
Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

Document Title
Explanation of Error Handling on
Application Level

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 378

Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R24-11

Document Change History
Date Release Changed by Description

2024-11-27 R24-11
AUTOSAR
Release
Management

• Cleanup after removal of partition restart
option

2023-11-23 R23-11
AUTOSAR
Release
Management

• Replaced symbols RESTART and
NO_RESTART by
OS_OSAPPLICATION_RESTART and
OS_OSAPPLICATION_NO_RESTART.

2022-11-24 R22-11
AUTOSAR
Release
Management

• No content changes.

• Editorial changes:

– Document converted from Word to
LaTeX.

– Document structure adjusted to the
standard.

2021-11-25 R21-11
AUTOSAR
Release
Management

• No content changes

2020-11-30 R20-11
AUTOSAR
Release
Management

• No content changes

2019-11-28 R19-11
AUTOSAR
Release
Management

• No content changes

• Changed Document Status from Final to
published

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Editorial changes

5

1 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

4

2017-12-08 4.3.1
AUTOSAR
Release
Management

• Editorial changes

2016-11-30 4.3.0
AUTOSAR
Release
Management

• minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation

2015-07-31 4.2.2
AUTOSAR
Release
Management

• minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation

2014-10-31 4.2.1
AUTOSAR
Release
Management

• Editorial changes

2013-03-15 4.1.1
AUTOSAR
Release
Management

• Finalized for Release 4.1

2011-12-22 4.0.3
AUTOSAR
Release
Management

• Initial release

2 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

3 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

Contents

1 Introduction 6

1.1 Scope . 6
1.2 Guide to this Document . 7

2 Definition of terms and acronyms 8

2.1 Basic dependability terms . 8
2.2 Fault Detection, Isolation and Recovery (FDIR) 9

3 Related Documentation 11

3.1 Input documents & related standards and norms 11

4 Error model 13

5 Error handling mechanisms 16

5.1 Overview . 16
5.2 Plausibility checks . 16

5.2.1 Description . 16
5.2.2 Applicability . 18
5.2.3 Application level vs. BSW . 18
5.2.4 AUTOSAR References . 19

5.3 Substitute Values . 19
5.3.1 Description . 19
5.3.2 Applicability . 20
5.3.3 Application level vs. BSW . 20
5.3.4 AUTOSAR References . 20

5.4 Voting . 21
5.4.1 Description . 21
5.4.2 Applicability . 21
5.4.3 Application level vs. BSW . 22
5.4.4 AUTOSAR References . 22

5.5 Agreement . 22
5.5.1 Description . 22
5.5.2 Applicability . 23
5.5.3 Application level vs. BSW . 23
5.5.4 AUTOSAR References . 23

5.6 Checksums/Codes . 23
5.6.1 Description . 23
5.6.2 Applicability . 24
5.6.3 Application level vs. BSW . 24
5.6.4 AUTOSAR References . 25

5.7 Execution sequence monitoring . 25
5.7.1 Description . 25
5.7.2 Applicability . 26
5.7.3 Application level vs. BSW . 26

4 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

5.7.4 AUTOSAR References . 26
5.8 Aliveness monitoring . 27

5.8.1 Description . 27
5.8.2 Applicability . 28
5.8.3 Application level vs. BSW . 28
5.8.4 AUTOSAR References . 28

5.9 Status and Mode Management . 29
5.9.1 Description . 29
5.9.2 Applicability . 30
5.9.3 Application level vs. BSW . 30
5.9.4 AUTOSAR References . 30

5.10 Reconfiguration . 31
5.10.1 Description . 31
5.10.2 Applicability . 31
5.10.3 Application level vs. BSW . 32
5.10.4 AUTOSAR References . 32

5.11 Reset . 33
5.11.1 Description . 33
5.11.2 Applicability . 34
5.11.3 Application level vs. BSW . 34
5.11.4 AUTOSAR References . 34

5.12 Error Filtering . 35
5.12.1 Description . 35
5.12.2 Applicability . 36
5.12.3 Application level vs. BSW . 36
5.12.4 AUTOSAR References . 36

5.13 Memory Protection . 36
5.13.1 Description . 36
5.13.2 Applicability . 37
5.13.3 Application level vs. BSW . 37
5.13.4 AUTOSAR References . 37

5.14 Timing Protection . 38
5.14.1 Description . 38
5.14.2 Applicability . 38
5.14.3 Application level vs. BSW . 38
5.14.4 AUTOSAR References . 39

6 Aspect mapping 40

6.1 Overview . 40
6.2 Mapping to FDIR process and Error Model 40
6.3 Mapping to implementation level . 42

5 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

1 Introduction

The purpose and aim of this document is to survey application level error handling
mechanisms common in the automotive industry and available for use with AUTOSAR.
This includes both handling of errors at the application level and handling of application
level errors.

Error handling in this context refers to the complete handling chain, i.e., detection,
isolation/identification and recovery. A set of error handling mechanisms useful for au-
tomotive systems is presented, which cover all three phases of error handling. Each
mechanism is first described in a high-level manner, describing applicability for error
handling and technical aspects. Then, AUTOSAR functionality related to the mech-
anism is reviewed and it is detailed where in an AUTOSAR system the mechanism
is implemented or supported. Consequently, the list of mechanisms includes both
mechanisms fully (or partially) supplied by AUTOSAR and mechanisms that should be
implemented at SW-C-level by application developers, if incorporated into the system.
Note that the set of mechanisms covered is not complete and limited to mechanisms
that can be implemented for systems built on AUTOSAR release 4.0. Alternate and ad-
ditional mechanisms are possible and future releases of AUTOSAR may enable even
more error handling functionality. Also, this document does not prescribe the use of
any mechanisms - the decision is of course solely up to the application developers and
integrators.

This document is intended as a description of possible mechanisms and is primarily
aimed at application/SW-C developers. However, it can also be of use to developers
of BSW-modules. Focus is on random faults, not on systematic design faults (such
as SW bugs). Examples of such faults include HW faults affecting the application,
communication or peripheral devices. It focuses on errors most suitably handled by
SW-Cs, not covering error handling within or below the RTE, such as COM and OS
error handling.

1.1 Scope

This document concerns error handling from an application’s point of view. That is, it
describes mechanisms for detection, isolation and recovery at application level, as well
as mechanisms that can handle faults relevant for applications (e.g. memory access
violations or timing violations).

The focus is on handling of errors which mainly are the effects of random external
faults. Even though systematic faults (i.e. design faults) can manifest themselves in
the same way as external faults, these are not the primary target of this document.
The handling of systematic faults is related to development (e.g., processes, design
methodologies, and debugging) rather than error handling during system operation.

Error handling in AUTOSAR is not restricted to application level error handling. The
BSW has a number of built-in error handling mechanisms which are able to provide

6 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

e.g. reliable communication, synchronization, etc. However, these mechanisms will
not be described in this document.

1.2 Guide to this Document

Depending on the familiarity of the reader to the various terms and definitions used in
the area of dependable systems, some parts of the document can be flipped through
quite quickly or even skipped. If you are very familiar with the area of dependable
system, you might even go to Section 6 directly. In Table 1.1 you will find a summary
of the subsequent chapters in order to identify which parts are of most interest to you.

Section Description

1.1 Scope This section describes the assumptions made in this
document. The assumptions concern for example existence
of some basic dependability mechanisms in the BSW.

2 Definition of terms and acronyms This section contains an overview of the terms used in this
document, including descriptions of the terms fault, error,
failure, a description of the FDIR (Fault Detection, Isolation
and Recovery) process, and a description of various failure
modes. If you are familiar with the concepts in the area of
dependable systems, you can browse through this part
rather quickly.

4 Error model This section describes the types of errors that we have
considered to be the most important ones from an
automotive application point-of-view. The mechanisms listed
in the subsequent chapters are all categorized according to
their respective applicability to the handling of these errors.

5 Error handling mechanisms This section lists and describes the error handling
mechanisms provided or supported by AUTOSAR. for
implementing application-level error handling. Each
mechanism has a high-level description, a discussion on
applicability, a discussion on implementation level
(application vs. BSW) and an overview of the available
AUTOSAR concepts and services that can be used for this
type of mechanism.

6 Aspect mapping This section provides an overview of the presented
mechanisms and the mapping of these to the FDIR process,
error models and implementation level.

Table 1.1: Overview of the contents of the remainder of this document.

7 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

2 Definition of terms and acronyms

2.1 Basic dependability terms

The fundamental concepts and terms of dependability used in this document are
adopted directly from [1]. This section contains a short overview of the main terms
and definitions used for dependable systems. It should be noted here that the word
system is used in a very wide sense in this context. A system can denote anything
from a single SW-C to a complete vehicle with multiple networks and ECUs. However,
as the document is aimed at application level error handling, a system in the rest of
the document should denote a software application, potentially consisting of multiple
SW-Cs, possibly mapped over a set of (distributed) ECUs.

