
Application Design Patterns Catalogue
AUTOSAR CP R24-11

Document Title
Application Design Patterns
Catalogue

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 672

Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R24-11

Document Change History
Date Release Changed by Description

2024-11-27 R24-11
AUTOSAR
Release
Management

• Editorial changes

2023-11-23 R23-11
AUTOSAR
Release
Management

• Editorial changes

2022-11-24 R22-11
AUTOSAR
Release
Management

• Table for interface definitions introduced

• Usage options for
SensorActuator-Pattern

• Editorial changes

2021-11-25 R21-11
AUTOSAR
Release
Management

• Editorial changes

2020-11-30 R20-11
AUTOSAR
Release
Management

• Signal quality states introduction

• Extension of definition of electrical
sensor interface

5

1 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

4

2019-11-28 R19-11
AUTOSAR
Release
Management

• Subfunctions per layer defined

• Capability information introduced

• FAQ and known issues section
implemented

• Separation of Sensor and Actuator in
namespace

• Changed Document Status from Final to
published

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Editorial changes

2017-12-08 4.3.1
AUTOSAR
Release
Management

• Editorial changes

2016-11-30 4.3.0
AUTOSAR
Release
Management

• generalization of arbitration pattern,
three examples: several setpoint
requesters, several providers of
estimated values, several providers of
consolidated values

• minor changes

2015-07-31 4.2.2
AUTOSAR
Release
Management

• reconsideration of signal definitions and
tailored pattern for smart actuators and
actuators with no feedback loop

• specification items added

• minor changes

2014-10-31 4.2.1
AUTOSAR
Release
Management

• First Release of document. Patterns
covered:

– Sensor and Actuator Pattern

– Arbitration of Several Set-point
Requester Pattern

• Previously published as part of
EXP_AIPowertrain

2 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

3 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

Contents

1 Introduction 8

1.1 Document conventions . 8

2 About Patterns 10

2.1 Types of Pattern . 10
2.2 Describing Patterns . 10

3 Sensor and Actuator Pattern 12

3.1 Motivation . 12
3.2 Also Known As . 12
3.3 Applicability . 12
3.4 Solution . 13
3.5 Naming . 17
3.6 Interface definitions . 22
3.7 Sensor Actuator types . 23

3.7.1 Sensor . 24
3.7.2 Actuator without Feedback Loop 24
3.7.3 Actuator with Feedback Loop 25

3.8 Usage of pattern . 26
3.9 Examples . 27

3.9.1 Throttle Valve . 27
3.9.2 Turbo Charger . 28
3.9.3 Turbo Charger with Stages and Banks 29
3.9.4 Sensor for Environment Temperature 30
3.9.5 Standard Sensor . 31
3.9.6 Standard Sensor for Environment Temperature 32
3.9.7 Distributing Device Abstraction 33

3.10 Sample Code and Model . 35
3.11 Typical location of some common function within the specified layers . . 37

3.11.1 Virtual Device Coordinator (DevCoorrVirt) 37
3.11.1.1 Conversion and linearization of physical requested value38
3.11.1.2 DCM service / Diagnostic tester interface for basic

function test . 38
3.11.1.3 Cleaning / Ice breaking 39
3.11.1.4 Dither of setpoint . 39
3.11.1.5 Release function of setpoint 39
3.11.1.6 Coordination of activation and deactivation of the ac-

tuator . 39
3.11.2 Actuator Device Driver (DevDrvrActr) 40

3.11.2.1 Dither of output value 40
3.11.2.2 Release function of output value 40
3.11.2.3 Limitation . 41
3.11.2.4 Feed forward controller 41
3.11.2.5 Closed loop controller 41

4 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

3.11.2.6 Set point limitation . 41
3.11.2.7 Set point gradient limitation 41
3.11.2.8 Control deviation monitoring 41
3.11.2.9 Capability . 42

3.11.3 Electrical Actuator Driver (DrvrActrElec) 43
3.11.3.1 Power stage monitoring 44

3.11.4 Virtual Device Driver (DevSnsrVirt) 44
3.11.4.1 Substitution . 44
3.11.4.2 Inertia compensation 45
3.11.4.3 Signal qualifier evaluation 45
3.11.4.4 DCM service / Diagnostic tester interface for basic

function test . 45
3.11.4.5 Plausibilization . 45

3.11.5 Sensor Device Driver (DevDrvrSnsr) 46
3.11.5.1 High level filtering . 46
3.11.5.2 Offset adaption . 46
3.11.5.3 Zero point adaption . 47
3.11.5.4 Drift detection . 47
3.11.5.5 Conversion . 47
3.11.5.6 Physical signal gradient calculation 47
3.11.5.7 Physical signal gradient check 47
3.11.5.8 Stuck check diagnosis 47
3.11.5.9 Physical signal range check 48

3.11.6 Electrical Sensor Driver (DrvrSnsrElec) 48
3.11.6.1 Basic filter . 48
3.11.6.2 Voltage compensation 49
3.11.6.3 Electrical diagnosis . 49

3.12 Known Issues . 49
3.13 FAQ . 49
3.14 Known Uses . 50
3.15 Related Patterns . 50
3.16 Anti-Patterns One Should be Aware of 50
3.17 Further Readings . 50

4 Arbitration between several requesters or providers 51

4.1 Problem . 51
4.2 Applicability . 51
4.3 Solution . 51
4.4 Examples . 54

4.4.1 Several Setpoint Requesters 54
4.4.2 Several Providers of Consolidated Values 55
4.4.3 Several Providers of Estimated Values 57

4.5 Sample Code and Model . 59
4.6 Known Uses . 59
4.7 Related Patterns . 59

5 Signal Quality States 60

5 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

5.1 Problem . 60
5.2 Applicability . 60
5.3 Solution . 60

5.3.1 Implementation proposal . 61

A Change history of AUTOSAR traceable items 62

A.1 Traceable item history of this document according to AUTOSAR Re-
lease R24-11 . 62

A.1.1 Added Specification Items in R24-11 62
A.1.2 Changed Specification Items in R24-11 62
A.1.3 Deleted Specification Items in R24-11 62

A.2 Traceable item history of this document according to AUTOSAR Re-
lease R23-11 . 62

A.2.1 Added Specification Items in R23-11 62
A.2.2 Changed Specification Items in R23-11 62
A.2.3 Deleted Specification Items in R23-11 62

A.3 Traceable item history of this document according to AUTOSAR Re-
lease R22-11 . 63

A.3.1 Added Specification Items in R22-11 63
A.3.2 Changed Specification Items in R22-11 63
A.3.3 Deleted Specification Items in R22-11 63
A.3.4 Added Constraints in R22-11 63
A.3.5 Changed Constraints in R22-11 63
A.3.6 Deleted Constraints in R22-11 63

B Mentioned Class Tables 64

6 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

References

[1] ANTLR parser generator V3
http://www.antlr.org

[2] Standardization Template
AUTOSAR_FO_TPS_StandardizationTemplate

[3] SW-C and System Modeling Guide
AUTOSAR_CP_TR_SWCModelingGuide

[4] XML Specification of Application Interfaces
AUTOSAR_CP_MOD_AISpecification

[5] Architectural Pattern
http://en.wikipedia.org/wiki/Architectural_pattern

[6] Software Design Pattern
http://en.wikipedia.org/wiki/Software_design_pattern

[7] Design Pattern
http://en.wikipedia.org/wiki/Design_Pattern

[8] Anti Pattern
http://en.wikipedia.org/wiki/Anti-pattern

[9] Software Design Pattern Template
http://c2.com/cgi/wiki?DesignPatternTemplate

[10] Secure Design Patterns
http://www.sei.cmu.edu/reports/09tr010.pdf

[11] Software Component Template
AUTOSAR_CP_TPS_SoftwareComponentTemplate

[12] Layered Software Architecture
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

7 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

http://www.antlr.org
http://en.wikipedia.org/wiki/Architectural_pattern
http://en.wikipedia.org/wiki/Software_design_pattern
http://en.wikipedia.org/wiki/Design_Pattern
http://en.wikipedia.org/wiki/Anti-pattern
http://c2.com/cgi/wiki?DesignPatternTemplate
http://www.sei.cmu.edu/reports/09tr010.pdf

Application Design Patterns Catalogue
AUTOSAR CP R24-11

1 Introduction

1.1 Document conventions

Technical terms (Class Names) are typeset in mono spaced font, e.g. FrameTrig-
gering.

When defining name patterns the syntax defined according to ANTLR is used [1]. The
grammar for name patterns as defined in [2], [TPS_STDT_00055], is used. In the
following we just list the most important placeholders that are used throughout the
document:

anyName This represents a string which is valid shortName according to Identi-
fier

anyNamePart This represents a string (([a-zA-Z0-9]|_[a-zA-Z0-9])*_?) which is valid
part of a shortName.

Hint: The place holder "anyNamePart" shall not be used at the beginning of a
shortName pattern to avoid invalid shortNames.

blueprintName This represents the shortName / shortLabel / symbol of the ap-
plied blueprint

componentName This represents the shortName of the BSW module resp.
ASW SwComponentType / ASW component prototype related to the derived ob-
ject. "Related" mainly could be both, aggregating or referencing.

The placeholder componentName in particular supports multiple derivation of
a PortPrototypeBlueprint in the context of different software component
types resp. modules [TPS_STDT_00036].

componentTypeName This represents the shortName of the dedicated SwCompo-
nentType.

componentPrototypeName This represents the shortName of the dedicated
SwComponentPrototype.

index This represents a numerical index applicable for example to arrays.

keyword This represents the abbrName of a keyword acting as a name part of the
short name [TPS_STDT_00004].

For a complete description see [2], [TPS_STDT_00055]. Additionally we assume that
the naming rules as defined in [3] are fulfilled. If applicable and available the keywords
used in names are those standardized in [4].

Additionally we extend the grammar using the following place holders:

anyLongName This represents a string which is a valid longName.

8 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

Additionally we assume that AUTOSAR name pattern is fulfilled. This means that
the long name starts with a capital letter and that all words except articles (e.g.
”a”, ”the”), prepositions (e.g. ”at”, ”by”, ”to”) and conjunctions (e.g. ”and”, ”or”)
start with a capital letter as well.

anyLongNamePart This represents a string which is a valid part of a longName.

