AUTSSAR

Document Title Specification of SPI
Handler/Driver

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 38

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R24-11

Document Change History

Date Release | Changed by Description
AUTOSAR
SRS _BSW _00334] removed from
2024-11-27 | R24-11 | Release * [SAS_BSW_
Management [SWS_Spi_NA_00999]
AUTOSAR e [SWS_Spi_00389] moved to mandatory
2023-11-23 | R23-11 | Release interfaces
Management o Editorial changes
e Reworked or rephrased requirements:
[SWS_Spi_NA_00999],
2022-11-24 | R22-11 Release [ECUC_Spi_00220], [SWS_Spi_00377],
Management [SWS_Spi_00389], [SWS_Spi_00150],
[ECUC_Spi_00214]
o Editorial changes
e Chapter 10 diagrams updated
e New configuration parameter:
[ECUC_Spi_00249]
e Reworked or rephrased requirements:
[SWS_Spi_00128], [SWS_Spi_00382],
QUITOSAR [SWS_Spi_00360], [SWS_Spi_00170],
2021-11-25 | R21-11 Me ease t [SWS_Spi_00150], [SWS_Spi_00329],
anagemen

[SWS_Spi_00154], [ECUC_Spi_00208],
[ECUC_Spi_00214],
[ECUC_Spi_00202],
[ECUC_Spi_00204],
[ECUC_Spi_00205],
[ECUC_Spi_00234],

\Y4

AUTSSAR

A
[ECUC_Spi_00242],
[ECUC_Spi_00197],
[ECUC_Spi_00198],
[ECUC_Spi_00199], [ECUC_Spi_00236]

e Removed requirements:
[SWS_Spi_00108], [SWS_Spi_00155],
[SWS_Spi_00152], [SWS_Spi_00271],
[SWS_Spi_00008], [SWS_Spi_00009],
[SWS_Spi_00010], [SWS_Spi_00063],
[SWS_Spi_00064], [SWS_Spi_00344]

o Editorial changes, errors descriptions
updated, SpiDataWidth up to 64 bits

e Error sections refactored

e New configuration parameters:
[SWS_Spi_00247], [SWS_Spi_00248]

AUTOSAR e Removed requirements:
2020-11-30 R20-11 Release [SWS_SpI_OOOOS], [SWS_SpI_OOOOQ],
Management [SWS_Spi_00010], [SWS_Spi_00063]
and [SWS_Spi_00064]
e Chapter 8.2: enumeration types have
the values specified
AUTOSAR e [SWS_Spi_00082] removed
2019-11-28 | R19-11 | Release « Changed Document Status from Final to
Management published
AUTOSAR
2018-10-31 4.4.0 Release e Editorial changes
Management
e SPI_F_SEQ_IN_PROCESS and
SPI_FE_SEQ_PENDING are migrated to
runtime errors
e The notion of pre-arranged bus is
AUTOSAR removed to simplify the use
2017-12-08 | 4.3.1 Release 3 .
Management ¢ Modified or removed requirements:

[SWS_Spi_00135], [SWS_Spi_00324],
[SWS_Spi_00039]

¢ Restored requirement:
[SWS_Spi_00035]

AUTSSAR

e Requirements removed:
[SWS_Spi_00339], [SWS_Spi_00191],
[SWS_Spi_00367], [SWS_Spi_00239],
[SWS_Spi_00056], [SWS_Spi_00076],
[SWS_Spi_00148]

AUTOSAR
2016-11-30 | 4.3.0 Release e Requirements updated:
Management [SWS_Spi_00999], [SWS_Spi_00092]
e Improved the traceability within SRS
BSW General requirements
o Editorial changes
e Cleanup of requirements chapter
AUTOSAR
2015-07-31 422 Release e Debugging support marked as obsolete
Management o
o Editorial changes
e Added [SWS_Spi_00383],
[SWS_Spi_00384], [SWS_Spi_00385],
[SWS_Spi_00386] and
[ECUC_Spi_00243]
AUTOSAR N . i t
2014-10-31 | 4.2.1 Release * Tow configuration parameter
Management SpiUserCallbackHeaderFile
e SPI hardware error is applicable for sync
and async transmits
o Editorial changes
e Description for Spi_AsyncTransmit
AUTOSAR and Sspi_SyncTransmit development
2014-03-31 413 Release errors for already going transmission
Management e Clarification of Spi Channel width and
data access type relation
e [ECUC_Spi_00242] (added)
e [ECUC_Spi_00240] (added)
AUTOSAR : -
2013-10-31 | 4.1.2 Release * [SWS_Spi_00189] (modified)
Management o Editorial changes

e Removed chapter(s) on change
documentation

AUTSSAR

2013-03-15

411

AUTOSAR
Administration

e Added chapter 7.6 and 7.7, table from
chapter 7.4 moved to chapter 7.7

e [SWS_Spi_00129] removed,
[SWS_Spi_00128] reformulated

¢ [ECUC_Spi_00180], [ECUC_Spi_00204]
Length is in data elements instead of
bytes

e MemMap header file rename

e Added Subchapter 3.x due to SWS
General Rollout

2011-12-22

4.0.3

AUTOSAR
Administration

¢ Rephrased: requirement
[SWS_Spi_00002], [SWS_Spi_00046],
[SWS_Spi_00129], [SWS_Spi_00233],
[SWS_Spi_00163], SPI 171,
[SWS_Spi_00172], [SWS_Spi_00289]
and [SWS_Spi_00290], block 2 in
chapter 7.2.2

e Removed: requirement SPI 083; SPI
132, SPI1 284 and SPI 107 removde from
statement

e Corrected: Dem_EventStatusType in
[SWS_Spi_00191],
Spi_SyncTransmit Syn/Async
changed to Synchronous,
SPI_E_PARAM_POINTER in
[SWS_Spi_00371]

e Reference to MCU in [SWS_Spi_00244]
and [SWS_Spi_00342]

e Added: requirement [SWS_Spi_00140],
chapter 10 -SpiCsSelection,
[SWS_Spi_00194] - SPI_JOB_QUEUED
state introduced, [SWS_Spi_00195] with
error table update

o Modified: [SWS_Spi_00114] and
[SWS_Spi_00135], chapter 10 -
SpiEnableCs

AUTSSAR

AUTOSAR

2010-09-30 | 3.1.5 Administration

o Added [SWS_Spi_00369],
[SWS_Spi_00371], [SWS_Spi_00370]

e Removed SPI 190, SPI 094

e Updated configuration: base on min-max
value for defined parameter; SpiHwUnit
belongs to SpiExternalDevice Container;
updated SpiTimeClk2Cs

AUTOSAR

2010-02-02 | 3.1.4 Administration

e Splitting and refinement of several
requirements

e Removal of redundant requirements

e Introduction of new IDs to allow
implementation of debugging concept

e Inserted UML diagram in chapter 9

¢ Updating of Chapter 10 with the
inclusions of 2 new container and the
definition of the Chip Select configuration

¢ Legal disclaimer revised

AUTOSAR

2008-08-13 | 3.1.1 Administration

e Legal disclaimer revised

AUTOSAR

2007-12-21 | 3.0.1 Administration

e Updated Chapter 10 with the inclusion of
CS configuration

¢ Document meta information extended

e Small layout adaptations made

AUTOSAR

2007-01-24 | 2.1.15 Administration

e Configuration Specification updating
e General rephrasing for clarification
e Syntax error

¢ Legal disclaimer revised

¢ Release Notes added

¢ "Advice for users" revised

e "Revision Information" added

AUTSSAR

e Document structure adapted to common
Release 2.0 SWS Template

5006-05-16 | 2.0 AUTQ_SAR _ e Major changes in chapter 10
Administration
e Structure of document changed partly
e Other changes see chapter 13
2005-05-31 1.0 AUTOSAR e Initial Release

Administration

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Contents
1 Introduction and functional overview 11
2 Acronyms and Abbreviations 12
3 Related documentation 13
3.1 Input documents & related standards andnorms 13
3.2 Related specification 13
4 Constraints and assumptions 14
41 Limitations 14
4.2 Applicabilitytocardomains 14
5 Dependencies to other modules 15
6 Requirements Tracing 16
7 Functional specification 19
7.1 Overall view of functionalities and features 19
7.2 Generalbehaviour 20
7.2.1 Common configurable feature: Allowed Channel Buffers . . . 23
7.2.11 Behaviour of IBchannels 24
7.21.2 Behaviour of EBchannels 25
7.21.3 Buffering channelusage 25
7.2.2 LEVEL 0, Simple Synchronous behaviour 26
7.2.3 LEVEL 1, Basic Asynchronous behavior 27
7.2.4 Asynchronous configurable feature: Interruptible Sequences 29
7.2.41 Behavior of Non-Interruptible Sequences 30
7.24.2 Behavior of Mixed Sequences 30
7.2.5 LEVEL 2, Enhanced behaviour 31
7.3 Scheduling Advices 32
7.4 Error Classification 32
7.4.1 DevelopmentErrorso 33
7.4.2 Runtime Errors 33
7.4.3 ProductionErrors oo oL 33
7.4.4 Extended ProductionErrors 34
7.4.4.1 SPI_FE_HARDWARE_ERROR 34
75 SecurityEvents 34
8 API specification 35
8.1 Importedtypes 35
8.2 Typedefinitions 35
8.2.1 Spi_ConfigType 35
8.2.2 Spi_StatusType 36
8.2.3 Spi_JobResultType 37

8.2.4 Spi_SeqgResultType 38

AUTSSAR

8.2.5 Spi_DataBufferType oL 39
8.2.6 Spi_NumberOfDataType 39
8.2.7 Spi_ChannelType 40
8.2.8 Spi_JobType 40
8.2.9 Spi_SequenceType 41
8.2.10 Spi_ HWUnitTypeo o 41
8.2.11 Spi_AsyncModeType 42

8.3 Functiondefinitions L 43
8.3.1 Spi_Init 43
8.3.2 Spi_Delnit 44
8.3.3 Spi_WritelB. 45
8.3.4 Spi_AsyncTransmit L 46
8.3.5 Spi_ReadlB 49
8.3.6 Spi_SetupEB 50
8.3.7 Spi GetStatus 52
8.3.8 Spi_GetdobResult o o oL 52
8.3.9 Spi_GetSequenceResult L. 54
8.3.10 Spi_GetVersioninfo o oL 55
8.3.11 Spi_SyncTransmit 55
8.3.12 Spi GetHWUnitStatus 57
8.3.13 Spi_Cancel 58
8.3.14 Spi_SetAsyncModeo 59

8.4 Callback notifications 60
8.5 Scheduledfunctions 60
8.5.1 Spi_MainFunction_Handling 60

8.6 Expectedinterfaces. L o 60
8.6.1 Mandatory interfaces L. 60
8.6.2 Optionalinterfaces 61
8.6.3 Configurable interfaces 61
8.6.3.1 Spi_JobEndNotification 62

8.6.3.2 Spi_SegEndNotification 63

8.7 Errordetection 64
8.7.1 APl parameterchecking 64
8.7.2 SPIstatechecking 65
8.7.3 SPlruntimechecking 66
Sequence diagrams 67
9.1 Initialization 67
9.2 Modestransitions 67
9.3 Write/AsyncTransmit/Read (IB) 68
9.3.1 One Channel, one Job then one Sequence 68
9.3.2 Many Channels, one Job then one Sequence 69
9.3.3 Many Channels, many Jobs and one Sequence 70
9.3.4 Many Channels, many Jobs and many Sequences 72

9.4 Setup/AsyncTransmit (EB), . 74

941 Variable Number of Data / Constant Numberof Data 74

AUTSSAR

9.4.2 One Channel, one Job then one Sequence 74
9.4.3 Many Channels, one Job then one Sequence 75
944 Many Channels, many Jobs and one Sequence 76
9.4.5 Many Channels, many Jobs and many Sequences 78
9.5 MixeddJobs Transmission. 80
9.6 LEVEL O SyncTransmitdiagrams 80
9.6.1 Write/SyncTransmit/Read (IB): Many Channels, many Jobs
andone SequencCe e e 80
9.6.2 Setup/SyncTransmit (EB): Many Channels, many Jobs and
ONE SEQUENCE . .« . v v i i e e e e e e e e e e 81
10 Configuration specification 83
10.1 Howtoreadthischapter 83
10.2 Containers and configuration parameters 83
10.2.1 Spi .. e 83
10.2.2 SpiDemEventParameterRefs 84
10.2.3 SpiGeneral 85
10.2.4 SpiSequence 91
10.2.5 SpiChannel 93
10.2.6 SpiChannelList o 98
10.2.7 SpidJob 99
10.2.8 SpiExternalDevice L o oo 102
10.2.9 SpiDriver 109
10.2.10 SpiPublishedIinformation 111
10.3 Published Information L. 112
10.4 Configurationconcept oL 112
A Not applicable requirements 114

B Appendix 115

AUTSSAR

1 Introduction and functional overview

The SPI Handler/Driver provides services for reading from and writing to devices con-
nected via SPI busses. It provides access to SPI communication to several users (e.g.
EEPROM, Watchdog, I/0 ASICs). It also provides the required mechanism to configure
the onchip SPI peripheral.

This specification describes the API for a monolithic SPI Handler/Driver. This software
module includes handling and driving functionalities. Main objectives of this monolithic
SPI Handler/Driver are to take the best of each microcontroller features and to allow im-
plementation optimization depending on static configuration to fit as much as possible
to ECU needs.

Hence, this specification defines selectable levels of functionalities and configurable
features to allow the design of a high scalable module that exploits the peculiarities of
the microcontroller.

To configure the SPI Handler/Driver these steps shall be followed:

e SPI Handler/Driver Level of Functionality shall be selected and optional features
configured.

e SPI Channels shall be defined according to data usage, and they could be
buffered inside the SPI Handler/Driver (IB) or provided by the user (EB).

e SPI Jobs shall be defined according to HW properties (CS), and they will contain
a list of channels using those properties.

e As a final step, Sequences of Jobs shall be defined, in order to transmit data in a
sorted way (priority sorted).

The SPI Handler/Driver can transmit data frames in asynchronous or synchronous way
according to the API function called and the level of functionality selected.

The specification covers the Handler/Driver functionality combined in one single mod-
ule. One is the SPI handling part that handles multiple access to busses that could be
located in the ECU Abstraction layer. The other part is the SPI driver that accesses the
microcontroller hardware directly that could be located in the Microcontroller Abstrac-
tion layer.

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the SPI Handler/-
Driver module that are not included in the [1, AUTOSAR glossary].

Acronym: Description:

DET Default Error Tracer - module to which errors are reported.

DEM Diagnostic Event Manager - module to which production relevant errors are reported.
SPI Serial Peripheral Interface. It is exactly defined hereafter in this document.

CS Chip Select

MISO Master Input Slave Output

MOSI Master Output Slave Input

Table 2.1: Acronyms used in the scope of this Document

Abbreviation: Description:

EB Externally buffered channels. Buffers containing data to transfer are outside the SPI Handler/
Driver.

IB Internally buffered channels. Buffers containing data to transfer are inside the SPI Handler/Driver.

ID Identification Number of an element (Channel, Job, Sequence).

Table 2.2: Abbreviations used in the scope of this Document

Definition: Description:

Channel A Channel is a software exchange medium for data that are defined with the same criteria:
Config. Parameters, Number of Data elements with same size and data pointers (Source &
Destination) or location.

Job A Job is composed of one or several Channels with the same Chip Select (one chip select = one
external device). A Job is considered atomic and therefore cannot be interrupted by another Job.
A Job has an assigned priority.

Depending on the configuration, the CS may be kept asserted for the whole job (so for all the
Channels) or released for each data frame at SPI bus level.

Sequence A Sequence is a number of consecutive Jobs to transmit but it can be rescheduled between Jobs
using a priority mechanism. A Sequence transmission is interruptible (by another Sequence
transmission) or not depending on a static configuration.

Data frame A data frame is the physical frame of bits on the SPI bus in relation with SpiDataWidth.

Table 2.3: Definitions used in the scope of this Document

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms
[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

[3] Specification of MCU Driver
AUTOSAR_CP_SWS MCUDriver

[4] Specification of Port Driver
AUTOSAR_CP_SWS PortDriver

[5] General Requirements on Basic Software Modules
AUTOSAR_CP_RS BSWGeneral

[6] General Requirements on SPAL
AUTOSAR_CP_RS SPALGeneral

[7] Requirements on SPI Handler/Driver
AUTOSAR_CP_RS_SPIHandlerDriver

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [2, SWS BSW
General], which is also valid for SPI Handler/Driver.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for SPI Handler/Driver.

AUTSSAR
4 Constraints and assumptions
4.1 Limitations

[SWS_Spi_00040] [The SPI Handler/Driver handles only the Master mode. |

[SWS_Spi_00050] [The SPI Handler/Driver only supports full-duplex mode. |

4.2 Applicability to car domains

No restrictions.

AUTSSAR
5 Dependencies to other modules

[SWS_Spi_00244] [The SPI Handler/Driver module does not take care of setting the
registers which configure the clock, prescaler(s) and PLL in its init function. This has
to be done by the MCU module [3]. |

Note: SPI peripherals may depend on the system clock, prescaler(s) and PLL. Thus,
any change of the system clock (e.g. PLL on / PLL off / clock dividers) may also affect
the clock settings of the SPI hardware.

[SWS_Spi_00342] [Depending on microcontrollers, the SPI peripheral could share
registers with other peripherals. In this typical case, the SPI Handler/Driver has a
relationship with MCU module [3] for initialising and de-initialising those registers. |

[SWS_Spi_00343] [If Chip Selects are done using microcontroller pins the SPI Han-
dler/Driver has a relationship with PORT module [4]. In this case, this specification
assumes that these microcontroller pins are directly accessed by the SPI Handler/-
Driver module without using APIs of DIO module.

Anyhow, the SPI depends on ECU hardware design and for that reason it may depend
on other modules. |

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [5], [6], [7] and links to the
fulfillment of these. Please note that if column “Satisfied by” is empty for a specific
requirement this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_Spi_00013] [SWS_Spi_00015]

[SRS_BSW_00323]

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_Spi_00031] [SWS_Spi_00032]
[SWS_Spi_00060]

[SRS_BSW_00327]

Error values naming convention

[SWS_Spi_00004]

[SRS_BSW_00335]

Status values naming convention

[SWS_Spi_00019] [SWS_Spi_00061]
[SWS_Spi_00062] [SWS_Spi_00373]

[SRS_BSW_00336]

Basic SW module shall be able to
shutdown

[SWS_Spi_00021] [SWS_Spi_00022]

[SRS_BSW_00337]

Classification of development errors

[SWS_Spi_00004]

[SRS_BSW_00359]

Callback Function Return Types for
AUTOSAR BSW

[SWS_Spi_00048]

[SRS_BSW_00360]

AUTOSAR Basic Software Modules
callback functions are allowed to
have parameters

[SWS_Spi_00048]

[SRS_BSW_00369]

All AUTOSAR Basic Software
Modules shall not return specific
development error codes via the API

[SWS_Spi_00048]

[SRS_BSW_00385]

List possible error notifications

[SWS_Spi_00004]

[SRS_BSW_00405]

BSW Modules shall support multiple
configuration sets

[SWS_Spi_00013]

[SRS_BSW_00406]

API handling in uninitialized state

SWS_Spi_00015] [SWS_Spi_00046]
SWS_Spi_00373]

[SRS_SPAL_00157]

All drivers and handlers of the
AUTOSAR Basic Software shall
implement notification mechanisms of
drivers and handlers

[SWS_Spi_00026] [SWS_Spi_00038]
[SWS_Spi_00042] [SWS_Spi_00057]
[SWS_Spi_00071] [SWS_Spi_00073]
[SWS_Spi_00075] [SWS_Spi_00324]

[SRS_SPAL_12056]

All driver modules shall allow the
static configuration of notification
mechanism

[SWS_Spi_00044] [SWS_Spi_00054]

[SRS_SPAL_12057]

All driver modules shall implement an
interface for initialization

[SWS_Spi_00013] [SWS_Spi_00015]

[SRS_SPAL_12064]

All driver modules shall raise an error
if the change of the operation mode
leads to degradation of running
operations

[SWS_Spi_00021] [SWS_Spi_00025]

[SRS_SPAL_12075]

All drivers with random streaming
capabilities shall use application
buffers

[SWS_Spi_00053]

[SRS_SPAL_12125]

All driver modules shall only initialize
the configured resources

[SWS_Spi_00013]

[SRS_SPAL_12163]

All driver modules shall implement an
interface for de-initialization

[SWS_Spi_00021] [SWS_Spi_00022]

Y

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_Spi_12025]

The SPI Handler/Driver shall allow
the static configuration of all software
and hardware properties related to
SPI

[SWS_Spi_00052] [SWS_Spi_00053]

[SRS_Spi_12032]

For an SPI channel assigned to an
SPI HW Unit the chip select mode
"normal” shall be available

[SWS_Spi_00066]

[SRS_Spi_12033]

For an SPI channel assigned to an
SPI HW Unit the chip select mode
"hold" shall be available

[SWS_Spi_00066]

[SRS_Spi_12037]

The SPI Handler/Driver shall allow a
priority controlled allocation of the
HW SPI unit

[SWS_Spi_00014] [SWS_Spi_00059]
[SWS_Spi_00124] [SWS_Spi_00127]

[SRS_Spi_12093]

The SPI Handler/Driver shall be able
to handle multiple busses of
communication

[SWS_Spi_00034] [SWS_Spi_00041]
[SWS_Spi_00135]

[SRS_Spi_12094]

The SPI Handler/Driver shall handle
the chip select

[SWS_Spi_00066]

[SRS_Spi_12099]

The SPI Handler/Driver shall provide
an asynchronous read functionality

[SWS_Spi_00016] [SWS_Spi_00020]
[SWS_Spi_00162] [SWS_Spi_00163]

[SRS_Spi_12101]

The SPI Handler/Driver shall provide
an asynchronous write functionality

[SWS_Spi_00018] [SWS_Spi_00020]
[SWS_Spi_00162] [SWS_Spi_00163]

