
Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

Document Title
Specification of Vehicle Update
and Configuration Management

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 1090

Document Status published

Part of AUTOSAR Standard Adaptive Platform
Part of Standard Release R24-11

Document Change History
Date Release Changed by Description

2024-11-27 R24-11
AUTOSAR
Release
Management

• Refactored progress monitoring

• Adapted V-UCM to UCM new suspend
and resume requirement

2023-11-23 R23-11
AUTOSAR
Release
Management

• Initial release from split of SWS UCM
document

• Vehicle dependency handling

• VSM interface refactoring

1 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

Contents

1 Introduction and functional overview 6

2 Acronyms and Abbreviations 7

3 Related documentation 8

3.1 Input documents & related standards and norms 8
3.2 Further applicable specification . 8

4 Constraints and assumptions 9

4.1 Known limitations . 9
4.2 Applicability to car domains . 9

5 Dependencies to other Functional Clusters 10

5.1 Provided Interfaces . 10
5.2 Required Interfaces . 10

6 Requirements Tracing 13

7 Functional specification 16

7.1 Functional cluster life-cycle . 16
7.1.1 Startup . 16
7.1.2 Shutdown . 16

7.2 Technical Overview . 16
7.3 V-UCM general behavior . 18
7.4 UCM identification . 19
7.5 V-UCM Software Packages transfer or streaming 19
7.6 V-UCM retry strategy . 21
7.7 Adaptive Applications interacting with V-UCM 23

7.7.1 OTA Client . 23
7.7.2 Vehicle Driver Interface . 26
7.7.3 Vehicle State Manager . 28
7.7.4 Flashing Adapter . 30
7.7.5 UCM Diagnostic Application 31
7.7.6 Non Adaptive Platform update 33

7.7.6.1 D-PDU API implementation support 33
7.7.6.2 Not required D-PDU API concepts 34
7.7.6.3 Not required D-PDU API functions 35
7.7.6.4 Classic platform update with V-UCM and diagnostic

tool . 36
7.8 Status reporting . 37

7.8.1 States . 40
7.8.2 States Transitions . 42

7.9 Campaign cancelling . 45
7.10 Campaign Reporting . 46
7.11 Content of Vehicle Package . 48

3 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

7.12 Vehicle update security and confidentiality 51
7.13 Reporting . 51

7.13.1 Security Events . 51
7.13.2 Log Messages . 52

7.13.2.1 Standardized Logging 52
7.13.3 Violation Messages . 57
7.13.4 Production Errors . 58

8 API specification 59

9 Service Interfaces 60

9.1 Type definitions . 60
9.1.1 CampaignHistoryType . 62
9.1.2 CampaignHistoryVectorType 63
9.1.3 CampaignResultType . 63
9.1.4 VUCMResolutionVectorType 64
9.1.5 VUCMResolutionType . 64
9.1.6 UCMStepErrorVectorType . 65
9.1.7 UCMStepErrorType . 65
9.1.8 SoftwarePackageStepType 66
9.1.9 UCMHistoryType . 66
9.1.10 UCMHistoryVectorType . 67
9.1.11 CampaignStateType . 67
9.1.12 CampaignStateProgressInfoType 68
9.1.13 TransferStateType . 68
9.1.14 SafetyConditionType . 69
9.1.15 VehicleConditionCollectionType 69
9.1.16 VehicleConditionType . 70
9.1.17 SafetyStateType . 70
9.1.18 SwNameVersionVectorType 71
9.1.19 VehicleUCMInfo . 71
9.1.20 UCMIdentifiersAndVersionsType 72
9.1.21 SwPackageDescType . 72
9.1.22 SwPackageDescVectorType 73
9.1.23 VehiclePackageDescriptionType 73

9.2 Provided Service Interfaces . 73
9.2.1 Vehicle Package Management 73
9.2.2 Vehicle Driver Application Interface 84
9.2.3 Vehicle State Manager . 90

9.3 Required Interface . 93
9.4 Application Errors . 93

9.4.1 Application Error Domain . 93
9.4.1.1 UCMErrorDomain 93

10 Configuration 95

10.1 Default Values . 95
10.2 Semantic Constraints . 95

4 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

A Mentioned Manifest Elements 96

B Platform Extension API (normative) 103

C Interfaces to other Functional Clusters (informative) 104

C.1 Overview . 104
C.2 Interface Tables . 104

D Packages distribution within vehicle detailed sequence examples 105

D.1 Collect information of present Software Clusters in vehicle 105
D.2 Action computation . 105

D.2.1 Pull package from Backend into vehicle 105
D.2.2 Push package from backend into vehicle 106

D.3 Packages transfer from backend into targeted UCM 108
D.4 Package processing . 110
D.5 Package activation . 112
D.6 Package rollback . 113
D.7 Campaign reporting . 114

E Security Analysis of Installation and Update 115

E.1 Securing Vehicle Package . 115
E.2 Securing Calls to V-UCM . 115
E.3 Suppressing Call to V-UCM . 116
E.4 Resource Starvation . 116

F Demonstrator Examples 117

G Change history of AUTOSAR traceable items 144

G.1 Traceable item history of this document according to AUTOSAR Re-
lease R23-11 . 144

G.1.1 Added Specification Items in R23-11 144
G.1.2 Changed Specification Items in R23-11 147
G.1.3 Deleted Specification Items in R23-11 147
G.1.4 Added Constraints in R23-11 148
G.1.5 Changed Constraints in R23-11 148
G.1.6 Deleted Constraints in R23-11 148

G.2 Traceable item history of this document according to AUTOSAR Re-
lease R24-11 . 148

G.2.1 Added Specification Items in R24-11 148
G.2.2 Changed Specification Items in R24-11 150
G.2.3 Deleted Specification Items in R24-11 151
G.2.4 Added Constraints in R24-11 152
G.2.5 Changed Constraints in R24-11 152
G.2.6 Deleted Constraints in R24-11 152

5 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

1 Introduction and functional overview

This specification describes the functionality, API and the configuration for the AU-
TOSAR functional cluster Vehicle Update and Configuration Management
which belongs to the AUTOSAR Adaptive Platform Services. One of the declared
goals of the AUTOSAR Adaptive Platform is the ability to flexibly update the soft-
ware and its configuration through local (“tester-based”) or remote (“over-the-air”) up-
dates. V-UCM provides services for updating the software and its configuration in a
vehicle. V-UCM is coordinating an update campaign within the vehicle. Therefore this
document includes requirements on the following functionalities:

• Interact with Backend to:

– Identify Software Clusters that could be updated, installed or removed

– Authenticate Vehicle Package

– Confirm dependencies between Software Clusters within vehicle be-
fore starting campaign

– Inform Backend of needed Software Packages, receives them and dis-
patch them to targeted ECUs

• Interact with Vehicle State Manager:

– Inform which safety conditions that have to be applied according to Vehicle
Package

– Share the computed vehicle state to other Applications or Functional
Clusters involved in the update campaign

• Interact with Human Driver about update campaign:

– Provides campaign state to trigger interaction with Human during update
campaign

– Get vehicle modification approval or consent from Human when configured
in Vehicle Package

• Provide information of installed software in vehicle

• Provide information of update campaigns history

• Recovery in case of failure

6 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the V-UCM mod-
ule that are not included in the AUTOSAR TR Glossary.

Abbreviation / Acronym: Description:
DM AUTOSAR Adaptive Diagnostic Management
UCM Update and Configuration Management
V-UCM V-UCM is distributing packages and coordinating an update cam-

paign in a vehicle (former name was UCM Master)
Backend Backend is a server hosting Software Packages
OTA Client OTA Client is an Adaptive Application in communication with

Backend Over The Air
Vehicle Driver Application Vehicle Driver Application is an Adaptive Application in commu-

nication with Vehicle Driver Human to Machine Interface
Application Error Errors returned by UCM
Boot options Boot Manager Configuration
VCI Vehicle Communication Interface
MVCI Modular Vehicle Communication Interface
D-PDU API Diagnostic Protocol Data Unit Application Programming Interface
RDF Root Description File
MDF Module Description File
integrity check verification method proving there has not been any alteration of

the artefact content
dependency check verification method proving that all configured dependencies in

vehicle will be fulfilled before transfer of Software Packages.

Table 2.1: Acronyms and Abbreviations

Below acronyms and abbreviations relevant for this document are included in the AU-
TOSAR TR Glossary. This is to avoid duplicate definition of the technical term. And to
refer to the correct document.

Term Description:
Adaptive Application see AUTOSAR TR Glossary
AUTOSAR Adaptive Platform see AUTOSAR TR Glossary
AUTOSAR Classic Platform see AUTOSAR TR Glossary
Functional Cluster see AUTOSAR TR Glossary
Service see AUTOSAR TR Glossary
Electronic Control Unit see AUTOSAR TR Glossary
Machine see AUTOSAR TR Glossary
Manifest see AUTOSAR TR Glossary
Software Package see AUTOSAR TR Glossary
Software Cluster see AUTOSAR TR Glossary
Vehicle Package see AUTOSAR TR Glossary
Vehicle State Manager see [1] AUTOSAR Glossary

Table 2.2: Reference to Technical Terms

7 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] General Requirements specific to Adaptive Platform
AUTOSAR_AP_RS_General

[3] Explanation of Adaptive Platform Software Architecture
AUTOSAR_AP_EXP_SWArchitecture

[4] Requirements on Vehicle Update and Configuration Management
AUTOSAR_AP_RS_VehicleUpdateAndConfigurationManagement

[5] Specification of Update and Configuration Management
AUTOSAR_AP_SWS_UpdateAndConfigurationManagement

[6] Explanation of Adaptive Platform Design
AUTOSAR_AP_EXP_PlatformDesign

[7] Specification of Manifest
AUTOSAR_AP_TPS_ManifestSpecification

3.2 Further applicable specification

AUTOSAR provides a general specification [2] which is also applicable for V-UCM. The
specification RS General shall be considered as additional and required specification
for implementation of V-UCM.

8 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

4 Constraints and assumptions

4.1 Known limitations

No limitations

4.2 Applicability to car domains

No restrictions to applicability.

9 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

5 Dependencies to other Functional Clusters

This chapter provides an overview of the dependencies to other Functional Clusters
in the AUTOSAR Adaptive Platform. Section 5.1 “Provided Interfaces” lists the inter-
faces provided by Vehicle Update and Configuration Management to other
Functional Clusters. Section 5.2 “Required Interfaces” lists the interfaces required by
Vehicle Update and Configuration Management.

A detailed technical architecture documentation of the AUTOSAR Adaptive Platform is
provided in [3].

5.1 Provided Interfaces

Interface Functional Cluster Purpose

No provided interfaces

Table 5.1: Interfaces provided to other Functional Clusters

5.2 Required Interfaces

«aapAPI,aapPortInterface»
FileStorage

+ DeleteFile()
+ FileExists()
+ GetAllFi leNames()
+ GetCurrentFileSize()
+ GetFileInfo()
+ OpenFileReadOnly(): ReadAccessor
+ OpenFileReadWrite(): ReadWriteAccessor
+ OpenFileWriteOnly(): ReadWriteAccessor
+ RecoverFile()
+ ResetFile()

«aapFunctionalCluster»
Persistency

«aapAPI,aapPortInterface»
KeyValueStorage

+ DiscardPendingChanges()
+ GetAllKeys()
+ GetCurrentValueSize()
+ GetValue()
+ KeyExists()
+ RecoverKey()
+ RemoveAllKeys()
+ RemoveKey()
+ ResetKey()
+ SetValue()
+ SyncToStorage()

«aapAPI,aapPortInterface»
SynchronizedTimeBaseConsumer

+ GetRateDeviation()
+ GetTimeWithStatus(): SynchronizedTimeBaseStatus
+ RegisterStatusChangeNotifier()
+ RegisterSynchronizationStateChangeNotifier()
+ RegisterTimeLeapNotifier()
+ RegisterTimePrecisionMeasurementNotifier()
+ RegisterTimeValidationNotification()
+ UnregisterStatusChangeNotifier()
+ UnregisterSynchronizationStateChangeNotifier()
+ UnregisterTimeLeapNotifier()
+ UnregisterTimePrecisionMeasurementNotifier()
+ UnregisterTimeValidationNotification()

«aapFunctionalCluster»
Time Synchronization

daemon-based

«aapFunctionalCluster»
Vehicle Update and Configuration Management

daemon-based

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 5.1: Interfaces required by Vehicle Update and Configuration Management from
other Functional Clusters

10 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

«aapAPI,aapNativeInterface»
Logger

+ IsEnabled()
+ Log(MsgId, Params)
+ LogDebug(): LogStream
+ LogError(): LogStream
+ LogFatal(): LogStream
+ LogInfo(): LogStream
+ LogVerbose(): LogStream
+ LogWarn(): LogStream
+ WithLevel(): LogStream

«aapFunctionalCluster»
Log and Trace

«aapAPI,aapNativeInterface»
ExecutionClient

+ Create()
+ ReportExecutionState(ExecutionState): Result

«aapFunctionalCluster»
Execution Management

daemon-based

«aapFunctionalCluster»
Vehicle Update and Configuration Management

daemon-based

«aapAPI,aapNativeInterface»
CryptoStack

«aapFunctionalCluster»
Cryptography

daemon-based

«use» «use» «use»

Figure 5.2: Interfaces required by Vehicle Update and Configuration Management from
other Functional Clusters

Figures 5.1 and 5.2 show the interfaces required by Vehicle Update and Con-
figuration Management from other Functional Clusters within the AUTOSAR
Adaptive Platform.

«aapFunctionalCluster»
Vehicle Update and Configuration Managementdaemon-based

«aapAPI,aapAraComServiceInterface»
PackageManagement

«aapAccessControlled, aapServiceField»
+ CurrentStatus

«aapAccessControlled, aapServiceMethod»
+ Activate()
+ Cancel()
+ DeleteTransfer()
+ Finish()
+ GetHistory()
+ GetId()
+ GetProgress()
+ GetSwClusterChangeInfo()
+ GetSwClusterInfo()
+ GetSwClusterManifestInfo()
+ GetSwPackages()
+ ProcessSwPackage()
+ RegisterSoftwarePackage()
+ RevertProcessedSwPackages()
+ Rollback()
+ TransferData()
+ TransferExit()
+ TransferStart()

Adaptive Application «aapFunctionalCluster»
Update and Configuration

Management

daemon-based

Flashing Adapter

«use»
«aapRequiredPort»

«aapProvidedPort» «aapProvidedPort»

Figure 5.3: Interfaces required by Vehicle Update and Configuration Management from
Update and Configuration Management

11 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

Figure 5.3 shows the interfaces required by Vehicle Update and Configura-
tion Management from Update and Configuration Management.

Functional Cluster Interface Purpose

Cryptography CryptoStack This interface may be used e.g., to verify the integrity and
authenticity of Vehicle Packages.

Execution
Management

ExecutionClient This interface shall be used by the daemon process(es)
inside Vehicle Update and Configuration
Management to report their execution state to Execution
Management.

Log and Trace Logger Vehicle Update and Configuration Management
shall use this interface to log standardized messages.

Persistency FileStorage Used to store files of received vehicle packages.

Persistency KeyValueStorage Used to store the internal state of Vehicle Update and
Configuration Management.

Time Synchronization SynchronizedTimeBaseConsumer Vehicle Update and Configuration Management
shall use this interface to get latest timestamp.

Update and
Configuration
Management

PackageManagement This interface is used to control different Update and
Configuration Management instances and e.g.,
applications implementing the same interface located
within the vehicle that act as an adapter to install software
packages on third-party systems. Vehicle Update and
Configuration Management is able to differentiate
between the service instances by matching the result of
GetId with an ID provided in a Software Package.

Table 5.2: Interfaces required from other Functional Clusters

12 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

6 Requirements Tracing

The following tables reference the requirements specified in [4] and links to the fulfill-
ment of these. Please note that if column “Satisfied by” is empty for a specific require-
ment this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by

[RS_UCM_00013] UCM shall check that it has enough
resources to receive, process and
store the Software Package and
associated data

[SWS_VUCM_01011]

[RS_VUCM_00033] V-UCM shall support reporting version
information of a complete vehicle

[SWS_VUCM_00181] [SWS_VUCM_00182]
[SWS_VUCM_00268] [SWS_VUCM_00269]
[SWS_VUCM_01101] [SWS_VUCM_01103]
[SWS_VUCM_01120] [SWS_VUCM_01135]
[SWS_VUCM_01140] [SWS_VUCM_01150]
[SWS_VUCM_01151] [SWS_VUCM_01152]
[SWS_VUCM_01168] [SWS_VUCM_01169]
[SWS_VUCM_01170] [SWS_VUCM_01171]
[SWS_VUCM_01218] [SWS_VUCM_01311]
[SWS_VUCM_CONSTR_00013]

[RS_VUCM_00034] V-UCM shall record all V-UCM’s action
history

[SWS_VUCM_00181] [SWS_VUCM_00182]
[SWS_VUCM_00251] [SWS_VUCM_00252]
[SWS_VUCM_00253] [SWS_VUCM_00254]
[SWS_VUCM_00255] [SWS_VUCM_00256]
[SWS_VUCM_00290] [SWS_VUCM_00291]
[SWS_VUCM_00296] [SWS_VUCM_00304]
[SWS_VUCM_01034] [SWS_VUCM_01149]
[SWS_VUCM_01167] [SWS_VUCM_01247]
[SWS_VUCM_01248] [SWS_VUCM_01266]
[SWS_VUCM_01267] [SWS_VUCM_01268]
[SWS_VUCM_01269] [SWS_VUCM_01279]
[SWS_VUCM_01283]

[RS_VUCM_00035] V-UCM shall coordinate software
update in a vehicle across multiple
Electronic Control Units

[SWS_VUCM_00178] [SWS_VUCM_00181]
[SWS_VUCM_00183] [SWS_VUCM_00210]
[SWS_VUCM_00297] [SWS_VUCM_00298]
[SWS_VUCM_00307] [SWS_VUCM_00308]
[SWS_VUCM_01013] [SWS_VUCM_01018]
[SWS_VUCM_01020] [SWS_VUCM_01021]
[SWS_VUCM_01022] [SWS_VUCM_01033]
[SWS_VUCM_01119] [SWS_VUCM_01122]
[SWS_VUCM_01123] [SWS_VUCM_01124]
[SWS_VUCM_01131] [SWS_VUCM_01132]
[SWS_VUCM_01143] [SWS_VUCM_01145]
[SWS_VUCM_01146] [SWS_VUCM_01156]
[SWS_VUCM_01157] [SWS_VUCM_01160]
[SWS_VUCM_01161] [SWS_VUCM_01172]
[SWS_VUCM_01175] [SWS_VUCM_01177]
[SWS_VUCM_01178] [SWS_VUCM_01204]
[SWS_VUCM_01205] [SWS_VUCM_01207]
[SWS_VUCM_01209] [SWS_VUCM_01212]
[SWS_VUCM_01214] [SWS_VUCM_01215]
[SWS_VUCM_01216] [SWS_VUCM_01217]
[SWS_VUCM_01218] [SWS_VUCM_01219]
[SWS_VUCM_01220] [SWS_VUCM_01221]
[SWS_VUCM_01222] [SWS_VUCM_01227]
[SWS_VUCM_01228] [SWS_VUCM_01229]
[SWS_VUCM_01234] [SWS_VUCM_01236]
[SWS_VUCM_01239] [SWS_VUCM_01240]
[SWS_VUCM_01241] [SWS_VUCM_01242]
[SWS_VUCM_01243] [SWS_VUCM_01244]

5

5

13 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

4
Requirement Description Satisfied by

4
[SWS_VUCM_01246] [SWS_VUCM_01270]
[SWS_VUCM_01271] [SWS_VUCM_01272]
[SWS_VUCM_01273] [SWS_VUCM_01274]
[SWS_VUCM_01276] [SWS_VUCM_01277]
[SWS_VUCM_01283] [SWS_VUCM_01303]
[SWS_VUCM_01305]
[SWS_VUCM_CONSTR_00003]
[SWS_VUCM_CONSTR_00005]
[SWS_VUCM_CONSTR_00006]
[SWS_VUCM_CONSTR_00009]
[SWS_VUCM_CONSTR_00011]
[SWS_VUCM_CONSTR_00015]
[SWS_VUCM_CONSTR_00018]

[RS_VUCM_00036] V-UCM shall use platform
communication services for
interacting with UCMs

[SWS_VUCM_01005] [SWS_VUCM_01015]
[SWS_VUCM_01016] [SWS_VUCM_01021]
[SWS_VUCM_01033] [SWS_VUCM_01034]
[SWS_VUCM_01143] [SWS_VUCM_01156]
[SWS_VUCM_01157] [SWS_VUCM_01172]

[RS_VUCM_00037] V-UCM shall ensure it is safe to
perform any modification to the
vehicle

[SWS_VUCM_00177] [SWS_VUCM_00179]
[SWS_VUCM_00183] [SWS_VUCM_00297]
[SWS_VUCM_00298] [SWS_VUCM_01109]
[SWS_VUCM_01114] [SWS_VUCM_01117]
[SWS_VUCM_01138] [SWS_VUCM_01139]
[SWS_VUCM_01141] [SWS_VUCM_01145]
[SWS_VUCM_01146] [SWS_VUCM_01160]
[SWS_VUCM_01161] [SWS_VUCM_01174]
[SWS_VUCM_01179] [SWS_VUCM_01222]
[SWS_VUCM_01228] [SWS_VUCM_01229]
[SWS_VUCM_01234] [SWS_VUCM_01240]
[SWS_VUCM_01244] [SWS_VUCM_01246]
[SWS_VUCM_01275] [SWS_VUCM_01278]
[SWS_VUCM_01309] [SWS_VUCM_01310]
[SWS_VUCM_CONSTR_00003]
[SWS_VUCM_CONSTR_00004]
[SWS_VUCM_CONSTR_00005]
[SWS_VUCM_CONSTR_00006]
[SWS_VUCM_CONSTR_00007]
[SWS_VUCM_CONSTR_00009]
[SWS_VUCM_CONSTR_00018]
[SWS_VUCM_CONSTR_00019]

[RS_VUCM_00038] V-UCM shall interact with driver [SWS_VUCM_00180] [SWS_VUCM_00182]
[SWS_VUCM_01105] [SWS_VUCM_01117]
[SWS_VUCM_01118] [SWS_VUCM_01120]
[SWS_VUCM_01135] [SWS_VUCM_01142]
[SWS_VUCM_01144] [SWS_VUCM_01147]
[SWS_VUCM_01148] [SWS_VUCM_01159]
[SWS_VUCM_01173] [SWS_VUCM_01222]
[SWS_VUCM_01228] [SWS_VUCM_01234]
[SWS_VUCM_CONSTR_00017]

[RS_VUCM_00039] V-UCM shall prevent processing of
compromised Vehicle Packages

[SWS_VUCM_00136] [SWS_VUCM_00181]
[SWS_VUCM_01176] [SWS_VUCM_01221]
[SWS_VUCM_01301] [SWS_VUCM_01302]
[SWS_VUCM_01306]

[RS_VUCM_00042] V-UCM shall provide an interface to
read the state of an update campaign

[SWS_VUCM_00181] [SWS_VUCM_01017]
[SWS_VUCM_01022] [SWS_VUCM_01143]
[SWS_VUCM_01156] [SWS_VUCM_01157]
[SWS_VUCM_01169] [SWS_VUCM_01172]
[SWS_VUCM_01177] [SWS_VUCM_01178]
[SWS_VUCM_01203] [SWS_VUCM_01205]
[SWS_VUCM_01265]
[SWS_VUCM_CONSTR_00016]

5

14 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

4
Requirement Description Satisfied by

[RS_VUCM_00043] V-UCM shall orchestrate a software
update campaign according to the
Vehicle Package’s Manifest

[SWS_VUCM_00136] [SWS_VUCM_00179]
[SWS_VUCM_00180] [SWS_VUCM_00181]
[SWS_VUCM_00182] [SWS_VUCM_00210]
[SWS_VUCM_01003] [SWS_VUCM_01014]
[SWS_VUCM_01015] [SWS_VUCM_01016]
[SWS_VUCM_01021] [SWS_VUCM_01023]
[SWS_VUCM_01142] [SWS_VUCM_01143]
[SWS_VUCM_01144] [SWS_VUCM_01145]
[SWS_VUCM_01146] [SWS_VUCM_01147]
[SWS_VUCM_01148] [SWS_VUCM_01156]
[SWS_VUCM_01157] [SWS_VUCM_01158]
[SWS_VUCM_01159] [SWS_VUCM_01160]
[SWS_VUCM_01161] [SWS_VUCM_01162]
[SWS_VUCM_01163] [SWS_VUCM_01164]
[SWS_VUCM_01165] [SWS_VUCM_01166]
[SWS_VUCM_01172] [SWS_VUCM_01173]
[SWS_VUCM_01174] [SWS_VUCM_01180]
[SWS_VUCM_01201] [SWS_VUCM_01207]
[SWS_VUCM_01209] [SWS_VUCM_01212]
[SWS_VUCM_01228] [SWS_VUCM_01275]
[SWS_VUCM_01280] [SWS_VUCM_01282]
[SWS_VUCM_01301] [SWS_VUCM_01302]
[SWS_VUCM_01303] [SWS_VUCM_01305]
[SWS_VUCM_01306] [SWS_VUCM_01307]
[SWS_VUCM_01308]
[SWS_VUCM_CONSTR_00018]

[RS_VUCM_00046] V-UCM initialization [SWS_VUCM_01019]

[RS_VUCM_00047] UCM shall support standardized trace
points

[SWS_VUCM_01024] [SWS_VUCM_01025]
[SWS_VUCM_01026] [SWS_VUCM_01027]
[SWS_VUCM_01028] [SWS_VUCM_01029]
[SWS_VUCM_01030] [SWS_VUCM_01031]
[SWS_VUCM_01032] [SWS_VUCM_01312]
[SWS_VUCM_01313] [SWS_VUCM_01314]
[SWS_VUCM_01315] [SWS_VUCM_01316]
[SWS_VUCM_01317] [SWS_VUCM_01318]
[SWS_VUCM_01319] [SWS_VUCM_01320]

Table 6.1: Requirements Tracing

15 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

7 Functional specification

7.1 Functional cluster life-cycle

[SWS_VUCM_01205] V-UCM internal state persistency
Upstream requirements: RS_VUCM_00035, RS_VUCM_00042

dV-UCM shall persist its state to be able to resume on-going update campaign after an
intended or unintended reboot.c

7.1.1 Startup

[SWS_VUCM_01019] V-UCM initialization
Upstream requirements: RS_VUCM_00046

dV-UCM shall offer its services only after its internal initialization has been completed,
and then report kRunning state.c

This requirement prevents calling V-UCM API while internal initialization is on-going.
The concrete initialization tasks are implementation specific.