9 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

2 About Patterns

This document gives an overview of the patterns defined in AUTOSAR for ease the
usage of AUTOSAR architecture, AUTOSAR application interfaces and the AUTOSAR
meta-model. The focus is on application software (ASW).

2.1 Types of Pattern

The following categories/classifications of patterns are distinguished:

Architectural Pattern An architectural pattern is a standard design in the field of soft-
ware architecture. The concept of an architectural pattern has a broader scope
than the concept of design pattern. The architectural patterns address various
issues in software engineering, such as computer hardware performance limita-
tions, high availability and minimization of a business risk [5].

Design Pattern In software engineering, a design pattern is a general reusable solu-
tion to a commonly occurring problem within a given context in software design.
A design pattern is not a finished design that can be transformed directly into
source or machine code. It is a description or template for how to solve a prob-
lem that can be used in many different situations. Patterns are formalized best
practices that the programmer must implement themselves in the application [6].

Solution Pattern A solution pattern describes a generic solution for a specific problem
like for example error handling or job scheduling [5].

An orthogonal classification of patterns is the following:

Design Patterns A design pattern in architecture and computer science is a formal
way of documenting a solution to a design problem in a particular field of expertise
[7].

Anti-Patterns In software engineering, an anti-pattern (or anti-pattern) is a pattern
used in social or business operations or software engineering that may be com-
monly used but is ineffective and/or counterproductive in practice [8].

2.2 Describing Patterns

The description of the patterns in this document follow a predefined structure. This
structure was created based on the contents of the documents [6], [9], [10], [1], and
[2].

A pattern is described in a separate section and the header of the particular pattern
contains the name of the pattern and the pattern identification (standardized name):
{pattern name} ({pattern identification})

10 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

At the very beginning of the section describing a specific pattern the classification is
given as shown below:

Classification {type of pattern} Pattern

The type of the pattern is one of the categories described in section 2.1.

Section Mandatory Instruction Additional Information
Problem Yes The problem solved by the

design pattern and its gen-
eral rationale and purpose.

None

Also Known As No Other names for the pattern,
if any are known.

None

Applicability Yes A general description of the
characteristics a system
must have for the pattern
to be useful in the design
or implementation of the
program.

Indications: something you no-
tice, hinting that this pattern may
be applicable Contraindications:
something that would indicate
that this pattern would not be ap-
plicable

Solution Yes A textual or graphical de-
scription of the pattern. This
provides a detailed specifica-
tion of the structural aspects
of the pattern, using appro-
priate notations.

Also think about Overdose Ef-
fect : what undesirable thing
happens if you keep applying
the suggested action over and
over and over and over.
Also think about Side Effects:
new problems that you might ex-
pect to crop up upon applying
the solution, or new issues that
come to the fore.

Naming No Describes naming pattern
that are usable or should be
used in the context of the pat-
tern.

Name pattern follow syntax de-
fined according to ANTLR like it
was decided to use in [2], e.g. in
[TPS_STDT_00055].

Example Yes Example how to apply the
pattern.

None

Sample Code and
Model

No Code or model providing an
example of how to implement
the pattern.

None

Known Uses No Examples of the use of the
pattern, taken from existing
systems or literature.

None

Related Patterns No Other patterns that have
some relationship with the
pattern; discussion of the dif-
ferences between the pattern
and similar patterns.

Other patterns that relate, ei-
ther superordinate, subordinate,
competitor, or neighboring pat-
terns, with references to where
they can be found.

Anti-Patterns No Anti-Patterns you should be
aware of.

None

Reading No Further material worthwhile
to know.

None

Table 2.1: Pattern Description Template

11 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

3 Sensor and Actuator Pattern

Classification Design Pattern

3.1 Motivation

The Sensor/Actuator Design Pattern describes how to handle sensors or actuators that
are connected to an ECU in the context of an overall architecture.

The main intention of this pattern is standardizing application interfaces for SWC con-
trolling sensors and actuators, it focuses on aspects of:

• Independence of application software from concrete sensors and actuators con-
nected to a specific ECU.

• Reusable code between different sensors and actuators.

• Different code sharing cooperation models (software sharing), thus supporting
different business models.

• Deployment of functionality to different ECUs.

For standardizing interfaces it is useful to have an architectural design overview of a
sensor/actuator composition. Therefore it was decided to create an architectural de-
sign pattern first and define the interface inside next. In a first step a layer model
containing the main interfaces between those layers is created. Then the most com-
mon functions within the layers are defined and described for a common understanding
in a second step. In the third step it is planned to describe also the interfaces in these
functions from step 2.

The pattern in general is a strong recommendation but is not mandatory to be followed.
The interfaces which are standardized as a result from the pattern will be reserved
exactly for the described usecase and shall not be used for other purpose even if the
pattern is not followed.

3.2 Also Known As

This pattern is also known as Device Abstraction.

3.3 Applicability

The Device Abstraction is located above the RTE. It is a set of software components
that abstracts from the sensors and actuators connected to a specific ECU. It uses sen-
sor actuator software components, the only components above RTE that are allowed
to access the ECU abstraction interface.

12 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

In case direct access to the Micro controller is required because specific interrupts
and/or complex Micro controller peripherals to fulfill the special functional and timing
requirements of the sensor evaluation or actuator control have to be implemented this
pattern cannot be applied. Instead a complex driver implementation shall be used.

The Sensor/Actuator Design Pattern supports software sharing (=collaboration be-
tween various partners) on different levels: Development partner one might deliver
the sensors together with the basic electrical driver software (DrvrSnsrElec), develop-
ment partner two might deliver the sensor device driver software (DevDrvrSnsr) and
the third partner might develop the substitute models together with the virtual device
drivers (DevSnsrVirt). There might be different suppliers for the same Sensor/Actuator
or there might be sensors/actuators from different vendors used within one and the
same system.

In case software sharing shall not be supported it is also possible to just implement
the interfaces of the composition of a single sensor or actuator but not following the
internal three-level-architecture.

The Sensor/Actuator-Pattern also supports different deployment scenarios to ECUs.
One ECU might provide the measured value of a sensor whereas another ECU is
implementing the model that calculates the estimated value that may substitute the
measured sensor value.

Note: In general a pattern is not applied without any changes but with extension by
combining several patterns to one solution. For example:

• The composition pattern (splitting of component if they are getting too large and
are not maintainable any longer) is combined with this pattern.

• The diagnosis pattern is combined with this pattern.

3.4 Solution

In Figure 3.1 that was taken from [11] an example of the signal flow for a lamp (actuator)
and a velocity sensor is shown. This signal flow pattern is refined by this sensor/actu-
ator pattern.

13 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

Figure 3.1: Sensor Actuator Signal Flow [11]

The solution is proposing a three-level layering within a composition representing a
sensor or actuator:

• electrical device driver layer,

• sensor/actuator device driver layer,

• virtual device driver layer.

Each layers can be represented by a single SwComponentType or also by a Com-
positionSwComponentType containing one or more SwComponentTypes. The
electrical device driver layer in addition must contain at least one SensorActuator-
SwComponentType.

In Figure 3.2 the overall structure of the pattern is shown. Recursive elements are op-
tional. Closed loop controlled actuator and position feedback is included. The naming
is simplified and will be explained in more detail later.

14 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

Figure 3.2: Sensor Actuator Pattern for Closed Loop

The application software can rely on the existence of the consolidated value. The
consolidated value can be calculated from the

• estimated value,

• setpoint value,

• measured and/or raw value.

The calculation of the consolidated value via the setpoint or estimated value is used
in case of actuators without feedback loop. In Figure 3.6 an example of an actuator
without feedback loop calculating the consolidated value from the setpoint value is
shown. Besides actuators with open loop control there are also smart actuators that
can directly deal with the setpoint value itself. In this case the device driver actuator
SW-C and the electrical driver actuator SW-C are only routing the setpoint value since

15 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

the controlling of the actuator and thus the calculating of the output value etc. is realized
within the smart actuator itself. However, the two layers, electrical device layer and
device driver layer, are additionally needed because of diagnosis etc.

The pattern can be tailored for a standard sensor. In this case the consolidated value
(Consold) is provided and the estimated value (Estimd) is requested, see Figure 3.5.

The signal flow is shown in Figure 3.3: The electrical raw value is requested from the
ECU Abstraction. After basic filtering the signal is converted to a physical value repre-
senting the measured value. If the measured value is not suitable for the application the
estimated value might be chosen to be the consolidated value, i.e. the value that can
be used by the rest of the application software. Some applications request to explicitly
know about the physical raw value. This is why this signal is also made available.

Figure 3.3: Signal Flow within Sensor and Actuator Pattern

Please be aware: SensorActuatorSwComponentTypes are the only components
that are allowed to access ECU Abstraction Software, namely EcuAbstraction-
SwComponentType. This is shown in Figure 3.4 taken from [12]. Access is denoted
by ”IO”.

16 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

Figure 3.4: Access to ECU Abstraction

3.5 Naming

In the following the semantic port prototype (blueprint) definition together with the name
patterns are described.

The overall name pattern for port short names is described in grammar 3.1. In the
following these port (prototype blueprint) names are also referred to as signal names.
In Table 3.1 additionally the pattern for the corresponding long names is given.
grammar PSnsrActrPortNames;

portName
: {’sensorActuatorSignal’} ;

sensorActuatorSignal
: {anyName}{’sensorActuatorSignalType’} ;

sensorActuatorSignalType
: (ElecRaw | ElecBascFild | Raw | Measd | Consold | Estimd | Outp |

Sp | Reqd) ;

anyName

17 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

: (’keyword’)* ;

Listing 3.1: Name Pattern for Ports in Device Abstraction

In addition to port prototypes, interface names are extended with sequence number.
Usage and handling of sequence numbers is described in [3] in [TR_SWNR_00044].
grammar PSnsrActrPortInterfaceNames;

interfaceName
: {’sensorActuatorSignal’} ;

sensorActuatorSignal
: {anyName}{’sensorActuatorSignalType’}{sequenceNumber} ;

sensorActuatorSignalType
: (ElecRaw | ElecBascFild | Raw | Measd | Consold | Estimd | Outp | Sp |

Reqd) ;

anyName
: (’keyword’)* ;

Listing 3.2: Name Pattern for PortInterfaces in Device Abstraction

In case of a generic long name {anyLongNamePart} or {anyLongName}, resp., is
empty.