[SRS_Spi_12103]

The SPI Handler/Driver shall provide
an asynchronous read-write
functionality

[SWS_Spi_00020] [SWS_Spi_00053]
[SWS_Spi_00058] [SWS_Spi_00067]
[SWS_Spi_00162] [SWS_Spi_00163]

[SRS_Spi_12104]

The SPI Handler/Driver shall provide
a synchronous functionality which
returns any transfer status

[SWS_Spi_00025] [SWS_Spi_00026]
[SWS_Spi_00324]

[SRS_Spi_12108]

The SPI Handler/Driver shall call the
statically configured notification
function

[SWS_Spi_00057] [SWS_Spi_00118]
[SWS_Spi_00119] [SWS_Spi_00120]

[SRS_Spi_12150]

The SPI Handler/Driver shall allow
the static configuration of all software
and hardware properties related to
asynchronous SPI aspects

[SWS_Spi_00093]

[SRS_Spi_12152]

The SPI Handler/Driver shall provide
a synchronous read functionality

[SWS_Spi_00016] [SWS_Spi_00134]

[SRS_Spi_12153]

The SPI Handler/Driver shall provide
a synchronous write functionality

[SWS_Spi_00018] [SWS_Spi_00134]

[SRS_Spi_12154]

The SPI Handler/Driver shall provide
a synchronous write-read
functionality

[SWS_Spi_00134]

[SRS_Spi_12170]

The SPI Handler/Driver shall not
provide the ability to prevent a
channel data overwrite

[SWS_Spi_00042] [SWS_Spi_00084]

[SRS_Spi_12179]

The SPI Handler/Driver shall allow
linking consecutive SPI channels by
static configuration

[SWS_Spi_00003] [SWS_Spi_00065]

[SRS_Spi_12180]

The SPI Driver shall access the SPI
bus only for the channel

[SWS_Spi_00003] [SWS_Spi_00065]

[SRS_Spi_12181]

If an SPI access request for a linked
channel is performed, the SPI
Handler/Driver shall use this SPI
channel and all the linked channels

[SWS_Spi_00055] [SWS_Spi_00065]

\Y

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_Spi_12198]

The SPI Handler/Driver shall provide
the functionality of transferring one
short data sequence with variable
data content

[SWS_Spi_00053] [SWS_Spi_00077]

[SRS_Spi_12199]

The SPI Handler/Driver shall provide
the functionality of transferring any
data to any devices in one transfer
sequence

[SWS_Spi_00003] [SWS_Spi_00065]

[SRS_Spi_12200]

Reading large data sequences from
one slave device using dummy send
data shall be possible

[SWS_Spi_00003] [SWS_Spi_00035]
[SWS_Spi_00053] [SWS_Spi_00065]
[SWS_Spi_00077]

[SRS_Spi_12201]

Reading large data sequences from
multiple slave devices using dummy
send data shall be possible

[SWS_Spi_00003] [SWS_Spi_00035]
[SWS_Spi_00065] [SWS_Spi_00077]

[SRS_Spi_12202]

The SPI Handler/Driver shall support
data streams to a HW device with
variable number of data

[SWS_Spi_00053] [SWS_Spi_00078]

[SRS_Spi_12253]

The SPI Handler/Driver shall provide
the functionality of transferring one
short data sequence with constant
data content

[SWS_Spi_00052] [SWS_Spi_00078]

[SRS_Spi_12256]

The SPI Handler/Driver shall support
all controller peripherals

[SWS_Spi_00034]

[SRS_Spi_12257]

The SPI Handler/Driver shall support
the communication to daisy chained
HW devices

[SWS_Spi_00034] [SWS_Spi_00065]
[SWS_Spi_00066]

[SRS_Spi_12258]

Data shall be accessible from each
device individually

[SWS_Spi_00003] [SWS_Spi_00065]

[SRS_Spi_12260]

Different priorities of sequences shall
be supported

[SWS_Spi_00002] [SWS_Spi_00014]
[SWS_Spi_00059] [SWS_Spi_00093]

[SRS_Spi_12261]

Reading large data sequences from
one slave device using variable send
data shall be possible

[SWS_Spi_00003] [SWS_Spi_00053]
[SWS_Spi_00065]

[SRS_Spi_12262]

Reading large data sequences from
multiple slave devices using variable
send data shall be possible

[SWS_Spi_00003] [SWS_Spi_00053]
[SWS_Spi_00065] [SWS_Spi_00078]

[SRS_Spi_13400]

The SPI Handler/Driver shall have a
scalable functionality to fit the needs
of the ECU

[SWS_Spi_00110]

[SRS_Spi_13401]

The SPI Handler/Driver functionalities
shall be statically configurable

[SWS_Spi_00109] [SWS_Spi_00111]
[SWS_Spi_00121] [SWS_Spi_00122]
[SWS_Spi_00125]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

The SPI (Serial Peripheral Interface) has a 4-wire synchronous serial interface. Data
communication is enabled with a Chip select wire (CS). Data is transmitted with a 3-
wire interface consisting of wires for serial data output (MOSI), serial data input (MISO)
and serial clock (CLOCK).

7.1 Overall view of functionalities and features

This specification is based on previous specification experiences and also based on
predominant identified use cases. The intention of this section is to summarize how
the scalability of this monolithic SPI Handler/Driver allows getting a simple software
module that fits simple needs up to a smart software module that fits enhanced needs.

Scalability of functionalities

v

SPI| Pl standardized

-
ol @
o} L
Q
g g
3 3
H*+
i 3

L# ainjead
U# ainjes

SPI Handler/Driver

MCAL

I
k
Simple SPI

Queued SPI

DMA SPI
L ———

Figure 7.1

This document specifies the following 3 Levels of Scalable Functionality for the SPI
Handler/Driver:

LEVEL 0, Simple Synchronous SPI Handler/Driver the communication is based on
synchronous handling (using polling mechanism) and with a FIFO policy to han-

AUTSSAR

dle multiple accesses. Buffer usage is configurable to optimize and/or to take
advantage of HW capabilities.

LEVEL 1, Basic Asynchronous SPI Handler/Driver the communication is based on
asynchronous behavior (using either interrupts or polling mechanism selectable
during execution time) and with a Priority policy to handle multiple accesses.
Buffer usage is configurable as for "Simple Synchronous" level.

LEVEL 2, Enhanced (Synchronous/Asynchronous) SPI Handler/Driver the com-
munication is based on asynchronous behavior (using either interrupts or polling
mechanism selectable during execution time), or synchronous handling, and with
a Priority policy to handle multiple accesses. Buffer usage is configurable as for
other levels.

Even if notification functions are specified for jobs and/or sequences used in syn-
chronous transmission, these are not called in case of LEVELDO.

[SWS_Spi_00109]
Upstream requirements: SRS_Spi_13401

[The SPI Handler/Driver’s level of scalable functionality shall always be statically con-
figurable, i.e. configured at pre-compile time to allow the best source code optimisa-
tion. |

[SWS_Spi_00110]
Upstream requirements: SRS_Spi_13400

[The spilevelDelivered parameter shall be configured with one of the 3 autho-
rized values according to the described levels (0, 1 or 2) to allow the selection of the
SPI Handler/Driver’s level of scalable functionality. |

To improve the scalability, each level has optional features which are configurable (ON
/ OFF) or selectable. These are described in detail in the dedicated chapters.

7.2 General behaviour

This chapter, on the one hand, introduces common behavior and configuration for all
levels. On the other, it specifies the behavior of each level and also the allowed optional
features.

[SWS_Spi_00041]
Upstream requirements: SRS_Spi_12093

[The SPI Handler/Driver interface configuration shall be based on Channels, Jobs and
Sequences as defined in this document. |

AUTSSAR

[SWS_Spi_00034]
Upstream requirements: SRS_Spi_12093, SRS_Spi_12256, SRS_Spi_12257

[The SPI Handler/Driver shall support one or more Channels, Jobs and Sequences to
drive all kind of SPI compatible HW devices. |

[SWS_Spi_00255] [Data transmissions shall be done according to Channels, Jobs
and Sequences configuration parameters. |

[SWS_Spi_00066]
Upstream requirements: SRS_Spi_12094, SRS _Spi_12257, SRS_Spi_12032, SRS_Spi_12033

[The Chip Select (CS) is attached to the Job definition. |

[SWS_Spi_00263] [Chip Select shall be handled during Job transmission and shall
be released at the end of it. This Chip Select handling shall be done according to the
Job configuration parameters. |

[SWS_Spi_00370] [It shall be possible to define if the Chip Select handling is man-
aged autonomously by the HW peripheral, without explicit chip select control by
the driver, or the SPI driver shall drive the chip select lines explicitly as DIO (see
[ECUC_Spi_00212]).]

It is up to the implementation to decide whether the behavior of the chip select config-
ured into SpiCsBehavior is applicable when SpiCsSelection =CS_VIA_GPIO.

Example of CS handling: Set the CS active at the beginning of Job transmission; main-
tain it until the end of transmission of all Channels belonging to this Job afterwards set
the CS inactive.

A Channel is defined one time but it could belong to several Jobs according to the user
needs and this software specification.

[SWS_Spi_00065]
Upstream requirements: SRS_Spi_12257, SRS_Spi_12179, SRS_Spi_12258, SRS_Spi_12180,
SRS_Spi_12181, SRS_Spi_12199, SRS_Spi_12200, SRS_Spi_12261,
SRS_Spi_12201, SRS_Spi_12262

[A Job shall contain at least one Channel. |

[SWS_Spi_00368] [Each Channel shall have an associated index which is used for
specifying the order of the Channel within the Job. |

[SWS_Spi_00262] [If a Job contains more than one Channel, all Channels contained
have the same Job properties during transmission and shall be linked together stati-
cally. |

AUTSSAR

A Job is defined one time but it could belong to several Sequences according to the
user needs and this software specification.

[SWS_Spi_00003]
Upstream requirements: SRS_Spi_12179, SRS_Spi_12258, SRS_Spi_12180, SRS_Spi_12199,
SRS_Spi_12200, SRS_Spi_12261, SRS_Spi_12201, SRS_Spi_12262

[A Sequence shall contain at least one Job. |

[SWS_Spi_00236] [If it contains more than one, all Jobs contained have the same
Sequence properties during transmission and shall be linked together statically. |

A Channel used for a transmission should have its parameters configured but it is
allowed to pass Null pointers as source and destination pointers to generate a dummy
transmission (See also [SWS_Spi_00028] & [SWS_Spi_00030]).

- Sequence a >
linkage
- Jobn Jobm >
~-qChannel xp<4—Channel y—p>! -¢—Channel z—p
CLOCK JANCTRRITURRENY | CAEXFOAFYRRATERRTYER D ERRR RN RN
MOSI EIEEIEHEEEIEIEIE BIEIEEEE
MISO BEIEEE p|p|p|o|{p|D] [o|po|p|p|D|D
CSn
CSm
CSo
. 2 Sxz23 gs 2
S vl 2 g2lgge ® 82 ¢ 3
S0 g £ §E2-28 g8 oE = 8
882 % 205522 2 £2 B 2
EcQ ® £52c9e0 © 3o o ®
gg—g tn_g 53.9%88 m.q:).g. wg %)
SHE B9 F8E68® 3 32 39 3
Figure 7.2

Note: the figure above corresponds to a configuration with SpiCsBehavior=CS_-
KEEP_ASSERTED.

AUTSSAR

Channel data may differ from the hardware handled and user (client application) given.
On the client side the data is handled in 8, 16 or 32bits mode base on SpiDataWidth
(see chapter 8.2.5). On the microcontroller side, the hardware may handle between 1
and 32bits or may handle a fixed value (8 or 16bits) and this width is configurable for
each Channel (see SpiDataWidth)..

[SWS_Spi_00149] [The SPI Handler/Driver shall take care of the differences between
the frame width of channel (spibatawidth) and data access data type (given by
[SWS_Spi_00437]).|

[SWS_Spi_00289] [If data width (SpiDatawidth) are exactly same (8 or 16 or 32
bits), the SPI Handler/Driver can send and receive data without any bit changes
straightforward. |

[SWS_Spi_00290] [If data access casting type is superior to data width (for example
SpibataWidth = 12bits, data access is 16 bits), the data transmitted through the SPI
Handler/Driver shall send the lower part, ignore the upper part. Receive the lower part,
extend with zero. |

This ensures that the user always gets the same interface.

[SWS_Spi_00437] [Data buffers are accessed as uint 8, uint16 or uint32 accord-
ing to SpiDatawWidth independently to Spi_DataBufferType.

The data access will use following casting:

uint8 for SpiDataWidth <9
uint16 for 9 =< SpiDataWidth <17
uint32 for 17 =< SpiDataWidth]|

7.2.1 Common configurable feature: Allowed Channel Buffers

In order to allow taking advantages of all microcontroller capabilities but also to al-
low sending/receiving of data to/from a dedicated memory location, all levels have an
optional feature with respect to the location of Channel Buffers.

Hence, two main kinds of channel buffering can be used by configuration:

¢ Internally buffered Channels (IB): The buffer to transmit/receive data is provided
by the Handler/Driver.

e Externally buffered Channels (EB): The buffer to transmit/receive is provided by
the user (statically and/or dynamically).

AUTSSAR

Both channel buffering methods may be used depending on the 3 use cases described
below:

e Usage 0: the SPI Handler/Driver manages only Internal Buffers.
e Usage 1: the SPI Handler/Driver manages only External Buffers.

e Usage 2: the SPI Handler/Driver manages both buffers types.

[SWS_Spi_00111]
Upstream requirements: SRS_Spi_13401

[The spiChannelBuffersAllowed parameter shall be configured with one of the 3
authorized values (0, 1 or 2) according to the described usage. |

[SWS_Spi_00279] [The SpiChannelBuffersillowed parameter shall be config-
ured to select which Channel Buffers the SPI Handler/Driver manages. |

7.2.1.1 Behaviour of IB channels

The intention of Internal Buffer channels is to take advantage of microcontrollers includ-
ing this feature by hardware. Otherwise, this feature should be simulated by software.

[SWS_Spi_00052]
Upstream requirements: SRS_Spi_12025, SRS_Spi_12253

[For the IB Channels, the Handler/Driver shall provide the buffering but it is not able to
take care of the consistency of the data in the buffer during transmission. The size of
the Channel buffer is fixed. |

[SWS_Spi_00049] [The channel data received shall be stored in 1 entry deep internal
buffers by channel. The SPI Handler/Driver shall not take care of the overwriting of
these "receive" buffers by another transmission on the same channel. |

[SWS_Spi_00051] [The channel data to be transmitted shall be copied in 1 entry deep
internal buffers by channel. |

[SWS_Spi_00257] [The SPI Handler/Driver is not able to prevent the overwriting of
these "transmit" buffers by users during transmissions. |

[SWS_Spi_00438] [The Handler/Driver shall provide separate buffer for receive and
transmit to ensure that transmitted data are not overwritten by the receive data. |

AUTSSAR

7.2.1.2 Behaviour of EB channels

The intention of External Buffer channels is to reuse existing buffers that are located
outside. That means the SPI Handler/Driver does not monitor them.

[SWS_Spi_00053]
Upstream requirements: SRS_SPAL_12075, SRS_Spi_12025, SRS_Spi 12198, SRS_Spi_-
12200, SRS_Spi_12261, SRS_Spi_12262, SRS_Spi_12202, SRS_Spi_-
12103

[For EB Channels the application shall provide the buffering and shall take care of the
consistency of the data in the buffer during transmission. |

[SWS_Spi_00112] [The size of the Channel buffer is either fixed or variable. A maxi-
mum size for the Channel buffer shall be defined by the configuration. |

[SWS_Spi_00280] [The buffer provided by the application for the SPI Handler Driver
may have a different size. |

7.2.1.3 Buffering channel usage

The following table provides information about the Channel characteristics:

IB Channels
It provides ... e A more abstracted concept (buffering mechanisms are hidden)
e Actual and future optimal implementation taken profit of HW buffer facilities (Given size
of 256 bytes covers nowadays requirements).
Suggested use ... e Daisy-chain implementation.
e Small data transfer devices (up to 10 Bytes).
EB Channels
It provides ... o Efficient mechanism to support large stream communication.
e Send constant data out of ROM tables and spare RAM size.
e Send various data tables each for a different device (highly complex ASICS with several
integrated peripheral devices, also mixed signal types, could exceed IB HW buffer size).
Suggested use ... e Large streams communication.
¢ EEPROM communication.
e Control of complex HW Chips.
Note:

For each channel, the user configures the number of IB buffers (at least 1) if IB is
selected for the current channel, or the maximum of data for EB buffers if EB is selected
for the current channel.

AUTSSAR

7.2.2 LEVEL 0, Simple Synchronous behaviour

The intention of this functionality level is to provide a Handler/Driver with a reduced set
of services to handle only simple synchronous transmissions. This is often the case
for ECU including simple SPI networks but also for ECU using high speed external
devices.

A simple synchronous transmission means that the function calling the transmission
service is blocked during the ongoing transmission until the transmission is finished.

[SWS_Spi_00160] [The LEVEL 0 SPI Handler/Driver shall offer a synchronous trans-
fer service for SPI busses. |

[SWS_Spi_00161] [For an SPI Handler/Driver operating in LEVEL 0, when there is
no on going Sequence transmission, the SPI Handler/Driver shall be in the idle state
SPI_IDLE.|

[SWS_Spi_00294] [This monolithic SPI Handler/Driver is able to handle one to n SPI
buses according to the microcontroller used. |

Then SPI buses are assigned to Jobs and not to Sequences. Consequently, Jobs, on
different SPI buses, could belong to the same Sequence. Therefore:

[SWS_Spi_00114] [The LEVEL 0 SPI Handler/Driver shall accept concurrent Spi_ -
SyncTransmit (), if the sequences to be transmitted use different bus and parameter
SpiSupportConcurrentSyncTransmit is enabled. This feature shall be disabled
per default. That means during a Sequence on-going transmission, all requests to
transmit another Sequence shall be rejected. |

[SWS_Spi_00115] [The LEVEL 0 SPI Handler/Driver behaviour shall include the com-
mon feature: Allowed Channel Buffers, which is selected. |

[SWS_Spi_00084]
Upstream requirements: SRS_Spi_12170

[If different Jobs (and consequently also Sequences) have common Channels, the SPI
Handler/Driver’ environment shall ensure that read and/or write functions are not called
during transmission. |

[SWS_Spi_00384] [When a hardware error is detected, the SPI Handler/Driver shall
stop the current sequence, report an error to the DEM as configured and set the state
of the Job to sSPT_JoB_FAILED and the state of the Sequence to SPTI_SEQ_FAILED. |

AUTSSAR

Read and write functions can not guarantee the data integrity while Channel data is
being transmitted.

7.2.3 LEVEL 1, Basic Asynchronous behavior

The intention of this functionality level is to provide a Handler/Driver with a reduced set
of services to handle asynchronous transmissions only. This is often the case for ECU
with functions related to SPI networks having different priorities but also for ECU using
low speed external devices.

An asynchronous transmission means that the user calling the transmission service is
not blocked when the transmission is on-going. Furthermore, the user can be notified
at the end of transmission.

Usually, depending on software design, asynchronous end transmission may be de-
tected by polling or interrupt mechanisms. This level of functionality proposes both
mechanisms that are selectable during execution time.

[SWS_Spi_00156] [Both the polling mechanism and interrupt mechanism modes for
SPI busses shall be selectable during execution time (see [SWS_Spi_00188]). |

[SWS_Spi_00162]
Upstream requirements: SRS_Spi_12099, SRS_Spi_12101, SRS_Spi_12103

[The LEVEL 1 SPI Handler/Driver shall offer an asynchronous transfer service for SPI
buses. An asynchronous transmission means that the user calling the transmission
service is not blocked when the transmission is on going. |

[SWS_Spi_00295] [The LEVEL 1 SPI Handler/Driver shall offer an asynchronous
transfer service for SPI buses. Furthermore, the user can be notified at the end of
transmission. |

[SWS_Spi_00163]
Upstream requirements: SRS_Spi_12099, SRS_Spi_12101, SRS_Spi_12103

[For an SPI Handler/Driver operating in LEVEL 1, when there is no on-going Sequence
transmission, the SPI Handler/Driver shall be in the idle state (SPI_IDLE).]

This Handler/Driver will be used by several software modules which may be indepen-
dent from each other and also may belong to different layers. Therefore, priorities will
be assigned to Jobs in order to figure out specific cases of multiple accesses. These
cases usually occur within real time systems based on asynchronous mechanisms.

AUTSSAR

[SWS_Spi_00002]
Upstream requirements: SRS_Spi_12260

[Jobs have priorities assigned. Jobs linked in a Sequence shall have same or de-
creasing priorities. That means the first Job shall have the equal priority or the highest
priority of all Jobs within the Sequence. |

[SWS_Spi_00093]
Upstream requirements: SRS_Spi_12260, SRS_Spi_12150

[Priority order of jobs shall be from the lower to the higher value defined, higher value
higher priority (from 0, the lower to 3, the higher, limited to 4 priority levels. |

With reference to Jobs priorities, this Handler/Driver needs rules to make a decision in
these specific cases of multiple accesses.

