if the receiver of data finds all expected information on the
expected locations.

80 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[PRS_SOMEIP_00758] Compatibility of changes of the payload format
Upstream requirements: RS_SOMEIP_00003

d

Classes of Protocol / Serialization Capa-
bilities

S
er

ia
liz

at
io

n
w

ith
ou

tl
en

gt
h

fie
ld

s

S
er

ia
liz

at
io

n
w

ith
le

ng
th

fie
ld

s

S
er

ia
liz

at
io

n
w

ith
TL

V

S
er

ia
liz

at
io

n
w

ith
TL

V
an

d
op

tio
na

lm
em

be
rs

Change of Interface Tr
an

sm
itt

er

R
ec

ei
ve

r

Tr
an

sm
itt

er

R
ec

ei
ve

r

Tr
an

sm
itt

er

R
ec

ei
ve

r

Tr
an

sm
itt

er

R
ec

ei
ve

r

Add a struct member not to the end of the struct MAXIMUM-MESSAGE-SIZE (MMS) X X X

Add a struct member to the end of the toplevel struct MAXIMUM-MESSAGE-SIZE (MMS) X X X X X

Add a struct member to the end of a sub-struct MAXIMUM-MESSAGE-SIZE (MMS) X X X X

Remove struct member not from the end of the struct MAXIMUM-MESSAGE-SIZE (MMS) X X X

Remove struct member from the end of the toplevel struct
MAXIMUM-MESSAGE-SIZE (MMS) X X X X X

Remove struct member from the end of a sub-struct MAXIMUM-MESSAGE-SIZE (MMS) X X X X

Reorder struct members X X X X

Change the non-highest union member (redefine or remove)

Add a new union member with previously unused type selector X X X X

Remove union member with highest type selector X X X X

Change of data type:

• to a larger one (e.g. uint8 to uint16)

• to a smaller one (e.g. uint16 to uint8

• to a semantically different one (e.g. integer to struct, integer to float, string to
string with different character size)

• byte order

• number of dimensions of arrays

• size of length field of array, struct or union type selector

Add new enumeration valuesENUM-REMARK X X X X

Change existing enumeration valuesENUM-REMARK

Remove enumeration valuesENUM-REMARK X X X X

Increase the length of a fixed size array X X X

Decrease the length of a fixed size array X X X

5

81 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

4
Classes of Protocol / Serialization Capa-
bilities

S
er

ia
liz

at
io

n
w

ith
ou

tl
en

gt
h

fie
ld

s

S
er

ia
liz

at
io

n
w

ith
le

ng
th

fie
ld

s

S
er

ia
liz

at
io

n
w

ith
TL

V

S
er

ia
liz

at
io

n
w

ith
TL

V
an

d
op

tio
na

lm
em

be
rs

Change of Interface Tr
an

sm
itt

er

R
ec

ei
ve

r

Tr
an

sm
itt

er

R
ec

ei
ve

r

Tr
an

sm
itt

er

R
ec

ei
ve

r

Tr
an

sm
itt

er

R
ec

ei
ve

r

Increase the length of a fixed size stringZERO-TERMINATED X X X

Decrease the length of a fixed size stringZERO-TERMINATED X X X

Decrease maximum length of variable size string N/A N/A X X X

Increase maximum length of variable size string N/A N/A X X X

Change maximum length of variable size array N/A N/A X X X X X X

Add argument not to the end of the argument list of a method request
Remove argument not from the end of the argument list of a method reponse
MAXIMUM-MESSAGE-SIZE (MMS), OPTIONAL-METHOD-ARGUMENTS-REMARK

X X X

Add argument to the end of the argument list of a method request
Remove argument from the end of the argument list of a method reponse
MAXIMUM-MESSAGE-SIZE (MMS), OPTIONAL-METHOD-ARGUMENTS-REMARK, DEFAULT-VALUE

X X X X X

Remove argument not from the end of the argument list of a method request
Add argument not from the end of the argument list of a method response
OPTIONAL-METHOD-ARGUMENTS-REMARK, DEFAULT-VALUE

X X X

Remove argument from the end of the argument list of a method request
Add argument from the end of the argument list of a method response
OPTIONAL-METHOD-ARGUMENTS-REMARK

X X X X X

Reorder arguments of methods X X X X

Change optionality of argument N/A N/A N/A N/A N/A N/A

Change the return type of a method (e.g void to uint8)

