
Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

Document Title Overview of Functional Safety
Measures in AUTOSAR

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 664

Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R24-11

Document Change History
Date Release Changed by Description

2024-11-27 R24-11
AUTOSAR
Release
Management

• Reflected the removal of partition restart
from AUTOSAR

• Reflected the deprecation of E2E
protection wrapper from AUTOSAR

2023-11-23 R23-11
AUTOSAR
Release
Management

• Fixed AUTOSAR specification
references

• Changes in image and tables layout

2022-11-24 R22-11
AUTOSAR
Release
Management

• No content changes

2021-11-25 R21-11
AUTOSAR
Release
Management

• No content changes

2020-11-30 R20-11
AUTOSAR
Release
Management

• No content changes

2019-11-28 R19-11
AUTOSAR
Release
Management

• Removed Duplicated IDs

• Changed Document Status from Final to
published

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Editorial changes

5

1 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

4

2016-11-30 4.3.0
AUTOSAR
Release
Management

• New Chapter: Use of AUTOSAR
features for functional safety is based on
Chapters 4.2 and 4.3 from document
TR_SafetyConceptStatusReport_233

• Minor corrections / clarifications /
editorial changes

2015-07-31 4.2.2
AUTOSAR
Release
Management

• New Chapter: Hardware Diagnostics
covers Core Test and RAM Test.

• Minor corrections / clarifications /
editorial changes.

2014-10-31 4.2.1
AUTOSAR
Release
Management

• Initial Release

2 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

3 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

Contents

1 Introduction 7

1.1 Disclaimer . 7
1.2 Scope . 7
1.3 Purpose . 8
1.4 Intended Audience . 8

2 Functional Safety Mechanisms 9

2.1 Memory Partitioning . 9
2.1.1 Fault Models . 10
2.1.2 Description . 10

2.1.2.1 Application Software 11
2.1.2.2 OS Applications . 12
2.1.2.3 Communication and Code Sharing 13
2.1.2.4 Memory Partitioning within Application Software 14
2.1.2.5 Memory Partitioning within Software Components . . . 15
2.1.2.6 Implementation of Memory Partitioning 17

2.1.3 Detection and Reaction . 20
2.1.4 Limitations . 20
2.1.5 References to AUTOSAR Documents 21
2.1.6 References to ISO26262 . 21

2.2 Timing Monitoring . 22
2.2.1 Fault Models . 22
2.2.2 Description . 22

2.2.2.1 Supervised Entities . 23
2.2.2.2 Watchdog Manager . 23
2.2.2.3 Timing Protection of the Operating System 25

2.2.3 Detection and Reaction . 26
2.2.4 Limitations . 27
2.2.5 References to AUTOSAR Documents 28
2.2.6 References to ISO26262 . 28

2.3 Logical Supervision . 28
2.3.1 Fault Models . 28
2.3.2 Description . 29
2.3.3 Detection and Reaction . 31
2.3.4 Limitations . 32
2.3.5 References to AUTOSAR Documents 32
2.3.6 References to ISO26262 . 32

2.4 End-2-End Protection . 32
2.4.1 Fault Models . 33
2.4.2 Description . 34

2.4.2.1 End-2-End Profiles . 35
2.4.2.2 End-2-End State Machine 38
2.4.2.3 Integration of the End-2-End Protection Library 39
2.4.2.4 End-2-End Protection Wrapper 40

4 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

2.4.2.5 Transmission Manager 41
2.4.2.6 COM End-2-End Callout 42
2.4.2.7 RTE Data Transformer 43

2.4.3 Detection and Reaction . 45
2.4.4 Limitations . 45
2.4.5 References to AUTOSAR Documents 46
2.4.6 References to ISO26262 . 46

3 Functional Safety Measures 47

3.1 Functional Safety Measures of AUTOSAR 47
3.2 Traceability . 48
3.3 Development Measures and the Evolution of the Standard 48
3.4 Functional Safety Measures not delivered by AUTOSAR 49
3.5 Safety related Extensions of Methodology and Templates 50
3.6 Safety Use Case . 50
3.7 Use of AUTOSAR features for functional safety 51

3.7.1 Timing Related Features . 51
3.7.1.1 Features related to the provision of synchronized

time bases . 51
3.7.1.2 Features related to synchronization of processing of

asynchronous processing units 56
3.7.1.3 Features to allow time deterministic implementation

of applications . 58
3.7.1.4 Features related to protection against timing violation . 62

3.7.2 E-Gas Monitoring Related Features 64
3.7.2.1 Communication protections against corruption and

loss of data . 64
3.7.2.2 Priority access to SPI bus 66
3.7.2.3 Testing and monitoring of I/O data and I/O HW 66
3.7.2.4 Ability to make an AUTOSAR application compatible

to the e-Gas monitoring Concept 67

4 Hardware Diagnostics 69

4.1 Core Test . 69
4.1.1 Fault Models . 69
4.1.2 Description . 70
4.1.3 Detection and Reaction . 70
4.1.4 Limitations . 70
4.1.5 References to AUTOSAR Documents 71
4.1.6 References to ISO26262 . 71

4.2 RAM Test . 71
4.2.1 Fault Models . 72
4.2.2 Description . 72
4.2.3 Detection and Reaction . 73
4.2.4 Limitations . 73
4.2.5 References to AUTOSAR Documents 73
4.2.6 References to ISO26262 . 74

5 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

A Appendix 75

A.1 Acronyms and abbreviations . 75

B Related Documentation 76

6 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

1 Introduction

Functional safety is a system characteristic which is taken into account from the begin-
ning, as it may influence system design decisions. Therefore AUTOSAR specifications
include requirements related to functional safety.

Aspects such as complexity of the system design can be relevant for the achievement
of functional safety in the automotive field.

Software is one parameter that can influence complexity on system level. New tech-
niques and concepts for software development can be used in order to minimize com-
plexity and therefore can ease the achievement of functional safety.

AUTOSAR supports the development of safety-related systems by offering safety mea-
sures and mechanisms. However AUTOSAR is not a complete safe solution.

The use of AUTOSAR does not imply [1, ISO 26262] compliance. It is still possible to
build unsafe systems using the AUTOSAR safety measures and mechanisms.

1.1 Disclaimer

This explanatory document represents the functional safety measures and mecha-
nisms of the latest release of AUTOSAR. Some of the described mechanisms and
measures may be implemented differently or may not be available in previous releases.
The user of this document shall always consult the applicable referenced documents.

1.2 Scope

The content of this document is structured into separate chapters as follows:

Functional Safety Mechanisms: This chapter contains AUTOSAR functional safety
mechanisms related to freedom from interference between AUTOSAR SW-Cs.

• Memory: Partitioning mechanisms of AUTOSAR with the context of Application
Software development and deployment.

• Timing: Temporal Program Flow Monitoring mechanisms using the Watchdog
Manager and Timing Protection mechanisms using the Operating System.

• Execution: Logical Supervision mechanisms using the Watchdog Manager.

• Exchange of Information: Communication fault detection mechanisms using the
End-2-End Library and Extensions.

Functional Safety Measures: This chapter contains topics related to the development
of safety-relevant systems. The following items are covered:

7 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

• Functional Safety Measures of AUTOSAR, such as Traceability, Development
Measures and the Evolution of the Standard.

• Functional Safety Measures not delivered by AUTOSAR.

• Safety Use Case: An exemplary safety related system using AUTOSAR based
on the guided tour example Front Light Management.

• Safety Extensions: How safety requirements can be expressed within the AU-
TOSAR models and documents by means of the AUTOSAR meta-model.

Hardware Diagnostics: This chapter contains topics related to the premise, that the
provided functionality of the microcontroller can be trusted. The following items are
covered:

• Core Test.

• RAM Test.

1.3 Purpose

Information about AUTOSAR functional safety mechanisms and measures is cur-
rently distributed throughout the referenced documentation. Unless one knows how
functional safety mechanisms are supported and where the necessary information is
specifically located, it is difficult to evaluate how a safety-relevant system can be im-
plemented using AUTOSAR efficiently.

This explanatory document summarizes the key points related to functional safety in
AUTOSAR and explains how the functional safety mechanisms and measures can be
used.

Note: This document supersedes the AUTOSAR document "Technical Safety Concept
Status Report", ID: 233.

1.4 Intended Audience

This document gives an overview of the functional safety measures and mechanisms
of AUTOSAR and their implementation to those involved in the development of safety-
relevant (ECU) systems. Therefore this document is intended for the users of AU-
TOSAR, including people involved in safety analysis.

8 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

2 Functional Safety Mechanisms

Modern ECUs contain highly modular embedded software, which can consist of both
non-safety-related and safety-related software components, which perform functions
with different ASIL ratings.

According to ISO 262621, if the embedded software consists of software components
with different ASIL ratings, then either the entire software must be developed accord-
ing to the highest ASIL, or freedom from interference shall be ensured for software
components with a higher ASIL rating from elements with a lower ASIL rating.

Furthermore, the ISO 262622 standard provides examples for faults, which cause in-
terference between software components. The faults are grouped as follows:

• Memory

• Timing

• Execution

• Exchange of Information

During the course of the following chapter, an overview of AUTOSAR functional safety
mechanisms3 is given. Those mechanisms assist with the prevention, detection and
mitigation of hardware and software faults to ensure freedom from interference be-
tween software components.

Note: AUTOSAR functional safety mechanisms are used to support the development of
safety-related systems. Therefore, functional safety mechanisms (software and hard-
ware) are safety-related and must be developed and integrated accordingly.

2.1 Memory Partitioning

A modular implementation of embedded systems that consists of both safety-related
software components of different ASILs or of safety-related and non-safety-related
software components is facilitated by AUTOSAR features that support freedom from
interference between such software components.

Software Components which are developed according to a low ASIL rating may inter-
fere by wrongfully accessing memory regions of software components with a higher
ASIL rating. An execution of software components in separate memory regions or
memory partitions supports the prevention of such memory access violations. Please
see section 2.1.2.6 for further details.

1 [ISO 26262-6 7.4.8] Coexistence
2[ISO 26262-6, Annex D] Freedom from interference between software elements.
3In the context of this document, functional safety mechanisms are a concrete product part, such as

memory protection. They are considered as specialization of functional safety measures, which also
include process steps, like a review. This definition is in line with the definition given in ISO 26262 for
these terms.

9 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

The features described in this chapter are part of the OS and the RTE functionality,
which are required to enable groups of SW-Cs to run in separate memory partitions, in
order to provide freedom from interference between software components.

2.1.1 Fault Models

According to ISO 262624, the following memory-related effects of faults can be consid-
ered as a cause for interference between software components:

• Corruption of content.

• Read or write access to memory allocated to another software element.

• Inconsistent data (e.g. due to update during data fetch).

• Stack overflow or underflow.

The functional safety mechanism Memory Partitioning provides protection by means
of restricting access to memory and memory-mapped hardware. Memory partition-
ing means that OS-Applications reside in different memory areas (partitions) that are
protected from each other. In particular, code executing in one partition cannot modify
memory of a different partition. Moreover, memory partitioning enables to protect read-
only memory segments (e.g. code execution), as well as to protect memory-mapped
hardware.

The memory partitioning and user/supervisor-modes related features address the fol-
lowing goal: Supporting freedom from interference between software components by
means of memory partitioning (e.g. memory-related faults in SW-Cs do not propagate
to other software modules and SW-Cs executed in user-mode have restricted access
to CPU instructions like e.g. reconfiguration).

2.1.2 Description

Memory Partitioning is an extension of the RTE and the OS, which is described in
the AUTOSAR Specification as "One Partition will be implemented using one OS-
Application"5 and "SW-Cs grouped in separate user-mode memory partitions"6.

During the course of this chapter, this extension will be described as the relationship
of Runnables, Tasks, Software Components and OS-Applications in the context of the
AUTOSAR Methodology.

4 [ISO 26262-6, Annex D] D.2.3 Memory
5CP_TPS_ECUConfiguration[2], V3.5.0, R4.1 Rev 3, Page 154, ECUC_EcuC_00005
6 Requirements on AUTOSAR Features, V1.2.1, R4.1 Rev 2, Chapter 4.11 Safety

10 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

2.1.2.1 Application Software

In the AUTOSAR Architecture, Application Software is located above the RTE and
consists of interconnected AUTOSAR Software Components, which atomically encap-
sulate parts of the Application Software functionality.

Figure 2.1: Application Software

AUTOSAR Software Components are hardware-independent, so they can be inte-
grated onto any available ECU Hardware. To facilitate the inter- and intra-ECU in-
formation exchange, AUTOSAR Software Components communicate exclusively over
the RTE.

AUTOSAR Software Components contain a number of Functions and Variables, which
provide the internal functionality. The internal structure of an AUTOSAR Software Com-
ponent, its Variables and Function Calls, is hidden from the public view via the header
files. Only the external RTE calls are presented at the public interface.

Figure 2.2: Software Components

11 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

AUTOSAR Software Components also contain functions, which must be invoked at
runtime. Those C-functions are referred to as Runnables in AUTOSAR.

Runnables cannot be executed by themselves; they must be assigned to executable
entities of the operating system. Such an assignment can be performed by inserting
function calls of Runnables into OS-Task bodies.

Runnables are then executed cyclically and/or event-driven in the context of their caller
OS-Task. The assignment of Runnables to Tasks is performed according to Figure 2.3
and Figure 2.4.

Figure 2.3: AUTOSAR Layered Software Architecture - Mapping of Runnables

2.1.2.2 OS Applications

Figure 2.4 presents an interpretation of the relations from Figure 2.3. Runnables from
AUTOSAR Software Components are assigned to OS-Tasks according to this diagram.

12 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

Figure 2.4: Mapping of Software Components to OS-Applications
CP_EXP_LayeredSoftwareArchitecture[3], V3.4.0, R4.1 Rev 3, Page 105

AUTOSAR OS-Applications are collections of Operating System objects such as Tasks,
ISRs, Schedule Tables, Counters and Alarms that form a cohesive functional unit. All
objects which belong to the same OS-Application have access to each other.

The Operating System objects within an OS-Application may belong to different AU-
TOSAR Software Components. The RTE implements a memory area which is acces-
sible by all members of the OS-Application without restrictions to facilitate communica-
tion between the SW-Cs efficiently.

There are two classes of OS-Applications:

1. "Trusted OS-Applications are allowed to run with monitoring or protection features
disabled at runtime. They may have unrestricted access to memory and the
Operating System module’s API. Trusted OS-Applications need not have their
timing behavior enforced at runtime. They are allowed to run in privileged mode
when supported by the processor."