7.1.2 Shutdown

No specific requirements for V-UCM’s shutdown

7.2 Technical Overview

V-UCM objective is to provide a standard Adaptive Autosar solution to safely and se-
curely update a complete vehicle Over The Air or by a Diagnostic Tester.

V-UCM receives packages from Backend or Diagnostic tool (through Diagnostic Appli-
cation), parses and interprets the Vehicle Package, transfers or streams Software
Packages to suitable targets (UCM or Flashing Adapter) and orchestrates the process-
ing, activations and eventual rollbacks. All these actions are what is called a campaign
which V-UCM is coordinating. The UCM of the machines in the same network of a
V-UCM, candidates target of a campaign, are referred to as UCMs.

16 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

Figure 7.1: Example of V-UCM architecture overview within a vehicle

The V-UCM could be considered as a set of add-on features that could enrich any UCM
instance. Therefore, as per the UCM APIs, the V-UCM APIs are part of the AUTOSAR
Adaptive Platform Services. UCM and V-UCM have separate service instances.

The OTA Client establishes a communication between Backend and V-UCM so that
they can exchange information of the installed Software Clusters in the vehicle
and the Software Clusters available in the Backend. This communication could
be triggered by OTA Client with a scheduler and V-UCM to request the updates in
case of newly available Software Clusters (pull case) or by Backend to push, for
instance, an important security update to a fleet of vehicles (push case). The com-
putation to find new Software Clusters versions and resolution of dependencies
between Software Clusters can be either done at V-UCM or Backend.

Vehicle Driver interface Adaptive Application is required if it is needed during an
update campaign to interact with vehicle human driver through for instance Human-
Machine Interface. Download of packages from a Backend could have various finan-
cial costs for the driver depending of communication types, so consent from driver
could be suitable.

Vehicle State Manager Adaptive Application is required if it is needed dur-
ing an update campaign to control the vehicle state for safety purposes. For instance, it
could be required for safety to have standing still vehicle, shut-off engine, closed doors,
etc. before starting an UCM activation or during its processing.

17 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

7.3 V-UCM general behavior

The V-UCM acts as a client of the service interface offered by the UCM, already spec-
ified in UCM. However, the V-UCM also offers three different service interfaces to OTA
Client, Vehicle Driver interface and Vehicle State Manager respectively. V-UCM
aggregates UCMs states and can report its status field to a Backend through its OTA
Client.

A V-UCM receives a Vehicle Package and transfers or streams Software Pack-
age(s) to the UCMs for an AUTOSAR Adaptive Platform Software Cluster up-
date. A Vehicle Package contains instructions for orchestrating updates between
ECUs. The V-UCM provides information about ECUs in the vehicle, installed software
and update campaign resolution.

[SWS_VUCM_01003] V-UCM checks states of UCMs
Upstream requirements: RS_VUCM_00043

dA V-UCM shall check the status of its UCMs involved in the campaign as described
in the Vehicle Package are all at kPreparing update state (UpdateStateType) of
the UCMs CurrentStatus field before transitioning from kVehiclePackageTrans-
ferring to kSoftwarePackage_Transferring and before transitioning to kPro-
cessing.c

V-UCM should for instance make sure that there is no ongoing diagnostic updates
before starting an update campaign by checking the reported state(s) of the UCM(s)
to be idle.

[SWS_VUCM_CONSTR_00018] V-UCM uniqueness in vehicle
Upstream requirements: RS_VUCM_00043, RS_VUCM_00035, RS_VUCM_00037

dAt any given point in time, at most one V-UCM shall provide VehiclePackageM-
anagement, VehicleDriverApplicationInterface and VehicleStateMan-
agerInterface services interfaces per network domain.c

There can be several V-UCMs running in the vehicle as backup but only one at a time
can provide services in the vehicle.

[SWS_VUCM_01023] UcmStep order
Upstream requirements: RS_VUCM_00043

dAll UcmStep from one VehicleRolloutStep can be done concurrently and in any
order.c

18 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

7.4 UCM identification

For V-UCM to distribute Software Packages to other UCMs, V-UCM has to identify
UCMs in vehicle. This identification could be at boot or later but at least before any
communication with Backend are engaged. Each UCM has a unique identifier in Ve-
hicle Package UcmModuleInstantiation called identifier to help V-UCM trans-
ferring packages to targeted UCMs. To get such identifier, V-UCM will perform first a
service discovery through ara::com to get all UCMs service instances available. Then
V-UCM will call GetId method for each UCMs returning each corresponding UcmMod-
uleInstantiation identifiers.

If an ECU hosting a UCM is replaced physically, it will register its services to the registry
at boot up and V-UCM will be able to communicate with UCM(s).

[SWS_VUCM_01005] V-UCM is discovering UCMs in vehicle
Upstream requirements: RS_VUCM_00036

dV-UCM shall continuously look for UCM service instances (use of StartFindService()
call).c

If a V-UCM is failing, another inactive V-UCM could be used or activated by OTA
Client.

Default (at boot) V-UCM/UCM hierarchy or priority could be optionally overwritten for
each campaign based on Vehicle Package content at the condition OTA Client
could properly parse Vehicle Packages.

7.5 V-UCM Software Packages transfer or streaming

V-UCM has generally same transfer API as UCM in order to simplify implementation and
reuse code as much as possible (could be shared library between UCM and V-UCM).

It is necessary to distinguish Vehicle Package (V-UCM specific) from Software
Packages transfer.

[SWS_VUCM_01011] TransferVehiclePackage InsufficientMemory
Upstream requirements: RS_UCM_00013

dTransferVehiclePackage method shall raise the ApplicationError kMemo-
ryInsufficient if the UCM buffer has not enough resources to process the corre-
sponding Vehicle Package.c

19 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_01018] TransferVehiclePackage kBusyWithCampaign
Upstream requirements: RS_VUCM_00035

dTransferVehiclePackage method shall return the ApplicationError kBusy-
WithCampaign, if V-UCM is not at kIdle statec

A diagnostic tester can interfere with the V-UCM, which often results in a campaign
constantly failing. Therefore, V-UCM allows new campaigns to be temporarily blocked
to avoid this type of situation.

[SWS_VUCM_01014] Packages transferring sequence
Upstream requirements: RS_VUCM_00043

dTransferStart method shall raise the ApplicationError kPackageUnex-
pected if the Software Package name parameter was not a value of the Request-
edPackage field.c

[SWS_VUCM_01013] Too big block size received by V-UCM
Upstream requirements: RS_VUCM_00035

dIn the case the received block size with TransferData exceeds the block size re-
turned by TransferStart or TransferVehiclePackage for the same TransferId,
V-UCM shall raise the ApplicationError kBlockSizeIncorrect.c

[SWS_VUCM_01015] Invalid Vehicle Package manifest
Upstream requirements: RS_VUCM_00036, RS_VUCM_00043

dTransferExit shall raise the ApplicationError kPackageManifestInvalid
when a Vehicle Package manifest is not compliant with the AUTOSAR schema.c

[SWS_VUCM_01016] Invalid Package Manifest
Upstream requirements: RS_VUCM_00036, RS_VUCM_00043

dV-UCM shall raise the ApplicationError kPackageManifestInvalid in case a
manifest file is not compliant with the AUTOSAR schema.c

[SWS_VUCM_01017] RequestedPackage field
Upstream requirements: RS_VUCM_00042

dThe field RequestedPackage shall contain the requested Software Package
name and version as configured in campaign which is modelled by VehiclePack-
age.c

20 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_01033] Unreachable UCM during Packages transferring sequence
Upstream requirements: RS_VUCM_00035, RS_VUCM_00036

dIf during the Software Package Transfer from V-UCM Client through V-UCM to an UCM
using:

• TransferStart,

• TransferData,

• TransferExit,

• DeleteTransfer,

methods of Vehicle Package Management service interface the target UCM becomes
unreachable, i.e. method invocation failed due to network errors, V-UCM shall raise the
ApplicationError kUCMNotAvailableOnTheNetwork and add this event into
Campaign History providing the reason in "returnedError" attribute of UCMStepEr-
rorType as kUCMNotAvailableOnTheNetwork.c

OTA Client does not know what Software Packages should be transferred in a
given campaign contained in a Vehicle Package. OTA Client can know what
Software Package is expected to be transferred by subscribing to V-UCM’s Re-
questedPackage field. Version is added to support campaigns which need an update
path for a Software Package requiring an intermediate update to a transitional ver-
sion. In this case the version parameter makes it unambiguous which package version
shall be transferred as both have the same name assigned.

For the VehiclePackageManagement Service Interface methods

• TransferStart,

• TransferData,

• TransferExit,

• DeleteTransfer,

V-UCM can transfer Software Packages only to UCMs that are available. V-UCM is not
responsible of waking up any potentially sleeping UCMs.

7.6 V-UCM retry strategy

When V-UCM or OTA Client calls TransferData method and it raises Applica-
tionError kBlockInconsistent, V-UCM or OTA Client can retry the Trans-
ferData method again later for the same block. This behaviour is configured by
UcmRetryStrategy.

21 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_01020] Retry Strategy for BlockInconsistent
Upstream requirements: RS_VUCM_00035

dWhen TransferData returns ApplicationError kBlockInconsistent more
than maximumNumberOfRetries within retryIntervalTime, then V-UCM shall
cancel the active campaign by transitioning to kCancelling state and delete the fail-
ing package.c

If no retry strategy is needed, the maximum number of attempts can be specified as 0
in UcmRetryStrategy.

When V-UCM calls ProcessSwPackage method and it raises ApplicationError
kServiceBusy, V-UCM can retry the ProcessSwPackage method again later for the
same package. This behaviour is configured by UcmRetryStrategy.

[SWS_VUCM_00297] Retry Strategy for ServiceBusy
Upstream requirements: RS_VUCM_00035, RS_VUCM_00037

dWhen ProcessSwPackage returns ApplicationError kServiceBusy more
than maximumNumberOfRetries within retryIntervalTime, then V-UCM shall
cancel the active campaign by transitioning to kCancelling state and delete the fail-
ing package.c

If no retry strategy is needed, the maximum number of attempts can be specified as 0
in UcmRetryStrategy.

When V-UCM calls Activate method and it raises ApplicationError kUpdate-
SessionRejected, V-UCM can retry the Activate method again later to enter Up-
date Session again. This behaviour is configured by UcmRetryStrategy.

[SWS_VUCM_00298] Retry Strategy for UpdateSessionRejected
Upstream requirements: RS_VUCM_00035, RS_VUCM_00037

dWhen Activate returns ApplicationError kUpdateSessionRejected more
than maximumNumberOfRetries within retryIntervalTime, then V-UCM shall
cancel the active campaign by transitioning to kCancelling state.c

If no retry strategy is needed, the maximum number of attempts can be specified as 0
in UcmRetryStrategy.

[SWS_VUCM_01034] Retry Strategy for Transfer methods
Upstream requirements: RS_VUCM_00034, RS_VUCM_00036

dIf V-UCM cannot reach one or more UCMs when calling the PackageManagement
Service Interface methods

• TransferStart,

22 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

• TransferData,

• TransferExit,

• DeleteTransfer,

more than maximumNumberOfRetries within retryIntervalTime, then V-UCM
shall cancel the active campaign by transitioning to kCancelling state, add this event
into Campaign History providing the reason in "returnedError" attribute of UCMStepEr-
rorType as kUCMNotAvailableOnTheNetwork. If no retry strategy is needed, the
maximum number of attempts can be specified as 0 in UcmRetryStrategy.c

The same attribute UcmRetryStrategy is used for retry strategies specified in
[SWS_VUCM_01020].

7.7 Adaptive Applications interacting with V-UCM

In order to have interoperability between several vendors platforms, Adaptive Ap-
plications interacting with V-UCM via ara::com like OTA Client, Vehicle State
Manager or Vehicle Driver Interface have their APIs specified. However, their detailed
behaviours are out of scope for this specification document.

7.7.1 OTA Client

OTA Client is an Adaptive Application that sets communication channel be-
tween Backend and V-UCM. The communication between Backend and OTA Client
is abstracted and details like protocol are out of scope for this specification document.
OTA Client should make sure Backend is providing the right information and pack-
ages to the vehicle by identifying the vehicle, by for instance sending VIN to Backend.

OTA Client uses the V-UCM as a service provider via ara::com. Since transfer-
ring Vehicle Packages and Software Packages from Backend to V-UCM is OTA
Client’s responsibility, OTA Client should be able to accommodate any proprietary
communication protocol used between OTA Client and Backend and convert it into
ara::com transport protocol. OTA Client should support UCM Software Packages
transfer or streaming as specified in [5], it should then provide at least the following
functionality:

• Comply to the requirements of [5] in the context of package transfer between OTA
Client and V-UCM.

• OTA Client should subscribe to V-UCM’s RequestedPackage field to know
what Software Package is expected to be transferred

• OTA Client should subscribe to V-UCM’s TransferState field to know what
is campaign state

23 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

• OTA Client should subscribe to V-UCM’s VehicleConditionCollection
field to eventually make sure vehicle is in a safe state before transferring Pack-
ages

• OTA Client could support multiple data transfers in parallel, as specified in
[SWS_UCM_00075] of [5]

In addition, OTA Client could support the ability to pause or resume the package
transfer for the current campaign to prioritize the transfer of the packages from a dif-
ferent campaign. The ability of OTA Client to pause or resume the package transfer
might be helpful in the case there is a need to cancel an ongoing campaign at kTrans-
ferring state to allow higher priority campaign to be performed. If a campaign is
cancelled during transfer of packages, OTA Client has the possibility to recover the
transfers using GetSwPackages method (providing transferId, consecutive-
BytesReceived and consecutiveBlocksReceived) but could also simply delete
the partially transferred packages with DeleteTransfer method.

Only one V-UCM has to be used by OTA Clients per network domain. As V-UCM is
distributing Software Packages and coordinating UCM subordinates, OTA Clients
in the same network domain have to make sure there are no already on-going cam-
paigns when starting a new campaign with TransferVehiclePackage method call
by checking V-UCM’s state with TransferState field, in order to avoid any interfer-
ence and guarantee success of an update campaign.

[SWS_VUCM_01101] Provide information of installed Software Clusters in ve-
hicle

Upstream requirements: RS_VUCM_00033

dV-UCM shall provide a method GetSwClusterInfo to return information of all Soft-
ware Cluster that are in state kPresent.c

V-UCM can aggregate Software Cluster information from several UCMs within a
vehicle and returns the result to a Backend which can compute if there is any new
Software Cluster available and decide to send to V-UCM through OTA Client a
Vehicle Package. It is up to OTA Client to make sure the synchronisation of the
versions of Software Packages present in Backend and Software Clusters in
the vehicles using GetSwClusterInfo or SwPackageInventory is recent enough
before starting a campaign with TransferVehiclePackage call.

[SWS_VUCM_01103] Inform Backend of needed Software Packages for an up-
date

Upstream requirements: RS_VUCM_00033

dOn SwPackageInventory call, V-UCM shall compare the supplied list of available
Software Packages in the Backend for the vehicle to its own internal information of
present Software Clusters in the vehicle and return the list of Software Pack-
ages selected for update.c

24 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

The OTA Client uses this returned Software Packages list to request the se-
lected packages to the Backend. As required by constraint [SWS_UCM_CONSTR_-
00014] of [5], each Software Cluster corresponds to one Software Package
and share the same shortName.

[SWS_VUCM_CONSTR_00016] OTA Client use of RequestedPackage field
Upstream requirements: RS_VUCM_00042

dWhen V-UCM updates the RequestedPackage field, the OTA Client shall start the
transfer of the requested Software Package.c

[SWS_VUCM_01119] Report information of Software Packages
Status: OBSOLETE
Upstream requirements: RS_VUCM_00035

dV-UCM shall provide a method GetSwPackages to return the identifiers, names, ver-
sions, Consecutive Bytes Received, Consecutive Blocks Received and states of Soft-
ware Packages.c

At the invocation of method GetSwPackages, V-UCM returns the identifiers, names,
versions, Consecutive Bytes Received, Consecutive Blocks Received and states of
Software Packages that are handled by V-UCM which could be stored in V-UCM
or already transfered into UCM, depending on Vehicle Package content (Soft-
warePackageStoring.storing).

OTA Client can use the GetSwPackages method to get the complete picture of the
packages that are part of current campaign. Then, based on this information, the OTA
Client can either start or continue the transfer of necessary software packages.

[SWS_VUCM_01175] Software Package deletion
Upstream requirements: RS_VUCM_00035

dWhen deleting a Software Package with DeleteTransfer method, V-UCM shall
delete the Software Package eventually stored in V-UCM and its equivalent in UCM
if already transferred.c

[SWS_VUCM_01176] Software Package authentication failure
Upstream requirements: RS_VUCM_00039

dIn case UCM fails to authenticate a Software Package and raises Application-
Error kAuthenticationFailed, V-UCM shall delete the Software Packages
eventually stored in V-UCM and its equivalent in UCM by having a DeleteTransfer
method call to UCM.c

25 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_01180] DeleteTranfer OperationNotPermited error
Upstream requirements: RS_VUCM_00043

dIf V-UCM receives DeleteTransfer call at state not being kIdle, kSyncing or
kCancelling, V-UCM shall raise ApplicationError kOperationNotPermit-
ted.c

For the methods GetSwPackages, GetSwClusterInfo, GetCampaignHistory,
SwPackageInventory, V-UCM can collect information from several UCMs that are
available. V-UCM is not responsible of waking up any potentially sleeping UCMs.

7.7.2 Vehicle Driver Interface

Vehicle driver interface could be required by legal constrains or communication cost
consideration. To support mandatory safety and security critical updates, driver inter-
action can be used for:

• Requesting transfer, processing or activation permission from vehicle driver

• Notifying vehicle driver of safety and security measures he has to apply to the
vehicle in order to proceed to next step into the update campaign

[SWS_VUCM_01105] Interaction of V-UCM with Vehicle Driver
Status: OBSOLETE
Upstream requirements: RS_VUCM_00038

dV-UCM shall provide a method Approve in order to receive the confirmation of the
vehicle driver’s approval.c

[SWS_VUCM_CONSTR_00017] Interaction of V-UCM with Vehicle Driver
Upstream requirements: RS_VUCM_00038

dWhen vehicle driver accepts the campaign, Vehicle Driver Application shall call Ap-
prove method of VehicleDriverApplicationInterface to inform V-UCM of the
vehicle driver’s decision.c

The Vehicle Driver Interface Adaptive Application could adapt its notification
content related to safety by subscribing to the V-UCM’s VehicleConditionCol-
lection field.

[SWS_VUCM_01117] V-UCM VehicleConditionCollection field
Upstream requirements: RS_VUCM_00038, RS_VUCM_00037

dV-UCM shall provide to vehicle driver interface the VehicleConditionCollection
field containing the required safety condition for the campaign as configured in safe-
tyCondition.c

26 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

V-UCM can notify vehicle driver with VehicleConditionCollection field if the ve-
hicle safety is breached during the update, by for instance popping-up a message.

[SWS_VUCM_01118] V-UCM waiting for vehicle driver approval
Upstream requirements: RS_VUCM_00038

dIn the case approval from driver is requested as configured in VehiclePack-
age, V-UCM shall wait for Approve method call before transitioning from kVe-
hiclePackageTransferring to kSoftwarePackage_Transferring, kSoft-
warePackage_Transferring to kProcessing or kProcessing to kActivat-
ing.c

[SWS_VUCM_CONSTR_00003] Exclusive use of Vehicle Driver Interface
Upstream requirements: RS_VUCM_00035, RS_VUCM_00037

dSoftware Integrator shall ensure that only one Adaptive Application is using the
V-UCM’s Vehicle Driver Interface.c

For example, the integrator may restrict the access of Vehicle Driver Interface from
V-UCM by configuring the Identity and Access Management functional cluster accord-
ingly.

[SWS_VUCM_CONSTR_00004] Unsupported safety by Vehicle driver interface
Upstream requirements: RS_VUCM_00037

dIn the case the Vehicle Driver Interface Adaptive Application does not support
at least one safety condition contained in the VehicleConditionCollection field,
the Vehicle Driver Interface Adaptive Application shall call the method Repor-
tUnsupportedSafetyConditions with parameter UnsupportedSafetyCondi-
tions containing all the safety conditions which are not supported by Vehicle Driver
Interface Adaptive Application.c

[SWS_VUCM_01141] V-UCM behavior in case a safety condition is not supported
by Vehicle Driver Interface

Upstream requirements: RS_VUCM_00037

dIf the method ReportUnsupportedSafetyConditions is called with parameter
UnsupportedSafetyConditions containing at least one safety condition which is
not supported by Vehicle Driver Interface Adaptive Application, V-UCM shall set VUCM-
ResolutionType to kUnsupportedSafetyCondition.c

In case there is at least one safety condition unsupported by Vehicle Driver Application
Interface and as long as the computed safety conditions are reported to be Safe by
Vehicle State Manager PublishSafetyState method, it is not necessary to cancel
the on-going campaign. However, in case an OEM or integrator wants to cancel the
campaign because of an unsupported safety condition by Vehicle Driver Application

27 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

Interface, Vehicle Driver Application could call ReportUnsupportedSafetyCondi-
tions and perform cancellation of campaign.