[SWS_Spi_00059]
Upstream requirements: SRS_Spi_12260, SRS_Spi_12037

[The SPI Handler/Driver scheduling method shall schedule Jobs in order to send the
highest priority Job first. |

This monolithic SPI Handler/Driver is able to handle one to n SPI busses according to
the microcontroller used. But SPI busses are assigned to Jobs and not to Sequences.
Consequently, Jobs on different SPI buses could belong to the same Sequence. There-
fore:

[SWS_Spi_00116] [The LEVEL 1 SPI Handler/Driver may allow transmitting more
than one Sequence at the same time. That means during a Sequence transmission,
all requests to transmit another Sequence shall be evaluated in order to accept to start
a new sequence or to reject it accordingly to the lead Job. |

[SWS_Spi_00117] [The LEVEL 1 SPI Handler/Driver behaviour shall include the com-
mon feature: Allowed Channel Buffers, which is selected, and the configured asyn-
chronous feature: Interruptible Sequence (see next chapter). |

[SWS_Spi_00267] [When a hardware error is detected, the SPI Handler/Driver shall
stop the current Sequence, report an error to the DEM as configured and set the state
of the Job to sSPT_JOB_FAILED and the state of the Sequence to SPI_SEQ_FAILED. |

[SWS_Spi_00118]
Upstream requirements: SRS_Spi_12108

[If Jobs are configured with a specific end notification function, the SPI Handler/Driver
shall call this notification function at the end of the Job transmission. |

AUTSSAR

[SWS_Spi_00281] [If Sequences are configured with a specific end notification func-
tion, the SPI Handler/Driver shall call this notification function at the end of the Se-
quence transmission. |

[SWS_Spi_00119]
Upstream requirements: SRS_Spi_12108

[When a valid notification function pointer is configured (see [SWS_Spi_00071]), the
SPI Handler/Driver shall call this notification function at the end of a Job transmission
regardless of the result of the Job transmission being either SPT_JOB_FAILED or
SPI_JOB_OK (rational: avoid deadlocks or endless loops). |

[SWS_Spi_00120]
Upstream requirements: SRS_Spi_12108

[When a valid notification function pointer is configured (see [SWS_Spi_00073]), the
SPI Handler/Driver shall call this notification function at the end of a Sequence trans-
mission regardless of the result of the Sequence transmission being either SPT_SEQ_ -
FAILED, SPI_SEQ_OK or SPI_SEQ_CANCELED (rational: avoid deadlocks or endless

loops). |

7.2.4 Asynchronous configurable feature: Interruptible Sequences

In order to allow taking advantages of asynchronous transmission mechanism, level 1
and level 2 of this SPI Handler/Driver have an optional feature with respect to suspend-
ing the transmission of Sequences.

Hence two main kinds of sequences can be used by configuration:

¢ Non-Interruptible Sequences, every Sequence transmission started is not sus-
pended by the Handler/Driver until the end of transmission.

e Mixed Sequences, according to its configuration, a Sequence transmission
started may be suspended by the Handler/Driver between two of their consec-
utives Jobs.

[SWS_Spi_00121]
Upstream requirements: SRS_Spi_13401
[The SPI Handler/Driver’s environment shall configure the SpiInterruptibleSe-

gAllowed parameter (ON / OFF) in order to select which kind of Sequences the SPI
Handler/Driver manages. |

AUTSSAR

7.2.4.1 Behavior of Non-Interruptible Sequences

The intention of the Non-Interruptible Sequences feature is to provide a simple software
module based on a basic asynchronous mechanism, if only non blocking transmissions
should be used.

[SWS_Spi_00122]
Upstream requirements: SRS_Spi_13401

[Interruptible Sequences are not allowed within levels 1 and 2 of the SPI/Handler/Driver
when the SpiInterruptibleSegAllowed parameter is switched off (i.e. configured
with value "OFF"). |

[SWS_Spi_00123] [When the SPI Handler/Driver is configured not allowing inter-
ruptible Sequences, all Sequences declared are considered as Non-Interruptible Se-
quences'. |

[SWS_Spi_00282] [When the SPI Handler/Driver is configured not allowing inter-
ruptible Sequences their dedicated parameter SpiInterruptibleSequence canbe
omitted or the FALSE value should be used as default. |

[SWS_Spi_00124]
Upstream requirements: SRS_Spi_12037
[According to [SWS_Spi_00116] and [SWS_Spi_00122] requirements, the SPI Han-

dler/Driver is not allowed to suspend a Sequence transmission already started in favour
of another Sequence. |

7.2.4.2 Behavior of Mixed Sequences

The intention of the Mixed Sequences feature is to provide a software module with
specific asynchronous mechanisms, if, for instance, very long Sequences that could or
should be suspended by others with higher priority are used.

[SWS_Spi_00125]
Upstream requirements: SRS_Spi_13401
[Interruptible Sequences are allowed within levels 1 and 2 of SPI Handler/Driver when

the SpiInterruptibleSegAllowed parameter is switched on (i.e. configured with
value "ON"). |

'The intention of this requirement is not to enforce any implementation solution in comparison with
another one. But, it is only to ensure that anyhow, all Sequences will be considered as Non Interruptible
Sequences.

AUTSSAR

[SWS_Spi_00126] [When the SPI Handler/Driver is configured allowing interruptible
Sequences, all Sequences declared shall have their dedicated parameter SpiInter-
ruptibleSequence (see [ECUC_Spi_00106]) to identify whether the Sequence can
be suspended during transmission. |

[SWS_Spi_00014]
Upstream requirements: SRS_Spi_12260, SRS_Spi_12037

[In case of a Sequence configured as Interruptible Sequence and according to
[SWS_Spi_00125] requirement, the SPI Handler/Driver is allowed to suspend an al-
ready started Sequence transmission in favour of another Sequence with a higher
priority Job (see [SWS_Spi_00002] & [SWS_Spi_00093]). That means, at the end of
a Job transmission (that belongs to the interruptible sequence) with another Sequence
transmit request pending, the SPI Handler/Driver shall perform a rescheduling in order
to elect the next Job to transmit. |

[SWS_Spi_00127]
Upstream requirements: SRS_Spi_12037

[In case of a Sequence configured as Non-Interruptible Sequence and according to
requirement [SWS_Spi_00125], the SPI Handler/Driver is not allowed to suspend this
already started Sequence transmission in favour of another Sequence. |

[SWS_Spi_00080] [When using Interruptible Sequences, the caller must be aware
that if the multiple Sequences access the same Channels, the data for these Channels
may be overwritten by the highest priority Job accessing each Channel. |

7.2.5 LEVEL 2, Enhanced behaviour

The intention of this functionality level is to provide a Handler/Driver with a complete set
of services to handle synchronous and asynchronous transmissions. This could be the
case for ECU with a lot of functions related to SPI networks having different priorities
but also for ECU using external devices with different speeds.

Usually, depending on software design, asynchronous end transmission may be de-
tected by polling or interrupt mechanisms. This level of functionality proposes both
mechanisms that are selectable during execution time.

The requirements from LEVEL 0 apply to synchronous behaviour.

The requirements from LEVEL 1 apply to asynchronous behaviour.

[SWS_Spi_00128] [The LEVEL 2 SPI Handler/Driver shall offer both an asynchronous
transfer service and a synchronous transfer service for SPI buses. |

AUTSSAR

[SWS_Spi_00283] [In LEVEL 2 if there is no on going Sequence transmission, the
SPI Handler/Driver shall be in idle state (SPI_IDLE).]

7.3 Scheduling Advices

For asynchronous levels, LEVEL 1 and LEVEL 2, the SPI Handler/Driver can call
end notification functions at the end of a Job and/or Sequence transmission (see
[SWS_Spi_00118]). In a second time, in case of interruptible Sequences (that could
be suspended), if another Sequence transmit request is pending, a rescheduling is
also done by the SPI Handler/Driver in order to elect the next Job to transmit (see
[SWS_Spi_00014]).

[SWS_Spi_00088] [For asynchronous levels, LEVEL 1 and LEVEL 2, the SPI Han-
dler/Driver can call end notification functions at the end of a Job. |

[SWS_Spi_00268] [For asynchronous levels, LEVEL 1 and LEVEL 2, the SPI Han-
dler/Driver can call end notification functions at the end of a Sequence transmission. |

[SWS_Spi_00269] [For asynchronous levels, LEVEL 1 and LEVEL 2 in case of inter-
ruptible Sequences, if another Sequence transmit request is pending, a rescheduling
is also done by the SPI Handler/Driver in order to elect the next Job to transmit. |

[SWS_Spi_00270] [In case call end notification function and rescheduling are fully
done by software, the order between these shall be first scheduling and then the call
of end notification function executed. |

7.4 Error Classification

Section "Error Handling" of the document [2] "General Specification of Basic Software
Modules" describes the error handling of the Basic Software in detail. Above all, it
constitutes a classification scheme consisting of five error types which may occur in
BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

AUTSSAR
7.4.1 Development Errors

[SWS_Spi_91001] Definiton of development errors in module Spi |

Type of error Related error code Error value
API service called with wrong channel SPI_E_PARAM_CHANNEL 0x0A
API service called with wrong job SPI_E_PARAM_JOB 0x0B
API service called with wrong sequence SPI_E_PARAM_SEQ 0x0C
API service called with wrong lenghth for EB SPI_E_PARAM_LENGTH 0x0D
API service called with wrong hardware unit SPI_E_PARAM_UNIT 0x0E
APIs called with an unexpected value for the SPI_E_PARAM_POINTER 0x10
pointer

API service used without module initialization SPI_E_UNINIT 0x1A
API SPI_Init service called while the SPI driver SPI_E_ALREADY_INITIALIZED Ox4A
has been already initialized

7.4.2 Runtime Errors

[SWS_Spi_91002] Definiton of runtime errors in module Spi |

Type of error Related error code Error value
API Spi_AsyncTransmit service called in a wrong SPI_E_SEQ_PENDING 0x2A

order

API Spi_SyncTransmit service called at wrong SPI_E_SEQ_IN_PROCESS 0x3A

time

7.4.3 Production Errors

There are no production errors.

AUTSSAR

7.4.4 Extended Production Errors

7.4.41 SPI_E_ HARDWARE_ERROR

[SWS_Spi_00383] [

Error Name: SPI_E_HARDWARE_ERROR

Short Description: A hardware error occurred during asynchronous or synchronous
SPI transmit.

Long Description: This Extended Production Error shall be issued when any error
bit inside the SPI hardware transmit status register is raised.

Detection Criteria: Fail The SPI transmit status register information shall

be reported to DEM as Dem_SetEventStatus (
SPI_FE_HARDWARE_ERROR,
DEM_EVENT_STATUS_FAILED) when any error
bit inside the SPI transmit status register is set.
([SWS_Spi_00385]).

Pass The SPI transmit status register information shall
be reported to DEM as Dem_SetEventStatus (
SPI_FE_HARDWARE_ERROR,
DEM_EVENT_STATUS_PASSED) when no error
bit inside the SPI transmit status register is set.
([SWS_Spi_00386]).

Secondary N/A

Parameters:

Time Required: N/A

Monitor Frequency: continuous
]

[SWS_Spi_00385] [When any error bit inside the SPI transmit status register is
set, the SPI transmit status register information shall be reported to DEM as Dem_-
SetEventStatus (SPI_E_HARDWARE_ERROR, DEM_EVENT_STATUS_FAILED).]

[SWS_Spi_00386] [When no error bit inside the SPI transmit status register is set,
the SPI transmit status register information shall be reported to DEM as Dem_-
SetEventStatus (SPI_E_HARDWARE_ERROR, DEM_EVENT_STATUS_PASSED).]

7.5 Security Events

The module does not report security events.

AUTSSAR

8 API specification

8.1 Imported types

In this chapter all types included from the following files are listed.

[SWS_Spi_91003] Definition of imported datatypes of module Spi |

Module Header File Imported Type

Dem Rte_Dem_Type.h Dem_EventldType
Rte_Dem_Type.h Dem_EventStatusType

Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType

8.2 Type definitions

8.2.1 Spi_ConfigType

[SWS_Spi_00372] Definition of datatype Spi_ConfigType |

Name Spi_ConfigType
Kind Structure
Elements Implementation Specific
Type -
Comment The contents of the initialization data structure are SPI specific.
Description This type of the external data structure shall contain the initialization data for the SPI Handler/
Driver.
Available via Spi.h

AUTSSAR
8.2.2 Spi_StatusType

[SWS_Spi_00373] Definition of datatype Spi_StatusType
Upstream requirements: SRS_BSW_00406, SRS_BSW_00335

Name Spi_StatusType
Kind Enumeration
Range SPI_UNINIT 0x00 The SPI Handler/Driver is not initialized or not
usable.
SPI_IDLE 0x01 The SPI Handler/Driver is not currently
transmitting any Job.
SPI_BUSY 0x02 The SPI Handler/Driver is performing a SPI
Job (transmit).
Description This type defines a range of specific status for SPI Handler/Driver.
Available via Spi.h

[SWS_Spi_00061]
Upstream requirements: SRS_BSW_00335
[The type spi_StatusType defines a range of specific status for SPI Handler/Driver.

It informs about the SPI Handler/Driver status or specified SPlI Hardware microcon-
troller peripheral. |

[SWS_Spi_00259] [The type Spi_sStatusType can be obtained calling the API ser-
vice Spi_GetStatus.]|

[SWS_Spi_00260] [The type spi_sStatusType can be obtained calling the API ser-
vice Spi_GetHWUnitStatus.]

[SWS_Spi_00011] [After reset, the type Spi_StatusType shall have the default
value SPT_UNINIT. |

[SWS_Spi_00345] [API service Spi_GetStatus shall return SPI_UNINIT when the
SPI Handler/Driver is not initialized or not usable. |

[SWS_Spi_00346] [API service Spi_GetsStatus shall return sp1_IDLE when The
SPI Handler/Driver is not currently transmitting any Job. |

[SWS_Spi_00347] [API service Spi_GetsStatus shall return sSPI_BUSY when The
SPI Handler/Driver is performing a SPI Job transmit. |

AUTSSAR

[SWS_Spi_00348] [spi_GetHWUnitStatus function shall return SPI_IDLE when
The SPI Hardware microcontroller peripheral is not currently transmitting any Job, |

[SWS_Spi_00349] [Spi_GetHWUnitStatus function shall return SPI_BUSYwhen
The SPI Hardware microcontroller peripheral is performing a SPI Job transmit. |

8.2.3 Spi_JobResultType

[SWS_Spi_00374] Definition of datatype Spi_JobResultType |

Name Spi_JobResultType
Kind Enumeration
Range SPI_JOB_OK 0x00 The last transmission of the Job has been
finished successfully.
SPI_JOB_PENDING 0x01 The SPI Handler/Driver is performing a SPI
Job. The meaning of this status is equal to
SPI_BUSY.
SPI_JOB_FAILED 0x02 The last transmission of the Job has failed.
SPI_JOB_QUEUED 0x03 An asynchronous transmit Job has been
accepted, while actual transmission for this
Job has not started yet.
Description This type defines a range of specific Jobs status for SPI Handler/Driver.
Available via Spi.h

[SWS_Spi_00062]
Upstream requirements: SRS_BSW_00335

[The type Spi_JobResultType defines a range of specific Jobs status for SPI Han-
dler/Driver. |

[SWS_Spi_00261] [The type Spi_JobResultType it informs about a SPI Handler/-
Driver Job status and can be obtained calling the API service Spi_GetJobResult
with the Job ID. |

[SWS_Spi_00012] [After reset, the type Spi_JobResultType shall have the default
value SPI_JOB_OK. |

[SWS_Spi_00350] [The function Spi_GetJobResult shall return SPI_JOB_OK
when the last transmission of the Job has been finished successfully. |

AUTSSAR

8.2.4 Spi_SeqResultType

[SWS_Spi_00375] Definition of datatype Spi_SeqResultType |

Name Spi_SeqResultType
Kind Enumeration
Range SPI_SEQ_OK 0x00 The last transmission of the Sequence has
been finished successfully.
SPI_SEQ_PENDING 0x01 The SPI Handler/Driver is performing a SPI
Sequence. The meaning of this status is
equal to SPI_BUSY.
SPI_SEQ_FAILED 0x02 The last transmission of the Sequence has
failed.
SPI_SEQ_CANCELED 0x03 The last transmission of the Sequence has
been canceled by user.
Description This type defines a range of specific Sequences status for SPI Handler/Driver.
Available via Spi.h

[SWS_Spi_00351] [The type spi_SegResultType defines a range of specific Se-
quences status for SPI Handler/Driver and can be obtained calling the API service
Spi_GetSequenceResult, it shall be provided for external use. |

[SWS_Spi_00019]
Upstream requirements: SRS_BSW_00335

[The type spi_SegResultType defines the range of specific Sequences status for
SPI Handler/Driver. |

[SWS_Spi_00251] [The type Spi_SegResultType defines about SPI Handler/-
Driver Sequence status and can be obtained calling the API service Spi_GetSe-
quenceResult with the Sequence ID. |

[SWS_Spi_00017] [After reset, the type Spi_SeqResultType shall have the default
value SPI_SEQ_OX.|

[SWS_Spi_00352] [spi_GetSequenceResult function shall return SPI_SEQ_OK
when the last transmission of the Sequence has been finished successfully. |

[SWS_Spi_00353] [Spi_GetSequenceResult function shall return sPI_SEQ -
PENDING when the SPI Handler/Driver is performing a SPl Sequence. The meaning
of this status is equal to SPT_BUSY. |

[SWS_Spi_00354] [Spi_GetSequenceResult function shall return spP1_SEQ -
FAILED when the last transmission of the Sequence has failed. |

AUTSSAR
8.2.5 Spi_DataBufferType

[SWS_Spi_00376] Definition of datatype Spi_DataBufferType |

Name Spi_DataBufferType

Kind Type

Derived from uint8

Description Type of application data buffer elements.
Available via Spi.h

[SWS_Spi_00355] [spi_DataBufferType defines the type of application data
buffer elements. Type is uint8. Access to the data is selected dynamically as is
described in [SWS_Spi_00437]. The data buffer has to be aligned to 32 bits. It shall
be provided for external use. |

[SWS_Spi_00164] [The type sSpi_DataBufferType refers to application data buffer
elements. |

8.2.6 Spi_NumberOfDataType

[SWS_Spi_00377] Definition of datatype Spi_NumberOfDataType |

Name Spi_NumberOfDataType

Kind Type

Derived from uint16

Description Type for defining the number of data elements to send and / or receive by Channel
Available via Spi.h

[SWS_Spi_00165] [The type Spi_NumberOfDataType is used for defining the num-
ber of data elements of the type specified in [SWS_Spi_00437] to send and / or receive
by Channel. |

AUTSSAR
8.2.7 Spi_ChannelType

[SWS_Spi_00378] Definition of datatype Spi_ChannelType |

Name Spi_ChannelType

Kind Type

Derived from uint8

Description Specifies the identification (ID) for a Channel.
Available via Spi.h

[SWS_Spi_00356] [The type spi_ChannelType specifies the identification (ID) for
a Channel. |

[SWS_Spi_00166] [The type spi_ChannelType is used for specifying the identifica-
tion (ID) for a Channel. |

8.2.8 Spi_dJobType

[SWS_Spi_00379] Definition of datatype Spi_JobType |

Name Spi_JobType

Kind Type

Derived from uint16

Description Specifies the identification (ID) for a Job.
Available via Spi.h

[SWS_Spi_00357] [The type spi_JobType specifies the identification (ID) for a Job. |

[SWS_Spi_00167] [The type spi_JobType is used for specifying the identification
(ID) for a Job. |

AUTSSAR
8.2.9 Spi_SequenceType

[SWS_Spi_00380] Definition of datatype Spi_SequenceType |

Name Spi_SequenceType

Kind Type

Derived from uint8

Description Specifies the identification (ID) for a sequence of jobs.
Available via Spi.h

[SWS_Spi_00358] [The type spi_SequenceType specifies the identification (ID) for
a sequence of jobs. |

[SWS_Spi_00168] [The type Spi_SequenceType is used for specifying the identifi-
cation (ID) for a sequence of jobs. |

8.2.10 Spi_HWUnitType

[SWS_Spi_00381] Definition of datatype Spi_HWUnitType [

Name Spi_HWUnitType

Kind Type

Derived from uint8

Description Specifies the identification (ID) for a SPI Hardware microcontroller peripheral (unit).
Available via Spi.h

[SWS_Spi_00359] [The type spi_HWUnitType specifies the identification (ID) for a
SPI Hardware microcontroller peripheral (unit). |

[SWS_Spi_00169] [The type spi_HWUnitType is used for specifying the identifica-
tion (ID) for a SPI Hardware microcontroller peripheral (unit). |

AUTSSAR
8.2.11 Spi_AsyncModeType

[SWS_Spi_00382] Definition of datatype Spi_AsyncModeType |

Name Spi_AsyncModeType
Kind Enumeration
Range SPI_POLLING_MODE 0x00 The asynchronous mechanism is ensured by

polling, so interrupts related to SPI busses
handled asynchronously are disabled.

SPI_INTERRUPT_MODE 0x01 The asynchronous mechanism is ensured by
interrupt, so interrupts related to SPI busses
handled asynchronously are enabled.

Description Specifies the asynchronous mechanism mode for SPI busses handled asynchronously.

Available via Spi.h

[SWS_Spi_00360] [The asynchronous mechanism is selected by the APl spi_se-
tAsyncMode. |

[SWS_Spi_00170] [The type spi_AsyncModeType is used for specifying the asyn-
chronous mechanism mode for SPI busses handled asynchronously. |

[SWS_Spi_00150] [The type spi_AsyncModeType is made available or not depend-
ing on the pre-compile time parameter: SpilevelDelivered. This is only relevant
for LEVEL 1 and LEVEL 2. |

[SWS_Spi_00361] [If APl spi_setAsyncMode function is called by the parameter
value SPI_POLLING_MODE then asynchronous mechanism is ensured by polling. So
interrupts related to SPI buses handled asynchronously are disabled. |

[SWS_Spi_00362] [If APl spi_setAsyncMode function is called by the parameter
value SPI_INTERRUPT_MODE asynchronous mechanism is ensured by interrupt, so
interrupts related to SPI buses handled asynchronously are enabled. |

AUTSSAR

8.3 Function definitions

8.3.1 Spi_Init

[SWS_Spi_00175] Definition of API function Spi_lInit |

Service Name Spi_Init

Syntax void Spi_Init (
const Spi_ConfigTypex ConfigPtr
)

Service ID [hex] 0x00

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) ConfigPtr Pointer to configuration set
Parameters (inout) None

Parameters (out) None

Return value None

Description Service for SPI initialization.

