
Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

Document Title
Macro Encapsulation of
Interpolation Calls

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 808

Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R24-11

Document Change History
Date Release Changed by Description

2024-11-27 R24-11
AUTOSAR
Release
Management

• No content changes

2023-11-23 R23-11
AUTOSAR
Release
Management

• No content changes

2022-11-24 R22-11
AUTOSAR
Release
Management

• No content changes

2021-11-25 R21-11
AUTOSAR
Release
Management

• No content changes

2020-11-30 R20-11
AUTOSAR
Release
Management

• No content changes

2019-11-28 R19-11
AUTOSAR
Release
Management

• No content changes

• Changed Document Status from Final to
published

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Editorial changes

2017-12-08 4.3.1
AUTOSAR
Release
Management

• Editorial changes

5

1 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

4

2016-11-30 4.3.0
AUTOSAR
Release
Management

• Initial release

2 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

3 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

Contents

1 Acronyms and abbreviations 5

2 Related documentation 6

2.1 Input documents & Related specification 6

3 Introduction 7

4 Motivation 8

5 Disclaimer 9

6 Use Cases 10

6.1 Generate Encapsulation Macros . 10
6.2 Use Encapsulation Macros . 11

7 Solution Proposal 13

7.1 Definition of Terminology . 13
7.2 Architectural Components . 13

7.2.1 Encapsulation Macros Header File 13
7.3 Functional Description . 13

7.3.1 Basic Concept Description . 13
7.3.1.1 Principle of Encapsulation Concept 13
7.3.1.2 Concept Decision . 14
7.3.1.3 Needed Information for the Macro Generation 15
7.3.1.4 Overview to get the Information for Macro Generation 16
7.3.1.5 Non-Ambiguous InterpolationRoutineMapping 18
7.3.1.6 General Information to BswModuleEntry 18
7.3.1.7 Interpolation Routine and Record layouts 22
7.3.1.8 Structure of the Name of a Interpolation Routine . . . 23
7.3.1.9 Data Type of the Number of Axis Points 25

7.3.2 Implementation of Macro Encapsulation Concept 26
7.3.2.1 Generation of the Name of the Encapsulation Macro . 26
7.3.2.2 Generation of the Name of the Interpolation Routine . 27
7.3.2.3 Generation of the Parameters of the Interpolation

Routine for ImplementationDataType of Category
STRUCTURE . 27

7.3.2.4 Generation of the Parameters of the Interpolation
Routine for ImplementationDataType of Category
ARRAY . 28

4 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

1 Acronyms and abbreviations

Abbreviation / Acronym: Description:

DEM Diagnostic Event Manager

DET Default Error Tracer

5 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

2 Related documentation

2.1 Input documents & Related specification

[1] Methodology for Classic Platform
AUTOSAR_CP_TR_Methodology

[2] Specification of RTE Software
AUTOSAR_CP_SWS_RTE

[3] Software Component Template
AUTOSAR_CP_TPS_SoftwareComponentTemplate

6 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

3 Introduction

Interpolation routines are used by the application software for calculating the unknown
points from the known points. The existing AUTOSAR interpolation routines supports
two categories curve (1D) and map (2D) interpolation functionalities both in integer
and floating point. It supports two methods per category interpolation and lookup.
Additionally special variants called group of curves/maps and fixed curves/maps
with two different calculation formulas are supported which can be either interpolation
(or) lookup.

Interpolation routines are very frequently used routines in the application software.
As a consequence, the design of interpolation routines has a significant impact on
the efforts of software development and will be first addressed by optimization. The
explanatory document "Macro Encapsulation of Interpolation Calls" is developed to
guide the Application Developer to perform the simplified invocation of the AUTOSAR
compatible and resource optimized interpolation routines.

7 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

4 Motivation

The motivation for the explanatory document "MacroEncapsulationofInterpolation-
Calls" is to simplify the routine handling by introducing a single source principle. This
will reduce the maintenance efforts and avoid false usage leading to bugs. They are
the basis for the resulting cost reduction and increase in quality.

8 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

5 Disclaimer

This explanatory document represents the macro encapsulation of library calls as one
of the possible methods to reduce the application overhead in calling the mathematical
interpolation functionalities. This document does not mandate that the user shall use
only macro encapsulation for making the interpolation calls.

9 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

6 Use Cases

6.1 Generate Encapsulation Macros

The document AUTOSAR_TR_Methodology [1] R4.2 illustrates the general approach
of generation of atomic software component header files (Figure 6.1). The proposed
encapsulation macros shall be saved in an "Encapsulation Macros Header File" similar
to an "Application Header File".