Generic Signal Name Long Name Pattern
of Concrete Sen-
sor/Actuator Signal
(EN)

Generic
Long Name
of Signal
(EN)

AUTOSAR Definition

ElecRaw Electrical Raw
Value of {anyLong-
NamePart}

Electrical
Raw Value

Electrical raw sensor value as provided by the
ECU Abstraction. Typically this value is unfil-
tered. However, there are for example smart
components doing some filtering themselves.
This signal can only be represented in volt-
age, current, (period) time, binary value, fre-
quency, dutycycle [11].

ElecBascFild Electrical Basic Fil-
tered Value of {any-
LongNamePart}

Electrical
Basic Fil-
tered Value

Basic filtered electrical raw sensor value (e.g.
maximum allowed phase shift is one schedul-
ing raster or maximum 360 degree crankshaft
rotation if exhaust gas pulsation dependent).
Electrical representation of a technical signal
[11]. This signal can only be represented in
voltage, current, (period) time, binary value,
frequency, dutycycle.

Raw Raw Value of {any-
LongNamePart}

Raw Value Physical raw/base sensor value. Sim-
ple conversion of basic filtered electrical (
ElecBascFild) to physical value.

Measd {anyLongName}
(Measured)

Measured
Value

Final filtered and offset corrected physical
sensor value. Physical sensor value/standard
sensor value. The physical sensor value is
the linearized/filtered physical raw/base sen-
sor value including offset. At this step a (sig-
nificant) phase-shift could be possible.

18 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

Consold {anyLongName} Value Consolidated physical value, either a mea-
sured value (Measd) or a modeled value (
Estimd). Final filtered and offset corrected
consolidated actuator value/physical sensor
value. Virtual physical sensor value/fused
sensor value that comes as close as possi-
ble to the technical signal. In case of inability
to provide a physical sensor value (e.g. fail-
ure, implausibility or other reasons) a substi-
tute value/default value or a frozen value is
provided.

Estimd {anyLongName}
(Estimated)

Estimated
Value

Modelled value physical sensor value/stan-
dard sensor value. Can be used as a replace-
ment for final filtered and offset corrected
physical sensor value. The interface is op-
tional.

Outp Output of {any-
LongNamePart}

Output
Value

Final controller output (closed loop or open
loop). It includes the necessary control ac-
tions to reach the requested setpoint in the
given system conditions.
For example for realizing the requested ac-
tuator position a precontrol impulse to over-
come the static friction is needed. In case of
a smart actuator the output value might add a
dedicated initialization duty cycle to wakeup
the actuator.
Typically expressed as percentage.

Sp Setpoint {anyLong-
NamePart}

Setpoint
Value

Final actuator setpoint. Typically expressed
as percentage.

Reqd Requested Set-
point {anyLong-
NamePart}

Requested
Setpoint

Final requested physical setpoint. Typically
expressed as percentage but could also be
expressed e.g. as factor.

Cpby Capability {any-
LongNamePart}

Capability Provides the dynamic instant capability typi-
cally based on output limitation but could also
contain the limitation on rate of change of the
consolidated value. It is expressed as per-
centage.

Table 3.1: Signal Names and Semantics

Some examples of short and long names for sensor/actuator signals or ports, resp.,
are given in Table 3.2.

Short Name Class Long Name (EN)
TrboChrgrReqd PortPrototype Requested Setpoint for Turbo Charger
Consold PortPrototype Consolidated Value
TrboChrgr PortPrototype Value of Turbo Charger

Table 3.2: Port Names Examples

19 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

In grammar 3.3 the pattern for component types and component prototypes for the
atomic components within a composition representing a sensor or an actuator is de-
scribed.

In some cases there might be parts of the implementation that can be reused for dif-
ferent sensors/actuators. Therefore the name pattern for the component type name is
more generic and does not necessarily contain the Sensor/Actuator name. In other
cases the Sensor/Actuator names are not sufficient to make the component type
names unique so an additional identifier can be added to the component type name.
grammar PSnsrActrAtomicSwcShortName;

sensorActuatorComponentTypeName
: sensorActuatorComponentName ;

sensorActuatorComponentPrototypeName
: sensorActuatorComponentName ;

sensorActuatorComponentName
: (Drvr{Device}Elec | DevDrvr{Device} | Dev{Device}Virt | DevCoorrVirt

)(’anyNamePart’) ;

Device
: (Snsr | Actr) ;

anyNamePart
: (’keyword’)* ;

Listing 3.3: Name Pattern for Atomic Software Component Types in Device Abstraction

In grammar 3.4 the pattern is more refined but still conforming to grammar 3.3 because
”For” is a standardized keyword. Note: the refined grammar requests that field blocks
are concatenated by adding an appropriate preposition.
grammar PSnsrActrAtomicSwcShortNameRefined;

sensorActuatorComponentTypeName
: sensorActuatorComponentName ;

sensorActuatorComponentPrototypeName
: sensorActuatorComponentName ;

sensorActuatorComponentName
: (Drvr{deviceType}Elec | DevDrvr{deviceType} | Dev{deviceType}Virt |

DevCoorrVirt) ({device}) ;

deviceType
: (Snsr | Actr) ;

device
: (For{sensor}(’anyNamePart’) | For{actuator}(’anyNamePart’)) ;

sensor
: ’anyName’ ;

actuator

20 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

: ’anyName’ ;

anyName
: (’keyword’)* ;

anyNamePart
: (’keyword’)* ;

Listing 3.4: Refined Name Pattern for Atomic Software Component Types in Device
Abstraction

In grammar 3.5 the pattern for the corresponding English long names of the compo-
nents is described.
grammar PSnsrActrAtomicSwcLongName;

sensorActuatorComponentLongName
: sensorActuatorComponentName ;

sensorActuatorComponentLongName
: (’anyLongName’) (Electrical Sensor Driver | Sensor Device Driver |

Virtual Device Driver | Electrical Actuator Driver | Actuator Device
Driver | Virtual Device Coordinator) (’anyLongNamePart’) ;

anyLongName
: (’keyword’)* ;

anyLongNamePart
: (’keyword’)* ;

Listing 3.5: Pattern for English Long Names Atomic Software Component Types in
Device Abstraction

In Table 3.3 the generic sensor and actuator component short and long names are
shown as pairs.

Generic Short Name Pattern Generic Long Name (EN)
DrvrSnsrElec Electrical Sensor Driver
DevDrvrSnsr Sensor Device Driver
DevSnsrVirt Virtual Device Driver
DrvrActrElec Electrical Actuator Driver
DevDrvrActr Actuator Device Driver
DevCoorrVirt Virtual Device Coordinator

Table 3.3: Sensor and Actuator Component Name Patterns

Short Name Class Long Name (EN)
DrvrActrElecForTle8209 SensorActuatorSwCompo-

nentType
TLE8209: Electrical Sensor Driver

DrvrActrElecForTrboChrgr SwComponentPrototype Turbo Charger: Electrical Sensor
Driver

DevSnsrVirtForAnyTSnsr ApplicationSwComponent-
Type

Virtual Device Driver for Any Tempera-
ture Sensor

DevSnsrVirtForTrboChrgr SwComponentPrototype Turbo Charger: Virtual Device Driver

21 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

TrboChrgrAcmeT064 CompositionSwComponent-
Type

Turbo Charger: ACME T064

Table 3.4: Examples for Sensor and Actuator Names

In grammar 3.6 a pattern is described how to refine ’anyNamePart’ as defined in gram-
mar 3.4 in case of a system with several banks and stages. In Table 3.5 corresponding
name examples are shown using this grammar part.
grammar PSnsrActrStgBnkShortNames;

stageBank
: (Stg{’indexStg’}(AtBnk{’indexBnk’}) ;

indexStg
: (1st | 2nd | 3rd) ;

indexBnk
: (1st | 2nd | 3rd) ;

Listing 3.6: Name Pattern for Signals in Device Abstraction in Case of a System with
Several Banks

Short Name Class Long Name (EN)
TrboChrgrStg3rdAtBnk1st PortPrototype Value of Turbo Charger at Third Stage

at First Bank
TrboChrgrStg3rdAtBnk2nd SwComponentPrototype Turbo Charger at Third Stage at Sec-

ond Bank

Table 3.5: Sensor, Actuator and Port Names examples in Case of a System with Several
Banks

3.6 Interface definitions

The following table defines the default attribute for all previously described PortInter-
faces. SI units shall be used for SensorActuator PortInterfaces whenever possible.

Interface name ImplDatatype CompuMethod Unit PhysicalDimension
Reqd sint16 100/(213) Perc (%) Ratio
Cpby sint16 100/(213) Perc (%) Ratio
Sp sint16 100/(213) Perc (%) Ratio
Outp sint16 100/(213) Perc (%) Ratio
Measd, Consold, Es-
timd, Raw (binary)

n.a. 1 - Dimensionless

Measd, Consold, Es-
timd, Raw (T)

float32 1 Kelvin (K) Absolute Tempera-
ture / Relative Tem-
perature

Measd, Consold, Es-
timd, Raw (P)

float32 1 Pa (Pa) Pressure

Measd, Consold, Es-
timd, Raw (Posn)

float32 1 Perc (%) Ratio

22 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

Measd, Consold, Es-
timd, Raw (I)

float32 1 Ampr (A) Electric Current

Measd, Consold, Es-
timd, Raw (N)

float32 1 PerSec (1/s) Rotational Speed

Measd, Consold, Es-
timd, Raw (U)

float32 1 Volt (V) Voltage

Measd, Consold, Es-
timd, Raw (R)

float32 1 Ohm (Ohm) Electric Resistance

Measd, Consold, Es-
timd, Raw (Pwr)

float32 1 Watt (W) Power

Measd, Consold, Es-
timd, Raw (RelHum)

float32 1 Perc (%) Ratio

Measd, Consold, Es-
timd, Raw (AbsHum)

float32 1 KiloGrPerMtrCubd
(kg/m3)

Mass Density

Measd, Consold, Es-
timd, Raw (Tq)

float32 1 NwtMtr (Nm) Torque

Measd, Consold, Es-
timd, Raw (Conc)

float32 1 MolPerMtrCubd
(mol/m3)

Concentration

ElecRaw, ElecBasc-
Fild (binary)

n.a. 1 - Dimensionless

ElecRaw, ElecBasc-
Fild (I)

float32 1 Ampr (A) Electric Current

ElecRaw, ElecBasc-
Fild (Ti)

float32 1 s Time

ElecRaw, ElecBasc-
Fild (Frq)

float32 1 Hz Frequency

ElecRaw, ElecBasc-
Fild (DutyCyc)

float32 1 Perc (%) Ratio

ElecRaw, ElecBasc-
Fild (U)

float32 1 Volt (V) Voltage

Table 3.6: Interface Properties

3.7 Sensor Actuator types

The following S/A types are available as SwComponentTypes:

• Sensor (Snsr)

• Actuator without feedback (Actr)

• Actuator with feedback (ActrWithFb)

23 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

3.7.1 Sensor

In Figure 3.5 a design pattern of blueprint components for a sensor is shown.

