
NV Data Handling Guideline
AUTOSAR CP R24-11

Document Title NV Data Handling Guideline
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 810

Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R24-11

Document Change History
Date Release Changed by Description

2024-11-27 R24-11
AUTOSAR
Release
Management

• No content changes

2023-11-23 R23-11
AUTOSAR
Release
Management

• No content changes

2022-11-24 R22-11
AUTOSAR
Release
Management

• No content changes

2021-11-25 R21-11
AUTOSAR
Release
Management

• No content changes

2020-11-30 R20-11
AUTOSAR
Release
Management

• Effective utilization of Block
Fragmentation

2019-11-28 R19-11
AUTOSAR
Release
Management

• No content changes

• Changed Document Status from Final to
published

2018-11-28 4.4.0
AUTOSAR
Release
Management

• Editorial changes

2017-12-08 4.3.1
AUTOSAR
Release
Management

• Editorial changes

2016-11-30 4.3.0
AUTOSAR
Release
Management

• Initial Release

1 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

Contents

1 Introduction and functional overview 5

2 Definition of terms and acronyms 6

3 Related Documentation 7

3.1 Input documents & related standards and norms 7
3.2 Related standards and norms . 7
3.3 Related specification . 7

4 Overall mechanisms and concepts 8

4.1 NvM and its features . 8
4.1.1 Basic storage objects . 8

4.1.1.1 RAM Block . 9
4.1.1.2 ROM Block . 9
4.1.1.3 NV Block . 9
4.1.1.4 Administrative Block 9

4.1.2 Block Management types . 9
4.1.2.1 Native NVRAM block 10
4.1.2.2 Redundant NVRAM block 10
4.1.2.3 Dataset NVRAM block 10

4.1.3 Synchronization Mechanism supported 11
4.1.3.1 Implicit synchronization 11
4.1.3.2 Explicit synchronization 12

4.1.4 Other features . 14
4.1.4.1 CRC based comparison 14
4.1.4.2 Error recovery . 15
4.1.4.3 Write Verification . 15
4.1.4.4 RAM Block handling using the

NvM_SetRamBlockStatus API 15
4.1.4.5 Resistant to changed software 16
4.1.4.6 Block Fragmentation 18

4.2 Accessing NvM using RTE . 19
4.2.1 Interfaces . 19
4.2.2 Accessing NV Data using ServiceSwComponent 19
4.2.3 Accessing NV Data using NvBlockSwComponent 20

4.3 Initialization of RAM Blocks from NVRAM 21

5 Use Case Summary 23

5.1 Case 1: Application SW-C accessing NVRAM Blocks having no Per-
manent RAM block . 23

5.1.1 Case 1a: Application providing reference to its RAM data area 23
5.1.2 Case 1b: NvM fetches application RAM data via callback

(NvM Explicit Synchronization) 29

3 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

5.2 Case 2: Application SW-C accessing NVRAM blocks which have Per-
manent RAM blocks . 33

5.3 Case 3: Application SW-C accessing NVRAM block using an NvBlock-
SwComponentType . 37

5.3.1 Case 3a: Using Rte Explicit S/R Communication 41
5.3.1.1 No Dirty Flag Support 41
5.3.1.2 With Dirty Flag Support 43

5.3.2 Case 3b: Using Rte Implicit S/R Communication 48
5.3.2.1 No Dirty Flag Support 48
5.3.2.2 With Dirty Flag Support 50

A Appendix 57

4 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

1 Introduction and functional overview

This document gives an introduction to the basic AUTOSAR concepts on Non-volatile
Memory as well as the various access mechanisms available for the application soft-
ware components.

A brief outline of the Non-volatile memory concepts is provided in chapter 4 while
chapter 5 provides the various use cases on accessing Non-volatile memory from an
application (end user).

5 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

2 Definition of terms and acronyms

Abbreviation / Acronym: Description:

NvM NVRAM Manager

NV Non-volatile
NVRAM Non-volatile Random Access Memory

NVRAM Block The NVRAM Block is the entire structure, which is needed to administrate and to
store a block of NV data.

NV Block The NV Block is a Basic Storage Object. It represents the part of a "NVRAM
Block" which resides in the NV memory

RAM Block The RAM Block is a Basic Storage Object. It represents the part of a "NVRAM
Block" which resides in the RAM.

RAM Mirror RAM mirrors are NvM internal buffer used for operations that read and write the
RAM block of NVRAM blocks with NvMBlockUseSyncMechanism set TRUE.

ROM Block The ROM Block is a Basic Storage Object. It represents the part of a "NVRAM
Block" which resides in the ROM.

ROM Read-Only Memory

RTE Runtime Environment

SW-C Software Component

Table 2.1: Acronyms and abbreviations used in the scope of this Document

6 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

3 Related Documentation

3.1 Input documents & related standards and norms

[1] Specification of NVRAM Manager
AUTOSAR_CP_SWS_NVRAMManager

[2] Specification of RTE Software
AUTOSAR_CP_SWS_RTE

[3] Software Component Template
AUTOSAR_CP_TPS_SoftwareComponentTemplate

[4] Guide to Mode Management
AUTOSAR_CP_EXP_ModeManagementGuide

3.2 Related standards and norms

None

3.3 Related specification

None

7 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

4 Overall mechanisms and concepts

4.1 NvM and its features

Changeability and durability are attributes associated with data inside an ECU. Data
whose values are changeable but available across the power cycles needs to be stored
in the Non-volatile memory. NV Data is that data inside the Non-volatile memory. In
AUTOSAR, application can access this Non-volatile memory only via the NVRAM Man-
ager (NvM). This module provides the required services (synchronous / asynchronous)
for the management and maintenance of the data.

Figure 4.1 shows the interaction between applications and memory stack along with
the modules involved.

Figure 4.1: Overview of memory stack in AUTOSAR

Following sub sections will provide overview of different concepts and features provided
by NvM module, for more details refer [1].

4.1.1 Basic storage objects

A "Basic Storage Object" is the smallest entity of a "NVRAM block". Several "Basic
Storage Objects" can be used to build a NVRAM Block. A "Basic Storage Object" can
reside in different memory locations (RAM/ROM/NV memory).

These basic storage objects are described below -

8 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

4.1.1.1 RAM Block

The "RAM Block" is a "Basic Storage Object". It represents the part of a "NVRAM
Block" which resides in the RAM.

It is composed of user data and (optionally) a CRC value and (optionally) a NV block
header. It is used to hold the live data. This is an optional part of NVRAM block.

4.1.1.2 ROM Block

The "ROM Block" is a "Basic Storage Object". It represents the part of a "NVRAM
Block" which resides in the ROM. The "ROM Block" is an optional part of a "NVRAM
Block".

Contents of ROM Block are of persistent nature, which can’t be modified during pro-
gram execution and resides in ROM/Flash. It is used to provide default data in case of
an empty or damaged NV block.

4.1.1.3 NV Block

The "NV Block" is a "Basic Storage Object". It represents the part of a "NVRAM Block"
which resides in the NV memory. The "NV Block" is a mandatory part of a "NVRAM
Block".

Contents of NV Block are of persistent nature that can be modified during program
execution and resides in the Flash. It is composed of NV user data and (optionally) a
CRC value and (optionally) a NV block header. It is used to hold the live data that are
stored periodically/on request.

4.1.1.4 Administrative Block

The "Administrative Block" is a "Basic Storage Object". It resides in RAM. The "Admin-
istrative Block" is a mandatory part of a "NVRAM Block".

Contents of Administrative Block are of non-persistent nature and resides in the RAM.