Generate Atomic Software
Component Contract Header Files

Software
Component
Developer

Component API Generator Tool

Application Header File

Software
Component Data
Types Header

Software
Component
Internal
Behavior

VFB Atomic
Software
Component

Postbuild Variant Set

Predefined Variant

System Constant Value Set

VFB Data Type
Mapping Set

VFB Interfaces VFB Modes

VFB AUTOSAR Standard Package

VFB Types Software
Component to
BSW Mapping

0..*

«input»

«used tool»

«output»

11

«input»

0..1

«input»

«performs»

0..1

«input»

0..1

«input»

0..*

«input»

1

«input»

0..1

«input»

0..1

«input»

«output» 1

0..*

«input»

0..1

«input»

Figure 6.1: Generate Atomic Software Component Contract Header Files

Figure 6.2 shows the generation process which is parallel to the generation process
of the application header file. The marked block suggests the new part. The Macro
Encapsulation Generator Tool can be implemented as add-on to the Component API
Generation Tool (RTE [2]). Inputs of both tools are information from the VFB Atomic
Software Component and the Software Component Internal Behaviour.

The generated encapsulation macros need interfaces from the application header file
e.g. to get access to the curve and maps. Therefore the macro encapsulation concept
has to know the syntax and structure of the RTE [2] generated interfaces.

The proposed encapsulation macros shall be saved in an "Encapsulation Macros
Header File" (see Figure 6.2) similar to an "Application Header File".

10 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

Figure 6.2: Generation Process of Encapsulation Macros Header File

6.2 Use Encapsulation Macros

Following matrix show all types of interpolations services, provided by IFX Libraries,
which shall be handled by the macro encapsulation concept:

Linear Lookup Fix (interval) Fix (shift) Lookup Fix
(interval)

Lookup Fix
(shift)

Curve x x x x x x

Map x x x x x x

Grouped
Curve

x x

Grouped Map x x

Axis Search x

Following matrix show all types of interpolations services, provided by IFL Libraries,
which shall be handled by the macro encapsulation concept:

11 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

Linear Lookup Fix (interval) Fix (shift) Lookup Fix
(interval)

Lookup Fix
(shift)

Curve x

Map x

Grouped
Curve

x

Grouped Map x

Axis Search x

Interpolation methods:

Linear: Interpolates result considering two data points

Lookup: No interpolation, returns entry data point

Fix: No explicit axis available, distribution points are calculated via Offset and Shift or
Offset and Interval

Lookup Fix: Mixture of Lookup and Fix

Interpolation calculation:

Curve / Map: Integrated data point search and interpolation

Grouped Curve / Grouped Map: Distributed data point search and interpolation

For the grouped interpolation method the data point search is separated from the in-
terpolation calculation. The data point search results in a structure which contains
index and ratio information. This information can be used by curve interpolation, curve
look-up interpolation, map interpolation and map look-up interpolation.Currently this
document details on linear curve and map interpolations. The other types of interpola-
tions can be handled similar but are not specified in this document.

12 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

7 Solution Proposal

7.1 Definition of Terminology

This concept will provide an additional header file, the "Encapsulation Macros Header
File". It contains generated macros to encapsulate the call of curve and map interpo-
lation routines.

There are no other new terminologies provided.

7.2 Architectural Components

7.2.1 Encapsulation Macros Header File

Artifact Encapsulation Macros Header File

Package AUTOSAR Root::M2::Methodology::MethodologyLibrary::Component::Work Products

Brief Description Header generated for an AtomicSoftwareComponentType from Macro Encapsulation
Generator Tool after the RTE [2] contract phase.

Description Header generated for an AtomicSoftwareComponentType from Macro Encapsulation
Generator Tool after the RTE [2] contract phase. It represents the complete encapsulation
macro interfaces between the component code and the RTE (calls into the RTE as well as
prototypes called by the RTE). All calls of encapsulation interpolation routines are routed
through this header.

Kind Code

Relation Type Related Element Mul. Note

AggregatedBy Delivered Software
Component

1

ParameterOut Generate Atomic Software
Component Contract
Header Files

1 Meth.bindingTime =
CodeGenerationTime

ParameterIn Compile Atomic Software
Component

1 Meth.bindingTime =
CodeGenerationTime

The name of the header will have following form: "<component>_Elc.h" where <com-
ponent> is the name of the component for that the header is generated.