Figure 3.5: Device Abstraction for Sensor

3.7.2 Actuator without Feedback Loop

In Figure 3.6 an open loop controlled actuator is shown. In addition to the actu-
ator chain it is possible to also provide and calculate the consolidated value using

24 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

the setpoint input, but there are alternatives how to calculate the consolidated value.

Figure 3.6: Example Actuator without Feedback Loop (Setpoint Alternative)

3.7.3 Actuator with Feedback Loop

In Figure 3.7 a design pattern of blueprint components for a typical closed loop con-
trolled device with (position) feedback is shown.

25 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

Figure 3.7: Device Abstraction for Actuator with Feedback

3.8 Usage of pattern

The SensorActuator-Pattern can be used in different ways, see figure 3.8.

S/A types defined in 3.7 are stored and available via AI tool. User can either take
SwComponentTypes directly and create one or multiple instances, or he/she can take
them as a blueprint with the need to extend and adjust them afterwards.
During single or multi instantiation SwComponentPrototypes with different names, but
same content are generated. The blueprint mechanism offers the possibility to flexible
change name, content and even rename ports. From point of creation, it has to be
maintained separately.

26 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

Figure 3.8: Usage options for SensorActuator-Pattern

3.9 Examples

3.9.1 Throttle Valve

Figure 3.9 shows an example device abstraction for a throttle valve.

27 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

Figure 3.9: Device Abstraction for a Throttle Valve

3.9.2 Turbo Charger

In Figure 3.10 an example of a closed looped controlled device with position feedback
— a turbo charger — is shown.

28 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

Figure 3.10: Device Abstraction for a Turbo Charger

Hint: In most cases it is not recommended to use company names in model names
(like "AcmeXYZ" used in the Figures). Company names etc. are only used in the
examples to show the difference between type and prototype and what is the reason
for the difference. For general rules and recommendations how to deal with variants
in models, as for example expressed by the company names in the examples, please
refer to the modeling guides and templates.

3.9.3 Turbo Charger with Stages and Banks

In Figure 3.11 a project system configuration for turbo charger with several stages and
banks is shown.

29 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

Figure 3.11: Device Abstraction for a Turbo Charger with Banks and Stages

3.9.4 Sensor for Environment Temperature

In Figure 3.12 a typical sensor for environment temperature is shown.

30 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

Figure 3.12: Device Abstraction for a Sensor measuring the Environment Temperature

3.9.5 Standard Sensor

In Figure 3.13 a design pattern of blueprint components for a standard sensor is shown.

31 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

Figure 3.13: Device Abstraction for Standard Sensor

3.9.6 Standard Sensor for Environment Temperature

In Figure 3.14 a standard sensor for environment temperature is shown.

32 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

Figure 3.14: Device Abstraction for a Sensor measuring the Environment Temperature

3.9.7 Distributing Device Abstraction

In Figure 3.16 the ECU view derived from the VFB view of a temperature sensor as
shown in Figure 3.15 is shown. Finally it is shown that it is possible to also deploy the
different SW-C to different ECUs. Of course timing constraints have to be considered
before distributing components to different ECUs.

33 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

Figure 3.15: VFB View of Temperature Sensor Example

Figure 3.16: ECU Views after Distribution of SW-Cs of Temperature Sensor to two ECUs

34 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

3.10 Sample Code and Model

In Listing 3.7 a blueprint for the components used in the Sensor/Actuator pattern is
provided. The blueprint code is not complete but just gives an idea how it is realized.
The composition component is not shown.

Please note that the AUTOSAR meta model requests that a sensor actuator component
type references a corresponding sensor or actuator, resp., using a HwDescriptio-
nEntity, [11]. In this case a HwElement is needed to be used. Since there is a
standardized HwCategory for sensors and actuators also a HwType is defined that is
referenced by the HwElement.
<AR-PACKAGE>

<SHORT-NAME>SwComponentTypes_Blueprint</SHORT-NAME>
<CATEGORY>BLUEPRINT</CATEGORY>
<REFERENCE-BASES>

<REFERENCE-BASE>
<SHORT-LABEL NAME-PATTERN="{anyName}">HwDescriptionEntitys</SHORT-

LABEL>
<IS-DEFAULT>false</IS-DEFAULT>
<BASE-IS-THIS-PACKAGE>false</BASE-IS-THIS-PACKAGE>
<PACKAGE-REF DEST="AR-PACKAGE">/HwElements_Blueprint</PACKAGE-REF>

</REFERENCE-BASE>
<REFERENCE-BASE>

<SHORT-LABEL NAME-PATTERN="{anyName}">PortInterfaces_Blueprint</
SHORT-LABEL>

<IS-DEFAULT>false</IS-DEFAULT>
<BASE-IS-THIS-PACKAGE>false</BASE-IS-THIS-PACKAGE>
<PACKAGE-REF DEST="AR-PACKAGE">/AUTOSAR/AISpecification/

PortInterfaces_Blueprint</PACKAGE-REF>
</REFERENCE-BASE>

</REFERENCE-BASES>
<ELEMENTS>

<SENSOR-ACTUATOR-SW-COMPONENT-TYPE>
<SHORT-NAME NAME-PATTERN="{anyName}DrvrSnsrElec{anyNamePart}">

DrvrSnsrElec</SHORT-NAME>
<LONG-NAME>

<L-4 L="EN">Driver for Electrical Signals of Sensor</L-4>
</LONG-NAME>
<INTRODUCTION><!-- optional: add documentation -->
</INTRODUCTION>
<PORTS>

<P-PORT-PROTOTYPE>
<SHORT-NAME NAME-PATTERN="{anyName}ElecRaw{anyNamePart}">ElecRaw

</SHORT-NAME>
<LONG-NAME>

<L-4 L="EN">Electrical Raw Value</L-4>
</LONG-NAME>
<PROVIDED-INTERFACE-TREF DEST="SENDER-RECEIVER-INTERFACE" BASE="

PortInterfaces_Blueprint">ElecRaw1</PROVIDED-INTERFACE-TREF>
</P-PORT-PROTOTYPE>
<P-PORT-PROTOTYPE>

<SHORT-NAME NAME-PATTERN="{anyName}ElecBascFild{anyNamePart}">
ElecBascFild</SHORT-NAME>

<LONG-NAME>

35 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

<L-4 L="EN">Electrical Basic Filtered Value</L-4>
</LONG-NAME>
<PROVIDED-INTERFACE-TREF DEST="SENDER-RECEIVER-INTERFACE" BASE="

PortInterfaces_Blueprint">ElecBascFild1</PROVIDED-INTERFACE-
TREF>

</P-PORT-PROTOTYPE>
</PORTS>
<!-- add correct reference to sensor actuator type -->
<SENSOR-ACTUATOR-REF DEST="HW-DESCRIPTION-ENTITY" BASE="

HwDescriptionEntitys">mySensorActuatorElement</SENSOR-ACTUATOR-
REF>

</SENSOR-ACTUATOR-SW-COMPONENT-TYPE>
<APPLICATION-SW-COMPONENT-TYPE>

<SHORT-NAME NAME-PATTERN="DevDrvrSnsr{anyNamePart}">DevDrvrSnsr</
SHORT-NAME>

<LONG-NAME>
<L-4 L="EN">Device Driver for Sensor</L-4>

</LONG-NAME>
<!-- Ports to be added -->

</APPLICATION-SW-COMPONENT-TYPE>
<APPLICATION-SW-COMPONENT-TYPE>

<SHORT-NAME NAME-PATTERN="DevSnsrVirt{anyNamePart}">DevSnsrVirt</
SHORT-NAME>

<LONG-NAME>
<L-4 L="EN">Virtual Device Driver for Sensor</L-4>

</LONG-NAME>
<!-- Ports to be added -->

</APPLICATION-SW-COMPONENT-TYPE>
</ELEMENTS>

</AR-PACKAGE>
<!-- AR-PACKAGE: HwTypes_Blueprint -->
<AR-PACKAGE>

<SHORT-NAME>HwTypes_Blueprint</SHORT-NAME>
<CATEGORY>BLUEPRINT</CATEGORY>
<ELEMENTS>

<HW-TYPE>
<SHORT-NAME NAME-PATTERN="{anyName}">SensorActuatorType</SHORT-NAME>
<HW-CATEGORY-REFS>

<HW-CATEGORY-REF DEST="HW-CATEGORY" BASE="HwCategorys">/
HwCategorys_Blueprint/SensorActuator</HW-CATEGORY-REF>

</HW-CATEGORY-REFS>
</HW-TYPE>

</ELEMENTS>
</AR-PACKAGE>
<!-- AR-PACKAGE: HwElements_Blueprint -->
<AR-PACKAGE>

<SHORT-NAME>HwElements_Blueprint</SHORT-NAME>
<CATEGORY>BLUEPRINT</CATEGORY>
<ELEMENTS>

<HW-ELEMENT>
<SHORT-NAME NAME-PATTERN="{anyName}">mySensorActuatorElement</SHORT-

NAME>
<HW-TYPE-REF DEST="HW-TYPE" BASE="HwTypes">/HwTypes_Blueprint/

SensorActuatorType</HW-TYPE-REF>
</HW-ELEMENT>

</ELEMENTS>

36 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

</AR-PACKAGE>

Listing 3.7: Sensor/Actuator Pattern

The HwCategorys should be provided centrally because they are standardized. Defi-
nition of HwCategory ”SensorActuator” is shown in Listing 3.8.
<!-- AR-PACKAGE: HwCategorys_Blueprint -->
<AR-PACKAGE>

<SHORT-NAME>HwCategorys_Blueprint</SHORT-NAME>
<CATEGORY>BLUEPRINT</CATEGORY>
<ELEMENTS>

<HW-CATEGORY>
<SHORT-NAME NAME-PATTERN="blueprintName">SensorActuator</SHORT-NAME>

</HW-CATEGORY>
<!-- add additional HW categories -->

</ELEMENTS>
</AR-PACKAGE>

Listing 3.8: HW Categories as used in Sensor/Actuator Pattern

3.11 Typical location of some common function within the speci-
fied layers

This chapter is for detailed description of the distribution of features across the device
abstraction layers. It provides some examples of some typical and common features
and their recommended location within the specified layers of the S/A-Pattern. Scope
for this chapter is to make interface standardization easier.