The term dependability is defined as "the trustworthiness of a system such that reliance
can justifiably be placed on the service it provides". This means that a dependable sys-
tem is one upon which the user (either human or non-human) can place its trust in that
the services provided by the system are correct. The dependability of a system is char-
acterized by a set of attributes, compromised by a set of impairments, and achieved
and analyzed by a set of means.

The dependability attributes characterize, and profile, the dependability of a given sys-
tem. Some examples of attributes are availability, reliability, safety, confidentiality,
integrity, and maintainability.

During the construction and the operation of a system (here used in a wide sense - a
system can be any bounded entity, such as an entire ECU or a single SW-C), events
may occur which reduce the trustworthiness of the system by introducing faults into
the system. A fault is a transient or permanent change of the system such that its
integrity deviates from the expected correct integrity. During system operation, faults
may prevent the system from providing its intended service. These faults may be from
an internal source (such as software defects) or an external source (such as external
disturbances or aging of components). The events that may reduce the dependability
of a system are referred to as the impairments of dependability.

The mere presence of faults is, however, not sufficient to reduce the dependability of
a system. A fault must be activated, i.e., the part of the system in which the fault is
located must be exercised in some way during system operation (e.g., faulty code must
be executed, defective memory locations must be read, etc.). If this happens, the result
may be an error. If a fault is viewed as a disease, an error can be said to be a symptom
of that disease. An error is defined as an erroneous (soft) state in the system, i.e., the
state is different from the state the system would have had if the fault had not been
present. An error which is activated may cause other errors to occur in the system.
This process is called error propagation.

If errors propagate beyond the system barrier, i.e., if they are visible to the environment
of the system, the error transforms into a failure, which means that the system no
longer provides its specified functionality.

8 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

The causality chain, fault error failure, is also recursive in nature. Thus, a failure of one
system is perceived as a fault by the enclosing system (i.e. the former is a sub-system
of the latter). For instance, a failure in a specific software component can be seen as
a fault in the overall application (consisting of a set of SW-Cs).

Therefore, we get the following sequence:

. . . failure→ fault → error → failure→ fault . . .

The methods used to achieve and analyze the dependability of a system are called
the means of dependability. The purpose of this document is to document and inves-
tigate the means provided by AUTOSAR for the disposal of application developers for
implementing error handling.

Note that this document covers mechanisms which are active during system operation.
It does not cover means such as processes and methodologies for achieving functional
safety, as these apply during system development rather than system operation.

2.2 Fault Detection, Isolation and Recovery (FDIR)

The process of handling faults during system operation is often referred to as FDIR,
which stands for Fault Detection, Isolation, and Recovery.

Detection: The crucial first step in handling a fault is of course to become aware that
it has occurred. Without this detection, no further activities can be performed. When it
comes to detection, the original fault is often very hard to detect. What can be detected
are the effects of the fault, that is, errors. These are detected by monitoring the state
of the system.

Errors can manifest in different ways. The main manifestations are

1. erroneous values in the system (data errors),

2. erroneous execution time (timing errors),

3. erroneous sequence or execution order (program flow errors).

4. erroneous access to system resources, such as memory

Errors may propagate and generate consecutive faults which in turn may result in new
errors, e.g., an erroneous data value is used as a pointer and causes a memory ac-
cess violation, which may create an erroneous value in another data value if a value is
written to the erroneous memory location. Most mechanisms used for detection of er-
rors allows the system to perform some action to find out more regarding the source of
the error (isolation) and to issue corrective or compensating actions (recovery). Ideally,
detection is done before the error has propagated any further, thus making it possi-
ble to stop further propagation. However, in most cases additional recovery actions
are needed, such as stopping the offending component or reconfiguring to alternate
functionality.

9 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

Isolation: Once a fault (or error) has been successfully detected, damage assessment
and damage control needs to be performed, i.e. there is a need for isolation. During
isolation, efforts are made to find the root cause for the erroneous state in the system,
and information (e.g. regarding the spread and cause of the error) is gathered for
subsequent use during error recovery. It may not always be possible (or practical) to
find the root cause of the erroneous state. Note that isolation in this document refers
to isolating the source of the errors, such that recovery is possible. It does not refer to
isolation of specific components of a system with the purpose of stopping errors from
propagating. In a sense, the word identification may have been a better choice, but as
the commonly used word in descriptions of the FDIR process is isolation we will use it
here.

Recovery: When the isolation is complete, recovery actions will be initiated. These
actions aim at transferring the system into a controlled state, which can be a completely
recovered state where nominal service is provided, or a safe degraded state where a
limited or no service is provided. The better the isolation results are, the better the
recovery actions can perform.

If recovery is not successful, a failure may occur, i.e., the system is in an uncontrolled
state and its service is not defined.

10 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

3 Related Documentation

3.1 Input documents & related standards and norms

This document is related to many other documents published within AUTOSAR, espe-
cially those handled by the AUTOSAR Functional Safety team. The purpose of this
document is not to replace any of these other documents, but to view the work done in
other work packages from an application developer’s point of view. Consequently there
is a significant amount of overlap between this document and other documents, which
shows the maturity reached within AUTOSAR.

For each mechanism a list of related AUTOSAR documentation is presented, which
forms the explicit relation between this document and other AUTOSAR documents.

Information about functional safety mechanisms and measures is distributed through-
out the AUTOSAR specification documents. Unless one knows how functional safety
mechanisms are supported and where the necessary information is specifically lo-
cated, it is difficult to evaluate how a safety-relevant system can be implemented using
AUTOSAR efficiently.

The AUTOSAR document [2] summarizes the key points related to functional safety
in AUTOSAR, explains how functional safety mechanisms and measures can be used
and references the respective documents. Furthermore, it helps to establish a mapping
between [3] requirements and AUTOSAR measures and mechanisms.

[1] Basic concepts and taxonomy of dependable and secure computing

[2] Overview of Functional Safety Measures in AUTOSAR
AUTOSAR_CP_EXP_FunctionalSafetyMeasures

[3] ISO 26262:2018 (all parts) – Road vehicles – Functional Safety
https://www.iso.org

[4] Specification of SW-C End-to-End Communication Protection Library
AUTOSAR_CP_SWS_E2ELibrary

[5] Specification of Flash Test
AUTOSAR_CP_SWS_FlashTest

[6] Specification of Core Test
AUTOSAR_CP_SWS_CoreTest

[7] Specification of RTE Software
AUTOSAR_CP_SWS_RTE

[8] Specification of Communication
AUTOSAR_CP_SWS_COM

[9] Software Component Template
AUTOSAR_CP_TPS_SoftwareComponentTemplate

11 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

https://www.iso.org

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

[10] Specification of NVRAM Manager
AUTOSAR_CP_SWS_NVRAMManager

[11] Specification of Crypto Service Manager
AUTOSAR_CP_SWS_CryptoServiceManager

[12] Specification of CRC Routines
AUTOSAR_CP_SWS_CRCLibrary

[13] Specification of Watchdog Manager
AUTOSAR_CP_SWS_WatchdogManager

[14] Specification of Communication Manager
AUTOSAR_CP_SWS_COMManager

[15] Specification of Basic Software Mode Manager
AUTOSAR_CP_SWS_BSWModeManager

[16] Specification of ECU State Manager
AUTOSAR_CP_SWS_ECUStateManager

[17] Specification of Operating System
AUTOSAR_CP_SWS_OS

[18] Specification of Function Inhibition Manager
AUTOSAR_CP_SWS_FunctionInhibitionManager

[19] Specification of Diagnostic Communication Manager
AUTOSAR_CP_SWS_DiagnosticCommunicationManager

[20] Specification of Diagnostic Event Manager
AUTOSAR_CP_SWS_DiagnosticEventManager

12 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

4 Error model

Design of dependable systems is based on a systematic analysis of potential faults
(fault models) i.e., a set of postulated faults, derived from the operating environment
of the system, which helps the designer or user to predict the consequences of these
fault and define mechanisms for handling (detect, recover from etc.) those particular
faults.

Faults can manifest on all levels of a system, from pure random HW faults (e.g., bit-
flips) to SW (e.g., design defects) and faults in the interaction between components
(e.g., incomplete interface specifications). Similarly faults are introduced throughout
the design process (requirements, analysis, design, implementation, etc.). As this doc-
ument is aimed at application level error handling focus is on errors that are expected
to be handled by AUTOSAR SW components, either because application level knowl-
edge is needed for the FDIR process, or because they have propagated from lower
layers. Note that some errors of those types considered in this document can be han-
dled by the BSW, but some may propagate to the application level and must therefore
be handled there..