7.3 Functional Description

7.3.1 Basic Concept Description

7.3.1.1 Principle of Encapsulation Concept

For illustration of the encapsulation macros, an example of the processing of a curve
interpolation is demonstrated as follows. (Given names are possibly not conforming to
naming conventions because the focus is set to the principle of the concept.)

13 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

Suggest the data specification (VFB Atomic Software Component description) of a
particular SWC component defines a data prototype, named "IgnitionCurve". This
data prototype is typed by an ApplicationDataType named "IgnitionCurveType"
inclusive their x- and y-axis. The ApplicationDataType corresponds to an Im-
plementationDataType (e.g. "GenericCurve"). This ImplementationDataType
specifies the details of the resulting structure including their BaseTypes (e.g. data type
uint8 for curve values, sint16 for the x-axis used by following example).

The prototype of an interpolation service which looks like below:
uint8 Ifx_IntIpoCur_s16_u8(sint16 Xin, sint16 N, const sint16* X_Array,

const uint8* Val_Array);
// where,
// Xin: Input value
// N: Number of axis points
// X_Array: Pointer to X distribution
// Val_Array: Pointer to Curve values

Without the encapsulation concept the interpolation service has to be called as given
below:
CurveValue = Ifx_IntIpoCur_s16_u8(Xinput, Curve.N, Curve.Axis, Curve.Values

);

The encapsulation concept now provides a macro to encapsulate the interpolation ser-
vice call:
CurveValue = Elc_Get_myRunnable_IgnitionCurve();

Because the encapsulation macro is generated as below:
#define Elc_Get_myRunnable_IgnitionCurve Ifx_IntIpoCur_s16_u8(Xinput, Curve

.N, Curve.Axis, Curve.Values);

The order of parameters is not implicit; an explicit behavior is needed via a semantic
mapping (details are defined in 7.3.2.3). To provide values and pointers for single
parameter of interpolation service, RTE [2] accesses are used. Ex:Rte_CData()

7.3.1.2 Concept Decision

Generally there are two types of parameters:

• First type is the input values to the curve or map.

• Second type is the values and pointers to the respective curve or map.

The input values are normally derived from physical values which are represented as
ApplicationDataTypes. But it is possible that such input values are slightly pre-
processed before calling the interpolation routine. In this case the interpolation routine
is called with local variables which are not passed through RTE [2] contract phase.
An explicit communication shall be needed but would be costly regarding resources.

14 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

This will make the complete encapsulation of Interpolation calls complex and should
be avoided.

The parameters for the values and pointers of the respective curve or map will make no
problem. These parameters have a more internal view because they are derived from
the memory representation of a curve or map which is described via RecordLayouts.

To limit the complexity of the handling of the input values two alternatives are possible:

1. The generated macro has parameter(s) for the input value(s)
CurveValue = Elc_Get_myRunnable_IgnitionCurve(local_input);

or
CurveValue = Elc_Get_myRunnable_IgnitionCurve(Rte_X_input);

2. Temporary variables are used in front of macro call without parameters
local_input = X_input;

or
local_input = Rte_X_input;

CurveValue = Elc_Get_myRunnable_IgnitionCurve();

In solution 2 there must be specific knowledge of the name of the temporary variable
because this variable is fixed within the generated macro. This might be too complex
and hence solution 1 is chosen.

Note, these macros are SWC specific and therefore particular naming schemes shall
be applied. Only the input values of the curve or map has to be provided by the user.
The remaining parameters of an interpolation routine and the interpolation routine itself
are encapsulation from the generated macro. This information can be extracted from
the data specification. With this approach fault introduction by non consistent defini-
tions are eliminated. Additionally the software developer of a SWC component is freed
completely from storage assignment and routine assignment which are performed au-
tomatically. As a consequence, the effort for software development decreases signifi-
cantly.

7.3.1.3 Needed Information for the Macro Generation

Based on the concept decision in chapter 7, the macro to be generated looks like
below.

(Example for a curve):
#define Elc_Get_{Runnable}_{Accesspoint} {RoutineName}((X), {ImplTypeStruct

}.{N}, {ImplTypeStruct}.{Axis}, {ImplTypeStruct}.{Values}

To generate this macro following information is needed:

15 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

Name of the generated Macro: Elc_Get_myRunnable_{NameOfAccessPoint}
The generated macro is individual generated for each access point.

Name of the Interpolation Routine: {RoutineName} The name of an interpolation
routine depends on the type of the interpolation routine and the data types of
the axis and output values. Each combination of data types of axis and output
of interpolation values has an individual implementation and an individual name
of the interpolation routine. To create the name of the interpolation routine it the
most complex part of this concept.