Available via Spi.h

[SWS_Spi_00298] [The operation Spi_1Init is Non Re-entrant. |
[SWS_Spi_00299] [The function spi_Init provides the service for SPl initialization. |

[SWS_Spi_00013]
Upstream requirements: SRS_BSW_00405, SRS_BSW_00101, SRS_SPAL_12057, SRS_SPAL_-
12125

[The function spi_Init shall initialize all SPI relevant registers with the values of the
structure referenced by the parameter Configptr. |

[SWS_Spi_00015]
Upstream requirements: SRS_BSW_00406, SRS BSW 00101, SRS_SPAL_ 12057

[After the module initialization using the function spi_Init, the SPI Handler/Driver
shall set its state to sPI_IDLE, the Sequences result to SPT_SEQ_OK and the jobs
resultto SPT_JOB_OX. |

[SWS_Spi_00151] [For LEVEL 2, the function spi_1Init shall set the SPI Handler/-
Driver asynchronous mechanism mode to SPT_POLLING_MODE by default. Interrupts
related to SPI busses shall be disabled. |

A re-initialization of a SPI Handler/Driver by executing the spi_1Init () function re-
quires a de-initialization before by executing a Spi_DeInit ().

AUTSSAR

Parameters of the function spi_Init shall be checked as it is explained in section
8.7.1.

8.3.2 Spi_Delnit

[SWS_Spi_00176] Definition of API function Spi_Delnit |

Service Name Spi_Delnit
Syntax Std_ReturnType Spi_DelInit (
void
)
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: de-initialisation command has been accepted
E_NOT_OK: de-initialisation command has not been accepted
Description Service for SPI de-initialization.
Available via Spi.h
|

[SWS_Spi_00300] [The operation std_ReturnType Spi_DeInit () is Non Re-
entrant. |

[SWS_Spi_00301] [When the APl spi_DeInit has been accepted the return value
of this function shall be E_OK. |

[SWS_Spi_00302] [When the APl spi_DeInit has not been accepted the return
value of this function shall be E_NOT_OKX. |

[SWS_Spi_00303] [The function spi_DeInit provides the service for SPI de-
initialization. |

[SWS_Spi_00021]
Upstream requirements: SRS _BSW_00336, SRS _SPAL_12163, SRS_SPAL 12064

[The function spi_DeInit shall de-initialize SPI Handler/Driver. |

[SWS_Spi_00252] [In case of the SPI Handler/Driver state is not SPI_BUSY, the delni-
tialization function shall put all already initialized microcontroller SPI peripherals into
the same state such as Power On Reset. |

AUTSSAR

[SWS_Spi_00253] [The function call spi_DeInit shall be rejected if the status of
SPI Handler/Driver is SPT_BUSY. |

[SWS_Spi_00022]

Upstream requirements: SRS_BSW_00336, SRS_SPAL_12163
[After the module de-initialization using the function spi_DeInit, the SPI Handler/-
Driver shall set its state to SPT_UNINIT. |

The SPI Handler/Driver shall have been initialized before the function Spi_DeInit is
called, otherwise see [SWS_Spi_00046].

8.3.3 Spi_WritelB

[SWS_Spi_00177] Definition of API function Spi_WritelB |

Service Name Spi_WritelB

Syntax Std_ReturnType Spi_WriteIB (
Spi_ChannelType Channel,
const Spi_DataBufferTypex DataBufferPtr

)

Service ID [hex] 0x02

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Channel Channel ID.

DataBufferPtr Pointer to source data buffer. If this pointer is null, it is assumed
that the data to be transmitted is not relevant and the default
transmit value of this channel will be used instead.

Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: write command has been accepted
E_NOT_OK: write command has not been accepted
Description Service for writing one or more data to an IB SPI Handler/Driver Channel specified by
parameter.
Available via Spi.h

[SWS_Spi_00304] [The operation Spi_WriteIB is Re-entrant. |

[SWS_Spi_00305] [When the API spi_writeIB command has been accepted the
function returns the value E_OK. |

[SWS_Spi_00306] [When the APl spi_writeIB command has not been accepted
the function returns the value E_NOT_OK. |

AUTSSAR

[SWS_Spi_00307] [The function spi_WriteIB provides the service for writing one
or more data to an IB SPI Handler/Driver Channel by the respective parameter. |

[SWS_Spi_00018]
Upstream requirements: SRS_Spi_12101, SRS_Spi_12153

[The function spi_WwriteIB shall write one or more data to an IB SPI Handler/Driver
Channel specified by the respective parameter. |

[SWS_Spi_00024] [The function spi_wWriteIB shall take over the given parameters,
and save the pointed data to the internal buffer defined with the function spi_Init.|

[SWS_Spi_00023] [If the given parameter DataBufferpPtr is null, the function
Spi_WriteIB shall assume that the data to be transmitted is not relevant and the
default transmit value of the given channel shall be used instead. |

[SWS_Spi_00137] [The function spi_wWriteIB shall be pre-compile time config-
urable by the parameter SpiChannelBuffersAllowed. This function is only relevant
for Channels with IB. |

Parameters of the function spi_wWriteIB shall be checked as it is explained in 8.7.1.

The SPI Handler/Driver shall have been initialized before the function Spi_WriteIB
is called, otherwise see [SWS_Spi_00046]].

8.3.4 Spi_AsyncTransmit

[SWS_Spi_00178] Definition of API function Spi_AsyncTransmit |

Service Name Spi_AsyncTransmit
Syntax Std_ReturnType Spi_AsyncTransmit (
Spi_SequenceType Sequence
)
Service ID [hex] 0x03
Sync/Async Asynchronous
Reentrancy Reentrant
Parameters (in) Sequence Sequence ID.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Transmission command has been accepted
E_NOT_OK: Transmission command has not been accepted
Description Service to transmit data on the SPI bus.
Available via Spi.h

AUTSSAR

[SWS_Spi_00308] [The operation Std_ReturnType Spi_AsyncTransmit(Spi_-—
SequenceType Sequence) is Re-entrant. |

[SWS_Spi_00309] [When the APl Spi_AsyncTransmit command has been ac-
cepted the function shall return the value E_OKX. |

[SWS_Spi_00310] [When the APl spi_AsyncTransmit command has not been ac-
cepted the function shall return the value E_NOT_OK. |

[SWS_Spi_00311] [The function Spi_AsyncTransmit provides service to transmit
data on the SPI bus. |

[SWS_Spi_00020]
Upstream requirements: SRS_Spi_12099, SRS _Spi 12101, SRS_Spi_12103

[The function spi_AsyncTransmit shall take over the given parameter, initiate a
transmission, set the SPI Handler/Driver status to sSPI_BUSY, set the sequence result
to SPI_SEQ_PENDING and return.]

[SWS_Spi_00194] [When the function spi_AsyncTransmit is called, shall take
over the given parameter and set the Job status to SP1_JOB_QUEUED, which can be
obtained by calling the API service Spi_GetJobResult. |

[SWS_Spi_00157] [When the function spi_AsyncTransmit is called, the SPI Han-
dler/Driver shall handle the Job results. Result shall be sPT_JOB_PENDING when the
transmission of Jobs is started. |

[SWS_Spi_00292] [When the function Spi_AsyncTransmit is called, the SPI Han-
dler/Driver shall handle the Job results. Result shall be sSPI__JOB_0OK when the trans-
mission of Jobs is success. |

[SWS_Spi_00293] [When the function Spi_AsyncTransmit is called, the SPI Han-
dler/Driver shall handle the Job results. Result shall be sp1_JoB_FAILED when the
transmission of Jobs is failed. |

[SWS_Spi_00081] [When the function Spi_AsyncTransmit is called and the re-
quested Sequence is already in state SPT_SEQ_PENDING, the SPI Handler/Driver shall
not take in account this new request and this function shall return with value E_NOT_OK,
in this case. |

[SWS_Spi_00266] [When the function Spi_AsyncTransmit is called and the re-
quested Sequence is already in state SPT_SEQ_PENDING the SPI Handler/Driver shall

AUTSSAR

report the SPT_FE_SEQ_PENDING error according to [SWS_BSW_00042] and [SWS_-
BSW_00045]. |

[SWS_Spi_00086] [When the function Spi_AsyncTransmit is called and the re-
quested Sequence shares Jobs with another sequence that is in the state sP1_sEQ_ -
PENDING, the SPI Handler/Driver shall not take into account this new re-quest and
this function shall return the value E_NOT_OX. In this case and according to [SWS_-
BSW_00042] and [SWS_BSW_00045], the SPI Handler/Driver shall report the spP1_ -
E_SEQ_PENDING error. |

[SWS_Spi_00035]
Upstream requirements: SRS_Spi_12200, SRS _Spi_12201

[When the function Spi_AsyncTransmit is used with EB and the source data pointer
has been provided as NULL using the Spi_SetupEB method, the default transmit data
configured for each channel shall be transmitted. (See also [SWS_Spi_00028].) |

[SWS_Spi_00036] [When the function Spi_AsyncTransmit is used with EB and the
destination data pointer has been provided as NULL using the spi_SetupEB method,
the SPI Handler/Driver shall ignore receiving data (See also [SWS_Spi_00030].) |

[SWS_Spi_00055]
Upstream requirements: SRS_Spi_12181

[When the function Spi_AsyncTransmit is used for a Sequence with linked Jobs,
the function shall transmit from the first Job up to the last Job in the sequence. |

[SWS_Spi_00057]
Upstream requirements: SRS_SPAL_00157, SRS_Spi_12108

[At the end of a sequence transmission initiated by the function Spi_AsyncTransmit
and if configured, the SPI Handler/Driver shall invoke the sequence notification call-
back function after the last Job end notification if this one is also configured. |

[SWS_Spi_00133] [The function Spi_AsyncTransmit is pre-compile time se-
lectable by the configuration parameter SpilLevelDelivered. This function is only
relevant for LEVEL 1 and LEVEL 2. |

[SWS_Spi_00173] [The SPI Handler/Driver’s environment shall call the function
Spi_AsyncTransmit after a function call of spi_SetupEB for EB Channels or a
function call of spi_uWriteIB for IB Channels but before the function call spi_-
ReadlIB. |

AUTSSAR

Parameters of the function spi_AsyncTransmit shall be checked as explained in
section 8.7.1.

The SPI Handler/Driver shall have been initialized before the function Spi_Async-
Transmit is called otherwise see [SWS_Spi_00046].

8.3.5 Spi_ReadIB

[SWS_Spi_00179] Definition of API function Spi_ReadIB |

Service Name

Spi_ReadIB

Syntax Std_ReturnType Spi_ReadIB (
Spi_ChannelType Channel,
Spi_DataBufferType* DataBufferPointer

)

Service ID [hex] 0x04

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Channel Channel ID.

Parameters (inout) None

Parameters (out)

DataBufferPointer Pointer to destination data buffer in RAM

Return value Std_ReturnType E_OK: read command has been accepted

E_NOT_OK: read command has not been accepted

Description Service for reading synchronously one or more data from an IB SPI Handler/Driver Channel
specified by parameter.
Available via Spi.h

[SWS_Spi_00312] [The operation Spi_ReadIB is Re-entrant. |

[SWS_Spi_00313] [The function Spi_ReadIB return values E_OK: read command
has been accepted. |

[SWS_Spi_00314] [The function Spi_ReadIB return values E_NOT_OK: read com-
mand has not been accepted. |

[SWS_Spi_00315] [The function spi_ReadIB provides the service for reading syn-
chronously one or more data from an IB SPI Handler/Driver Channel specified by pa-
rameter. |

[SWS_Spi_00016]
Upstream requirements: SRS_Spi_12099, SRS_Spi_12152

[The function spi_ReadIB shall read synchronously one or more data from an IB SPI
Handler/Driver Channel specified by the respective parameter. |

AUTSSAR

[SWS_Spi_00027] [The SPI Handler/Driver's environment shall call the function
Spi_ReadIB after a Transmit method call to have relevant data within IB Channel. |

[SWS_Spi_00138] [The function Spi_ReadIB is pre-compile time configurable by the
parameter SpiChannelBuffersAllowed. This function is only relevant for Channels
with IB. |

Parameters of the function Spi_ReadIB shall be checked as it is explained in section

8.7.1.

The SPI Handler/Driver shall have been initialized before the function Spi_ReadIB is
called otherwise see [SWS_Spi_00046].

8.3.6 Spi_SetupEB

[SWS_Spi_00180] Definition of API function Spi_SetupEB |

Service Name Spi_SetupEB
Syntax Std_ReturnType Spi_SetupEB (
Spi_ChannelType Channel,
const Spi_DataBufferType* SrcDataBufferPtr,
Spi_DataBufferType* DesDataBufferPtr,
Spi_NumberOfDataType Length
)
Service ID [hex] 0x05
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Channel Channel ID.
SrcDataBufferPtr Pointer to source data buffer.
Length Length (number of data elements) of the data to be transmitted
from SrcDataBufferPtr and/or received from DesDataBufferPtr
Min.: 1 Max.: Max of data specified at configuration for this
channel
Parameters (inout) DesDataBufferPtr Pointer to destination data buffer in RAM.
Parameters (out) None
Return value Std_ReturnType E_OK: Setup command has been accepted
E_NOT_OK: Setup command has not been accepted
Description Service to setup the buffers and the length of data for the EB SPI1 Handler/Driver Channel
specified.
Available via Spi.h

[SWS_Spi_00316] [The operation Spi_sSetupEB is Re-entrant. |

[SWS_Spi_00317] [Return values of the function spi_SetupEB are E_OK: Setup
command has been accepted and E_NOT_OK: Setup command has not been ac-
cepted. |

AUTSSAR

[SWS_Spi_00318] [The function Spi_sSetupEB provides the service to setup the
buffers and the length of data for the EB SPI Handler/Driver Channel specified. |

[SWS_Spi_00058]
Upstream requirements: SRS_Spi_12103

[The function spi_setupEB shall set up the buffers and the length of data for the
specific EB SPI Handler/Driver Channel. |

[SWS_Spi_00067]
Upstream requirements: SRS_Spi_12103

[The function spi_setupEB shall update the buffer pointers and length attributes of
the specified Channel with the provided values. |

As these attributes are persistent, they will be used for all succeeding calls to a Transmit
method (for the specified Channel).

[SWS_Spi_00028] [When the SPI Handler/Driver’s environment is calling the function
Spi_SetupEB with the parameter SrcbataBufferPtr being a Null pointer, the func-
tion shall transmit the default transmit value configured for the channel after a Transmit
method is requested. (See also [SWS_Spi_00035].) |

[SWS_Spi_00030] [When the function Spi_SetupkB is called with the parameter
DesDataBufferPtr being a Null pointer, the SPI Handler/Driver shall ignore the re-
ceived data after a Transmit method is requested.(See also [SWS_Spi_00036].) |

[SWS_Spi_00037] [The SPI Handler/Driver's environment shall call the Spi_Setu-
pEB function once for each Channel with EB declared before the SPI Handler/Driver’s
environment calls a Transmit method on them. |

[SWS_Spi_00139] [The function Spi_sSetupEB is pre-compile time configurable by
the parameter SpiChannelBuffersAllowed. This function is only relevant for
Channels with EB. |

Parameters of the function spi_sSetupEB shall be checked as it is explained in section
8.7.1.

The SPI Handler/Driver shall have been initialized before the function Spi_SetupEB
is called otherwise see [SWS_Spi_00046].

AUTSSAR

8.3.7 Spi_GetStatus

[SWS_Spi_00181] Definition of API function Spi_GetStatus |

Service Name

Spi_GetStatus

Syntax Spi_StatusType Spi_GetStatus (
void
)
Service ID [hex] 0x06
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None

Return value

Spi_StatusType Spi_StatusType

Description

Service returns the SPI Handler/Driver software module status.

Available via

Spi.h

[SWS_Spi_00319] [The operation Spi_GetStatus is Re-entrant. |

[SWS_Spi_00320] [The function Spi_GetStatus returns the SPI Handler/Driver

software module status. |

[SWS_Spi_00025]
Upstream requirements: SRS_SPAL_12064, SRS_Spi_12104

[The function Spi_GetsStatus shall return the SPI Handler/Driver software module

status. |

8.3.8 Spi_GetJobResult

[SWS_Spi_00182] Definition of API function Spi_GetJobResult |

Service Name Spi_GetJobResult
Syntax Spi_JobResultType Spi_GetJobResult (
Spi_JobType Job

)
Service ID [hex] 0x07
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Job | Job ID. An invalid job ID will return an undefined result.

Y%

AUTSSAR

A
Parameters (inout) None
Parameters (out) None
Return value Spi_JobResultType | Spi_JobResultType
Description This service returns the last transmission result of the specified Job.
Available via Spi.h
]

[SWS_Spi_00321] [The operation Spi_GetJobResult is Re-entrant. |

[SWS_Spi_00322] [The function spi_GetJobResult service returns the last trans-
mission result of the specified Job. |

[SWS_Spi_00026]
Upstream requirements: SRS_SPAL_00157, SRS_Spi_12104

[The function spi_GetJobResult shall return the last transmission result of the
specified Job. |

[SWS_Spi_00038]
Upstream requirements: SRS_SPAL_00157
[The SPI Handler/Driver’s environment shall call the function Spi_GetJobResult to

inquire whether the Job transmission has succeeded (SPI_JOB_OK) or failed (SPT_-
JOB_FAILED). |

NOTE: Every new transmit job that has been accepted by the SPI Handler/Driver over-
writes the previous job result with SPT_JOB_QUEUED or SPI_JOB_PENDING.

Parameters of the function Spi_GetJobResult shall be checked as it is explained in
section 8.7.1.

If SPI Handler/Driver has not been initialized before the function Spi_Get JobResult
is called, the return value is undefined.

AUTSSAR

8.3.9 Spi_GetSequenceResult

[SWS_Spi_00183] Definition of API function Spi_GetSequenceResult |

Service Name

Spi_GetSequenceResult

Syntax Spi_SeqgResultType Spi_GetSequenceResult (

Spi_SequenceType Sequence

)
Service ID [hex] 0x08
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Sequence Sequence ID. An invalid sequence ID will return an undefined
result.

Parameters (inout) None
Parameters (out) None

Return value

Spi_SeqgResultType Spi_SeqResultType

Description

This service returns the last transmission result of the specified Sequence.

Available via

Spi.h

[SWS_Spi_00323] [The operation Spi_GetSequenceResult is Re-entrant. |

[SWS_Spi_00324]
Upstream requirements: SRS_SPAL_00157, SRS_Spi_12104

[The function Spi_GetSequenceResult shall return the last transmission result of
the specified Sequence. |

[SWS_Spi_00042]
Upstream requirements: SRS_SPAL_00157, SRS_Spi_12170

[The SPI Handler/Driver’'s environment shall call the function Spi_GetSequenceRe-
sult to inquire whether the full Sequence transmission has succeeded (SPI_SEQ_OK)
or failed (SPI_SEQ_FAILED).]

Note:

e Every new transmit sequence that has been accepted by the SPI Handler/Driver
overwrites the previous sequence result with SPT_SEQ_PENDING.

¢ If the SPI Handler/Driver has not been initialized before the function Spi_Get-
SequenceResult is called, the return value is undefined.

Parameters of the function Spi_GetSequenceResult shall be checked as it is ex-
plained in section 8.7.1.

AUTSSAR

8.3.10 Spi_GetVersioninfo

[SWS_Spi_00184] Definition of API function Spi_GetVersioninfo |

Service Name

Spi_GetVersionInfo

Syntax void Spi_GetVersionInfo (
Std_VersionInfoType* versioninfo

)
Service ID [hex] 0x09
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) versioninfo Pointer to where to store the version information of this module.
Return value None

Description

This service returns the version information of this module.

Available via

Spi.h

[SWS_Spi_00371] [If Det is enabled, the parameter versioninfo shall be checked
for being NULL. The error SPTI_E_PARAM_POINTER shall be reported in case the value
is a NULL pointer. |

8.3.11 Spi_SyncTransmit

[SWS_Spi_00185] Definition of API function Spi_SyncTransmit |

Service Name

Spi_SyncTransmit

Syntax Std_ReturnType Spi_SyncTransmit (
Spi_SequenceType Sequence
)
Service ID [hex] 0x0a
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Sequence Sequence ID.
Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType

E_OK: Transmission has been successful
E_NOT_OK: Transmission failed

Description

Service to transmit data on the SPI bus

Available via

Spi.h

AUTSSAR

[SWS_Spi_00327] [The operation Spi_SyncTransmit is Re-entrant. |

[SWS_Spi_00328] [The function Spi_SyncTransmit returns E_OK if the transmis-
sion request has been successful. |

[SWS_Spi_00329] [The function Spi_SyncTransmit returns E_NOT_OK if the trans-
mission request failed. |

[SWS_Spi_00330] [The function Spi_SyncTransmit provides the service to trans-
mit data on the SPI bus. |

[SWS_Spi_00134]
Upstream requirements: SRS_Spi_12152, SRS _Spi_12153, SRS_Spi_12154

[When the function spi_SyncTransmit is called, shall take over the given parameter
and set the SPI Handler/Driver status to SPI_BUSY can be obtained calling the API
service Spi_GetStatus. |

[SWS_Spi_00285] [When the function spi_SyncTransmit is called, shall take over
the given parameter and set the Sequence status to SPT_SEQ_PENDING can be ob-
tained calling the API| service Spi_GetSequenceResult. |

[SWS_Spi_00286] [When the function Spi_SyncTransmit is called, shall take over
the given parameter and set the Job status to SPI_JOB_PENDING can be obtained
calling the API service Spi_GetJobResult.]

[SWS_Spi_00135]
Upstream requirements: SRS_Spi_12093

[When the function spi_SyncTransmit is called while a sequence is on transmis-
sion and spiSupportConcurrentSyncTransmit is disabled or another sequence
is on transmission on same bus, the SPI Handler/Driver shall not take into account
this new transmission request and the function shall return the value E_NOT_OK (see
[SWS_Spi_00114]). In this case, the SPI Handler/Driver shall report the spT_E_-
SEQ_IN_PROCESS error according to [SWS_BSW_00042] and [SWS_BSW_00045]. |

[SWS_Spi_00136] [The function spi_SyncTransmit is pre-compile time selectable
by the configuration parameter SpiLevelDelivered. This function is only relevant
for LEVEL 0 and LEVEL 2. |

Parameters of the function spi_SyncTransmit shall be checked as it is explained in
section 8.7.1.