It is important to note that the focus is on handling of errors, which are the effects of
faults. Even though design faults can manifest themselves in the same way as external
faults, these are not the primary target of this document. The handling of design faults
is related to debugging rather than error handling.

This document only considers error handling during operation. Techniques for fault-
avoidance and fault-removal through rigorous or formalized development processes
are not in scope.

The focus is mainly on random external faults, i.e., faults whose appearance can be
modeled as a random process. However, this does not mean that the presented mech-
anisms cannot handle systematic faults, as the consequences of such faults (the er-
rors) can manifest the same way as random faults. Both transient and permanent faults
are considered, where some mechanisms are more suitable for one or the other.

As only SW mechanisms are considered in this documents it is actually errors that
are detected, and not faults directly. Consequently the term error model will be used
throughout the rest of the document instead of fault model. As errors are faults that
have been activated and propagated, a single error can (theoretically) have many pos-
sible root causes, i.e., faults.

To simplify the discussion, error models have been divided into a number of broader
error classes as seen from Table 4.1. These classes were chosen as they are easily
mapped onto SW mechanisms. However, it is important to note that the error models
are interrelated. An erroneous data value used in a branch instruction may propa-
gate and become a program flow error, which may delay (or change) the output of the
execution causing for instance a late response, i.e., a timing error.

13 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

Error Type Description

Data A data error is characterized by an erroneous value of a parameter, variable or message. The source of the
error can be either internal (e.g., SW defect) or external (e.g., malfunctioning sensor, other faulty
SW-component).

Handling of data errors can break a causality chain that would lead to subsequent errors that are more
complicated to handle, such as program flow or access violations.

Program
flow

Program flow errors (also "control flow errors") manifest as actual program flows different than expected,
possibly leading to missed, wrong or superfluous operations being carried out. The source of the program
flow error can be both internal (SW defects) and external (data errors).

Access For increased separation between executing components the system designer can partition the SW and
restrict access to resources from the partition, e.g., memory access. When a component tries to access a
resource in another partition without the proper access rights an access violation occurs.

Access errors can be the result of a data or program flow error, e.g., an invalid program counter or pointer.

Timing A communication (message, function invocation, etc.) is time critical when the delivery time has an effect on
the correctness/usefulness of the communication. A timing error can be a message being delivered early, late
or missing completely (omission).

The last type of timing error, omission, is of special interest and is sometimes referred to as crash or fail-silent
behaviour (note that it may be impossible to distinguish between crash, which is an uncontrolled state, and
fail-silence, which is a controlled state).

Timing errors also refer to execution time, where strict deadlines can be defined on how long a component is
allowed access to the CPU.

Asymmetric When errors propagate from one SW-component to another using some means of communication one
differentiates between symmetric and asymmetric errors. In the symmetric case all receivers receive the
same (erroneous) value. When the component can fail by sending different values (all of which may be valid)
the error is said to be asymmetric.

This error model is sometimes also referred to as the Byzantine model, which implies that no assumptions
whatsoever are made on the behaviour of a malfunctioning component. Byzantine errors can only be
detected by use of redundant components exchanging values to reach a common result.

Table 4.1: Considered error types.

Since the scope of the document is limited to errors handled at the application level,
not all error types are considered for the mechanisms presented in Section 5. The
following error types are not considered explicitly:

• Communication Errors: These errors are not included since it is assumed that
reliable communication is available to SW-Cs. The only communication errors
possible would then be caused by design faults, i.e., bugs in SW-Cs. Note that
SW-Cs are still expected to handle communication errors that are reported from
COM, or COM is configured to handle the error in the BSW.

• Deadlocks and livelocks: Deadlock and livelock situations are detected by
watchdog mechanisms in the BSW and are thus not considered further in this
document. These situations can of course lead to other timing errors which can
be detected at application level. In that case, applications can deal with the ef-
fects of deadlock or livelock situations, but not necessarily the root cause of these
situations.

• Occurring faults and errors in instruction code: At application level, it is in
general impossible to detect instructions which have become faulty as a result of
a fault in the storage medium or the internals of the processor. However, such
faults in most cases result in illegal instructions which are detected when the
processor attempts to execute them. If the resulting instruction is a legal one,
it is likely this will instead transform to other types of errors in the system (e.g.

14 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

data errors, timing errors, etc.) which could then be detected and handled by
other means, such as those described in this document. In the BSW, there are
components for testing the core of the processor, the flash memory and the RAM.
These may detect anomalies which could lead to instruction code errors.

15 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

5 Error handling mechanisms

5.1 Overview

This section describes a number of mechanisms on a high, conceptual level. These
mechanisms can be used by application developers to incorporate error handling in the
description or in the realization of applications.

Each mechanism is classified as being applicable or not applicable to a certain error
type (as defined in Section 4). If a mechanisms is applicable this indicates that the
mechanism is suitable for use to detect (or isolate or recover from) a specific set of
errors. It is important to note that it does not imply that all errors of a specific type are
detected. Each mechanism needs to be tuned to detect the specific errors required,
and may only be able to handle a subset of the errors in an error class.

Some mechanisms are only partially applicable if they can be used in a straightforward
manner in conjunction with some other mechanisms. For instance, when detecting that
the value received from a sensor is wrong a substitute (safe) value can be used instead
as a form of recovery. However, this only partially solves the recovery from the failed
sensor, additional mechanisms are needed as well to fully recover, e.g., re-initialization
of sensor. Partially applicable mechanisms are also marked as applicable.

When a mechanism is not applicable it means that the mechanism does not have
straightforward use for the specific step and error model. In some cases modifications
could potentially give the mechanism some utility, but a better option most likely exists.

Note that some of the mechanisms listed below may have side-effects, such as memory
access patterns and timing behaviour of the system. Especially the timing behaviour
may be affected and this needs to be explicitly addressed by the designer, such that
all timing characteristics of the system are known, both during normal operation and
during error handling.

Note also that even if many mechanisms are described, it is not always needed to
combine different mechanisms, and mechanisms may even interact badly with other
mechanisms.

5.2 Plausibility checks

5.2.1 Description

One of the most common ways to incorporate application specific knowledge is to
construct monitors which check that the current value of a variable or a set of variables
maintains some predefined condition, i.e., that they are plausible. A plausibility check
is a predicate defined over set of variables in the application that can be checked
dynamically at run time. The values that are being checked may represent values
used for calculations, state values, or other kinds of values. Plausibility checks come in

16 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

mainly two different flavours: i) checking the validity of a single value, and ii) comparing
multiple values.

Checking the validity of a single value: As the name suggests, checks are made for
the validity of a value, i.e., if the value falls in a range of "good" values, if it follows a
known pattern or behaviour etc. Such discrimination can typically only be made using
specific knowledge regarding the application and/or its environment, such as maximum
vehicle speed, minimum engine temperature etc.

Checks can be of range type (within a range or set of "good" values) or of differential
nature (change from previous value, less than etc). Differential changes can addi-
tionally be temporal, where the periodicity of the check can add additional conditions
(speed cannot change more than x km/h within time T). Here further application specific
information is needed such as periodicity of checks etc.

Comparison of multiple values: Checking the validity of a set of single values may
bring that all values are valid. However, performing a comparison across all values
in the set may reveal errors which otherwise would be missed, by detecting that a
given combination of seemingly valid values is not plausible. These comparisons can
be computed using physical relations between several values (e.g., engine speed com-
pared with vehicle speed and gear ratio), or by comparing data from redundant sources
(e.g. multiple temperature sensors measuring the same temperature). The main prob-
lem in this case is to discriminate the erroneous value from the correct values. For
some applications (especially safety-related ones) redundant sources for data values
can be used to increase confidence in data validity, for instance by using multiple sen-
sor readings (e.g., redundant sensors or reading values twice). When two values exist
a comparison can be made between the two values, where the result is either that
they are identical (possibly within some tolerance margin) and thus deemed correct
or dissimilar indicating an error (in one of the values). After error detection additional
measures are needed for isolating and recovering from the error. Comparison as a
mechanism differs from validity checks in that it is based solely on comparing two val-
ues, disregarding the plausibility of the values. Comparison differs from voting (Section
5.4) since it is handled within a single SW-C, whereas voting may span multiple SW-Cs,
for instance by executing redundant SW-Cs (either diverse or identical) and voting on
the outcome. Comparisons are made locally and are always binary, i.e., two values are
compared

We choose to differentiate between plausibility checks and status checking. The latter
can be made independent of application knowledge and is presented as a separate
mechanism (Section 5.9). However, as a result of a failed plausibility check an appli-
cation may set status flags which other application and BSW can check and act upon.

17 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

5.2.2 Applicability

Step\Error Model Data Program flow Access Timing Asymmetric

Detection X

Isolation X

Recovery

Table 5.1: Applicability matrix for plausibility checks.