3.11.1 Virtual Device Coordinator (DevCoorrVirt)

Virtual device is an abstraction of the physical representation of the actuator.

37 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

Figure 3.17: Typical functions in layer DevCoorrVirt

3.11.1.1 Conversion and linearization of physical requested value

Typically there is a delta between the mechanical endstops and the position where the
physical effects are influenced due to the movement of the actuator. This gap could be
compensated via offset compensation algorithm of the position sensor or via lineariza-
tion of the requested setpoint value. The transfer function is used to compensate the
actuator HW design/physics.

3.11.1.2 DCM service / Diagnostic tester interface for basic function test

The DCM service interface is typically used as a tester interface and can overwrite the
requested value to perform a basic function test of the actuator.

38 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

3.11.1.3 Cleaning / Ice breaking

Overwrite/Ignore the requested value, in order to prepare the actuator for proper actu-
ation. The function switches between two different setpoint values for a specific time
to either

1. condition the actuator for offset learning

2. clean particles/compounds from actuator

3. break up from ice

3.11.1.4 Dither of setpoint

Continous overlayed/modulated signal on setpoint value to overcome static friction of
actuator.

3.11.1.5 Release function of setpoint

The release function is manipulating the requested setpoint value. This could be
needed in case of a blocked actuator, i.e. the actuator got stuck at its position.

3.11.1.6 Coordination of activation and deactivation of the actuator

Activation: The actuator shall be activated as soon as actuation is requested.
Deactivation: To ensure safe operation, the actuator shall be shut off under certain
conditions (incl. monitoring e.g. open hood) and shall be shut off to fail safe before
voltage supply is switched off.

39 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

3.11.2 Actuator Device Driver (DevDrvrActr)

Figure 3.18: Typical functions in layer DevDrvrActr

3.11.2.1 Dither of output value

Continous overlayed/modulated signal on output value to overcome static friction of
actuator.

3.11.2.2 Release function of output value

The release function is manipulating the output value. This could be needed in case of
a blocked actuator, i.e. the actuator got stuck at its position.

40 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

3.11.2.3 Limitation

3.11.2.3.1 Static limitation

The output value is limited to protect the actuator from any mechanical or thermal
damage at a static position. It is a static limitation of the output value.
Example: Limitation of dutycycle at the mechanical endstops, e.g. to avoid overheating.

3.11.2.3.2 Dynamic limitation for overheating protection

Effective current monitoring + housing/motor temperature monitoring is used as over-
heating protection. To protect the actuator of overheating, the energy input to the
actuator or the temperature inside the actuator is observed. It is a dynamic limitation
of the output value.
Hint: The temperature information could also come as a consolidated value from an
abstracted sensor SW component.

3.11.2.4 Feed forward controller

The Feed Forward Controller compensatex the influcence of the known disturbances
in the controlled system. It calculates the pre-controlled output value.

3.11.2.5 Closed loop controller

The Closed Loop Controller uses feedback to control output of a dynamic system, i.e.
the output value is adapted according to the consolidated value.

3.11.2.6 Set point limitation

Set point limitation given by plant used as closed loop controller input.

3.11.2.7 Set point gradient limitation

Protection of the actuator by limiting the set point gradient, e.g. in position close to the
endstops.

3.11.2.8 Control deviation monitoring

Monitoring of the permanent deviation between setpoint and consolidated value.

41 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

3.11.2.9 Capability

Providing a Capability is a way of summarizing all active limitations on an actuator.
The Capability is related to the requested set point, providing the dynamic boundaries
of possible usage.
For example, an electric machine actuator SW composition will report its capability to
the coordinator functionality in the application software. If the capability is reduced, the
coordinator functionality in the application software may use this capability information
to redistribute the requested set points differently between the actuators of the system
to obtain the overall system control objective.

Generic Sig-
nal Name

Long Name Pattern of
Concrete Sensor/Actua-
tor Signal (EN)

Generic Long Name of
Signal (EN)

AUTOSAR Definition

Cpby Capability {anyLong-
NamePart}

Capability Provides the dynamic instant ca-
pability typically based on output
limitation but could also contain
the limitation on rate of change
of the consolidated value. It is
expressed as percentage.

Table 3.7: Signal Names and Semantics of function Capability

This following section presents examples of capability.
The capability can be described as the temporary dynamic bounds of actuation. These
bounds could depend on current working point of operation or some consolidated
value. The capability is provided as percentage of maximum defined actuator limi-
tations.
For example, if the capability is provided as neutral (see figure 3.19), the capability is
set to 100%. Consequently, neutral capability does not reflect the current effectiveness
of the actuator.

Figure 3.19: Example for providing neutral Capability information

In another example (see figure 3.20), the capability is provided as a function of the set
point and output limitations. The dynamic set point and output limitations may then also
be a function of the consolidated value.

42 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

Figure 3.20: Example for simple Capability calculation

3.11.3 Electrical Actuator Driver (DrvrActrElec)

Figure 3.21: Typical functions in layer DrvrActrElec

43 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

3.11.3.1 Power stage monitoring

An ECU might contain various power stages for driving different electrical loads.
Common electrical faults at power stages are Short Circuit to Battery (SCB), Short
Circuit to Ground (SCG), and Open Load (OL). These faults can occur during either
on-state or off-state of the power stage output.

3.11.4 Virtual Device Driver (DevSnsrVirt)

Figure 3.22: Typical functions in layer DevSnsrVirt

3.11.4.1 Substitution

The function switches between the measured and a replacement value. The replace-
ment value could be the estimated value.
Example: The switching can happen based on:

1. Sensor diagnostic information

44 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

2. Sensor signal quality

3. Sensor availabilty

3.11.4.2 Inertia compensation

The function provides a predicted sensor value (forecast) to compensate the inertia of
the sensor.
Examples: thermal inertia, mechanical inertia

3.11.4.3 Signal qualifier evaluation

The quality of the consolidated value is provided by that function. It is determined by
checking consolidated value and all sensor related diagnosis information.

3.11.4.4 DCM service / Diagnostic tester interface for basic function test

The DCM service interface is typically used to overwrite and stimulate the consolidated
sensor value.

3.11.4.5 Plausibilization

3.11.4.5.1 Continous plausibilization

The measured value is checked continously against another redundant sensor infor-
mation. This redundant sensor information can be provided by any other sensor or by
the estimated value.
Example: Offset diagnosis, in case difference (measured value vs. redundant value)
exceeds certain threshold, e.g. tolerance threshold.

3.11.4.5.2 Conditional plausibilization

The measured value is checked at specific points in time (e.g. once in a driving cycle
or at specific driving modes) against another redundant sensor information. This re-
dundant sensor information can be provided by any other sensor or by the estimated
value.
Hint: The conditional plausibilization can be used to compensate or just identify sensor
individual tolerances.

45 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

3.11.5 Sensor Device Driver (DevDrvrSnsr)

Figure 3.23: Typical functions in layer DevDrvrSnsr

3.11.5.1 High level filtering

This function block contains every kind of filter which might lead to a significant phase
shift of the sensor value in order to provide a physical sensor value, fitting to require-
ments from user functions (regarding timing, accuracy).
Hint: Therefore a good trade-off between phase shift and accuracy has to be found.

3.11.5.2 Offset adaption

The result of conditional plausibilization can be used to do an offset adaption of mea-
sured value to compensate individual tolerances of the sensor. The determined offset
information is used to adapt the sensor signal to show values closer to the actual phys-
ical signal.
Hint: The conditional plausibilization can be used to compensate or just identify sensor
individual tolerances.

46 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

3.11.5.3 Zero point adaption

The zero point adaption is used to adjust the transfer function in the conversion to the
physical zero point.
Hint: The adaption of this zero point is done within the conversion block.
Example 1: Sensors measuring relative values (differential pressure) shall show 0 if
there is equalized pressure.
Example 2: The sensor value is adapted to the mechanical endstop position of an
closed loop operated actuator.

3.11.5.4 Drift detection

Sensor values are monitored throughout the driving cycle and used to derive a sensor
deviation compared to the first and last learned value.
Hint: Can be used for offset adaption, to improve sensor information or it can be used
for diagnosis purpose only.

3.11.5.5 Conversion

The electrical signal is converted into physical representation by transfer function. In
case of nonlinear signal, linearization will be part of transfer function as well.

3.11.5.6 Physical signal gradient calculation

In order to get information about the current dynamic of the sensed system, a gradient
is calculated based on current and previous sensor information.

3.11.5.7 Physical signal gradient check

The gradient of the physical signal is checked against a maximum. For certain sensors
a maximum gradient should not be exceeded. In case the sensor shows a higher
gradient, it could be indicated as defect.

3.11.5.8 Stuck check diagnosis

Identify a "frozen" sensor information, in case the sensor signal does not change. A
permanent "frozen" sensor information could be indicated as a defect.

47 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

3.11.5.9 Physical signal range check

Comparison of physical sensor signal against minimum and maximum thresholds for
continuous diagnosis of physical limits.

3.11.6 Electrical Sensor Driver (DrvrSnsrElec)

Figure 3.24: Typical functions in layer DrvrSnsrElec

3.11.6.1 Basic filter

A basic filter is needed to mitigate electric noise. The timing behavior shall not give any
significant phase shift to signal.
Example: The definition of a significant phase shift is that it does not have any impact
on the physical behaviour of the system. For signals influenced by the combustion the
phase shift should not exceed the time given by a 360deg camshaft rotation.
Hint: Possible filter types for this use case could be FIR (finite impulse response) filter
or PLL (phase locked loop).
Reason: The DevDrvrSnsr transfers electrical value to physical value. In case the sig-

48 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

nal already has a phase shift, the timing within the upper layers cannot be compensated
anymore.