[SWS_VUCM_01120] Provide Software Packages general information
Upstream requirements: RS_VUCM_00033, RS_VUCM_00038

dV-UCM shall provide a method GetSwPackageDescription to return the descrip-
tion of each Software Packages that are part of current campaign and that are
contained in Vehicle Package.c

[SWS_VUCM_01135] Get Software Clusters descriptions from a vehicle
Status: OBSOLETE
Upstream requirements: RS_VUCM_00033, RS_VUCM_00038

dAt GetSwClusterInfo method call via VehicleDriverApplicationInter-
face interface, UCM Master shall return the descriptions of all Software Clusters
which are aggregated from all the UCM Subordinates and all Flashing Adapters.c

7.7.3 Vehicle State Manager

Vehicle State Manager is collecting states from the several vehicle ECUs and in-
forms V-UCM when the safety state computed based on the safety policy referred in
the Vehicle Package is changing. If the safety policy is not met, the V-UCM can for
instance:

• Inform vehicle driver that the safety conditions are not met to continue the update

• Based on vehicle package configuration, pause the update until policy is met or
cancel campaign

[SWS_VUCM_01139] V-UCM configured behavior when vehicle safety is not met
Upstream requirements: RS_VUCM_00037

dWhen a safety condition is not met, V-UCM shall wait in case violatedSafetyCon-
ditionBehavior is set to waitForVehicleSafeState or cancel the campaign
when violatedSafetyConditionBehavior is set to cancelCampaign.c

[SWS_VUCM_01109] V-UCM provides a safety interface
Upstream requirements: RS_VUCM_00037

dV-UCM shall set the VehicleConditionCollection field taking the value from
safetyCondition attribute for each VehicleRolloutStep of the VehiclePack-
age.c

28 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

Vehicle State Manager Adaptive Application can inform any vehicle state
changes by calling PublishSafetyState method.

[SWS_VUCM_CONSTR_00005] Safety state change
Upstream requirements: RS_VUCM_00035, RS_VUCM_00037

dVehicle State Manager Adaptive Application shall call PublishSafetyState
method provided by V-UCM when the safety state is changing.c

[SWS_VUCM_CONSTR_00009] Safety condition change
Upstream requirements: RS_VUCM_00035, RS_VUCM_00037

dVehicle State Manager Adaptive Application shall call PublishSafetyState
method provided by V-UCM when at least one state subelement of the field Vehicle-
ConditionCollection has been changed.c

[SWS_VUCM_CONSTR_00019] Safety handling after reboot
Upstream requirements: RS_VUCM_00037

dDuring an on-going campaign and after a V-UCM reboot, V-UCM shall set the field
SafetyConditions and wait to receive a PublishSafetyState method call from Ve-
hicle State Manager Adaptive Application for V-UCM to resume the on-going cam-
paign.c

Integrator ensures that setting of any value of SafetyConditions field (including same
values) will actually be delivered to Vehicle State Manager Adaptive application
in order to trigger its PublishSafetyState method call.

[SWS_VUCM_CONSTR_00015] Trigger on kVehicleChecking state
Upstream requirements: RS_VUCM_00035

dOn transition to kVehicleChecking state provided by CampaignState from
VehicleStateManagerInterface, Vehicle State Manager shall first perform
checks to assess the post-activation state of the vehicle.c

Vehicle State Manager could be responsible for performing post-activation
checks, interfacing with an application performing such checks, confirming backend
is still reachable and further updates are still possible.

[SWS_VUCM_01272] VehicleCheck call not permitted
Upstream requirements: RS_VUCM_00035

dV-UCM shall return ApplicationError kOperationNotPermitted if Vehi-
cleCheck method is called in another V-UCM state than kVehicleChecking.c

29 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_CONSTR_00006] Exclusive use of Vehicle State Manager
Upstream requirements: RS_VUCM_00035, RS_VUCM_00037

dSystem Integrator shall ensure that Vehicle State Manager is the exclusive user
of the PublishSafetyState method.c

For example, the integrator may restrict the access to Vehicle State Manager in
configuring the Identity and Access Management functional cluster accordingly.

[SWS_VUCM_01275] Safety conditions during activation
Upstream requirements: RS_VUCM_00043, RS_VUCM_00037

dV-UCM shall apply the safetyCondition of the last VehicleRolloutStep to
VehicleConditionCollection field during the ECUs activations as configured in
the VehiclePackagec

[SWS_VUCM_CONSTR_00007] Unsupported safety conditions by Vehicle State
Manager

Upstream requirements: RS_VUCM_00037

dIn the case the requested VehicleConditionCollection field is not referring to
an existing safety condition implemented by Vehicle State Manager, the Vehi-
cle State Manager shall call VehicleStateManagerInterface service inter-
face PublishSafetyState method with parameter safetyStates containing at
least one value equal to ’NotSupported’.c

[SWS_VUCM_01278] V-UCM behaviour in case a safety condition is not sup-
ported by Vehicle State Manager

Upstream requirements: RS_VUCM_00037

dIf there is at least one safety state returned by PublishSafetyState method which
equals to ’NotSupported’, V-UCM shall cancel the campaign and set VUCMResolu-
tionType to kUnsupportedSafetyCondition.c

For the methods GetCampaignHistory, GetSwClusterInfo, V-UCM can collect
information from several UCMs that are available. V-UCM is not responsible of waking
up any potentially sleeping UCMs.

7.7.4 Flashing Adapter

Flashing Adapter is an application that is used in the case V-UCM is updating a AU-
TOSAR Classic Platform or any platform that can be flashed using diagnostic. It
contains OEM specific diagnostic sequences and communicates via ara::com with
the V-UCM and the AUTOSAR Adaptive Platform, and uses an implementation of

30 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

diagnostic protocol data unit application programming interface (D-PDU API) to com-
municate with Classic ECUs over the Vehicle Bus.

Flashing Adapter contains the needed logic to put the AUTOSAR Classic Platform
ECUs into the right update mode in order to avoid any timeout issues during update.

The data transfer from Flashing Adapter to the target ECU via diagnostic communi-
cation can be subject to interruptions if communication on a higher priority protocol
occurs, e.g. OBD services. In that case the Flashing Adapter can use a project spe-
cific strategy to detect the interruption, retry the transfer from the beginning, and decide
whether to notify or not the client about the transfer interruption.

[SWS_VUCM_CONSTR_00011] Flashing Adapter provided interface
Upstream requirements: RS_VUCM_00035

dFlashing Adapter shall provide the same ara::com service interface as UCM ([SWS_-
UCM_00131] of [5]).c

7.7.5 UCM Diagnostic Application

Diagnostic Application as UCM
Client

Diagnostic Application as V-UCM
Client

Purpose Update standalone ECU/Machine with-
out involvement of V-UCM

Update ECU/Machine as part of vehi-
cle update through V-UCM

Flow Diagnostic Tool -> Diagnostic Manager
-> Diagnostic App -> UCM

Diagnostic Tool -> Diagnostic Manager
->Diagnostic App -> V-UCM

Instance One instance per standalone Adaptive
ECU/Machine

One instance per vehicle

Artifacts handled Receives Software Packages Receives Vehicle Packages and Soft-
ware Packages

UCM API (Service) Package Management Vehicle Package Management
ECUs/Machines
being updated

Adaptive only (incl. Classic Machines
on Adaptive ECU, if needed)

Any ECU (Adaptive, Classic, Propri-
etary)

Implemented by ECU Vendor and/or OEM OEM

31 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

Diagnostic Application as UCM
Client

Diagnostic Application as V-UCM
Client

References

• Figures "Architecture overview
for diagnostic use case", "Se-
quence diagram showing the
update process", "Sequence di-
agram showing the data trans-
mission", "Sequence diagram
showing the package process-
ing" in the document [5]

• Figure "Vehicle Update
Architecture" in AU-
TOSAR_EXP_PlatformDesign
[6]

• Figure "Interfaces
of UCM" in AU-
TOSAR_EXP_SWArchitecture
[3]

• Figure 7.1, Figure 7.2 in this
document, Figure "Sequence di-
agram showing the data trans-
mission" in [5]

Table 7.1: The usage of UCM Diagnostic Application

32 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

7.7.6 Non Adaptive Platform update

The interface provided by the AUTOSAR Adaptive Platform in order to update non
AUTOSAR Platform complies with the subset of ISO 22900-2:2017 (D-PDU API) re-
quirements. As this standard’s coverage is wide, it is allowed to implement a reduced
API that is needed to update for instance a AUTOSAR Classic Platform.

The implementation of the D-PDU API is processing binary data from the Flashing
Adapter and do all of the required session, transport and network layer handling to
send and receive the data on the physical vehicle bus with respect to the underlying
protocols. The reason of using ISO 22900-2:2017 is to ensure that the specific Flashing
Adapter from any vehicle or tool manufacturer can operate on a common software
interface and can easily exchange MVCI (Modular Vehicle Communication Interface)
protocol module implementations.

In the case the targeted ECU by an update does not have the capability to switch
between current and new Software Cluster, the vehicle package campaign should
foresee to download not only the new version but also the currently installed version
of the Software Cluster to be updated in order to make possible a rollback from the
new version to the old version of the Software Cluster. The location to store the
current Software Package could be the Flashing Adapter but ultimately it has to be
available to Flashing Adapter in order to flash it in case of a rollback.

As an implementation example, the pdu api source code and the communication pa-
rameters can be at appendix F.

7.7.6.1 D-PDU API implementation support

[SWS_VUCM_01122] Supported physical layers by D-PDU API implementation
Upstream requirements: RS_VUCM_00035

dISO_11898_2_DWCAN (Dual Wire CAN), ISO_11898_3_DWFTCAN (Dual Wire CAN
Fault tolerant), SAE_J2411_SWCAN (Single Wire CAN) and IEEE_802_3(Ethernet)
physical layers shall be supported if their respective physical vehicle bus is available
inside the ECUc

All other physical layers present in D-PDU API are optional.

[SWS_VUCM_01123] Supported application layers by D-PDU API implementa-
tion

Upstream requirements: RS_VUCM_00035

dISO_15765_3 (Unified diagnostic services, UDS on CAN, ISO withdrawn UDS),
ISO_14229_3 (Unified diagnostic services on CAN implementation, UDSonCAN) and

33 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

ISO_14229_5 (Unified diagnostic services on Internet Protocol implementation, UD-
SonIP) application layers shall be supported if their respective application layer is avail-
able inside the ECU.c

All other application layers present in D-PDU API are optional.

[SWS_VUCM_01124] Supported protocols by D-PDU API implementation
Upstream requirements: RS_VUCM_00035

dISO UDS on CAN with Application layer ISO_15765_3, ISO UDS on CAN with Appli-
cation layer ISO_14229_3 (UDSonCAN) and ISO UDS on DoIP with Application layer
ISO_14229_5 (UDSonIP) protocols shall be supported.c

All other protocols are optional.

These protocols are present in ’Table B.2 - Standard protocol combination list’ of ISO
22900-2:2017(E).

7.7.6.2 Not required D-PDU API concepts

Dynamic Link Libraries for Windows operating system are not required. The Windows
installation process out of ISO 22900-2:2017(E) chapter 8.7.2 is not applicable to the
AUTOSAR Adaptive Platform which is using POSIX Operating System.

A D-PDU API implementation can be split at OSI-Layer 4 into a D-PDU API imple-
mentation on OSI-Layer 5 and the VCI-Module on OSI-Layers 3 and 4.

The D-PDU API implementation does not use the D-PDU API root description file
(RDF) as only one D-PDU API implementation is required for UCM within an AUTOSAR
Adaptive Platform.

The only instance of the D-PDU API within a Software Cluster can be statically
linked with the Flashing Adapter.

The D-PDU API implementation does not have to implement a protocol description
file.

The supported protocol module types are fixed in the UCM use case.

The Flashing Adapter can operate the D-PDU API without using symbolic names and
IDs during runtime. If the use case excludes frequent changes to the MDFs, simple
Flashing Adapter can even hardcode (e.g. in a header file) all necessary IDs and
operate the D-PDU API without symbolic names.

D-PDU API implementation does not need to be compatible to SAE J2534-1 and RP
1210a.

The Adaptive Platform does not need any migration path.

34 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

D-PDU API implementation does not need to implement the IOCTL filter data struc-
ture.

7.7.6.3 Not required D-PDU API functions

PDULockResource() and PDUUnlockResource() are used to lock and unlock exclusive
access to a ComLogicalLink in case of parallel usage of the D-PDU API implemen-
tation by multiple applications on the same physical communication link. Flashing of
a Classic ECU always requires some exclusive access and should be handled in the
AUTOSAR Adaptive Platform itself.

The D-PDU API implementation does not have to implement the parameter
PDU_IOCTL_RESET

[SWS_VUCM_01131] PDUIoCtl(PDU_IOCTL_RESET)
Upstream requirements: RS_VUCM_00035

dThe call of PDUIoCtl(PDU_IOCTL_RESET) shall return the error code
PDU_ERR_ID_NOT_SUPPORTED, if PDU_IOCTL_RESET is not implemented.c

[SWS_VUCM_01132] PDUIoCtl(PDU_IOCTL_START_MSG_FILTER),
PDUIoCtl(PDU_IOCTL_CLEAR_MSG_FILTER), PDUIoCtl(
PDU_IOCTL_STOP_MSG_FILTER)

Upstream requirements: RS_VUCM_00035

dThe call of PDUIoCtl() with any of the parameters PDU_IOCTL_START_MSG,
PDU_IOCTL_CLEAR_MSG_FILTER, PDU_IOCTL_SEND_BREAK shall return the er-
ror code PDU_ERR_ID_NOT_SUPPORTED.c

The parameters PDU_IOCTL_START_MSG, PDU_IOCTL_CLEAR_MSG_FILTER and
PDU_IOCTL_CLEAR_MSG_FILTER are intended for the PassThru-Mode for com-
primitives and therefore an implementation is not required for the Flashing Adapter.

The IOCTL command PDU_IOCTL_SEND_BREAK is used to send a break signal on
the ComLogicalLink. A break signal can only be sent on certain physical layers (e.g.
SAE J1850 VPW physical links and UART physical links) which are not supported by
UCM.

The D-PDU API implementation of the AUTOSAR Adap-
tive Platform does not have to implement the returned
codes PDU_ERR_CABLE_UNKNOWN, PDU_ERR_RSC_LOCKED,
PDU_ERR_RSC_NOT_LOCKED, PDU_ERR_API_SW_OUT_OF_DATE and
PDU_ERR_MODULE_FW_OUT_OF_DATE.

There is no cable attached to the ECU and therefore no cable detection return code
PDU_ERR_CABLE_UNKNOWN could occur.

35 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

Locking is not required for the Flashing Adapter, therefore PDU_ERR_RSC_LOCKED
and PDU_ERR_RSC_NOT_LOCKED return code could not occur.

There is no separation of D-PDU API-Software with the
MVCI protocol module firmware required in the AUTOSAR Adap-
tive Platform, so PDU_ERR_API_SW_OUT_OF_DATE and
PDU_ERR_MODULE_FW_OUT_OF_DATE return codes could not occur.

7.7.6.4 Classic platform update with V-UCM and diagnostic tool
Updating Classic from diagnostic tester

yyyy-nn-ddConcept paper 11

VehicleVehicle

Garage tester
Communication medium

Classic

AUTOSAR

(ECU

instance)

Non

AUTOSAR

Adaptive AUTOSAR Machine

UCM

Diagnostic Application is

acting like an OTA Client

Diagnostic Application is

acting like an OTA Client

Flashing

Adapter

Diagnostic

Manager

DoIP

Diagnostic

application

UDS on

CAN

Driver

Interface

Vehicle State

Manager

VCI Module 2

Ethernet

ISO 22900-2 (D-PDU API)

VCI Module 1

CAN

UDS on DoIP

UCM

Master

Classic

AUTOSAR

Classic

AUTOSAR

Communication channel

Ethernet or CAN/DoCAN Bus

Figure 7.2: Classic platform update with V-UCM and diagnostic tool

The Diagnostic Manager connects the Diagnostic tool to the Adaptive Platform. The
diagnostic application is acting like an OTA Client and uses the V-UCM services to
push Vehicle Packages and Software Packages.

Note that this approach allows to update through Diagnostic Tool not only Classic ECU,
but also Adaptive or Proprietary/Legacy Machines.

36 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

7.8 Status reporting

V-UCM supports a mechanism to provide the state of an update campaign typically to
OTA Client, Vehicle Driver Application and Vehicle State Manager.

37 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

stm DOC_V-UCM_StM_CampaignState

TRANSFERRINGCampaign
start

Campaign
aborted

Transfer
finished

IDLE

SYNCING

do / ComputeUpdates

VEHICLEPACKAGE_TRANSFERRING

do / VehiclePackageReceiving

UPDATING

Campaign
failed

Update
start

Campaign
successful

PROCESSING

do / ProcessingSoftwarePackages

ACTIVATING

do / UCM.Activate()

VEHICLE_CHECKING

do / VehicleSanityCheck

CANCELLING

do / Cancell ing

SOFTWAREPACKAGE_TRANSFERRING

do / DistributeSoftwarePackages

ROLLINGBACK_FAILED

All CurrentStatus ==
Activated

cancelCampaign(),
NonRecoverableFailure

[InvalidPackageManifest]

SwPackageInventory
(), GetSwClusterInfo()

transferData
()

All SWPs transferred
[approvalRequired
[process]==True]

/ApprovalRequired := True

ApprovalRequired set False [All
CurrentStatus == kPreparing &
not(InvalidPackageManifest |

LackResources |
FailedDependency)]

Approve()
/ApprovalRequired :=

False[InvalidPackageManifest
| LackResources |

FailedDependency |
NonRecoverableFailure]

All Packages processed
successfully [All ProcessingStates

== kProcessed &
approvalRequired
[activate]==False]

All Packages processed
successfully [All ProcessingStates

== kProcessed &
approvalRequired
[activate]==True]

/ApprovalRequired := True

Approve() [approvalRequired
[activate]==True]

/ApprovalRequired := False

cancelCampaign(),
UCMMaster.deleteTransfer

()

NonRecoverableFailure,
cancelCampaign()

[All CurrentStatus
== kPreparing]

ActivationFailure,
cancelCampaign

()

VehicleCheck
(False),

cancelCampaign()

VehicleCheck
(True)

[All
CurrentStatus==kPreparing]

[(Start Proc. first SWP || A ll SWPs
transferred) & ApprovalRequired

[process]==False & All
ProcessingState==kReady]

transferVehiclePackage
()

/ApprovalRequired:
=False

transferData
(),transferExit

(),
TransferStart

Successful VP check
/ApprovalRequired :=

approvalRequired
[transfer]

[Any CurrentStatus
==

kRollingBackFailed]

transferData
(),transferExit(),
TransferStart

transferExit()
/Check vehicle package

integrity, available resources
and dependencies

All CurrentStatus ==
Activated

[SyncingDone]

Approve() [approvalRequired[process]==True
&& All ProcessingState==kReady]

/ApprovalRequired := False

Figure 7.3: Campaign State Machine (CampaignState field)

38 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

stm DOC_V-UCM_StM_TransferState

IDLE

UPDATING

Campaign
failed

Update
startCampaign

successful
CANCELLING

do / Cancelling

TRANSFERRING
Campaign

start

Campaign
aborted

Transfer
finished

SYNCING

do / ComputeUpdates

ROLLINGBACK_FAILED

[Any CurrentStatus
==

kRoll ingBackFailed]

transferVehiclePackage
()

/ApprovalRequired:
=False

SwPackageInventory
(), GetSwClusterInfo()

[All
CurrentStatus==kPreparing]

[SyncingDone]

[All CurrentStatus
== kPreparing]

Figure 7.4: Campaign State Machine for OTA Client (TransferState field)

Diagrams 7.3 and 7.4 do not include behaviour after reset ([SWS_VUCM_01205] for
more details)

[SWS_VUCM_01201] Sequential orchestration of campaigns
Upstream requirements: RS_VUCM_00043

dV-UCM shall orchestrate at most a single campaign at any one time.c

39 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_01265] TransferState field
Upstream requirements: RS_VUCM_00042

d

VPM::CampaignStateType VPM::TransferState

kIdle kIdle

kSyncing kSyncing

kVehiclePackageTransferring kTransferring

kSoftwarePackage_Transferring kTransferring

kProcessing kUpdating

kActivating kUpdating

kVehicleChecking kUpdating

kRollingBackFailed kRollingBackFailed

kCancelling kCancelling

V-UCM shall provide the state of a campaign over the Transfer-
State field of the V-UCM’s VehiclePackageManagement ser-
vice interface following this above table

c

[SWS_VUCM_01203] CampaignState field
Upstream requirements: RS_VUCM_00042

dV-UCM shall provide the state of a campaign over the CampaignState field of the V-
-UCM VehicleDriverApplicationInterface and VehicleStateManagerIn-
terface.c

There is an overview of the campaign state machine in Fig. 7.3 detailing V-UCM cam-
paign states and transitions.

7.8.1 States

[SWS_VUCM_01204] Initial state
Upstream requirements: RS_VUCM_00035

dV-UCM shall have kIdle default state.c

[SWS_VUCM_01207] Trigger on kSoftwarePackage_Transferring state
Upstream requirements: RS_VUCM_00035, RS_VUCM_00043

dOn transition to kSoftwarePackage_Transferring state and if all UCMs part of
the campaign are in kPreparing state, V-UCM shall start or resume transferring (

40 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

TransferStart and TransferData as well as TransferExit if no streaming re-
quired) the software packages to the UCMs according to the campaign orchestration.c

[SWS_VUCM_01209] Trigger on kProcessing state
Upstream requirements: RS_VUCM_00035, RS_VUCM_00043

dOn transition to kProcessing state, V-UCM shall call ProcessSwPackage method
to UCMs to start or resume processing the software packages ready for processing
according to the campaign orchestration.c

[SWS_VUCM_00210] Transferring of software packages on kProcessing state
Upstream requirements: RS_VUCM_00035, RS_VUCM_00043

dIf V-UCM is in kProcessing state, V-UCM shall transfer Software Packages to
the UCMs according to the campaign orchestration.c

[SWS_VUCM_01212] Trigger on kActivating state
Upstream requirements: RS_VUCM_00035, RS_VUCM_00043

dOn transition to kActivating state, V-UCM shall ask UCMs to activate the software
with Activate method call according to the campaign orchestration as configured in
the VehiclePackage.c

[SWS_VUCM_01214] Final action on kVehicleChecking state
Upstream requirements: RS_VUCM_00035

dIf V-UCM is in kVehicleChecking state and receives the method VehicleCheck
call with parameter vehicleCheckResolution=True, V-UCM shall secondly commit
(Finish) the software on all UCMs part of the campaign.c

[SWS_VUCM_01215] Trigger on kCancelling state
Upstream requirements: RS_VUCM_00035

dOn transition to kCancelling state, V-UCM shall rollback (Rollback) the activated
or being verified Software Clusters, and revert the processed packages (Re-
vertProcessedSwPackages) of the UCMs part of the campaign.c

[SWS_VUCM_01216] Final action on kCancelling state
Upstream requirements: RS_VUCM_00035

dIf V-UCM is in kCancelling state and the rollback of software on all UCMs is suc-
cessful (successful Rollback and transition from kRollingBack to kRolledBack),
V-UCM shall secondly commit (Finish) the software on all UCMs part of the campaign.c

41 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_01217] Monitoring of UCMs
Upstream requirements: RS_VUCM_00035

dV-UCM shall subscribe to the CurrentStatus field, in order to follow the current
campaign from the state of the UCMs.c

7.8.2 States Transitions

[SWS_VUCM_01218] Transition from kIdle state to kSyncing state
Upstream requirements: RS_VUCM_00035, RS_VUCM_00033

dIf V-UCM is in kIdle state for CampaignState field, V-UCM shall enter the kSync-
ing state for CampaignState on a request to GetSwClusterInfo or SwPack-
ageInventory.c

[SWS_VUCM_01219] Transition from kSyncing state to kIdle state
Upstream requirements: RS_VUCM_00035

dIf V-UCM is in kSyncing state for CampaignState field, V-UCM shall enter the
kIdle state on completion of GetSwClusterInfo or SwPackageInventory.c

[SWS_VUCM_01220] Transition from kIdle state to kVehiclePackageTrans-
ferring

Upstream requirements: RS_VUCM_00035

dIf V-UCM is in kIdle state for CampaignState field, V-UCM shall enter the kVe-
hiclePackageTransferring state on successful completion of TransferVehi-
clePackage.c

[SWS_VUCM_01221] Transition from kVehiclePackageTransferring state
Upstream requirements: RS_VUCM_00035, RS_VUCM_00039

dIf V-UCM is in kVehiclePackageTransferring state for CampaignState field,
V-UCM shall enter the kCancelling state for CampaignState on unsuccessful com-
pletion of TransferExit (Vehicle Package) or successful completion of Delete-
Transfer (Vehicle Package) or non recoverable error of TransferData.c

[SWS_VUCM_01222] Transition from kVehiclePackageTransferring state to
kSoftwarePackage_Transferring state

Upstream requirements: RS_VUCM_00035, RS_VUCM_00037, RS_VUCM_00038

dIf V-UCM is in kVehiclePackageTransferring state, V-UCM shall enter the
kSoftwarePackage_Transferring state on successful completion of Transfer-
Exit (Vehicle Package).c

42 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_01227] Transition from kSoftwarePackage_Transferring state
to kCancelling state

Upstream requirements: RS_VUCM_00035

dIf V-UCM is in kSoftwarePackage_Transferring state for CampaignState,
V-UCM shall enter the kCancelling state for CampaignState on successful cancel-
lation request (CancelCampaign) or if there is a non recoverable transfer failure from
one of the UCMs.c

[SWS_VUCM_01228] Transition from kSoftwarePackage_Transferring state
to kProcessing state

Upstream requirements: RS_VUCM_00035, RS_VUCM_00037, RS_VUCM_00038, RS_VUCM_-
00043

dWhen V-UCM is in kSoftwarePackage_Transferring state for CampaignState,
if all Software Packages are ready for processing, all Software Packages from all
UCMs are at state kTransferred or at least one Software Package started being
processed by ProcessSwPackage call to one UCM according to the campaign orches-
tration, V-UCM shall enter the kProcessing state for CampaignState.c

[SWS_VUCM_01229] SafetyConditions while processing stream
Upstream requirements: RS_VUCM_00035, RS_VUCM_00037

dIn the case there is transition from kSoftwarePackage_Transferring state to
kProcessing state, the SafetyConditions for kProcessing state shall apply even
though there are Software Packages transferring.c

It is integrator’s responsibility to make sure in this use case that safety conditions for
Processing will also cover safety approach of transferring.