2. "Non-Trusted OS-Applications are not allowed to run with monitoring or protection
features disabled at runtime. They have restricted access to memory, restricted
access to the Operating System module’s API and have their timing behaviour
enforced at runtime. They are not allowed to run in privileged mode when sup-
ported by the processor."7

2.1.2.3 Communication and Code Sharing

According to Figure 2.4 and Figure 2.3, an OS-Application can contain multiple AU-
TOSAR Software Components and associated Runnables. Runnables are only al-

7CP_SWS_OS[4], V5.3.0 R4.1 Rev 3, Chapter 7.6.1

13 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

lowed to directly access variables and to perform function calls within their respective
Software Component.

Internal Function Calls and Variables of a Software Component are not publically
known by other Software Components, as their definitions are not presented by the
header files of the external interface.

Therefore, a direct communication via variables and the execution of Code of other
Software Components is not intended.

In Figure 2.5, this is illustrated by the example of code-sharing, which is only allowed
within the Software Component and not between Software Components of one OS-
Application. Communication with other Software Components shall be performed via
the RTE. Runnable 4 may not execute functions belonging to SW-C 2.2.

Figure 2.5: Code-Sharing within an OS-Application

2.1.2.4 Memory Partitioning within Application Software

Application Software in an AUTOSAR ECU can consist of safety-related and non-
safety-related Software Components. Freedom from interference between Software
Components with different ASIL ratings shall be ensured according to the requirements
of ISO 262628.

The AUTOSAR Operating System provides freedom from interference for memory-
related faults by placing OS-Applications into separate memory regions. This mech-
anism is called Memory Partitioning. OS-Applications are protected from each other,
as code executing in the Memory Partition of one OS-Application cannot modify other
memory regions. The corresponding requirements from the AUTOSAR OS specifica-
tion are presented in Table 2.1.

8 [ISO 26262-6 7.4.8] Coexistence

14 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

Req. ID Requirement Text

[SWS_Os_00207] The Operating System module shall prevent write access to the OS-Application’s private data
sections from other non-trusted OS-Applications.

[SWS_Os_00355] The Operating System module shall prevent write access to all private stacks of Tasks/Category 2
ISRs of an OS-Application from other non-trusted OS-Applications.

[SWS_Os_00356] The Operating System module shall prevent write access to all private data sections of a Task/
Category 2 ISR of an OS-Application from other non-trusted OS-Applications.

Table 2.1: AUTOSAR OS - Memory Partitioning for OS-Applications
Specification of Operating System, V5.3.0 R4.1 Rev 3

Application Software can consist of Software Components with different ASIL ratings.

However, Software Components with different ASIL ratings should not be assigned to
the same OS-Application. Memory Partitioning does not provide freedom from interfer-
ence between Software Components which are assigned to the same OS-Application.
The Operating System only prevents other OS-Applications from performing improper
accesses. A faulty Software Component would not be prevented from modifying mem-
ory areas of other Software Components within the same OS-Application.

Note: Please consult the subsequent section for details on Task-level partitioning.

2.1.2.5 Memory Partitioning within Software Components

A Mixed-ASIL Software Component could consist of Runnables with different ASIL
ratings and therefore requires an execution environment which supports freedom from
interference between those Runnables. An execution of different Runnables of one
Software Component in different Memory Partitions is not possible due to the following:

Memory Partitioning is performed at the level of OS-Applications. According to
Figure 2.3 and Figure 2.4 however, a Software Component can only be assigned to
one OS-Application and therefore has only one Memory Partition. Also, Runnables of
a Software Component can only be called by the Tasks of one OS-Application.

As shown in Figure 2.6, Runnables of a Software Component cannot be distributed to
Tasks of multiple OS-Applications.

15 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

Figure 2.6: SWCs vs. Partitions

Memory Partitioning cannot be used to separate Runnables within the same SW-C.
If it is necessary to have a Software Component comprise Runnables with different
ASIL-ratings and an independent execution with freedom from interference is required
for those Runnables, then memory partitioning at OS-Application level is not sufficient,
memory partitioning has to be performed at Task-level. This approach is shown in
Figure 2.7.

Figure 2.7: Task Partitioning

Requirements related to Memory Partitioning at Task-level are listed in the AUTOSAR
OS specification in Table 2.2. The use of the weak word "may" shows that an imple-
mentation of Task-level partitioning is optional for the AUTOSAR OS. Therefore, not
every AUTOSAR OS implementation may support Task-level Memory Partitioning.

16 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

Req. ID Requirement Text

[SWS_Os_00208] The Operating System module may prevent write access to the private stack of Tasks/Category 2
ISRs of a non-trusted application from all other Tasks/ISRs in the same OS-Application.

[SWS_Os_00195] The Operating System module may prevent write access to the private data sections of a Task/
Category 2 ISR of a non-trusted application from all other Tasks/ISRs in the same OS-Application.

Table 2.2: AUTOSAR OS Requirements - Memory Partitioning for Tasks
Specification of Operating System, V5.3.0 R4.1 Rev 3

2.1.2.6 Implementation of Memory Partitioning

A broad variety of technical safety concepts on the system- and software level can be
implemented using the mechanism Memory Partitioning.

Figure 2.8 shows a possible implementation whereas all Basic Software Modules
are executed in one trusted/supervisor-mode9 memory partition (highlighted in red in
Figure 2.8). Some SW-Cs are logically grouped and put in separate non- trusted/user-
mode memory partitions (highlighted in green). Selected SW-Cs belong to the same
trusted/supervisor-mode memory partition as the Basic Software Modules (see fourth
SW-C in Figure 2.8 highlighted in red). There may be several non-trusted/user-mode
10 partitions, each containing one or more SW-Cs.

9Supervisor Mode, Privileged Mode and Elevated Mode are synonyms for the elevated CPU mode.
Trusted Mode is a mode of the Software, which is executed under the elevated CPU Mode.

10User Mode and Non-Privileged Mode are synonyms for a non-elevated CPU mode. Non-Trusted
Mode is a mode of the Software, which is executed under the non-elevated CPU Mode.

17 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

Figure 2.8: Memory partitioning and modes
Technical Safety Concept Status Report, V1.2.0, R4.1 Rev 1, Chapter 1.1.6 Memory Partition-
ing and User/Supervisor-Modes Related Features

The execution of SW-Cs in non-trusted/user-mode memory partitions is restricted
from modifying other memory regions, whereas the execution of SW-Cs of trusted/
supervisor-mode memory partitions is not restricted.

Modern microcontrollers for safety relevant applications support memory partitioning
via dedicated hardware, a Memory Protection Unit (MPU).

Note: It is assumed that memory partitioning will be implemented on a microcontroller
which has an MPU or similar hardware features11.

With a typical MPU implementation, access to multiple sections of the microcontroller
address space can be allowed for non-trusted applications. Access control is defined
as a combination of Read, Write and Execute accesses. The configuration of the MPU
is only permissible in supervisor mode.

Note: In some microcontroller implementations the MPU is integrated within the Pro-
cessor Core. Therefore that MPU only controls accesses of the associated Core. Other
Bus Masters, such as DMA controllers and additional Cores, are not controlled by this
particular MPU instance.

The following table and use cases illustrate a set of possible scenarios when the con-
figuration of the memory protection unit is derived from system requirements.

11[ISO26262-6 7.4.9 b)] Partitioning

18 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

Note: This table may be incomplete with respect to the features of the specific hardware
devices in use.

Address Space Rationale Read Write Execute

Flash Memory Read, Execute and Write accesses do not modify flash
memory contents. Flash memory must be erased and
enabled for writing by a different mechanism first.

Note: The following implications arise from the Security
point of view: Reading and execution of foreign code
may be used to obtain information which is otherwise
not intended for the software.

O O O

RAM Write access to RAM may produce memory
corruptions, thereby affecting the behavior of the
software.

O X O

Peripheral Side effects are possible even when reading from
peripheral address space. E.g.: Acknowledgement of
an Interrupt is performed via a read access to the
Interrupt Controller, Read access to peripherals may
cause I/O errors.

X X X

Table 2.3: Configuration scenarios for Memory Protection

Legend:

X - Protection is needed

O - Protection is optional

Note: Side effects from performance point of view may arise due to Bus Contention,
arbitration at interfaces, etc.

Use Case 1: Software Components in the same Partition.

• Software Components in the same partition have access to each other’s RAM
regions, and therefore can corrupt each other’s memory contents.

• Software components do not have access to peripheral devices by definition, as
they shall be not aware of the underlying microcontroller architecture. An unsafe
system can be created when a software component is given direct access to
peripheral devices.

Use Case 2: Software Components in different Partitions.

• Software Components in different partitions do not have access to each other’s
RAM regions, and therefore cannot corrupt each other’s memory contents.

• Software components do not have access to peripheral devices by definition, as
they shall be not aware of the underlying microcontroller architecture. A poten-
tially unsafe system can be created when a software component is given direct
access to peripheral devices.

Use Case 3: MCAL Drivers

• MCAL Drivers are a collection of functions, such as Read/Write/Initialize. They
must be executed by another entity, such as the BSW or a CDD. Please see
Figure 2.8 for details.

19 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

• MCAL Drivers need a Read/Write access to the peripheral space of the respective
peripheral hardware module. Depending on the hardware architecture, supervi-
sor mode of the processor may be additionally required.

2.1.3 Detection and Reaction

The functional safety mechanism Memory Partitioning provides protection by means
of restricting access to memory and memory-mapped hardware. Code executing in
one partition cannot modify memory of a different partition. Memory partitioning en-
ables to protect read-only memory segments, as well as to protect memory-mapped
hardware. Moreover, Software Components which are executed in user-mode have
restricted access to CPU instructions like e.g. reconfiguration.

The mechanism Memory Partitioning can be implemented with the support of micro-
controller hardware such as Memory Protection Unit or Memory Management Unit.
The microcontroller hardware must be configured appropriately by the Operating Sys-
tem to facilitate detection and prevention of incorrect memory accesses. The execution
of Software Components which are executed in non-trusted/user-mode memory parti-
tions is then monitored.

In case of a memory access violation or a CPU instruction violation in a non-trusted/
user-mode partition, the faulty access is blocked and an exception is raised by the
microcontroller hardware.

Note: The actual reaction of the Operating System can be configured through the
Protection Hook implementation. Please consult the OS SWS12 document for further
details.

Note: The AUTOSAR Document "Explanation of Error Handling on Application Level"13

provides additional information on error handling. Within the document it is explained
how error handling can be performed and where the required data (e.g. substitute
values) can be obtained from.

2.1.4 Limitations

1. Memory Partitioning is not applicable for trusted OS-Applications.

The execution of trusted/supervisor-mode memory partitions is not controlled by
means of the Operating System and some MMU/MPU hardware implementa-
tions.

2. Memory Partitioning not supported on task-level.

12Specification of Operating System, V5.3.0 R4.1 Rev 3
13CP_EXP_ApplicationLevelErrorHandling[5], R4.2 Rev 1, Chapter 8, Chapter 10

20 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

The implementation of task-level partitioning is not mandatory for AUTOSAR OS
implementations. Freedom from Interference within the OS-Application may be
therefore not supported.

3. Performance penalty due to Memory Partitioning.

Depending on the architecture of the Application Software and the implemen-
tation of microcontroller hardware and the OS, there is a performance penalty
associated with the use of Memory Partitioning. This penalty increases with the
number of context switches which are performed per time unit.

4. No Basic Software Partitioning.

The current specification of the Basic Software does not specify memory parti-
tioning for Basic Software Components with different ASIL ratings from different
suppliers.

2.1.5 References to AUTOSAR Documents

Source: Requirements on AUTOSAR Features, V1.2.1, R4.1 Rev 2

AUTOSAR OS shall support isolation and protection of application software

AUTOSAR shall support usage of hardware memory protection features to enhance
safety

2.1.6 References to ISO26262

The following references to the ISO26262 standard are related to the aspects of free-
dom from interference for software components with different ASIL ratings.

Additionally, concepts related to software partitioning and memory-related faults are
covered.

ID ISO26262 Reference
01 Part 6: [7.4.9] Partitioning

02 Part 6: [7.4.11] Dependent failure analysis

03 Part 6: [D.2.1]

04 Part 6: [D.2.3]

05 Part 9: [6.2]

06 Part 9: [6.4.3]

07 Part 9: [6.4.4]

Table 2.4: ISO26262 Memory Partitioning References

21 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

2.2 Timing Monitoring

Timing is an important property of embedded systems. Safe behavior requires that the
systems actions and reactions are performed within the right time.

The right time can be described in terms of a set of timing constraints that have to be
satisfied. However, an AUTOSAR software component cannot ensure proper timing
by itself. It depends on proper support by the AUTOSAR runtime environment and
the basic software. During integration the timing constraints of the AUTOSAR software
components need to be ensured.

2.2.1 Fault Models

According to ISO 2626214, the following Timing- and Execution-related faults can be
considered as a cause for interference between software components:

• Blocking of execution

• Deadlocks

• Livelocks

• Incorrect allocation of execution time

• Incorrect synchronization between software elements

Timing protection and monitoring can be described as monitoring of the following prop-
erties: Monitoring that tasks are dispatched at the specified time, meet their execution
time budgets, and do not monopolize OS resources.

To guarantee that safety-related functions will respect their timing constraints, tasks
monopolizing the CPU (such as heavy CPU load, many interrupt requests) shall be
detected and handled.

2.2.2 Description

The following timing monitoring mechanisms are provided by AUTOSAR:

1. Timing Protection mechanisms using the Operating System.

2. Temporal Program Flow Monitoring using the Watchdog Manager.

This chapter will explain the applicability of the Watchdog Manager for implementing
timing monitoring of Application Software. Temporal Program Flow Monitoring con-
sists of the mechanisms Deadline Supervision and Alive Supervision, which will be
discussed thereafter.

14[ISO 26262-6, Annex D] D.2.2 Timing and execution

22 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

The Watchdog Manager also provides a mechanism called Logical Supervision, which
can be combined with Deadline Supervision to provide a high diagnostic coverage.
This topic is discussed in Chapter 2.3.

Also, an overview of the Timing Protection mechanisms of AUTOSAR OS will be given.

2.2.2.1 Supervised Entities

The Watchdog Manager supervises the execution of Application Software in an AU-
TOSAR ECU. The logical units of supervision are called Supervised Entities. There is
no fixed relationship between Supervised Entities and the architectural building blocks
in AUTOSAR. Typically a Supervised Entity may represent one SW-Cs or a Runnable
within an SW-C, a BSW module or CDD depending on the choice of the developer.

Important places in a Supervised Entity are defined as Checkpoints. The code of
Supervised Entities is interlaced with function calls of the Watchdog Manager. Those
calls are used to report to the Watchdog Manager that a Checkpoint is reached.

2.2.2.2 Watchdog Manager

The Watchdog Manager is a basic software module of the AUTOSAR Architecture.