3.11.6.2 Voltage compensation

Required for sensors with power supply from outside ECU. The seperate power supply
creates a potential difference in reference voltage which needs to be compensated in
SW.
Hint: This functionality can be realized in hardware alternatively.

3.11.6.3 Electrical diagnosis

It is needed to diagnose electrical faults on the sensor.
Examples: Short Circuit to Battery (SCB), Short Circuit to Ground (SCG), Open Circuit,
Loose Contact.

3.12 Known Issues

Sensor abstraction of sensors with typical digital interfaces (e.g. SENT, FAS) or which
are connected via bus (e.g. CAN, LIN) is part of this pattern as well. Description of
required extensions is in progress.

3.13 FAQ

• Why is the estimated value in Example "Actuator without Feedback Loop (Set-
point Alternative)" not used?
An estimated value does not exist for every sensor. So there is no need for it
to be used. In this example, the consolidated value is calculated based on the
setpoint.

• Is there a signal quality considered in the pattern?
The topic "signal qualifier" is not yet considered. At the moment (R19-11) there
is no activity known for standardizing such a signal quality.

• How are the names for the layers derived (e.g. DevCoorrVirt)? Can they be
changed?
The AUTOSAR abbreviations are given by strict rules [3]. Even the concatena-
tion of the abbreviations is defined. The names should not be changed due to
backward compatibility reasons.

49 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

3.14 Known Uses

None.

3.15 Related Patterns

Pattern Description
Arbitration Pattern
(see Chapter 4)

The sensor/actuator pattern is typically combined with the arbitration pattern
to allow several set point requesters, several providers of consolidated values
or several providers of estimated values. This is, arbitration is not done within
the sensor/actuator pattern but outside the device abstraction.

Table 3.8: Related Patterns

3.16 Anti-Patterns One Should be Aware of

None.

3.17 Further Readings

More information could be found in [11] and [12].

50 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

4 Arbitration between several requesters or providers

Classification Design Pattern

4.1 Problem

Arbitration between several different providers or requesters.

4.2 Applicability

The number of requesters or providers, resp., has to be known at pre-compile time.
The number of requesters or providers, resp., has to be known at implementation or
generation time of the arbiter component.

This pattern can be applied in the context of Sensor/Actuator Design Pattern, e.g.
for modeling several setpoint requesters, several providers of consolidated values or
several providers of estimated values.

4.3 Solution

A new component for managing all requests from different requesters or providers,
resp., is introduced. In Figure 4.1 the overall pattern for requesters is shown in case
sender receiver interfaces are used. In Figure 4.2 the overall pattern for providers is
shown in case sender receiver interfaces are used.

When using sender/receiver interfaces the arbitration component, also called ”arbiter”,
needs to have unique names for the different requests or providers. This is realized by
different request or provide ports, one per requester or provider, resp. The port inter-
face or at least the application data type is typically the same for all of these requesters
or providers, resp., and the resulting request or arbitrated value.

51 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

Figure 4.1: Pattern ”Arbitration between Several Requesters”

52 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

Figure 4.2: Pattern ”Arbitration between Several Providers”

An arbitration component is introduced to support several requesters of the same ac-
tion but not necessarily of the same value.

An arbitration component is introduced to support several providers of the same signal.

53 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

4.4 Examples

4.4.1 Several Setpoint Requesters

In the context of the sensor/actuator pattern (see Chapter 3) there might be several
conflicting setpoint requesters. In this case a new component for managing all requests
from different setpoint requesters is introduced, see Figure 4.3.

When using sender/receiver interfaces the arbitration component, also called ”arbiter”,
needs to have unique names for the different requests. This is realized by different
request ports, one per requester. The port interface or at least the application data
type is typically the same for all of these requesters and the resulting request.

Figure 4.3: Pattern ”Arbitration between Several Set-point Requester”

54 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

In grammar 4.1 it is described how the provide ports of the requesters as well as
the request ports of the arbiter should be named: they all have the suffix ”Reqd” for
”Required”. So terms like ”desired”, ”wished” etc. should not be used to avoid that too
many terms with similar meanings are used without being able to distinguish them.
grammar PArbSpReqPortNames;

portName
: ({anyName}){’Reqd’} ;

anyName
: (’keyword’)* ;

Listing 4.1: Name Pattern for Ports of Arbiter and Requesters

Figure 4.4 shows the pattern in the context of the RTE. The Device Abstraction is
designed as one large composition but this is not requested by the Sensor/Actuator
pattern.

Figure 4.4: Arbitration between Several Requesters via RTE

4.4.2 Several Providers of Consolidated Values

In the context of the sensor/actuator pattern (3) there might be several sensors provid-
ing the same physical information. This is, there are several component all providing a
consolidated values for a specific physical signal.

A new component for managing all consolidated values from different providers is in-
troduced, see Figure 4.5.

When using sender/receiver interfaces the arbitration component, also called ”arbiter”,
needs to have unique names for the different providers. This is realized by different

55 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

request ports, one per provider. The port interface or at least the application data type
is typically the same for all of these providers and the resulting consolidated value.

Figure 4.5: Pattern ”Arbitration between Several Providers of Consolidated Values”

In grammar 4.2 it is described how the provide ports of the providers as well as the
provide port of the arbiter should be named: they all have the suffix ”Consold” for
”Consolidated”. So terms like ”modeled” etc. should not be used to avoid that too
many terms with similar meanings are used without being able to distinguish them.
grammar PArbrConsoldPortNames;

portName
: ({anyName}){’Consold’} ;

anyName

56 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

: (’keyword’)* ;

Listing 4.2: Name Pattern for Ports of Arbiter and Providers of Consolidated Values

4.4.3 Several Providers of Estimated Values

In the context of the sensor/actuator pattern (3) there might be several model for calcu-
lating an estimation value. However, in the end only one of the estimated values should
be input to the sensor/actuator pattern. Therefore, a new component for managing all
estimated values from different providers is introduced, see Figure 4.6.

When using sender/receiver interfaces the arbitration component, also called ”arbiter”,
needs to have unique names for the different providers. This is realized by different
request ports, one per provider. The port interface or at least the application data type
is typically the same for all of these providers and the resulting estimated value.

57 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

Figure 4.6: Pattern ”Arbitration between Several Providers of Estimated Values”

In grammar 4.3 it is described how the provide ports of the providers as well as the
provide port of the arbiter should be named: they all have the suffix ”Estimd” for ”Esti-
mated”. So terms like ”modeled” etc. should not be used to avoid that too many terms
with similar meanings are used without being able to distinguish them.
grammar PArbEstimdPortNames;

portName
: ({anyName}){’Estimd’} ;

anyName
: (’keyword’)* ;

Listing 4.3: Name Pattern for Ports of Arbiter and Providers of Estimated Values

58 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

4.5 Sample Code and Model

None.

4.6 Known Uses

This pattern is typically applied in the context of usage of the Sensor/Actuator Design
Pattern.

4.7 Related Patterns

Pattern Description
Sensor Actua-
tor Pattern (see
Chapter 3)

The sensor/actuator pattern is typically combined with the arbitration pattern
to allow several set point requesters, several providers of consolidated values
or several providers of estimated values. This is, arbitration is not done within
the sensor/actuator pattern but outside the device abstraction.

Table 4.1: Related Patterns

59 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

5 Signal Quality States

Classification Design Pattern

5.1 Problem

For each (sensor) signal / value the corresponding quality information is also needed
to be transferred along with the signal value.

The main intention is to have a common understanding of signal quality and to stan-
dardize the states a signal quality can have.

5.2 Applicability

This scope of this pattern is the definition of signal quality states (e.g. the content of
the signal quality interfaces). The implementation of such a signal quality interface is
not in scope of this document as there are several implementations possible.

The signal quality states defined in this document are a minimum set of recommended
signal quality states.

5.3 Solution

Signal quality State of related sig-
nal value

Meaning

UNDEFINED Undefined value No information about quality at all. It means that signal
quality is not defined and the signal value is not initialized
/ calculated yet or is not calculated any more (e.g. desired
deactivation of functionality)

VALID Valid value Trustworthy value from main signal source
REPLACEMENT Replacement value

with reduced valid-
ity

Modelled value or even defined constant value (mostly
done by calibration). There is no information about the
validity of the signal value, i.e. there is no additional infor-
mation how "‘good"’ the replacement value represents the
original value.

FROZEN Frozen value Frozen value. A valid value must have been calculated
before. There is no information about since how long the
signal value is frozen

INVALID Invalid value Value is not trustworthy and must not be used

Table 5.1: Signal Quality States

Additional information to table 5.1:

• Transitions from UNDEFINED to FROZEN is not allowed, because the previous
value was not a valid value

60 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

• UNDEFINED level is default value of signal quality interfaces

5.3.1 Implementation proposal

For easier reuse and collaboration an example implementation of a signal quality in C
code is given. It is recommended to store the signal quality along with its value in a
RECORD (=struct) datatype. Having that RTE will guarantee data consistency.

typedef struct {
float32 value; //datatype depending on need
uint8 quality;

} SignalQuality_t;

Listing 5.1: Signal quality implementation proposal

This is an example for a value given in float and its corresponding quality information,
since float is the preferred datatype within Device Abstraction pattern for sensor
signals. The datatype is variable (also refer to table 3.6).

61 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

A Change history of AUTOSAR traceable items

A.1 Traceable item history of this document according to
AUTOSAR Release R24-11

A.1.1 Added Specification Items in R24-11

none

A.1.2 Changed Specification Items in R24-11

none

A.1.3 Deleted Specification Items in R24-11

none

A.2 Traceable item history of this document according to
AUTOSAR Release R23-11

A.2.1 Added Specification Items in R23-11

none

A.2.2 Changed Specification Items in R23-11

none

A.2.3 Deleted Specification Items in R23-11

none

62 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

A.3 Traceable item history of this document according to
AUTOSAR Release R22-11

A.3.1 Added Specification Items in R22-11

none

A.3.2 Changed Specification Items in R22-11

none

A.3.3 Deleted Specification Items in R22-11

Number Heading

[TR_AIDPC_00001] Access to Hardware by PSnsrAct

[TR_AIDPC_00002] Collaboration supported by PSnsrAct

[TR_AIDPC_00003] Deployment/Relocation supported by PSnsrAct

[TR_AIDPC_00004] Layers of PSnsrAct

[TR_AIDPC_00005] Naming within PSnsrAct

[TR_AIDPC_00006] Arbitration of requesters

[TR_AIDPC_00007] Arbitration of providers

Table A.1: Deleted Specification Items in R22-11

A.3.4 Added Constraints in R22-11

none

A.3.5 Changed Constraints in R22-11

none

A.3.6 Deleted Constraints in R22-11

none

63 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

B Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Class ApplicationSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note The ApplicationSwComponentType is used to represent the application software.