Add return codes of a method X X X X

Remove return codes of a method X X X X

Change of the name of a service interface, method or event X X X X X X X X

Add event ot eventgroup X X X X

Remove event from eventgroup X X X X

Add setter or getter to a field
Remove notifier from a field X X X X

Remove setter or getter from a field
Add notifier to a field X X X X

Extend service interface by new method, event or field X X X X

Remove method, event or field from a service interface X X X X

5

82 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

4
Classes of Protocol / Serialization Capa-
bilities

S
er

ia
liz

at
io

n
w

ith
ou

tl
en

gt
h

fie
ld

s

S
er

ia
liz

at
io

n
w

ith
le

ng
th

fie
ld

s

S
er

ia
liz

at
io

n
w

ith
TL

V

S
er

ia
liz

at
io

n
w

ith
TL

V
an

d
op

tio
na

lm
em

be
rs

Change of Interface Tr
an

sm
itt

er

R
ec

ei
ve

r

Tr
an

sm
itt

er

R
ec

ei
ve

r

Tr
an

sm
itt

er

R
ec

ei
ve

r

Tr
an

sm
itt

er

R
ec

ei
ve

r

Change Method ID

Change data ID of argument
Reuse data ID of previously removed argument N/A N/A N/A N/A

The following legend to the table applies:

ENUM-REMARK: The "Receiver" of an Enumeration needs to know all values it can re-
ceive, while the "Transmitter" does not have to send all values the "Receiver" knows.

MAXIMUM-MESSAGE-SIZE (MMS): The compability in Classic Platform is limited by
the maximum configured size of message. This means that if the message size is configured
larger than necessary, additional text could be added and, independently of the message size
on tag, can be replaced by a new one.

OPTIONAL-METHOD-ARGUMENTS-REMARK: See note above [PRS_SOMEIP_00230].

DEFAULT-VALUE: A default value is required for this change to be compatible.

ZERO-TERMINATED: Strings are terminated with a "\0"-character(see [PRS_SOMEIP_00373],
[PRS_SOMEIP_00911], [PRS_SOMEIP_00912] and [PRS_SOMEIP_00913])

c

The column "Transmitter" refers to the side transmitting a SOME/IP message, which
can be the transmitter of an event (provider of the interface) or the method arguments
used by the caller of a method (user of the interface) or the method result returned by
the callee of a method (provider of the interface). The column "Receiver" refers to the
side receiving a SOME/IP message, which can be the receiver of an event (user of the
interface) or the method arguments forwarded to the callee of a method (provider of the

83 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

interface) or the method result forwarded to the caller of a message (user of the inter-
face). For fields, compatibility is only given if both the "Transmitter" and the "Receiver"
columns are marked as compatible, because the same content will be transmitted by
the side defined by the provider of the interface (notification event, getter method) and
the user of the interface (setter method).

84 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

5 Configuration Parameters

Configuration Parameters are not handled and described in this document.

[PRS_SOMEIP_00378] SOMEIPTP_REASSEMBLY_TIMEOUT
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00014

dSOME/IP Protocol shall provide a configurable timer
SOMEIPTP_REASSEMBLY_TIMEOUT for the reception timeout time of SOME/IP-
TP segments.c

Parameter Descrip-
tion

Parameter support
in AP

Parameter support
in CP

SOMEIPTP_REASSEMBLY_
TIMEOUT
([PRS_SOMEIP_00378])

Config-
urable timer
for the
reception
timeout
time
between
SOME/IP-
TP
segments

SomeipEventDe-
ployment.
segmentRecep-
tionTimeoutTime
[TPS_MANI_03328],
SomeipMethodDe-
ployment.
segmentRecep-
tionTimeout-
TimeRequest
[TPS_MANI_03329],
SomeipMethodDe-
ployment.
segmentRecep-
tionTimeout-
TimeResponse
[TPS_MANI_03330]

SomeipTpChan-
nel.
SomeipTpRxTime-
outTime
see [ECUC_-
SomeIpTp_00023]

Table 5.1: Mapping Table - SOME/IP Protocol Parameters

85 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

6 Protocol usage and guidelines

6.1 Choosing the transport protocol

SOME/IP supports User Datagram Protocol (UDP) and Transmission Control Protocol
(TCP). While UDP is a very lean transport protocol supporting only the most important
features (multiplexing and error detecting using a checksum), TCP adds additional
features for achieving a reliable communication. TCP not only handles bit errors but
also segmentation, loss, duplication, reordering, and network congestion.

Inside a vehicle many applications requires very short timeout to react quickly. These
requirements are better met using UDP because the application itself can handle the
unlikely event of errors. For example, in use cases with cyclic data it is often the best
approach to just wait for the next data transmission instead of trying to repair the last
one. The major disadvantage of UDP is that it does not handle segmentation. Hence,
only being able to transport smaller chunks of data.