Validity checks are used to detect data errors in an application, where ranges of al-
lowed/disallowed values can be defined. It is limited to the designer’s ability to define
such ranges based on requirements and/or application knowledge. Maintenance and
traceability of such ranges must be handled within the development process. Undoc-
umented or not up-to-date checks remaining in production code present a risk for the
dependability of the application.

In some cases "safe" values can be defined to be used instead of a value outside the
range of valid values, which is defined as a separate mechanism (Section 5.3).

Validity checks are only useful for detecting data errors. Checks can in some cases
be part of the isolation step, where additional information regarding an error is gained
by use of additional plausibility checks, for instance by determining which value (out
of several) is erroneous when comparison or voting (Section 5.4) is used. This way
application specific knowledge can be used when isolating errors.

Comparison can detect data errors by identifying a discrepancy between multiple val-
ues. Since comparisons are based on data values no other error models are sup-
ported. It may be difficult to isolate which of the multiple values are the ones which are
erroneous. If validity checks show no invalid values, it is not possible to indicate which
value is erroneous.

Plausibility checks are not generally applicable for detecting program flow, timing or
asymmetric errors.

Plausibility checks cannot generally be used for recovery.

5.2.3 Application level vs. BSW

Plausibility checks can be implemented as executable assertions, where the values of
one or more variables are checked using simple if-statements. It is implemented in the
source code of the SW-Component, but does not generally affect the overall structure
of the application. Checks can in most cases be implemented with deterministic tim-
ing characteristics (not considering de-bouncing). Memory requirements for data are
typically low, restricted to saving values for differential checks.

18 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

5.2.4 AUTOSAR References

Name Type Document Comment

SW-C End to End
Communication Protection

SWS E2E Library [4] Definition of protocols between sender and
receiver.

Flash Test
Core Test

SWS FLSTST [5]
CORTST [6]

Comparison with known signature.

Runtime Environment SWS RTE [7] Supports range checks for scaled values.

AUTOSAR COM SWS COM [8] PDU replication and comparison.

Table 5.2: AUTOSAR References for plausibility checks.

The SW-C End to End Communication Protection Library can be used to check whether
a signal is coming from an unexpected SW-C sender, or when the received signal is
providing the information that it is not supposed to provide. It also permits to define
SW-Cs able to check whether a stream of instances of a signal have been received in
sequence (depending on the use cases, this can also be configured at the AUTOSAR
COM level).

The Flash Test and Core Test modules can be configured in the context of single pro-
cessor or multi-processor ECUs to perform checks on the ECU’s hardware. These
checks are compared with known good signatures of the hardware.

The RTE can check if communicated values matches with their allowed range.

5.3 Substitute Values

5.3.1 Description

Once an error has been detected that would prohibit the correct value to be assigned
to a signal, a substitute value may be assigned to that signal. This substitute value can
then be used in subsequent calculations such that these render useful results, albeit
possibly degraded in quality. Examples of situations where substitute values could be
assigned are:

• A sensor is malfunctioning, or operating outside of its operating range (e.g., de-
tected by a plausibility check), and the corresponding physical entity cannot be
measured reliably. A substitute value can be assigned that will allow subsequent
algorithms using this value to proceed with their calculations.

• The providing SW-C of an input signal was reported as malfunctioning and thus
its results may not be trusted even though a particular value seems to be within
its valid domain.

• Transitory checking (e.g., close time after boot sequence) necessary to fulfil plau-
sibility check when sensors are not yet available. Generally, "pending" status flag
is set.

19 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

Since a substitute value is used it may be useful to notify the receiver that the original
value is not available using a signal qualifier. The receiver can then decide on how to
interpret and use the value.

Note that there are no generic signal qualifier mechanisms in AUTOSAR. Applications
should define their own mechanism, for example by transmitting a record with a value
and a qualifier.

5.3.2 Applicability

Step\Error Model Data Program flow Access Timing Asymmetric

Detection
Isolation
Recovery X X X X

Table 5.3: Applicability matrix for substitute values.

Assigning a substitute provides means for subsequent operations to proceed in a way
that makes an end result useful. However, it will not provide recovery from an error as
it is not alleviating the situation that lead to the erroneous state in first place. Thus, it is
partially applicable to recovery as it allows an existing error to be masked to a certain
degree.

As the erroneous state that is to be masked with substitute values can be the result of
any type of underlying error, it is partially applicable to all types.

5.3.3 Application level vs. BSW

Substitute values often require application knowledge that is not present at platform
level and assignment is in these cases performed in the SW-Cs. At configuration time
BSW modules can be configured with default substitute values. However, application
specific knowledge is still typically needed.

5.3.4 AUTOSAR References

Name Type Document Comment

Software Component
Template
Runtime Environment
AUTOSAR COM

TPS
SWS

SWC-T [9]
RTE [7]
COM [8]

Usage of initial and default values.

Software Component
Template
NVRAM Manager

TPS
SWS

SWC-T [9]
NVM [10]

Usage of default ROM block or redundant block.

Table 5.4: AUTOSAR References for substitute values.

20 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

The SW-C designer can specify an initValue on the UnqueuedReceiverComSpec.
This value is used when no values were received, but the application reads the value.
It can also be used in case of invalid values, depending on the UnqueuedReceiver-
ComSpec’s handleInvalid attribute (dontInvalidate, keep, replace). These
initValues are implemented by COM [8] or RTE [7] based on the SW-C XML de-
scription (see the Software Component Template [9]).

An initValue can also be specified for UnqueuedSenderComSpec, Inter-
RunnableVariables, PerInstanceMemory, or the ramBlocks of NvBlockCom-
ponentTypes (see the Software Component Template [9]).

The NVM [10] can use a default ROM block in case of failure. This block can be defined
by the SW-C designer with a ParameterDataPrototype in the defaultData role
(see RoleBasedDataAssignment in the Software Component Template [9]).

5.4 Voting

5.4.1 Description

A basic principle for building fault-tolerant systems is to execute fragments ("compo-
nents") redundantly and then consolidate the results of each component by performing
a vote on the results. The actual vote is typically performed by a dedicated component
called "voter". Common voting algorithms include "simple majority", "2 out-of 3" etc.

Voting can be performed at multiple levels, from replicated runnables in one SW-C to
application level voting across ECUs. Replication can be made on the binary/source
code level or on the specification level. In the former case each component is a copy
of the same original component, whereas in the latter case components are different,
but are built using the same specification.

Contrary to the comparison mechanism presented in Section 5.2, voting can handle
more than two replicas and, depending on the number of replicas voting also provide
isolation (identification of faulty replica) and partial recovery (a good value is output).

5.4.2 Applicability

Step\Error Model Data Program flow Access Timing Asymmetric

Detection X

Isolation X

Recovery X

Table 5.5: Applicability matrix for voting.

Voting is used to detect data errors. Furthermore, the source of the erroneous value
can be identified if three or more values are voted upon (and at most one value is
erroneous). As a correct value can be produced despite the presence of an error,

21 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

voting partially supports recovery. Additional means are needed to fully recover from
the error.

5.4.3 Application level vs. BSW

Voting is performed in SW-Cs.

5.4.4 AUTOSAR References

AUTOSAR does not provide a voting service. Since voting mechanisms are not pro-
vided by the AUTOSAR BSW, these need to be implemented at application level in the
SW-Cs who require them. AUTOSAR supports multiple instantiation of SW-Cs. This
feature can be used by a SW-C implementer to implement a specific voting mechanism
for an application.

5.5 Agreement

5.5.1 Description

When redundant components are used to increase the reliability of an application
agreement may be needed for components (called participants) to agree on the value
used (including the result of some computation) by exchanging the result of local com-
putations as messages1.

The difference between agreement and voting mechanisms is that when using agree-
ment components interact to reach a decision, whereas in voting it is left to the voter
to decide. Agreement protocols could be compared with closed loop systems, where
the feedback consists of the sent messages received by all other parties. Voting can
analogously be compared to an open loop system where the voter collects values and
decides.

Agreement protocols can also handle asymmetric faults through multiple rounds of
information exchange. Thus all (correct) participants agree on the same value as well
as on the correctness of the other participants.

1Obviously other communication paradigms can be used, messages are used as illustration.

22 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

5.5.2 Applicability

Step\Error Model Data Program flow Access Timing Asymmetric

Detection X X

Isolation X X

Recovery X X

Table 5.6: Applicability matrix for agreement.

As values are compared similar to voting, agreement mechanisms can detect and iso-
late data value errors. The extra rounds of information exchange allow also for detec-
tion and isolation of asymmetric errors. Agreement cannot handle either program flow
or timing errors.

Recovery is partially supported in that a faulty participant can be identified and its
behavior masked from affecting the system. Additional means are needed to fully
recover from the error.

5.5.3 Application level vs. BSW

Basic services are implemented on BSW-level, but applications using agreement pro-
tocol must be aware of the fact they participate. Proposal of new values and adoption
of agreed values are examples of situations where applications need to be aware of
the protocol.