E.g. following curve interpolation routines has to be distinguished:

Ifx_IntIpoCur_U8_U8
Ifx_IntIpoCur_U8_U16
Ifx_IntIpoCur_U8_S8
Ifx_IntIpoCur_U8_S16
Ifx_IntIpoCur_U16_U8
Ifx_IntIpoCur_U16_U16
Ifx_IntIpoCur_U16_S8
Ifx_IntIpoCur_U16_S16
Ifx_IntIpoCur_S8_U8
Ifx_IntIpoCur_S8_U16
Ifx_IntIpoCur_S8_S8
Ifx_IntIpoCur_S8_S16
Ifx_IntIpoCur_S16_U8
Ifx_IntIpoCur_S16_U16
Ifx_IntIpoCur_S16_S8
Ifx_IntIpoCur_S16_S16

Parameters of the Interpolation Routine: {ImplTypeStruct}.{N}, ... Provision of the
parameter of the interpolation routine. RTE [2] generates a structure correspond-
ing to an ImplementationDataType and based on a SwRecordLayout. The
macro encapsulation tool has to generate the accesses to the number of axis
points, the axis and the values of the curve or map. The number of pointers
needed from the interpolation routine differs from kind of interpolation.

The data type of the number of axis points has a special relevance. This informa-
tion is not needed explicitly but must be defined strictly within the Implementa-
tionDataType. In chapter 7.3.1.9 rules are given to define the data type of the
number of distribution points.

7.3.1.4 Overview to get the Information for Macro Generation

Figure 7.1 illustrates a rough overview of the workflow of the Macro Encapsulation
Concept. The picture anticipates which information has to be prepared by the concept
and which information are still available within the MetaModel of AUTOSAR.

16 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

Figure 7.1: Overview of Workflow of Encapsulation Concept based on Meta Model

Figure 7.2: Legend

Starting from the DataAccessPoint all information has to be collected to generate a
macro which encapsulates the call of an interpolation routine. At the DataAccessPoint
it is known what interpolation routine will be used and which values shall be the input
and output of the interpolation routine. The name of the access point can be chosen
directly from the DataAccessPoint. The name of the interpolation routine is taken from
the BswModuleEntry. The BswModuleEntry is related to the DataAccessPoint via
InterpolationRoutineMapping, RecordLayout and ApplicationDataTypes.
RTE [2] access macros and data types can be derived from the Implementation-
DataTypes which are linked to a DataAccessPoint over DataTypeMap and Appli-
cationDataTypes.

Interpolation routines varies depending on data types of the input and output values.

17 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

Up to now no AUTOSAR SWS describes the complete mechanism to specify a
BswModuleEntry with an interpolation routine for corresponding to Application-
Datatypes, SwRecordlayouts and ImplementationDataTypes. In order that the
Macro Encapsulation Concept can use the content of the BswModuleEntry it has to
be defined. A concept how to do that is described in the next chapter.

7.3.1.5 Non-Ambiguous InterpolationRoutineMapping

There are scenarios where the InterpolationRoutineMapping is not ambiguous
and the same RecordLayout fits to more than one Interpolation function. In this sce-
nario from point of data specification it is not clear for the macro encapsulation tool to
find out which kind interpolation routine is used. A curve or map can be interpolated
or only the lookup behavior can be used. The reason here is the data of the curve or
map in memory are still identical in both cases. The user only specifies the data and
properties of the curve or map in ARXML and the kind of interpolation is than chosen
by the call of a related interpolation routine in code.

For example, Ifx_IntIpoCur_s16_s16 and Ifx_IntLkUpCur_s16_s16.

The possible solution for such a non-ambiguous scenario would be, the macro encap-
sulation tool generates more than one macros for different interpolation routines. In
the case the macros shall have different names to distinguish the different kinds of
interpolation routines.

Example, consider Ifx_IntIpoCur_s16_s16 and Ifx_IntLkUpCur_s16_s16,
#define Elc_Get_myRunnable_IgnitionCurve_Ipo Ifx_IntIpoCur_s16_s16(X_input,

Curve.N, Curve.Axis, Curve.Values);

#define Elc_Get_myRunnable_IgnitionCurve_Lkup Ifx_IntLkUpCur_s16_s16(
X_input, Curve.N, Curve.Axis, Curve.Values);

The user can now invoke,
CurveValue = Elc_Get_myRunnable_IgnitionCurve_Ipo(); // for Interpolation

method
// or
CurveValue = Elc_Get_myRunnable_IgnitionCurve_Lkup(); // for Lookup method

7.3.1.6 General Information to BswModuleEntry

The BswModuleEntry represents a single API entry (C-function prototype) into the
BSW module or cluster. For IFX and IFL the BswModuleEntry is the reference to
the interpolation routine and derived from the APIs of the interpolation defined from
AUTOSAR in the SWS documents.