AUTSSAR

8.3.12 Spi_GetHWUnitStatus

[SWS_Spi_00186] Definition of API function Spi_GetHWUnitStatus |

Service Name

Spi_GetHWUnitStatus

Syntax Spi_StatusType Spi_GetHWUnitStatus (
Spi_HWUnitType HWUnit

)
Service ID [hex] 0x0b
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) HWUnit | SPI Hardware microcontroller peripheral (unit) ID.
Parameters (inout) None
Parameters (out) None

Return value

Spi_StatusType ‘ Spi_StatusType

Description

This service returns the status of the specified SPI Hardware microcontroller peripheral.

Available via

Spi.h

[SWS_Spi_00331] [The operation Spi_GetHWUnitStatus is Re-entrant. |

[SWS_Spi_00332] [The function spi_GetHWUnitStatus service returns the status
of the specified SPI Hardware microcontroller peripheral. |

[SWS_Spi_00141] [The function Spi_GetHWUnitStatus shall return the status of
the specified SPI Hardware microcontroller peripheral. |

[SWS_Spi_00287] [The SPI Handler/Driver’s environment shall call this function to
inquire whether the specified SPI Hardware microcontroller peripheral is SPT_IDLE or
SPI_BUSY.|

[SWS_Spi_00142] [The function Spi_GetHWUnitStatus is pre-compile time con-
figurable On / Off by the configuration parameter SpiHwStatusApi. |

Parameters of the function Spi_GetHWUnitStatus shall be checked as it is ex-
plained in section 8.7.1.

If SPI Handler/Driver has not been initialized before the function Spi_GetHWUnit-
Status is called, the return value is undefined.

AUTSSAR

8.3.13 Spi_Cancel

[SWS_Spi_00187] Definition of API function Spi_Cancel |

Service Name Spi_Cancel
Syntax void Spi_Cancel (
Spi_SequenceType Sequence
)
Service ID [hex] 0x0c
Sync/Async Asynchronous
Reentrancy Reentrant
Parameters (in) Sequence Sequence ID.
Parameters (inout) None
Parameters (out) None
Return value None
Description Service cancels the specified on-going sequence transmission.
Available via Spi.h
]

[SWS_Spi_00333] [The operation spi_Cancel is Re-entrant. |

[SWS_Spi_00334] [The function spi_Cancel service cancels the specified on-going
sequence transmission. |

[SWS_Spi_00144] [The function Spi_Cancel shall cancel the specified on-going se-
quence transmission without cancelling any Job transmission and set the sequence
resultto SPT_SEQ_CANCELED. |

With other words, the spi_Cancel function stops a Sequence transmission after a
(possible) on transmission Job ended and before a (potential) next Job transmission
starts.

[SWS_Spi_00145] [When the sequence is cancelled by the function Spi_Cancel
and if configured, the SPI Handler/Driver shall call the sequence notification call-back
function instead of starting a potential next job belonging to it. |

[SWS_Spi_00146] [The function spi_Cancel is pre-compile time configurable On /
Off by the configuration parameter SpiCancelApi. |

The SPI Handler/Driver is not responsible on external devices damages or undefined
state due to cancelling a sequence transmission. It is up to the SPI Handler/Driver’s
environment to be aware to what it is doing!

AUTSSAR

8.3.14 Spi_SetAsyncMode

[SWS_Spi_00188] Definition of API function Spi_SetAsyncMode |

Service Name

Spi_SetAsyncMode

Syntax Std_ReturnType Spi_SetAsyncMode (
Spi_AsyncModeType Mode
)
Service ID [hex] 0x0d
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) Mode New mode required.
Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType E_OK: Setting command has been done

E_NOT_OK: setting command has not been accepted

Description

Service to set the asynchronous mechanism mode for SPI busses handled asynchronously.

Available via

Spi.h

[SWS_Spi_00335] [The operation Spi_SetAsyncMode is Non Re-entrant. |

[SWS_Spi_00336] [Return value of the function Spi_SetAsyncMode is E_OK: Set-
ting command has been done. |

[SWS_Spi_00337] [Return value of the function Spi_SetAsyncMode is E_NOT_OK:
setting command has not been accepted. |

[SWS_Spi_00338] [The function Spi_sSetAsyncMode service to set the asyn-
chronous mechanism mode for SPI buses handled asynchronously. |

[SWS_Spi_00171] [If the function Spi_SetAsyncMode is called while the SPI Han-
dler/Driver status is SPI_BUSY and an asynchronous transmission is in progress, the
SPI Handler/Driver shall not change the AsyncModeType and keep the mode type as
it is. The function shall return the value E_NOT_OK. |

[SWS_Spi_00172] [If spi_sSetAsyncMode is called while a synchronous transmis-
sion is in progress, the SPI Handler/Driver shall set the AsyncModeType according to
parameter Mode, even if the SPI Handler/Driver status is sSPT_BUSY. The function shall
return the value E_OX. |

[SWS_Spi_00154] [The function Spi_SetAsyncMode is pre-compile time selectable
by the configuration parameter spilevelDelivered. This function is only relevant
for LEVEL 1 and 2. |

AUTSSAR

8.4 Callback notifications

This chapter lists all functions provided by the SPI module to lower layer modules.

The SPI Handler/Driver module belongs to the lowest layer of AUTOSAR Software
Architecture hence this module specification has not identified any callback functions.

8.5 Scheduled functions

This chapter lists all functions provided by the SPI Handler/Driver and called directly by
the Basic Software Module Scheduler.

The SPI Handler/Driver module requires a scheduled function for the management of
the asynchronous mode managed with polling (see [SWS_Spi_00361]). The specified
functions below exemplify how to implement them if they are needed.

8.5.1 Spi_MainFunction_Handling

[SWS_Spi_00189] Definition of scheduled function Spi_MainFunction_Handling

Service Name Spi_MainFunction_Handling
Syntax void Spi_MainFunction_Handling (
void
)
Service ID [hex] 0x10
Description -
Available via SchM_Spi.h

This function shall polls the SPI interrupts linked to HW Units allocated to the transmis-
sion of SPI sequences to enable the evolution of transmission state machine.

8.6 Expected interfaces

This chapter lists all functions that the SPI1 Handler/Driver requires from other modules.

8.6.1 Mandatory interfaces

The SPI Handler/Driver module requires some interfaces to fulfill its core functionality.

AUTSSAR

[SWS_Spi_00389] Definition of mandatory interfaces required by module Spi [

API Function Header File Description

Det_ReportRuntimeError Det.h Service to report runtime errors. If a callout has
been configured then this callout shall be called.

8.6.2 Optional interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of SPI Handler/Driver module.

[SWS_Spi_00339] Definition of optional interfaces requested by module Spi [

API Function Header File Description

Dem_SetEventStatus Dem.h Called by SW-Cs or BSW modules to report monitor
status information to the Dem. BSW modules calling
Dem_SetEventStatus can safely ignore the return
value. This API will be available only if ({(Dem/Dem
ConfigSet/DemEventParameter/DemEvent
ReportingType} == STANDARD_REPORTING)

Det_ReportError Det.h Service to report development errors.

8.6.3 Configurable interfaces

In this section, all interfaces are listed where the target function could be configured.
The target function is usually a callback function. The names of this kind of interfaces
are not fixed because they are configurable.

[SWS_Spi_00075]
Upstream requirements: SRS_SPAL_00157

[The SPI Handler/Driver shall use the callback routines spi_JobEndNotification
to inform other software modules about certain states or state changes. |

[SWS_Spi_00264] [The SPI Handler/Driver shall use the callback routines spi_Se-
gEndNotification to inform other software modules about certain states or state
changes. |

[SWS_Spi_00265] [For implement the call back function other modules are required
to provide the routines in the expected manner. |

AUTSSAR

[SWS_Spi_00044]
Upstream requirements: SRS_SPAL_12056

[The SPI Handler/Driver’s implementer must implement the callback notifications
Spi_JobEndNotification and Spi_SegEndNotification as function pointers
defined within the initialization data structure (Spi_ConfigType).|

[SWS_Spi_00048]
Upstream requirements: SRS_BSW_00359, SRS_BSW_00360, SRS_BSW_00369

[The callback notifications Spi_JobEndNotification and Spi_SegEndNotifi-
cation shall have no parameters and no return value. |

[SWS_Spi_00054]
Upstream requirements: SRS_SPAL_12056

[If a callback notification is configured as null pointer, no callback shall be executed. |

[SWS_Spi_00085] [It is allowed to use the following API calls within the SPI callback
notifications:

e Spi_ReadIB

e Spi WritelIB

e Spi_SetupEB

e Spi_GetJobResult

e Spi_GetSequenceResult
e Spi_GetHWUnitStatus

e Spi_Cancel

All other SPI Handler/Driver API calls are not allowed. |

8.6.3.1 Spi_JobEndNotification

[SWS_Spi_00192] Definition of configurable interface (*Spi_JobEndNotification)
[

Service Name (*Spi_JobEndNotification)

Syntax void (*Spi_JobEndNotification) (
void

)

Y%

AUTSSAR

A
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

Callback routine provided by the user for each Job to notify the caller that a job has been
finished.

Available via

Spi_Externals.h

[SWS_Spi_00340] [The operation SpiJobEndNotification is Re-entrant. |

[SWS_Spi_00071]
Upstream requirements: SRS_SPAL_00157

[If the SpiJobEndNotification is configured (i.e. not a null pointer), the SPI Han-
dler/Driver shall call the configured callback notification at the end of a Job transmis-

sion. |

Note: This routine might be called on interrupt level, depending on the calling function.

8.6.3.2 Spi_SeqEndNotification

[SWS_Spi_00193] Definition of configurable interface (*Spi_SegqEndNotification)

[

Service Name

(*Spi_SeqgEndNotification)

Syntax void (xSpi_SegEndNotification) (
void
)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

Callback routine provided by the user for each Sequence to notify the caller that a sequence

has been finished.

Available via

Spi_Externals.h

[SWS_Spi_00341] [The operation SpisegEndNotification is Re-entrant. |

AUTSSAR

[SWS_Spi_00073]
Upstream requirements: SRS_SPAL_00157

[If the SpisegEndNotification is configured (i.e. not a null pointer), the SPI Han-
dler/Driver shall call the configured callback notification at the end of a Sequence trans-
mission. |

Note: This routine might be called on interrupt level, depending on the calling function.

8.7 Error detection

8.7.1 API parameter checking

[SWS_Spi_00004]
Upstream requirements: SRS_BSW_00327, SRS_BSW_00337, SRS _BSW_ 00385

[SPI Handler/driver shall be able to detect the error SPTI_E_PARAM_CHANNEL when
API service called with wrong parameter. |

[SWS_Spi_00237] [SPI Handler/driver shall be able to detect the error sP1_E_-
PARAM_JOB when API service called with wrong parameter. |

[SWS_Spi_00238] [SPI Handler/driver shall be able to detect the error sP1_E_-
PARAM_SEQ when API service called with wrong parameter. |

[SWS_Spi_00240] [SPI Handler/driver shall be able to detect the error sP1_E_-
PARAM_LENGTH when API service called with wrong parameter. |

[SWS_Spi_00241] [SPI Handler/driver shall be able to detect the error sPI_E_-
PARAM_UNIT when API service called with wrong parameter. |

[SWS_Spi_00031]
Upstream requirements: SRS_BSW_00323

[The API parameter Channel shall have a value within the defined channels in the
initialization data structure, and the correct type of channel (1B or EB) has to be used
with services. Related error value: sP1_E_PARAM_CHANNEL. Otherwise, the service
is not done and the return value shall be E_NOT_OK. |

AUTSSAR

[SWS_Spi_00032]
Upstream requirements: SRS_BSW_00323

[The API parameters Sequence and Job shall have values within the specified range
of values. Related errors values: SPI_E_PARAM _SEQ Or SPI_E_PARAM_JOB. |

[SWS_Spi_00060]
Upstream requirements: SRS_BSW_00323

[The APl parameter Length of data shall have a value within the specified buffer maxi-
mum value. Related error value: SPI_E_PARAM LENGTH. |

[SWS_Spi_00258] [If the APl parameter Length related service is not done and the
return value shall be E_NOT_OX. |

[SWS_Spi_00143] [The APl parameter HWUnit shall have a value within the specified
range of values. Related error value: SPTI_E_PARAM UNIT.|

[SWS_Spi_00288] [If HWUnit related service is not done and the return value shall be
SPI_UNINIT.|

[SWS_Spi_00235] [If not applicable, the SPI Handler/Driver module’s environment
shall pass a NULL pointer to the function Spi_Init.]|

8.7.2 SPI state checking

[SWS_Spi_00242] [SPI Handler/driver shall be able to detect the error sPI_E_-
UNINIT when API service used without module initialization. |

[SWS_Spi_00046]
Upstream requirements: SRS_BSW_00406

[If development error detection for the SPI module is enabled and the SPI Handler/-
Driver’s environment calls any API function before initialization, an error should be
reported to the DET with the error value sPI_E_UNINIT according to the configura-
tion. |

[SWS_Spi_00246] [SPI Handler/driver shall be able to detect the error SPT_E_ATL-
READY_ INITIALIZED when APl spi_1Init service called while the SPI driver has
already been initialized time. |

AUTSSAR

[SWS_Spi_00233] [If development error detection for the SPI module is enabled, the
calling of the routine spi_Init () while the SPI driver is already initialized will cause
a development error SPI_E_ALREADY_INITIALIZED and the desired functionality
shall be left without any action. |

8.7.3 SPI runtime checking

[SWS_Spi_00243] [SPI Handler/driver shall be able to detect the error SPT_E_SEQ_ -
PENDING when services called in a wrong sequence. |

[SWS_Spi_00245] [SPI Handler/driver shall be able to detect the error SPT_E_SEQ_ -
IN_PROCESS when synchronous transmission service called at wrong time. |

[SWS_Spi_00195] [SPI Handler/driver shall be able to detect the error SPT_E_HARD-
WARE_ERROR when an hardware error occur during asynchronous or synchronous
transmit. Please see also [SWS_Spi_00267] and [SWS_Spi_00384]. |

[SWS_Spi_00254] [If the Sequence and Job related service is not done and, de-
pending on services, either the return value shall be E_NOT_OK or a failed result (
SPI_JOB_FAILED Or SPI_SEQ_FAILED).]

[SWS_Spi_00256] [The SPI Handler/Driver shall not process the invoked function but,
depending on the invoked function, shall either return the value E_NOT_OK or a failed
result (SPI_JOB_FAILED Or SPI_SEQ_FAILED).]

AUTSSAR

9 Sequence diagrams

9.1

Initialization

Spi User

«module»
Spi

| Spi_Init(const
Spi_ConfigType*)

Spi_Init()

Figure 9.1

9.2 Modes transitions

The following sequence diagram shows an example of an Init / Delnit calls for a running

mode transition.

Spi User

Use of SPI
Handler/Driver.
Embedded software
execution, time and
code execution
undefined during this life
period.

Use of SPI
Handler/Driver:
Embedded software
execution, time and
code execution
undefined during this life
period.

«module»
Spi

AN

Spi_Init(const -

Spi_ConfigType*) ™~ ==----_______ hagl

Spi_Init()

Spi_GetStatus(Spi_StatusType)

< Spi_GetStatus=SPI_BUSY() .

Spi_GetStatus(Spi_StatusType)

= Spi_GetStatus=SPI_IDLE()

Spi_Delnit(Std_ReturnType)

S spioemto___________ |

Spi_Init(const

Description:

Initialization of SPI Handler/Driver is
performed synchronously with a
parameter to run in a mode.

For instance, "FullPowerConf" is the
structure containing all configurations
for the "RUN State” with PLL enable.

Description:

Use the get status service of SPI
Handler/Driver to know its state before
to de-initialize it.

Spi_ConfigType*)

e s ______

Figure 9.2

[AN
Description:
Initialization of SPI Handler/Driver is performed
with a specific parameter to run in another
mode.
For instance, "ReducePowerConf" is the
structure containing all configurations for the
"SLEEP State” with PLL disable.

AUTSSAR

9.3 Write/AsyncTransmit/Read (IB)

9.3.1

The following sequence diagram shows an example of Spi_WriteIB/ Spi_Async-—
Transmit / Spi_ReadIB calls for a Sequence transmission with only one Job com-

posed of only one Channel. Write or Read step could be skipped when Job is just

reading or writing respectively.

One Channel, one Job then one Sequence

Example: Channel ID 2 belongs to Job ID 1 which belongs to Sequence ID 0

Sequence Job Channel
IDO ID1 ID2
Spi User «module»
Spi
T T
| Spi_WritelB(Std_R T | B
| pi_WritelB(Std_ReturnType, I Descriptian:

Spi_ChannelType, const Spi_DataBufferType*)===

Spi_WritelB()

Spi_AsyncTransmit(Std_RetunType,

Spi_SequenceType)

Seq0.Job1()
<Spi_JoblEndNotification>()
<Spi_Job1EndNotification>() T~ _

______________________________ ——
< R
I
I
: <Spi_SeqOEndNotification>()

<Spi_SeqOEndNotification>() el .. -
T Tl
I I
| Spi_ReadIB(Std_ReturnType, Spi_ ChanneIType |
[T Spi_DataBufferType**) N
Spi_ReadlB) --.
S e e

Figure 9.3

Write to the Channel is done synchronously. You
pass the Channel ID and the buffer.

AN
Description:
Transmission is performing asynchronously. The
SPI Handler/Driver records the sequence and
retums.

AN

Description:

1 Transmission processing (writing to SPI bus) is

done asynchronously according to the sequence
requested and the prioritization mechanism.

This case is not a Sequence of linked Jobs so the

SPI Handler/Driver becomes idle at the end of the
Channel transmission.

AN
Description:
When a Job transmission ends, if it is configured,
the “End Job Notification” of the Job process is
called.

AN

" = { Description:

When the Sequence transmission ends, if it is
configured, the “End Seq Notification” of the
Sequence process is called.

AN

Description:

The received data will be allocated in the
configured receive buffers, and can be read using
the read function for IB Channels.

AUTSSAR

9.3.2 Many Channels, one Job then one Sequence

The following sequence diagram shows an example of Spi_WriteIB/ Spi_Async-
Transmit / Spi_ReadIB calls for a Sequence transmission with only one Job com-
posed of many Channels. Write or Read steps could be skipped when Job is just
reading or writing respectively.

Example: Channels ID 2 & 3 belong to Job ID 1 which belongs to Sequence ID 0

Sequence Job Channel
DO ID1 ID2
ID3
Userl: Spi User User2: Spi User «module»
Spi
[AN
T T Description:
| | Write to a Channel is done synchronously. You
| Spi_WritelB(Std_ReturnType, | pass the Channel ID and the buffer.
Spi_ChannelType, const Spi_DataBufferType*y——————®q-------- In this case, Channels are within the same Job.
Spi_WritelB() IR
i T
Spi_WritelB(Std_RetumnType, PR :
Spi_ChannelType, const Spi_DataBufferType*) N
: Spi_WritelB() Description:
_________ Tttt T T T T T rr T Transmission is performing asynchronously. The
1 T SPI Handler/Driver records the sequence and
! [N retums.
| SpiiAwncTransmiI(SIdiRelumTy_p?,_ ________________ |
Spi_SequenceType)
Spi_AsyncTransmit()

AN

Description:
Transmission processing (writing to SPI bus) is

L
|
|
|
done asynchronously according to the sequence
}~ - | requested and the prioritization mechanism.
$eq0.Job1() This case is not a sequence of linked Jobs. At the
end of Channels transmission the SPI
I Handler/Driver becomes idle.
I
|
|

<Spi_JoblEndNotification>()

A
%)
B.
e,
S
T
=
m
>
a
z
=]
=
g
=
E
v
<,

__________________________ S x
T -- [AN
| Description:
| <Spi_SeqOEndNotification>() When a Job transmission ends, if it is configured,
— ~ the “End Job Notification” of the Job process is
R called.
<Spi_SeqOEndNotification>() ~~ _ _
——————————————————————— =T =
T T
Spi_ReadIB(Std_RetumType, Spi_ChannelType, : BRI B
Spi_DataBufferType**) s, Description:
. A When the Sequence transmission ends, if it is
ke e 2 Spi_ReadB) _ 7~ S configured, the “End Seq Notification” of the
RN Sequence process is called.
T AN T
| el |
| Sl
1 [
Description:

The received data, if there are, will be allocated
in the configured receive buffers, and can be
read using the read function for 1B Channels.

Figure 9.4

AUTSSAR

9.3.3 Many Channels, many Jobs and one Sequence

The following sequence diagram shows an example of Spi_WriteIB/ Spi_Async-
Transmit / Spi_ReadIB calls for a Sequence transmission of linked Jobs. Write or
Read steps could be skipped when Jobs are just reading or writing respectively.

Example: Channels ID 0 to 3 belong to Job ID 1 (higher priority), Channels ID 4 to 10
belong to Job ID 2 (Lower priority) which has not an end notification function. These
Jobs belong to the same Sequence ID 0

Sequence Job Channel
Name Priority

IDO ID1 High IDO...ID3
ID2 Low ID4...ID10

AUTSSAR

Userl: Spi User

User2: Spi User

T
|
| Spi_WritelB(Std_ReturnType,

Spi_WritelB()

«module»
Spi

["Spi_ChannelType, const Spi_DataBufferType*)

loop Channel:=5...10)

opt If channel needed)

Spi_WritelB(Std_ReturnType,

Spi_ChannelType, const Spi_Data_B_ufferType*)

|
Spi_WritelB(Std_RetumType,

Spi_ChannelType, const Spi_DataBufferType*)

Description:

Write to a Channel is done synchronously. You
pass the Channel ID and the buffer.

In this case, Channels are not within the same
Job.