It is used to hold attribute/error/status information of the corresponding NVRAM blocks
well as the block indices specifically for NVRAM blocks of type ’Dataset’. This is a
mandatory part of NVRAM block.

4.1.2 Block Management types

The following NVRAM Block Management types are supported by the NvM:

9 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

4.1.2.1 Native NVRAM block

The Native NVRAM block is the simplest block management type. It allows storage
to/retrieval from NV memory with a minimal overhead.

NVM_BLOCK_NATIVE type of NVRAM storage consists of the following basic storage
objects:

• NV Blocks: 1

• RAM Blocks: 1

• ROM Blocks: 0..1

• Administrative Blocks:1

4.1.2.2 Redundant NVRAM block

In addition to the Native NVRAM block, the Redundant NVRAM block provides en-
hanced fault tolerance, reliability and availability. It increases resistance against data
corruption. The Redundant NVRAM block consists of two NV blocks, a RAM block and
an Administrative block.

In case NV Block associated with a Redundant NVRAM block is deemed invalid (e.g.
during read), an attempt is made to recover the NV Block using data from the incorrupt
NV Block.

NVM_BLOCK_REDUNDANT type of NVRAM storage consists of the following basic
storage objects:

• NV Blocks: 2

• RAM Blocks: 1

• ROM Blocks: 0..1

• Administrative Blocks:1

4.1.2.3 Dataset NVRAM block

The Dataset NVRAM block is an array of equally sized data blocks. The application
can at one-time access exactly one of this data block.

NVM_BLOCK_DATASET type of NVRAM storage consists of the following basic stor-
age objects:

• NV Blocks: 1..NvMNvBlockNum

• RAM Blocks: 1

• ROM Blocks: 0..NvMRomBlockNum

10 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

• Administrative Blocks: 1

The total number of configured datasets (NV+ROM blocks) must be in the range of
1..255.

A specific dataset element is accessed by setting the corresponding index using the
API NvM_SetDataIndex. Elements with an index from 0 up to NvMNvBlockNum - 1
represent the NV Blocks, while the ones with an index from NvMNvBlockNum up to
NvMNvBlockNum + NvMRomBlockNum - 1 represent the ROM blocks. The NVRAM
Block user has to ensure that a valid dataset index is selected before accessing data
elements.

4.1.3 Synchronization Mechanism supported

Two types of synchronization mechanisms are supported while accessing data to and
from NvM module’s RAM mirror.

4.1.3.1 Implicit synchronization

In the Implicit synchronization, Application and NvM have concurrent access to a com-
mon RAM Block. Application writes/reads the data to/from RAM by invoking NvM API’s.

Figure 4.2: Overview of Implicit synchronization

In this case, RAM Block is mapped to one SW-C and sharing of RAM block is not
recommendable. Whenever SW-C accesses NVRAM using RAM block (temporary
/ permanent), it has to ensure the data consistency of the RAM block until ongoing
operation is completed by the NvM.

Following steps need to be considered while using Implicit synchronization.

• Write request:

1. The application fills a RAM block with the data that has to be written by the
NvM module

11 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

2. The application issues the NvM_WriteBlock or NvM_WritePRAMBlock re-
quest which transfers control to the NvM module.

3. From now on the application must not modify the RAM block until success
or failure of the request is signaled or derived via polling. In the meantime,
the contents of the RAM block may be read.

4. An application can use polling to get the status of the request or can be
informed via a callback function asynchronously.

5. After completion of the NvM module operation, the RAM block is reusable
for modifications.

• Multi block write request (NvM_WriteAll):

1. The ECU state manager issues the NvM_WriteAll request which transfers
control to the NvM module.

2. The ECU state manager can use polling to get the status of the request or
can be informed via a callback function.

4.1.3.2 Explicit synchronization

In Explicit synchronization, NvM defines a RAM mirror which is used to exchange data
with the RAM block of Application. Application writes the data in RAM block and invokes
NvM write API. NvM invokes API to read the RAM mirror and data is copied from RAM
mirror to RAM block and finally to NV block. The data is transferred by the application
in both directions via callback routines, called by the NvM module.

12 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

Figure 4.3: Overview of Explicit synchronization

The advantage is that applications can control their RAM block in an efficient way. They
are responsible for copying consistent data to and from the NvM module’s RAM mir-
ror using ReadRamBlockFromNvM / WriteRamBlockToNvM. Application has to ensure
data integrity of RAM block while copying data to/from RAM mirror.

The drawbacks are the additional RAM that needs to have the same size as the largest
NVRAM block that uses this mechanism and the necessity of an additional copy be-
tween two RAM locations for every operation.

This mechanism especially enables the sharing of NVRAM blocks by different applica-
tions, if there is a module (e.g. NvBlockSwComponentType) that synchronizes these
applications and is the owner of the NVRAM block from the NvM module’s perspective.

Following steps need to considered while using Explicit synchronization

• Write request:

1. The application fills a RAM block with the data that has to be written by the
NvM module.

2. The application issues the NvM_WriteBlock or NvM_WritePRAMBlock re-
quest.

3. The application might modify the RAM block until the routine NvMWriteRam-
BlockToNvM is called by the NvM module.

13 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

4. If the routine NvMWriteRamBlockToNvM is called by the NvM module, then
the application has to provide a consistent copy of the RAM block to the
destination requested by the NvM module. The application can use the re-
turn value E_NOT_OK in order to signal that data was not consistent. The
NvM module will accept this NvMRepeatMirrorOperations times and then
postpones the request and continues with its next request.

5. Continuation only if data was copied to the NvM module:

6. From now on the application can read and write the RAM block again.

7. An application can use polling to get the status of the request or can be
informed via a callback routine asynchronously.

• Multi block write request (NvM_WriteAll):

1. The ECU state manager issues the NvM_WriteAll request which transfers
control to the NvM module.

2. During NvM_WriteAll job, if a synchronization callback
(NvM_WriteRamBlockToNvM) is configured for a block it will be called
by the NvM module. In this callback the application has to provide a
consistent copy of the RAM block to the destination requested by the NvM
module. The application can use the return value E_NOT_OK in order
to signal that data was not consistent. The NvM module will accept this
NvMRepeatMirrorOperations times and then report the write operation as
failed.

3. Now the application can read and write the RAM block again.

4. The ECU state manager can use polling to get the status of the request or
can be informed via a callback function.

4.1.4 Other features

4.1.4.1 CRC based comparison

The NvM module internally uses CRC generation routines (8/16/32 bit) to check and to
generate CRC for NVRAM blocks as a configurable option.

The NvM module provides an option to skip writing of unchanged data by implementing
a CRC based compare mechanism. CRC based compare mechanism can be enabled
by setting configuration parameter NvMBlockUseCRCCompMechanism.

Note - In general, there is a risk that some changed content of an RAM Block leads
to the same CRC as the initial content so that an update might be lost if this option
is used. Therefore, this option should be used only for blocks where this risk can be
tolerated.

14 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

4.1.4.2 Error recovery

The NvM module provides implicit error recovery on read for NVRAM block manage-
ment types NATIVE and REDUNDANT by loading default values (if configured via
either the parameter NvMRomBlockDataAddress or the parameter NvMInitBlockCall-
back).

The explicit retrieval of ROM data is available for all block management types by call-
ing the API NvM_RestoreBlockDefaults. For DATASET, the related index must be set
(pointing at a ROM block) prior to calling this API.

The NvM module provides error recovery on read for NVRAM blocks of block manage-
ment type NVM_BLOCK_REDUNDANT by loading the RAM block with default values.