Guideline:

• Use TCP only if very large chunks of data need to be transported (> 1400 Bytes)
and no hard latency requirements in the case of errors exists

• Use UDP if very hard latency requirements (<100ms) in case of errors is needed

• Use UDP together with SOME/IP-TP if very large chunks of data need to be
transported (> 1400 Bytes) and hard latency requirements in the case of errors
exists

• Try using external transport or transfer mechanisms (Network File System, APIX
link, 1722, ...) when they are more suited for the use case. In this case SOME/IP
can transport a file handle or a comparable identifier. This gives the designer
additional freedom (e.g. in regard to caching).

The transport protocol used is specified by the interface specification on a per-message
basis. Methods, Events, and Fields should commonly only use a single transport pro-
tocol.

6.2 Security Considerations for SOME/IP

[PRS_SOMEIP_00946] Restricting Server Connection from Clients
Upstream requirements: RS_SOMEIP_00002

dA server may enforce communication policies to protect the server from malicious
or unauthorized clients. I.e. the server may reject subscriptions to eventgroups, or
method calls from unauthorized clients.c

86 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

Note: These policies are beyond the scope of this specification. Such policies can be
based on the IP address of the client or any other means to identify the client.

[PRS_SOMEIP_00947] Restricting Client Connection to Server
Upstream requirements: RS_SOMEIP_00002

dA client may enforce communication policies to protect the client from malicious
servers. I.e. the client may deny communication to unauthorized servers.c

Note: These policies are beyond the scope of this specification. Such policies can be
based on the IP address of the server or any other means to identify the client.

87 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

A Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

A.1 Traceable item history of this document according to
AUTOSAR Release R24-11

A.1.1 Added Specification Items in R24-11

Number Heading

[PRS_SOMEIP_-
00378] SOMEIPTP_REASSEMBLY_TIMEOUT

[PRS_SOMEIP_-
00379] .

[PRS_SOMEIP_-
00380]

Behaviour if a required member/argument is missing in the received SOME/
IP message

[PRS_SOMEIP_-
00381] Behaviour if a required element is missing in the received SOME/IP message

[PRS_SOMEIP_-
00382] SOME/IP payload size using UDP

Table A.1: Added Specification Items in R24-11

A.1.2 Changed Specification Items in R24-11

Number Heading

[PRS_SOMEIP_-
00119] Union (length field, type selector field and payload)

[PRS_SOMEIP_-
00706]

[PRS_SOMEIP_-
00730]

Maximum segement length

[PRS_SOMEIP_-
00758] Compatibility of changes of the payload format

[PRS_SOMEIP_-
00900]

[PRS_SOMEIP_-
00901]

5

88 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

4
Number Heading

[PRS_SOMEIP_-
00903]

[PRS_SOMEIP_-
00907]

[PRS_SOMEIP_-
00942]

Table A.2: Changed Specification Items in R24-11

A.1.3 Deleted Specification Items in R24-11

Number Heading

[PRS_SOMEIP_-
00218]

[PRS_SOMEIP_-
00908]

[PRS_SOMEIP_-
00918]

Table A.3: Deleted Specification Items in R24-11

A.2 Traceable item history of this document according to
AUTOSAR Release R23-11

A.2.1 Added Specification Items in R23-11

Number Heading

[PRS_SOMEIP_-
00755] Message ID header field

[PRS_SOMEIP_-
00757] Return Codes

[PRS_SOMEIP_-
00758] Compatibility of changes of the payload format

[PRS_SOMEIP_-
00759]

[PRS_SOMEIP_-
00760]

Table A.4: Added Specification Items in R23-11

89 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

A.2.2 Changed Specification Items in R23-11

Number Heading

[PRS_SOMEIP_-
00046] Request ID

[PRS_SOMEIP_-
00107]

[PRS_SOMEIP_-
00163]

[PRS_SOMEIP_-
00183]

[PRS_SOMEIP_-
00205] Wire Type and type of following data

[PRS_SOMEIP_-
00369]

[PRS_SOMEIP_-
00376]

Table A.5: Changed Specification Items in R23-11

A.2.3 Deleted Specification Items in R23-11

none

A.3 Traceable item history of this document according to
AUTOSAR Release R22-11

A.3.1 Added Specification Items in R22-11

Number Heading

[PRS_SOMEIP_-
00245]

Table A.6: Added Specification Items in R22-11

90 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

A.3.2 Changed Specification Items in R22-11

Number Heading

[PRS_SOMEIP_-
00043]