Seq0.Job2() I}r__"

<Spi_SeqOEndNotification>() |

<
[RS
H <Spi_SeqOEndNotification>() Teeal

1
Spi_ReadIB(Std_ReturnType, Spi_ChannelType,

Spi_DataBufferType**y 5

H‘{_________sei_fsad_'ao___"
I

Figure 9.5

|
| Spi_Wri
<= Pmm e E e m
| oL
1 [Pt
| (e
loop Chan : P :
1 . - 1
opt If channel needed / | -7 ’ |
| . |
1 Pt 1 Description:
Spi_WritelB(Std_ReturnType, P | Transmission is performing asynchronously. The
————Spi_ChannelType, const Spi_DataBufferType* L SPI Handler/Driver records the sequence and
: retums.
o L___Spiwies) _____________|
1 -
T L P
| | et
1 1 PR |
1 1 PR 1 N
: | Spi_AsyncTransmit(Std_ReturnType, ~ : Description:
| Spi_SequenceType) Transmission processing (writing to SPI bus) is
| . . done asynchronously according to the sequence
N S EI:AEIECIrinEnE(L _______ requested and the prioritization mechanism.
| This case is a sequence of linked Jobs. At the end
! of Channels transmission the SPI Handler/Driver
! ! ! _ . | becomesidle.
: : Seq0.Job1() E ; -
I I
| | |
! ! <Spi_Job1EndNotification>() !
| 1 - 1
d 1 =
|
|

Description:

the “End Job Notification” of the Job process is
called.

AN

When a Job transmission ends, if it is configured,

Description:

When the Sequence transmission ends, if it is
configured, the “End Seq Notification” of the
Sequence process is called.

Description:

The received data, if there are, will be allocated in
the configured receive buffers, and can be read
using the read function for IB Channels.

AN

AUTSSAR

9.3.4 Many Channels, many Jobs and many Sequences

The following sequence diagram shows an example of Spi_WriteIB/ Spi_Async-
Transmit / Spi_ReadIB calls for Sequences transmission. Write or Read steps
could be skipped when Jobs are just reading or writing respectively.

Example: Channels ID 0 to 3 belong to Job ID 1 (high priority 2), Channels ID 4 to 10
belong to Job ID 2 (Low priority 1) which has not an end notification function. These
Jobs belong to the same Sequence ID 0 which is configured as interruptible.

Channels ID 11 to 13 belong to Job ID 0 (higher priority 3) which belongs to Sequence
ID 1 which is configured as not interruptible.

Sequence Job Channel

Name Interruptible Name Priority

IDO Yes IDA1 2 IDO...ID3
ID2 1 ID4...ID10

ID1 No IDO 3 ID11...ID13

AUTSSAR

Description:

Write to a Channel is done
synchronously. You pass the Channel ID
and the buffer.

In this case, Channels are not within the
same Job.

Userl: Spi User User2: Spi User «module»
Spi
T T T
| | Spi_WritelB(Std_ReturnType, Spi_ChannelType, const Spi_DataBufferType*)
| L >
I Spi_WritelB()
| e e
|
| |
| L
I loop Channel 10 I
| |
: opt If channel needed/ :
I I
| Spi_WritelB(Std_ReturnType, Spi_ChannelType, const Spi_DataBufferType*)
| =
| Spi_WritelB().
| e —————————— == === e ———
| = Sel =
| | S |
1] N]
| I A |
I Spi_WritelB(Std_ReturnType, Spi_ChannelType, const Spi_DataBufferType*) N
o o spiwitelB) _______________| R
| Sel
1 T
| |
loop Channe : :
opt If channel needed/ I | do----
e 1"
Spi_WritelB(Std_ReturnType, Spi_ChannelType, const Spi_DataBufferType*) |
| Spi_WritelB()
<_ __________ |
= T =
T T T
| Spi_AsyncTransmit(Std_RetunType, Spi_SequenceType) I
Descripton: | || _ o L------77T Spi;A_syncTransmit()

Transmission is performing
asynchronously. The SPI T
Handler/Driver records the sequence |

and retums. RE T

:SpiiAsglncTransn]it(StdiRetumType, Spi_SequenceType)

Seq0.Job1 (partl)|

| Spi_AsyncTransmit()

Description: When a Job transmission ends, if it is configured, the “End Seq0.Job1 (part2)

Job Notification” of the Job process is called.

~~._ <Spi_JoblEndNotification>()

<Spi_JoblEndNotification>()

<Spi_SeqlEndNotification>()

<Spi_SeqlEndNotification>()
T-————=7

[AN

Description:

Transmission processing (writing to SP1
bus) is done asynchronously according to
the job requested and the prioritization
mechanism.

This case concems many Sequences of
many Jobs so at the end of a Job
transmission SPI Handler/Driver schedule
the next Job to transmit.

The Job selected has the higher priority
and could belong to another Sequence
only if the sequence on going is
configured as interruptible.

At the end of all Sequences transmission
SPI Handler/Driver becomes idle.

Description: .
When the Sequence
transmission ends, if it is

configured, the “End Seq <Spi_SeqOEndNotification>()

Seq0.Job2()” Ldr_f

<Spi_SeqOEndNotification>()

Notification” of the
Sequence process is
called.

L] -
Spi_ReadIB(Spi_ChannelType, Spi_DataType*): Std_RetumType

Figure 9.6

Description:

The received data, if there are, will be
allocated in the configured receive buffers,
and can be read using the read function
for IB Channels.

AUTSSAR

9.4 Setup/AsyncTransmit (EB)

9.4.1 Variable Number of Data / Constant Number of Data

[SWS_Spi_00077]
Upstream requirements: SRS_Spi_12198, SRS_Spi_12200, SRS_Spi_12201
[To transmit a variable number of data, it is mandatory to call the Spi_SetupEB

function to store new parameters within SPI Handler/Driver before each Spi_Async-
Transmit function call. |

[SWS_Spi_00078]
Upstream requirements: SRS_Spi_12253, SRS Spi_12262, SRS_Spi_12202
[To transmit a constant number of data, it is only mandatory to call the Spi_SetupEB

function to store parameters within SPI Handler/Driver before the first Spi_Async-
Transmit function call.

9.4.2 One Channel, one Job then one Sequence

The following sequence diagram shows an example of Spi_SetupEB/ Spi_Async-—
Transmit calls for a Sequence transmission with only one Job composed of only one
Channel. Write or Read accesses are "User Dependant” and could be skipped when
Job is just reading or writing respectively.

Example: Channel ID 2 belongs to Job ID 1 which belongs to Sequence ID 0

Sequence Job Channel
IDO ID1 ID2

AUTSSAR

Spi User «module»
Spi
T T
| | .
| Spi_SetupEB(Std_ReturnType, Spi_ChannelType,const _ _ _ ..o ----=---=-----" -7

Spi_SetupEB()

Spi_AsyncTransmit(Std_ReturnType,

Spi_DataBufferType*, Spi_DataBufferType**, Spi_NumberOfDataType)

[AN
Description:

Spi_SequenceType) - -

Spi_AsyncTransmit()

L
|
|
Seq0.Job1() E—l]:
|
|
|
1

<Spi_Job1EndNotification>()

<Spi_Job1EndNotification;0‘ - =]
___________________________ —e—————— =

<Spi_SeqOEndNotification>()

<Spi_SerEndNotificatibn>()‘

—mmm -3 >

Figure 9.7

9.4.3 Many Channels, one Job then one Sequence

The following sequence diagram shows an example of Spi_SetupEB/ Spi_Async-—
Transmit calls for a Sequence transmission with only one Job composed of many
Channels. Write or Read accesses are "User Dependant" and could be skipped when
Job is just reading or writing respectively.

Setup a Channel; initialize buffer pointers and
- - { length synchronously. Parameters are saved.

[AN
Description:
Transmission is performing asynchronously. The
SPI Handler/Driver records the sequence and
retums.

AN

Description:

Transmission processing (writing to SPI bus) is
done asynchronously according to the sequence
requested and the prioritization mechanism.

This case is not a Sequence of linked Jobs so the
SPI Handler/Driver becomes idle at the end of the
Channel transmission.

AN
Description:
When a Job transmission ends, if it is configured,
the “End Job Notification” of the Job process is
called.

Description:

When the Sequence transmission ends, if it is
configured, the “End Seq Notification” of the
Sequence process is called.

Example: Channels ID 2 & 3 belong to Job ID 1 which belongs to Sequence ID 0

Sequence

Job

Channel

IDO

ID1

ID2

ID3

AUTSSAR

Userl: Spi User

User2: Spi User

Spl SetupEB(Std_ReturnType, Spi_ChannelType, const

HZDataBufferType , Spi_| DataBufferType

«module»
Spi

, Spi_Num berOfDataType)

Spi_SetupEB()

<Spi_Job1EndNotification>()

Seq0.Job1() EZ'

<Spi_Job1EndNotification>()

—————————————————— R

<Spi_SerEndNotiﬁ cation>()

|
w
'E
U
=8
)
@
c
E
o)
_|
<
S
o
(/1
72
U
%
IS
@
<
ES
g
=
<
S
m
»
'E
217
€
3
=4
o
Q
o
28
S
2
<
S
&

<Spi_! SerEndNotlflcauon>0

- - — - — - =°PiSed0EndRotheatonl - >

Figure 9.8

9.4.4 Many Channels, many Jobs and one Sequence

The following sequence diagram shows an example of Spi_SetupEB/ Spi_Async-
Transmit calls for a Sequence transmission of linked Jobs. Write or Read accesses
are "User Dependant" and could be skipped when Job is just reading or writing respec-

tively.

Example: Channels ID 0 to 3 belong to Job ID 1 (higher priority), Channels ID 4 to 10
belong to Job ID 2 (Lower priority) which has not an end notification function. These

Jobs belong to the same Sequence ID 0

AN

Description:

Tt Setup a Channel; initialize buffer pointers and

length synchronously. Parameters are saved.
In this case, Channels are within the same Job.

AN
Description:
Transmission is performing asynchronously. The
SPI Handler/Driver records the sequence and
returns,

AN
Description:
Transmission processing (writing to SPI bus) is
done asynchronously according to the
sequence requested and the prioritization
mechanism.
This case is not a sequence of linked Jobs. At
the end of Channels transmission the SPI
Handler/Driver becomes idle.

AN

Description:

When a Job transmission ends, if it is
configured, the “End Job Notification” of the
Job process is called.

[AN
Description:
When the Sequence transmission ends, if it is
configured, the “End Seq Notification” of the
Sequence process is called.
The received data, if there are, will be directly
stored in EB Channel receive buffer and can be
used such as.

AUTSSAR

length synchronously. Parameters are saved.

Sequence Job Channel
DO ID1 IDO...ID3
ID2 ID4...1D10
Userl: Spi User User2: Spi User «module»
Spi
T T T
'
: Spi_SetupEB(Std_RetumnType, Spi_ChannelType, const |
| ~Spi_DataBufferType*, Spi_DataBufferType**, Spi_NumberOfDataType)
|
|
|
I
loop Channel:=5...10) ;
|
opt If channel needed) :
: Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const :
| Spi_DataBufferType*, Spi_DataBufferType**, Spi_NumberOfDataType)
| Tl
! Spi_SetupEB
, e - o SPISEWREB)_ Tl]
| L Tl Description:
T T | { Setup a Channel; initialize buffer pointers and
T
I

In this case, Channels are not within the same

| Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const
[TSpi_DataBufferType*, Spi_DataBufferType**, Spi_NumberOfDataType)
I

| Spi_SetupEB()

Job.

loop Chan

ne

opt If channel needed/

| -
Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Description:

Description:

When a Job transmission
ends, if it is configured, the
“End Job Notification” of the
Job process is called.

Spi_DataBufferType*, Spi_DataBufferType**, >
Spi_NumberOfDataType)
| Spi_SetupEB()
<-——-------- Pmm T mmm
L |
| | |
T T .-
1 1 PP S
1 1 PP 1
| [Spi_AsyncTransmit(Std_ReturnType, - - - ~ |
| Spi_SequenceType)
|
| Spi_AsyncTransmit()
T e B
I
| | |
| |
| | Seq0.Job1() - -
I I
| |
: L : <Spi_Job1EndNotification>() :
< -
| .
I

1 <Spi_JobiEndNotification>0 _ _ _ _ __ _ _ _ _ _
[k
o

Seq0.Job2()

<Spi_SeqOEndNotification>()

<Spi_SeqOEndNotification>() N

Figure 9.9

Transmission is performing asynchronously. The
SPI Handler/Driver records the sequence and
returns.

AN

Description:

Transmission processing (writing to SPI bus) is
done asynchronously according to the job
requested and the prioritizaton mechanism.
This case is a Sequence of linked Jobs so at the
end of a Job transmission SP| Handler/Driver
schedule the next Job to transmit.

At the end of Sequence transmission the SP1
Handler/Driver becomes idle.

AN

Description:

When the Sequence transmission ends, if it is
configured, the “End Seq Notification” of the
Sequence process is called.

The received data, if there are, will be directly
stored in EB Channel receive bufferand can be
used such as.

Description:

The received data will be allocated in the
configured receive buffers, and can be read using
the read function for IB Channels.

AUTSSAR

9.4.5 Many Channels, many Jobs and many Sequences

The following sequence diagram shows an example of Spi_SetupEB/ Spi_Async-—
Transmit calls for Sequences transmission. Write or Read accesses are "User De-
pendant" and could be skipped when Job is just reading or writing respectively.

Example: Channels ID 0 to 3 belong to Job ID 1 (high priority 2), Channels ID 4 to 10
belong to Job ID 2 (Low priority 1) which has not an end notification function. These
Jobs belong to the same Sequence ID 0 which is configured as interruptible.

Channels ID 11 to 13 belong to Job ID 0 (higher priority 3) which belongs to Sequence
ID 1 which is configured as not interruptible.

Sequence Job Channel

Name Interruptible Name Priority

IDO Yes IDA1 2 IDO...ID3
ID2 1 ID4...ID10

ID1 No IDO 3 ID11...ID13

AUTSSAR

Userl: Spi User

User2: Spi User

|
| Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const 1
rSpi_DataBufferType*, Spi_DataBufferType**, Spi_NumberOfDataType)

<____

Spi

«module»

Spi_SetupEB()

loop Channel:=5...10 /

opt If channel needed)

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const
Spi_DataBufferType*, Spi_DataBufferType**, Spi_NumberOfDataType)

<____

Spi_SetupEB()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const
Spi_DataBufferType*, Spi_DataBufferType**, Spi_NumberOfDataType)

Spi_SetupEB()

loop Chan 12...13

Description:

Setup a Channel; initialize buffer pointers and
length synchronously. Parameters are saved.
In this case, Jobs of those Channels are not
within the same Sequence.

opt If channel needed/

Spi_SetupEB(Std_RP;turnType, Spi_ChannelType, const
Spi_DataBufferType*, Spi_DataBufferType**, Spi_NumberOfDataType)

Spi_SetupEB()
e —————— T e —— -

| Spi_AsyncTransmit(Std_ReturnType,
Spi_SequenceType)

1
Spi_AsyncTransmit(Std_ReturnType,
Spi_SequenceType)

---H

Spi_AsyncTransmit()

Spi_AsyncTransmit()

Seq0.Job1 (part2)

<Spi_Job1EndNotification>()

<Spi_SeqlEndNotification>()

<Spi_Job1EndNotification>()

Seql.Job0() E ;

<Spi_SeqlEndNotification>()

Seq0.90b20 E;I

<Spi_SeqOEndNotification>() |

<Spi_SeqOEndNotification>()

Figure 9.10

[AN
Description:
Transmission is performing asynchronously. The
SPI Handler/Driver records the sequence and
retums.

AN

Description:

Transmission processing (writing to SPI bus) is
done asynchronously according to the job
requested and the prioritization mechanism.
This case concems many Sequences of many
Jobs so at the end of a Job transmission SPI
Handler/Driver schedule the next Job to
transmit.

The Job selected has the higher priority and
could belong to another Sequence only if the
sequence on going is configured as
interruptible.

At the end of all Sequences transmission SPI
Handler/Driver becomes idle.

AN
Description:
When a Job transmission ends, if it is
configured, the “End Job Notification” of the
Job process is called.

AN

Description:

When the Sequence transmission ends, if it is
configured, the “End Seq Notification” of the
Sequence process is called.

The received data, if there are, will be directly
stored in EB Channel receive buffer and can be
used such as.

AUTSSAR

9.5 Mixed Jobs Transmission

All kind of mixed Jobs transmission is possible according to the Channels configuration
and the priority requirement inside Sequences.

The user knows which Channels are in use. Then, according to the types of these
Channels, the appropriate methods shall be called.

9.6 LEVEL 0 SyncTransmit diagrams

9.6.1 Write/SyncTransmit/Read (IB): Many Channels, many Jobs and one Se-
quence

The following sequence diagram shows an example of Spi_WriteIB / Spi_Sync-
Transmit / Spi_ReadIB calls for a Sequence transmission of linked Jobs. Write or
Read steps could be skipped when Jobs are just reading or writing respectively.

Example: Channels ID 0 to 3 belong to Job ID 1 (higher priority), Channels ID 4 to 10
belong to Job ID 2 (Lower priority). These Jobs belong to the same Sequence ID 0

Sequence Job Channel
Name Priority

IDO ID1 High 1DO...ID3
ID2 Low ID4...ID10

AUTSSAR

Userl: Spi User User2: Spi User «module»
Spi

|
Spi_WritelB(Std_ReturnType, |

—Spi_ChannelType, const Spi_DataBufferType*)
Spi_WritelB()
<_ _____________________________
loop Channel:=5...10)

opt If channel needed)

}———

Spi_WritelB(Std_ReturnType,
—Spi_ChannelType, const Spi_DataBufferType*)

Spi_WritelB()
i

Write to a Channel is done
synchronously. You pass the
Channel ID and the buffer.
In this case, Channels are not
Spi_WritelB() within the same Job.

I
Spi_WiitelB(Std_RetumType,
Spi_ChaInneIType, const Spi_DataBufferType*)

loop Channel:=1...3

opt If channel needed/

1
Spi_WritelB(Std_ReturnType,
Spi_ChannelType, const Spi_DataBufferType*)

I

! Spi_WritelB() [AN
Y —— e e e e e e e — Transmission is performing

T

T

|

!

1

synchronously. The SPI

Handler/Driver transmits the
complete Sequence and it returns.

. . At the end of Sequence
Spi_SyncTransmit(Std_RetumType, transmission, the SPI

T

|

|

|

: Spi_SequenceType) Handler/Driver becomes idle.

|

|

| Seq0.Job1()

I

|

: Seq0.Job2() AN
I Spi_SyncTransmit() The received data, if there are, wil
| ettty be allocated in the configured

1 T . receive buffers, and can be read
| | Spi_ReadIB(Std_RetumType, | using the read function for IB

| Spi_ChannelType, SpifDataBufferType*“)—> Channels.

I

| Spi_ReadIB()

| <-—-——————— - — === — = —

| =

I I

Figure 9.11

9.6.2 Setup/SyncTransmit (EB): Many Channels, many Jobs and one Sequence

The following sequence diagram shows an example of Spi_SetupEB / Spi_Sync-
Transmit calls for a Sequence transmission of linked Jobs. Write or Read accesses
are "User Dependant" and could be skipped when Job is just reading or writing respec-
tively.

Example: Channels ID 0 to 3 belong to Job ID 1 (higher priority), Channels ID 4 to 10
belong to Job ID 2 (Lower priority). These Jobs belong to the same Sequence ID 0

Sequence Job Channel
IDO ID1 IDO...ID3
ID2 ID4...1D10

AUTSSAR

Userl: Spi User

User2: Spi User «module»

Spi

T
: Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_SetupEB()

Spi_DataBufferType*, Spi_DataBufferType**, Spi_NumberOfDataType),

loop Channel:=5...10)

opt If channel needed)

: Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

T —Spi_DataBufferType*, Spi_DataBufferType**, Spi_NumberOfDataType)
Spi_SetupEB()

I
Spi_SetupEB(Std_RetunType, Spi_ChannelType, const

|~ Spi_DataBufferType*, Spi_DataBufferType**, Spi_NumberOfDataType)

| Spi_SetupEB()

Setup a Channel; initialize buffer
pointers and length
synchronously. Parameters are
saved. In this case, Channels are
not within the same Job.

loop Chan

opt If channel needed/

'
Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const
Spi_DataBufferType*, Spi_DataBufferType**, Spi_NumberOfDataType)

I Spi_SetupEB()

Spi_SyncTransmit(Std_ReturnType,

Spi_SequenceType)

Spi_SyncTransmit()

————e e ——-H

Figure 9.12

Seq0.Job1()

Seq0.Job2()

AN

Transmission is performing
synchronously. The SPI
Handler/Driver transmits the
complete Sequence and it retumns.
At the end of Sequence
transmission, the SPI
Handler/Driver becomes idle.

AN
Description:
The received data, if there are, will
be directly stored in EB Channel
receive buffer and can be used
such as.

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
SPI Handler/Driver.

Chapter 10.3 specifies published information of the module SPI Handler/Driver.

10.1 How to read this chapter

For details refer to the chapter 10.1 “Introduction to configuration specification” in [2].

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapter 7 and Chapter 8.

[SWS_Spi_00390] [The SPI module shall reject configurations with partition mappings
which are not supported by the implementation. |

10.2.1 Spi

[ECUC_Spi_00103] Definition of EcucModuleDef Spi |

Module Name Spi

Description Configuration of the Spi (Serial Peripheral Interface) module.

Post-Build Variant Support true

Supported Config Variants VARIANT-LINK-TIME, VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers
Container Name Multiplicity Scope / Dependency

SpiDemEventParameterRefs 0..1 Container for the references to DemEventParameter elements
which shall be invoked using the APl Dem_SetEventStatus in
case the corresponding error occurs. The Eventld is taken from
the referenced DemEventParameter's DemEventld symbolic
value. The standardized errors are provided in this container and
can be extended by vendor-specific error references.