The Watchdog Manager links the triggering of the Watchdog Hardware15 to the su-
pervision of software execution. When a violation of the configured temporal and/or
logical constraints on program execution is detected, a number of configurable actions
to recover from this failure will be taken.

The Watchdog Manager provides the following mechanisms for Temporal Program
Flow Monitoring:

Alive Supervision: Periodic Supervised Entities have constraints on the frequency with
which they are executed. By means of Alive Supervision, Watchdog Manager checks
periodically if the Checkpoints of a Supervised Entity have been reached within the
given limits. This means that Watchdog Manager checks if a Supervised Entity is run
not too frequently or not too rarely.

Alive Supervision is performed using a single Checkpoint without transitions. The su-
pervised Entity must cyclically call the Checkpoint to signal its timely operation. The
Watchdog Manager is executed periodically by the Operating System to verify the
Checkpoint parameters.

A Supervised Entity can also be monitored by multiple instances of Alive Supervision,
therefore containing an independent checkpoint per Alive Supervision. Please see
Figure 2.9.

15See CP_EXP_LayeredSoftwareArchitecture[3], V3.4.0, R4.1 Rev 3, Page 42, Page 82.

23 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

Figure 2.9: Alive Supervision with independent Checkpoints
CP_SWS_WatchdogManager[6], V2.5.0, R4.1 Rev 3, Page 43, Chapter 7.1.5 Alive Supervision
Functions

Deadline Supervision: Aperiodic or episodic Supervised Entities have individual con-
straints on the timing between two Checkpoints. By means of Deadline Supervision,
the Watchdog Manager checks the timing of transitions between two Checkpoints of
a Supervised Entity. This means that the Watchdog Manager checks if some steps in
a Supervised Entity take a time that is within the configured minimum and maximum.
Please see Figure 2.10.

If the second Checkpoint is never reached, then Deadline Supervision will fail to de-
tect this issue. This issue appears because the timing checks are performed by the
Watchdog Manager after the second Checkpoint is called.

24 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

Figure 2.10: Deadline Supervision
CP_SWS_WatchdogManager[6], V2.5.0, R4.1 Rev 3, Page 61, Chapter 7.3 Watchdog Han-
dling

2.2.2.3 Timing Protection of the Operating System

According to the AUTOSAR OS Specification, a timing fault in a real-time system oc-
curs when a task or interrupt misses its deadline at runtime.

The AUTOSAR OS does not offer deadline supervision for timing protection. Deadline
supervision is insufficient to correctly identify the Task or Interrupt causing a timing fault
in an AUTOSAR system. A deadline violation may be caused by unrelated Tasks or
Interrupts interfering with the execution. Please consult the AUTOSAR OS Specifica-
tion16 for further details.

Whether a task or interrupt meets its deadline in a fixed priority preemptive operating
system like AUTOSAR OS is determined by the following factors:

• The execution time of Task/Interrupt in the system.

• The blocking time that Task/Interrupt suffers from lower priority Tasks/Interrupts
locking shared resources or disabling interrupts.

• The inter-arrival rate of Task/Interrupt in the system.

For safe and accurate timing protection it is necessary for the operating system to con-
trol these factors at runtime to ensure that Tasks/Interrupts can meet their respective
deadlines. The AUTOSAR OS provides the following timing protection mechanisms:

16Specification of Operating System, V5.3.0 R4.1 Rev 3, Chapter 7.7.2

25 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

1. Execution Time Protection. An upper bound for execution time of Tasks or Cat217

Interrupts, the so called Execution Budget, is monitored via the OS to prevent
timing errors.

2. Locking Time Protection. An upper bound for blocking of resources, locking and
suspending of interrupts, the so called Lock Budget, is monitored by the OS.

3. Inter-Arrival Time Protection. A lower bound between tasks being activated or Cat
2 Interrupts arriving, a so called Time Frame, is monitored via the OS to prevent
timing errors.

Note: Execution time enforcement requires hardware support, e.g. a timing enforce-
ment interrupt. If an interrupt is used to implement the time enforcement, the priority of
this interrupt shall be high enough to "interrupt" the supervised tasks or interrupts.

2.2.3 Detection and Reaction

The Watchdog Manager provides three mechanisms for Temporal and Logical Program
Flow Monitoring: Deadline Supervision, Alive Supervision and Logical Supervision.

The supervision mechanisms are configured statically. For the monitoring of a Super-
vised Entity, more than one supervision mechanism can be employed.

Based on the results from each of enabled mechanisms, the status of the Supervised
Entity (called Local Status) is computed. When the status of each Supervised Entity
is determined, then based on each Local Supervision Status, the status of the whole
MCU is determined (called Global Supervision Status).

Depending on the Local Supervision Status of each Supervised Entity and on the
Global Supervision Status, the Watchdog Manager initiates a number of mechanisms
to recover from supervision failures. These range from local error recovery within the
Supervised Entity to a global reset of the ECU.

The following error recovery mechanisms can be employed by the Watchdog Manager:

1. Error Handling in the Supervised Entity

In case the Supervised Entity is an SW-C or a CDD, then the Watchdog Manager
may inform the Supervised Entity about supervision failures via the RTE Mode
mechanism. The Supervised Entity may then take its actions to recover from that
failure.

The Watchdog Manager may register an entry with the Diagnostic Event Man-
ager (DEM) when it detects a supervision failure. A Supervised Entity may take
recovery actions based on that error entry.

2. Reset by Hardware Watchdog

17Category 2 Interrupts are managed by the Operating System. Category 1 Interrupts are executed
outside of the Operating System and therefore cannot be monitored.

26 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

The Watchdog Manager indicates to the Watchdog Interface when Watchdog
Interface shall no longer trigger the hardware watchdog. After the timeout of the
hardware watchdog, the hardware watchdog resets the ECU or the MCU. This
leads to a re-initialization of the ECU and/or MCU hardware and the complete
re-initialization of software.

3. Immediate MCU Reset

In case an immediate, global reaction to the supervision failure is necessary, the
Watchdog Manager may directly cause an MCU reset. This will lead to a re-
initialization of the MCU hardware and the complete software. Usually, a MCU
reset will not re-initialize the rest of the ECU hardware.

Note: The AUTOSAR Document "Explanation of Error Handling on Application Level"18

provides additional information on error handling. Within the document it is explained
how error handling can be performed and where the required data (e.g. substitute
values) can be obtained from.

2.2.4 Limitations

1. The granularity of Checkpoints is not fixed by the Watchdog Manager. Few
coarse-grained Checkpoints limit the detection abilities of the Watchdog Manager.
For example, if an application SW-C only has one Checkpoint that indicates that
a cyclic Runnable has been started, then the Watchdog Manager is only capable
of detecting that this Runnable is re-started and check the timing constraints. In
contrast, if that SW-C has Checkpoints at each block and branch in the Runnable
the Watchdog Manager may also detect failures in the control flow of that SW-C.
High granularity of Checkpoints causes a complex and large configuration of the
Watchdog Manager.

2. The Deadline Supervision has a weakness: it only detects the delays (when the
End Checkpoint is reported), but it does not detect the timeouts (when the End
Checkpoint is not reported at all).

3. The nesting of Deadline Supervision (i.e. start 1, start 2, end 2, end 1) is not
supported.

4. The Alive Supervision function with more than one checkpoint per Supervised
Entity is not consistently specified within the Specification of Watchdog Manager
document. For now it is recommended to support only one alive supervision
checkpoint per Supervision Entity.

5. Libraries cannot call BSWs, so libraries cannot be supervised by Watchdog Man-
ager. Deadline Supervision could be used however by placing checkpoints before
and after a library call in the module’s code to supervise libraries.

18CP_EXP_ApplicationLevelErrorHandling[5], R4.2 Rev 1, Chapter 8, Chapter 10

27 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

6. It is not standardized how BSW modules are identified with Supervised Entity
IDs.

2.2.5 References to AUTOSAR Documents

Source: Requirements on AUTOSAR Features, V1.2.1, R4.1 Rev 2

AUTOSAR shall support program flow monitoring

AUTOSAR OS shall support timing protection

AUTOSAR OS shall support timing protection

2.2.6 References to ISO26262

The following references to the ISO26262 standard are related to the aspects of free-
dom from interference for software components with different ASIL ratings. Concepts
related to timing supervision are covered.

ID ISO26262 Reference
03 Part 6: [D.2.1]

08 Part 6: [D.2.2]

09 Part 6: [7.4.12] NOTE 2, Monitoring of program execution by an external element

Table 2.5: ISO26262 Timing Monitoring References

2.3 Logical Supervision

Logical Supervision is a technique for checking the correct execution of software and
focuses on control flow errors.

Control flow errors cause a divergence from the valid (i.e. coded/compiled) program
sequence during the error-free execution of the application. An incorrect control flow
occurs if one or more program instructions are processed either in the incorrect se-
quence or are not even processed at all. Control flow errors can for example lead to
data inconsistencies, data corruption, or other software failures.

2.3.1 Fault Models

According to ISO 2626219, the following Timing- and Execution-related faults can be
considered as a cause for interference between software components:

19[ISO 26262-6, Annex D] D.2.2 Timing and execution

28 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

• Blocking of execution

• Deadlocks

• Livelocks

• Incorrect allocation of execution time

• Incorrect synchronization between software elements

Logical and temporal monitoring of program sequences is used in the automotive in-
dustry and mentioned e.g. in ISO 26262 as a measure to detect failures of the pro-
cessing units (i.e. CPU, microcontroller) and as measure for the detection of failures of
the HW clock.

Faults in execution of program sequences (i.e. invalid execution of program sequences)
can lead to data corruption, process crashes, or fail-silence violations.

Logical monitoring of program sequences is required/recommended/proposed by ISO
26262, IEC 61508, MISRA.

2.3.2 Description

Logical Supervision of the execution sequence of a program enables the detection of
errors that cause a divergence from the valid program sequence during the error-free
execution of the application. An incorrect program flow occurs if one or more program
instructions are processed either in an incorrect sequence or not even processed at
all.

The Watchdog Manager supervises the execution of Application Software in an AU-
TOSAR ECU. The logical units of supervision are called Supervised Entities. There is
no fixed relationship between Supervised Entities and the architectural building blocks
in AUTOSAR. Typically a Supervised Entity may represent one SW-Cs or a Runnable
within an SW-C, a BSW module or CDD depending on the choice of the developer.

Places relevant for logical supervision in a Supervised Entity are defined as Check-
points. The code of Supervised Entities is interlaced with function calls of the Watchdog
Manager. Those calls are used to report to the Watchdog Manager that a Checkpoint
is reached.

Each Supervised Entity has one or more Checkpoints. The Checkpoints and Transi-
tions between the Checkpoints of a Supervised Entity form a Graph.

A Graph may have one or more20 initial Checkpoints and one or more final Check-
points. Any sequence of starting with any initial checkpoint and finishing with any final
checkpoint is correct, assuming that the checkpoints belong to the same Graph.

20Internal graphs can have only one initial Checkpoint. External graphs can have multiple initial Check-
points.

29 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

A graph within a Supervised Entity is called an Internal Graph. Checkpoints from differ-
ent Supervised Entities can be connected by External Transitions, forming an External
Graph.

Figure 2.11 shows a Graph representation of a While-Loop, which consists of Check-
points and Transitions.

Figure 2.11: Abstract Control Flow Graph of a While-Loop
CP_SWS_WatchdogManager[6], V2.5.0, R4.1 Rev 3, Chapter 7.1.7 Logical Supervision

At runtime, the Watchdog Manager verifies if the supervised Entities are executed ac-
cording to the configured Graphs. This is called Logical Supervision.

Also, the Watchdog Manager can verify the timing of Checkpoints and Transitions within
a Graph.

The timing of Transitions between Checkpoints can be verified via Deadline Supervi-
sion, whereas Logical Monitoring verifies the correct order of the Checkpoints. The
details of Timing Monitoring mechanisms are described in Chapter 2.2.

30 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

2.3.3 Detection and Reaction

During design phase the valid program sequences are identified and modeled. During
runtime the Watchdog Manager uses this model to supervise or monitor the proper
execution of program sequences.

The Watchdog Manager provides three mechanisms for Temporal and Logical Program
Flow Monitoring: Deadline Supervision, Alive Supervision and Logical Supervision.

The supervision mechanisms are configured statically. For the monitoring of a Super-
vised Entity, more than one supervision mechanism can be employed.

Based on the results from each of enabled mechanisms, the status of the Supervised
Entity (called Local Status) is computed. When the status of each Supervised Entity
is determined, then based on each Local Supervision Status, the status of the whole
MCU is determined (called Global Supervision Status).

Depending on the Local Supervision Status of each Supervised Entity and on the
Global Supervision Status, the Watchdog Manager initiates a number of mechanisms
to recover from supervision failures. These range from local error recovery within the
Supervised Entity to a global reset of the ECU.

The following error recovery mechanisms can be employed:

1. Error Handling in the Supervised Entity:

In case the Supervised Entity is an SW-C or a CDD, then the Watchdog Manager
may inform the Supervised Entity about supervision failures via the RTE Mode
mechanism. The Supervised Entity may then take its actions to recover from that
failure.

The Watchdog Manager may register an entry with the Diagnostic Event Man-
ager (DEM) when it detects a supervision failure. A Supervised Entity may take
recovery actions based on that error entry.

2. Reset by Hardware Watchdog

The Watchdog Manager indicates to the Watchdog Interface when Watchdog
Interface shall no longer trigger the hardware watchdog. After the timeout of the
hardware watchdog, the hardware watchdog resets the ECU or the MCU. This
leads to a re-initialization of the ECU and/or MCU hardware and the complete
re-initialization of software.

3. Immediate MCU Reset

In case an immediate, global reaction to the supervision failure is necessary,
the Watchdog Manager may directly cause an MCU reset. This will lead to a
re-initialization of the MCU hardware and the complete software.

Note: The AUTOSAR Document "Explanation of Error Handling on Application Level"21

provides additional information on error handling. Within the document it is explained

21CP_EXP_ApplicationLevelErrorHandling[5], R4.2 Rev 1, Chapter 8, Chapter 10

31 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

how error handling can be performed and where the required data (e.g. substitute
values) can be obtained from.

2.3.4 Limitations

1. For Logical Supervision, Watchdog manager does not support any overlapping
graphs - a checkpoint shall belong to maximum one Graph. This is required to be
able to allocate a received Checkpoint notification to a Graph.

2. Watchdog Manager does not support Logical Supervision of concurrently exe-
cuted Supervised Entities, because it follows only one instance of a Graph at a
time.

2.3.5 References to AUTOSAR Documents

Source: Requirements on AUTOSAR Features, V1.2.1, R4.1 Rev 2

AUTOSAR shall support program flow monitoring

2.3.6 References to ISO26262

The following references to the ISO26262 standard are related to the aspects of free-
dom from interference for software components with different ASIL ratings. Concepts
related to logical supervision are covered.