[SWS_VUCM_01234] Transition from kProcessing state to kActivating state
Upstream requirements: RS_VUCM_00035, RS_VUCM_00037, RS_VUCM_00038

dIf V-UCM is in kProcessing state and all software packages of the campaign have
been successfully (successful ProcessSwPackage) processed and all UCMs part to
the campaign are in the kPreparing state, V-UCM shall enter the kActivating
state.c

[SWS_VUCM_01236] Transition from kProcessing state to kCancelling state
Upstream requirements: RS_VUCM_00035

dIf V-UCM is in kProcessing state for CampaignState, V-UCM shall enter the kCan-
celling state for CampaignState on successful cancellation request (CancelCam-
paign) or in case of non recoverable processing failure of one of the UCMs.c

43 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_01239] Transition from kActivating state to kCancelling state
Upstream requirements: RS_VUCM_00035

dIf V-UCM is in kActivating state for CampaignState, V-UCM shall enter the kCan-
celling state for CampaignState if any UCMs part of the campaign unsuccessfully
(unsuccessful Activate and transition from kVerifying to kRollingBack) com-
pleted activation.c

[SWS_VUCM_01240] Transition from kActivating state to kVehicleChecking
state

Upstream requirements: RS_VUCM_00035, RS_VUCM_00037

dIf V-UCM is in kActivating state, V-UCM shall enter the kVehicleChecking state
if all UCMs part of the campaign successfully (successful Activate and transition from
kVerifying to kActivated) completed activation.c

[SWS_VUCM_01241] Transition from kVehicleChecking state to kCancelling
state

Upstream requirements: RS_VUCM_00035

dIf V-UCM is in kVehicleChecking state for CampaignState, and receives the
method VehicleCheck call with parameter vehicleCheckResolution=False, V-
-UCM shall enter the kCancelling state for CampaignState.c

[SWS_VUCM_01242] Transition from kVehicleChecking stateto kIdle state
Upstream requirements: RS_VUCM_00035

dIf V-UCM is in kVehicleChecking state for CampaignState and all UCMs part of
the campaign transitioned from kCleaningUp to kPreparing, V-UCM shall enter the
kIdle state for CampaignState.c

[SWS_VUCM_01282] Transition from kVehicleChecking state to kIdle state
Upstream requirements: RS_VUCM_00043

dV-UCM shall remove locally stored Software Packages used during the current cam-
paign.c

Transitioning from kVehicleChecking state to kIdle state means the campaign
was successful, therefore stored Software Packages are not needed anymore and
would anyway infringe downgrade protection as required by [SWS_UCM_00103].

[SWS_VUCM_01276] Transition from kRollingBackFailed state to kIdle state
Upstream requirements: RS_VUCM_00035

dIf V-UCM is in kRollingBackFailed state for CampaignState field, V-UCM shall
enter the kIdle state when all UCM CurrentStatus fields have the update state (
UpdateStateType) set to kPreparing.c

44 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_01277] Transition from kCancelling state to kRollingBack-
Failed state

Upstream requirements: RS_VUCM_00035

dIf V-UCM is in kCancelling state for CampaignState field, V-UCM shall enter the
kRollingBackFailed state when at least one UCM CurrentStatus field transitions
to kRollingBackFailed.c

[SWS_VUCM_01243] Transition from kCancelling state to kIdle state
Upstream requirements: RS_VUCM_00035

dIf V-UCM is in kCancelling state for CampaignState and all UCMs part of the
campaign transitioned from kCleaningUp to kPreparing, V-UCM shall enter the
kIdle state for CampaignState.c

[SWS_VUCM_01246] Unreachable UCM during update campaign
Upstream requirements: RS_VUCM_00035, RS_VUCM_00037

dIn case a UCM is not reachable by V-UCM during an update campaign (from kVehi-
clePackageTransferring, kSoftwarePackage_Transferring, kProcess-
ing, kActivating, kVehicleChecking), V-UCM shall transit to kCancelling
state for CampaignState.c

7.9 Campaign cancelling

CancelCampaign method could be used at garage to unlock a blocked update. De-
tails on action by V-UCM, like cleaning up the several UCMs, changing AUTOSAR Adap-
tive Platform states, etc. are implementation specific.

In case an update campaign was cancelled, a new update campaign could use again
the already transferred Software Packages. V-UCM could list transferred Soft-
ware Packages by calling the UCMs with GetSwPackages.

[SWS_VUCM_01244] Cancellation of an update campaign shall be possible
Upstream requirements: RS_VUCM_00035, RS_VUCM_00037

dMethod CancelCampaign from V-UCM shall trigger a campaign cancel from
kVehiclePackageTransferring, kSoftwarePackage_Transferring, kPro-
cessing, kActivating, kVehicleChecking states by transitioning to state kCan-
celling.c

45 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_01270] New campaign disabling
Upstream requirements: RS_VUCM_00035

dV-UCM shall remain in kIdle or kSyncing when a CancelCampaign method has
been called with disableCampaign parameter set to True. The V-UCM remains in
this state (even across multiple power-down/reboot cycles) until CancelCampaign
method is invoked again with the disableCampaign parameter set with falsec

[SWS_VUCM_01271] New campaign enabling
Upstream requirements: RS_VUCM_00035

dMethod AllowCampaign from V-UCM shall reallow new campaign after a Cancel-
Campaign method was called with disableCampaign parameter set.c

[SWS_VUCM_01280] Maximum campaign duration
Upstream requirements: RS_VUCM_00043

dV-UCM shall cancel the campaign when the campaign duration (time from when V-
-UCM transitions to kTransfer, considering only the active or powered Machine time
and excluding time waiting for driver approvals) exceeds maximumDurationOfCam-
paignc

Time counter starts after TransferVehiclePackage method call and have to be
persisted in order to resume after shutdown and restart of Machine.

[SWS_VUCM_01273] CancelCampaign kCancelFailed error
Upstream requirements: RS_VUCM_00035

dCancelCampaign shall raise the error ApplicationError kCancelFailed in
case cancelling of a campaign fails.c

[SWS_VUCM_01274] CancelCampaign kOperationNotPermitted error
Upstream requirements: RS_VUCM_00035

dCancelCampaign shall raise the error ApplicationError kOperationNotPer-
mitted in case the V-UCM states are at kIdle, kSyncing or kCancelling.c

7.10 Campaign Reporting

After campaign is finished (finish method has been sent to all UCMs), V-UCM should
report to Backend server status of the vehicle, with for instance updated information
of Software Clusters present in vehicle.

46 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_01247] Method to read History Report
Upstream requirements: RS_VUCM_00034

dV-UCM shall provide a method GetCampaignHistory to retrieve all actions that
have been performed by V-UCM when exiting state kUpdating from a specific time
window.c

[SWS_VUCM_01248] Content of History Report
Upstream requirements: RS_VUCM_00034

dV-UCM shall save the point in time when TransferVehiclePackage method is
called and the point in time when kIdle state is entered from any state except kSync-
ing based on timeBaseResource and the campaign result in CampaignHistory-
Typec

The elements of UCMHistoryVectorType [SWS_VUCM_00254] are not sorted.

[SWS_VUCM_01279] Keep history of Driver notification during campaign
Upstream requirements: RS_VUCM_00034

dIf all approvalRequired values are false in the campaign when V-UCM is recording
campaign history, V-UCM shall unset driverNotified attribute otherwise set it.c

[SWS_VUCM_01266] Subordinate Not Available On The Network
Upstream requirements: RS_VUCM_00034

dV-UCM shall record persistently into history the error kUCMNotAvailableOn-
TheNetwork in case one of the UCM subordinate involved in the current campaign
stops offering its Service Interface.c

[SWS_VUCM_01267] Vehicle State Manager Communication Error
Upstream requirements: RS_VUCM_00034

dV-UCM shall record persistently the error kVehicleStateManagerCommunica-
tionError into history in case the communication with Vehicle State Manager
is not possible.c

[SWS_VUCM_01268] Vehicle Driver Interface Communication Error
Upstream requirements: RS_VUCM_00034

dV-UCM shall record persistently the error kVehicleDriverInterfaceCommuni-
cationError into history in case the communication with Vehicle Driver Interface is
no longer possible.c

47 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_01269] Campaign cancellation history
Upstream requirements: RS_VUCM_00034

dIf CancelCampaign method is called, V-UCM shall record persistently the error
kCampaignCancelled into history.c

[SWS_VUCM_01283] Errors returned by UCM during campaign
Upstream requirements: RS_VUCM_00034, RS_VUCM_00035

dWhile V-UCM being in a campaign, if UCM returns one of the following non-
recoverable errors: kMemoryInsufficient, kTransferFailed, kDataInsuf-
ficient, kPackageFormatUnsupported, kAuthenticationFailed, kPack-
ageManifestInvalid, kPackageVersionIncompatible, kPackageIncon-
sistent, kOldVersion, kDependencyMissing, kPersistencyAllocation-
Failed, kUpdateSessionRejected, kPrepareUpdateFailed, kVerifica-
tionFailed, kSoftwareClusterMissing, kDeltaIncompatible, kCheck-
sumDescriptionInvalid, kSwclRemovalDenied, V-UCM shall cancel the cam-
paign and persistently report the error in history UCMStepErrorType.returnedError.c

V-UCM behavior is not specified for any other error coming from UCM not listed in
above requirement: the V-UCM could recover, cancel the campaign or do something
else.

7.11 Content of Vehicle Package

• PUBLIC 公開

Software Package A

Signed container

Software Package
Manifest

Vehicle Package

SoftwareCluster A

Signed ARXML file

OEM authentication tag

Software Package
manifest A

Software Package
manifest B

Vehicle Package manifest

Authentication tag

Signed container

Executables

Data

Manifests

Authentication tag

Software Cluster
Manifest

Software Package B

Signed container

Software Package
Manifest

SoftwareCluster B

Authentication tag

Signed container

Executables

Data

Manifests

Authentication tag

Software Cluster
Manifest

Figure 7.5: Vehicle package overview

A Vehicle Package is typically assembled by an OEM Backend. A Vehicle
Package has to be modelled as a so-called VehiclePackage which describes the
content of the Vehicle Package. It contains a collection of Software Pack-
age Manifests extracted from Backend packages stored in the Backend database.

48 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

These Software Packages have to be modelled as a so-called SoftwarePack-
age which describes the content of the Software Package. A Vehicle Package
contains only one Vehicle Package Manifest. Several archive file formats could
be used for the Vehicle Package or Software Package like .zip, gz, bz2, etc.
UCM and V-UCM could implement several extraction algorithm compatible with several
archiving formats and identify the right format to apply by analysing the file header.

It is possible that within an update campaign, several Machine or ECUs need to be
updated/installed/removed by groups. Some Software Clusters could require re-
boot of Machine or ECU, some just a restart of Adaptive Application or nothing
(waiting passively for next reboot) to get activated. To optimize a campaign or fulfil
dependencies, it could be required to activate Software Clusters one after the
other or several at once. To support all possible campaigns, the Vehicle Pack-
age includes a model describing this coordination. It also contains a way to identify
the several involved UCMs for packages distribution within the vehicle and potentially
overwriting default V-UCM for this specific campaign.

You can find below for information purpose a description of the information that must
be contained in Vehicle Package manifest:

• Repository: uri, repository or diagnostic address, for history, tracking and security
purposes

• Vehicle description: vehicle description

• Vehicle Driver notifications: it might be needed to ask vehicle driver if V-UCM can
start transferring Software Packages, processing it and activating it but also
inform him of the necessary safety requirements if applicable.

• Safety policy: safety policy index to be used as argument to subscribe a field to
vehicle safety manager. With this field, V-UCM will be informed at any time of
campaign if vehicle safety is met or not.

• V-UCM identifiers list: defines backup V-UCMs

• Campaign orchestration: You can refer to [7] for more details. This campaign
model allows to group activation of several UCMs and group Software Pack-
ages processing and transferring.

[SWS_VUCM_01301] Vehicle Package authentication
Upstream requirements: RS_VUCM_00039, RS_VUCM_00043

dThe Vehicle Package shall be successfully authenticated by the V-UCM using
CryptoServiceCertificate at TransferData or TransferExit call before
any transfer of the Software Packages, otherwise raise ApplicationError kOp-
erationNotPermitted.c

49 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

If Vehicle Package is not yet authenticated, V-UCM does not accept any transfer
of Software Packages that are not confirmed to be part of Campaign for security
purpose.

[SWS_VUCM_01302] Vehicle Package authentication failure
Upstream requirements: RS_VUCM_00039, RS_VUCM_00043

dIn case Vehicle Package authentication fails at TransferExit call, V-UCM shall
raise the ApplicationError kAuthenticationFailed.c

[SWS_VUCM_01303] Dependencies between Software Clusters
Upstream requirements: RS_VUCM_00035, RS_VUCM_00043

dV-UCM shall check dependencies based on Vehicle Package Manifest, Soft-
ware Packages Manifests and information on already installed Software Clus-
ters and their dependencies retrieved from UCMs using Package Manager service
interface method GetSwClusterManifestInfo before a transfer of Software
Packages.c

The vehicle dependency tree could be resolved by the backend after calling
GetSwClusterInfo.

[SWS_VUCM_01311] Semantic versionning
Upstream requirements: RS_VUCM_00033

dV-UCM shall compute SoftwareCluster dependency check comparing only Ma-
jorVersion and MinorVersion.c

For SoftwareCluster dependency check [SWS_UCM_00319] or Vehicle Pack-
age compatibility against V-UCM [SWS_VUCM_01308], PatchVersion and additional
labels of StrongRevisionLabelString are not considered.

The Vehicle Package contains a Vehicle Package manifest and Software
Packages manifests of ARXML format in order to have interoperability between ven-
dors.

[SWS_VUCM_01305] Vehicle Package format
Upstream requirements: RS_VUCM_00035, RS_VUCM_00043

dWhen the V-UCM receives a Vehicle Package whose Vehicle Package mani-
fest and Software Package manifests formats are not ARXML, then the V-UCM shall
return ApplicationError kPackageManifestInvalid from either Transfer-
Data or TransferExit method call and transition from kVehiclePackageTrans-
ferring or kTransferring to kIdlec

50 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_01307] Vehicle Package format not supported
Upstream requirements: RS_VUCM_00043

dV-UCM shall return ApplicationError kPackageFormatUnsupported from
TransferData or TransferExit methods call in the case the Vehicle Package
format is not supported.c

[SWS_VUCM_01306] TransferExit Invalid package manifest
Upstream requirements: RS_VUCM_00039, RS_VUCM_00043

dTransferExit shall raise the error ApplicationError kPackageManifestIn-
valid upon reception of an invalid manifest.c

[SWS_VUCM_01308] Check Vehicle Package version compatibility against V-
UCM version

Upstream requirements: RS_VUCM_00043

dAt TransferExit call, V-UCM shall raise ApplicationError kPackageVer-
sionIncompatible if the version for the Vehicle Package transferred expressed
by minimumSupportedUcmMasterVersion attribute is higher than the current ver-
sion of V-UCM expressed by version attribute.c

7.12 Vehicle update security and confidentiality

The methods GetSwClusterInfo, SwPackageInventory and GetHistory could
use private or confidential information.

[SWS_VUCM_CONSTR_00013] Confidential information protection
Upstream requirements: RS_VUCM_00033

dThe VehiclePackageManagement and VehicleDriverApplicationInter-
face interfaces shall only be called over secure communication channel providing
confidentiality protection.c

The GetSwClusterInfo, SwPackageInventory, GetCampaignHistory and
GetSwPackages methods are using data that could identify vehicle user and there-
fore should be protected for confidentiality.

7.13 Reporting

7.13.1 Security Events

This functional cluster does not define any security events.

51 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

7.13.2 Log Messages

7.13.2.1 Standardized Logging

During an update campaign V-UCM interacts with multiple applications and UCM’s.
There are multiple events based on the response during the interaction as part of the
update campaign. Therefore, it is important to provide a way to trace update campaign
events within the V-UCM. The following trace points are introduced to be able to do
analysis of important events during an update campaign.

[SWS_VUCM_01312] Campaign start - log start of update campaign
Upstream requirements: RS_VUCM_00047

dWhenever V-UCM starts receiving a Software Package (see [SWS_VUCM_01177]
), V-UCM shall log a DltMessage of type CampaignStarted.c

[SWS_VUCM_01313] Campaign abort - log abort of update campaign
Upstream requirements: RS_VUCM_00047

dWhenever V-UCM aborts the campaign due to failure or explicit cancel campaign re-
quest (see [SWS_VUCM_00181], [SWS_VUCM_01244]), V-UCM shall log a DltMes-
sage of type CampaignAborted.c

[SWS_VUCM_01314]Software Package transfer - log start of Software Pack-
age transfer

Upstream requirements: RS_VUCM_00047

dWhenever V-UCM finishes processing of Vehicle Package and starts transfer of
Software Packages to UCM (see [SWS_VUCM_01177]), V-UCM shall log a DltMes-
sage of type SoftwarePackageTransferStarted.c

[SWS_VUCM_01315] Software Package transfer - log end of Software Pack-
age transfer

Upstream requirements: RS_VUCM_00047

dWhenever V-UCM finishes transfer of Software Packages to UCM (see
[SWS_VUCM_00181]), V-UCM shall log a DltMessage of type SoftwarePackageTrans-
ferFinished.c

[SWS_VUCM_01316]Vehicle Package transfer failure - log failure during trans-
fer of Vehicle Package

Upstream requirements: RS_VUCM_00047

dWhenever V-UCM detects failure in transfer of Vehicle Package (see
[SWS_VUCM_00181]), V-UCM shall log a DltMessage of type VehiclePackage-
TransferFailed.c

52 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_01317] Software Package transfer failure - log failure during
transfer of Software Package

Upstream requirements: RS_VUCM_00047

dWhenever V-UCM detects failure in transfer of Software Package (see
[SWS_VUCM_00181]), V-UCM shall log a DltMessage of type SoftwarePackageTrans-
ferFailed.c

[SWS_VUCM_01318] Start of update - log start of update process
Upstream requirements: RS_VUCM_00047

dWhenever V-UCM starts the update process by requesting package processing to UCM
(see [SWS_VUCM_00181]), V-UCM shall log a DltMessage of type UpdateStarted.c

[SWS_VUCM_01319] Campaign result - log failure of update campaign
Upstream requirements: RS_VUCM_00047

dWhenever update campaign fails (see [SWS_VUCM_00252]), V-UCM shall log a
DltMessage of type CampaignFailed.c

[SWS_VUCM_01320] Campaign result - log success of update campaign
Upstream requirements: RS_VUCM_00047

dWhenever update campaign is successful (see [SWS_VUCM_00252]), V-UCM shall
log a DltMessage of type CampaignSuccessful.c

[SWS_VUCM_01025] LogMessage CampaignAborted
Status: DRAFT
Upstream requirements: RS_VUCM_00047

d

Dlt-Message CampaignAborted

Description Message that is sent by V-UCM if the ongoing campaign is aborted.

MessageId 0x8000d001

MessageType
Info

DLT_LOG_INFO

Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

Campaign
AssociatedWith
VehiclePackage

Campaign associated with vehicle package predefined text

TransferId TransferId uint8 [16] NoUnit

IsAborted is aborted predefined text

c

53 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_01031] LogMessage CampaignFailed
Status: DRAFT
Upstream requirements: RS_VUCM_00047

d

Dlt-Message CampaignFailed

Description Message that is sent by V-UCM after the failure of campaign associated with vehicle package.

MessageId 0x8000d007

MessageType
Info

DLT_LOG_ERROR

Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

Campaign
AssociatedWith
VehiclePackage

Campaign associated with vehicle package predefined text

VehiclePackage
ShortName

Vehicle package shortname uint8 [encoding UTF-8] NoUnit

FailedWith
CampaignResult

failed with campaign result predefined text

UCMMaster
ResolutionType

UCM Master resolution type uint8 [encoding UTF-8] NoUnit

c

[SWS_VUCM_01024] LogMessage CampaignStarted
Status: DRAFT
Upstream requirements: RS_VUCM_00047

d

Dlt-Message CampaignStarted

Description Message that is sent by V-UCM after starting the campaign by receiving vehicle package.

MessageId 0x8000d000

MessageType
Info

DLT_LOG_INFO

Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

Campaign
AssociatedWith
VehiclePackage

Campaign associated with vehicle package predefined text

TransferId TransferId uint8 [16] NoUnit

HasStarted has started predefined text

c

54 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_01032] LogMessage CampaignSuccessful
Status: DRAFT
Upstream requirements: RS_VUCM_00047

d

Dlt-Message CampaignSuccessful

Description Message that is sent by V-UCM after success of campaign associated with vehicle package.

MessageId 0x8000d008

MessageType
Info

DLT_LOG_INFO

Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

Campaign
AssociatedWith
VehiclePackage

Campaign associated with vehicle package predefined text

VehiclePackage
ShortName

Vehicle package shortname uint8 [encoding UTF-8] NoUnit

SuccessfulWith
CampaignResult

successful with campaign result predefined text

UCMMaster
ResolutionType

UCM Master resolution type uint8 [encoding UTF-8] NoUnit

c

[SWS_VUCM_01029] LogMessage SoftwarePackageTransferFailed
Status: DRAFT
Upstream requirements: RS_VUCM_00047

d

Dlt-Message SoftwarePackageTransferFailed

Description Message that is sent by V-UCM after failure in transferring of software package (failure in TransferData/
TransferExit).

MessageId 0x8000d005

MessageType
Info

DLT_LOG_ERROR

Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

TransferOf
SoftwarePackage

Transfer of software package predefined text

SoftwarePackage
ShortName

Software package shortname uint8 [encoding UTF-8] NoUnit

FailedWith
ApplicationError
Code

failed with application error code predefined text

ErrorCode Error Code uint8 [encoding UTF-8] NoUnit

c

55 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_01027] LogMessage SoftwarePackageTransferFinished
Status: DRAFT
Upstream requirements: RS_VUCM_00047

d

Dlt-Message SoftwarePackageTransferFinished

Description Message that is sent by V-UCM after transferring software package.

MessageId 0x8000d003

MessageType
Info

DLT_LOG_INFO

Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

SoftwarePackage Software package predefined text

SoftwarePackage
ShortName

Software package shortname uint8 [encoding UTF-8] NoUnit

TransferredTo
UCM

transferred to UCM predefined text

UcmModule
Instantiation
Identifier

UCM module instantiation identifier uint8 [encoding UTF-8] NoUnit

c

[SWS_VUCM_01026] LogMessage SoftwarePackageTransferStarted
Status: DRAFT
Upstream requirements: RS_VUCM_00047

d

Dlt-Message SoftwarePackageTransferStarted

Description Message that is sent by V-UCM after it processes vehicle package and starts transferring software
packages to UCM.