The NvM module provides error recovery on write by performing write retries regard-
less of the NVRAM block management type.

4.1.4.3 Write Verification

In case of write verification, when a RAM Block is written to NV memory, the NV block
is immediately read back and compared with the original content in RAM Block.

If the original content in RAM Block is not the same as read back, then write retries
are performed. And if enabled, the production code error NVM_E_VERIFY_FAILED is
reported to DEM.

If the read back operation fails, then read retries are not performed.

4.1.4.4 RAM Block handling using the NvM_SetRamBlockStatus API

4.1.4.4.1 During startup phase (NvM_ReadAll)

For some NVRAM Blocks it might be required to preserve the data contents of the
respective RAM Block from being overwritten during NvM_ReadAll, in case the data
stored in the respective NV Block is older than the one in the RAM Block (e.g. in case
of a warm reset when the data in RAM was not yet written to NV memory). In such a
case the RAM Block has to be allocated in a reset-safe (non-initialized) RAM area and
the configuration parameter CalcRamBlockCrc has to be set to TRUE (this implies that
the corresponding NV block(s) also has/have a CRC configured) and the parameter
NvMSetRamBlockStatusApi has to be set to the value TRUE.

After every change of the RAM Block data content the API NvM_SetRamBlockStatus
has to be called for the corresponding NVRAM Block, with the parameter
BlockChanged set to TRUE. The NVRAM Manager will then recalculate the CRC of
this RAM Block and store the result in an internal variable allocated in the reset-safe
(non-initialized) RAM area. As a prerequisite for this NVRAM block either a valid per-

15 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

manent RAM Block (NvMRamBlockDataAddress) or an explicit synchronization call-
back function (NvMReadRamBlockFromNvM) has to be configured.

During every startup (NvM_ReadAll) the NvM module calculates the CRC over such
a RAM Block and if it matches with the stored CRC value the RAM Block will not be
overwritten. In case the calculated CRC does not match with the stored one, the RAM
Block will be overwritten with data read from the NV Block or, if this read attempt fails,
with default data (if configured via either the parameter NvMRomBlockDataAddress or
the parameter NvMInitBlockCallback).

4.1.4.4.2 During shutdown phase (NvM_WriteAll)

In case the configuration parameter NvMSetRamBlockStatusApi is set to the value
FALSE, the NVRAM Manager copies during the NvM_WriteAll process the data con-
tent of the RAM Block to the corresponding NV Block for all NVRAM Blocks configured
for WriteAll (configuration parameter NvMSelectBlockForWriteAll is set to the value
TRUE) and having a permanent RAM Block (NvMRamBlockDataAddress) or an ex-
plicit synchronization callback function (NvMReadRamBlockFromNvM) configured.

In order to minimize the number of write cycles to the NV memory it is useful to only
copy the content of those RAM Blocks to the corresponding NV Blocks, for which the
data content has been changed by the NVRAM Block user. In order to enable this
feature during the NvM_WriteAll process the configuration parameter NvMSetRam-
BlockStatusApi has to be set to the value TRUE. In this case the NVRAM Block user
has to inform the NVRAM Manager after every change made in the RAM Block data the
has to be informed by calling the API NvM_SetRamBlockStatus for the corresponding
NVRAM Block, with the parameter BlockChanged set to TRUE. This way this NVRAM
Block will be marked as to be processed during the NvM_WriteAll process.

4.1.4.5 Resistant to changed software

The behavior of the NvM module during start-up (i.e. while processing the request
NvM_ReadAll) will be influenced by the two configuration parameters NvMDynamic-
Configuration and NvMResistantToChangedSw.

In ECU projects, in which it is not important to react on configuration changes of the
NVRAM Blocks, the parameter NvMDynamicConfiguration has to be set to FALSE. For
NVRAM Blocks with the configuration parameter NvMCalcRamBlockCrc set to TRUE,
the assigned RAM block is then checked for its validity. If the RAM block content is
detected to be invalid, or if the parameter NvMCalcRamBlockCrc set to FALSE, the NV
block is checked for its validity. A NV block, which is detected to be valid, is copied to
its assigned RAM block. If an invalid NV Block is detected default data will be loaded
(if configured via either the parameter NvMRomBlockDataAddress or the parameter
NvMInitBlockCallback).

16 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

In case the configuration of NVRAM Blocks was changed, while the NV Blocks already
stored in NV Memory still correspond to the old configuration, critical problems may
arise during the NvM_ReadAll process. An example for this is when a new NVRAM
Block was added, the identifier of many other blocks might implicitly be changed, which
could lead to wrong data read from the NV memory.

For such situations, it is possible to configure the NvM module so that it will not try to
initialize RAM Blocks with data from NV memory. This has to be done by setting the
value of the configuration parameter NvMDynamicConfiguration to TRUE. A change
of the NVRAM configuration has to be indicated to the NvM module by modifying the
configuration parameter NvmCompiledConfigID by the integrator. The NvM module
stores this value in NV memory, using a separate NVRAM Block. With every execution
of the start-up process (NvM_ReadAll) the NvM module compares the value stored in
NV memory with the value of the configuration parameter NvmCompiledConfigID. In
case both values are different the value in the NV memory will be overwritten by the
one from the configuration with the next shutdown process (NvM_WriteAll).

In such a situation, there are two different possibilities how the NvM module will initial-
ize the NVRAM Blocks during the processing of NvM_ReadAll, based on the value of
the corresponding configuration parameter NvMResistantToChangedSw.

• If the data of the respective NV block shall be ignored and instead default data (if
configured via either the parameter NvMRomBlockDataAddress or the parameter
NvMInitBlockCallback) shall be loaded, independent of the validity of an assigned
RAM block, the value of the configuration parameter NvMResistantToChangedSw
has to be set to FALSE.

• For the NVRAM Blocks, that need to have the RAM Block to be initialized with the
data from NV memory, even in case of a configuration change, the configuration
parameter NvMResistantToChangedSw has to be set to TRUE. The behavior will
be the same as when no configuration change occurs.

For blocks having NvMResistantToChangedSw set to TRUE the integrator has to en-
sure that the following configuration parameters must not be changed for the rest of
the ECU’s lifetime, because otherwise it will not be possible to successfully retrieve the
data from NV memory:

• NvMResistantToChangedSw (must not be changed from TRUE to FALSE)

• ShortName

• NvMBlockUseCrc

• NvmBlockCrcType (if NvMBlockUseCrc is set to TRUE)

• NvMStaticBlockIDCheck

• NvmNvramDeviceId

• NvmBlockManagementType

• NvmNvBlockLength

17 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

• NvmNvBlockBaseNumber

Note: Additional constraints may apply depending on the implementation of the used
modules NvM, Fee and Ea. Please refer to the respective user manuals.

4.1.4.6 Block Fragmentation

Currently, there is an increasing demand for huge data blocks that have to be stored in
NvRAM. These data are typically organized in huge arrays, but the update per driving
cycle is usually local. Such an array is usually organized only in a single NvBlock. A
more frequent update, e.g. after each driving cycle, shortens the lifetime of the ECU or
requires the use of a larger DataFlash.

This feature offers the possibility of fragmenting a large block into smaller units. These
fragments shall only be written if the content has been changed. The unchanged frag-
ments shall be kept unchanged.

The following picture shows the concept and the evolution of the NvRAM dataset map-
ping in case of local / spare updated data inside an array data element object.

Figure 4.4

Note: The fragmentation can be implemented efficiently only when the NVM elements
are grouped according to the write frequency. The NVM elements shall be arranged in
such a way that they are in either increasing or decreasing order of write frequency.