5.5.4 AUTOSAR References

No true agreement service exists in AUTOSAR. If specific agreement semantics are
needed for application level communication it shall be implemented specifically for
these applications.

5.6 Checksums/Codes

5.6.1 Description

A technique for increased data consistency is to add redundant information to the data
values to protect. The extra information allows for detection of modifications of (parts
of) the data, and in some cases even correction and restoration of the original data
values. The cost is both in terms of performance (time to calculate and check the
checksum, additional communication needs) and in terms of the additional memory
requirements for storage. Extensions also include cryptographic algorithms providing
digital signatures and encryption/decryption of data.

There are multiple uses of checksums/codes, including:

23 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

• Safely storing data in both volatile and non-volatile memory

• Dependable communication between SW-C, both inter- and intra- ECU

• Protecting data from tampering (data integrity) by unauthorized entities

• Sending and receiving of encrypted data across unsafe channels

Please note the difference between the first two cases, which are concerned with be-
nign errors, whereas the latter two are concerned with malicious errors (attackers, in-
truders etc). However, the same mechanisms can often be used for multiple purposes.

Additional threats to data security include spoofing (pretending to be someone else),
repudiation (denying a performed action), denial of service, and elevation of privileges.
In general this document is focused on benign errors. However, these threats may be
of importance for some applications.

5.6.2 Applicability

Step\Error Model Data Program flow Access Timing Asymmetric

Detection X X

Isolation X X

Recovery X X

Table 5.7: Applicability matrix for checksums/codes.

Checksums and codes are mainly targeted at protection of data throughout the FDIR
process. Depending on the type of code used, all steps of the process can be sup-
ported.

Codes are also used as part of certain protocols (e.g., agreement) for handling asym-
metric faults.

5.6.3 Application level vs. BSW

Checksums and cryptographic libraries are implemented on BSW-level or as libraries,
due to performance and portability reasons. The use of dedicated peripheral circuits
further decreases the use of application level mechanisms.

24 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

5.6.4 AUTOSAR References

Name Type Document Comment

Crypto Service Manager SWS CSM [11] Access to cryptographic functions/hardware.

CRC Routines. SWS CRC [12] CRC routines.

SW-C End to End
Communication Protection

SWS E2E Library [4] Additional CRC added to signals by SW-Cs.

Table 5.8: AUTOSAR References for checksums/codes.

The CSM can be used by SW-Cs to compute cryptographic checksums or codes
through a port interface.

The CRC is a library which can be used directly by SW-Cs to compute checksums.

The SW-C End-to-End communication protection library can be used to define a pro-
tocol and protect with a checksum or code the data sent by SW-C through port inter-
faces.

5.7 Execution sequence monitoring

5.7.1 Description

Correct execution of an application includes that the sequence of executable entities is
correct. Monitoring execution sequence will enable the detection of erroneous execu-
tion paths that may result in erroneous results.

Monitoring of execution sequence can be performed at different levels of granularity.
Some examples of levels of granularity are:

• Individual statements: This is the finest granularity with which execution se-
quence can be monitored at source code level. The sequence of individual state-
ments in the code is monitored.

• Basic blocks: A basic block is a block of code that has exactly one entry point
and one exit point and cannot be entered or exited outside of these two entry
and exit points. Thus execution from entry point to exit point is strictly sequential.
Note that the minimum basic block is a single statement. The execution sequence
of basic blocks can be specified in a so called control flow graph, and monitor-
ing execution sequence at this granularity would be to ensure that execution is
performed according to this graph. Control flow in this context is synonymous to
program flow.

• Runnables: A runnable has one entry point but may potentially have multiple
exit points and several valid execution paths from entry point to these exit points.
Also, the paths may include loops. At this level the execution sequence of the
runnables of one (or more) application(s) is monitored.

25 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

Depending on the granularity of the monitor, the resource requirements may range
from fairly low to very high. Monitoring the sequence of individual statements is likely
to require huge amounts of memory and processing time, whereas the sequence of
runnables could likely be monitored with very low overhead in memory and execution
time.

5.7.2 Applicability

Step\Error Model Data Program flow Access Timing Asymmetric

Detection X

Isolation
Recovery

Table 5.9: Applicability matrix for execution sequence monitoring.

Monitoring of execution sequence will detect errors in program flow. These errors may
be the result of previous data errors, timing errors or asymmetric errors. However, this
cannot be distinguished by the monitor itself.

A monitor can not be used to recover from an error as it only checks the current state
against some predefined notion of correctness (this is true for all kinds of monitors, not
only those for execution sequence).

5.7.3 Application level vs. BSW

The most practical approach is probably cooperation between applications and the
BSW where the application provides the BSW with information on where it is in the
execution trajectory and the BSW then checks whether this location is a valid one.
This requires predefined valid trajectories. One approach could be to configure valid
successors from a given location in the execution trajectory for a set of locations. The
granularity (instruction, basic block, runnable) could then be defined at configuration
time.

5.7.4 AUTOSAR References

Name Type Document Comment

Watchdog Manager SWS WdgM [13] Supervision counter and program flow monitoring.

SW-C End-to-End
Communication Protection

SWS E2E Library [4] Data sequence control on messages.

5

26 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

4
Name Type Document Comment

AUTOSAR COM SWS COM [8] Sequence counters for messages sent over the
bus.

Table 5.10: AUTOSAR References for execution sequence monitoring.

The Watchdog Manager can monitor heartbeats from application components not only
for time but also for sequence. The correct sequence of execution is configured by
the developers. The configuration contains the definition of a set of checkpoints or spy
points and for each such point a set of allowed successors. It is then the responsibility
of the SW-Cs (i.e. the developers) to make sure that each checkpoint/spy point is
reported to the Watchdog Manager, which then checks the execution for temporal as
well as logical sequence. In case of error detection, the ordinary recovery capabilities
of the Watchdog Manager are utilized.

AUTOSAR COM and the SW-C E2E Communication Protection Library permit to check
whether a stream of instances of a signal have been received in sequence.

5.8 Aliveness monitoring

5.8.1 Description

Aliveness monitoring deals with checking whether entities in a system are alive and
well, i.e., are running as expected, in terms of periodicity or execution instances. A
common way of monitoring aliveness is to monitor heartbeats from the parts that shall
be monitored. If the heartbeat is within a certain range (minimum and maximum pulse),
the monitored entity is said to be alive and well.

This mechanism is complementary to execution time monitoring, and deals with arrival
rates rather than the time spent in a calculation.

Aliveness monitoring could be done at several levels:

• Application level: For example, if the application wants to monitor its internal
components and thus, the various SW-Cs of the application could provide heart-
beat signals.

• BSW level: For example, the BSW could monitor that the application components
on an ECU behave as specified (within the limitations of the used monitoring
principle).

27 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

5.8.2 Applicability

Step\Error Model Data Program flow Access Timing Asymmetric

Detection X

Isolation
Recovery

Table 5.11: Applicability matrix for aliveness monitoring.

5.8.3 Application level vs. BSW

The heartbeats would have to be generated by the applications, but the checking of the
pulse could be done in the BSW. Each stream of heartbeats can be configured for a
certain pulse range (minimum and maximum thresholds) and ECU mode (Heartbeats
depend from the ECU mode: boot, standby, etc.).

5.8.4 AUTOSAR References

Name Type Document Comment

Watchdog Manager SWS WdgM [13] The hub for collecting aliveness proofs and
triggering the hw watchdogs through the Watchdog
interface and drivers.

Table 5.12: AUTOSAR References for aliveness monitoring.

The watchdog manager can be used to supervise SW-Cs and/or BSW Modules. Which
"entities" to supervise is pre-configured, together with the supervision parameters (no
complete list, see Watchdog Manager SWS [13]):

• The expected number of aliveness indications within a certain amount of super-
vision reference cycles.

• Tolerance levels on the detection.

• The tolerable number of failed reference cycles

A supervised entity can be in one of three states, WDGM_MONITORING_OK, WDGM_
MONITORING_FAILED or WDGM_MONITORING_EXPIRED. When the state changes
from WDGM_MONITORING_OK to WDGM_MONITORING_FAILED recovery can be initi-
ated and if successful (the number of aliveness indications has reached the tolerable
limit before the number of tolerable failed reference cycles is reached) the watchdog
is triggered and no actions are performed. When the number of allowed failed ref-
erence cycles is exceeded (the monitoring of the supervised entity has failed perma-
nently), the state changes from WDGM_MONITORING_FAILED to WDGM_MONITORING_
EXPIRED and the watchdog will not be triggered anymore.