Y%

AUTSSAR

A
Included Containers
Container Name Multiplicity Scope / Dependency
SpiDriver 1 This container contains the configuration parameters and sub
containers of the AUTOSAR Spi module.
SpiGeneral 1 General configuration settings for SPI-Handler
SpiPublishedInformation 1 Container holding all SPI specific published information
parameters

10.2.2 SpiDemEventParameterRefs

[ECUC_Spi_00240] Definition of EcucParamConfContainerDef SpiDemEventPa-
rameterRefs |

Container Name SpiDemEventParameterRefs
Parent Container Spi
Description Container for the references to DemEventParameter elements which shall be invoked

using the API Dem_SetEventStatus in case the corresponding error occurs. The Event
Id is taken from the referenced DemEventParameter's DemEventld symbolic value.
The standardized errors are provided in this container and can be extended by
vendor-specific error references.

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID
SPI_E_HARDWARE_ERROR 0..1 [ECUC_Spi_00241]

No Included Containers

[ECUC_Spi_00241] Definition of EcucReferenceDef SPI_E_HARDWARE_ERROR
[

Parameter Name SPI_E_HARDWARE_ERROR

Parent Container SpiDemEventParameterRefs

Description Reference to configured DEM event to report "Hardware failure". If the reference is not
configured the error shall not be reported.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time ‘ X ‘ All Variants

V

AUTSSAR

Link time

Post-build time

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

10.2.3 SpiGeneral

[ECUC_Spi_00225] Definition of EcucParamConfContainerDef SpiGeneral |

Container Name

SpiGeneral

Parent Container

Spi

Description

General configuration settings for SPI-Handler

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

SpiCancelApi 1 [ECUC_Spi_00226]
SpiChannelBuffersAllowed 1 [ECUC_Spi_00227]
SpiDevErrorDetect 1 [ECUC_Spi_00228]
SpiHwStatusApi 1 [ECUC_Spi_00229]
SpilnterruptibleSegAllowed 1 [ECUC_Spi_00230]
SpiLevelDelivered 1 [ECUC_Spi_00231]
SpiMainFunctionPeriod 0..1 [ECUC_Spi_00242]
SpiSupportConcurrentSyncTransmit 1 [ECUC_Spi_00237]
SpiVersionInfoApi 1 [ECUC_Spi_00232]
SpiEcucPartitionRef 0.* [ECUC_Spi_00244]
SpiKernelEcucPartitionRef 0..1 [ECUC_Spi_00245]

No Included Containers

[ECUC_Spi_00226] Definition of EcucBooleanParamDef SpiCancelApi |

Parameter Name

SpiCancelApi

Parent Container

SpiGeneral

Description

Switches the Spi_Cancel function ON or OFF.

Multiplicity

1

\Y

AUTSSAR

A
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

[ECUC_Spi_00227]
lowed [

Definition of EcucintegerParamDef SpiChannelBuffersAl-

Parameter Name

SpiChannelBuffersAllowed

Parent Container SpiGeneral

Description Selects the SPI Handler/Driver Channel Buffers usage allowed and delivered.
IB=0;EB=1;IB/EB=2;

Multiplicity 1

Type EcuclntegerParamDef

Range 0.2

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

[ECUC_Spi_00228] Definition of EcucBooleanParamDef SpiDevErrorDetect |

Parameter Name

SpiDevErrorDetect

Parent Container

SpiGeneral

Description Switches the development error detection and notification on or off.
e true: detection and notification is enabled.
o false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

AUTSSAR

[ECUC_Spi_00229] Definition of EcucBooleanParamDef SpiHwStatusApi |

Parameter Name

SpiHwStatusApi

Parent Container

SpiGeneral

Description Switches the Spi_GetHWUnitStatus function ON or OFF.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Scope / Dependency

scope: local

[ECUC_Spi_00230] Definition of EcucBooleanParamDef SpilnterruptibleSeqAl-

lowed [

Parameter Name

SpilnterruptibleSegAllowed

Parent Container

SpiGeneral

Description Switches the Interruptible Sequences handling functionality ON or OFF.
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

dependency: This parameter depends on SPI_LEVEL_DELIVERED value. It is only
used for SPI_LEVEL_DELIVERED configured to 1 or 2.

[ECUC_Spi_00231] Definition of EcucintegerParamDef SpiLevelDelivered |

Parameter Name

SpiLevelDelivered

Parent Container

SpiGeneral

Description Selects the SPI Handler/Driver level of scalable functionality that is available and
delivered.

Multiplicity 1

Type EcuclntegerParamDef

Range 0..2 |

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time ‘ X ‘ All Variants

V

AUTSSAR

Link time -
Post-build time -
Scope / Dependency scope: local

[ECUC_Spi_00242] Definition of EcucFloatParamDef SpiMainFunctionPeriod |

Parameter Name SpiMainFunctionPeriod

Parent Container SpiGeneral

Description This parameter defines the cycle time of the function Spi_MainFunction_Handling in
seconds. The parameter is not used by the driver it self, but it is used by upper layer.

Multiplicity 0..1

Type EcucFloatParamDef

Range 10 .. INF[

Default value 0.01

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time —
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

[ECUC_Spi_00237] Definition of EcucBooleanParamDef SpiSupportConcurrent
SyncTransmit |

Parameter Name SpiSupportConcurrentSyncTransmit

Parent Container SpiGeneral

Description Specifies whether concurrent Spi_SyncTransmit() calls for different sequences shall be
configurable.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

AUTSSAR

[ECUC_Spi_00232] Definition of EcucBooleanParamDef SpiVersioninfoApi [

Parameter Name

SpiVersionInfoApi

Parent Container

SpiGeneral

Description Switches the Spi_GetVersioninfo function ON or OFF.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

[ECUC_Spi_00244] Definition of EcucReferenceDef SpiEcucPartitionRef |

Parameter Name

SpiEcucPartitionRef

Parent Container

SpiGeneral

Description Maps the SPI driver to zero or multiple ECUC partitions to make the driver API
available in the according partition.

Multiplicity 0..*

Type Reference to EcucPartition

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

[ECUC_Spi_00245] Definition of EcucReferenceDef SpiKernelEcucPartitionRef |

Parameter Name

SpiKernelEcucPartitionRef

Parent Container SpiGeneral

Description Maps the SPI kernel to zero or one ECUC partitions to assign the driver kernel to a
certain core. The ECUC partition referenced is a subset of the ECUC partitions where
the SPI driver is mapped to.

Multiplicity 0..1

Type Reference to EcucPartition

Post-Build Variant Multiplicity true

Post-Build Variant Value true

\Y%

AUTSSAR

Multiplicity Configuration Class

Value Configuration Class

Pre-compile time All Variants
Link time

Post-build time

Pre-compile time All Variants

Link time

Post-build time

Scope / Dependency

scope: ECU

EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 1

+parameter

SpiLevelDelivered:

EcucintegerParamDef

mi

max =2

n=0

+parameter

SpiChannelBuffersAllowed:
EcucIntegerParamDef

>

mi

max =2

n=0

+parameter
Ecu

SpilnterruptibleSegAllowed:

cBooleanParamDef

+parameter

SpiHwStatusApi:

EcucBooleanParamDef

+parameter

EcucBooleanParamDef

SpiCancelApi:

+parameter

SpiVersioninfoApi:

EcucBooleanParamDef

defaultValue = false

+parameter

SpiDevErrorDetect:
EcucBooleanParamDef

defaultValue = false

+parameter

SpiSupportConcurrentSyncTransmit:

EcucBooleanParamDef

SpiMainFunctionPeriod:

EcucFloatParamDef

+parameter

min =0
max = INF
defaultvalue = 0.01

upperMultiplicity = 1

owerMultiplicity = 0

+reference

SpiEcucPartitionRef:

EcucReferenceDef

+destination | EcucParam ConfContainerDef

>

lowerMultiplicity = 0
upperMultiplicity = *

SpiKernelEcucPartitionRef:

reference

EcucReferenceDef

lowerMultiplicity = 0
upperMultiplicity = *

+destination

lowerMultiplicity = 0
upperMultiplicity = 1

Figure 10.1

AUTSSAR

[SWS_Spi_ CONSTR_00001] [The ECUC partitions referenced by SpiKernelEcuc—
PartitionRef shall be a subset of the ECUC partitions referenced by SpiEcucPar-
titionRef.]

[SWS_Spi_ CONSTR_00003] [If spiEcucPartitionRef references one or more
ECUC partitions, SpikKernelEcucPartitionRef shall have a multiplicity of one and
reference one of these ECUC partitions as well. |

10.2.4 SpiSequence

[ECUC_Spi_00106] Definition of EcucParamConfContainerDef SpiSequence |

Container Name SpiSequence
Parent Container SpiDriver
Description All data needed to configure one SPI-sequence

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

SpilnterruptibleSequence 1 [ECUC_Spi_00222]
SpiSeqEndNotification 0..1 [ECUC_Spi_00223]
SpiSequenceld 1 [ECUC_Spi_00224]
SpidJobAssignment 1.* [ECUC_Spi_00221]

No Included Containers

[ECUC_Spi_00222] Definition of EcucBooleanParamDef SpilnterruptibleSe-
quence |

Parameter Name SpilnterruptibleSequence

Parent Container SpiSequence

Description This parameter allows or not this Sequence to be suspended by another one.
Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

AUTSSAR

A

Scope / Dependency

scope: local

dependency: This SPI_INTERRUPTIBLE_SEQ_ALLOWED parameter as to be
configured as ON.

[ECUC_Spi_00223] Definition of EcucFunctionNameDef SpiSeqEndNotification [

Parameter Name

SpiSeqgEndNotification

Parent Container

SpiSequence

Description This parameter is a reference to a notification function.
Multiplicity 0..1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: local

[ECUC_Spi_00224] Definition of EcucintegerParamDef SpiSequenceld |

Parameter Name

SpiSequenceld

Parent Container

SpiSequence

Description SPI Sequence ID, used as parameter in SPI API functions.
Multiplicity 1
Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0..255
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: ECU

AUTSSAR

[ECUC_Spi_00221] Definition of EcucReferenceDef SpiJobAssignment |

Parameter Name SpiJobAssignment
Parent Container SpiSequence
Description A sequence references several jobs, which are executed during a communication
sequence
Multiplicity 1.*
Type Reference to SpiJob
Post-Build Variant Multiplicity true
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: local
M, +parameter SpilnterruptibleSequence:
EcucParamConfContainerDef ‘_ EcucBooleanParamDef
upperMultiplicity = *
lowerMultiplicity = 1
+parameter EcucFunctionNameDef
lowerMultiplicity = 0
upperMultiplicity = 1
SpiSeq Id:
+parameter Ecuclétjg:ri’r;i:mDef
symbolicNameValue = true
max = 255
+reference| ‘EcucReferenceDef +destination | gcucParamConfContainerDef
upperMultiplicity = * upperMultiplicity = *
lowerMultiplicity = 1 lowerMultiplicity = 1

Figure 10.2

10.2.5 SpiChannel

[ECUC_Spi_00104] Definition of EcucParamConfContainerDef SpiChannel |

Container Name SpiChannel
Parent Container SpiDriver
Description All data needed to configure one SPI-channel

Configuration Parameters

AUTSSAR

Included Parameters

Parameter Name Multiplicity ECUC ID

SpiChannelld 1 [ECUC_Spi_00200]
SpiChannelType 1 [ECUC_Spi_00201]
SpiDataWidth 1 [ECUC_Spi_00202]
SpiDefaultData 0..1 [ECUC_Spi_00203]
SpiEbMaxLength 0..1 [ECUC_Spi_00204]
SpilbNBuffers 0..1 [ECUC_Spi_00205]
SpiTransferStart 1 [ECUC_Spi_00206]

No Included Containers

[ECUC_Spi_00200] Definition of EcucintegerParamDef SpiChannelld |

Parameter Name SpiChannelld

Parent Container SpiChannel

Description SPI Channel ID, used as parameter in SPI API functions.
Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0..255

Default value

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

[ECUC_Spi_00201] Definition of EcucEnumerationParamDef SpiChannelType |

Parameter Name

SpiChannelType

Parent Container

SpiChannel

Description Buffer usage with EB/IB channel.

Multiplicity 1

Type EcucEnumerationParamDef

Range EB External Buffer
1B Internal Buffer

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

AUTSSAR

Scope / Dependency

scope: local

dependency: SPI_CHANNEL_BUFFERS_ALLOWED

[ECUC_Spi_00202] Definition of EcuclntegerParamDef SpiDataWidth |

Parameter Name

SpiDataWidth

Parent Container

SpiChannel

Description This parameter is the width of a transmitted data unit.

Multiplicity 1

Type EcuclntegerParamDef

Range 1..64

Default value 32

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

[ECUC_Spi_00203] Definition of EcuclntegerParamDef SpiDefaultData |

Parameter Name

SpiDefaultData

Parent Container SpiChannel

Description The default data to be transmitted when (for internal buffer or external buffer) the
pointer passed to Spi_WritelB (for internal buffer) or to Spi_SetupEB (for external
buffer) is NULL.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 0 .. 4294967295

Default value -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: local

AUTSSAR

[ECUC_Spi_00204] Definition of EcuclntegerParamDef SpiEbMaxLength |

Parameter Name

SpiEbMaxLength

Parent Container

SpiChannel

Description This parameter contains the maximum size (number of data elements) of data buffers
in case of EB Channels and only.

Multiplicity 0..1

Type EcucintegerParamDef

Range 1.. 1048576

Default value 1024

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

dependency: The SPI_CHANNEL_TYPE parameter has to be configured as EB for this
Channel. The SPI_CHANNEL_BUFFERS_ALLOWED parameter has to be configured
as 1or2.

[ECUC_Spi_00205] Definition of EcuclntegerParamDef SpilbNBuffers |

Parameter Name

SpilbNBuffers

Parent Container

SpiChannel

Description This parameter contains the maximum number of data buffers in case of IB Channels
and only.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 1..65535

Default value 1

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

dependency: The SPI_CHANNEL_TYPE parameter has to be configured as IB for this
Channel. The SPI_CHANNEL_BUFFERS_ALLOWED parameter has to be configured
asOor?2.

AUTSSAR

[ECUC_Spi_00206] Definition of EcucEnumerationParamDef SpiTransferStart |

Parameter Name

SpiTransferStart

Parent Container

SpiChannel

EcucEnumerationParamDef

+parameter

+parameter

Description This parameter defines the first starting bit for transmission.
Multiplicity 1
Type EcucEnumerationParamDef
Range LSB Transmission starts with the Least Significant Bit
first
MSB Transmission starts with the Most Significant Bit
first
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: local
SpiDriver: EcucParamConfContainerDef
lowerMultiplicity = 1
upperMultiplicity = 1
SpilbNBuffers:
EcucintegerParamDef
+subContainer min =1
max = 65535
SpiChannel: +parameter defaultValue = 1
EcucParamConfContainerDef lowerMultiplicity = 0
- upperMultiplicity = 1
upperMultiplicity = *
lowerMultiplicity = 1
SpiDefaultData:
EcucintegerParamDef
+parameter
max = 4294967295
lowerMultiplicity = 0
upperMultiplicity = 1
+literal E E .
SpiChannelType: cucEnumerationLiteralDef
+parameter o Eaay

+literal
1B:

EcucEnumerationLiteral Def

SpiDataWidth:
EcucintegerParamDef

min=1
max = 64
defaultValue = 32

SpiTransferStart:

+parameter

EcucEnumerationParamDef

+literal MSB:
EcucEnumerationLiteralDef

+literal
LSB:
EcucEnumerationLiteralDef

SpiEbMaxLength:
EcucintegerParamDef

min =1

max = 1048576
defaultvValue = 1024
lowerMultiplicity = 0
upperMultiplicity = 1

+parameter

SpiChannelld:
EcucintegerParamDef

symbolicNameValue = true
max = 255

Figure 10.3

AUTSSAR

10.2.6 SpiChannelList

[ECUC_Spi_00233] Definition of EcucParamConfContainerDef SpiChannelList |

Container Name SpiChannelList
Parent Container Spidob
Description References to SPI channels and their order within the Job.

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
SpiChannelindex 1 [ECUC_Spi_00234]
SpiChannelAssignment 1 [ECUC_Spi_00215]

No Included Containers

[ECUC_Spi_00234] Definition of EcuclntegerParamDef SpiChannellndex |

Parameter Name SpiChannelindex

Parent Container SpiChannelList

Description This parameter specifies the order of Channels within the Job.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 65535

Default value 0

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

[ECUC_Spi_00215] Definition of EcucReferenceDef SpiChannelAssignment |

Parameter Name SpiChannelAssignment

Parent Container SpiChannelList

Description A job reference to a SPI channel.

Multiplicity 1

Type Reference to SpiChannel

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

AUTSSAR

Post-build time | X | VARIANT-POSTBUILD
Scope / Dependency scope: local

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1
+subContainer

SpiChannelList: o SpiChannel:
EcucParamConfContainerDef P +reference | spichannelAssignment: +destination | EcycParamConfContainerDef
— EcucReferenceDef TR
lowerMultiplicity = 1 upperMultiplicity =
upperMultiplicity = * lowerMultiplicity = 1

SpiChannellndex:
+parameter| EcycintegerParamDef

min =0
max = 65535
defaultvalue = 0

Figure 10.4

10.2.7 Spidob

[ECUC_Spi_00105] Definition of EcucParamConfContainerDef Spidob [

Container Name SpiJob

Parent Container SpiDriver

Description All data needed to configure one SPI-Job, amongst others the connection between the
internal SPI unit and the special settings for an external device is done.

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

SpidJobEndNotification 0..1 [ECUC_Spi_00218]
SpiJobld 1 [ECUC_Spi_00219]
SpidobPriority 1 [ECUC_Spi_00220]
SpiDeviceAssignment 1 [ECUC_Spi_00216]

Included Containers

Container Name Multiplicity Scope / Dependency

SpiChannelList 1.7 References to SPI channels and their order within the Job.

AUTSSAR

[ECUC_Spi_00218] Definition of EcucFunctionNameDef SpiJobEndNotification [

Parameter Name SpiJobEndNotification

Parent Container SpiJob

Description This parameter is a reference to a notification function.
Multiplicity 0..1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: local

[ECUC_Spi_00219] Definition of EcucintegerParamDef Spidobld |

Parameter Name

SpiJobld

Parent Container

Spidob

Description SPI Job ID, used as parameter in SPI API functions.
Multiplicity 1
Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0 .. 65535
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

[ECUC_Spi_00220] Definition of EcuclntegerParamDef SpiJobPriority |

Parameter Name

SpiJobPriority

Parent Container

Spidob

Description Priority: 0, lowest, 3, highest (see SWS_Spi_00093)
Multiplicity 1

Type EcuclntegerParamDef

Range 0.3 |

\Y%

AUTSSAR

Default value

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

[ECUC_Spi_00216] Definition of EcucReferenceDef SpiDeviceAssignment |

Parameter Name

SpiDeviceAssignment

Parent Container

SpiJob

EcucReferenceDef

SpiChannelList:
+subContainer| EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

Figure 10.5

Description Reference to the external device used by this job
Multiplicity 1
Type Reference to SpiExternalDevice
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local
Spidob: SpidobPriority:
EcucParamConfContainerDef | +parameter EcucintegerParamDef
upperMultiplicity = * max =3
lowerMultiplicity = 1 min =0
SpiJobEndNotification:
+parameter EcucFunctionNameDef
lowerMultiplicity = 0
upperMultiplicity = 1
SpiJobld: EcuclntegerParamDef
+parameter
symbolicNameValue = true
max = 65535
SpiExternalDevice:
+reference SpiDeviceAssignment: +destination

EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 1

AUTSSAR
10.2.8 SpiExternalDevice

[ECUC_Spi_00207] Definition of EcucParamConfContainerDef SpiExternalDe-

vice |

Container Name

SpiExternalDevice

Parent Container

SpiDriver

Description

The communication settings of an external device. Closely linked to SpiJob.

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

SpiBaudrate 1 [ECUC_Spi_00208]
SpiCsBehavior 1 [ECUC_Spi_00249]
SpiCsldentifier 1 [ECUC_Spi_00209]
SpiCsPolarity 1 [ECUC_Spi_00210]
SpiCsSelection 0..1 [ECUC_Spi_00239]
SpiDataShiftEdge 1 [ECUC_Spi_00211]
SpiEnableCs 1 [ECUC_Spi_00212]
SpiHwUnit 1 [ECUC_Spi_00217]
SpiShiftClockldleLevel 1 [ECUC_Spi_00213]
SpiTimeClk2Cs 1 [ECUC_Spi_00214]
SpiTimeCs2Clk 1 [ECUC_Spi_00247]
SpiTimeCs2Cs 1 [ECUC_Spi_00248]
SpiDeviceEcucPartitionRef 0..* [ECUC_Spi_00246]

| No Included Containers

[ECUC_Spi_00208] Definition of EcucFloatParamDef SpiBaudrate [

Parameter Name

SpiBaudrate

Parent Container

SpiExternalDevice

Description This parameter is the communication baudrate - This parameter allows using a range
of values, from the point of view of configuration tools, from Hz up to MHz.

Multiplicity 1

Type EcucFloatParamDef

Range 10 .. INF[

Default value 1000000

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

AUTSSAR

[ECUC_Spi_00249] Definition of EcucEnumerationParamDef SpiCsBehavior |

Parameter Name

SpiCsBehavior

Parent Container

SpiExternalDevice

Description This parameter is used to define the chip select behavior. Either the CS is toggled for
each data frame (bit frame on the SPI bus in relation with SpiDataWidth) inside the
channel(s) composing the job or the CS is kept asserted for the whole job.

Multiplicity 1

Type EcucEnumerationParamDef

Range CS_KEEP_ASSERTED The chip select is kept asserted for the whole job
CS_TOGGLE The chip select is released after each data frame

completion

Default value CS_KEEP_ASSERTED

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

[ECUC_Spi_00209] Definition of EcucStringParamDef SpiCsldentifier |

Parameter Name

SpiCsldentifier

Parent Container

SpiExternalDevice

Description This parameter is the symbolic name to identify the Chip Select (CS) allocated to this
Job.