18 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

4.2 Accessing NvM using RTE

Details of possible Interfaces, Software component types to access NV data using RTE
are listed in this section, for more details refer [2] and [3].

4.2.1 Interfaces

• Client-server interface

A client/server interface provides a number of operations that can be invoked on
a server by a client. In case of services provided by NvM to the Application, NvM
acts as server and Application acts as client. Also notifications to be provided
to the Applications from NvM can be implemented using same; role of client and
server is exchanged in this case.

• NvDataInterface

A non-volatile data interface defines a number of VariableDataPrototypes to be
exchanged between non-volatile block components and atomic software compo-
nents. These VariableDataPrototypes can be mapped to complete RAM block or
elements of RAM block implemented inside non-volatile block components.

4.2.2 Accessing NV Data using ServiceSwComponent

NvM is configured as ServiceSwComponent. Here SW-C(s) which wants to read/write
data to NVRAM needs to utilize the standard NvM services using a Client-Server Inter-
face.

Refer section 5.1.1 and section 5.1.2 for more details on using NvM as ServiceSwCom-
ponent.

• Benefits:

– Enables basic generic configuration to accommodate NvM services and call-
backs using the SW-C template.

– Dedicated set of ports available for each block.

– Application is abstracted from Block Identifier of NVRAM Block allocated by
NvM.

• Restoring Default Value

If Application is maintaining the RAM Blocks, it can define ParameterDataProto-
types local to a SW-C using PerInstanceParameter or ConstantMemory configu-
ration which can be used by the SW-C to restore the RAM block and by NvM to
restore the NV block.

• Handling Notifications

19 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

Notifications from NvM to the Application are implemented by the RTE using a
Client-Server Interface in the scenario of which NvM acts as the client and the
user of the NvBlock acts as the server.

In case of NvM being used via a ServiceSwComponent, the NvM uses generic
Client-Server API mapped to a r-port of the NvM ServiceSwComponent i.e.
Rte_Call() which is connected to the p-port of the user of the NvBlock (SW-C).

4.2.3 Accessing NV Data using NvBlockSwComponent

Here NvM is configured as NvBlockSwComponent in RTE and can be utilized to create
RAM Blocks (mirrors) of its own which can be written/read partially or completely by a
single or multiple SW-C’s using a NV-Data Interface.

Along with this, the Client-Server Interfaces are used for the NvM services and notifi-
cations.

Refer section 5.3 for more details on using NvM as NvBlockSwComponent.

• Benefits:

– Each block is identified and has a dedicated RAM block allocated by the
RTE.

– Application SW-C implementation are independent of the name and type of
the RAM block.

– RAM block can be shared between multiple SW-C’s via partial data mapping
mechanisms provided by RTE (PortInterfaceMapping, NvDataMapping).

– Less memory is used to implement RAM blocks.

– Application always access RAM blocks via port interfaces resulting into a
more modular approach.

– User can utilize the dirtyFlag mechanism to enable a writing strategy in the
NvBlockSwComponent instead of implementing a writing strategy in the Ap-
plication software.

• Restoring Default Value

NvBlockDescriptor inside a NvBlockSwComponent allows configuration of op-
tional ROM blocks using ParameterDataPrototype. This ROM block constant is
used as an initValue to which the RAM block can be restored to after initialization
of the RTE or a partition.

• Handling Notifications

Notifications from NvM to the Application are implemented by the RTE using a
Client-Server Interface in the scenario of which NvM acts as the client and the
user of the NvBlock acts as the server.

20 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

In case of NvM being used via a NvBlockSwComponent, the NvM uses
standard callback API’s provided by RTE for each NvBlockDescriptor hav-
ing RoleBasedPortAssignment for a ClientServerPort (r-port) with a NvMNo-
tifyJobFinished or NvMNotifyInitBlock role i.e. Rte_NvMNotifyInitBlock() and
Rte_NvMNotifyJobFinished().

4.3 Initialization of RAM Blocks from NVRAM

There are different strategies in AUTOSAR to restore RAM blocks to their previous
values i.e. the values held before going into last shutdown.

Individual blocks can be explicitly read one-by-one using
NvM_ReadBlock /NvM_ReadPRAMBlock from the Initialization runnables called
using InitEvent during Rte_Init().

A more optimized approach is to read all such blocks where data persistence is re-
quired using a single NvM request NvM_ReadAll. All such NvM blocks are configured
to be applicable for NvM_ReadAll. Any block to be read during NvM_ReadAll has to
either have explicit synchronization or have a permanent RAM block. Figure 4.5 shows
the process of restoration of RAM block using NvM_ReadAll. Further information about
the AUTOSAR startup process is mentioned in [4].

21 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

Figure 4.5: Sequence diagram for Initialization of RAM block

22 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

5 Use Case Summary

The use-cases are segregated with respect to allocation of RAM blocks by Application
or the RTE. In the majority of use-cases, all of the services are implemented by the
RTE and used by the Application.

It is assumed that the RAM blocks have been initialized from the NVRAM on startup
using one of the possible strategies within AUTOSAR elaborated in section 4.3).

This use cases are applicable to all types of NVRAM blocks specified in section 4.1.2.

Following table provides overview of all use cases described in the below sub-sections:

Section Title Description

5.1 Application SW-C accessing NVRAM
Blocks having no Permanent RAM
block

In this use case, SW-C is responsible
for allocating RAM blocks that are used
to access NVRAM block via
Client-server ports.

5.2 Application SW-C accessing NVRAM
blocks which have Permanent RAM
blocks

In this use case, the RAM block is
allocated in the RTE using
PerInstanceMemory and is used to
access NVRAM block via Client-Server
ports.

5.3 Application SW-C accessing NVRAM
block using an
NvBlockSwComponentType

In this scenario, the RTE allocates the
RAM Blocks according to the definition
in the NvBlockSwComponent and
those are then partially/completely
written/read by a single or multiple
SW-C’s using a NV-Data Interface.

5.1 Case 1: Application SW-C accessing NVRAM Blocks having
no Permanent RAM block

In all the scenarios covered by the use-case, NvM is configured in the form of a Ser-
viceSwComponent. Any Application SW-C which wants to read/write data to NVRAM
needs to utilize the standard NvM services using a Client-Server Interface.

Set of ports can be uniquely mapped to a NvMBlockDescriptor using the Port Defined
Argument Value to determine the Identifier of the NvBlock.

The above use case is categorized further into two scenarios depending on the type
NvM Block Synchronization used:

5.1.1 Case 1a: Application providing reference to its RAM data area

Implicit Synchronization is configured for the particular NvMBlockDescriptor for this use
case (NvMBlockUseSyncMechanism parameter set to false). This mechanism is also
known as "Using Temporary RAM Block by NvM".

23 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

In this scenario, the Application provides the reference of RAM data area as an argu-
ment as part of the NvM_ReadBlock / NvM_WriteBlock API’s. Thus, it is the responsi-
bility of the User (SW-C) to ensure data consistency for the RAM data (e.g. writing into
the RAM data area while NvM is using it).

NvMRamBlockDataAddress parameter is not configured for this use case.

Figure 5.1 provides an overview of memory allocation in Application and NvM as per
this use case. For details about interaction between these modules refer sequence
diagram in figure 5.1.

Figure 5.1: Overview of memory allocation for use case 1a

Figure 5.2 shows port configuration used to access NvM interfaces by user (SWC1 /
SWC2), here NvM is configured as ServiceSwComponentType.