For Example, the IntIpoCur_u16_u16 corresponds to the API Ifx_IntIpoCur_u16_u16.

18 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

More information is available in the AUTOSAR blueprint files in "AU-
TOSAR_MOD_GeneralBlueprints.zip" in below files.

AUTOSAR_MOD_BswModuleEntrys_Blueprint.arxml

AUTOSAR_MOD_IFX_RecordLayout_Blueprint.arxml

AUTOSAR_MOD_IFL_RecordLayout_Blueprint.arxml

Figure 7.3 and Figure 7.4 describes the complete overview with different focus.

19 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

Figure 7.3: Complete MetaModel Overview to Find the Correct BswModuleEntry

20 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

Figure 7.4: Complete MetaModel Overview to Find the Correct BSWModuleEntry with
Focus SwCalprms

21 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

7.3.1.7 Interpolation Routine and Record layouts

The relationship between record layouts and interpolation routines is specified in In-
terpolationRoutineMappingSet. The interpolation routine is represented as
BswModuleEntry and implements a particular interpolation method which is denoted
in shortLabel of InterpolationRoutine. The intended interpolation method is de-
noted in InterpolationMethod of SwDataDefProps.

Figure 7.5 shows the MetaModel of mapping a Record Layout to a
specific interpolation routine (Note: This picture is taken from AU-
TOSAR_TPS_SoftwareComponentTemplate Description, Figure 5.53 [3]).

ARElement

InterpolationRoutineMappingSet

ARElement

SwRecordLayout

InterpolationRoutine

+ isDefault: Boolean [0..1]
+ shortLabel: Identifier [0..1]

ARElement
AtpBlueprint

AtpBlueprintable

BswModuleEntry

+ bswEntryKind: BswEntryKindEnum [0..1]
+ callType: BswCallType [0..1]
+ executionContext: BswExecutionContext [0..1]
+ functionPrototypeEmitter: NameToken [0..1]
+ isReentrant: Boolean [0..1]
+ isSynchronous: Boolean [0..1]
+ role: Identifier [0..1]
+ serviceId: PositiveInteger [0..1]
+ swServiceImplPolicy: SwServiceImplPolicyEnum [0..1]

InterpolationRoutineMapping

+swRecordLayout

0..1

+interpolationRoutine

0..1

+interpolationRoutineMapping

0..*

+interpolationRoutine 0..*

Figure 7.5: Mapping of Record Layouts and Interpolation Routines

22 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

:SwDataDefProps

element: SwRecordLayout

shortName = IntCur_u16_u8

:SwAxisIndividual

swMaxAxisPoints = 16

element: ImplementationDataType

category = STRUCTURE
shortName = Curve1Impl

subElement: ImplementationDataTypeElement

category = TYPE_REFERENCE
shortName = noOfAxisPts

subElement: ImplementationDataTypeElement

category = ARRAY
shortName = outputValues
shortLabel = Val

subElement: ImplementationDataTypeElement

category = TYPE_REFERENCE
arraySize = swMaxAxisPoints
shortName = value

element: DataTypeMap

subElement: ImplementationDataTypeElement

category = ARRAY
shortName = inputValues

subElement: ImplementationDataTypeElement

category = TYPE_REEFRENCE
arraySize = swMaxAxisPoints
shortName = value

:SwRecordLayoutGroup

swRecordLayoutGroupAxis = 1
shortLabel = X
category = INDEX_INCR
swRecordLayoutGroupIndex = X
swRecordLayoutGroupFrom = 1
swRecordLayoutGroupTo = -1

:SwRecordLayoutV

swRecordLayoutVAxis = 1
shortLabel = value
swRecordLayoutVProp = VALUE

:SwRecordLayoutV

swRecordLayoutVAxis = 1
shortLabel = N
swRecordLayoutVProp = COUNT

:SwRecordLayoutGroup

swRecordLayoutGroupAxis = 0
shortLabel = Val
category = COLUMN_DIR
swRecordLayoutGroupFrom = 1
swRecordLayoutGroupTo = -1