Tags: atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtomicSwComponentType, AtpBlueprint , AtpBlueprintable, AtpClassifier , Atp
Type, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable, Sw
ComponentType

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

– – – – –

Table B.1: ApplicationSwComponentType

Class CompositionSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Note A CompositionSwComponentType aggregates SwComponentPrototypes (that in turn are typed by
SwComponentTypes) as well as SwConnectors for primarily connecting SwComponentPrototypes
among each others and towards the surface of the CompositionSwComponentType. By this means, a
hierarchical structures of software-components can be created.

Tags: atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, SwComponentType

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

component SwComponent
Prototype

* aggr The instantiated components that are part of this
composition. The aggregation of
SwComponentPrototype is subject to variability with
the purpose to support the conditional existence of a
SwComponentPrototype. Please be aware: if the
conditional existence of SwComponentPrototypes is
resolved post-build, the deselected
SwComponentPrototypes are still contained in the
ECUs build but the instances are inactive in that they are
not scheduled by the RTE.

The aggregation is marked as atpSplitable in order to
allow the addition of service components to the ECU
extract during the ECU integration.

The use case for having 0 components owned by the
CompositionSwComponentType could be to deliver an
empty CompositionSwComponentType to e.g. a
supplier for filling the internal structure.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=component.shortName, component.variation
Point.shortLabel
vh.latestBindingTime=postBuild

5

64 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

4
Class CompositionSwComponentType

connector SwConnector * aggr SwConnectors have the principal ability to establish a
connection among PortPrototypes. They can have
many roles in the context of a
CompositionSwComponentType. Details are refined
by subclasses.

The aggregation of SwConnectors is subject to
variability with the purpose to support variant data flow.

The aggregation is marked as atpSplitable in order to
allow the extension of the ECU extract with
AssemblySwConnectors between
ApplicationSwComponentTypes and
ServiceSwComponentTypes during the ECU
integration.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=connector.shortName, connector.variation
Point.shortLabel
vh.latestBindingTime=postBuild

constantValue
Mapping

ConstantSpecification
MappingSet

* ref Reference to the ConstantSpecificationMapping to
be applied for initValues of PPortComSpecs and
RPortComSpec.

Stereotypes: atpSplitable
Tags: atp.Splitkey=constantValueMapping

dataType
Mapping

DataTypeMappingSet * ref Reference to the DataTypeMappingSet to be applied
for the used ApplicationDataTypes in
PortInterfaces.

Background: when developing subsystems it may happen
that ApplicationDataTypes are used on the surface
of CompositionSwComponentTypes. In this case it
would be reasonable to be able to also provide the
intended mapping to the ImplementationDataTypes.
However, this mapping shall be informal and not
technically binding for the implementors mainly because
the RTE generator is not concerned about the
CompositionSwComponentTypes.

Rationale: if the mapping of ApplicationDataTypes
on the delegated and inner PortPrototype matches
then the mapping to ImplementationDataTypes is not
impacting compatibility.

Stereotypes: atpSplitable
Tags: atp.Splitkey=dataTypeMapping

instantiation
RTEEventProps

InstantiationRTEEvent
Props

* aggr This allows to define instantiation specific properties for
RTE Events, in particular for instance specific scheduling.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=instantiationRTEEventProps.shortLabel,
instantiationRTEEventProps.variationPoint.shortLabel
vh.latestBindingTime=codeGenerationTime

5

65 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

4
Class CompositionSwComponentType

physical
Dimension
Mapping

PhysicalDimension
MappingSet

0..1 ref This reference identifies the
PhysicalDimensionMappingSet that is applicable in
the context of the enclosing
CompositionSwComponentType. The
PhysicalDimensionMappings contained in the
PhysicalDimensionMappingSet shall be taken into
account for the assessment of the compatibility of
PhysicalDimensions in the context of creation of a
PortInterfaceMapping in the scope of the
CompositionSwComponentType.

Table B.2: CompositionSwComponentType

Class EcuAbstractionSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note The ECUAbstraction is a special AtomicSwComponentType that resides between a software-component
that wants to access ECU periphery and the Microcontroller Abstraction. The EcuAbstractionSw
ComponentType introduces the possibility to link from the software representation to its hardware
description provided by the ECU Resource Template.

Tags: atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtomicSwComponentType, AtpBlueprint , AtpBlueprintable, AtpClassifier , Atp
Type, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable, Sw
ComponentType

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

hardware
Element

HwDescriptionEntity * ref Reference from the EcuAbstractionComponentType to the
description of the used HwElements.

Table B.3: EcuAbstractionSwComponentType

Class HwCategory

Package M2::AUTOSARTemplates::EcuResourceTemplate::HwElementCategory

Note This metaclass represents the ability to declare hardware categories and its particular attributes.

Tags: atp.recommendedPackage=HwCategorys

Base ARElement , ARObject , AtpDefinition, CollectableElement , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

hwAttributeDef HwAttributeDef * aggr This aggregation describes particular hardware attribute
definition.

Table B.4: HwCategory

Class HwDescriptionEntity (abstract)

Package M2::AUTOSARTemplates::EcuResourceTemplate

Note This meta-class represents the ability to describe a hardware entity.

Base ARObject , Referrable

Subclasses HwElement, HwPin, HwPinGroup, HwType

Attribute Type Mult. Kind Note

5

66 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

4
Class HwDescriptionEntity (abstract)

hwAttribute
Value

HwAttributeValue * aggr This aggregation represents a particular hardware
attribute value.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=hwAttributeValue, hwAttributeValue.variation
Point.shortLabel
vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=50

hwCategory HwCategory * ref One of the associations representing one particular
category of the hardware entity.

Tags: xml.sequenceOffset=30

hwType HwType 0..1 ref This association is used to assign an optional HwType
which contains the common attribute values for all
occurences of this HwDescriptionEntity. Note that Hw
Types can not be redefined and therefore shall not have a
hwType reference.

Table B.5: HwDescriptionEntity

Class HwElement
Package M2::AUTOSARTemplates::EcuResourceTemplate

Note This represents the ability to describe Hardware Elements on an instance level. The particular types of
hardware are distinguished by the category. This category determines the applicable attributes. The
possible categories and attributes are defined in HwCategory.

Tags: atp.recommendedPackage=HwElements

Base ARElement , ARObject , CollectableElement , HwDescriptionEntity , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

hwElement
Connection

HwElementConnector * aggr This represents one particular connection between two
hardware elements.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=hwElementConnection, hwElement
Connection.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=110

hwPinGroup HwPinGroup * aggr This aggregation is used to describe the connection
facilities of a hardware element. Note that hardware
element has no pins but only pingroups.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=hwPinGroup.shortName, hwPin
Group.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=90

5

67 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

4
Class HwElement
nestedElement HwElement * ref This association is used to establish hierarchies of hw

elements. Note that one particular HwElement can be
target of this association only once. I.e. multiple
instantiation of the same HwElement is not supported (at
any hierarchy level).

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=nestedElement.hwElement, nested
Element.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=70

Table B.6: HwElement

Class HwType

Package M2::AUTOSARTemplates::EcuResourceTemplate::HwElementCategory

Note This represents the ability to describe Hardware types on an abstract level. The particular types of
hardware are distinguished by the category. This category determines the applicable attributes. The
possible categories and attributes are defined in HwCategory.

Tags: atp.recommendedPackage=HwTypes

Base ARElement , ARObject , CollectableElement , HwDescriptionEntity , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

– – – – –

Table B.7: HwType

Primitive Identifier
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::PrimitiveTypes

Note An Identifier is a string with a number of constraints on its appearance, satisfying the requirements typical
programming languages define for their Identifiers.

This datatype represents a string, that can be used as a c-Identifier.

It shall start with a letter, may consist of letters, digits and underscores.

Tags:
xml.xsd.customType=IDENTIFIER
xml.xsd.maxLength=128
xml.xsd.pattern=[a-zA-Z][a-zA-Z0-9_]*
xml.xsd.type=string

Attribute Type Mult. Kind Note

blueprintValue String 0..1 attr This represents a description that documents how the
value shall be defined when deriving objects from the
blueprint.

Tags:
atp.Status=draft
xml.attribute=true

namePattern String 0..1 attr This attribute represents a pattern which shall be used to
define the value of the identifier if the identifier in question
is part of a blueprint.

For more details refer to TPS_StandardizationTemplate.

Tags: xml.attribute=true

Table B.8: Identifier

68 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

Class Keyword

Package M2::AUTOSARTemplates::CommonStructure::StandardizationTemplate::Keyword

Note This meta-class represents the ability to predefine keywords which may subsequently be used to
construct names following a given naming convention, e.g. the AUTOSAR naming conventions.

Note that such names is not only shortName. It could be symbol, or even longName. Application of
keywords is not limited to particular names.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Aggregated by KeywordSet.keyword

Attribute Type Mult. Kind Note

abbrName NameToken 1 attr This attribute specifies an abbreviated name of a
keyword. This abbreviation may e.g. be used for
constructing valid shortNames according to the
AUTOSAR naming conventions.

Unlike shortName, it may contain any name token. E.g. it
may consist of digits only.

classification NameToken * attr This attribute allows to attach classification to the
Keyword such as MEAN, ACTION, CONDITION, INDEX,
PREPOSITION

Table B.9: Keyword

Class PortPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Base class for the ports of an AUTOSAR software component.

The aggregation of PortPrototypes is subject to variability with the purpose to support the conditional
existence of ports.