24 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

Figure 5.2: Port configuration diagram for use case 1a

Following ports are required to be configured -

• NvMService interface is used to send commands to the NvM. Some of the basic
operations supported are:

• EraseBlock

• GetDataIndex

• GetErrorStatus

25 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

• InvalidateNvBlock

• ReadBlock

• RestoreBlockDefaults

• SetDataIndex

• SetRamBlockStatus

• WriteBlock

Note: Services provided by NvM are configurable as per the "NVRAM Manager API
configuration classes" specified in [1].

• NvMAdmin interface is used to order some administrative operations to the NVM.
Following operation is supported.

– SetBlockProtection

• NvM_NotifyInitBlock interface is used by the NVM to request users to provide the
default values. Following operation is supported.

– InitBlock

• NvM_NotifyJobFinished interface is used by the NVM to notify the end of job.
Following operation is supported.

– JobFinished

Figure 5.3 shows how application can access NvM in this scenario:

26 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

Figure 5.3: Sequence diagram for NvM access for use case 1a

• Applicability:

In this use case, RAM Blocks are not present and thus user (SW-C) have to be
synchronized to guarantee that no unsuitable accesses to the RAM data take
place during NVRAM operations.

This use case is applicable to scenarios where NvData mapped to NvMBlock are
not shared between different SW-C’s. Application has to ensure data consistency
while accessing application RAM data area concurrently.

For Data consistency, application should not access application RAM data pro-
vided to the NvBlock after call to NvM_ReadBlock / NvM_WriteBlock until it has
been notified - via the JobFinished callback - that the job was successful.

27 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

• Configuration:

Refer below complete configuration prepared for this use
case. Configuration files - ConfigurationFiles/NvDataHan-
dling_ServiceSwComponent_ImplicitSynchronization/*.arxml

Details of configuration applicable to this use case is as shown below:

Configuration for SWC1:

Interface NvMService

Client SWC1 Server NvM

R-Port NvM_Service P-Port NvM_PS_NvMBlock0

Synchronous Server
CallPoints

WriteBlock, ReadBlock,
RestoreBlockDefaults,
GetErrorStatus,
SetRamBlockStatus,
Get/SetDataIndex etc.

Operation Invoked Events WriteBlock, ReadBlock,
RestoreBlockDefaults,
GetErrorStatus,
SetRamBlockStatus,
Get/SetDataIndex etc.

Interface NvMAdmin

Client SWC1 Server NvM

R-Port NvM_Admin P-Port NvM_PAdmin_NvMBlock0

Synchronous Server
CallPoints

SetBlockProtection Operation Invoked Events SetBlockProtection

Interface NvMNotifyInitBlock

Client NvM Server SWC1
R-Port NvM_PNIB_NvMBlock0 P-Port NvM_NotifyInitBlock

Synchronous Server
CallPoints

NotifyInitBlock Operation Invoked Events NotifyInitBlock

Interface NvMNotifyJobFinished

Client NvM Server SWC1
R-Port NvM_PNJF_NvMBlock0 P-Port NvM_NotifyJobFinished

Synchronous Server
CallPoints

NotifyJobFinished Operation Invoked Events NotifyJobFinished

Configuration for SWC2:

Interface NvMService

Client SWC2 Server NvM

R-Port NvM_Service P-Port NvM_PS_NvMBlock1

5

28 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

4
Synchronous Server
CallPoints

WriteBlock, ReadBlock,
RestoreBlockDefaults,
GetErrorStatus,
SetRamBlockStatus,
Get/SetDataIndex etc.

Operation Invoked Events WriteBlock, ReadBlock,
RestoreBlockDefaults,
GetErrorStatus,
SetRamBlockStatus,
Get/SetDataIndex etc.

Interface NvMAdmin

Client SWC2 Server NvM

R-Port NvM_Admin P-Port NvM_PAdmin_NvMBlock1

Synchronous Server
CallPoints

SetBlockProtection Operation Invoked Events SetBlockProtection

Interface NvMNotifyInitBlock

Client NvM Server SWC2
R-Port NvM_PNIB_NvMBlock1 P-Port NvM_NotifyInitBlock

Synchronous Server
CallPoints

NotifyInitBlock Operation Invoked Events NotifyInitBlock

Interface NvMNotifyJobFinished

Client NvM Server SWC2
R-Port NvM_PNJF_NvMBlock1 P-Port NvM_NotifyJobFinished

Synchronous Server
CallPoints

NotifyJobFinished Operation Invoked Events NotifyJobFinished

5.1.2 Case 1b: NvM fetches application RAM data via callback (NvM Explicit
Synchronization)

NvM Block Descriptor is required to be configured to have explicit synchronization for
this use case (NvMBlockUseSyncMechanism parameter set to true).

In this scenario, data is maintained locally by the application SW-C. A call to
NvM_WriteBlock will start the process but the data can be modified till that point in time
when a callback referred by configuration parameter NvMWriteRamBlockToNvCallback
occurs. The data is copied from the application data area to the NvM Ram Mirror as
part of this callback. Similarly, during read operation, application data area is updated
from NvM module’s mirror via callback configured using NvMReadRamBlockFromN-
vCallback parameter.

This is similar to a deferred operation where unlike earlier scenarios, an SW-C can
modify its data after a call to NvM_WriteBlock even when it is not yet written to an NV
Block, as data area is accessed only during callback (protection needs to be ensured
during the callback).

The callbacks are implemented using a Client Server Interface specified in section 4.2.

29 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

Figure 5.4 provides an overview of memory allocation in Application and NvM as per
this use case. For details about interaction between these modules refer sequence
diagram in figure 5.6.

Figure 5.4: Overview of memory allocation for use case 1b

Figure 5.5 shows port configuration used to access NvM interfaces by user (SWC1 /
SWC2), here NvM is configured as ServiceSwComponentType.

30 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

Figure 5.5: Port configuration for use case 1b

Refer section 5.1.1 for details of operation for ports NvMService, NvMAdmin,
NvM_NotifyInitBlock and NvM_NotifyJobFinished.

Following ports are required -

• NvM_Mirror interface used to update data from NvM Mirror to application RAM
data or from application RAM data to NvM Mirrors. Following operations are
supported.

• ReadRamBlockFromNvM

• WriteRamBlockToNvM

Figure 5.6 shows how application can access NvM in this scenario:

31 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

Figure 5.6: Sequence diagram of NvM access for use case 1b

• Applicability:

In this use case, NvM users (SW-C) can control their data in a more efficient way
as they are responsible for copying consistent data to and from the NvM module’s
RAM mirror. It is possible to modify application data just before writing into RAM
mirror.

The drawback is need of an additional RAM in NvM module that needs to have
the same size as the NVRAM block and the necessity of an additional copy for
read / write operation.

32 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

• Configuration:

Refer below complete configuration prepared for this use
case Configuration file - ConfigurationFiles/ NvDataHan-
dling_ServiceSwComponent_ExplicitSynchronization /*.arxml

Configuration for service ports NvMService, NvMAdmin, NvM_NotifyInitBlock and
NvM_NotifyJobFinished is the same as provided in section section 5.1.1.