28 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

5.9 Status and Mode Management

5.9.1 Description

Status and mode management deals with meta information for signals, applications,
devices, etc. This meta information can be used to analyse the state of the system in
order to isolate a faulty subsystem/component and modify its behaviour accordingly.
This type of information is defined at various levels:

• Signal status: In addition to the value, a signal may have meta information as-
sociated with it, such as

– Signal quality: This indicates the quality of the value, such as nominal
value, modelled value, replacement value, and default value. The receiver
of the signal may react differently depending on the quality of the signal.

– Signal timestamp: This indicates when the value was created and can be
used to check the age of a signal. If a calculation uses several input sig-
nals, one can check that all input signals are created within a tolerable time
window.

– Signal sequence number: It may be of interest to check that signal values
are received in a certain order, and that no values or lost between reads.
Also, sequence numbers can be used in a similar fashion as timestamps in
that they allow a check that all values in a group are from a particular creation
window (same sequence number, or with a minimum/maximum deviation).

– Update information: A consumer of a signal may want to know whether a
signal has been updated since the last read or not.

• Device status: An application may want to know the status of the devices it uses,
such as sensors and actuators. If a device is not in normal operation, applications
may want to choose to deliver some form of degraded service.

• Application status/mode: An application can also have a status, or a mode,
which indicates the overall health or operating situation of the application. This
status/mode can be used for recovery purposes, both internally in the said appli-
cation and externally by other application.

• Vehicle mode: A vehicle may be in a number of different modes (e.g. normal op-
eration, parked, limp-home) and the applications will have to behave accordingly.

• ECU Mode: An ECU may be in different states, such as sleeping, running, pow-
ered down, and transitional states between such states.

In order to provide support for this kind of status and mode management, it must be
possible to set and get this information at application level (although there may only
be one producer of a particular piece of status information there may be many con-
sumers).

29 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

5.9.2 Applicability

Step\Error Model Data Program flow Access Timing Asymmetric

Detection
Isolation X X X X

Recovery

Table 5.13: Applicability matrix for status and mode management.

From an error handling point-of-view, status and mode information can be used in the
isolation phase. We have chosen to tag this mechanism as applicable for recovery
as this mechanism in itself is not useable for recovery. Recovery can of course be
triggered as a result of the status or mode on the monitored entity. However, the action
of recovering itself is not part of this mechanism.

5.9.3 Application level vs. BSW

BSW modules manage meta information and distribute this information from produc-
ers to consumers. The definition, setting and getting of this information is done at
application level though.

5.9.4 AUTOSAR References

Name Type Document Comment

Communication Manager SWS ComM [14] ComM handles the communication modes of the
ECU and can trigger a shutdown of the bus if no
communication is required. It also implicitly keeps
the ECU alive (interactions with BswM).

Runtime Environment SWS RTE [7] RTE Spec, including application mode
management.
Communication of modes.

Software Component
Template

TPS SWC-T [9] Application modes defined.
Modelling of the modes communication.

BSW Mode Manager SWS BswM [15] Modes and transitions management.

ECU State Manager SWS EcuM [16] The ECU State manager manages the state of a
single ECU.

Operating System SWS OS [17] States of OS Applications.
OS has states for other OS objects (tasks,
resources, etc.) but those are not directly accessed
by applications.

Table 5.14: AUTOSAR References for status and mode management.

The RTE defines status for read data values, through the Rte_Read, Rte_IStatus.
Status can be RTE_E_OK, RTE_E_INVALID or RTE_E_MAX_AGE_EXCEEDED. RTE_
E_INVALID refers to an explicitly invalidated data value and RTE_E_MAX_AGE_EX-
CEEDED refers to an outdated data element.

30 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

The RTE allows a SW-C to specify mode, which can be use to execute or inhibit
runnables. Modes can be defined for application specific purposes. This should be
sufficient for error handling purposes as well.

The ECU State manager (and the Basic Software Mode Manager when it is used)
manages the state of a single ECU.

5.10 Reconfiguration

5.10.1 Description

A technique for building fault-tolerant systems is to detect and isolate faults and then
reconfigure the system to no longer use the faulty component, or to reconfigure to
provide only a degraded set of services (or level of service).

Examples of reconfiguration strategies

• Isolating faulty components by hindering further communication. This could also
include shutting down components selectively.

• Reconfiguration of protocol parameters, for instance voting algorithms, tolerance
levels etc.

• Degraded functionality, such as providing only ABS and no ESP or a special "limp
home" mode.

Reconfiguration is typically controlled using static policies, which are configured at sys-
tem configuration time. The policies define when a reconfiguration is triggered, and
how it is performed. Common triggers include error signals, as is the case for the
Function Inhibition Manager (FIM) defined in AUTOSAR, which is triggered by mes-
sages from the DEM upon error. The FIM is limited to only informing an application
of a request to inhibit parts of SW-Cs (so called "functionalities") and cannot actively
inhibit anything or trigger a reconfiguration.

Note that there is a difference between mode management (Section 5.9: Status and
Mode Management) and reconfiguration. Mode Management is an infrastructure to
transfer information on states (i.e., modes) in the system, such that certain actions can
be taken. These actions may be reconfiguration actions.

5.10.2 Applicability

Step\Error Model Data Program flow Access Timing Asymmetric

Detection
Isolation

5

31 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

4
Step\Error Model Data Program flow Access Timing Asymmetric

Recovery X X X X X

Table 5.15: Applicability matrix for reconfiguration.

Reconfiguration of SW-Cs is part of the recovery step and cannot aid in either detection
or isolation. It can possibly apply to any error, given that a reconfiguration policy is
defined.

5.10.3 Application level vs. BSW

Reconfiguration can be performed at the application level and with support by the BSW
services. Reconfiguration due to errors may require pure BSW support (such as Reset,
Section 5.11).

5.10.4 AUTOSAR References

Name Type Document Comment

Function Inhibition Manager SWS FIM [18] The FIM can be used to selectively deactivate
SW-C functionalities.

BSW Mode Manager SWS BswM [15] The BswM arbitrates mode requests from SW-Cs in
the application layer and performs mode switches
based on pre-defined rules.

Operating System SWS OS [17] The OS handles termination of OS-Applications.

Runtime Environment
Software Component
Template

SWS
TPS

RTE [7]
SWC-T [9]

Definition and support of modes.
Definition and support for termination.

Table 5.16: AUTOSAR References for reconfiguration.

The FIM provides a control mechanism for SW-Cs and the functionality therein. In
this context, a functionality can be built up of the contents of one, several or parts
of runnable entities with the same set of permission/inhibit conditions. By means of
the FIM, inhibiting (→ deactivation of application function) these functionalities can be
configured and during runtime facilitating reconfiguration of the application.

The BswM can be configured to switch mode of the BSW based on mode requests.
The interaction with SW-Cs is performed through the RTE using ModeDeclaration
Groups. The BswM thus performs two basic tasks: Mode Arbitration and Mode Con-
trol. The Mode Arbitration part initiates mode switches resulting from rule based ar-
bitration of mode requests and mode indications received from SW-Cs or other BSW
modules. The Mode Control part performs the mode switches by execution of action
lists containing mode switch operations of other Basic Software modules. The action
lists associated with a mode switch can be used to reconfigure the application, such as
start/stop of I-PDUs (COM), disable all communication (NM) or changed PduR routing
etc.

32 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

Termination/reconfiguration using the FIM requires cooperation with the affected SW-
Cs implying correct behaviour from the SW-C. In case of malfunctioning SW-Cs a more
brute force approach is required which terminates SW-Cs independently of the correct-
ness of their behaviour.

The AUTOSAR OS handles termination of OS-Applications, to which tasks and other
OS resources belong. The OS provides a service to terminate an OS-Application (
TerminateApplication). This OS service can be called from an SW-C belonging
to a trusted OS-Application.

5.11 Reset

5.11.1 Description

An application may try to recover in a number of ways, ranging from setting replacement
values and wait, hoping that the error will disappear by itself (transient/intermittent
errors) to full reconfiguration of its structure in order to shutdown faulty components
and launch backups and replacement components (permanent faults). Sometimes, it
may not be possible to do these things though and a complete reset is necessary to
start from a known good state. This holds not only for transient HW faults, but also
for "soft" SW faults (systematic faults), sometimes referred to as Heisenbugs [7]. Such
faults are transient in nature and cannot be easily repeated. A reset of the SW state
typically removes Heisenbugs, as it puts the SW back in a known and well tested state.

Resets are used to recovery from transient faults. Permanent faults (e.g., permanently
defect HW or SW bugs) cannot be recovered from. Other mechanisms to isolate tran-
sient faults are therefore needed to avoid using resets for permanent faults.

Reset can potentially be performed at the following levels:

• SW-C reset: An SW-C is found to be faulty and is reset in order to get it back into
a safe state. The reset takes place at the application level.

• Application reset: If it is not sufficient to just reset single SW-Cs, it may be nec-
essary to restart the whole application so that it can resume its normal service.
The reset affects several SW-Cs at the application level, and may involve SW-Cs
at multiple ECUs.