ID ISO26262 Reference
03 Part 6: [D.2.1]

08 Part 6: [D.2.2]

09 Part 6: [7.4.12] NOTE 2, Monitoring of program execution by an external element and Temporal monitoring of
program execution

Table 2.6: ISO26262 Logical Supervision References

2.4 End-2-End Protection

In a distributed system, the exchange of data between a sender and the receiver(s)
can affect functional safety, if its safe behavior safety depends on the integrity of such
data (see "Exchange of Information" fault example in the beginning of this chapter).
Therefore, such data shall be transmitted using mechanisms to protect it against the
effects of faults within the communication link.

32 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

2.4.1 Fault Models

According to ISO 2626222, the following Exchange of Information-related faults can be
considered for each sender or each receiver software component executed in different
software partitions or ECUs:

• Repetition of information;

• Loss of information;

• Delay of information;

• Insertion of information;

• Masquerade or incorrect addressing of information;

• Incorrect sequence of information;

• Corruption of information;

• Asymmetric information sent from a sender to multiple receivers;

• Information from a sender received by only a subset of the receivers;

• Blocking access to a communication channel.

Figure 2.12: End-2-End Protection
CP_SWS_E2ELibrary[7], V3.2.1, R4.1 Rev 3

The concept of End-2-End protection assumes that safety-related data exchange shall
be protected at runtime against the effects of faults within the communication link (see
Figure 2.12). Examples for such faults are random HW faults (e.g. corrupt registers

22 [ISO 26262-6, Annex D] D.2.4 Exchange of Information

33 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

of a CAN transceiver), interference (e.g. due to EMC), systematic faults within the
software implementing the VFB communication (e.g. RTE, IOC, COM and network
stacks) inside the ECU and outside, such as on Gateways.

The following faults related to message exchange via communication network have
been considered in the End-2-End Library.

Fault Model Description

Repetition of
information

A type of communication fault, were information is received more than once.

Loss of information A type of communication fault, were information or parts of information are removed from a
stream of transmitted information.

Delay of information A type of communication fault, were information is received later than expected.

Insertion of information A type of communication fault, were additional information is inserted into a stream of transmitted
information.

Masquerading A type of communication fault, were non-authentic information is accepted as authentic
information by a receiver.

Incorrect addressing A type of communication fault, were information is accepted from an incorrect sender or by an
incorrect receiver.

Incorrect sequence of
information

A type of communication fault, which modifies the sequence of the information in a stream of
transmitted information.

Corruption of
information

A type of communication fault, which changes information.

Asymmetric information
sent from a sender to
multiple receivers

A type of communication fault, were receivers do receive different information from the same
sender.

Information from a
sender received by only
a subset of the
receivers

A type of communication fault, were some receivers do not receive the information

Blocking access to a
communication channel

A type of communication fault, were the access to a communication channel is blocked.

Table 2.7: Fault Models of a Communication Network
CP_SWS_E2ELibrary[7], V3.2.1, R4.1 Rev 3, Chapter 4.3.3

2.4.2 Description

From the perspective of Software Components, data transmission via the RTE behaves
like a simple point-to-point connection. However, the implementation of this abstraction
requires a highly complex infrastructure made up of software layers, communication
stacks, drivers and the underlying hardware. Along with the complexity, the number of
potential sources for failures also increases.

The use of the End-2-End protection mechanism assumes that the integrity of safety-
relevant data has to be maintained during communication, protecting the data against
the effects of faults within the communication link.

The most important aspects of the End-2-End protection are the standardization of the
protection capabilities and the flexible applicability of the mechanism. Mechanisms for
safe data communication within and between ECUs though the concept of End-2-End
protection will be described in this chapter.

34 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

The architecture of the End-2-End protection is implemented as follows: Data Ele-
ments consisting of Application Data are extended on the sender side with additional
control information, the End-2-End header. The control information usually contains a
Checksum, a Counter and other options. The extended data element is provided to the
RTE for transmission, as shown in Figure 2.13. It shows the principle of E2E, but not all
details required for implementation. Especially the usage of the RTE Data Transformer
to encode/decode complex data elements is omitted for simplicity.

Figure 2.13: Data Element for RTE
CP_SWS_E2ELibrary[7], V3.2.1, R4.1 Rev 3, Chapter 8.1

Data Elements are verified at the receiver side by processing the contents of the End-2-
End header against the Application Data. After the received data element is processed
and accepted as correct, the control information is removed and Application Data is
provided to the target Software Component.

The error handling is performed at the receiver.

2.4.2.1 End-2-End Profiles

AUTOSAR specifies a set of standardized and configurable End-2-End profiles, which
implement a set of protection mechanisms and specify the data format for the attached
End-2-End header.

An End-2-End Profile uses a subset of the following data protection mechanisms:23

1. CRC Checksum, provided by the CRC library;

2. Sequence Counter incremented at every transmission request, the value is
checked at receiver side for correct incrementation;

23CP_SWS_E2ELibrary[7], V3.2.1, R4.1 Rev 3, SWS_E2E_00221

35 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

3. Alive Counter incremented at every transmission request, the value checked at
the receiver side if it changes at all, but correct incrementation is not checked

4. A specific ID for every port data element sent over a port (global to system, where
the system may contain potentially several ECUs).

5. Timeout detection: Receiver communication timeout and Sender acknowledge-
ment timeout

Three End-2-End Profiles are specified in the AUTOSAR Standard, Profile 1 with two
variants, End-2-End Profile 2 and End-2-End Profile 4. Upcoming releases will also
specify Profiles 5 and 6.

Only the standardized End-2-End profiles shall be used, non-standard End-2-End Pro-
file configurations may only be used in special cases, such as for legacy software.

The protection mechanisms of the End-2-End Profile 1 are described in Table 8 as
follows:

Mechanism Description Fault Model

Counter A 4Bit Counter is incremented with every Send-Request. This Value is
explicitly sent.

Repetition, deletion,
insertion, incorrect
sequence

Timeout Using a non-blocking read, the receiver can determine if the value of
the counter has been increased.

Deletion, delay

Data ID Each sender-receiver port has a unique 16-Bit ID, which is used in the
CRC calculation. The CRC calculation is illustrated in Figure 2.14.

The Data ID value is not explicitly sent. As the ID is only known at the
sender and the receiver, the CRC calculation can only be correctly
performed by the corresponding partners.

Insertion, addressing
faults

CRC A CRC Checksum (8-Bit) calculation is performed over all data
elements, the Counter and the Data ID. This value is explicitly sent.

Corruption

Table 2.8: Mechanisms in End-2-End Profile 1

Figure 2.14 illustrates how the CRC calculation is performed in the End-2-End Profile 1.
The value of Data ID is calculated into the CRC value, so both communication partners
must use the same Data ID to correctly verify the CRC Checksum of a message.

Figure 2.14: CRC Calculation in End-2-End Profile 1
CP_SWS_E2ELibrary[7], V3.2.1, R4.1 Rev 3, Chapter 8.3.4

Although the length of the Data ID is 16 bits, leading to a large number of individual
Data IDs, the length of the CRC checksum is only 8 bits. This means that different Data

36 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

IDs will produce the same CRC checksum, thus limiting the number of independent
Data IDs.

If a message is routed to the wrong destination, e.g. due to Bit-flips in a gateway, and
the Data IDs produce the same CRC checksum, then the receiver would accept the
misdirected message, assuming that the current counter value and the length of the
message are both correct. The extent of the underlying protection against Addressing
Faults is diminished. This fault model is called Masquerading.

It is possible to restrict the Data ID values so there is no overlap in the CRC Check-
sums. This however limits the number of independent Data IDs to 255.

The End-2-End Profile 2 takes a different approach in the use of the Data ID protection
mechanisms. Each sender-receiver port pair has a list of Data IDs. The current value
of the sequence counter determines which Data ID is used.

An appropriate selection of Data IDs is required to increase the number of messages
for which detection of masquerading is possible. However, there will be overlaps of the
8-Bit Data ID and Counter values, limiting the number of independent Data IDs and
Counter values to 256.

If a single erroneously received message does not violate the safety goal of the system,
then the End-2-End Profile 2 allows for protection against masquerading for a greater
number of messages.

Mechanism Description Fault Model

Sequence Number
(Counter)

A 4Bit Counter is incremented with every Send-Request. This Value is
explicitly sent.

Unintended message
repetition, message
loss, insertion of
messages,
re-sequencing

Message Key used for
CRC calculation (Data
ID)

8 bit (not explicitly sent)

The Data ID used for CRC calculation is an element of a pre-defined
list and depends on the current value of the Counter. The list of Data
IDs is unique for each Data Element and only known to the sender and
the receiver.

Insertion of messages,
masquerading

Safety Code (CRC) A CRC Checksum (8-Bit) calculation is performed over all data
elements, the Counter and the Data ID. This value is explicitly sent.

Message corruption,
insertion of messages
(masquerading)

Timeout (detection and
handling implemented
by SW-C)

Timeout detection must be implemented by the SW-C. Message loss,
message delay

Table 2.9: Mechanisms in End-2-End Profile 2

AUTOSAR supports PDUs up to 4kB in size, either through the TCP/IP stack or through
TP services of FlexRay TP, CAN TP, etc. The End-2-End Profiles 1 and 2 support an
ASIL-D compliant transmission of up to 30 or 42 byte PDUs, due to the short 8-Bit CRC
checksum.

The AUTOSAR Release 4.2.1 introduces a new End-2-End Profile. The End-2-End
Profile 4 is specifically designed for ASIL-D compliant transmission of long data. This
is supported by the use of a special 32-Bit CRC polynomial. This polynomial is superior

37 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

to the widely used IEEE 802.3 CRC, as it provides a higher Hamming Distance for long
data.

Mechanism Description Fault Model

Counter A 16 Bit Counter is incremented with every Send-Request. This Value
is explicitly sent.

Unintended message
repetition, message
loss, insertion of
messages,
re-sequencing

CRC The 32 Bit CRC is calculated over the entire E2E header (excluding
the CRC bytes) and over the user data. This Value is explicitly sent.

Note: This CRC polynomial is different from the CRC-polynomials
used by FlexRay, CAN, LIN and TCP/IP.

Message corruption,
insertion of messages
(masquerading)

Data ID The 32 Bit Data ID shall be unique for a specific data element within
the network of ECUs.

This Value is explicitly sent.

Insertion of messages,
masquerading

Timeout (detection and
handling implemented
by SW-C)

The receiver reads the currently available data, i.e. checks if new data
is available.

Then, by means of the counter, the receiver can detect loss of
communication and timeouts.

Message loss,
message delay

Table 2.10: Mechanisms in End-2-End Profile 4

The End-2-End Profile 4 header provides the following control fields, which are trans-
mitted together with the protected data.

Figure 2.15: End-2-End Profile 4 header

Contrary to E2E Profiles 1 and 2, there is an explicit transmission of the data length,
as data packets do not have a standard size. The 16 bits Length field is introduced
to support variable-size data, which can have a different length in each transmission
cycle. Also there is an explicit transmission of the Data ID.

2.4.2.2 End-2-End State Machine

Data Elements are verified at the receiver side by processing the contents of the End-2-
End header against the Application Data using the End-2-End Profile’s check-function.
It determines whether the received data of this cycle is correct and provides additional
information in case of detected faults.

The AUTOSAR Release 4.2.1 introduces a State Machine, which helps to determine
whether the received Application Data is acceptable with a greater level of detail. A
new level of abstraction is introduced, so applications receive an overall status of the
communication, instead of dealing with the status of every single message.

The new state machine supports configurable settings for the number of lost or re-
peated packets, recoverable and non-recoverable communication faults, as well as

38 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

initialization of communication. Figure 2.15 illustrates the design and features of the
state machine.

Figure 2.16: End-2-End State Machine
CP_SWS_E2ELibrary[7], V3.0.0-0.10.4, R4.1 Rev 3, Chapter 7.8.1

2.4.2.3 Integration of the End-2-End Protection Library

To enable the proper usage of the End-2-End Library, different solutions are possible.
They may depend on the integrity of RTE, COM or other basic software modules as
well as the usage of other SW/HW mechanisms (e.g. memory partitioning).

The End-2-End Library can be used to protect safety-related data elements exchanged
between SW-Cs by means of End-2-End Protection Wrapper.

Furthermore, the End-2-End Library can be used to protect safety-related I-PDUs by
means of COM Callouts.

It is also possible to have mixed scenarios, where some data elements are protected
at the SW-C level (e.g. with End-2-End protection Wrapper) and some with COM End-
2-End callouts.

39 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

Introduced in AUTOSAR Release 4.2.1, the RTE Data Transformer can also be used
to protect data exchange of complex data elements between ECUs at the RTE level.

2.4.2.4 End-2-End Protection Wrapper

Caveat: Since the E2E wrapper approach involves technologies that are not subjected
to the AUTOSAR standard and since it is superseded by the superior E2E transformer
approach (which is fully standardized by AUTOSAR), support for the E2E wrapper
approach will eventually be discontinued by AUTOSAR. Thus those AUTOSAR artifacts
(e.g., specification items, meta classes) are to be considered as obsolete according to
[TPS_STDT_00064] and will be removed from AUTOSAR with R25-11. New projects
(without legacy constraints due to carry-over parts) shall use the fully standardized E2E
transformer approach.

The End-2-End Protection Library can be used to protect the data communication be-
tween SW-Cs at the RTE level. To accomplish this, the End-2-End Protection Wrap-
per functions as a wrapper over the Rte_Write and Rte_Read functions, which are
offered to SW-Cs. The End-2-End Protection Wrapper encapsulates the Rte_Read/
Write invocations of the Software Component and protects the data exchange using
the End-2-End Library.

In this approach, every safety-related SW-C has its own additional sub-layer (a .h/.c file
pair) called the End-2-End Protection Wrapper, which is responsible for marshalling of
complex data elements into the layout identical to the corresponding I-PDUs (for inter-
ECU communication), and for correct invocation of End-2-End Library and of RTE.
Please see Figure 2.17.

The usage of the End-2-End Protection Wrapper allows a use of VFB communication
between SW-Cs, without the need of further measures to ensure VFB’s integrity.

The communication between such SW-Cs can be within an ECU (which means on the
same or different cores or within the same or different memory partitions of a micro-
controller) or across ECUs (SW-Cs connected by a VFB also using a network).

The end-to-end protection is a systematic solution for protecting SW-C communica-
tion, regardless of the communication resources used (e.g. COM and network, OS/
IOC or internal communication within the RTE). Relocation of SW-Cs may only require
selection of other protection parameters, but no changes on SW-C application code.