Refer below configuration for NvM_Mirror:

For SWC1:

Interface NvMMirror

Client NvM Server SWC1
R-Port NvM_PM_NvMBlock0 P-Port NvM_Mirror

Synchronous Server
CallPoints

SetMirror, GetMirror Operation Invoked Events SetMirror, GetMirror

For SWC2:

Interface NvMMirror

Client NvM Server SWC2
R-Port NvM_PM_NvMBlock1 P-Port NvM_Mirror

Synchronous Server
CallPoints

SetMirror, GetMirror Operation Invoked Events SetMirror, GetMirror

5.2 Case 2: Application SW-C accessing NVRAM blocks which
have Permanent RAM blocks

In this scenario, RAM blocks are configured in the form of Per Instance Memory in RTE.
The reference to the created Per Instance Memory is given in the NvMBlockDescriptor
configuration using the NvMRamBlockDataAddress parameter.

NvM Block Descriptor is configured to have implicit synchronization for this use case
(NvMBlockUseSyncMechanism parameter set to false). In case of permanent RAM
blocks configured in NvM, NvM provides dedicated API’s to request services regarding
the Permanent RAM blocks i.e. NvM_ReadPRAMBlock /NvM_WritePRAMBlock.

Additionally, if the User has a need to provide temporary RAM blocks even though a
permanent one is configured in the system, NvM_ReadBlock /NvM_WriteBlock API is
used to provide the temporary RAM block address. Such API’s have precedence over
NvM_ReadPRAMBlock /NvM_WritePRAMBlock.

33 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

The (ArTyped)PerInstanceMemory is allocated as RAM block in the RTE and can be
accessed by the Application SW-C using Rte_Pim API. In this scenario, it is invalid for
two SW-C’s to use the RAM block for their purpose.

In general, there are two different kinds of Per Instance Memory available which are
varying in the typing mechanisms. ’C’ typed PerInstanceMemory is typed by the de-
scription of a ’C’ typedef whereas arTypedPerInstanceMemory (AUTOSAR Typed Per
Instance Memory) is typed by the means of an AutosarDataType. Nevertheless, both
kinds of Per Instance Memory are accessed via the Rte_Pim API.

Figure 5.7 provides an overview of memory allocation in Application and NvM as per
this use case. For details about interaction between these modules refer sequence
diagram in figure 5.9.

Figure 5.7: Overview of memory allocation for use case 2

Figure 5.8 shows port configuration used to access NvM interfaces by user (SWC1 /
SWC2), here NvM is configured as ServiceSwComponentType.

34 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

Figure 5.8: Port configuration for use case 2

Refer section 5.1.1 for details of operations for ports NvMService, NvMAdmin,
NvM_NotifyInitBlock and NvM_NotifyJobFinished.

Figure 5.9 shows how application can access NvM in this scenario:

35 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

Figure 5.9: Sequence diagram of NvM access for use case 2

• Applicability:

RTE does not ensure data consistency for the access to Per Instance Memory.
An application is responsible for consistency of accessed data. For Data con-
sistency, application should not access NV Data after call to NvM_ReadBlock /
NvM_WriteBlock until it has been notified - via the JobFinished callback - that the
job was successful.

The PerInstanceMemory is allocated as RAM block in the RTE and can only
be accessed by that SW-C. Thus, same data cannot be shared between two or
more SW-C’s. The "Access to NVRAM blocks" should not be used in multi core
environments in this use case.

• Configuration:

36 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

Refer below complete configuration prepared for this use
case Configuration file - ConfigurationFiles/ NvDataHan-
dling_ServiceSwComponent_PerInstanceMemory/*.arxml

Configuration for service ports NvMService, NvMAdmin, NvM_NotifyInitBlock and
NvM_NotifyJobFinished is the same as provided in section 5.1.1.

Refer below table for configuration for Per Instance Memory:

For SWC1:

Per Instance Memory PIMem0_SWC1

Type-Definition uint8

Owner SWC1

For SWC2:

Per Instance Memory PIMem0_SWC2

Type-Definition struct {uint16 val1; uint8 val2;}

Owner SWC2

5.3 Case 3: Application SW-C accessing NVRAM block using an
NvBlockSwComponentType

In this scenario, an NvBlockSwComponent in RTE is used to create RAM Blocks as
part of its NvBlockDescriptor which can be written/read partially or completely by a
single or multiple SW-C’s using a NV-Data Interface. These RAM blocks are accessed
using mirrors in the NvM. Optionally ROM Blocks can be created as part of NvBlock-
Descriptor.

Along with this, the Client-Server Interfaces are used for the NvM services and notifi-
cations.

NvM Block Descriptor is configured to have explicit synchronization for this use case
(NvMBlockUseSyncMechanism parameter set to true).

Moreover, optionally if configured, Rte can trigger data writing internally to NvM using
the NvBlockSwComponent so that the Application does not have to explicitly utilize the
Client Server Interface for writing.

Note: In case of dirtyFlag=TRUE, NvM_WriteBlock /NvM_SetRamBlockStatus are not
requested via Client Server Interfaces. In case of dirtyFlag=FALSE, all services are
requested via Client Server Interfaces

37 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

As explained above in section 4.1.3.2, whenever NvM is triggered to write or
read data from the NVRAM, it fetches/updates the RAM block via callbacks
(Rte_GetMirror /Rte_SetMirror) which are implemented in RTE.

Additionally, if the User has a need to provide temporary RAM blocks even though
mirrors are configured in the system, NvM_ReadBlock /NvM_WriteBlock API are
used to provide the temporary RAM block address and in that case NvM uses
the RAM block argument instead of the mirror. Such API’s have precedence over
NvM_ReadPRAMBlock /NvM_WritePRAMBlock.

Note: Implicit synchronization is not recommendable while using NvBlockSwCompo-
nentType.

Figure 5.10 provides an overview of memory allocation in Application and NvM as per
this use case. For details about interaction between these modules refer figure 16 to
23.

Figure 5.10: Overview of memory allocation for use case 3

Figure 5.11 shows port configuration used to access NvM interfaces by user (SWC1 /
SWC2 / SWC3), here NvM is configured as NvBlockSwComponent.

38 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

Figure 5.11: Port configuration for use case 3

Refer section 5.1.1 for details with respect to operations provided by the Client
Server Interfaces for ports NvMService, NvMAdmin, NvM_NotifyInitBlock and
NvM_NotifyJobFinished.

Note: Mapping between NVRAM BlockId of NvM and NvBlockDescriptor is done using
configuration parameters RteNvmBlockRef and RteSwNvBlockDescriptorRef of RteN-
vRamAllocation container in RTE.

NV Data mapping considered in the above example is described in below table.

39 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

nvData Element RAM Block
Element

User NvBlockDescrip-
tor

Description

nvData0 rb0 SWC1 NvBlockDescrip-
tor0

nvData0 is completely mapped to
rb0

nvData2.b rb1.x(4:1) SWC2 NvBlockDescrip-
tor1

Bits 0 to 3 of variable b are mapped
to Bits 4 to 1 of element x of rb1.

nvData1.a rb1.x(0) SWC2 NvBlockDescrip-
tor1

Boolean variable a is mapped to Bit
0 of element x of rb1.

nvData4.d rb1.x(0) SWC3 NvBlockDescrip-
tor1

Boolean variable d is mapped to Bit
0 of element x of rb1.

nvData3.c rb1.y SWC3 NvBlockDescrip-
tor1

Variable c is completely mapped
element y of rb1.

• Applicability:

This use case gives advantage over other use cases as one RAM block can be
shared between multiple SW-C’s or BSW, completely or partially and thus reduce
resource overhead. Also Data mapping allows accessing NV data without need
of additional buffers.

Different writing strategies which define the frequency of writing NV data to NV
memory are possible and RTE is responsible to handle this writing operations.

It is the responsibility of the RTE to ensure data consistency while NV Data is
accessed.