[PRS_SOMEIP_-
00101]

[PRS_SOMEIP_-
00137]

[PRS_SOMEIP_-
00241]

[PRS_SOMEIP_-
00300]

[PRS_SOMEIP_-
00365]

[PRS_SOMEIP_-
00366]

[PRS_SOMEIP_-
00374]

[PRS_SOMEIP_-
00730]

Maximum segement length

[PRS_SOMEIP_-
00739]

[PRS_SOMEIP_-
00922]

[PRS_SOMEIP_-
00942]

Table A.7: Changed Specification Items in R22-11

A.3.3 Deleted Specification Items in R22-11

Number Heading

[PRS_SOMEIP_-
00038]

[PRS_SOMEIP_-
00040]

Table A.8: Deleted Specification Items in R22-11

91 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R24-11

[1] Specification of Service Discovery
AUTOSAR_CP_SWS_ServiceDiscovery

[2] Glossary
AUTOSAR_FO_TR_Glossary

92 of 92 Document ID 696: AUTOSAR_FO_PRS_SOMEIPProtocol

	1 Introduction and overview
	1.1 Protocol purpose and objectives
	1.2 Applicability of the protocol
	1.2.1 Constraints and assumptions

	1.3 Dependencies
	1.4 Document Structure

	2 Protocol Requirements
	2.1 Requirements Traceability

	3 Acronyms and Abbreviations
	4 Protocol specification
	4.1 Specification of SOME/IP Message Format (Serialization)
	4.1.1 Limitation
	4.1.2 Header
	4.1.2.1 Message ID [32 Bit]
	4.1.2.2 Method ID [16 Bit]
	4.1.2.3 Length [32 Bit]
	4.1.2.4 Request ID [32 Bit]
	4.1.2.5 Protocol Version [8 Bit]
	4.1.2.6 Interface Version [8 Bit]
	4.1.2.7 Message Type [8 Bit]
	4.1.2.8 Return Code [8 Bit]
	4.1.2.9 Payload [variable size]

	4.1.3 Endianess
	4.1.4 Serialization of Data Structures
	4.1.4.1 Basic Datatypes
	4.1.4.2 Structured Datatypes (structs)
	4.1.4.3 Structured Datatypes and Arguments with Identifier and optional members ('TLV')
	4.1.4.4 Strings
	4.1.4.5 Arrays
	4.1.4.6 Enumeration
	4.1.4.7 Bitfield
	4.1.4.8 Union / Variant

	4.1.5 De-serialization of Data Structures
	4.1.5.1 Structured DataTypes (structs)
	4.1.5.2 Structured Datatypes and Arguments with Identifier and optional members ('TLV')
	4.1.5.3 Strings
	4.1.5.4 Arrays
	4.1.5.5 Enumeration
	4.1.5.6 Bitfield
	4.1.5.7 Union / Variant

	4.2 Specification of SOME/IP Protocol
	4.2.1 Transport Protocol Bindings
	4.2.1.1 UDP Binding
	4.2.1.2 TCP Binding
	4.2.1.3 Multiple Service-Instances
	4.2.1.4 Transporting large SOME/IP messages of UDP (SOME/IP-TP)

	4.2.2 Request/Response Communication
	4.2.3 Fire&Forget Communication
	4.2.4 Notification Events
	4.2.4.1 Strategy for sending notifications

	4.2.5 Fields
	4.2.6 Error Handling
	4.2.6.1 Return Code
	4.2.6.2 Error Message
	4.2.6.3 Error Processing Overview
	4.2.6.4 Communication Errors and Handling of Communication Errors

	4.3 Compatibility Rules for Interface Version

	5 Configuration Parameters
	6 Protocol usage and guidelines
	6.1 Choosing the transport protocol
	6.2 Security Considerations for SOME/IP

	A Change history of AUTOSAR traceable items
	A.1 Traceable item history of this document according to AUTOSAR Release R24-11
	A.1.1 Added Specification Items in R24-11
	A.1.2 Changed Specification Items in R24-11
	A.1.3 Deleted Specification Items in R24-11

	A.2 Traceable item history of this document according to AUTOSAR Release R23-11
	A.2.1 Added Specification Items in R23-11
	A.2.2 Changed Specification Items in R23-11
	A.2.3 Deleted Specification Items in R23-11

	A.3 Traceable item history of this document according to AUTOSAR Release R22-11
	A.3.1 Added Specification Items in R22-11
	A.3.2 Changed Specification Items in R22-11
	A.3.3 Deleted Specification Items in R22-11