Also, the use of the End-2-End protection wrapper supports safe communication
between software components despite a potentially unsafe communication software
stack.

Note: The End-2-End Protection Wrapper does not support multiple instantiation of the
SW-Cs. This means, if an SW-C is supposed to use End-2-End Protection Wrapper,
then this SW-C must be single-instantiated. This limitation is based on the fact that
multiple instances of a Software Component would have the same DataID, thus limiting
the capabilities of the underlying protection mechanisms.

40 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

Figure 2.17: End-2-End Protection Wrapper - Communication Overview
CP_SWS_E2ELibrary[7], V3.2.1, R4.1 Rev 3, Chapter 13.1.1

2.4.2.5 Transmission Manager

Caveat: Since the Transmission Manager approach (that includes E2E wrapper ap-
proach) involves technologies that are not subjected to the AUTOSAR standard and
since it is superseded by the superior E2E transformer approach (which is fully stan-
dardized by AUTOSAR), support for the E2E wrapper approach will eventually be
discontinued by AUTOSAR. Thus those AUTOSAR artifacts (e.g., specification items,
meta classes) are to be considered as obsolete according to [TPS_STDT_00064] and
will be removed from AUTOSAR with R25-11. New projects (without legacy constraints
due to carry-over parts) shall use the fully standardized E2E transformer approach.

In an ECU system where integrity of operation is not provided for COM and RTE, it is
possible to transmit safety-related data through the network.

On the sender ECU, there is a dedicated SW-C called the Transmission Manager,
containing End-2-End Protection Wrapper. The Transmission Manager collects safety-
related data from related SW-Cs, combines them and protects them using the End-
2-End Protection Wrapper. Finally, it provides the combined and protected Data as a
Data Element to the RTE. Please see Figure 2.18.

On the receiver ECU a Transmission Manager does the reverse steps for the reception
of such data.

41 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

The Transmission Manager replaces the duties of the RTE and COM, such as merging
of Data Elements into PDUs and ensuring the integrity of data.

Note: The Transmission Manager SW-C module is neither part of End-2-End Library
nor part of AUTOSAR. Also, the integrity of RTE communication between the SW-Cs
and the Transmission Manager shall be protected by other measures.

Figure 2.18: Transmission Manager - Sender ECU
CP_SWS_E2ELibrary[7], V3.2.1, R4.1 Rev 3, Chapter 13.1.2

2.4.2.6 COM End-2-End Callout

In this approach, the End-2-End Library is used to protect the data exchange between
COM modules. The End-2-End Library is invoked by COM, through COM End-2-End
callouts, to protect and check the I-PDUs. The callout invokes the End-2-End Library
with parameters appropriate for a given I-PDU. Please see Figure 2.19.

For each I-PDU to be protected and checked there is a separate callout function. Each
callout function "knows" how each I-PDU needs to be protected and checked. This
means that the callout invokes the End-2-End Library functions with settings and state
parameters that are appropriate for the given I-PDU.

This solution works with all communication models, multiplicities offered by RTE for
inter-ECU communication. In contrast to the Transmission Manager, this solution can
only be used in systems where the integrity of operation of COM and RTE is provided.

42 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

Figure 2.19: COM Callout - Overview
CP_SWS_E2ELibrary[7], V3.2.1, R4.1 Rev 3, Chapter 13.2.1

2.4.2.7 RTE Data Transformer

Introduced in AUTOSAR Release 4.2.1, the RTE Data Transformer can be used to
protect the exchange of complex data elements between ECUs.

The main difference between the previously described mechanisms for End-2-End Li-
brary invocation can be illustrated as follows:

The End-2-End protection wrapper extends the complex data element24 under protec-
tion by adding data elements of the End-2-End header. The additional data elements
can be seen by the SW-C but are ignored. The RTE Protection Wrapper, therefore,
does not support the protection of individual signals, unless they are embedded within
a complex data element.

COM maps the individual signals of a complex data element into PDUs. Using COM
Callouts, the contents of the entire PDU are protected. The maximum PDU size is
however limited by the physical properties of the interconnection bus.

Complex data elements can be prepared for transmission by being specifically ar-
ranged in a Byte-Array by a process called serialization. The serialized data array
can be then protected using the End-2-End Library as a single piece. Furthermore, the
serialized data array size can be dynamic on a transmission cycle basis.

24A complex data element is an instance of a complex data type. Inside a complex data type, there
are one or more data types (primitive data types), like in a C struct.

43 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

Figure 2.20: RTE Data Transformer - Overview
Based on Concept "Sender/Receiver Serialization", V0.51, R4.2 Rev 1, Page 31, Figure 8
"Use Case 1: Transmission of large composite data types over networks with large PDUs (e.g
Ethernet)"

As illustrated in Figure 2.20, the RTE Data Transformer accepts complex data (either
a Sender/Receiver data element or a Client/Server operation with its arguments) from
the RTE, performs a configurable chain of data transformations (such as Serialization,
End-2-End Protection, Cryptographic functions, Compression) and provides the result-
ing byte array, which is finally transmitted to the receiver by COM (or RTE during intra-
ECU communication). Data transformation for End-2-End Protection is implemented
by the End-2-End Transformer25, which internally uses the End-2-End Library.

The complete configuration of the RTE Data Transformer is performed via AUTOSAR
System Template for Inter-ECU communication and Software-Component Template for
Intra-ECU communication. The resulting code is fully generated and executed via the
RTE. The Software Components do not have to be aware of the specific protection
mechanism used, unless detailed knowledge of the detected faults is required. The
RTE Data Transformer can only be used in systems, where the integrity of operation of
RTE is provided.

Note: The serialized data array size is not restricted by the PDU size of the inter-
connection network, as large data arrays can be transmitted using existing transport
protocols.

25CP_SWS_E2ETransformer[8], V0.9.1, R4.2 Rev 1

44 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

Note: The individual data transformations are performed on data arrays and not com-
plex data elements, therefore serialization is the first and respectively last data trans-
formation performed by the RTE Data Transformer.

2.4.3 Detection and Reaction

The End-to-End Communication Protection related features are implemented in AU-
TOSAR 4.0 as a standard library. This library provides End-2-End communication pro-
tection mechanisms that enable the sender to protect data prior to transmission and
the receiver to detect and handle errors in the communication link at runtime.

When the End-2-End Library is used, the detection of communication faults is signaled
to the receiver.

Note: The AUTOSAR Document "Explanation of Error Handling on Application Level"26

provides additional information on error handling. Within the document it is explained
how error handling can be performed and where the required data (e.g. substitute
values) can be obtained from.

2.4.4 Limitations

1. The appropriate usage of the End-2-End Library alone is not sufficient to achieve
a safe End-2-End communication. Solely the user is responsible to demonstrate
that the selected profile provides sufficient error detection capabilities for the con-
sidered network (e.g. by evaluation hardware failure rates, bit error rates, number
of nodes in the network, repetition rate of messages and the usage of a gateway).

2. A communication between Software Components over the RTE is more than a
simple Point-to-Point connection. Further fault models have to be considered,
such as RTE errors in Data Conversion, Filtering, missing notifications, wrong
order of parameters in client-server communication and delays in transmission.
Those failure modes also have to be considered during the development of a
safety-relevant system.

Local RTE communication can be protected against some of the faults mentioned
above by other mechanisms, such as an RTE which employs internal partitioning
and other safety mechanisms and measures.

3. The use of the End-2-End protection for all Software Component communications
of an ECU may be prohibitive due to runtime-overheads. Also, the limitations
associated with the uniqueness of DataIDs may prevent this approach on Profile
1 and 2 due to masquerading.

4. The End-2-End Protection does not guarantee data actuality, because the End-
2-End Profiles do not incorporate time stamps in the control data.

26CP_EXP_ApplicationLevelErrorHandling[5], R4.2 Rev 1, Chapter 8, Chapter 10

45 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

2.4.5 References to AUTOSAR Documents

Source: Requirements on AUTOSAR Features, V1.2.1, R4.1 Rev 2

AUTOSAR shall offer methods to protect safety related data communication against
corruption

AUTOSAR shall provide end-to-end protection support as a library

AUTOSAR shall use hardware communication data integrity mechanisms

2.4.6 References to ISO26262

The following references to the ISO26262 standard are related to the aspects of free-
dom from interference for software components with different ASIL ratings. Concepts
related to exchange of information are covered.

ID ISO26262 Reference
03 Part 6: [D.2.1]

09 Part 6: [D.2.4]

10 Part 6: [7.4.12] NOTE 2, Detection of data errors

Table 2.11: ISO26262 Exchange of Information References

46 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

3 Functional Safety Measures

In addition to Functional Safety mechanisms provided by AUTOSAR, the development
of safety-relevant software is supported by Functional Safety measures which originate
from AUTOSAR.

3.1 Functional Safety Measures of AUTOSAR

The following table provides a list of examples of ISO26262 Requirements mapped to
the definition of AUTOSAR Basic Software.

ID Functional Safety
Measures

ISO Reference AUTOSAR Requirement/Feature

001 Enforcement of strong
typing

ISO26262-6

Table 1, 1c

FO_MMOD_MetaModel_059

002 Use of well-trusted
design principles

ISO26262-6

Table 1, 1e

CP_EXP_LayeredSoftwareArchitecture_053

003 Use of unambiguous
graphical
representation

ISO26262-6

Table 1, 1f

Standard representation of the
FO_MMOD_MetaModel_059

004 Use of naming
conventions

ISO26262-6

Table 1,1h

AUTOSAR Application Interfaces definition:

AUTOSAR_MOD_AITable.xls

CP_EXP_AIUserGuide_442

005 Semi-formal Notations ISO 26262-6 Table 2,
1c Semi-formal
notations

FO_MMOD_MetaModel_059

006 Restricted size of
interfaces

ISO26262-6

Table 3, 1c

Per domain, application interfaces were proposed:

CP_EXP_AIBodyAndComfort_268

CP_EXP_AIChassis_270

CP_EXP_AIOccupantAndPedestrianSafety_271

CP_EXP_AIHMIMultimediaAndTelematics_272

CP_EXP_AIPowertrain_269

007 Loose coupling
between software
components

ISO26262-6

Table 3, 1e

CP_EXP_LayeredSoftwareArchitecture_053

Please see: Interfaces: General Rules Layer Interaction
Matrix.

008 Restricted use of
interrupts

ISO26262-6

Table 3, 1g

CP_EXP_InterruptHandlingExplanation_307

009 Detection of data
errors

ISO 26262-6 [7.4.12]
NOTE 2, Detection of
data errors

CP_SWS_E2ELibrary_428

CP_SWS_CRCLibrary_016

010 Control flow
monitoring

ISO 26262-6 [7.4.12]
NOTE 2, Temporal
monitoring of program
execution

CP_SWS_WatchdogManager_080

011 Graceful degradation ISO 26262-6 [7.4.12]
NOTE 3

CP_EXP_LayeredSoftwareArchitecture_053

CP_SWS_FunctionInhibitionManager_082

5

47 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

4
012 Interface test ISO 26262-6

Table 7, 1k

Table 10, 1b

Acceptance Test for the AUTOSAR Stack

013 Document
Management

ISO26262-8

10.4.3-10.4.6

Fulfilled by AUTOSAR Quality Management

Table 3.1: Mapping of ISO26262 Requirements to AUTOSAR Basic Software

3.2 Traceability

Traceability is a prerequisite for the implementation of safety-relevant systems. AU-
TOSAR provides traceability from the AUTOSAR project objectives to the software
specifications of the AUTOSAR architecture.

3.3 Development Measures and the Evolution of the Standard

The AUTOSAR standard follows a defined life cycle, which is enforced by a dedicated
Change Management. Therefore, the AUTOSAR version which is used during the
product development can be easily referenced.

Systematic Faults during product development can be reduced when a defined version
of AUTOSAR is used, as the specifications, the interfaces and the behavior can be
clearly established.

During the development of AUTOSAR specifications, a tracking of findings and bug
fixes is performed with well-established tools ("Bugzilla"). Therefore it is possible to
follow the incorporation of findings and bug fixes for the users of an AUTOSAR version
well ahead series production.

In model-based development, a hierarchically structured model of function blocks with
well-defined inputs and outputs is used to control complexity, to model the functionality
and to support code generation. Please see ISO26262 Part 6, Annex B for details.
Model-based development is supported due to the use of standardized interfaces and
exchange formats, as well as due to the flexibility of the AUTOSAR methodology to
support extensions.

The development process of AUTOSAR Specifications involves a comprehensive re-
view process by multiple parties and work packages. The development milestones and
the associated review process conditions are defined by AUTOSAR Quality Manage-
ment.

AUTOSAR supports the argumentation of Freedom from Interference by providing
functional safety mechanisms. Please see Chapter 2 for details on AUTOSAR Func-
tional Safety Mechanisms.

48 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

AUTOSAR provides a clear definition of people assignment to work packages, based
on the high expertise in the respective fields.

AUTOSAR provides a definition of the generic Software Architecture, based on modu-
larity, formality and model-based development.

3.4 Functional Safety Measures not delivered by AUTOSAR

Not all functional safety measures, which may be required for the development of
safety-relevant applications, are delivered by AUTOSAR. Therefore the implementers
of safety-relevant applications must ensure that the safety development life cycle is
adequate.

As an example, the following functional safety measures are neither enforced nor de-
livered by AUTOSAR. This list does not imply completeness.

• The AUTOSAR specification does not define Safety Elements out of Context
(SEooC) as described in ISO26262 Part 10, Chapter 9.

• The AUTOSAR Specification does not define the use of systematic and struc-
tured techniques for system examination, risk analysis and management, such
as Hazard Analysis (HARA) and Hazard & Operability Analysis (HAZOP).

• No overall safety concept.

• No ASIL identification

• No dependent failure analysis is performed.

• No AUTOSAR safety case

• No confirmation measures

• No functional safety audits

• No conformance test

• Implementation techniques of Software Components such as low complexity, ro-
bustness, defensive programming, conventions, coding rules.

• Tracing of AUTOSAR features to Software Component implementation.

• Software integration testing

• Validation and Verification against the AUTOSAR specification.

• Defect reporting, tracking, resolution with regard to implementation.

49 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

3.5 Safety related Extensions of Methodology and Templates

The document "Safety Extensions" provides requirements upon extensions in AU-
TOSAR Methodology and Templates to realize and document functional safety of AU-
TOSAR systems. It specifies, how the AUTOSAR meta-model is to be used to enhance
AUTOSAR models by information for functional safety. With the safety extensions, it is
possible to:

• Describe and exchange the part of a (technical) safety concept of a system which
is relevant for the realization of that system using the AUTOSAR architecture in a
standardized form by means of the AUTOSAR templates.

• Provide traceability between safety-related elements of the AUTOSAR model and
the safety requirements as part of the AUTOSAR templates.