:SwRecordLayoutV

swRecordLayoutVAxis = 0
shortLabel = value
swRecordLayoutVProp = VALUE
swRecordLayoutVIndex = X

element: SwBaseType

category = FIXED_LENGTH
shortName = uint8

:
ImplementationDataType

shortName = uint8
category = VALUE

element: SwBaseType

category = FIXED_LENGTH
shortName = uint16

:
ImplementationDataType

shortName = uint16
category = VALUE

:
ApplicationPrimitiveDataType

shortName = Curve1
category = CURVE

+implementationDataType

+implementationDataType

+baseType

+baseType+baseType

+
im

p
le

m
e

n
ta

tio
n

D
a

ta
T

yp
e

+swRecordLayout

+applicationDataType

+baseType +baseType

+baseType

+
im

p
le

m
e

n
ta

tio
n

D
a

ta
T

yp
e

Figure 7.6: Curve implemented as two consecutive arrays

The structure and memory representation of a curve or map is described on
data specification level via RecordLayout. Figure 7.6 is taken from the AU-
TOSAR_TPS_SoftwareComponentTemplate, Figure 5.48 [3].

7.3.1.8 Structure of the Name of a Interpolation Routine

The name of the interpolation routine has a defined build convention based on an
inherent semantic.

23 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

Examples:

• Ifx_IntIpoCur_u8_s8

• Ifl_IntIpoMap_f32f32_f32

The structure of a name looks as follows:

{ModuleID}_{Method}{Type}_{InputDataType(s)}_{OutputDataType}

The single naming parts are described as follows:

{ModuleID} Only two module IDs are possible: "Ifx" for integer interpolations and "Ifl"
for float interpolations. A mix of integer and float interpolations is not intended.

{Method} There are different methods available. A translation map is suggested to
get a mapping between a specific method and the method part of the name
of the interpolation routine. The method is described within Application-
DataType.interpolationMethod. E.g. Linear IntIpo, Lookup IntLkUp

{Type} If the interpolation has to be done for a curve or map can be chosen via cate-
gory of the ApplicationDataType.category. Category CURVE Cur, MAP Map

{InputDataType(s)} With the help of the ImplementationDataTypeElements
the data types for the inputs are identified. Additionally the types of the
axis can be derived via DataTypeMap from the DataTypes of the Ap-
plicationDataTypes.valueAxisDataType. Figure 7.7 visualizes the depen-
dency between DataTypes and SwRecordLayouts and is taken from AU-
TOSAR_TPS_SoftwareComponentTemplate figure 5.33 [3].

Hint: The data type of the axis values may be different from the data type of the
input value of the curve.

:ApplicationDataType

:SwDataDefProps :SwRecordLayout

:ImplementationDatatypeelement: DataTypeMap

:SwBaseType

category = FIXED_LENGTH

Figure 7.7: Dependency of DataTypes and SwRecordLayouts

{OutputDataType} The output data type depends on the data type of the access point.

With that principle the BswModuleEntry can be filled inside the Interpolation-
RoutineMapping. The macro encapsulation generator tool can assume that a name
of an interpolation routine exists inside the BswModuleEntry.

24 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

7.3.1.9 Data Type of the Number of Axis Points

The macro encapsulation concept does not need this data type explicitly but the inter-
polation routine applies a special data type for the parameter for the number of axis
points. Additionally the number of axis point is an element which is located in memory
as well as the axis and values of a curve or map. Therefore the data type for the num-
ber of axis points has to be defined when the ImplementationDataType is derived
from an ApplicationDataType.

The rule to determine the data type for the number of axis points is quite easy:

The number of axis points gets the same data type as the first axis.

Impacts for curves:

A curve has only one axis. Therefore the number of axis points gets the same data
type as the x axis. If the x axis is a sint8 axis the number of axis points will be of data
type sint8 too. It is clear that negative numbers of axis points makes no sense but
127 axis points should be sufficient. If the axis is from uint8, sint16 or uin16 type the
number of axis points use the same data types too.

Impacts for maps:

A map has two axes. Here the number of axis points of the x and y axes gets the data
type of the x axis. The reason for this is to avoid fill bytes within definition of Imple-
mentationDataType. To understand this point further a definition has to be made.
The order of elements within an ImplementationDataType has a well defined se-
quence. First the elements with the number of axis points have to be defined, than the
axis/axes and finally the values of the curve or map are defined. The implementation
of an ImplementationDataType can be done as structure or array. As example:
Struct
{

uint8 Nx;
uint8 Ny;
uint8 AxisX[];
uint16 AxisY[];
sint8 Values[];

} Map;

Assuming a processor with natural alignment ("naturally aligned" means that any el-
ement is aligned to at least a multiple of its own size. For example, a 4-byte object is
aligned to an address that’s a multiple of 4, an 8-byte object is aligned to an address
that’s a multiple of 8, etc.) of memory elements no gap byte is needed between Nx and
Ny. If Ny has the same type as the Y axis between Nx and Ny is a fill byte.