Multiplicity 1

Type EcucStringParamDef (Symbolic Name generated for this parameter)

Default value

Regular Expression

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

[ECUC_Spi_00210] Definition of EcucEnumerationParamDef SpiCsPolarity |

Parameter Name

SpiCsPolarity

Parent Container

SpiExternalDevice

Description This parameter defines the active polarity of Chip Select.
Multiplicity 1
Type EcucEnumerationParamDef
Range HIGH -
LOW -

\Y%

AUTSSAR

A
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: local

[ECUC_Spi_00239] Definition of EcucEnumerationParamDef SpiCsSelection |

Parameter Name

SpiCsSelection

Parent Container

SpiExternalDevice

Description When the Chip select handling is enabled (see SpiEnableCs), then this parameter
specifies if the chip select is handled automatically by Peripheral HW engine or via
general purpose |0 by Spi driver.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range CS_VIA_GPIO chip select handled via gpio by Spi driver.

CS_VIA_PERIPHERAL_ENGINE

chip select is handled automatically by Peripheral
HW engine.

Default value

CS_VIA_PERIPHERAL_ENGINE

Post-Build Variant Multiplicity

true

Post-Build Variant Value

true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: local

dependency: SpiEnableCs

[ECUC_Spi_00211] Definition of EcucEnumerationParamDef SpiDataShiftEdge [

Parameter Name

SpiDataShiftEdge

Parent Container

SpiExternalDevice

Description This parameter defines the SPI data shift edge.

Multiplicity 1

Type EcucEnumerationParamDef

Range LEADING -
TRAILING -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

AUTSSAR

Post-build time | X | VARIANT-POSTBUILD

Scope / Dependency

scope: local

[ECUC_Spi_00212] Definition of EcucBooleanParamDef SpiEnableCs |

Parameter Name

SpiEnableCs

Parent Container

SpiExternalDevice

Description This parameter enables or not the Chip Select handling functions. If this parameter is
enabled then parameter SpiCsSelection further details the type of chip selection.
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: local

[ECUC_Spi_00217] Definition of EcucEnumerationParamDef SpiHwUnit |

Parameter Name

SpiHwUnit

Parent Container

SpiExternalDevice

Description This parameter is the symbolic name to identify the HW SPI Hardware microcontroller
peripheral allocated to this Job.

Multiplicity 1

Type EcucEnumerationParamDef

Range CSIBO -
CSIB1 -
CsiB2 -
CSIB3 -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

AUTSSAR

[ECUC_Spi_00213]
Level |

Definition of EcucEnumerationParamDef SpiShiftClockidle

Parameter Name

SpiShiftClockldleLevel

Parent Container

SpiExternalDevice

Description This parameter defines the SPI shift clock idle level.

Multiplicity 1

Type EcucEnumerationParamDef

Range HIGH -
LOW -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

[ECUC_Spi_00214] Definition of EcucFloatParamDef SpiTimeClk2Cs |

Parameter Name

SpiTimeClk2Cs

Parent Container

SpiExternalDevice

Description Timing between clock and chip select assertion (in seconds) - This parameter allows to
use a range of values from 10 ns up to 0.01 seconds. The real configuration-value used
in software BSW-SPI is calculated out of this by the generator-tools.

Multiplicity 1

Type EcucFloatParamDef

Range [1E-8 .. 0.01]

Default value 1E-6

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

[ECUC_Spi_00247] Definition of EcucFloatParamDef SpiTimeCs2Clk |

Parameter Name

SpiTimeCs2Clk

Parent Container

SpiExternalDevice

Description Timing between chip select assertion and clock (in seconds) - This parameter allows to
use a range of values from 10ns up to 0.01 seconds. The real configuration-value used
in software BSW-SPI is calculated out of this by the generator-tools.

Multiplicity 1

Type EcucFloatParamDef

Range [1E-8 .. 0.01] |

Default value 1E-6

AUTSSAR

A
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: local

[ECUC_Spi_00248] Definition of EcucFloatParamDef SpiTimeCs2Cs |

Parameter Name SpiTimeCs2Cs
Parent Container SpiExternalDevice
Description Timing between the negation of the chip select at the end of frame and the assertion of

the chip select at the beginning of the next frame (in seconds) - This parameter allows
to use a range of values from 10ns up to 0.01 seconds. The real configuration-value
used in software BSW-SPI is calculated out of this by the generator-tools.

Multiplicity 1

Type EcucFloatParamDef

Range [1E-8 .. 0.01]

Default value 1E-6

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

[ECUC_Spi_00246] Definition of EcucReferenceDef SpiDeviceEcucPartitionRef |

Parameter Name SpiDeviceEcucPartitionRef
Parent Container SpiExternalDevice
Description Maps an SPI external device to zero or multiple ECUC partitions to limit the access to

this external device. The ECUC partitions referenced are a subset of the ECUC
partitions where the SPI driver is mapped to.

Multiplicity 0.~

Type Reference to EcucPartition

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

AUTSSAR

SpiBaudrate:
SpiExternalDevice: EcucFloatParamDef
EcucParamConfContainerDef +parameter -
min =0
upperMultiplicity = * max = INF]
lowerMultiplicity = 1 defaultvalue = 1000000 LEADING:
i EcucEnumerationLiteralDef
+literal | ===
+parameter SpiDatashiftEdge: .
" @————EcucEnumerationParamDef +iteral TRAILING:
EcucEnumerationLiteralDef
SpiTimeClk2Cs.
EcucFloatParamDef
+parameter e ———
min = 0.00000001
max =0.01
defaultvalue = 0.000001 HIGH:
. +literal EcucEnumerationLiteralDef
+parameter|(SpishiftClockidleLevel: -
" @—————|EcucEnumerationParamDef +literal
LOW:
EcucEnumerationLiteralDef
+parameter SpiEnableCs:
EcucBooleanParamDef
literal| CS_VIA_PERIPHERAL_ENGINE:
SpiCsSelection: EcucEnumerationParamDef EcucEnumerationLiteralDef
+parameter
defaultvalue = CS_VIA_PERIPHERAL_ENGINE literal
lowerMultiplicity = 0 ® CS VIA GPIO:
opperM Ul pliGITASHT EcucEnumerationLiteralDef
. LOW:
+ SE
literal EcucEnumerationLiteral Def
+parameter SpiCsPolarity:
& EcucEnumerationParam Def| +literal
HIGH:
EcucEnumerationLiteralDef
+parameter SpiCsldentifier:
EcucStringParamDef
symbolicNameValue = true
+literal CSIBO:
SpiHwUnit: EcucEnumerationLiteral Def
EcucEnumerationParamDef +literal
CSIB1:
+parameter EcucEnumerationLiteralDef
+literal
CSIB2:
EcucEnumerationLiteralDef
+literal
CSIB3:
EcucEnumerationLiteralDef
SpiDeviceEcucPartitionRef: L EcucPartition:
‘reference EcucReferenceDef +destination | e¢ycparam ConfContainerDef
lowerMultiplicity = 0 lowerMultiplicity = 0
upperMultiplicity = * upperMultiplicity = *
SpiTimeCs2Clk
+parameter EcucFloatParamDef
2:;%‘%01000001 SpiCsBehavior: +literal | CS_KEEP_ASSERTED:
c EcucEnumerationParam Def jonLi
defaultvalue = 0.000001 el s eMO e A ' @>—— EcucEnumerationLiteralDef
+parameter defaultvalue = CS_KEEP_ASSERTED
>
+literal CS_TOGGLE:
SpiTimeCs2Cs: EcucEnumerationLiteral Def
+parameter EcucFloatParamDef
min =0.00000001
max = 0.01
defaultvValue = 0.000001

Figure 10.6

[SWS_Spi_ CONSTR_00002] [The ECUC partitions referenced by SpiDeviceEcuc-
PartitionRef shall be a subset of the ECUC partitions referenced by SpiEcucPar-

titionRef.]

AUTSSAR

[SWS_Spi_ CONSTR_00004] [If spiEcucPartitionRef references one or more
ECUC partitions, SpiDeviceEcucPartitionRef shall have a multiplicity of greater
than zero and reference one or several of these ECUC partitions as well. |

10.2.9 SpiDriver

[ECUC_Spi_00091] Definition of EcucParamConfContainerDef SpiDriver |

Container Name SpiDriver

Parent Container Spi

Description This container contains the configuration parameters and sub containers of the
AUTOSAR Spi module.

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

SpiMaxChannel 0..1 [ECUC_Spi_00197]
SpiMaxJob 0..1 [ECUC_Spi_00198]
SpiMaxSequence 0..1 [ECUC_Spi_00199]

Included Containers

Container Name Multiplicity Scope / Dependency

SpiChannel 1.7 All data needed to configure one SPI-channel

SpiExternalDevice 1.* The communication settings of an external device. Closely linked
to Spidob.

Spidob 1.* All data needed to configure one SPI-Job, amongst others the
connection between the internal SPI unit and the special settings
for an external device is done.

SpiSequence 1.* All data needed to configure one SPI-sequence

[ECUC_Spi_00197] Definition of EcucintegerParamDef SpiMaxChannel |

Parameter Name SpiMaxChannel

Parent Container SpiDriver

Description This parameter contains the number of Channels configured. It will be gathered by
tools during the configuration stage.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 0.. 65535 |

Default value 0

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time | X | VARIANT-PRE-COMPILE

Y%

AUTSSAR

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: local

[ECUC_Spi_00198] Definition of EcucintegerParamDef SpiMaxJob |

Parameter Name

SpiMaxJob

Parent Container

SpiDriver

Description Total number of Jobs configured.
Multiplicity 0..1

Type EcuclntegerParamDef

Range 0 .. 65535

Default value 0

Post-Build Variant Multiplicity

true

Post-Build Variant Value

true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: local

[ECUC_Spi_00199] Definition of EcucintegerParamDef SpiMaxSequence |

Parameter Name SpiMaxSequence

Parent Container SpiDriver

Description Total number of Sequences configured.
Multiplicity 0..1

Type EcuclntegerParamDef

Range 0 .. 65535

Default value 0

Post-Build Variant Multiplicity

true

Post-Build Variant Value

true

Multiplicity Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

Post-build time

VARIANT-POST-BUILD

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

X | X|X|X]| X

Link time

VARIANT-LINK-TIME

AUTSSAR

Post-build time | X | VARIANT-POSTBUILD
Scope / Dependency scope: local
SpiSequence: SpiChannel: SpiExternalDevice: SpiJob:

EcucParamConfContainerDef

EcucParamConfContainerDef

EcucParamConfContainerDef

EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 1

upperMultiplicity = *
lowerMultiplicity = 1

upperMultiplicity = *
lowerMultiplicity = 1

upperMultiplicity = *
lowerMultiplicity = 1

+s.1bContainer$ +subContainer$ +waontainer$

SpiDriver: EcucParamConfContainerDef

+subContainer$

lowerMultiplicity = 1
upperMultiplicity = 1

+parameter +parameter +parameter
SpiMaxChannel: SpiMaxJob: SpiMaxSequence:

EcucintegerParamDef EcucIntegerParamDef EcucintegerParamDef
min =0 min =0 min =0
max = 65535 max = 65535 max = 65535
defaultvalue = 0 defaultvalue = 0 defaultvalue = 0
lowerMultiplicity = 0 lowerMultiplicity = 0 lowerMultiplicity = 0
upperMultiplicity = 1 upperMultiplicity = 1 upperMultiplicity = 1

Figure 10.7

10.2.10 SpiPublishedIinformation

[ECUC_Spi_00235] Definition of EcucParamConfContainerDef SpiPublishedIn-
formation [

Container Name SpiPublishedInformation

Parent Container Spi
Container holding all SPI specific published information parameters

Description

Configuration Parameters

Included Parameters
Parameter Name

SpiMaxHwUnit 1

ECUC ID
[ECUC_Spi_00236]

Multiplicity

No Included Containers

AUTSSAR

[ECUC_Spi_00236] Definition of EcuclntegerParamDef SpiMaxHwUnit |

Parameter Name SpiMaxHwUnit
Parent Container SpiPublishedInformation
Description Number of different SPI hardware microcontroller peripherals (units/busses) available
and handled by this SPI Handler/Driver module.
Multiplicity 1
Type EcuclntegerParamDef
Range 0 .. 65535 |
Default value 0
Post-Build Variant Value false
Value Configuration Class Published Information | X | All Variants
Scope / Dependency scope: local
]

10.3 Published Information

For details refer to the chapter 10.3 “Published Information” in [2].

10.4 Configuration concept

There is a relationship between the SPI Handler/Driver module and the modules that
use it. This relationship is resolved during the configuration stage and the result of it
influences the proper APl and behaviour between those modules.

The user needs to provide to the SPI Handler/Driver part of the configuration to adapt
it to its necessities. The SPI Handler/Driver shall take this configuration and provide
the needed tools to the user.

The picture shows the information flow during the configuration of the SPI Handler/-
Driver. It is shown only for one user, using an External EEPROM Driver as example,
but this situation is common to all users of the SPI Handler/Driver. To highlight the
situation where more users are affected, several overlapping documents are drawn.

AUTSSAR

om
m

SPI HandlerDriver full

Conﬁguration configuration

Tool
Part o f SPI configuration - SpiCh
e
Spi.h
XML
XML Hardware ECU Resources Lo PP T
Userdriver XML sheet containing 3ll hardwars S

(e.g: EEPROM External
Driver)

configuration
(eg: Number of SPI
buses, list of all CS)

[3 P
RN z

[
User of SPI Handler/Driver (e.g:j;/fternal EEPROM Driver)

Eep.c e
Eep.c }» le:,{ Eep.h

Figure 10.8

The steps on the diagrams are:

1.

The user (External EEPROM Driver) of SPI Handler/Driver edits a XML configu-
ration file. This XML configuration file is the same used by the user to generate
its own configuration.

For each ECU, a XML HW configuration document contains information which
should be used in order to configure some parameters.

. The "SPI generation tool". The Generation tool (here is reflected only the part

that generates code to SPI usage) shall generate the handles to export and the
instance of the configuration sets. In this step the software integrator will provide
missing information.

SPI instance configuration file. As a result of the generation all the symbolic
handlers needed by the user are included in the configuration header file of the
SPI Handler/Driver.

User gets the symbolic name of handlers. User imports the handle generated to
make use of them as requested by its XML configuration file.

AUTSSAR
A Not applicable requirements

[SWS_Spi_NA_00999]

Upstream requirements: SRS_BSW_00301, SRS_BSW_00302, SRS_BSW_00306, SRS_BSW _-
00307, SRS_BSW _ 00308, SRS _BSW 00309, SRS BSW_00312,
SRS_BSW_00325, SRS_BSW_00328, SRS_BSW_00330, SRS_BSW_-
00331, SRS_BSW_00341, SRS _BSW_00342, SRS_BSW_00343,
SRS_BSW_00347, SRS_BSW_00375, SRS_BSW_00399, SRS_BSW_-
00400, SRS BSW 00401, SRS BSW 00413, SRS BSW 00416,
SRS_BSW 00417, SRS_BSW_00422, SRS BSW 00423, SRS _BSW -
00424, SRS BSW 00426, SRS BSW 00427, SRS BSW 00428,
SRS_BSW_00429, SRS_BSW_00432, SRS_BSW_00433, SRS_BSW_-
00005, SRS_BSW_00006, SRS _BSW_00009, SRS_BSW_00010,
SRS_BSW_00161, SRS_BSW_00164, SRS_BSW_00168, SRS_BSW_-
00170, SRS BSW 00172, SRS _SPAL 12267, SRS _SPAL 12068,
SRS_SPAL 12069, SRS _SPAL 12063, SRS SPAL 12129, SRS -
SPAL 12067, SRS SPAL 12077, SRS _SPAL 12078, SRS SPAL -
12092, SRS _SPAL 12265

[These requirements are not applicable to this specification. |

AUTSSAR

B Appendix

The table shown on the next page is just an example to help future users (and/or
developers) that have to configure software modules to use the SPI Handler/Driver.
This table is independent of the spi_ConfigType structure but contains all elements
and aggregations like Channels, Jobs and Sequences.

EEP_WRITE_SEQ EEP_READ_SEQ
EEP_CMD_JOB EEP_DATA_JOB
EEP_CMD_CH EEP_ADR_CH EEP_DATA_CH

Figure B.1

AUTSSAR

External EEPROM Write/Read Configuration for SPI Handler/Driver

Sequences Jobs Channels
Symbolic ID | Attributes Symbolic ID | Attributes Symbolic ID | Attributes
Name Name Name
EEP_ 0 2 (Number of EEP_ 0 SPI_BUS_0, EEP_ 0 EB,
WRITE_ Jobs), CMD_JOB CS_EEPROM, CMD_CH 8 bits,
SEQ {EEP_CMD_JOB, CS_ON, 1 data to TxD,
EEP_DATA_JOB} CS_LOW, MSB First,
(List of Jobs), CLK_2MHz, Default value is
Not Interruptible, 1 (time in ps), 0x00
EEP_vidEnd- Polarity 180,
OfWriteSeq Falling Edge,
3,
EEP_vidEndOfS-
tartWrJob,
1 (Number of
Channels)
{EEP_CMD_CH}
(List of
Channels)
EEP_ 1 1 (Number of EEP_ 1 SPI_BUS_0, EEP_ 1 EB,
READ_ Jobs), DATA_JOB CS_EEPROM, ADR_CH 16 bits,
SEQ {EEP_DATA_JOB} CS_ON, 1 data to TxD,
(List of Jobs), CS_LOw, MSB First,
Not Interruptible, CLK_2MHz, Default value is
EEP_vidEndOf- 1 (time in ps), 0x0000
ReadSeq Polarity 180,
Falling Edge,
2,
NULL,
3 (Number of
Channels)
{EEP_CMD_CH,
EEP_ADR_CH,
EEP_DATA_CH}
(List of
Channels)
EEP_ 2 EB,
DATA_CH 8 bits,
32 data to TxD,
MSB First,

Default value is
0x00

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	6 Requirements Tracing
	7 Functional specification
	7.1 Overall view of functionalities and features
	7.2 General behaviour
	7.2.1 Common configurable feature: Allowed Channel Buffers
	7.2.1.1 Behaviour of IB channels
	7.2.1.2 Behaviour of EB channels
	7.2.1.3 Buffering channel usage

	7.2.2 LEVEL 0, Simple Synchronous behaviour
	7.2.3 LEVEL 1, Basic Asynchronous behavior
	7.2.4 Asynchronous configurable feature: Interruptible Sequences
	7.2.4.1 Behavior of Non-Interruptible Sequences
	7.2.4.2 Behavior of Mixed Sequences

	7.2.5 LEVEL 2, Enhanced behaviour

	7.3 Scheduling Advices
	7.4 Error Classification
	7.4.1 Development Errors
	7.4.2 Runtime Errors
	7.4.3 Production Errors
	7.4.4 Extended Production Errors
	7.4.4.1 SPI_E_HARDWARE_ERROR

	7.5 Security Events

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Spi_ConfigType
	8.2.2 Spi_StatusType
	8.2.3 Spi_JobResultType
	8.2.4 Spi_SeqResultType
	8.2.5 Spi_DataBufferType
	8.2.6 Spi_NumberOfDataType
	8.2.7 Spi_ChannelType
	8.2.8 Spi_JobType
	8.2.9 Spi_SequenceType
	8.2.10 Spi_HWUnitType
	8.2.11 Spi_AsyncModeType

	8.3 Function definitions
	8.3.1 Spi_Init
	8.3.2 Spi_DeInit
	8.3.3 Spi_WriteIB
	8.3.4 Spi_AsyncTransmit
	8.3.5 Spi_ReadIB
	8.3.6 Spi_SetupEB
	8.3.7 Spi_GetStatus
	8.3.8 Spi_GetJobResult
	8.3.9 Spi_GetSequenceResult
	8.3.10 Spi_GetVersionInfo
	8.3.11 Spi_SyncTransmit
	8.3.12 Spi_GetHWUnitStatus
	8.3.13 Spi_Cancel
	8.3.14 Spi_SetAsyncMode

	8.4 Callback notifications
	8.5 Scheduled functions
	8.5.1 Spi_MainFunction_Handling

	8.6 Expected interfaces
	8.6.1 Mandatory interfaces
	8.6.2 Optional interfaces
	8.6.3 Configurable interfaces
	8.6.3.1 Spi_JobEndNotification
	8.6.3.2 Spi_SeqEndNotification

	8.7 Error detection
	8.7.1 API parameter checking
	8.7.2 SPI state checking
	8.7.3 SPI runtime checking

	9 Sequence diagrams
	9.1 Initialization
	9.2 Modes transitions
	9.3 Write/AsyncTransmit/Read (IB)
	9.3.1 One Channel, one Job then one Sequence
	9.3.2 Many Channels, one Job then one Sequence
	9.3.3 Many Channels, many Jobs and one Sequence
	9.3.4 Many Channels, many Jobs and many Sequences

	9.4 Setup/AsyncTransmit (EB)
	9.4.1 Variable Number of Data / Constant Number of Data
	9.4.2 One Channel, one Job then one Sequence
	9.4.3 Many Channels, one Job then one Sequence
	9.4.4 Many Channels, many Jobs and one Sequence
	9.4.5 Many Channels, many Jobs and many Sequences

	9.5 Mixed Jobs Transmission
	9.6 LEVEL 0 SyncTransmit diagrams
	9.6.1 Write/SyncTransmit/Read (IB): Many Channels, many Jobs and one Sequence
	9.6.2 Setup/SyncTransmit (EB): Many Channels, many Jobs and one Sequence

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Spi
	10.2.2 SpiDemEventParameterRefs
	10.2.3 SpiGeneral
	10.2.4 SpiSequence
	10.2.5 SpiChannel
	10.2.6 SpiChannelList
	10.2.7 SpiJob
	10.2.8 SpiExternalDevice
	10.2.9 SpiDriver
	10.2.10 SpiPublishedInformation

	10.3 Published Information
	10.4 Configuration concept

	A Not applicable requirements
	B Appendix