• Declare the safety mechanisms/safety measures1 that are applied for an AU-
TOSAR system as part of the AUTOSAR templates.

• Demonstrate the traceability between safety mechanisms/safety measures and
safety requirements as part of the AUTOSAR templates.

All the safety measures and mechanisms described in "Overview of Functional Safety
Measures in AUTOSAR" can be modeled and traced using the Safety Extensions as
explained above.

3.6 Safety Use Case

The "Safety Use Case" is delivered as auxiliary document. It describes an exemplary
safety related system using AUTOSAR based on the AUTOSAR guided tour example
"Front Light Management".

The document provides an overview of a Functional safety concept as well as the
derived Technical safety concept on ECU level and is focused on AUTOSAR relevant
parts. The example follows the ISO 26262 standard, but does not cover all aspects
and include all details.

The safety use case shall:

• Provide an example to discuss and verify safety related concepts within AU-
TOSAR,

• Identify improvement potential with respect to functional safety aspects in the
current AUTOSAR specifications and methodology,

• Provide a guideline for safety analyses on top of AUTOSAR methodology

1In the context of this document, functional safety mechanisms are a concrete product part, such as
memory protection. They are considered as specialization of functional safety measures, which also
include process steps, like a review. This definition is in line with the definition given in ISO 26262 for
these terms.

50 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

Therefore the example can be adapted or changed in future to include new AUTOSAR
concepts or extend the complexity of the analyzed system.

3.7 Use of AUTOSAR features for functional safety

AUTOSAR provides a broad variety of features, mechanisms and measures for func-
tional safety. The following chapter will give hints to the use of AUTOSAR features,
which were not primarily dedicated for functional safety, but can support the implemen-
tation of safety-relevant applications.

3.7.1 Timing Related Features

Timing is an important property of embedded systems. Safe behavior requires that the
systems actions and reactions are performed within the right time.

The right time can be described in terms of a set of timing constraints that have to be
satisfied. However, an AUTOSAR software component cannot ensure proper timing by
itself. It depends on proper support by the AUTOSAR runtime environment and the
basic software. During integration the timing constraints of the software components
need to be ensured.

The timing-related features address the following aspects to enable proper software
component timing within the AUTOSAR framework:

• Provision of synchronized time-bases to provide a common notion of time across
a network of ECUs;

• Provision of means for synchronized execution of runnables within an AUTOSAR
ECU and across a network of AUTOSAR ECUs;

• Support by the AUTOSAR RTE, BSW and Methodology for deterministic timing
of software components;

• Support by the AUTOSAR RTE and BSW to detect and control timing violations
and prevent their propagation.

3.7.1.1 Features related to the provision of synchronized time bases

A synchronized time-base is a software time-base existing at a processing entity (e.g. a
node of a distributed system) that is synchronized with software time-bases at different
processing entities. A synchronized time-base can be achieved by time protocols or
time agreement protocols that derive the synchronized time-base in a defined way from
one or more physical time-bases. Examples are the network time protocol (NTP) and
FlexRay time agreement protocol.

51 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

The synchronization will apply to the clock rate and optionally apply also to the clock
absolute value.

A synchronized time-base allows synchronized action of the processing entities. Syn-
chronized time-bases are often called "global time", as e.g. the so called "FlexRay
global time". We do not use the term "global time" here because a single ECU some-
times has to cope with several synchronized time-bases which may vary in terms of
rate and absolute value.

The synchronized time bases are established by the synchronized time-base manager
BSW module.

In the AUTOSAR ECU Architecture the "Synchronized Time-base Manager" BSW mod-
ule implements an AUTOSAR Service as indicated in Figure 3.1.

The application can access the AUTOSAR Service "Synchronized Time-Base Man-
ager" via service ports with standardized AUTOSAR Interfaces.

Figure 3.1: The Synchronized Time - Base Manager in the ECU architecture
CP_SWS_SynchronizedTimeBaseManager[9], V1.2.1, R4.2 Rev 2, Chapter 7.6.1 Architecture

Different types of customers will use the synchronized time-bases: triggered cus-
tomers, active customers and notification customers. Triggering customers (runnables)
is done via the OS.

52 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

Figure 3.2: Synchronized Time-base Manager as broker
CP_SWS_SynchronizedTimeBaseManager[9], V1.2.1, R4.2 Rev 2, Chapter 1.2 Functional
Overview

The Synchronized Time-base Manager itself does not provide means like network time
protocols or time agreement protocols to synchronize its (local) time bases to time
bases on other nodes. It interacts with the <bus>TSyn modules of the BSW to achieve
such synchronization.

3.7.1.1.1 Provision of a synchronized time-base within a cluster

3.7.1.1.1.1 Coverage Criteria of the Feature

Constraint: Provision of synchronized time bases is restricted to FlexRay, CAN, Ether-
net and TTCAN clusters in AUTOSAR Release 4.2.2

The feature "Provision of a synchronized time-base within a cluster" is considered ful-
filled if

ID Description

RS_BRF_00120_CC01 There are means to provide the synchronized time base for FlexRay, CAN, Ethernet and
TTCAN clusters.

RS_BRF_00120_CC02 The time base is provided in a dependable way and faults are detected and handled.

Table 3.2: Coverage Criteria - Provision of a synchronized time-base within a cluster

3.7.1.1.1.2 Coverage justification

These 2 items are covered as follows

53 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

Coverage Criteria Coverage Justification

BSW module Requirements Justification

RS_BRF_00120_CC01 CP_SWS_ Synchronized-
TimeBaseManager_421

SRS_StbM_20005, SWS_
StbM_00050, SWS_Stb
M_00080, SWS_Stb
M_00081, SWS_Stb
M_00015

Means to provide a
synchronized time base for
FlexRay and TTCAN
clusters: A module
"synchronized time-base
manager" is introduced in
the AUTOSAR basic
software. This Module
acquires the time base from
the FlexRay or TTCAN
interface.

RS_BRF_00120_CC02 AUTOSAR_SRS_
SynchronizedTimeBase
Manager

CP_SWS_ Synchronized-
TimeBaseManager_421

AUTOSAR_SRS_
SynchronizedTimeBase
Manager

CP_SWS_ Synchronized-
TimeBaseManager_421

(SRS_StbM_20007, SWS_
StbM_00030, SWS_Stb
M_00031, SWS_Stb
M_00032, SWS_Stb
M_00033, SWS_Stb
M_00034, SWS_Stb
M_00035, SWS_Stb
M_00036)

SRS_StbM_20007, SWS_
StbM_00030, SWS_Stb
M_00031, SWS_Stb
M_00032, SWS_Stb
M_00033, SWS_Stb
M_00034, SWS_Stb
M_00035, SWS_Stb
M_00036

Provision of dependable
time base and fault
detection and handling:

• The Synchronized
Time-base Manager
continuously provides the
definition of time. If
synchronization is not
specified or temporarily
not available, the local
time is provided instead.

• The Synchronized
Time-base Manager
detects loss and
re-establishment of
synchronized time-bases
and erroneous customer
calls and reports such
faults to the DEM and the
notification customers.

Table 3.3: Coverage Justification - Provision of a synchronized time-base within a cluster

3.7.1.1.2 Services for accessing to synchronized time-bases

3.7.1.1.2.1 Coverage Criteria of the Feature

ID Description

RS_BRF_00127_CC01 There are means that customers can use the synchronized time base. The following types
of customers are to be considered: triggered customers, active customers and notification
customers.

Table 3.4: Coverage Criteria - Services for accessing to synchronized time-bases

3.7.1.1.2.2 Coverage justification

This item is covered as follows

54 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

Coverage Criteria Coverage Justification

BSW module Requirements Justification

RS_BRF_00127_CC01 SynchronizedTimeBase
Manager

CP_SRS_OS_008

CP_SWS_ Synchronized-
TimeBaseManager_421

CP_SRS_OS_008

AUTOSAR_SRS_
SynchronizedTimeBase
Manager

CP_SWS_ Synchronized-
TimeBaseManager_421

SRS_StbM_20001, SRS_
StbM_20002, SRS_Stb
M_20009, SRS_Os_11002,
SWS_StbM_00020, SWS_
StbM_00022, SWS_Stb
M_00025, SWS_Stb
M_00026, SWS_Stb
M_00028, SWS_Stb
M_00029, SWS_Stb
M_00037, SWS_Stb
M_00038, SWS_Stb
M_00077, SWS_Stb
M_00082, SWS_Stb
M_00083, SWS_Stb
M_00084, SWS_Stb
M_00085, SWS_Os_00206,
SWS_Os_00201, SWS_
Os_00013, SWS_
Os_00199, SWS_
Os_00227, SWS_
Os_00429, SWS_
Os_00430, SWS_
Os_00431, SWS_
Os_00462, SWS_
Os_00463, SWS_
Os_00435, SWS_
Os_00415, SWS_
Os_00416, SWS_
Os_00436, SWS_
Os_00437, SWS_
Os_00438, SWS_
Os_00417, SWS_
Os_00418, SWS_
Os_00419, SWS_
Os_00420, SWS_
Os_00421, SWS_Os_00422

SRS_StbM_20001, SRS_
StbM_20003, SRS_Stb
M_20008, SRS_Stb
M_20010, SWS_Stb
M_00020, SWS_Stb
M_00025, SWS_Stb
M_00026, SWS_Stb
M_00028, SWS_Stb
M_00029, SWS_Stb
M_00037, SWS_Stb
M_00038, SWS_Stb
M_00082, Chapter 11 in
SWS StbM.

Means that customers can
use the synchronized time
base:

• For the triggered
customer the BSW
module "Synchronized
Time-base Manager"
provides a
synchronization between
the synchronized
time-base and the time
base used be the OS for
scheduling, i.e. the OS
counter

• For the active customer
and the notification
customer it means to
provide a service
interface via the RTE for
SW-C or an API for BSW

Table 3.5: Coverage Justification - Services for accessing to synchronized time-bases

3.7.1.1.3 Sync AUTOSAR OS with Global Time from providing bus system in a
well-defined way

3.7.1.1.3.1 Coverage Criteria of the Feature

The feature "Sync AUTOSAR OS with Global Time from existent bus system in a well-
defined way" is considered to be covered if

55 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

ID Description

RS_BRF_00278_CC01 There are means to provide the synchronized time base for FlexRay, CAN, Ethernet and
TTCAN clusters

RS_BRF_00278_CC02 Synchronization between the synchronized time-base and the time base used by the OS
for scheduling is provided.

Table 3.6: Coverage Criteria - Sync AUTOSAR OS with Global Time from providing bus
system in a well-defined way

3.7.1.1.3.2 Coverage justification

These 2 items are covered as follows

.

Coverage Criteria Coverage Justification

BSW module Requirements Justification

RS_BRF_00278_CC01 is covered by RS_
BRF_00120_CC01

(for further traceability see
there)

RS_BRF_00278_CC02 is covered by RS_
BRF_00127_CC01 (a)

(for further traceability see
there)

Table 3.7: Coverage Justification - Sync AUTOSAR OS with Global Time from providing
bus system in a well-defined way

3.7.1.2 Features related to synchronization of processing of asynchronous pro-
cessing units

To synchronize runnables within a set of SW-Cs, they have to be attached to a syn-
chronized RTE timing. For this it must be possible to specify that a set of RTE timing
events (with the same period) within a SW-C composition are synchronized.

Synchronization is possible within a single micro controller as well as across networks.

56 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

Figure 3.3: Synchronization of processing of asynchronous processing units - Overview

3.7.1.2.1 Services for synchronization of SW-Cs

3.7.1.2.1.1 Coverage Criteria of the Feature

Constraints:

• The feature is restricted to RTE timing events only. The events are used to trigger
runnables.

• The synchronization of runnables that are controlled by different AUTOSAR OS
instances (e.g. if they are running on different ECUs or different µCs within one
ECU) is only possible if they are located on ECUs within the same FlexRay, CAN,
Ethernet or TTCAN network cluster.

The feature "Services for synchronization of SW-Cs" is considered to be covered if

ID Description

RS_BRF_00126_CC01 • There are technical means to trigger runnables in a synchronized way, i.e. with minimum
jitter and (in case of serialized processing) fixed execution order. The following cases
have to be distinguished here:

– The runnables which are triggered by the synchronized timing events are mapped to
the same operating system task.

– The runnables which are triggered by the synchronized timing events are mapped to
different operating system tasks within one OS application.

– The runnables which are triggered by the synchronized timing events are mapped to
different operating system tasks in different OS applications on the same
microcontroller core.

– The runnables which are triggered by the synchronized timing events are mapped to
different operating system tasks in different OS applications on different cores of the
same microcontroller.

– The runnables which are triggered by the synchronized timing events are mapped to
different operating system tasks in different OS applications on different
microcontrollers within one ECU.

The runnables which are triggered by the synchronized timing events are mapped to
different operating system tasks in different OS applications on different microcontrollers
within different ECUs.

57 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

4
RS_BRF_00126_CC02 The AUTOSAR methodology supports the specification of synchronization constraints for

RTE timing events.

Table 3.8: Coverage Criteria - Services for synchronization of SW-Cs

3.7.1.2.1.2 Coverage justification

These 2 items are covered as follows:

Coverage Criteria Coverage Justification

BSW module Requirements Justification

RS_BRF_00126_CC01 CP_SRS_RTE_083

CP_SWS_RTE_084

CP_SRS_RTE_083

CP_SWS_RTE_084

SRS_Rte_00232, rte_
sws_7804, rte_sws_7805

SRS_Rte_00232, rte_
sws_7804

covered by RS_BRF_00120
and RS_BRF_00127

a-c. In these cases the RTE
configuration and RTE
generation will take care of
the synchronization of the
runnables by either locating
the runnables to the same
task, using the same Os
Alarm or OsScheduleTable
ExpiryPoint to implemenent
all TimingEvents, or using
different OsAlarms or Os
ScheduleTableExpiryPoints
in different OsSchedule
Tables based on different
OS counters but with same
period and max value.

d-f. In these cases, the RTE
configuration and RTE
generation will take care of
the synchronization of the
runnables by using Os
ScheduleTable ExpiryPoints
in different explicitly
synchronized OsSchedule
Tables (). Furthermore the
synchronized time-base
manager will take care of
the explicit synchronization
of the schedule tables and
of the establishment of the
common synchronized time
base.

RS_BRF_00126_CC02 FO_RS_
TimingExtensions_410

RSTM002

chapter 3.7 in

The specification of
synchronization constraints
is supported by the timing
extensions.

Table 3.9: Coverage Justification - Services for synchronization of SW-Cs

3.7.1.3 Features to allow time deterministic implementation of applications

Time deterministic implementation of applications requires to be able to specify timing
constraints and analyze timing properties at different stages of development, i.e. during

58 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

virtual integration on VFB level, development of SW-Cs, and finally the integration of
SW-Cs into ECUs and of ECUs into a system of ECUs.