• Configuration:

Configuration for NvData ports is shown below:

User User Data User Port AccessType NvBlock-
De-
scrip-
tor

Intermediate
mapped NvData

Mapping to Ram
Block

SWC1 NvD_str0_0 PR_NvIf_strSig Write/Read NvBD_0 NvD_str0_0 NVBD_0.RAMBlock =
NvD_str0_0

SWC2 NvD_flag0_0 R_NvIf_flagSig Read NvBD_1 NvD_8bit_0.b(0) NVBD_1.RAMBlock.x
= NvD_8bit_0

SWC2 NvD_4bit_0 PR_NvIf_4bitSig Write/Read NvBD_1 NvD_8bit_0.b(4:1) NVBD_1.RAMBlock.x
= NvD_8bit_0

SWC3 NvD_16bit_0 PR_NvIf_16bitSig Write/Read NvBD_1 NvD_16bit_0 NVBD_1.RAMBlock.y
= NvD_16bit_0

SWC3 NvD_flag0_0 P_NvIf_flagSig Write NvBD_1 NvD_8bit_0.b(0) NVBD_1.RAMBlock.x
= NvD_8bit_0

Data Type

NvD_str0_0 struct {uint32 a; uint8 b;}

NvD_flag0_0 boolean

NvD_4bit_0 uint8

NvD_16bit_0 uin16

NvD_8bit_0 uint8

NVBD_0.RAMBlock struct {uint32 a; uint8 b;}

NVBD_1.RAMBlock struct {uint16 x; uint8 y;}

40 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

Mapping between NvBlockDescriptor and NvM block Id is done using RteNvRamAllo-
cation container in RTE.

RteNvmBlockRef RteSwNvBlockDescriptorRef

/NvM0/NvMBlockDescriptor0 /NvM_Service/Component/NvM/NVBD_0

/NvM0/NvMBlockDescriptor1 /NvM_Service/Component/NvM/NVBD_1

This scenario is further categorized depending on the type of sender-receiver commu-
nication used by the Application software to access the RAM block and the respective
writing strategy.

5.3.1 Case 3a: Using Rte Explicit S/R Communication

In this scenario, Rte Explicit API’s i.e. Rte_Write/Rte_Read /Rte_DRead are used to
update or read the RAM block or an element of a RAM block. Rte Explicit API’s normally
perform the writing or reading operation before the Rte request returns.

The Rte Explicit API simply modify the RAM block in the most basic use-case. The
scope of the Rte Explicit request can be extended using the configuration of the
NvBlockDescriptor the RAM block of which is being updated.

• Configuration:

Refer below complete configuration prepared for this use
case Configuration file - ConfigurationFiles/ NvDataHan-
dling_NvBlockSwComponent_RteExplicitCommunication/*.arxml

There are four types of scenarios possible with respect to the writing strategy between
RTE and NvM:

5.3.1.1 No Dirty Flag Support

RTE does not implicitly trigger NvM for the writing operation. The user SW-C has to
initiate the request using the Client-Server port Interface.

This use-case is applicable when the data-writing behavior needs to be controlled by
the Application SW-C itself.

Data consistency is ensured by RTE.

Figure 5.12 shows how application can access NvM in this scenario:

41 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

Figure 5.12: Sequence diagram of NvM access for use case 3a - No dirty flag support

• Configuration:

Port configuration is the same as mentioned in Table 1. In this use case, support-
DirtyFlag parameter for NvBD_0 NvBlockDescriptor is configured as False.

As DirtyFlag support is disabled, NvBlockNeeds configuration is not applicable.

42 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

5.3.1.2 With Dirty Flag Support

5.3.1.2.1 Storing Cyclically

For a RAM block for which dirtyFlagSupport is set to true and NvBlock-
Needs.storeCyclic is set to true, a timing event handled by the RTE periodically triggers
writing of the RAM block into NVRAM by the NvM. The periodicity of the timing event
is configured as part of NvBlockDescriptor.

Figure 5.13 shows how application can access NvM in this scenario:

Figure 5.13: Sequence diagram of NvM access for use case 3a - Store Cyclic

43 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

• Configuration:

Port configuration is the same as mentioned in Table 1. In this use case, support-
DirtyFlag parameter for NvBD_1 NvBlockDescriptor is configured as True. And
following NvBlockNeeds configuration is provided for store cyclic case.

NvBlockNeeds Parameter Value
storeAtShutdown FALSE

storeCyclic TRUE

storeImmediate FALSE
writingFrequency 0.1

5.3.1.2.2 Storing at Shutdown

On the update of a RAM block for which dirtyFlagSupport is set to true and NvBlock-
Needs.storeAtShutdown is set to true, the RTE invokes the NvM_SetRamBlockStatus
function of the NvM module with the BlockChanged parameter set to true. BswM is
responsible for writing this changed blocks during shutdown.

A DataReceivedEvent needs to be configured for the NvBlockNeeds of this NvBlock-
Descriptor. If this DataReceivedEvent is not mapped to any task, then RTE calls the
NvM_SetRamBlockStatus API from inside the Rte_Write API context.

Figure 5.14 shows how application can access NvM in this scenario:

44 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

Figure 5.14: Sequence diagram of NvM access for use case 3a - Store at shutdown

• Configuration:

Port configuration is the same as mentioned in Table 1. In this use case, support-
DirtyFlag parameter for NvBD_1 NvBlockDescriptor is configured as True. And
following NvBlockNeeds configuration is provided.

45 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

NvBlockNeeds Parameter Value
storeAtShutdown TRUE

storeCyclic FALSE

storeImmediate FALSE
writingFrequency -

5.3.1.2.3 Storing Immediately

On the update of a RAM block for which dirtyFlagSupport is set to true and NvBlock-
Needs.storeImmediate is set to true, the RTE invokes the NvM_WriteBlock function of
the NvM module with the BlockId mapped using RteNvRamAllocation.

There are two options through which this can be achieved:

1. Using Task Activation, a DataReceivedEvent is configured for the NvBlock-
Needs of this NvBlockDescriptor. If this DataReceivedEvent is mapped to a
task, then RTE activates the task from inside the Rte_Write API context. The
runnable mapped to the DataReceivedEvent is implemented by RTE to call the
NvM_WriteBlock API.

2. From Request context, a DataReceivedEvent is configured for the NvBlockNeeds
of this NvBlockDescriptor. If this DataReceivedEvent is not mapped to any task,
then RTE calls the NvM_WriteBlock API from inside the Rte_Write API context.

Figure 5.15 shows how application can access NvM in this scenario:

46 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

Figure 5.15: Sequence diagram of NvM access for use case 3a - Store Immediate

• Configuration:

47 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

Port configuration is the same as mentioned in Table 1. In this use case, support-
DirtyFlag parameter for NvBD_1 NvBlockDescriptor is configured as True. And
following NvBlockNeeds configuration is provided.

NvBlockNeeds Parameter Value
storeAtShutdown FALSE

storeCyclic FALSE

storeImmediate TRUE
writingFrequency -

5.3.2 Case 3b: Using Rte Implicit S/R Communication

In this scenario, Rte Implicit API’s i.e. Rte_IWrite/Rte_IWriteRef /Rte_IRead are used
to update or read the RAM block or an element of a RAM block. Rte Implicit API’s
normally buffer the data to be written intermediately until the runnable from which the
Rte implicit write request is called, terminates. After the termination of the runnable, the
global RAM block maintained by the RTE is updated with the last written value. In case
of implicit read request, the data is fetched from the RAM block before the runnable
entity which has read access to the data is activated.