MessageId 0x8000d002

MessageType
Info

DLT_LOG_INFO

Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

VehiclePackage Vehicle package predefined text

VehiclePackage
ShortName

Vehicle package shortname uint8 [encoding UTF-8] NoUnit

IsProcessedAnd
TransferOf
Software
PackagesStarted

is processed and transfer of software packages
started

predefined text

c

56 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_01030] LogMessage UpdateStarted
Status: DRAFT
Upstream requirements: RS_VUCM_00047

d

Dlt-Message UpdateStarted

Description Message that is sent by V-UCM after requesting package processing to UCM.

MessageId 0x8000d006

MessageType
Info

DLT_LOG_INFO

Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

UpdateOf
SoftwarePackage

Update of software package predefined text

SoftwarePackage
ShortName

Software package shortname uint8 [encoding UTF-8] NoUnit

StartedForUCM started for UCM predefined text

UcmModule
Instantiation
Identifier

UCM module instantiation identifier uint8 [encoding UTF-8] NoUnit

c

[SWS_VUCM_01028] LogMessage VehiclePackageTransferFailed
Status: DRAFT
Upstream requirements: RS_VUCM_00047

d

Dlt-Message VehiclePackageTransferFailed

Description Message that is sent by V-UCM after failure in transferring of vehicle (failure in TransferData/Transfer
Exit).

MessageId 0x8000d004

MessageType
Info

DLT_LOG_ERROR

Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

TransferOf
VehiclePackage
WithTransferId

Transfer of vehicle package with transferid predefined text

TransferId TransferId uint8 [16] NoUnit

FailedWith
ApplicationError
Code

failed with application error code predefined text

ErrorCode Error Code uint8 [encoding UTF-8] NoUnit

c

7.13.3 Violation Messages

No violation messages applicable to V-UCM

57 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

7.13.4 Production Errors

No production errors applicable to V-UCM

58 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

8 API specification

There are no APIs defined in this release.

59 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

9 Service Interfaces

This chapter lists all provided and required service interfaces of the V-UCM.

Tables are generated out of ’arxml’ folder content.

9.1 Type definitions

This chapter lists all types provided by the V-UCM.

The following figures are informative and only meant to support reader having global
view of V-UCM types and service interfaces.

«interface»
Vehicle::ECU::Machine::AUTOSAR Adaptive Platform::VUCM::VPM::

VehiclePackageManagement

+ CampaignState: CampaignStateProgressInfoType
+ RequestedPackage: SwNameVersionType
+ TransferState: TransferStateType
+ VehicleConditionCollection: VehicleConditionCollectionType

+ AllowCampaign(): void
+ CancelCampaign(bool): void
+ DeleteTransfer(TransferIdType): void
+ GetCampaignHistory(unsigned long, unsigned long): CampaignHistoryVectorType
+ GetSwClusterInfo(): SwClusterInfoVectorType
+ GetSwPackages(): SwPackageInfoVectorType
+ GetVehicleUCMInfo(): VehicleUCMInfo
+ SwPackageInventory(SwNameVersionVectorType): SwNameVersionVectorType
+ TransferData(TransferIdType, ByteVectorType, unsigned long): void
+ TransferExit(TransferIdType): void
+ TransferStart(SwClusterNameType, TransferIdType*, unsigned int*): void
+ TransferVehiclePackage(unsigned long, TransferIdType*, unsigned int*): void

requirements
SWS_VUCM_00181

«service»
VUCM

VPM
VSM

VDI

VehiclePackageManagement

«enumeration»
TransferStateType

l iterals
 kIdle = 0x00
 kVehiclePackageTransferring = 0x01
 kSoftwarePackageTransferring = 0x02
 kUpdating = 0x03
 kCancell ing = 0x04

requirements
SWS_VUCM_01178

OTA Client

«dataType»
SwNameVersionType

+ name: SwClusterNameType
+ version: StrongRevisionLabelString

requirements
SWS_UCM_00176

«dataType»
SwNameVersionVectorType

+ swNameVersionVectorType: SwNameVersionType [1..n]

requirements
SWS_VUCM_00177

«dataType»
VehicleUCMInfo

+ ucmsInfoVector: UCMIdentifiersAndVersionsType
+ vehicleUCMVersion: StrongRevisionLabelString

requirements
SWS_VUCM_00307

«dataType»
UCMIdentifiersAndVersionsType

+ idAndVersion: UCMIdentifierAndVersionType [1..n]

requirements
SWS_VUCM_00308

«dataType»
UCMIdentifierAndVersionType

+ id: UCMIdentifierType
+ version: StrongRevisionLabelString

requirements
SWS_UCM_00309

(from UCM API)

«dataType»
CampaignStateProgressInfoType

+ campaignState: CampaignStateType
+ estimatedDuration: uint32
+ progress: uint8

requirements
SWS_VUCM_01022

«use»

Figure 9.1: V-UCM Vehicle Package Management Service Interface

60 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

«enumeration»
CampaignStateType

l i terals
 kIdle = 0x00
 kSyncing = 0x01
 kVehiclePackageTransferring = 0x02
 kSoftwarePackageTransferring = 0x03
 kProcessing = 0x04
 kActivating = 0x05
 kVehicleChecking = 0x06
 kCancelling = 0x07

requirements
SWS_VUCM_01177

«interface»
VehicleDriverApplicationInterface

+ ApprovalRequired: bool
+ CampaignState: CampaignStateProgressInfoType
+ VehicleConditionCollection: VehicleConditionCollectionType

+ AllowCampaign(): void
+ Approve(): void
+ CancelCampaign(bool): void
+ GetCampaignHistory(unsigned long, unsigned long): CampaignHistoryVectorType
+ GetSwClusterInfo(): SwClusterInfoVectorType
+ GetSwPackageDescription(): SwPackageDescVectorType
+ GetVehiclePackageDescription(): VehiclePackageDescriptionType
+ ReportUnsupportedSafetyConditions(VehicleConditionCollectionType): void

requirements
SWS_VUCM_00182

«service»
VUCM

VPM
VSM

VDI
VehicleDriverApplicationInterface

Vehicle
Driver

Interface
ara::
com

«dataType»
CampaignHistoryType

+ campaignResult: CampaignResultType
+ historyVector: UCMHistoryVectorType

requirements
SWS_VUCM_00251

«dataType»
UCMHistoryType

+ UCMHistory: HistoryVectorType
+ UCMid: UCMIdentifierType

requirements
SWS_VUCM_00290

«enumeration»
VUCMResolutionType

l i terals
 kSuccess = 0x00
 kUCMError = 0x01
 kInvalidVehiclePackageManifest = 0x02
 kUCMNotAvailableOnTheNetwork = 0x03
 kVehicleStateManagerCommunicationError = 0x04
 kVehicleDriverInterfaceCommunicationError = 0x05
 kCampaignCancelled = 0x06
 kUnsupportedSafetyCondition = 0x07
 kRoll ingBackFailed = 0x08

requirements
SWS_VUCM_00256

«dataType»
UCMStepErrorType

+ returnedError: uint8
+ softwarePackageStep: SoftwarePackageStepType
+ UCMid: UCMIdentifierType

requirements
SWS_VUCM_00253

«enumeration»
SoftwarePackageStepType

l iterals
 kTransfer = 0x00
 kProcess = 0x01
 kActivate = 0x02

requirements
SWS_VUCM_00255

«dataType»
CampaignResultType

+ campaignResolution: VUCMResolutionVectorType
+ campaignResolutionTime: uint64
+ campaignStartTime: uint64
+ driverNotified: bool
+ UCMStepError: UCMStepErrorType

requirements
SWS_VUCM_00252

«dataType»
SwPackageDescType

+ duration: unit32
+ license: String
+ packageAction: ActionType
+ releaseNotes: String
+ size: uint64
+ swDesc: SwNameVersionType
+ typeApproval: String

requirements
SWS_VUCM_00268

«dataType»
SwPackageDescVectorType

+ swPackageDescription: SwPackageDescType [1..n]

requirements
SWS_VUCM_00269

«dataType»
UCMHistoryVectorType

+ history: UCMHistoryType [1..n]

requirements
SWS_VUCM_00254

«dataType»
UCMStepErrorVectorType

+ UCMStepError: UCMStepErrorType

requirements
SWS_VUCM_00291

«dataType»
HistoryVectorType

+ history: HistoryType [1..n]

requirements
SWS_UCM_00135

(from UCM API)

«dataType»
HistoryType

+ action: ActionType
+ failureError: uint64
+ name: SwClusterNameType
+ resolution: ResultType
+ time: uint64
+ version: StrongRevisionLabelString

requirements
SWS_UCM_00134

(from UCM API)

«enumeration»
UCM API::ActionType

l iterals
 kUpdate = 0x00
 kInstall = 0x01
 kRemove = 0x02
 kUpdateConfiguration = 0x03

requirements
SWS_UCM_00132

«enumeration»
UCM API::ResultType

li terals
 kActivated = 0x00
 kActivatedAndRolledBack = 0x01
 kVerificationFailed = 0x02

requirements
SWS_UCM_00133

«dataType»
CampaignHistoryVectorType

+ campaignHistory: CampaignHistoryType [1..n]

requirements
SWS_VUCM_00296

«dataType»
VUCMResolutionVectorType

+ UcmMasterResolution: VUCMResolutionType

requirements
SWS_VUCM_00304

«dataType»
VehiclePackageDescriptionType

+ estimatedDurationOfCampaign: unint64
+ purposeOfUpdate: String
+ swPackageDesc: SwPackageDescType

requirements
SWS_VUCM_01140

«use»

Figure 9.2: V-UCM Vehicle Driver Application Interface

61 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

«enumeration»
CampaignStateType

l i terals
 kIdle = 0x00
 kSyncing = 0x01
 kVehiclePackageTransferring = 0x02
 kSoftwarePackageTransferring = 0x03
 kProcessing = 0x04
 kActivating = 0x05
 kVehicleChecking = 0x06
 kCancell ing = 0x07

requirements
SWS_VUCM_01177

«dataType»
VehicleConditionType

+ condition: SafetyConditionType
+ safetyState: SafetyStateType

requirements
SWS_VUCM_01310

«interface»
Vehicle::ECU::Machine::AUTOSAR Adaptive Platform::VUCM:

:VSM::VehicleStateManagerInterface

+ CampaignState: CampaignStateType
+ VehicleConditionCollection: VehicleConditionCollectionType

+ PublishSafetyState(VehicleConditionCollectionType): void
+ VehicleCheck(bool): void

requirements
SWS_VUCM_00183

«service»
VUCM

VPM
VSM

VDI

VehicleStateManagerInterface

«dataType»
VehicleConditionCollectionType

+ vehicleConditionCollection: VehicleConditionType [1..n]

requirements
SWS_VUCM_01309

«enumeration»
SafetyStateType

l i terals
 Safe = 0x00
 NotSafe = 0x01
 NotSupported = 0x02

requirements
SWS_VUCM_01138

Vehicle State
Manager

«primitive»
SafetyConditionType

requirements
SWS_VUCM_01114

«use»

Figure 9.3: V-UCM Vehicle State Manager Interface

9.1.1 CampaignHistoryType

[SWS_VUCM_00251] Definition of ImplementationDataType CampaignHistory
Type

Upstream requirements: RS_VUCM_00034

d

Name CampaignHistoryType

Namespace ara::vucm

Kind STRUCTURE

Sub-elements campaignResult CampaignResultType

historyVector UCMHistoryVectorType

repository UriString

Derived from -

Description Campaign history

c

62 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

9.1.2 CampaignHistoryVectorType

[SWS_VUCM_00296] Definition of ImplementationDataType CampaignHistory
VectorType

Upstream requirements: RS_VUCM_00034

d

Name CampaignHistoryVectorType

Namespace ara::vucm

Kind VECTOR <CampaignHistoryType>

Derived from -

Description Represents a list of Campaign history

c

9.1.3 CampaignResultType

[SWS_VUCM_00252] Definition of ImplementationDataType CampaignResult
Type

Upstream requirements: RS_VUCM_00034

d

Name CampaignResultType

Namespace ara::vucm

Kind STRUCTURE

Sub-elements campaignResolution VUCMResolutionVectorType

UCMStepError UCMStepErrorVectorType

campaignStartTime uint64_t

campaignResolutionTime uint64_t

driverNotified bool

Derived from -

Description Campaign Resolution. UCM gets time from Time Sync Functional Cluster via UcmToTime
BaseResourceMapping.timeBaseResource

c

63 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

9.1.4 VUCMResolutionVectorType

[SWS_VUCM_00304] Definition of ImplementationDataType VUCMResolution
VectorType

Upstream requirements: RS_VUCM_00034

d

Name VUCMResolutionVectorType

Namespace ara::vucm

Kind VECTOR <VUCMResolutionType>

Derived from -

Description Vector of V-UCM errors

c

9.1.5 VUCMResolutionType

[SWS_VUCM_00256] Definition of ImplementationDataType VUCMResolution
Type

Upstream requirements: RS_VUCM_00034

d

Name VUCMResolutionType

Namespace ara::vucm

Kind TYPE_REFERENCE

Derived from uint8_t

Description Campaign resolution

Range / Symbol Limit Description

kSuccess 0x00 Successful campaign

kUCMError 0x01 UCM error
kInvalidVehiclePackage
Manifest

0x02 Vehicle Package manifest is invalid

kUCMNotAvailableOnThe
Network

0x03 UCM subordinate not reachable

kVehicleStateManager
CommunicationError

0x04 Communication error with Vehicle State Manager

kVehicleDriverInterface
CommunicationError

0x05 Communication error with Vehicle Driver Interface

kCampaignCancelled 0x06 Campaign was cancelled

kUnsupportedSafetyCondition 0x07 Safety condition not supported by Vehicle Driver Interface Adaptive
Application

kRollingBackFailed 0x08 One UCM failed to revert changes introduced with processed
packages.

c

64 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

9.1.6 UCMStepErrorVectorType

[SWS_VUCM_00291] Definition of ImplementationDataType UCMStepErrorVector
Type

Upstream requirements: RS_VUCM_00034

d

Name UCMStepErrorVectorType

Namespace ara::vucm

Kind VECTOR <UCMStepErrorType>

Derived from -

Description Vector of UCM’s errors

c

9.1.7 UCMStepErrorType

[SWS_VUCM_00253] Definition of ImplementationDataType UCMStepErrorType
Upstream requirements: RS_VUCM_00034

d

Name UCMStepErrorType

Namespace ara::vucm

Kind STRUCTURE

Sub-elements ucmId UCMIdentifierType

softwarePackageStep SoftwarePackageStepType

returnedError uint8_t

Derived from -

Description UCM Error

c

65 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

9.1.8 SoftwarePackageStepType

[SWS_VUCM_00255] Definition of ImplementationDataType SoftwarePackage
StepType

Upstream requirements: RS_VUCM_00034

d

Name SoftwarePackageStepType

Namespace ara::vucm

Kind TYPE_REFERENCE

Derived from uint8_t

Description UCM Software Package step at which error occurred

Range / Symbol Limit Description

kTransfer 0x00 Software Package transfer

kProcess 0x01 Software Package processing

kActivate 0x02 Software Cluster activation

c

9.1.9 UCMHistoryType

[SWS_VUCM_00290] Definition of ImplementationDataType UCMHistoryType
Upstream requirements: RS_VUCM_00034

d

Name UCMHistoryType

Namespace ara::vucm

Kind STRUCTURE

Sub-elements ucmId UCMIdentifierType

historyVector HistoryVectorType

Derived from -

Description History of an UCM

c

66 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

9.1.10 UCMHistoryVectorType

[SWS_VUCM_00254] Definition of ImplementationDataType UCMHistoryVector
Type

Upstream requirements: RS_VUCM_00034

d

Name UCMHistoryVectorType

Namespace ara::vucm

Kind VECTOR <UCMHistoryType>

Derived from -

Description Vector of UCM sub histories

c

9.1.11 CampaignStateType

[SWS_VUCM_01177] Definition of ImplementationDataType CampaignStateType
Upstream requirements: RS_VUCM_00035, RS_VUCM_00042

d

Name CampaignStateType

Namespace ara::vucm

Kind TYPE_REFERENCE

Derived from uint8_t

Description Represents the status of Campaign.

Range / Symbol Limit Description

kIdle 0x00 V-UCM is ready to start a software update campaign.

kSyncing 0x01 V-UCM is providing the list of installed SWCLs (GetSwClusterInfo) or
computing the list of SWCLs to install (SwPackageInventory).

kVehiclePackageTransferring 0x02 A vehicle package is being transferred to V-UCM.

kSoftwarePackage_
Transferring

0x03 V-UCM is transferring software packages to the UCM subordinates.

kProcessing 0x04 The processing of software packages on UCM subordinates is
ongoing. The transferring of software packages may still occur.

kActivating 0x05 The activation of SWCLs on UCM subordinates is ongoing.

kVehicleChecking 0x06 V-UCM is performing post-activation checks (OEM specific).

kCancelling 0x07 V-UCM is rolling-back the activated SWCLs on the UCM subordinates.

kRollingBackFailed 0x08 One UCM failed to revert changes introduced with processed
packages.

c

67 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

9.1.12 CampaignStateProgressInfoType

[SWS_VUCM_01022] Definition of ImplementationDataType CampaignState
ProgressInfoType

Upstream requirements: RS_VUCM_00035, RS_VUCM_00042

d

Name CampaignStateProgressInfoType

Namespace ara::vucm

Kind STRUCTURE

Sub-elements campaignState CampaignStateType

progress uint8_t

estimatedDuration uint32_t

Derived from -

Description Provides state and progress information of the work done in current campaign. The
progress is set to a value representing the progress between 0% and 100% (0x00 ...
0x64). The estimatedDuration is set in seconds, where 0 determines that no estimation is
available if the progress in not equal to 100%. The campaignState is set to the current
state of the V-UCM state machine.

c

9.1.13 TransferStateType

[SWS_VUCM_01178] Definition of ImplementationDataType TransferStateType
Upstream requirements: RS_VUCM_00035, RS_VUCM_00042

d

Name TransferStateType

Namespace ara::vucm

Kind TYPE_REFERENCE

Derived from uint8_t

Description Represents the state of an update from OTA Client perspective.

Range / Symbol Limit Description

kIdle 0x00 V-UCM is ready to start a software update campaign.

kSyncing 0x01 V-UCM is providing the list of installed SWCLs (GetSwClusterInfo) or
computing the list of SWCLs to install (SwPackageInventory).

kTransferring 0x02 Vehicle or Software Packages are being transferred.

kUpdating 0x03 Software Clusters are being updated in the vehicle.

kCancelling 0x04 An error occurred, campaign is being cancelled, reverting changes.

kRollingBackFailed 0x05 One UCM failed to revert changes introduced with processed
packages.

c

68 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

9.1.14 SafetyConditionType

[SWS_VUCM_01114] Definition of ImplementationDataType SafetyConditionType
Upstream requirements: RS_VUCM_00037

d

Name SafetyConditionType

Namespace ara::vucm

Kind STRING

Derived from -

Description The type of the Safety Conditions.

c

9.1.15 VehicleConditionCollectionType

[SWS_VUCM_01309] Definition of ImplementationDataType VehicleCondition
CollectionType

Upstream requirements: RS_VUCM_00037

d

Name VehicleConditionCollectionType

Namespace ara::vucm

Kind VECTOR <VehicleConditionType>

Derived from -

Description Represents a dynamic size array of vehicle safety conditions.

c

69 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

9.1.16 VehicleConditionType

[SWS_VUCM_01310] Definition of ImplementationDataType VehicleCondition
Type

Upstream requirements: RS_VUCM_00037

d

Name VehicleConditionType

Namespace ara::vucm

Kind STRUCTURE

Sub-elements condition SafetyConditionType

state SafetyStateType

Derived from -

Description Safety state of one safety condition.

c

9.1.17 SafetyStateType

[SWS_VUCM_01138] Definition of ImplementationDataType SafetyStateType
Upstream requirements: RS_VUCM_00037

d

Name SafetyStateType

Namespace ara::vucm

Kind TYPE_REFERENCE

Derived from uint8_t

Description Represents the vehicle safety state.

Range / Symbol Limit Description

Safe 0x00 Safe Safety State.

NotSafe 0x01 Not safe Safety State.

NotSupported 0x02 Unsupported Safety State.

c

70 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

9.1.18 SwNameVersionVectorType

[SWS_VUCM_00177] Definition of ImplementationDataType SwNameVersionVec-
torType

Upstream requirements: RS_VUCM_00037

d

Name SwNameVersionVectorType

Namespace ara::vucm

Kind VECTOR <SwNameVersionType>

Derived from -

Description Represents a dynamic size array of Software Name and Version

c

9.1.19 VehicleUCMInfo

[SWS_VUCM_00307] Definition of ImplementationDataType VehicleUCMInfo
Upstream requirements: RS_VUCM_00035

d

Name VehicleUCMInfo
Namespace ara::vucm

Kind STRUCTURE

Sub-elements vehicleUCMVersion StrongRevisionLabelString

ucmsInfoVector UCMIdentifiersAndVersionsType

Derived from -

Description Represents version information of Vehicle UCM and a dynamic size array of UCM
subordinates Identifer and Version.

c

71 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

9.1.20 UCMIdentifiersAndVersionsType

[SWS_VUCM_00308] Definition of ImplementationDataType UCMIdentifiersAnd
VersionsType

Upstream requirements: RS_VUCM_00035

d

Name UCMIdentifiersAndVersionsType

Namespace ara::vucm

Kind VECTOR <UCMIdentifierAndVersionType>

Derived from -

Description Represents a vector of UCM Module Instantiation numbers and versions of UCMs.

c

9.1.21 SwPackageDescType

[SWS_VUCM_00268] Definition of ImplementationDataType SwPackageDesc
Type

Upstream requirements: RS_VUCM_00033

d

Name SwPackageDescType

Namespace ara::vucm

Kind STRUCTURE

Sub-elements swDesc SwNameVersionType

packageAction ActionType

duration uint32_t

typeApproval StringType

license StringType

releaseNotes StringType

size uint64_t

Derived from -

Description Contains general information related to SoftwarePackage that can be used by Human
Interface.

c

72 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

9.1.22 SwPackageDescVectorType

[SWS_VUCM_00269] Definition of ImplementationDataType SwPackageDescVec-
torType

Upstream requirements: RS_VUCM_00033

d

Name SwPackageDescVectorType

Namespace ara::vucm

Kind VECTOR <SwPackageDescType>

Derived from -

Description Represents a dynamic size array of SwPackageDescType.

c

9.1.23 VehiclePackageDescriptionType

[SWS_VUCM_01140] Definition of ImplementationDataType VehiclePackageDe-
scriptionType

Upstream requirements: RS_VUCM_00033

d

Name VehiclePackageDescriptionType

Namespace ara::vucm

Kind STRUCTURE

Sub-elements estimatedDurationOfCampaign uint64_t

purposeOfUpdate StringType

swPackageDesc SwPackageDescVectorType

Derived from -

Description Contains the general information from the Vehicle Package that can be used by Human
Interface.

c

9.2 Provided Service Interfaces

9.2.1 Vehicle Package Management

This chapter lists all provided service interfaces of the V-UCM to OTA Client Adaptive
Application.

Port

73 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_00178] Definition of Port VehiclePackageManagement provided by
functional cluster VUCM

Upstream requirements: RS_VUCM_00035

d

Name VehiclePackageManagement

Kind ProvidedPort Interface VehiclePackageManagement

Description Provide services like receiving and dispatching packages, provide history and status of update
campaigns, generally used by OTA Client.

Variation

c

Service Interface

[SWS_VUCM_00181] Definition of ServiceInterface VehiclePackageManagement
Upstream requirements: RS_VUCM_00033, RS_VUCM_00034, RS_VUCM_00035, RS_VUCM_-

00039, RS_VUCM_00042, RS_VUCM_00043

d

Name VehiclePackageManagement

Namespace ara::vucm

Version 1.0

Fields • TransferState

• CampaignState

• RequestedPackage

• VehicleConditionCollection
Methods • CancelCampaign

• AllowCampaign

• DeleteTransfer

• GetCampaignHistory

• GetSwClusterInfo

• GetSwPackages

• GetVehicleUCMInfo

• SwPackageInventory

• TransferData

• TransferExit

• TransferStart

• TransferVehiclePackage

c

74 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_01156] Definition of Field VehiclePackageManagement.Transfer
State

Upstream requirements: RS_VUCM_00035, RS_VUCM_00036, RS_VUCM_00042, RS_VUCM_-
00043

d

Field TransferState

Description The current status of Campaign from an OTA Client perspective.