Furthermore, the runtime environment must provide suitable mechanisms to enforce
deterministic timing.

The following Figure illustrates a specification of VFB timing.

Figure 3.4: VFB timing - Overview

3.7.1.3.1 Support for timing constraints

Coverage Criteria of the Feature

The feature "Support for timing constraints" is considered to be covered if

59 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

ID Description

RS_BRF_00122_CC01 • It is possible to specify the following timing constraints:

– a timing relation (min, max, nominal) between RTE events with a lower and upper
bounds

– the time relation between a physical sensor acquisition (or a physical actuator change)
and the availability of the corresponding data element on the port of a sensor SW-C (or
actuator SW-C)

– constraints on the execution time (min,max) of a runnable

– constraints on the triggering rate for a runnable

– the end-to-end timing related to external communication

– the end-to-end timing related to IO accesses

RS_BRF_00122_CC02 • The scheduling strategies allow to enforce these timing constraints by providing the
following mechanisms:

– specification of non-preemptive execution of a code segment

– static time-based scheduling for all tasks or for a subset of the tasks

– the possibility to replace ISRs with time-based polling routines

– fixed-priority based scheduling

– the possibility of preemption of lower-priority tasks by higher-priority tasks

Table 3.10: Coverage Criteria - Support for timing constraints

These 2 items are covered as follows:

Coverage Criteria Coverage Justification

BSW module Requirements Justification

RS_BRF_00122_CC01 FO_RS_
TimingExtensions_410

CP_TPS_
TimingExtensions_411

FO_RS_
TimingExtensions_410

CP_TPS_
TimingExtensions_411

FO_RS_
TimingExtensions_410

CP_TPS_
TimingExtensions_411

FO_RS_
TimingExtensions_410

CP_TPS_
TimingExtensions_411

FO_RS_
TimingExtensions_410

CP_TPS_
TimingExtensions_411

FO_RS_
TimingExtensions_410

CP_TPS_
TimingExtensions_411

RSTM002, RSTM003,
RSTM004,

sections 3.3, 3.6 in
CP_TPS_
TimingExtensions_411

RSTM012

section 3.6 in CP_TPS_
TimingExtensions_411

RSTM001, RSTM002

sections 3.2, 3.6 CP_TPS_
TimingExtensions_411

RSTM001, RSTM002

sections 3.2, 3.5 in
CP_TPS_
TimingExtensions_411

RSTM001, RSTM002

sections 3.2, 3.6 in
CP_TPS_
TimingExtensions_411

RSTM001, RSTM004

sections 3.2, 3.6 in
CP_TPS_
TimingExtensions_411

• The specification of timing
constraints and properties
is possible using the
AUTOSAR timing
extensions as follows:

– The AUTOSAR timing
extensions allow the
specification of event
chains and of the
triggering behavior of
event chains.

– The AUTOSAR timing
extensions allow the
specification of sensor/
actuator delays.

– The AUTOSAR timing
extensions allow the
specification of timing
events of SW-C internal
behavior like start and
termination of runnables
and the specification of
timing constraints
related to these.

– The AUTOSAR timing
extensions allow to
specify event triggering
constraints.

5

5

60 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

4
4

– The AUTOSAR timing
extensions allow to
specify timing events
related to bus
communication and
timing constraints for
these.

– The AUTOSAR timing
extensions allow to
specify input/output
latency constraints.

RS_BRF_00122_CC02 CP_SRS_OS_008

CP_SWS_OS_034

CP_SRS_OS_008

CP_SWS_OS_034

CP_SRS_OS_008

CP_SWS_OS_034

SRS_Os_00097

SWS_Os_00001

SRS_Os_00098

SWS_Os_00002, SWS_
Os_00007

SRS_Os_00097

SWS_Os_00001

• The OS and the RTE
provide the necessary
scheduling mechanisms
to enforce timing as
follows:

– Non-preemptive
scheduling is supported
by OSEK OS.

– The Operating System
provides statically
configurable schedule
tables based on time
tables.

c.-e. These features are
available with OSEK OS.

Table 3.11: Coverage Justification - Support for timing constraints

3.7.1.3.2 Responsiveness to external events

Coverage Criteria of the Feature

The feature "Responsiveness to external events" is considered to be covered if

ID Description

RS_BRF_00123_CC01 External events can be used as an initiator for scheduling.

Table 3.12: Coverage Criteria - Responsiveness to external events

This item is covered as follows:

61 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

Coverage Criteria Coverage Justification

BSW module Requirements Justification

RS_BRF_00123_CC01 CP_SRS_RTE_083

CP_SWS_RTE_084

SRS_Rte_00162, SRS_
Rte_00216, rte_sws_7229,
rte_sws_7212, rte_
sws_7213, rte_sws_7214,
rte_sws_7543, rte_
sws_7215, rte_sws_7216,
rte_sws_7218, rte_
sws_7200, rte_sws_7201,
rte_sws_7207, rte_
sws_7514, rte_sws_7542,
rte_sws_7544, rte_
sws_7545, rte_sws_7548,
rte_sws_7546, rte_
sws_7549, rte_sws_7282,
rte_sws_7283

• The RTE supports the
use of external events as
trigger execution of
runnables and BSW
schedulable entities.

Table 3.13: Coverage Justification - Responsiveness to external events

3.7.1.4 Features related to protection against timing violation

Depending on the scalability class, the AUTOSAR OS can provide protection mecha-
nisms against timing violation. As the OS is only aware of tasks and not of runnables,
the OS provides protection mechanisms on task level with the fault containment region
being the OS application.

Timing protection of SW-Cs at runtime requires monitoring of runnables and preventing
the propagation of timing faults from one SW-C to another. If SW-Cs require protection
from each other, then their runnables have to be placed into different OS applications
which implies that they are placed into different task bodies.

Figure 3.5: Task Execution - Example

Note: Please see the Section 2.2.2.3 "Timing Protection of the Operating System".

62 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

3.7.1.4.1 Runtime timing protection and monitoring

Coverage Criteria of the Feature

The feature "Runtime timing protection and monitoring" is considered to be covered if:

ID Description

RS_BRF_00121_CC01 The operating system provides mechanisms to detect timing faults on task level and to
prevent timing faults from propagating from one OS application to another

RS_BRF_00121_CC02 The RTE provides means to make use of the task level OS timing protection mechanisms
for runnables.

Table 3.14: Coverage Criteria - Runtime timing protection and monitoring

These 2 items are covered as follows:

Coverage Criteria Coverage Justification

BSW module Requirements Justification

RS_BRF_00121_CC01 CP_SRS_OS_008

CP_SWS_OS_034

SRS_Os_11008, SWS_
Os_00028, SWS_
Os_00089, SWS_
Os_00033, SWS_
Os_00037, SWS_
Os_00048, SWS_
Os_00064, SWS_
Os_00465, SWS_
Os_00469, SWS_
Os_00470, SWS_
Os_00471, SWS_
Os_00472, SWS_
Os_00473, SWS_Os_00474

The OS provides means to
monitor execution time
budgets, task activation
frequencies, and resource
locking times, and allows
preventing fault propagation
by stopping OS applications
and freeing locked
resources

RS_BRF_00121_CC02 CP_SRS_RTE_083

CP_SWS_RTE_084

SRS_Rte_00160, SRS_
Rte_00193, rte_sws_2697,
sws_rte_7800, sws_
rte_7802 in 084

The RTE provides
debounced start of runnable
entities and supports
runnable execution chaining
in order to allow a
separation of runnables
(which usually are chained
within one task body) into
chained tasks which then
can be monitored by the
task level OS mechanisms

Table 3.15: Coverage Justification - Runtime timing protection and monitoring

3.7.1.4.2 Monitoring of local time

This feature is considered fulfilled as the functionality can be realized within the soft-
ware component. There is no need for specific mechanisms in AUTOSAR.

63 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

3.7.2 E-Gas Monitoring Related Features

The E-Gas Monitoring Concept is a safety concept applicable e.g. for diesel and gaso-
line engine management. It is standardized by the AKEGAS working group and not
part of the AUTOSAR standard.

The possible realizations of the e-Gas monitoring concept in the context of AUTOSAR
software architecture have been investigated. The features of this section ensure that a
design approach as shown in the following figure can be used with AUTOSAR Release
4.0.

In the design approach shown below, the monitoring related software is located in a
Complex Driver (CDD). A CDD allows a direct access to the related inputs and outputs.

Figure 3.6: E-Gas Monitoring Concept - Overview

3.7.2.1 Communication protections against corruption and loss of data

Coverage Criteria of the Feature

Constraint: It is assumed that end-to-end protection is used to protect the transmission
of the necessary signals from the sender to the receiver (e.g. monitoring software).

The feature "Communication protection against corruption and loss of data" is consid-
ered fulfilled if the complete path of the data read by the Complex Drivers is protected
against loss and corruption, which means:

64 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

ID Description

RS_BRF_00243_CC01 the loss and corruption of data is detected if it happens on the way from the emitter node to
the BSW driver of the receiver node

RS_BRF_00243_CC02 the loss and corruption of data is detected if it happens on the way from the Bus Specific
interface to the Complex Driver

Table 3.16: Coverage Criteria - Communication protections against corruption and loss
of data

Figure 3.7: E-Gas Monitoring Concept - Communication protections against corruption
and loss of data

These 2 items are covered as follows

Coverage Criteria Coverage Justification

BSW module Requirements Justification

RS_BRF_00243_CC01 CP_SRS_Libraries_314

CP_SWS_E2ELibrary_428

SRS_LIBS_08527, SRS_
LIBS_08536, SWS_
E2E_00020, E2E0023,
E2E0026, E2E0030,
E2E0043

the detection of loss and
corruption of data between
the emitter node and the
BSW of the receiver node is
ensured by the protection
mechanisms available with
CAN or FlexRay
communication networks
(CRC, checksum, process
counters)

5

65 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

4
RS_BRF_00243_CC02 CP_SRS_Libraries_314

CP_SWS_E2ELibrary_428

SRS_LIBS_08535,
E2E0026, E2E0030

the detection of loss and
corruption of data between
the Bus Specific Interface
and the Complex Driver is
ensured by the access of
the Complex Driver to the
frame payload dedicated to
Safety and the application
dependent end-to-end
protection.

Table 3.17: Coverage Justification - Communication protections against corruption and
loss of data

3.7.2.2 Priority access to SPI bus

Coverage Criteria of the Feature

The feature "Priority access to SPI bus is considered fulfilled if:

ID Description

RS_BRF_00251_CC01 The Monitoring SW placed in the Complex Drivers SW can have access the SPI bus with a
bounded delay, this means that the priority access is scheduled so that the delay of the
access to the SPI from CDD is bounded.

Table 3.18: Coverage Criteria - Priority access to SPI bus

This item is covered as follows:

Coverage Criteria Coverage Justification

BSW module Requirements Justification

RS_BRF_00251_CC01 CP_SRS_
SPIHandlerDriver_077

CP_SWS_
SPIHandlerDriver_038

SRS_Spi_12037, SWS_
Spi_00002 SWS_
Spi_00014, SWS_
Spi_00093, SWS_
Spi_00059

Priority access is defined in
and provided by the SPI
Handler Driver

Table 3.19: Coverage Justification - Priority access to SPI bus

3.7.2.3 Testing and monitoring of I/O data and I/O HW

Coverage Criteria of the Feature

The feature "Testing and monitoring of I/O data and I/O HW" is considered fulfilled if:

66 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

ID Description

RS_BRF_00248_CC01 The Monitoring SW placed in the Complex Drivers SW can perform test of the related A/
D-Converter without disturbing a data acquisition related to normal operation.

RS_BRF_00248_CC02 The Monitoring SW placed in the Complex Drivers can directly perform tests of the
safety-related actuators (throttle, injectors) of the shut-off path.

Table 3.20: Coverage Criteria - Testing and monitoring of I/O data and I/O HW

These 2 items are covered as follows:

Coverage Criteria Coverage Justification

BSW module Requirements Justification

RS_BRF_00248_CC01 Support for ADC tests is
ensured because it doesn’t
have any impact on ADC
drivers.

RS_BRF_00248_CC02 The drivers dedicated to the
injectors and the throttle
actuator are Complex
Drivers and therefore can
implement the necessary
test procedures.

Table 3.21: Coverage Justification - Testing and monitoring of I/O data and I/O HW

3.7.2.4 Ability to make an AUTOSAR application compatible to the e-Gas moni-
toring Concept

Coverage Criteria of the Feature

The feature [RS_BRF_00301] Ability to make an AUTOSAR application compatible to
the e-Gas monitoring Concept is covered if:

ID Description

RS_BRF_00301_CC01 The arguments of the [RS_BRF_00243], [RS_BRF_00251], [RS_BRF_00248],
[BRF00244], [BRF00245], [BRF00246], [BRF00247], [BRF00249], [BRF00250] are fulfilled.

RS_BRF_00301_CC02 The e-Gas Monitoring SW placed in the Complex Drivers can access to the raw values of
the ADC inputs.

RS_BRF_00301_CC03 The e-Gas Monitoring SW placed in the Complex Drivers can access to the raw values of
the DIO inputs.

RS_BRF_00301_CC04 The e-Gas Monitoring SW placed in the Complex Drivers can access to the raw values of
the PWM inputs.

Table 3.22: Coverage Criteria - Ability to make an AUTOSAR application compatible to
the e-Gas monitoring Concept

These 4 items are covered as follows

67 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

Coverage Criteria Coverage Justification

BSW module Requirements Justification

RS_BRF_00301_CC01 The features [RS_
BRF_00243], [RS_
BRF_00251], [RS_
BRF_00248], [BRF00244],
[BRF00245], [BRF00246],
[BRF00247], [BRF00249],
[BRF00250] are fully
covered.

RS_BRF_00301_CC02 CP_SRS_ADCDriver_111

CP_SWS_ADCDriver_010

SRS_SPAL_12063, SWS_
Adc_00113

ADC Drivers can provide
raw data directly to the
Complex Drivers

RS_BRF_00301_CC03 CP_SRS_DIODriver_191

CP_SWS_DIODriver_020

SRS_Dio_12352, SWS_
Dio_00083

DIO Drivers can provide raw
data directly to the Complex
Drivers

RS_BRF_00301_CC04 CP_SRS_ICUDriver_112

CP_SWS_ICUDriver_023

SRS_Icu_12436

SWS_Ico_00211, SWS_
Ico_00342, SWS_
Ico_00084, SWS_
Ico_00344, SWS_
Ico_00106, SWS_
Ico_00345, SWS_
Ico_00180, SWS_
Ico_00181, SWS_
Ico_00022, SWS_
Ico_00048, ICU272, ICU265

SRS_Icu_12369

SWS_Ico_00021

ICU Drivers can provide raw
data directly to the Complex
Drivers

Table 3.23: Coverage Justification - Ability to make an AUTOSAR application compatible
to the e-Gas monitoring Concept

68 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

4 Hardware Diagnostics

Modern microcontrollers for safety-relevant applications are highly complex devices.
To ensure that the desired level of integrity is achieved by the microcontroller as part
of a safety-relevant system, integration and use of functional safety mechanisms and
measures in hardware and software is required.