The Rte Implicit API simply modify the RAM block in the most basic use-case. The
scope of the Rte Implicit access can be extended using the configuration of the
NvBlockDescriptor the RAM block of which is being updated.

• Configuration:

Refer below complete configuration prepared for this use
case Configuration file - ConfigurationFiles/ NvDataHan-
dling_NvBlockSwComponent_RteImplicitCommunication/*.arxml

There are four types of scenarios possible with respect to the writing strategy which
RTE can trigger the writing operation of NvM:

5.3.2.1 No Dirty Flag Support

RTE does not implicitly trigger NvM for the writing operation. The user SW-C has to
initiate the request using the Client-Server port Interface.

This use-case is applicable when the data-writing behavior needs to be controlled by
the Application SW-C itself.

Figure 5.16 shows how application can access NvM in this scenario:

48 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

Figure 5.16: Sequence diagram of NvM access for use case 3b - No dirty flag support

• Configuration:

Port configuration is the same as mentioned in Table 1. In this use case, support-
DirtyFlag parameter for NvBD_0 NvBlockDescriptor is configured as False. As
DirtyFlag support is disabled, NvBlockNeeds configuration is not applicable.

49 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

5.3.2.2 With Dirty Flag Support

5.3.2.2.1 Storing Cyclically

For a RAM block for which dirtyFlagSupport is set to true and NvBlock-
Needs.storeCyclic is set to true, a timing event handled by the RTE periodically triggers
writing of the RAM block into NVRAM by the NvM. The periodicity of the timing event
is configured as part of NvBlockDescriptor.

Figure 5.17 shows how application can access NvM in this scenario:

50 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

Figure 5.17: Sequence diagram of NvM access for use case 3b - Store cyclic

• Configuration:

51 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

Port configuration is the same as mentioned in Table 1. In this use case, support-
DirtyFlag parameter for NvBD_1 NvBlockDescriptor is configured as True. And
following NvBlockNeeds configuration is provided for store cyclic case.

NvBlockNeeds Parameter Value
storeAtShutdown FALSE

storeCyclic TRUE

storeImmediate FALSE
writingFrequency 0.1

5.3.2.2.2 Storing at Shutdown

On the update of a RAM block for which dirtyFlagSupport is set to true and NvBlock-
Needs.storeAtShutdown is set to true, the RTE invokes the NvM_SetRamBlockStatus
function of the NvM module with the BlockChanged parameter set to true. A
DataReceivedEvent is configured for the NvBlockNeeds of this NvBlockDescrip-
tor. If this DataReceivedEvent is not mapped to any task, then RTE calls the
NvM_SetRamBlockStatus API from inside the context of the task mapped to the
runnable with the write access. This is done after the runnable with the write access
terminates.

Figure 5.18 shows how application can access NvM in this scenario:

52 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

Figure 5.18: Sequence diagram of NvM access for use case 3b - Store at shutdown

• Configuration:

Port configuration is the same as mentioned in Table 1. In this use case, support-
DirtyFlag parameter for NvBD_1 NvBlockDescriptor is configured as True. And
following NvBlockNeeds configuration is provided.

53 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

NvBlockNeeds Parameter Value
storeAtShutdown TRUE

storeCyclic FALSE

storeImmediate FALSE
writingFrequency -

5.3.2.2.3 Storing Immediately

On the update of a RAM block for which dirtyFlagSupport is set to true and NvBlock-
Needs.storeImmediate is set to true, the RTE invokes the NvM_WriteBlock function of
the NvM module with the BlockId mapped using RteNvRamAllocation. There are two
options through which this can be achieved:

• Using Task Activation, a DataReceivedEvent is configured for the NvBlockNeeds
of this NvBlockDescriptor. If this DataReceivedEvent is mapped to a task, then
RTE activates the task from the context of the task mapped to the runnable with
the write access. This is done after the runnable with the write access terminates.
The runnable mapped to the DataReceivedEvent is implemented by RTE to call
the NvM_WriteBlock API.

• From Request context, a DataReceivedEvent is configured for the NvBlockNeeds
of this NvBlockDescriptor. If this DataReceivedEvent is not mapped to any task,
then RTE calls the NvM_WriteBlock API from inside the context of the task
mapped to the runnable with the write access. This is done after the runnable
with the write access terminates.

Figure 5.19 shows how application can access NvM in this scenario:

54 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

Figure 5.19: Sequence diagram of NvM access for use case 3b - Store Immediately

• Configuration:

Port configuration is the same as mentioned in Table 1. In this use case, support-
DirtyFlag parameter for NvBD_1 NvBlockDescriptor is configured as True. And
following NvBlockNeeds configuration is provided.

55 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

NvBlockNeeds Parameter Value
storeAtShutdown FALSE

storeCyclic FALSE

storeImmediate TRUE

56 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

NV Data Handling Guideline
AUTOSAR CP R24-11

A Appendix

Following table provides an overview of usage of RAM / ROM / NVM Mirror blocks for
different use cases described above.

RAM Block ROM Block NVM Mirror
Use case 1a NA Mapped to RTE ROM data NA

Use case 1b NA Mapped to RTE ROM data Present in NVM

Use case 2 Mapped to RTE PIM Mapped to RTE ROM data NA

Use case 3 Present in RTE Mapped to RTE ROM data Present in NVM

57 of 57 Document ID 810: AUTOSAR_CP_EXP_NVDataHandling

	1 Introduction and functional overview
	2 Definition of terms and acronyms
	3 Related Documentation
	3.1 Input documents & related standards and norms
	3.2 Related standards and norms
	3.3 Related specification

	4 Overall mechanisms and concepts
	4.1 NvM and its features
	4.1.1 Basic storage objects
	4.1.1.1 RAM Block
	4.1.1.2 ROM Block
	4.1.1.3 NV Block
	4.1.1.4 Administrative Block

	4.1.2 Block Management types
	4.1.2.1 Native NVRAM block
	4.1.2.2 Redundant NVRAM block
	4.1.2.3 Dataset NVRAM block

	4.1.3 Synchronization Mechanism supported
	4.1.3.1 Implicit synchronization
	4.1.3.2 Explicit synchronization

	4.1.4 Other features
	4.1.4.1 CRC based comparison
	4.1.4.2 Error recovery
	4.1.4.3 Write Verification
	4.1.4.4 RAM Block handling using the NvM_SetRamBlockStatus API
	4.1.4.5 Resistant to changed software
	4.1.4.6 Block Fragmentation

	4.2 Accessing NvM using RTE
	4.2.1 Interfaces
	4.2.2 Accessing NV Data using ServiceSwComponent
	4.2.3 Accessing NV Data using NvBlockSwComponent

	4.3 Initialization of RAM Blocks from NVRAM

	5 Use Case Summary
	5.1 Case 1: Application SW-C accessing NVRAM Blocks having no Permanent RAM block
	5.1.1 Case 1a: Application providing reference to its RAM data area
	5.1.2 Case 1b: NvM fetches application RAM data via callback (NvM Explicit Synchronization)

	5.2 Case 2: Application SW-C accessing NVRAM blocks which have Permanent RAM blocks
	5.3 Case 3: Application SW-C accessing NVRAM block using an NvBlockSwComponentType
	5.3.1 Case 3a: Using Rte Explicit S/R Communication
	5.3.1.1 No Dirty Flag Support
	5.3.1.2 With Dirty Flag Support

	5.3.2 Case 3b: Using Rte Implicit S/R Communication
	5.3.2.1 No Dirty Flag Support
	5.3.2.2 With Dirty Flag Support

	A Appendix