25 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

7.3.2 Implementation of Macro Encapsulation Concept

This chapter describes how the encapsulation macros will be generated and the
needed information is picked up. This chapter refers to chapter 7.3.1.3 where the
needed information for the macro encapsulations is described.

Three parts have to be generated:

• Name of the encapsulation macro

• Name of the interpolation routine

• Parameters of the interpolation routine

Abstract form of the generated macro:
#define {NameOfMacro} {RoutineName}((X),{Parameters})

Details of the generated macro (Example using a curve):
#define Elc_Get_{Runnable}_{NameOfAcessPoint} {RoutineName}(X)((X), {

RteAccess}.{N}, {RteAccess}.{Axis}, {RteAccess}.{Values}

7.3.2.1 Generation of the Name of the Encapsulation Macro

The name of the encapsulation macro is derived from the name of the access point
and a suffix according to the pattern:

Elc_Get_{NameOfRunnable}_{NameOfAcessPoint}

In this context Figure 7.8 shows the runnable access to a calibration port. This picture
is taken from AUTOSAR_TPS_SoftwareComponentTemplate, 7.29 [3].

AtpStructureElement
ExecutableEntity

RunnableEntity

AtomicSwComponentType

«atpVariation»
SwDataDefProps

AbstractAccessPoint
AtpStructureElement

Identifiable

ParameterAccess

AutosarParameterRef

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AbstractRequiredPortPrototype

RPortPrototype

SwVariableRefProxy

AutosarVariableRef

SwCalprmAxisSet

SwCalprmAxis

SwCalprmAxisTypeProps

SwAxisIndividual

AtpPrototype

DataPrototype

��������������
��

 �� ����� �� �

������������������� ���
�������

������������� �
 ��������� �����

� �

�����������������������

�������������� ���
�

���
���
� ���������� !

���"����
�����

InternalBehavior

SwcInternalBehavior

+swComparisonVariable 0..*

«instanceRef»

+autosarParameter 0..1

+swCalprmAxisTypeProps0..1

+swCalprmAxis 0..*

+localParameter 0..1

+swVariableRef

0..*
{ordered}

+swCalprmAxisSet 0..1

+accessedParameter 0..1

«atpVariation,atpSplitable»

+internalBehavior 0..1

«atpSplitable»

+swDataDefProps 0..1
{redefines swDataDefProps}

+autosarVariable 0..1

«atpVariation,atpSplitable» +parameterAccess

0..*

«atpVariation,atpSplitable»

+runnable 0..*

Figure 7.8: Runnable Access to a Calibration Port

26 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

7.3.2.2 Generation of the Name of the Interpolation Routine

The name of the interpolation routine is defined in the MetaModel as BswModuleEn-
try. The Macro Encapsulation Generator Tool has to parse the MetaModel in following
sequence to get the name of the interpolation routine:

1. Start at DataAccess -> RunnableEntity -> ParameterAccess

2. Via AutosarParameterRef the DataPrototype can be found

3. Via AutosarDataPrototype the AutosarDataType can be found

4. The AutosarDataType has a relation to SwDataDefProps

5. Via SwDataDefProps a SwRecordLayout is chosen

6. Via SwRecordLayout and InterpolationRoutineMapping and Interpo-
lationRoutine the needed interpolation routine candidate’s call can be found
in BswModuleEntry.

7. Finally the appropriate InterpolationRoutine is then determined by match-
ing the data types of the ImplementationDataType.

The structure of a name looks as follows:

{ModuleID}_{Method}{Type}_{InputDataType(s)}_{OutputDataType}
————— 6 ————- ———————————- 7 —————–

7.3.2.3 Generation of the Parameters of the Interpolation Routine for Implemen-
tationDataType of Category STRUCTURE

As decided in the concept decision in chapter 7.3.1.2 input variables for the curve or
map interpolation are not encapsulated. In general they are available over DataAc-
cess.dataDefProperties.swCalprmAxisSet.variableRef.

Only the parameters for the number of axis points, pointer to the axis and pointer to
the curve or map values are generated. To get these parameters RTE [2] generated
information is used.