Base ARObject , AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses AbstractProvidedPortPrototype, AbstractRequiredPortPrototype

Aggregated by AtpClassifier .atpFeature, SwComponentType.port

Attribute Type Mult. Kind Note

clientServer
Annotation

ClientServerAnnotation * aggr Annotation of this PortPrototype with respect to client/
server communication.

delegatedPort
Annotation

DelegatedPort
Annotation

0..1 aggr Annotations on this delegated port.

ioHwAbstraction
Server
Annotation

IoHwAbstractionServer
Annotation

* aggr Annotations on this IO Hardware Abstraction port.

modePort
Annotation

ModePortAnnotation * aggr Annotations on this mode port.

nvDataPort
Annotation

NvDataPortAnnotation * aggr Annotations on this non voilatile data port.

parameterPort
Annotation

ParameterPort
Annotation

* aggr Annotations on this parameter port.

senderReceiver
Annotation

SenderReceiver
Annotation

* aggr Collection of annotations of this ports sender/receiver
communication.

triggerPort
Annotation

TriggerPortAnnotation * aggr Annotations on this trigger port.

Table B.10: PortPrototype

69 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

Class PortPrototypeBlueprint

Package M2::AUTOSARTemplates::CommonStructure::StandardizationTemplate::BlueprintDedicated::Port
ProtoypeBlueprint

Note This meta-class represents the ability to express a blueprint of a PortPrototype by referring to a particular
PortInterface. This blueprint can then be used as a guidance to create particular PortPrototypes which
are defined according to this blueprint. By this it is possible to standardize application interfaces without
the need to also standardize software-components with PortPrototypes typed by the standardized Port
Interfaces.

Tags: atp.recommendedPackage=PortPrototypeBlueprints

Base ARElement , ARObject , AtpBlueprint , AtpClassifier , AtpFeature, AtpStructureElement , Collectable
Element , Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Aggregated by ARPackage.element, AtpClassifier .atpFeature

Attribute Type Mult. Kind Note

initValue PortPrototypeBlueprint
InitValue

* aggr This specifies the init values for the dataElements in the
particular PortPrototypeBlueprint.

interface PortInterface 1 ref This is the interface for which the blueprint is defined. It
may be a blueprint itself or a standardized PortInterface

providedCom
Spec

PPortComSpec * aggr Provided communication attributes per interface element
(data element or operation).

requiredCom
Spec

RPortComSpec * aggr Required communication attributes, one for each
interface element.

Table B.11: PortPrototypeBlueprint

Class Referrable (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable

Note Instances of this class can be referred to by their identifier (while adhering to namespace borders).

Base ARObject

Subclasses AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint , BswModuleClientServerEntry, Bsw
VariableAccess, CouplingPortTrafficClassAssignment, DiagnosticEnvModeElement , EthernetPriority
Regeneration, ExclusiveAreaNestingOrder, HwDescriptionEntity , ImplementationProps, LinSlaveConfig
Ident, ModeTransition, MultilanguageReferrable, PncMappingIdent, SingleLanguageReferrable, SoConI
PduIdentifier, SocketConnectionBundle, TimeSyncServerConfiguration, TpConnectionIdent

Attribute Type Mult. Kind Note

shortName Identifier 1 attr This specifies an identifying shortName for the object. It
needs to be unique within its context and is intended for
humans but even more for technical reference.

Stereotypes: atpIdentityContributor
Tags:
xml.enforceMinMultiplicity=true
xml.sequenceOffset=-100

shortName
Fragment

ShortNameFragment * aggr This specifies how the Referrable.shortName is
composed of several shortNameFragments.

Tags: xml.sequenceOffset=-90

Table B.12: Referrable

Class SensorActuatorSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note The SensorActuatorSwComponentType introduces the possibility to link from the software representation
of a sensor/actuator to its hardware description provided by the ECU Resource Template.

Tags: atp.recommendedPackage=SwComponentTypes

5

70 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

4
Class SensorActuatorSwComponentType

Base ARElement , ARObject , AtomicSwComponentType, AtpBlueprint , AtpBlueprintable, AtpClassifier , Atp
Type, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable, Sw
ComponentType

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

sensorActuator HwDescriptionEntity 0..1 ref Reference from the Sensor Actuator Software Component
Type to the description of the actual hardware.

Table B.13: SensorActuatorSwComponentType

Class SwComponentPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Note Role of a software component within a composition.

Base ARObject , AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Aggregated by AtpClassifier .atpFeature, CompositionSwComponentType.component

Attribute Type Mult. Kind Note

type SwComponentType 0..1 tref Type of the instance.

Stereotypes: isOfType

Table B.14: SwComponentPrototype

Class SwComponentType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Base class for AUTOSAR software components.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses AtomicSwComponentType, CompositionSwComponentType, ParameterSwComponentType

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

consistency
Needs

ConsistencyNeeds * aggr This represents the collection of ConsistencyNeeds
owned by the enclosing SwComponentType.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=consistencyNeeds.shortName, consistency
Needs.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

port PortPrototype * aggr The PortPrototypes through which this SwComponent
Type can communicate.

The aggregation of PortPrototype is subject to variability
with the purpose to support the conditional existence of
PortPrototypes.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=port.shortName, port.variationPoint.short
Label
vh.latestBindingTime=preCompileTime

5

71 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP R24-11

4
Class SwComponentType (abstract)

portGroup PortGroup * aggr A port group being part of this component.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=portGroup.shortName, portGroup.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

swcMapping
Constraint

SwComponentMapping
Constraints

* ref Reference to constraints that are valid for this Sw
ComponentType.

swComponent
Documentation

SwComponent
Documentation

0..1 aggr This adds a documentation to the SwComponentType.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=swComponentDocumentation, sw
ComponentDocumentation.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=-10

unitGroup UnitGroup * ref This allows for the specification of which UnitGroups are
relevant in the context of referencing SwComponentType.

Table B.15: SwComponentType

72 of 72 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue

	1 Introduction
	1.1 Document conventions

	2 About Patterns
	2.1 Types of Pattern
	2.2 Describing Patterns

	3 Sensor and Actuator Pattern
	3.1 Motivation
	3.2 Also Known As
	3.3 Applicability
	3.4 Solution
	3.5 Naming
	3.6 Interface definitions
	3.7 Sensor Actuator types
	3.7.1 Sensor
	3.7.2 Actuator without Feedback Loop
	3.7.3 Actuator with Feedback Loop

	3.8 Usage of pattern
	3.9 Examples
	3.9.1 Throttle Valve
	3.9.2 Turbo Charger
	3.9.3 Turbo Charger with Stages and Banks
	3.9.4 Sensor for Environment Temperature
	3.9.5 Standard Sensor
	3.9.6 Standard Sensor for Environment Temperature
	3.9.7 Distributing Device Abstraction

	3.10 Sample Code and Model
	3.11 Typical location of some common function within the specified layers
	3.11.1 Virtual Device Coordinator (DevCoorrVirt)
	3.11.1.1 Conversion and linearization of physical requested value
	3.11.1.2 DCM service / Diagnostic tester interface for basic function test
	3.11.1.3 Cleaning / Ice breaking
	3.11.1.4 Dither of setpoint
	3.11.1.5 Release function of setpoint
	3.11.1.6 Coordination of activation and deactivation of the actuator

	3.11.2 Actuator Device Driver (DevDrvrActr)
	3.11.2.1 Dither of output value
	3.11.2.2 Release function of output value
	3.11.2.3 Limitation
	3.11.2.4 Feed forward controller
	3.11.2.5 Closed loop controller
	3.11.2.6 Set point limitation
	3.11.2.7 Set point gradient limitation
	3.11.2.8 Control deviation monitoring
	3.11.2.9 Capability

	3.11.3 Electrical Actuator Driver (DrvrActrElec)
	3.11.3.1 Power stage monitoring

	3.11.4 Virtual Device Driver (DevSnsrVirt)
	3.11.4.1 Substitution
	3.11.4.2 Inertia compensation
	3.11.4.3 Signal qualifier evaluation
	3.11.4.4 DCM service / Diagnostic tester interface for basic function test
	3.11.4.5 Plausibilization

	3.11.5 Sensor Device Driver (DevDrvrSnsr)
	3.11.5.1 High level filtering
	3.11.5.2 Offset adaption
	3.11.5.3 Zero point adaption
	3.11.5.4 Drift detection
	3.11.5.5 Conversion
	3.11.5.6 Physical signal gradient calculation
	3.11.5.7 Physical signal gradient check
	3.11.5.8 Stuck check diagnosis
	3.11.5.9 Physical signal range check

	3.11.6 Electrical Sensor Driver (DrvrSnsrElec)
	3.11.6.1 Basic filter
	3.11.6.2 Voltage compensation
	3.11.6.3 Electrical diagnosis

	3.12 Known Issues
	3.13 FAQ
	3.14 Known Uses
	3.15 Related Patterns
	3.16 Anti-Patterns One Should be Aware of
	3.17 Further Readings

	4 Arbitration between several requesters or providers
	4.1 Problem
	4.2 Applicability
	4.3 Solution
	4.4 Examples
	4.4.1 Several Setpoint Requesters
	4.4.2 Several Providers of Consolidated Values
	4.4.3 Several Providers of Estimated Values

	4.5 Sample Code and Model
	4.6 Known Uses
	4.7 Related Patterns

	5 Signal Quality States
	5.1 Problem
	5.2 Applicability
	5.3 Solution
	5.3.1 Implementation proposal

	A Change history of AUTOSAR traceable items
	A.1 Traceable item history of this document according to AUTOSAR Release R24-11
	A.1.1 Added Specification Items in R24-11
	A.1.2 Changed Specification Items in R24-11
	A.1.3 Deleted Specification Items in R24-11

	A.2 Traceable item history of this document according to AUTOSAR Release R23-11
	A.2.1 Added Specification Items in R23-11
	A.2.2 Changed Specification Items in R23-11
	A.2.3 Deleted Specification Items in R23-11

	A.3 Traceable item history of this document according to AUTOSAR Release R22-11
	A.3.1 Added Specification Items in R22-11
	A.3.2 Changed Specification Items in R22-11
	A.3.3 Deleted Specification Items in R22-11
	A.3.4 Added Constraints in R22-11
	A.3.5 Changed Constraints in R22-11
	A.3.6 Deleted Constraints in R22-11

	B Mentioned Class Tables