Version 1.0

Type TransferStateType

HasGetter true

HasNotifier true

HasSetter false

Enclosing
Service
Interface

VehiclePackageManagement

c

[SWS_VUCM_01157] Definition of Field VehiclePackageManagement.Campaign
State

Upstream requirements: RS_VUCM_00035, RS_VUCM_00036, RS_VUCM_00042, RS_VUCM_-
00043

d

Field CampaignState

Description The current status of Campaign.

Version 1.0

Type CampaignStateProgressInfoType

HasGetter true

HasNotifier true

HasSetter false

Enclosing
Service
Interface

VehiclePackageManagement

c

[SWS_VUCM_01158] Definition of Field VehiclePackageManagement.Requested
Package

Upstream requirements: RS_VUCM_00043

d

Field RequestedPackage

Description Software Package to be transferred to V-UCM, containing Software Package name and version as
defined in Vehicle Package.

Version 1.0
5

75 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

4
Type SwNameVersionType

HasGetter true

HasNotifier true

HasSetter false

Enclosing
Service
Interface

VehiclePackageManagement

c

[SWS_VUCM_01159] Definition of Field VehiclePackageManagement.Vehicle
ConditionCollection

Upstream requirements: RS_VUCM_00038, RS_VUCM_00043

d

Field VehicleConditionCollection

Description A set of safety conditions along with their corresponding states.

Version 1.0

Type VehicleConditionCollectionType

HasGetter true

HasNotifier true

HasSetter false

Enclosing
Service
Interface

VehiclePackageManagement

c

[SWS_VUCM_01160] Definition of Method VehiclePackageManagement.Cancel
Campaign

Upstream requirements: RS_VUCM_00035, RS_VUCM_00037, RS_VUCM_00043

d

Method CancelCampaign

Description This method aborts an ongoing campaign processing of a Vehicle Package.

Version 1.0

FireAndForget false

disableCampaign

Description To forbid new campaign

Type bool

Variation

Parameter

Direction IN

Application
Errors

kOpera-
tionNotPer-
mitted

The operation is not supported in the current context.

Application
Errors kCancelFailed

Cancel failed.

5

76 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

4
Enclosing
Service
Interface

VehiclePackageManagement

c

[SWS_VUCM_01161] Definition of Method VehiclePackageManagement.Allow
Campaign

Upstream requirements: RS_VUCM_00035, RS_VUCM_00037, RS_VUCM_00043

d

Method AllowCampaign

Description To allow a new campaign to start

Version 1.0

FireAndForget false

Enclosing
Service
Interface

VehiclePackageManagement

c

[SWS_VUCM_01162] Definition of Method VehiclePackageManagement.Delete
Transfer

Upstream requirements: RS_VUCM_00043

d

Method DeleteTransfer

Description Delete a transferred Software or Vehicle Package.

Version 1.0

FireAndForget false

id

Description Transfer ID of the currently running request.

Type TransferIdType

Variation

Parameter

Direction IN

Application
Errors

kTransferId-
Invalid

The Transfer ID is invalid.

Application
Errors

kOpera-
tionNotPer-
mitted

The operation is not supported in the current context.

Enclosing
Service
Interface

VehiclePackageManagement

c

77 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_01167] Definition of Method VehiclePackageManagement.GetCam-
paignHistory

Upstream requirements: RS_VUCM_00034

d

Method GetCampaignHistory

Description Getter method to retrieve all actions that have been performed by V-UCM.

Version 1.0

FireAndForget false

timestampGE

Description Earliest timestamp (inclusive)

Type uint64_t

Variation

Parameter

Direction IN

timestampLT

Description Latest timestamp (exclusive)

Type uint64_t

Variation

Parameter

Direction IN

campaignHistory

Description The history of all actions that have been performed by V-UCM.

Type CampaignHistoryVectorType

Variation

Parameter

Direction OUT

Application
Errors

kUCMNo-
tAvail-
ableOn-
TheNetwork

UCM subordinate not available on the network

Enclosing
Service
Interface

VehiclePackageManagement

c

[SWS_VUCM_01168] Definition of Method VehiclePackageManagement.GetSw
ClusterInfo

Upstream requirements: RS_VUCM_00033

d

Method GetSwClusterInfo

Description This method returns the information of the Software Clusters present in the Adaptive Platform,
aggregated from UCM Subordinates or Flashing Adapters.

Version 1.0

FireAndForget false

swInfo

Description List of installed SoftwareClusters that are in state kPresent.
Parameter

Type SwClusterInfoVectorType

5

78 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

4
Variation

Direction OUT

Application
Errors

kUCMNo-
tAvail-
ableOn-
TheNetwork

UCM subordinate not available on the network

Enclosing
Service
Interface

VehiclePackageManagement

c

[SWS_VUCM_01169] Definition of Method VehiclePackageManagement.GetSw
Packages

Upstream requirements: RS_VUCM_00033, RS_VUCM_00042

d

Method GetSwPackages

Description This method returns the Software Packages that are part of current campaign handled by V-UCM.

Version 1.0

FireAndForget false

packages

Description List of Software Packages.

Type SwPackageInfoVectorType

Variation

Parameter

Direction OUT

Application
Errors

kUCMNo-
tAvail-
ableOn-
TheNetwork

UCM subordinate not available on the network

Enclosing
Service
Interface

VehiclePackageManagement

c

[SWS_VUCM_01170] Definition of Method VehiclePackageManagement.GetVehi-
cleUCMInfo

Upstream requirements: RS_VUCM_00033

d

Method GetVehicleUCMInfo

Description This method returns Vehicle UCM version and list of UCM Indentifiers and Versions.

Version 1.0

FireAndForget false

vehicleUCMInfoParameter

Description version of available Vehicle UCM and UCM subordinates.

5

79 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

4
Type VehicleUCMInfo

Variation

Direction OUT

Enclosing
Service
Interface

VehiclePackageManagement

c

[SWS_VUCM_01171] Definition of Method VehiclePackageManagement.SwPack-
ageInventory

Upstream requirements: RS_VUCM_00033

d

Method SwPackageInventory

Description

Version 1.0

FireAndForget false

availableSoftwarePackages

Description List of available Software Packages in Backend corresponding to VIN.

Type SwNameVersionVectorType

Variation

Parameter

Direction IN

requiredSoftwarePackages

Description List of Software Packages to be sent to V-UCM.

Type SwNameVersionVectorType

Variation

Parameter

Direction OUT

Application
Errors

kUCMNo-
tAvail-
ableOn-
TheNetwork

UCM subordinate not available on the network

Enclosing
Service
Interface

VehiclePackageManagement

c

[SWS_VUCM_01163] Definition of Method VehiclePackageManagement.Transfer
Data

Upstream requirements: RS_VUCM_00043

d

Method TransferData

Description Block-wise transfer of a Software or Vehicle Package to V-UCM.

Version 1.0
5

80 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

4
FireAndForget false

id

Description Transfer ID.

Type TransferIdType

Variation

Parameter

Direction IN

data

Description Data block of the Software or Vehicle Package.

Type ByteVectorType

Variation

Parameter

Direction IN

blockCounter

Description Block counter value of the current block.

Type uint64_t

Variation

Parameter

Direction IN

Application
Errors

kOpera-
tionNotPer-
mitted

The operation is not supported in the current context.

Application
Errors

kTransferId-
Invalid

The Transfer ID is invalid.

Application
Errors

kBlockIncor-
rect

The same block number is received twice.

Application
Errors

kBlock-
SizeIncor-
rect

The size of the block exceeds the provided block size from TransferStart or Transfer
VehiclePackage.

Application
Errors

kSizeIncor-
rect

The size of the Software or Vehicle Package exceeds the provided size in Transfer
Start.

Application
Errors

kMemoryIn-
sufficient

Insufficient memory to perform operation.

Application
Errors

kTransfer-
Failed

UCM cannot persist transferred block.

Application
Errors

kBlockIncon-
sistent

Consistency check for transferred block failed.

Application
Errors

kPackageFor-
matUnsup-
ported

The Vehicle Package or Software Package archiving format is not supported.

Application
Errors

kAuthentica-
tionFailed

Package authentication failed.

Application
Errors

kPackageMan-
ifestInvalid

Package manifest could not be read.

Application
Errors

kPackageVer-
sionIncom-
patible

The version of the Software or Vehicle Package to be processed is not compatible
with the current version of UCM or V-UCM.

Application
Errors

kPackageIn-
consistent

Package integrity check failed.

Application
Errors

kOldVersion Software Package version is too old.

Enclosing
Service
Interface

VehiclePackageManagement

c

81 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_01164] Definition of Method VehiclePackageManagement.Transfer
Exit

Upstream requirements: RS_VUCM_00043

d

Method TransferExit

Description Finish the transfer of a Software or Vehicle Package to V-UCM.

Version 1.0

FireAndForget false

id

Description Transfer ID of the currently running request.

Type TransferIdType

Variation

Parameter

Direction IN

Application
Errors

kOpera-
tionNotPer-
mitted

The operation is not supported in the current context.

Application
Errors

kTransferId-
Invalid

The Transfer ID is invalid.

Application
Errors

kDataInsuf-
ficient

TransferExit has been called but total transferred data size does not match expected
data size provided with TransferStart call.

Application
Errors

kAuthentica-
tionFailed

Package authentication failed.

Application
Errors

kPackageFor-
matUnsup-
ported

The Vehicle Package or Software Package archiving format is not supported.

Application
Errors

kPackageIn-
consistent

Package integrity check failed.

Application
Errors

kPackageVer-
sionIncom-
patible

The version of the Software or Vehicle Package to be processed is not compatible
with the current version of UCM or V-UCM.

Application
Errors

kPackageMan-
ifestInvalid

Package manifest could not be read.

Application
Errors

kDependen-
cyMissing

Activation is not allowed because dependencies are missing.

Application
Errors

kOldVersion Software Package version is too old.

Enclosing
Service
Interface

VehiclePackageManagement

c

82 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_01165] Definition of Method VehiclePackageManagement.Transfer
Start

Upstream requirements: RS_VUCM_00043

d

Method TransferStart

Description Start the transfer of a Software Package. The name of the Software Package to be transferred to V-UCM
must be provided. V-UCM will generate a Transfer ID for subsequent calls to TransferData, TransferExit,
DeleteTransfer. Size of Software Package to be used to transfer to UCM subordinate is available in the
Vehicle Package and its contained Software Package Manifests.

Version 1.0

FireAndForget false

softwarePackageName

Description Software Package Short Name of the Software Package to be transferred.

Type SwPackageNameType

Variation

Parameter

Direction IN

id

Description Return TransferId.

Type TransferIdType

Variation

Parameter

Direction OUT

blockSize

Description Size of the blocks to be received with TransferData method.

Type uint32_t

Variation

Parameter

Direction OUT

Application
Errors

kPackageUn-
expected

The Software Package name does not correspond to the RequestedPackage field
value.

Application
Errors

kMemoryIn-
sufficient

Insufficient memory to perform operation.

Enclosing
Service
Interface

VehiclePackageManagement

c

[SWS_VUCM_01166] Definition of Method VehiclePackageManagement.Transfer
VehiclePackage

Upstream requirements: RS_VUCM_00043

d

Method TransferVehiclePackage

Description Start the transfer of a Vehicle Package. The size of the Vehicle Package to be transferred to V-UCM must
be provided. V-UCM will generate a Transfer ID for subsequent calls to TransferData, TransferExit,
ProcessSwPackage, DeleteTransfer. This call starts a new campaign.

Version 1.0

FireAndForget false

5

83 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

4
size

Description Size (in bytes) of the Vehicle Package to be transferred.

Type uint64_t

Variation

Parameter

Direction IN

id

Description Return TransferId.

Type TransferIdType

Variation

Parameter

Direction OUT

blockSize

Description Size of the blocks to be received with TransferData method.

Type uint32_t

Variation

Parameter

Direction OUT

Application
Errors

kBusyWith-
Campaign

Campaign has already started.

Application
Errors

kNewCam-
paignDis-
abled

New campaigns are disabled, calling AllowCampaign will enable new campaigns.

Application
Errors

kMemoryIn-
sufficient

Insufficient memory to perform operation.

Enclosing
Service
Interface

VehiclePackageManagement

c

9.2.2 Vehicle Driver Application Interface

This chapter lists all provided service interfaces of the V-UCM to the Vehicle Driver
Adaptive Application.

Port

[SWS_VUCM_00180] Definition of Port VehicleDriverApplicationInterface pro-
vided by functional cluster VUCM

Upstream requirements: RS_VUCM_00038, RS_VUCM_00043

d

Name VehicleDriverApplicationInterface

Kind ProvidedPort Interface VehicleDriverApplicationInter-
face

Description To be used by Vehicle Driver Interface Adaptive Application in order to interact with human user.

Variation

c

84 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

Service Interface

[SWS_VUCM_00182] Definition of ServiceInterface VehicleDriverApplicationIn-
terface

Upstream requirements: RS_VUCM_00033, RS_VUCM_00034, RS_VUCM_00038, RS_VUCM_-
00043

d

Name VehicleDriverApplicationInterface

Namespace ara::vucm

Version 1.0

Fields • ApprovalRequired

• CampaignState

• VehicleConditionCollection
Methods • CancelCampaign

• AllowCampaign

• Approve

• ReportUnsupportedSafetyConditions

• GetCampaignHistory

• GetSwClusterInfo

• GetSwPackageDescription

• GetVehiclePackageDescription

c

[SWS_VUCM_01142] Definition of Field VehicleDriverApplicationInter-
face.ApprovalRequired

Upstream requirements: RS_VUCM_00038, RS_VUCM_00043

d

Field ApprovalRequired

Description Flag to inform Adaptive Application if approval from Vehicle Driver is required at current state based on
Vehicle Package Manifest.

Version 1.0

Type bool

HasGetter true

HasNotifier true

HasSetter false

Enclosing
Service
Interface

VehicleDriverApplicationInterface

c

85 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_01143] Definition of Field VehicleDriverApplicationInter-
face.CampaignState

Upstream requirements: RS_VUCM_00035, RS_VUCM_00036, RS_VUCM_00042, RS_VUCM_-
00043

d

Field CampaignState

Description The current status of Campaign.

Version 1.0

Type CampaignStateProgressInfoType

HasGetter true

HasNotifier true

HasSetter false

Enclosing
Service
Interface

VehicleDriverApplicationInterface

c

[SWS_VUCM_01144] Definition of Field VehicleDriverApplicationInter-
face.VehicleConditionCollection

Upstream requirements: RS_VUCM_00038, RS_VUCM_00043

d

Field VehicleConditionCollection

Description A set of safety conditions along with its corresponding states.

Version 1.0

Type VehicleConditionCollectionType

HasGetter true

HasNotifier true

HasSetter false

Enclosing
Service
Interface

VehicleDriverApplicationInterface

c

[SWS_VUCM_01145] Definition of Method VehicleDriverApplicationInter-
face.CancelCampaign

Upstream requirements: RS_VUCM_00035, RS_VUCM_00037, RS_VUCM_00043

d

Method CancelCampaign

Description This method aborts an ongoing campaign processing of a Vehicle Package.

Version 1.0

FireAndForget false

5

86 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

4
disableCampaign

Description To forbid new campaign

Type bool

Variation

Parameter

Direction IN

Application
Errors

kOpera-
tionNotPer-
mitted

The operation is not supported in the current context.

Application
Errors kCancelFailed

Cancel failed.

Enclosing
Service
Interface

VehicleDriverApplicationInterface

c

[SWS_VUCM_01146] Definition of Method VehicleDriverApplicationInter-
face.AllowCampaign

Upstream requirements: RS_VUCM_00035, RS_VUCM_00037, RS_VUCM_00043

d

Method AllowCampaign

Description To allow a new campaign to start

Version 1.0

FireAndForget false

Enclosing
Service
Interface

VehicleDriverApplicationInterface

c

[SWS_VUCM_01147] Definition of Method VehicleDriverApplicationInter-
face.Approve

Upstream requirements: RS_VUCM_00038, RS_VUCM_00043

d

Method Approve

Description Called by Adaptive Application to inform V-UCM of the driver’s notification approval

Version 1.0

FireAndForget false

Enclosing
Service
Interface

VehicleDriverApplicationInterface

c

87 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_01148] Definition of Method VehicleDriverApplicationInter-
face.ReportUnsupportedSafetyConditions

Upstream requirements: RS_VUCM_00038, RS_VUCM_00043

d

Method ReportUnsupportedSafetyConditions

Description Called by Adaptive Application to inform V-UCM on all unsupported safety conditions

Version 1.0

FireAndForget false

UnsupportedSafetyConditions

Description The list of all unsupported safety conditions

Type VehicleConditionCollectionType

Variation

Parameter

Direction IN

Enclosing
Service
Interface

VehicleDriverApplicationInterface

c

[SWS_VUCM_01149] Definition of Method VehicleDriverApplicationInterface.Get
CampaignHistory

Upstream requirements: RS_VUCM_00034

d

Method GetCampaignHistory

Description Getter method to retrieve all actions that have been performed by V-UCM.

Version 1.0

FireAndForget false

timestampGE

Description Earliest timestamp (inclusive)

Type uint64_t

Variation

Parameter

Direction IN

timestampLT

Description Latest timestamp (exclusive)

Type uint64_t

Variation

Parameter

Direction IN

history

Description The history of all actions that have been performed by V-UCM.

Type CampaignHistoryVectorType

Variation

Parameter

Direction OUT
5

88 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

4
Application
Errors

kUCMNo-
tAvail-
ableOn-
TheNetwork

UCM subordinate not available on the network

Enclosing
Service
Interface

VehicleDriverApplicationInterface

c

[SWS_VUCM_01150] Definition of Method VehicleDriverApplicationInterface.Get
SwClusterInfo

Upstream requirements: RS_VUCM_00033

d

Method GetSwClusterInfo

Description This method returns the information of the Software Clusters present in the Adaptive Platform,
aggregated from UCM Subordinates or Flashing Adapters.

Version 1.0

FireAndForget false

swInfo

Description List of installed SoftwareClusters that are in state kPresent.

Type SwClusterInfoVectorType

Variation

Parameter

Direction OUT

Application
Errors

kUCMNo-
tAvail-
ableOn-
TheNetwork

UCM subordinate not available on the network

Enclosing
Service
Interface

VehicleDriverApplicationInterface

c

[SWS_VUCM_01151] Definition of Method VehicleDriverApplicationInterface.Get
SwPackageDescription

Upstream requirements: RS_VUCM_00033

d

Method GetSwPackageDescription

Description This method returns the general information of the Software Packages that are part of current campaign
handled by V-UCM.

Version 1.0

FireAndForget false

packages

Description List of Software Packages.

Parameter

Type SwPackageDescVectorType

5

89 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

4
Variation

Direction OUT

Enclosing
Service
Interface

VehicleDriverApplicationInterface

c

[SWS_VUCM_01152] Definition of Method VehicleDriverApplicationInterface.Get
VehiclePackageDescription

Upstream requirements: RS_VUCM_00033

d

Method GetVehiclePackageDescription

Description This method returns the Vehicle Package relevant for communication with user according to UN ECE
156.

Version 1.0

FireAndForget false

vehiclePackageDescription

Description Vehicle Package metadata.

Type VehiclePackageDescriptionType

Variation

Parameter

Direction OUT

Enclosing
Service
Interface

VehicleDriverApplicationInterface

c

9.2.3 Vehicle State Manager

This chapter lists all provided service interfaces of the V-UCM to the Vehicle State
Manager Adaptive Application.

Port

[SWS_VUCM_00179] Definition of Port VehicleStateManagerInterface provided
by functional cluster VUCM

Upstream requirements: RS_VUCM_00037, RS_VUCM_00043

d

Name VehicleStateManagerInterface

Kind ProvidedPort Interface VehicleStateManagerInterface

Description To receive the vehicle safety states from Vehicle State Manager Adaptive Application.

Variation

90 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

c

Service Interface

[SWS_VUCM_00183] Definition of ServiceInterface VehicleStateManagerInter-
face

Upstream requirements: RS_VUCM_00035, RS_VUCM_00037

d

Name VehicleStateManagerInterface

Namespace ara::vucm

Version 1.0

Fields • CampaignState

• VehicleConditionCollection
Methods • PublishSafetyState

• VehicleCheck

c

[SWS_VUCM_01172] Definition of Field VehicleStateManagerInterface.Campaign
State

Upstream requirements: RS_VUCM_00035, RS_VUCM_00036, RS_VUCM_00042, RS_VUCM_-
00043

d

Field CampaignState

Description The current status of Campaign.

Version 1.0

Type CampaignStateType

HasGetter true

HasNotifier true

HasSetter false

Enclosing
Service
Interface

VehicleStateManagerInterface

c

91 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_01173] Definition of Field VehicleStateManagerInterface.Vehicle
ConditionCollection

Upstream requirements: RS_VUCM_00038, RS_VUCM_00043

d

Field VehicleConditionCollection

Description A set of safety conditions, for which values are available in the Vehicle Package, to be computed by the
Vehicle State Manager Adaptive Application, along with its corresponding computed state.

Version 1.0

Type VehicleConditionCollectionType

HasGetter true

HasNotifier true

HasSetter false

Enclosing
Service
Interface

VehicleStateManagerInterface

c

[SWS_VUCM_01174] Definition of Method VehicleStateManagerInterface.Publish
SafetyState

Upstream requirements: RS_VUCM_00037, RS_VUCM_00043

d

Method PublishSafetyState

Description Method called by Vehicle State Manager Adaptive Application when safety state is changed

Version 1.0

FireAndForget false

safetyStates

Description Safety conditions computed by the Vehicle State Manager Adaptive Application.

Type VehicleConditionCollectionType

Variation

Parameter

Direction IN

Enclosing
Service
Interface

VehicleStateManagerInterface

c

92 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_01179] Definition of Method VehicleStateManagerInterface.Vehicle
Check

Upstream requirements: RS_VUCM_00037

d

Method VehicleCheck

Description Method for Vehicle State Manager to inform V-UCM of vehicle check resolution

Version 1.0

FireAndForget false

vehicleCheckResolution

Description Vehicle check resolution. True if check succeeded.

Type bool

Variation

Parameter

Direction IN

Enclosing
Service
Interface

VehicleStateManagerInterface

c

9.3 Required Interface

[SWS_VUCM_01021] Definition of Port PackageManagement required by func-
tional cluster VUCM

Upstream requirements: RS_VUCM_00035, RS_VUCM_00036, RS_VUCM_00043

d

Name PackageManagement

Kind RequiredPort Interface PackageManagement

Description Provides for the Adaptive Platform Machine services like receiving, processing and activating Software
Packages. Also providing update history, status and Software Package and Software Cluster information.

Variation

c

9.4 Application Errors

9.4.1 Application Error Domain

9.4.1.1 UCMErrorDomain

This section lists all application errors of the V-UCM.

93 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

[SWS_VUCM_00136] Definition of Application Error Domain of functional cluster
VUCM

Upstream requirements: RS_VUCM_00039, RS_VUCM_00043

d

Name Code Description

kAuthenticationFailed 8 Package authentication failed.

kBlockInconsistent 25 Consistency check for transferred block failed.

kBlockIncorrect 2 The same block number is received twice.

kBlockSizeIncorrect 30 The size of the block exceeds the provided block size from Transfer
Start or TransferVehiclePackage.

kBusyWithCampaign 34 Campaign has already started.

kCancelFailed 16 Cancel failed.

kChecksumDescriptionInvalid 35 Checksum attribute not recognised.

kDataInsufficient 6 TransferExit has been called but total transferred data size does not
match expected data size provided with TransferStart call.

kDeltaIncompatible 29 Delta package dependency check failed.

kDependencyMissing 21 Activation is not allowed because dependencies are missing.

kMemoryInsufficient 1 Insufficient memory to perform operation.

kNewCampaignDisabled 31 New campaigns are disabled, calling AllowCampaign will enable
new campaigns.

kNotAbleToRevertPackages 15 RevertProcessedSwPackages failed.

kOldVersion 9 Software Package version is too old.

kOperationNotPermitted 5 The operation is not supported in the current context.

kPackageFormatUnsupported 40 The Vehicle Package or Software Package archiving format is not
supported.

kPackageInconsistent 7 Package integrity check failed.

kPackageManifestInvalid 13 Package manifest could not be read.

kPackageUnexpected 32 The Software Package name does not correspond to the
RequestedPackage field value.

kPackageVersionIncompatible 24 The version of the Software or Vehicle Package to be processed is
not compatible with the current version of UCM or V-UCM.

kPrepareUpdateFailed 19 Error during update preparation step.

kProcessSwPackageCanceled 22 The processing operation has been interrupted by a Cancel() call.

kProcessedSoftwarePackageInconsistent 23 The processed Software Package integrity check has failed.

kServiceBusy 12 Another processing is already ongoing and therefore the current
processing request has to be rejected.

kSizeIncorrect 3 The size of the Software or Vehicle Package exceeds the provided
size in TransferStart.

kSoftwareClusterMissing 37 The Software Cluster is not present in the Machine.

kSwclRemovalDenied 39 Attempt to remove PLATFORM_CORE Software Cluster.

kTransferFailed 38 UCM cannot persist transferred block.

kTransferIdInvalid 4 The Transfer ID is invalid.

kUCMNotAvailableOnTheNetwork 42 UCM subordinate not available on the network

kUpdateSessionRejected 33 Start of an update session was rejected by State Management

kVerificationFailed 36 State Management returned verification failure

c

94 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

10 Configuration

The configuration structure of Vehicle Update And Configuration Management is de-
scribed in [7] by Platform Module Development / Update and Configuration Manage-
ment. This chapter defines default values and semantic constraints for this configura-
tion model.