• ECU reset: If all else fails, it may be necessary to reset the entire ECU on which
the fault or error has been found. This kind of reset will affect all applications that
have SW-Cs located on the ECU as well as the BSW. The reset will also likely be
visible to other ECU’s on the network.

33 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

5.11.2 Applicability

Step\Error Model Data Program flow Access Timing Asymmetric

Detection
Isolation
Recovery X X X X X

Table 5.17: Applicability matrix for reset.

A reset is a last resort to recovery and is only applicable in that phase.

5.11.3 Application level vs. BSW

Reset at SW-C and application level could be controlled at application level, i.e., a
dedicated SW-C could detect that an application has failed and request a reset. The
RTE/OS shall provide services that enable the distribution of reset commands to the
affected SW-Cs. For ECU reset, the BSW must be responsible for performing this. In
the ECU case, all affected applications could be made aware of the impending reset in
order to prepare themselves for it.

Note that even though the reset is initiated at the application level it will always require
RTE/OS support for performing it.

5.11.4 AUTOSAR References

Name Type Document Comment

Watchdog Manager SWS WdgM [13] The hub for collecting aliveness proofs and
triggering the hw watchdogs through the Watchdog
interface and drivers.

Operating System SWS OS [17] Provides the possibility to terminate
OS-Applications. Controls and monitors timing
behaviour of tasks.

ECU State Manager SWS EcuM [16] An SW-C can select the shutdown target, i.e.,
which activity shall be performed after an EcuM
controlled shutdown.

Diagnostic Communication
Manager

SWS DCM [19] Diagnostic Communication Manager can initiate
resets through MCU.

Table 5.18: AUTOSAR references for reset.

The ECU State Manager provides an interface to SW-Cs for selecting different shut-
down targets, that is, what the ECU shall do when a shutdown is performed by the
EcuM. The shutdown target can be either sleep, reset or off.

The WdgM monitors SW-Cs based on the aliveness indications made. The WdgM
provides three mechanisms for the aliveness monitoring:

1. Supervised entities.

34 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

2. Temporal program flow monitoring.

3. logical program flow monitoring [13].

Missing aliveness proofs from applications can trigger a variety of actions by the WdgM:

• Inform the offending SW-C using the mode management mechanism in the RTE
("Local Failure Recovery").

• Inform the DEM. SW-Cs (the offending one and/or others) can then react upon
DEM notifications. ("Global Failure Recovery").

• Termination of a partition using the TerminateApplication service provided
by the OS.

• Indicate to the watchdog driver that it shall cease triggering the HW watchdog,
eventually leading to an ECU reset.

• Directly resetting the ECU through the MCU.

The AUTOSAR OS provides the possibility to terminate an OS-Application, which is
a set of OS resources (including tasks, i.e., SW-Cs). This can be triggered either
by a protection violation (such as memory or timing) or manually by a trusted SW-C.
The manual reset request from a SW-C makes it possible to reset even distributed
applications in a coordinated fashion.

The DCM can perform an ECU reset upon a diagnostic request from an external diag-
nostic client (Tester). Such clients could potentially be vehicle-internal and would then
be able to request ECU resets based on the observed state of the vehicle. However,
this is marginally at application level and will not be considered further here.

5.12 Error Filtering

5.12.1 Description

In some situations taking recovery actions due to errors, for instance transients, may
cause more damage than it does good. Reacting to such errors may cause an over-
reaction, where the recovery actions may put the system in a state where it is less safe
than previously (for instance while restarting ECUs). In such cases a filtering of the
errors may be needed before certain recovery actions are taken.

A common example is discrimination between transient and permanent errors using
counters, where erroneous behavior increases the counter and correct behavior de-
creases it. When it reaches a specific threshold, the error is classified as permanent
(a failure) and recovery is initiated.

35 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

5.12.2 Applicability

Step\Error Model Data Program flow Access Timing Asymmetric

Detection
Isolation X X X X

Recovery

Table 5.19: Applicability matrix for filtering.

Error filtering is only applicable as a means for isolation. It requires additional detection
mechanisms and can trigger recovery mechanisms. However, filtering of errors may
alleviate the need for unnecessary recovery actions, and thus contribute also to a better
recovery strategy by gaining information on the nature of the error.

5.12.3 Application level vs. BSW

A central debouncing mechanism is provided by the DEM within BSW. On the appli-
cation level, application-specific error filtering can be applied, e.g., classifying transient
errors. Such classification needs to be implemented by the SW-Cs.

5.12.4 AUTOSAR References

Name Type Document Comment

Diagnostics Event Manager SWS DEM [20] The DEM provides de-bouncing mechanisms to
confirm errors.

Table 5.20: AUTOSAR references for filtering.

5.13 Memory Protection

5.13.1 Description

Memory protection is used to protect against errors propagating from one protection
domain (partition) to another. Partitions are defined to form error confinement regions,
where applications can be placed for mutual protection. Such protection enables sep-
aration between applications and thus enables multiple suppliers of SW-Cs to deliver
SW for an ECU. This is important both for analyzing and enforcing safety issues.

36 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

5.13.2 Applicability

Step\Error Model Data Program flow Access Timing Asymmetric

Detection X

Isolation2

Recovery X

Table 5.21: Applicability matrix for memory protection.

Memory protection is mainly an error detection mechanism (for memory access er-
rors). However, as the execution is halted before the write has been performed error
propagation is confined. To achieve full recovery additional mechanisms are required,
for instance to terminate or restart the execution of the offending runnable/task/SW-C/
partition without endangering the execution of other applications (See Section 5.10 -
Reconfiguration). Therefore memory protection only partially supports recovery from
memory access violations.

5.13.3 Application level vs. BSW

Memory protection mechanisms are implemented in the BSW with HW support. To
fully support recovery the RTE needs to also be aware of the protection mechanisms
and act when applications are terminated. The application needs not be aware that it
is running in a specific partition.

Memory protection is not a mechanism used directly by SW-Cs, but it is configured by
application developers/ECU integrators and is therefore relevant for application devel-
opers.

5.13.4 AUTOSAR References

Name Type Document Comment

Operating System SWS OS [17] Provides basic memory protection, the possibility to
terminate OS-Applications, and is involved in
communication across protection boundaries.

Runtime Environment SWS RTE [7] The RTE is involved in the termination of partitions,
and is involved in communication across protection
boundaries by ensuring communication
consistency.

Table 5.22: AUTOSAR references for memory protection.

The AUTOSAR OS together with the RTE implements the memory protection facilities
in the system. The OS provides the fundamental protection mechanisms together with

2See the definition of isolation in section 2.2. A memory protection mechanism can be used to stop
the propagation of an error, but it cannot identify the source of the error.

37 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

HW support and the OS and the RTE facilitate the communication across protection
boundaries.

For an application developer it is important to know if the application is to be put in a
partition for protection and what actions will be taken in case of protection violations.

5.14 Timing Protection

5.14.1 Description

Timing protection refers to protecting the system against activities requiring too much
time to complete, such as an executing component taking too much execution time on
the processor and thereby hindering the execution of other components, communica-
tion delays, peripheral units not responding in time, etc.

For activities, one may define time budgets providing an upper limit on how much time
a given acitivy may use. For example, one may choose to set execution time budgets
for components, or a maximum response times for communication.

5.14.2 Applicability

Step\Error Model Data Program flow Access Timing Asymmetric

Detection X

Isolation
Recovery X

Table 5.23: Applicability matrix for timing protection.

Execution time monitoring can be used to detect that a SW-C (actually a task) has
exceeded its assigned execution time budget. It cannot detect timing errors in commu-
nication directly. Communication time-out monitoring can detect when a response is
not received within the expected time.

To fully recover additional mechanisms are needed (reset, reconfiguration, etc.) and
thus timing protection only partially supports recovery.

5.14.3 Application level vs. BSW

Timing protection is implemented in the BSW, i.e., the BSW performs the actual moni-
toring. Violations may be reported to SW-Cs. Execution time budgets and communica-
tion response deadlines are configured by application developers/ECU integrators and
are therefore relevant for application developers.

38 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

5.14.4 AUTOSAR References

Name Type Document Comment

Operating System SWS OS [17] Provides the possibility to terminate
OS-Applications. Monitors timing behaviour of
tasks.

Runtime Environment SWS RTE [7] The RTE is involved in the termination of partitions
and ensures platform consistency.
Timeout monitoring.

AUTOSAR COM SWS COM [8] COM provides deadline monitoring for signals.

Watchdog Manager SWS WdgM [13] The hub for collecting aliveness proofs and
triggering the hw watchdogs through the Watchdog
interface and drivers.

Software Component
Template

TPS SWC-T [9] The SWC-T defines the requirements for the
timeout handling, whether a SW-C supports restart,
the Watchdog service needs.