The RTE generates typedefs and structures depending on Implementation-
DataTypes which are the based on SwRecordLayouts of the corresponding curves
or maps. The Macro Encapsulation Generator Tool has to know the same methods like
the RTE to derive a typedef and structure from an ImplementationDataType to be
able to use that information.

By default the RTE generates for each ImplementationDataType with category
attribute set to "STRUCTURE" following typedef in the RTE Data Type header file
"Rte_Type.h". This is done in the "RTE Contract" and "RTE Generation" phase.

typedef struct { <elements> } <name>;

27 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

where <elements> is the record element specification and <name> is the shortName
of the Structure Implementation Data Type. For each record element defined by one
ImplementationDataTypeElement one record element specification <elements>
is defined. The record element specifications are ordered according the order of the
related ImplementationDataTypeElements in the input configuration. Sequent
record elements are separated with a semicolon. It is ensured by RTE that the names
of the structure and their elements are unique. The prefix Rte_ is not used because
the type names representing AUTOSAR Data Types.

Based on such a typedef a located structure is generated in the Rte.c file. Standard
RTE access is used to address the elements of the structure.

One point to clarify is the issue how to map the elements of the Implementation-
DataType to the associated parameter of interpolation routine. On the one hand the
elements of the ImplementationDataType could be defined in an arbitrary order
and on the other hand the sequence of parameters of the interpolation routines is
fixed. There must be a mapping that the element of the ImplementationDataType
fits to the correct parameter of the interpolation routine. E.g. the element which de-
scribes the number of axis points must fit to the parameter of the interpolation routine
with same denotation.

To handle this relation two proceedings are possible:

• Either a new map in MetaModel is needed to define the parameter sequence or-
der regarding the corresponding elements of the ImplementationDataTypes

• Or a naming convention has to be defined to have well defined names for specific
element behaviours.

The naming convention will be chosen because it is easier to define and to imple-
ment and the MetaModel need not be expanded. The below table shows the naming
convention for the concatenation of ImplementationDataTypes and parameters of
interpolation routines.

Parameter Defined name
Number of x axis points Nx

Number of y axis points Ny

X axis AxisX
Y axis AxisY

Values of the curve or map Values

7.3.2.4 Generation of the Parameters of the Interpolation Routine for Implemen-
tationDataType of Category ARRAY

There are approaches where the ImplementationDataType for e.g. a Curve is not
a STRUCTURE but an ARRAY. Obviously this requires that the same primitive data
types are used for number of Axispoints, Axis points, Values.

28 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation of Interpolation Calls
AUTOSAR CP R24-11

Nevertheless, in this case the naming convention described in chapter 7.3.2.3 is not
fully applicable. Therefore the required positions in the implementation array need to
be determined by a kind of "address calculation" based on the SwRecordLayout and
the current size of the corresponding curve / map. The location of the size element can
be found according to the naming conventions in chapter 7.3.2.3 and the record layout.

29 of 29 Document ID 808: AUTOSAR_CP_EXP_MacroEncapsulationofInterpolationCalls

	1 Acronyms and abbreviations
	2 Related documentation
	2.1 Input documents & Related specification

	3 Introduction
	4 Motivation
	5 Disclaimer
	6 Use Cases
	6.1 Generate Encapsulation Macros
	6.2 Use Encapsulation Macros

	7 Solution Proposal
	7.1 Definition of Terminology
	7.2 Architectural Components
	7.2.1 Encapsulation Macros Header File

	7.3 Functional Description
	7.3.1 Basic Concept Description
	7.3.1.1 Principle of Encapsulation Concept
	7.3.1.2 Concept Decision
	7.3.1.3 Needed Information for the Macro Generation
	7.3.1.4 Overview to get the Information for Macro Generation
	7.3.1.5 Non-Ambiguous InterpolationRoutineMapping
	7.3.1.6 General Information to BswModuleEntry
	7.3.1.7 Interpolation Routine and Record layouts
	7.3.1.8 Structure of the Name of a Interpolation Routine
	7.3.1.9 Data Type of the Number of Axis Points

	7.3.2 Implementation of Macro Encapsulation Concept
	7.3.2.1 Generation of the Name of the Encapsulation Macro
	7.3.2.2 Generation of the Name of the Interpolation Routine
	7.3.2.3 Generation of the Parameters of the Interpolation Routine for ImplementationDataType of Category STRUCTURE
	7.3.2.4 Generation of the Parameters of the Interpolation Routine for ImplementationDataType of Category ARRAY