10.1 Default Values

This section defines the default values for attributes defined in [7].

10.2 Semantic Constraints

This section defines semantic constraints for the configuration elements of Vehicle Up-
date and Configuration Management defined in [7].

95 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

A Mentioned Manifest Elements

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Chapter is generated.

Class CryptoServiceCertificate

Package M2::AUTOSARTemplates::SystemTemplate::SecureCommunication

Note This meta-class represents the ability to model a cryptographic certificate.

Tags: atp.recommendedPackage=CryptoServiceCertificates

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadableDesignElement , UploadablePackageElement

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

algorithmFamily CryptoCertificate
AlgorithmFamilyEnum

0..1 attr This attribute represents a description of the family of
crypto algorithm used to generate public key and
signature of the cryptographic certificate.

format CryptoCertificateFormat
Enum

0..1 attr This attribute can be used to provide information about
the format used to create the certificate

maximum
Length

PositiveInteger 0..1 attr This attribute represents the ability to define the
maximum length of the certificate in bytes.

nextHigher
Certificate

CryptoService
Certificate

0..1 ref The reference identifies the next higher certificate in the
certificate chain.

serverName
Identification

String 0..1 attr Server Name Indication (SNI) is needed if the IP address
hosts multiple servers (on the same port), each of them
using a different certificate.

If the client sends the SNI to the Server in the client hello,
the server looks the SNI up in its certificate list and uses
the certificate identified by the SNI.

Table A.1: CryptoServiceCertificate

Class Referrable (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable

Note Instances of this class can be referred to by their identifier (while adhering to namespace borders).

Base ARObject

Subclasses AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint , BswModuleClientServerEntry, Bsw
VariableAccess, CouplingPortTrafficClassAssignment, CppImplementationDataTypeContextTarget ,
DiagnosticEnvModeElement , EthernetPriorityRegeneration, ExclusiveAreaNestingOrder, HwDescription
Entity , ImplementationProps, ModeTransition, MultilanguageReferrable, NmNetworkHandle, Pnc
MappingIdent, SingleLanguageReferrable, SoConIPduIdentifier, SocketConnectionBundle, Someip
RequiredEventGroup, TimeSyncServerConfiguration, TpConnectionIdent

Attribute Type Mult. Kind Note

shortName Identifier 1 attr This specifies an identifying shortName for the object. It
needs to be unique within its context and is intended for
humans but even more for technical reference.

Stereotypes: atpIdentityContributor
Tags:
xml.enforceMinMultiplicity=true
xml.sequenceOffset=-100

5

96 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

4
Class Referrable (abstract)

shortName
Fragment

ShortNameFragment * aggr This specifies how the Referrable.shortName is
composed of several shortNameFragments.

Tags: xml.sequenceOffset=-90

Table A.2: Referrable

Class SoftwareCluster
Package M2::AUTOSARTemplates::AdaptivePlatform::SoftwareDistribution

Note This meta-class represents the ability to define an uploadable software-package, i.e. the SoftwareCluster
shall contain all software and configuration for a given purpose.

Tags: atp.recommendedPackage=SoftwareClusters

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadableDeploymentElement , UploadablePackageElement

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

artifact
Checksum

ArtifactChecksum * aggr This aggregation carries the checksums for artifacts
contained in the enclosing SoftwareCluster. Please note
that the value of these checksums is only applicable at
the time of configuration.

Stereotypes: atpSplitable
Tags: atp.Splitkey=artifactChecksum.shortName, artifact
Checksum.uri

artifactLocator ArtifactLocator * aggr This aggregation represents the artifact locations that are
relevant in the context of the enclosing SoftwareCluster

claimed
FunctionGroup

ModeDeclarationGroup
Prototype

* ref Each SoftwareCluster can reserve the usage of a given
functionGroup such that no other SoftwareCluster is
allowed to use it

conflictsTo SoftwareCluster
DependencyFormula

0..1 aggr This aggregation handles conflicts. If it yields true then
the SoftwareCluster shall not be installed.

Stereotypes: atpSplitable
Tags: atp.Splitkey=conflictsTo

contained
ARElement

ARElement * ref This reference represents the collection of model
elements that cannot derive from UploadablePackage
Element and that contribute to the completeness of the
definition of the SoftwareCluster.

Stereotypes: atpSplitable
Tags: atp.Splitkey=containedARElement

containedFibex
Element

FibexElement * ref This allows for referencing FibexElements that need to be
considered in the context of a SoftwareCluster.

contained
Package
Element

UploadablePackage
Element

* ref This reference identifies model elements that are required
to complete the manifest content.

Stereotypes: atpSplitable
Tags: atp.Splitkey=containedPackageElement

contained
Process

Process * ref This reference represent the processes contained in the
enclosing SoftwareCluster.

dependsOn SoftwareCluster
DependencyFormula

0..1 aggr This aggregation can be taken to identify a dependency
for the enclosing SoftwareCluster.

Stereotypes: atpSplitable
Tags: atp.Splitkey=dependsOn

5

97 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

4
Class SoftwareCluster
design SoftwareClusterDesign * ref This reference represents the identification of all Software

ClusterDesigns applicable for the enclosing Software
Cluster.

Stereotypes: atpUriDef

diagnostic
Deployment
Props

SoftwareCluster
DiagnosticDeployment
Props

0..1 ref This reference identifies the applicable SoftwareCluster
DiagnosticDeploymentProps that are applicable for the
referencing SoftwareCluster.

installation
Behavior

SoftwareCluster
InstallationBehavior
Enum

0..1 attr This attribute controls the behavior of the SoftwareCluster
in terms of installation.

license Documentation * ref This attribute allows for the inclusion of the full text of a
license of the enclosing SoftwareCluster. In many cases
open source licenses require the inclusion of the full
license text to any software that is released under the
respective license.

module
Instantiation

AdaptiveModule
Instantiation

* ref This reference identifies AdaptiveModuleInstantiations
that need to be included with the SoftwareCluster in order
to establish infrastructure required for the installation of
the SoftwareCluster.

Stereotypes: atpSplitable
Tags: atp.Splitkey=moduleInstantiation

releaseNotes Documentation 0..1 ref This attribute allows for the explanations of changes since
the previous version. The list of changes might require
the creation of multiple paragraphs of test.

typeApproval String 0..1 attr This attribute carries the homologation information that
may be specific for a given country.

vendorId PositiveInteger 0..1 attr Vendor ID of this Implementation according to the
AUTOSAR vendor list.

vendor
Signature

CryptoService
Certificate

0..1 ref This reference identifies the certificate that represents the
vendor’s signature.

version StrongRevisionLabel
String

0..1 attr This attribute can be used to describe a version
information for the enclosing SoftwareCluster.

Table A.3: SoftwareCluster

Class SoftwarePackage

Package M2::AUTOSARTemplates::AdaptivePlatform::SoftwareDistribution

Note This meta-class represents the ability to formalize the content of a software package.

Tags: atp.recommendedPackage=SoftwarePackages

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadableDeploymentElement , UploadablePackageElement

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

actionType SoftwarePackageAction
TypeEnum

0..1 attr This attribute defines the action to be taken in the step of
processing the enclosing SoftwarePackage.

activationAction SoftwarePackage
ActivationActionEnum

0..1 attr This attribute governs the action to be taken after the
installation of the SoftwareCluster completed.

artifactLocator ArtifactLocator 0..1 aggr This attribute identifies the software package at
configuration time, out of the context of an AUTOSAR
model.

5

98 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

4
Class SoftwarePackage

compressed
Software
PackageSize

PositiveInteger 0..1 attr This size represents the size of the compressed Software
Package.

deltaPackage
Applicable
Version

StrongRevisionLabel
String

0..1 attr This attribute identifies the version of the included
SoftwareCluster for which the enclosing SoftwarePackage
can be used as a delta update

estimated
DurationOf
Operation

TimeValue 0..1 attr This attribute provides an estimation about how long the
operation of the SoftwarePackage is going to take for its
transfer, processing and activation when updated
standalone (not within an update campaign)

minimum
SupportedUcm
Version

RevisionLabelString 0..1 attr This attribute identifies the minimum supported version of
the UCM for this SoftwarePackage.

packagerId PositiveInteger 0..1 attr This attribute identifies Id of the organization that provides
the packager generating the SoftwarePackage.

packager
Signature

CryptoService
Certificate

0..1 ref This reference identifies the certificate that represents the
packager’s signature.

purposeOf
Update

Documentation 0..1 ref The referenced Documentation is supposed to provide a
description of the purpose of the update.

softwareCluster SoftwareCluster 0..1 ref This reference identifies the SoftwareCluster that belongs
to the SoftwarePackage. The nature of this relation is
actually more like an aggregation than a reference. But
the relation is still modelled as a reference because two
ARElements cannot aggregate each other.

uncompressed
SoftwareCluster
Size

PositiveInteger 0..1 attr This attribute gives an indication about the storage that
has to be available on the target.

Table A.4: SoftwarePackage

Primitive StrongRevisionLabelString

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::PrimitiveTypes

Note This primitive represents a revision label which identifies an object under version control. It represents a
pattern which requires three integer numbers separated by a dot, representing from left to right Major
Version, MinorVersion, PatchVersion and additional labels for pre-release version and build metadata.

Legal patterns are for example: 1.0.0-alpha+001 1.0.0+20130313144700 1.0.0-beta+exp.sha.5114f85

Tags:
xml.xsd.customType=STRONG-REVISION-LABEL-STRING
xml.xsd.pattern=(0|[1-9]\d*)\.(0|[1-9]\d*)\.(0|[1-9]\d*)(-((0|[1-9]\d*|\d*[a-zA-Z-][0-9a-z
A-Z-]*)(\.(0|[1-9]\d*|\d*[a-zA-Z-][0-9a-zA-Z-]*))*))?(\+([0-9a-zA-Z-]+(\.[0-9a-zA-Z-]+)*))?
xml.xsd.type=string

Table A.5: StrongRevisionLabelString

Class UcmModuleInstantiation (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Ucm

Note This meta-class represents the ability to define the target-configuration of a UCM instantiation.

Base ARObject , AdaptiveModuleInstantiation, AtpClassifier , AtpFeature, AtpStructureElement , Identifiable,
MultilanguageReferrable, NonOsModuleInstantiation, Referrable

Subclasses UcmMasterModuleInstantiation, UcmSubordinateModuleInstantiation

Aggregated by AtpClassifier .atpFeature, Machine.moduleInstantiation

Attribute Type Mult. Kind Note

5

99 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

4
Class UcmModuleInstantiation (abstract)

identifier String 0..1 attr This represents the identification of a UCM.

maxBlockSize PositiveInteger 0..1 attr This attribute denotes the maximum block size (unit:
bytes) used in the UCM implementation.

version StrongRevisionLabel
String

0..1 attr This attribute defines the software version of the UCM on
this platform.

Note that the definition of the version is required if the
ability of the SoftwarePackage to require a minimum
version of the UCM is utilized.

Table A.6: UcmModuleInstantiation

Class UcmRetryStrategy

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Ucm

Note This meta-class describes the configuration of the retry strategy for a sub-class of UcmModule
Implementation.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Aggregated by UcmMasterModuleInstantiation.blockInconsistent, UcmMasterModuleInstantiation.serviceBusy, Ucm
MasterModuleInstantiation.ucmNotAvailableOnTheNetwork, UcmMasterModuleInstantiation.update
SessionRejected, UcmSubordinateModuleInstantiation.prepareRollback, UcmSubordinateModule
Instantiation.prepareUpdate, UcmSubordinateModuleInstantiation.verifyUpdate

Attribute Type Mult. Kind Note

maximum
NumberOf
Retries

PositiveInteger 0..1 attr This attribute defines the maximum number of time the
UCM module instantiation shall attempt a retry.

retryInterval
Time

TimeValue 0..1 attr This attribute defines the time (in seconds) between two
retry attempts.

Table A.7: UcmRetryStrategy

Class UcmStep

Package M2::AUTOSARTemplates::AdaptivePlatform::SoftwareDistribution

Note This meta-class represents one rollout step in which software packages are processed on a specific Ucm.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Aggregated by VehicleRolloutStep.ucmProcessing

Attribute Type Mult. Kind Note

software
PackageStep
(ordered)

SoftwarePackageStep * aggr This aggregation represents the sequence of activities to
be carried out in the context of the respective UCM.

ucm UcmDescription 0..1 ref This reference identifies the UCM for which the rollout
step applies.

Table A.8: UcmStep

Class UcmToTimeBaseResourceMapping

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Ucm

Note This meta-class maps the UCM Module Instantiation to the TimeSync Module Instantiation.

Tags: atp.recommendedPackage=FCInteractions

5

100 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

4
Class UcmToTimeBaseResourceMapping

Base ARElement , ARObject , CollectableElement , FunctionalClusterInteractsWithFunctionalClusterMapping,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, UploadableDeployment
Element , UploadablePackageElement

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

timeBase
Resource

TimeBaseResource 0..1 ref This reference identifies the relevant TimeBaseResource.

ucm UcmModuleInstantiation 0..1 ref This reference identifies the relevant UcmModule
Instantiation.

Table A.9: UcmToTimeBaseResourceMapping

Class VehicleDriverNotification
Package M2::AUTOSARTemplates::AdaptivePlatform::SoftwareDistribution

Note This meta-class provides the ability to configure a notification of the vehicle driver with respect to the
update of vehicle software.

Base ARObject

Aggregated by VehiclePackage.driverNotification

Attribute Type Mult. Kind Note

approval
Required

Boolean 0..1 attr This attribute controls whether approval is required for the
driver notification.

notificationState VehicleDriver
NotificationEnum

0..1 attr This attribute is used to configure the notification state.

Table A.10: VehicleDriverNotification

Class VehiclePackage

Package M2::AUTOSARTemplates::AdaptivePlatform::SoftwareDistribution

Note This meta-class represents the ability to define a vehicle package for executing an update campaign.

Tags: atp.recommendedPackage=VehiclePackages

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadableDeploymentElement , UploadablePackageElement

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

driver
Notification

VehicleDriver
Notification

* aggr This aggregation provides the ability to configure the
necessary driver notifications.

estimated
DurationOf
Campaign

TimeValue 0..1 attr This attribute provides an estimation about how long the
campaign based on the VehiclePackage is going to take.

maximum
DurationOf
Campaign

TimeValue 0..1 attr Maximum time allowed for the campaign to be active until
UCM Master automatically cancels the campaign.

minimum
SupportedUcm
MasterVersion

RevisionLabelString 0..1 attr This attribute identifies the minimum supported version of
the UCM Master for this VehiclePackage.

packager
Signature

CryptoService
Certificate

0..1 ref This reference identifies the certificate that represents the
packager’s signature.

repository UriString 0..1 attr This attribute identifies the repository where the Vehicle
Package is stored.

5

101 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

4
Class VehiclePackage

rollout
Qualification
(ordered)

VehicleRolloutStep * aggr This represents the rollout qualification.

ucm UcmDescription * aggr This aggregation represents the UcmDescriptions to be
considered in the context of the VehiclePackage.

ucmMaster
Fallback
(ordered)

UcmDescription * ref This reference lists the fallback order of Ucms that can
take over the master role if the master goes down.

vehicle
Description

Documentation 0..1 ref This reference identifies the vehicle description.

Table A.11: VehiclePackage

Class VehicleRolloutStep

Package M2::AUTOSARTemplates::AdaptivePlatform::SoftwareDistribution

Note This meta-class represents the ability to define a rollout-condition for a vehicle update campaign.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Aggregated by VehiclePackage.rolloutQualification

Attribute Type Mult. Kind Note

safetyCondition String * attr This attribute represents a list of textual safety conditions
(e.g.: close the driver window) that need to be fulfilled
before the rollout step can proceed and need to be
maintained while the campaign’s rolloutQualification is
executed.

ucmProcessing UcmStep * aggr This aggregation collects the UcmProcessingSteps that
make up the rollout step.

violatedSafety
Condition
Behavior

ViolatedSafetyCondition
BehaviorEnum

0..1 attr This attribute provides options for the configuration of the
reaction to a violated safety condition.

Table A.12: VehicleRolloutStep

Enumeration ViolatedSafetyConditionBehaviorEnum

Package M2::AUTOSARTemplates::AdaptivePlatform::SoftwareDistribution

Note This enumeration provides formal options for the configuration of the reaction to a violated safety
condition.

Aggregated by VehicleRolloutStep.violatedSafetyConditionBehavior

Literal Description

cancelCampaign This enumerator supports the ability to cancel the update campaign in response to a violated safety
condition.

Tags: atp.EnumerationLiteralIndex=1

waitForVehicleSafe
State

This enumerator supports the ability to wait for the vehicle to acquire a safe state in response to a
violated safety condition.

Tags: atp.EnumerationLiteralIndex=0

Table A.13: ViolatedSafetyConditionBehaviorEnum

102 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

B Platform Extension API (normative)

The focus of the APIs in this section are for OEM-specific platform extensions. The
abstraction of the interfaces is lower which could lead to a higher machine dependency.

103 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

C Interfaces to other Functional Clusters (informative)

C.1 Overview

AUTOSAR decided not to standardize interfaces which are exclusively used between
Functional Clusters (on platform-level only), to allow efficient implementations, which
might depend e.g. on the used Operating System.

This chapter provides informative guidelines how the interaction between Functional
Clusters looks like, by clustering the relevant requirements of this document to describe
Inter-Functional Cluster (IFC) interfaces. In addition, the standardized public interfaces
which are accessible by user space applications (see chapters 8 and 9) can also be
used for interaction between Functional Clusters.

The goal is to provide a clear understanding of Functional Cluster boundaries and in-
teraction, without specifying syntactical details. This ensures compatibility between
documents specifying different Functional Clusters and supports parallel implementa-
tion of different Functional Clusters. Details of the interfaces are up to the platform
provider. Additional interfaces, parameters and return values can be added.

C.2 Interface Tables

104 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

D Packages distribution within vehicle detailed
sequence examples

D.1 Collect information of present Software Clusters in vehicle

From a regular basis, V-UCM and UCM can collect information of present Software
Clusters from the other AUTOSAR Adaptive Platforms of the vehicle in order to
be used later when communicating with Backend and then determine if there are new
actions (update, remove, install) required.

Adaptive platform BAdaptive platform A

V-UCM UCM 1

GetSwClusterInfo()

:SwClusterInfoVector

Figure D.1: Collect information of Software Clusters present in vehicle from several AU-
TOSAR Adaptive Platforms

D.2 Action computation

In order to find out if there is a new update available from Backend or the need to install
or remove a Software Cluster, vehicle and Backend have to share their current
status and either Backend or vehicle have to compute what UCM Master actions are
needed.

Backend will have the possibility to push a package into the vehicle when communi-
cation is established, for instance for security purpose.

Communication trial between Backend and V-UCM can be done on driver’s request or
from a scheduler.

D.2.1 Pull package from Backend into vehicle

Case where vehicle is computing the difference between Software Clusters ver-
sions that are present in vehicle and the ones available in Backend.

105 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

Adaptive Platform C

��� ����	
 ��
�� ���
����� ������
���

�� ����
������� ��
������ ��		��
��	

��
� �����	� �	�
���
� �����

������� �	�
����� ����

���

Adaptive Platform BAdaptive Platform A

V-UCMOTA Client UCM 1 UCM 2

opt Optional

loop

�	�� ��		��
��	 �� ��
 ��
� ��� ����	
�

�����	� �� ��	��	� �
� �	��	
��� ����� �	 !"

������� ��##
	���
�� �� ��� ����	

�����	� ��	�� ������

$������

%�& &��
�� ��#�

�� ���

���'� ���
�� ��
���
��

:
TransferState=kIdle

:
transferDataReturn

transferData(transferId, block,
blockCounter)

:transferId

:
TransferState=Transferring

TransferVehiclePackage
(Size)

:
SwNameVersionVector

transferExit
(transferId)

SwPackageInventory
(SwNameVersionVector)

GetSwClusterInfo
()

:
TransferState=kIdle

MergeSwClusterInfoVectors
()

:
SwClusterInfoVector

GetSwClusterInfo
()

ComputeUpdates
()

:
SwClusterInfoVector

ComputeDependencies
()

:
transferExitReturn

Figure D.2: Pull package from backend

D.2.2 Push package from backend into vehicle

Case where Backend is computing the difference between Software Clusters ver-
sions that are present in vehicle and the ones available in Backend.