Microcontrollers must support the premise of the safety-relevant system, that the pro-
vided functionality can be trusted. Execution of Hardware Diagnostic mechanisms can
support this premise. This chapter provides an overview of how hardware diagnostics
are supported using AUTOSAR.

4.1 Core Test

The general objective of test by software is to detect failures in processing units which
lead to incorrect results. Core Test performs test by software of processing units during
microcontroller start-up and runtime.

4.1.1 Fault Models

According to ISO 262621, detection of failures in the following parts of the processing
units are typically considered for the derivation of diagnostic coverage. The following
table provides a preliminary mapping between ISO26262 and Core Test requirements
[10] [11].

ID Processing unit parts Core Test SRS Requirements

001 ALU Data Path Core ALU Test
002 Registers (general purpose registers bank,

DMA transfer registers etc.), internal RAM
Core Register Test

003 Address calculation (Load/Store Unit, DMA
addressing logic, memory and bus interfaces)

Core Address Generator

Core Memory Interfaces

Memory Management/Protection Unit (MMU/MPU)

Cache Controller
004 Interrupt Handling Core Interrupt and Exception Detection

005 Control Logic (Sequencer, coding and
execution logic including flag registers and
stack control)

-

006 Configuration Registers -

007 Other sub-elements not belonging to previous
classes

-

Table 4.1: Mapping between Processing Unit parts and Core Test requirements

1[ISO 26262-5, Annex D] Table D.1 Volatile Memory

69 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

4.1.2 Description

The Core Test Driver is an AUTOSAR Basic Software Module which accesses the
microcontroller core directly without intermediate software layers. It is located in the
Abstraction Layer (MCAL).

The Core Test Driver provides several tests to verify dedicated core functionality like
e.g. general purpose registers or Arithmetical and Logical Unit (ALU). Furthermore, the
Core Test Driver provides services for configuring, starting, polling, terminating and
notifying applications about Core Test results. It also provides services for returning
test results in a predefined way.

The Core Test Driver can be used during ECU power-up and during application runtime.
However it is assumed that each hardware functional block of the core under test can
be accessed by the Core Test Driver exclusively.

4.1.3 Detection and Reaction

If the execution of the Core Test Driver is to be embedded into a system safety archi-
tecture concept, then it is up to the user of the Core Test Driver to choose a suitable
test combination and scheduled execution order to fulfill the safety requirements of the
system.

Core Test reports errors in dedicated memory and bus interfaces (e.g. Tightly Coupled
Memories, caches, systems bus) and dedicated supporting functionality (e.g. interrupt
controller) to the diagnostic event manager (DEM) as production errors.

Errors inside the CPU (e.g. ALU, Prefetch queue, registers) cannot be reliably reported
to DEM, as these faults affect the correct operation of the Core itself.

4.1.4 Limitations

1. Transient faults are not covered by Core Test.

The Core test can be used to detect static hardware errors during power-up and
at runtime. Transient faults and intermittent faults are not covered and cannot be
reliably detected by Core Test.

2. Core Test implementations may be limited to execution during start-up/power-up.

Core Test requires exclusive access to local core resources to avoid unwanted
behavior and interference between test and application during runtime.

Currently, there is no resource managing entity in AUTOSAR upper layers to sup-
port exclusive access to shared resources.

3. Test results are only available to the core which executes Core Test.

70 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

MCAL drivers intentionally miss the ability of accessing test results being exe-
cuted on other cores. Currently, there is no test managing entity in AUTOSAR
upper layers to handle test result processing.

4. Core Test cannot report detected faults reliably.

Faults within the CPU itself (e.g. ALU, MAC, Registers) cannot be reliably re-
ported to DEM, as they are being processed by the same faulty CPU.

4.1.5 References to AUTOSAR Documents

Source: Requirements on Core Test, V1.4.0, R4.2 Rev 1

Core Register Test Shall Be Available

Core Interrupt and Exception Detection Tests Shall Be Available

Core ALU Test Shall Be Available

Core Address Generator Test Shall Be Available

Core Memory Interfaces Test Shall Be Available

Memory Management/Protection Unit (MMU/MPU) Test Shall Be Available

Cache Controller Test Shall Be Available

Shared Resources to Be Tested Shall Be Made Exclusively Available to Test

Faults Shall Be Treated as Production Errors

4.1.6 References to ISO26262

The following references to the ISO26262 standard are related to the aspects of test
by software for Processing Units.

ID ISO26262 Reference
010 Part 5: [D.2.3.1] Self Test by software

011 Part 11: [Table 34] Combinatorial and sequential logic

012 Part 5: [Table D.4] Processing Units

013 Part 5: [Table D.1] Analysed failure modes

Table 4.2: ISO26262 Core Test References

4.2 RAM Test

The general objective of RAM Test is to detect permanent failures which can cause
corruption in the volatile memory.

71 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

4.2.1 Fault Models

According to ISO 262622, detection of the following failures in the volatile memory
is typically considered for the derivation of diagnostic coverage. The following table
provides a preliminary mapping between ISO26262 and RAM Test requirements [12]
[13].

ID Failure Modes of Volatile Memory RAM Test SRS Requirements

001 Low Coverage (60%):

Stuck-at for data, addresses and control
interface, lines and logic.

A Test algorithm with low coverage shall be available

002 Medium Coverage (90%):

d.c. fault model for data, addresses (includes
address lines within same block and inability to
write to cell) and control interface, lines and
logic

A Test algorithm with medium coverage shall be available

003 Medium Coverage (90%):

Soft error model for bit cells

-

004 High Coverage (99%):

d.c. fault model for data, addresses (includes
address lines within same block and inability to
write to cell) and control interface, lines and
logic

A Test algorithm with high coverage shall be available

005 High Coverage (99%):

Soft error model for bit cells

Table 4.3: Mapping between Volatile Memory Failure Modes and RAM Test requirements

4.2.2 Description

The RAM Test Driver is an AUTOSAR Basic Software Module which accesses the
microcontroller RAM directly without intermediate software layers. It is located in the
Abstraction Layer (MCAL).

The RAM Test driver performs a test of the physical health of the RAM cells, it is not
intended to test the contents of the RAM. Furthermore, RAM used for registers is also
tested.

Different algorithms exist to test RAM. They target different sets of fault models,
achieve different coverages, result in different runtimes and are either destructive or
non-destructive. Coverage also depends on the underlying physical RAM architecture.

An ECU safety analysis must be performed to determine which RAM Test diagnostic
coverage rate (Low, Medium or High) is required. Appropriate RAM Test algorithms
and further configuration parameters are then selected at compile time. At run time,
the application software may choose between the compiled algorithms (and between
further parameters).

2[ISO 26262-5, Annex D] Table D.1 Volatile Memory

72 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

The RAM Test driver supports synchronous test methods called "foreground test" and
asynchronous tests called "background test". During the execution of a RAM test algo-
rithm, no other software shall be allowed to modify the RAM area under test.

4.2.3 Detection and Reaction

During the execution of non-destructive tests, the RAM Test module saves the contents
of the RAM area under test and restores the original contents thereafter.

RAM Test reports errors to the diagnostic event manager (DEM) as production errors.

4.2.4 Limitations

1. Transient faults are not covered by RAM Test.

RAM Test can be used to detect static hardware errors during power-up and at
runtime. Transient faults and intermittent faults are not covered and cannot be
reliably detected by RAM Test.

2. During the execution of a RAM test algorithm, no other software and hardware
shall be allowed to modify the RAM area under test The RAM Test module cannot
ensure data consistency (e.g. during NMI, DMA transfers, multiple active cores
in a Multicore system). Therefore the execution of RAM Test may be limited to
the power-up/sleep/shutdown phase of a microcontroller.

3. Destructive tests cause corruption of contents in memory under test.

During the execution of destructive tests, the contents of RAM area under test
are not saved by the RAM Test module.

4.2.5 References to AUTOSAR Documents

Source: Requirements on RAM Test, V2.0.1, R4.2 Rev 1

A Test algorithm with low coverage shall be available

A Test algorithm with medium coverage shall be available

A Test algorithm with high coverage shall be available

The RAM Test Module shall be usable to comply with requirements of the different ASIL
levels of ISO 26262.

73 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

4.2.6 References to ISO26262

The following references to the ISO26262 standard are related to the aspects of RAM
Test.

ID ISO26262 Reference
015 Part 11: [5.1.13.5] RAM Pattern test

016 Part 11: [5.1.13.7] RAM March test

012 Part 11: [Table 33] Volatile Memory

013 Part 5: [Table D.1] General semiconductor elements - Volatile Memory

Table 4.4: ISO26262 RAM Test References

74 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

A Appendix

A.1 Acronyms and abbreviations

Used acronyms and abbreviations not contained in the AUTOSAR glossary

Abbreviation / Acronym: Description:

HARA Hazard Analysis

HAZOP Hazard & Operability Analysis

SEooC Safety Element out of Context

HTM Hardware Test Manager

HTMSS Hardware Test Manager on Startup and Shutdown

ASIL Automotive Safety Integrity Level

DMA Direct Memory Access

EMC Electromagnetic Compatibility

IOC Inter-OS-Application Communicator

CRC Cyclic Redundancy Check

TP Transport Protocol

BIST Built In Self Test
FTTI Fault Tolerant Time Interval

MSTP Microcontroller Specific Test Package

Table A.1: Acronyms and abbreviations used in the scope of this Document

75 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR CP R24-11

B Related Documentation

[1] ISO 26262 (all parts) – Road vehicles – Functional Safety
https://www.iso.org

[2] Specification of ECU Configuration
AUTOSAR_CP_TPS_ECUConfiguration

[3] Layered Software Architecture
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

[4] Specification of Operating System
AUTOSAR_CP_SWS_OS

[5] Explanation of Error Handling on Application Level
AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

[6] Specification of Watchdog Manager
AUTOSAR_CP_SWS_WatchdogManager

[7] Specification of SW-C End-to-End Communication Protection Library
AUTOSAR_CP_SWS_E2ELibrary

[8] Specification of Module E2E Transformer
AUTOSAR_CP_SWS_E2ETransformer

[9] Specification of Synchronized Time-Base Manager
AUTOSAR_CP_SWS_SynchronizedTimeBaseManager

[10] Requirements on Core Test
AUTOSAR_CP_RS_CoreTest

[11] Specification of Core Test
AUTOSAR_CP_SWS_CoreTest

[12] Requirements on RAM Test
AUTOSAR_CP_RS_RAMTest

[13] Specification of RAM Test
AUTOSAR_CP_SWS_RAMTest

76 of 76 Document ID 664: AUTOSAR_CP_EXP_FunctionalSafetyMeasures

https://www.iso.org

	1 Introduction
	1.1 Disclaimer
	1.2 Scope
	1.3 Purpose
	1.4 Intended Audience

	2 Functional Safety Mechanisms
	2.1 Memory Partitioning
	2.1.1 Fault Models
	2.1.2 Description
	2.1.2.1 Application Software
	2.1.2.2 OS Applications
	2.1.2.3 Communication and Code Sharing
	2.1.2.4 Memory Partitioning within Application Software
	2.1.2.5 Memory Partitioning within Software Components
	2.1.2.6 Implementation of Memory Partitioning

	2.1.3 Detection and Reaction
	2.1.4 Limitations
	2.1.5 References to AUTOSAR Documents
	2.1.6 References to ISO26262

	2.2 Timing Monitoring
	2.2.1 Fault Models
	2.2.2 Description
	2.2.2.1 Supervised Entities
	2.2.2.2 Watchdog Manager
	2.2.2.3 Timing Protection of the Operating System

	2.2.3 Detection and Reaction
	2.2.4 Limitations
	2.2.5 References to AUTOSAR Documents
	2.2.6 References to ISO26262

	2.3 Logical Supervision
	2.3.1 Fault Models
	2.3.2 Description
	2.3.3 Detection and Reaction
	2.3.4 Limitations
	2.3.5 References to AUTOSAR Documents
	2.3.6 References to ISO26262

	2.4 End-2-End Protection
	2.4.1 Fault Models
	2.4.2 Description
	2.4.2.1 End-2-End Profiles
	2.4.2.2 End-2-End State Machine
	2.4.2.3 Integration of the End-2-End Protection Library
	2.4.2.4 End-2-End Protection Wrapper
	2.4.2.5 Transmission Manager
	2.4.2.6 COM End-2-End Callout
	2.4.2.7 RTE Data Transformer

	2.4.3 Detection and Reaction
	2.4.4 Limitations
	2.4.5 References to AUTOSAR Documents
	2.4.6 References to ISO26262

	3 Functional Safety Measures
	3.1 Functional Safety Measures of AUTOSAR
	3.2 Traceability
	3.3 Development Measures and the Evolution of the Standard
	3.4 Functional Safety Measures not delivered by AUTOSAR
	3.5 Safety related Extensions of Methodology and Templates
	3.6 Safety Use Case
	3.7 Use of AUTOSAR features for functional safety
	3.7.1 Timing Related Features
	3.7.1.1 Features related to the provision of synchronized time bases
	3.7.1.2 Features related to synchronization of processing of asynchronous processing units
	3.7.1.3 Features to allow time deterministic implementation of applications
	3.7.1.4 Features related to protection against timing violation

	3.7.2 E-Gas Monitoring Related Features
	3.7.2.1 Communication protections against corruption and loss of data
	3.7.2.2 Priority access to SPI bus
	3.7.2.3 Testing and monitoring of I/O data and I/O HW
	3.7.2.4 Ability to make an AUTOSAR application compatible to the e-Gas monitoring Concept

	4 Hardware Diagnostics
	4.1 Core Test
	4.1.1 Fault Models
	4.1.2 Description
	4.1.3 Detection and Reaction
	4.1.4 Limitations
	4.1.5 References to AUTOSAR Documents
	4.1.6 References to ISO26262

	4.2 RAM Test
	4.2.1 Fault Models
	4.2.2 Description
	4.2.3 Detection and Reaction
	4.2.4 Limitations
	4.2.5 References to AUTOSAR Documents
	4.2.6 References to ISO26262

	A Appendix
	A.1 Acronyms and abbreviations

	B Related Documentation