Table 5.24: AUTOSAR references for timing protection.

The AUTOSAR OS provides basic timing protection facilities to monitor execution of
tasks and ISRs. When a timing violation occurs the ECU-wide protection hook is called
which has the possibility to terminate tasks or OS-Applications, shut down the OS or do
nothing. As the scope for timing violation reactions can also be OS-Application wide,
one can consider these mechanisms to act on partitions, and the developer/integrator
can partition the system accordingly.

For an application developer it is important to know if the application is to be put in a
partition for protection and what actions will be taken in case of protection violations.

Timeouts (called aliveTimeout in RTE [7]) can be defined for data elements ex-
changed using the RTE using sender-receiver communication. For communication
on busses these correspond to signals for COM, which provides deadline monitoring,
both for reception and transmission. Similarly, the RTE provides communication time-
out monitoring for client-server communication. These types of deadline monitoring
can be used to (for instance) detect that SW-Cs residing in terminated partitions no
longer execute.

The WdgM monitors SW-Cs based on the aliveness indications made. The WdgM
provides three mechanisms for the aliveness monitoring:

1. Supervised entities.

2. Temporal program flow monitoring.

3. Logical program flow monitoring.

See Section 5.11 and [13] for more information.

39 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

6 Aspect mapping

6.1 Overview

Each error handling mechanism is characterized by a number of properties, such as
where in the FDIR process it applies or which error models it can handle. To give an
overview of these different aspects of the different mechanism this section presents
a number of mapping tables, where each mechanism is mapped onto the different
properties. Each table gives references to the mechanisms covered individually in
Section 5.

6.2 Mapping to FDIR process and Error Model

Not all mechanisms can be used for all steps in the FDIR process, and similarly they are
applicable only for specific error models. To illustrate these 3-dimensional relationships
(Mechanism x FDIR step x Error Model) we present three tables in this section. Each
table shows an overview of the mechanisms and their applicability in each respective
step of the FDIR process with respect to each of the error types defined in the error
model.

More information regarding the capabilities of each error handling mechanism is found
in Section 5, where each mechanism is presented in more detail.

In Table 6.1, the mechanisms are mapped to the first step of the FDIR process - de-
tection, Table 6.2 contains the mapping to the second step - isolation, and Table 6.3
shows the mapping to the third and last step - recovery.

Mechanism Ref Data Program
flow

Access Timing Asymmetric

Plausibility checks 5.2 X

Substitute values 5.3

Voting 5.4 X

Agreement 5.5 X X

Checksums/Codes 5.6 X

Execution sequence
monitoring

5.7 X

Aliveness
monitoring

5.8 X

Status & Mode
Management

5.9

Reconfiguration 5.10

Reset 5.11

Error filtering 5.12

Memory protection 5.13 X

Timing protection 5.14 X

Table 6.1: Mapping of mechanisms to the steps of the FDIR process. Error detection.

40 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

Mechanism Ref Data Program
flow

Access Timing Asymmetric

Plausibility checks 5.2 X

Substitute values 5.3

Voting 5.4 X

Agreement 5.5 X X

Checksums/Codes 5.6

Execution sequence
monitoring

5.7

Aliveness
monitoring

5.8

Status & Mode
Management

5.9 X X X X

Reconfiguration 5.10

Reset 5.11
Error Filtering 5.12 X X X X

Memory protection 5.13

Timing protection 5.14

Table 6.2: Mapping of mechanisms to the steps of the FDIR process. Error isolation.

For error isolation it is important to note that the explicit information gained by detecting
the error is not considered in Table 6.3. For example, when detecting that an entity
has crashed by some aliveness monitoring mechanism the crashed entity is explicitly
identified, however, no additional information is gained from the monitoring mechanism
that can help in recovery, like the underlying reason for the crash. This is in contrast
to for instance agreement on a data value, where not only the error is detected (some
participant is faulty), but additionally also which participant.

The main purpose of status and mode management is the spread of error information,
making it available to interested parties, and thereby making error isolation possible.

Mechanism Ref Data Program
flow

Access Timing Asymmetric

Plausibility checks 5.2

Substitute values 5.3 X X X X

Voting 5.4 X

Agreement 5.5 X X

Checksums/Codes 5.6 X

Execution sequence
monitoring

5.7

Aliveness
monitoring

5.8

Status & Mode
Management

5.9

Reconfiguration 5.10 X X X X X

Reset 5.11 X X X X X
Error Filtering 5.12

Memory protection 5.13 X

Timing protection 5.14 X

Table 6.3: Mapping of mechanisms to the steps of the FDIR process. Error recovery.

41 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

Explanation of Error Handling on Application Level
AUTOSAR CP R24-11

6.3 Mapping to implementation level

The implementation level refers to the level where the mechanism is most suitably
implemented. However, the use and control of the mechanism is still in SW-Cs (or at
least by application developers), i.e., on the application level.

Two implementation levels are relevant for the presented mechanisms, application level
(SW-C) and basic SW level (BSW). The fundamental difference lies in where the mech-
anism is implemented, as a "service" provided to SW-Cs from the BSW level or as a
pure application level mechanism, not requiring any specific BSW support. HW-based
solutions are included at the BSW-level since direct access to HW is generally not
permitted. As an example, dedicated cryptographic peripherals could be accessed
through the same BSW interface as SW-based solutions.

Mechanism Reference Implementation level

Plausibility checks 5.2 SW-C

Substitute values 5.3 SW-C/BSW
Voting 5.4 SW-C

Agreement 5.5 SW-C

Checksums/Codes 5.6 SW-C/BSW
Execution sequence monitoring 5.7 SW-C/BSW

Aliveness monitoring 5.8 SW-C/BSW

Status & Mode Management 5.9 SW-C/BSW

Reconfiguration 5.10 SW-C/BSW

Reset 5.11 SW-C/BSW
Error Filtering 5.12 SW-C/BSW

Memory protection 5.13 BSW

Timing protection 5.14 BSW

Table 6.4: Mapping of mechanisms to implementation level.

42 of 42 Document ID 378: AUTOSAR_CP_EXP_ApplicationLevelErrorHandling

	1 Introduction
	1.1 Scope
	1.2 Guide to this Document

	2 Definition of terms and acronyms
	2.1 Basic dependability terms
	2.2 Fault Detection, Isolation and Recovery (FDIR)

	3 Related Documentation
	3.1 Input documents & related standards and norms

	4 Error model
	5 Error handling mechanisms
	5.1 Overview
	5.2 Plausibility checks
	5.2.1 Description
	5.2.2 Applicability
	5.2.3 Application level vs. BSW
	5.2.4 AUTOSAR References

	5.3 Substitute Values
	5.3.1 Description
	5.3.2 Applicability
	5.3.3 Application level vs. BSW
	5.3.4 AUTOSAR References

	5.4 Voting
	5.4.1 Description
	5.4.2 Applicability
	5.4.3 Application level vs. BSW
	5.4.4 AUTOSAR References

	5.5 Agreement
	5.5.1 Description
	5.5.2 Applicability
	5.5.3 Application level vs. BSW
	5.5.4 AUTOSAR References

	5.6 Checksums/Codes
	5.6.1 Description
	5.6.2 Applicability
	5.6.3 Application level vs. BSW
	5.6.4 AUTOSAR References

	5.7 Execution sequence monitoring
	5.7.1 Description
	5.7.2 Applicability
	5.7.3 Application level vs. BSW
	5.7.4 AUTOSAR References

	5.8 Aliveness monitoring
	5.8.1 Description
	5.8.2 Applicability
	5.8.3 Application level vs. BSW
	5.8.4 AUTOSAR References

	5.9 Status and Mode Management
	5.9.1 Description
	5.9.2 Applicability
	5.9.3 Application level vs. BSW
	5.9.4 AUTOSAR References

	5.10 Reconfiguration
	5.10.1 Description
	5.10.2 Applicability
	5.10.3 Application level vs. BSW
	5.10.4 AUTOSAR References

	5.11 Reset
	5.11.1 Description
	5.11.2 Applicability
	5.11.3 Application level vs. BSW
	5.11.4 AUTOSAR References

	5.12 Error Filtering
	5.12.1 Description
	5.12.2 Applicability
	5.12.3 Application level vs. BSW
	5.12.4 AUTOSAR References

	5.13 Memory Protection
	5.13.1 Description
	5.13.2 Applicability
	5.13.3 Application level vs. BSW
	5.13.4 AUTOSAR References

	5.14 Timing Protection
	5.14.1 Description
	5.14.2 Applicability
	5.14.3 Application level vs. BSW
	5.14.4 AUTOSAR References

	6 Aspect mapping
	6.1 Overview
	6.2 Mapping to FDIR process and Error Model
	6.3 Mapping to implementation level