106 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

V-UCMOTA Client UCM 1 UCM 2

opt Optionnal

������� 	
 ���
�
�	�� 	�
������

����

���
 	� ���	���

�������
���
 ���	���

�������

loop

:
transferExitReturn

ComputeDependencies
()

:transferId

:
transferDataReturn

transferData(transferId, block,
blockCounter)

transferExit
(transferId)

:
TransferState=kTransferring

transferVehiclePackage
(Size)

BackendComputeUpdatesAndDependencies
()

:
SwClusterInfoVector

MergeSwClusterInfoVectors
()

GetSwClusterInfo
()

:
TransferState=kIdle

GetSwClusterInfo
()

GetSwClusterInfo
()

:
SwClusterInfoVector

:
SwClusterInfoVector

Figure D.3: Push package from backend

107 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

D.3 Packages transfer from backend into targeted UCM

Adaptive platform CAdpative platform BAdaptive Platform A

V-UCM UCM 1OTA Client UCM 2Driver HMI Vehicle State Manager

opt Driver notification

loop transfer blocks

opt Vehicle Safety condition

:
CampaignState.campaignState=kVehiclePackage_Transferring

ParseSWCLPackageManisfests(): ((UCM Slave1 Id,
SWCLPackageBSize),(UCM slave2 Id, SWCLPackageBSize))

:
CampaignState.campaignState=kVehiclePackage_Transferring

:
SwClusterInfo

:
SwClusterInfo

GetSwClusterInfo
()

:
ApprovalRequired==True

subcribe
(VehicleConditionCollection)

PublishSafetyState
(VehicleConditionCollection)

ManifestAuthentication
(Signature)

TemporaryStoreVehiclePackageManifest
()

transferExit
(transferId)

:
transferDataReturn

:
CampaignState.campaignState=kSoftwarePackage_Transferring

transferData(transferId, block,
blockCounter)

Approve
()

GetSwPackageDescription
()

:
CampaignState.campaignState=kVehiclePackage_Transferring

Get Metadata from Vehicle Package
Manifest()

:
TransferState=kIdle

WaitApproval
()

:
SwClusterInfo

TransferVehiclePackage
(Size)

:
transferExitReturn

:
SwPackageDescVectorType

GetSwClusterInfo
()

:transferId

GetSwClusterDescription
()

:TransferState =
Transferring

subscribe
(VehicleConditionCollection)

Figure D.4: Stream packages blocks from backend into targeted UCM

108 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

Adaptive platform CAdpative platform BAdaptive Platform A

V-UCM UCM 1OTA Client UCM 2Driver HMI Vehicle State Manager

par Transfers

loop Streaming of package A

loop Streaming of package B

������� 	�
����� ���

���
�
��� ������

�� ��
�	��� �����

����	��������
�� �

�������
��

:
transferExitReturn

transferExit
(transferId1)

:
transferDataReturn

:
transferDataReturn

ConsistencyCheck
(Checksum)

transferExit
(transferId1)

:
CampaignState.campaignState=kSoftwarePackage_Transferring

:
TransferState=kUpdating

:
CampaignState.campaignState=kProcessing

PackageAuthentication
(PackageSignature)

transferData(transferId1, block,
blockCounter)

transferData(transferId1, block,
BlockCounter)

checkAvailableMemory
()

:
transferExitReturn

:RequestedPackage ==
SWCLPackageAName

transferExitReturn
()

PackageAuthentication
(PackageSignature)

transferExit
(TransferId2)

:
CampaignState.campaignState=kSoftwarePackage_Transferring

:
transferDataReturn

:
transferId1

transferData(transferId2, Block,
BlockCounter)

:
transferDataReturn

:
SafetyState=True

:
transferId2

TransferStart
(SWCLPackageAName)

:RequestedPackage ==
SWCLPackageBName

:
transferId2

:transferId

CheckAvailableMemory
()

CheckVersion
(Version,
PreviousVersion)

TransferStart
(SWCLPackageASize)

TransferStart
(SWCLPackageBSize)

transferData(transferId2, Block,
BlockCounter)

TransferStart
(SWCLPackageBName)

transferExit
(transferId2)

:
TransferExitReturn

Figure D.5: Stream packages blocks from backend into targeted UCM

109 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

D.4 Package processing

V-UCM UCM 1Driver HMI UCM 2Vehicle State Manager

opt Vehicle driver notification for processing

opt Vehicle safety state

:
CampaignState.campaignState=kProcessing

Wait for Safe
conditions()

PublishSafetyState
(VehicleConditionCollection)

WaitApproval
()

PublishSafetyState
(VehicleConditionCollection)

:
ApprovalRequired==True

:
VehicleConditionCollection

:
VehicleConditionCollection

Approve
()

subscribe
(VehicleConditionCollection)

CheckVehicleSWCLDependencies
(VehiclePackageDependencies)

:CampaignState.campaignState =
SoftwarePackage_Transferring

Subscribe
(CurrentStatus)

:All ProcessingState=kReady|
kProcessing

:
CampaignState.campaignState=kSoftwarePackage_Transferring

ParseVehiclePackageManifest(): CampaignOrchestration,
Dependencies

Figure D.6: Packages processing by UCMs

110 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

V-UCM UCM 1Driver HMI UCM 2Vehicle State Manager

par Processes packages

opt Check on-going processing

opt Check on-going processing

GetSwPackages():
SwClusterInfoVectorType

GetSwPackages(SwInfoName2):
SwClusterInfoVectorType

ParseActionFromManifest
()

:
CampaignState.campaignState=kActivating

ParseActionFromManifest
()

ManifestConsistencyCheck
()

PackageIntegrityCheck
()

ProcessSwPackage(transferId2):
ProcessSwPackageReturnType

CheckSWCLAvailableMemory
(SWCLPayloadSize)

:
ProcessSwPackageReturn

ManifestConsistencyCheck
()

:CampaignState.campaignState =
kProcessing

CheckSWCLAvailableMemory
(SWCLPayloadSize)

PackageIntegrityCheck
()

ProcessSwPackage(transferId1):
ProcessSwPackageReturnType

Figure D.7: Packages processing by UCMs

111 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

D.5 Package activation

V-UCM UCM 1Driver HMI UCM 2Vehicle State Manager

opt Optional Action

par Activations could be performed in parallel

�� ������� �	�
���
�

����
�
�
 �	�
���
�

opt Check Vehicle Safety conditions before/during activation

Subscribe
(CurrentStatus)

swapPartitionAndSyncThem
()

:
VehicleState

:0

CheckPackageDependencies
(SWCLDependencies)

startNewSWCLIfNeeded
()

:CurrentStatus =
kActivating

:0

:All
ProcessingState=kProcessed

DefineActivationMethod
(Manifest or
ActionMethod)

Activate
(ActivationMethod)

Subscribe
(CurrentStatus)

:CurrentStatus =
kVerifying

:
CampaignState.campaignState=kActivating

:CurrentStatus =
kActivated

Wait for Safe
Vehicle()

stopOldSWCLIfNeeded
()

subscribe
(VehicleConditionCollection)

CheckPackageDependencies
(SWCLDependencies)

WaitApproval
()

:CurrentStatus =
kActivating

ApprovalRequired=True
()

:
CampaignState.campaignState=kProcessing

PublishSafetyState(All states
safe)

:CurrentStatus =
kVerifying

:
VehicleConditionCollection

:CurrentStatus =
kActivated

Approve
()

DefineActivationMethod
(Manifest or
ActionMethod)

:
CampaignState.campaignState=Processing

Activate
(ActivationMethod)

:
READY

Figure D.8: Packages activation by UCMs

112 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

V-UCM UCM 1Driver HMI UCM 2Vehicle State Manager

:
CampaignState.campaignState=kIdle

:CurrentStatus.UpdateState =
kPreparing

Finish
()

:CurrentStatus.UpdateState =
kPreparing

VehicleCheck(VehicleCheckResolution
== True)

VehicleChecks
()

:CurrentStatus.UpdateState =
kCleaningUp

:CurrentStatus.UpdateState =
kCleaningUp

Finish
()

:
CampaignState=Vehicle_Checking

:
CampaignState.campaignState=Vehicle_Checking

Figure D.9: Packages activation by UCMs

D.6 Package rollback

V-UCM UCM 1Driver HMIOTA Client Vehicle State Manager

alt

[UCM verify fai ling]

[VSM agregated verify fai ling]

:CurrentStatus =
kRoll ingBack

CheckPackageDependencies
(SWCLDependencies)

Activate
(CampaignOrchestration)

:CurrentStatus =
kCleaningUp

Finish
()

:
TransferState=kIdle

:
CampaignState.campaignState=kIdle

:
TransferState=kCancell ing

:
CampaignState.campaignState=kCancelling

:CurrentStatus =
kRolledBack

VehicleCheck
(False)

:CurrentStatus =
kVerifying

DefineActivationMethod
(Manifest or
ActionMethod)

:kReady

:
CampaignState.campaignState=kActivating

:CurrentStatus =
kActivating

Subscribe
(CurrentStatus)

RollBack
()

Figure D.10: Packages rollback by UCMs

113 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

D.7 Campaign reporting

OTA Client V-UCM UCM 1 UCM 2Driver HMI

par Checking UCM slaves states

opt Optional Action

opt Check UCM state

opt

CampaignJudgement
()

getCampaignHistory(timeFrom,
timeTo)

GetCampaignHistory(timeForm,
timeTo)

:
IDLE

:
CampaignHistoryType

GetHistory(timeStampGE,
timeStampLT)

Subscribe
(CurrentStatus)

:
GetHistoryReturnType

Subscribe
(CurrentStatus)

:
GetHistoryReturnType

CampaignAggregation
()

:
IDLE

:
CampaignState.campaignState=kIdle

GetHistory(timeStampGE,
timeStampLT)

:
CampaignHistoryType

Figure D.11: Campaign reporting to backend

114 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

E Security Analysis of Installation and Update

This chapter presents a summary for the security analysis of the V-UCM. Some of
the threats could not be addressed by specifying AUTOSAR requirements. The main
reason for not specifying the countermeasures is to allow vendors to flexibly decide on
the solution that fits their setup. Here we aim to raise awareness and provide advice
on the selected topics:

E.1 Securing Vehicle Package

V-UCM is following update campaign contained in the Vehicle Packages it receives.
Therefore, integrity and authenticity of Vehicle Package are critical to protect system
integrity. It shall be ensured that the Vehicle Package is neither illegitimately altered
nor issued by unauthorized parties. This can be achieved by applying cryptographic
techniques such as digital signatures. The period that a Vehicle Package resides in
V-UCM before the campaign being completed shall not be neglected. It provides a
window of opportunity for an attacker to tamper with the Vehicle Package after the
authentication is done at TransferExit.

Information disclosure is another security threat category that might be applicable to
a Vehicle Package. If it contains sensitive information, such as intellectual properties
or cryptographic keys, require confidentiality protection in addition to integrity and au-
thenticity when being persisted or transmitted over a communication channel.

Another aspect of protecting a Vehicle Package is its freshness. An attacker may try
to manipulate the system by downgrading the software via replaying an authentic but
older Software Package. In this regard, the platform shall ensure that only newer pack-
ages (i.e. packages that contain newer version of installed SWCL) can be installed.

E.2 Securing Calls to V-UCM

V-UCM provides a very critical functionality in the vehicle that allows modifying appli-
cations and platform components. In that sense, it is critical to prevent unauthorized
access to V-UCM, meaning only legitimate callers should be allowed to reach the V-
UCM service interfaces. This is primarily enforced in the communication layer sup-
ported by the Identity and Access Management. Additionally, the calls to the V-UCM
interfaces shall be protected against altering, e.g. changing API arguments. When the
service and client reside on the same machine, the security relies on the integrity of
the operating system and the platform. In case, the service and the client are running
on different machines, a secure communication, assuring authenticity and integrity of
communication, is additionally required.

Moreover, some API methods of the V-UCM interfaces returns sensitive information
about the platform. This subset (for instance GetSwClusterInfo, GetCampaingHistory,

115 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

GetSwPackages, SwPackageInventory) shall be protected against information disclo-
sure and should only be reachable over a channel that provides confidentiality.

E.3 Suppressing Call to V-UCM

Multiple scenarios can be envisioned where an attacker targets suppressing the calls
to V-UCM. The attack could block the calls to or the response from V-UCM. In both
cases the caller of the service may assume that V-UCM is not responding and retries
its request. This would lead to undesired overhead on the system. For such scenarios,
it is recommended that both V-UCM and the Adaptive Applications interacting with
V-UCM consider reporting security events when same calls repeatedly received at V-
UCM or calls repeatedly fail at the caller side. This information could potentially be
picked up by Intrusion Detection Systems or Anomaly Detection Systems.

E.4 Resource Starvation

According to the current specification, the available resources for transferring a Vehicle
Package is only checked when TransferStart is called but not reserved. This means,
while the transfer is ongoing, the system storage can be exhausted by other processes
using the same storage media. In this regard, a solution could be to reserve the nec-
essary resources for the Vehicle Package transfer or processing from the beginning to
prevent attacks aiming at such scenarios.

116 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

F Demonstrator Examples

Following is pdu api example header file:
1 #ifdef _PDUAPI_EXPORT
2 # define EXTERNC extern "C"
3 #else // _PDUAPI_EXPORT
4 # define EXTERNC /* EXTERNC */
5 #endif // _PDUAPI_EXPORT
6

7 typedef uint8_t UNUM8; /* Unsigned numeric 8 bits.*/
8 typedef int8_t SNUM8; /* Signed numeric 8 bits.*/
9 typedef uint16_t UNUM16; /* Unsigned numeric 16 bits.*/

10 typedef int16_t SNUM16; /* Signed numeric 16 bits.*/
11 typedef uint32_t UNUM32; /* Unsigned numeric 32 bits.*/
12 typedef int32_t SNUM32; /* Signed numeric 32 bits.*/
13 typedef char CHAR8; /* ASCII-coded 8-bit character value (ISO 8859-1 (Latin

1)).*/
14

15 constexpr UNUM32 PDU_ID_UNDEF = 0xFFFFFFFE; /* Undefined ID value. Used to
indicate

16 an ID value is undefined.*/
17 constexpr UNUM32 PDU_HANDLE_UNDEF = 0xFFFFFFFF; /* Undefined handle value.

Used to indicate a Handle value is
18 undefined. */
19

20 typedef enum E_PDU_IT
21 {
22 PDU_IT_IO_UNUM32 = 0x1000, /* IOCTL UNUM32 item. */
23 PDU_IT_IO_PROG_VOLTAGE = 0x1001, /* IOCTL Program Voltage item. */
24 PDU_IT_IO_BYTEARRAY = 0x1002, /* IOCTL Byte Array item. */
25 PDU_IT_IO_FILTER = 0x1003, /* IOCTL Filter item. */
26 PDU_IT_IO_EVENT_QUEUE_PROPERTY = 0x1004, /* IOCTL Event Queue Property

item. */
27 PDU_IT_RSC_STATUS = 0x1100, /* Resource Status item */
28 PDU_IT_PARAM = 0x1200, /* ComParam item */
29 PDU_IT_RESULT = 0x1300, /* Result item */
30 PDU_IT_STATUS = 0x1301, /* Status notification item */
31 PDU_IT_ERROR = 0x1302, /* Error notification item */
32 PDU_IT_INFO = 0x1303, /* Information notification item */
33 PDU_IT_RSC_ID = 0x1400, /* Resource ID item */
34 PDU_IT_RSC_CONFLICT = 0x1500, /* Resource Conflict Item */
35 PDU_IT_MODULE_ID = 0x1600, /* Module item */
36 PDU_IT_UNIQUE_RESP_ID_TABLE = 0x1700, /* Unique Response Id Table Item

*/
37 } T_PDU_IT;
38

39 typedef enum E_PDU_COPT
40 {
41 PDU_COPT_STARTCOMM = 0x8001,
42 PDU_COPT_STOPCOMM = 0x8002,
43 PDU_COPT_UPDATEPARAM = 0x8003,
44 PDU_COPT_SENDRECV = 0x8004,
45 PDU_COPT_DELAY = 0x8005,
46 PDU_COPT_RESTORE_PARAM = 0x8006
47 } T_PDU_COPT;

117 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

48

49 typedef enum E_PDU_OBJT
50 {
51 PDU_OBJT_PROTOCOL = 0x8021, /* Object type for object PROTOCOL of MDF.

*/
52 PDU_OBJT_BUSTYPE = 0x8022, /* Object type for object BUSTYPE of MDF.*/
53 PDU_OBJT_IO_CTRL = 0x8023, /* Object type for object IO_CTRL of MDF.*/
54 PDU_OBJT_COMPARAM = 0x8024, /* Object type for object COMPARAM of MDF.

*/
55 PDU_OBJT_PINTYPE = 0x8025, /* Object type for object PINTYPE of MDF.*/
56 PDU_OBJT_RESOURCE = 0x8026 /* Object type for object RESOURCE of MDF.*/
57 } T_PDU_OBJT;
58

59 typedef enum E_PDU_STATUS
60 {
61 /* ComPrimitive status */
62 PDU_COPST_IDLE = 0x8010,
63 PDU_COPST_EXECUTING = 0x8011,
64 PDU_COPST_FINISHED = 0x8012,
65 PDU_COPST_CANCELLED = 0x8013,
66 PDU_COPST_WAITING = 0x8014,
67 /* ComLogicalLink status */
68 PDU_CLLST_OFFLINE = 0x8050,
69 PDU_CLLST_ONLINE = 0x8051,
70 PDU_CLLST_COMM_STARTED = 0x8052,
71 /* Module status */
72 PDU_MODST_READY = 0x8060,
73 PDU_MODST_NOT_READY = 0x8061,
74 PDU_MODST_NOT_AVAIL = 0x8062,
75 PDU_MODST_AVAIL = 0x8063,
76 } T_PDU_STATUS;
77

78 typedef enum E_PDU_INFO
79 {
80 PDU_INFO_MODULE_LIST_CHG = 0x8070,
81 PDU_INFO_RSC_LOCK_CHG = 0x8071,
82 PDU_INFO_PHYS_COMPARAM_CHG = 0x8072
83 } T_PDU_INFO;
84

85 typedef enum E_PDU_EVT_DATA
86 {
87 PDU_EVT_DATA_AVAILABLE = 0x0801,
88 PDU_EVT_DATA_LOST = 0x0802
89 } T_PDU_EVT_DATA;
90

91 typedef enum E_PDU_FILTER
92 {
93 PDU_FLT_PASS = 0x00000001,
94 PDU_FLT_BLOCK = 0x00000002,
95 PDU_FLT_PASS_UUDT = 0x00000011,
96 PDU_FLT_BLOCK_UUDT = 0x00000012
97 } T_PDU_FILTER;
98

99 typedef enum E_PDU_QUEUE_MODE
100 {

118 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

101 PDU_QUE_UNLIMITED = 0x00000000, /* In Unlimited Mode, the QueueSize is
ignored.*/

102 PDU_QUE_LIMITED = 0x00000001, /* When the ComLogicalLink’s event queue
is full, no new items

103 are placed on the event queue.*/
104 PDU_QUE_CIRCULAR = 0x00000002 /* When the ComLogicalLink’s event queue

is full (i.e. maximum
105 size has been reached), then the

oldest event item in the
106 queue is deleted so that the new event

item can then be
107 placed in the event queue.*/
108 } T_PDU_QUEUE_MODE;
109

110 typedef enum E_PDU_ERROR
111 {
112 PDU_STATUS_NOERROR = 0x00000000, /* No error for the function call */
113 PDU_ERR_FCT_FAILED = 0x00000001, /* Function call failed (generic

failure) */
114 PDU_ERR_RESERVED_1 = 0x00000010, /* Reserved by ISO 22900-2 */
115 PDU_ERR_COMM_PC_TO_VCI_FAILED = 0x00000011, /* Communication between

host and
116 MVCI protocol module

failed */
117 PDU_ERR_PDUAPI_NOT_CONSTRUCTED = 0x00000020, /* The D-PDU API has not

yet been constructed */
118 PDU_ERR_SHARING_VIOLATION = 0x00000021, /* A PDUDestruct was not called

before another PDUConstruct */
119 PDU_ERR_RESOURCE_BUSY = 0x00000030, /* the requested resource is

already in use.*/
120 PDU_ERR_RESOURCE_TABLE_CHANGED = 0x00000031, /* Not used by the D-PDU

API */
121 PDU_ERR_RESOURCE_ERROR = 0x00000032, /* Not used by the D-PDU API */
122 PDU_ERR_CLL_NOT_CONNECTED = 0x00000040, /* The ComLogicalLink cannot be

in the PDU_CLLST_OFFLINE state
123 to perform the requested

operation.*/
124 PDU_ERR_CLL_NOT_STARTED = 0x00000041, /* The ComLogicalLink must be in

the PDU_CLLST_COMM_STARTED
125 state to perform the requested

operation. */
126 PDU_ERR_INVALID_PARAMETERS = 0x00000050, /* One or more of the

parameters supplied in the function are
127 invalid. */
128 PDU_ERR_INVALID_HANDLE = 0x00000060, /* One or more of the handles

supplied in
129 the function are invalid. */
130 PDU_ERR_VALUE_NOT_SUPPORTED = 0x00000061, /* One of the option values

in PDUConstruct is invalid. */
131 PDU_ERR_ID_NOT_SUPPORTED = 0x00000062, /* IOCTL command id not

supported by the implementation of the
132 D-PDU API */
133 PDU_ERR_COMPARAM_NOT_SUPPORTED = 0x00000063, /* ComParam id not

supported by the implementation of the
134 D-PDU API */

119 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

135 PDU_ERR_COMPARAM_LOCKED = 0x00000064, /* Physical ComParam cannot be
changed because it is locked by

136 another ComLogicalLink. */
137 PDU_ERR_TX_QUEUE_FULL = 0x00000070, /* The ComLogicalLink’s transmit

queue is full; the
138 ComPrimitive could not be queued

. */
139 PDU_ERR_EVENT_QUEUE_EMPTY = 0x00000071, /* No more event items are

available to be read from the
140 requested queue. */
141 PDU_ERR_VOLTAGE_NOT_SUPPORTED = 0x00000080, /* The voltage value

supplied in the IOCTL call is not
142 supported by the MVCI

protocol module. */
143 PDU_ERR_MUX_RSC_NOT_SUPPORTED = 0x00000081, /* The specified pin /

resource are not supported by the MVCI
144 protocol module for the

IOCTL call. */
145 PDU_ERR_CABLE_UNKNOWN = 0x00000082, /* The cable attached to the MVCI

protocol
146 module is of an unknown type. */
147 PDU_ERR_NO_CABLE_DETECTED = 0x00000083, /* No cable is detected by the

MVCI protocol module */
148 PDU_ERR_CLL_CONNECTED = 0x00000084, /* The ComLogicalLink is already in

the
149 PDU_CLLST_ONLINE state. */
150 PDU_ERR_TEMPPARAM_NOT_ALLOWED = 0x00000090, /* Physical ComParams

cannot be changed as a temporary
151 ComParam. */
152 PDU_ERR_RSC_LOCKED = 0x000000A0, /* The resource is already locked. */
153 PDU_ERR_RSC_LOCKED_BY_OTHER_CLL = 0x000000A1, /* The ComLogicalLink’s

resource is currently locked by
154 another ComLogicalLink

. */
155 PDU_ERR_RSC_NOT_LOCKED = 0x000000A2, /* The resource is already in the

unlocked state. */
156 PDU_ERR_MODULE_NOT_CONNECTED = 0x000000A3, /* The module is not in the

PDU_MODST_READY state. */
157 PDU_ERR_API_SW_OUT_OF_DATE = 0x000000A4, /* The API software is older

than the
158 MVCI protocol module

Software*/
159 PDU_ERR_MODULE_FW_OUT_OF_DATE = 0x000000A5, /* The MVCI protocol module

software is older than the API
160 software. */
161 PDU_ERR_PIN_NOT_CONNECTED = 0x000000A6 /* The requested Pin is not

routed by supported cable */
162 } T_PDU_ERROR;
163

164 typedef enum E_PDU_ERR_EVT
165 {
166 PDU_ERR_EVT_NOERROR = 0x00000000, /* No Error. Event type only returned

on a PDUGetLastError if
167 there were no previous errors for

the requested handle */

120 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

168 PDU_ERR_EVT_FRAME_STRUCT = 0x00000100, /* CLL/CoP Error: The structure
of the received protocol frame

169 is incorrect (e.g. wrong
frame number, missing FC). */

170 PDU_ERR_EVT_TX_ERROR = 0x00000101, /* CLL/CoP Error: Error encountered
during

171 transmit of a ComPrimitive PDU.

*/
172 PDU_ERR_EVT_TESTER_PRESENT_ERROR = 0x00000102, /* CLL/CoP Error: Error

encountered in transmitting a Tester
173 Present message or in

receiving an expected response to a
174 Tester Present

message. */
175 PDU_ERR_EVT_RX_TIMEOUT = 0x00000103, /* CLL/CoP Error: Receive timer (e

.g. P2Max) expired with no
176 expected responses received

from the vehicle.*/
177 PDU_ERR_EVT_RX_ERROR = 0x00000104, /* CLL/CoP Error: Error encountered

in receiving a message
178 from the vehicle bus (e.g.

checksum error). */
179 PDU_ERR_EVT_PROT_ERR = 0x00000105, /* CLL/CoP Error: Protocol error

encountered during handling
180 of a ComPrimitive (e.g. if the

protocol cannot handle the
181 length of a ComPrimitive).*/
182 PDU_ERR_EVT_LOST_COMM_TO_VCI = 0x00000106, /* Module Error:

Communication to a MVCI protocol module has
183 been lost.*/
184 PDU_ERR_EVT_VCI_HARDWARE_FAULT = 0x00000107, /* Module Error: The MVCI

protocol module has detected a
185 hardware error.*/
186 PDU_ERR_EVT_INIT_ERROR = 0x00000108, /* CLL/CoP Error: A failure

occurred during a protocol
187 initialization sequence. */
188 PDU_ERR_EVT_RSC_LOCKED = 0x00000109 /* CLL Error: A physical ComParam

was not set because of a
189 physical ComParam lock. */
190 } T_PDU_ERR_EVT;
191

192 typedef enum E_PDU_PC
193 {
194 PDU_PC_UNDEFINED = 0,
195 PDU_PC_TIMING = 1,
196 PDU_PC_INIT = 2,
197 PDU_PC_COM = 3,
198 PDU_PC_ERRHDL = 4,
199 PDU_PC_BUSTYPE = 5,
200 PDU_PC_UNIQUE_ID = 6,
201 PDU_PC_TESTER_PRESENT = 7
202 } T_PDU_PC;
203

204 typedef enum E_PDU_PT
205 {
206 PDU_PT_UNDEFINED = 0x00000000,

121 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

207 PDU_PT_UNUM8 = 0x00000101, /* Unsigned byte */
208 PDU_PT_SNUM8 = 0x00000102, /* Signed byte */
209 PDU_PT_UNUM16 = 0x00000103, /* Unsigned two bytes */
210 PDU_PT_SNUM16 = 0x00000104, /* Signed two bytes */
211 PDU_PT_UNUM32 = 0x00000105, /* Unsigned four bytes */
212 PDU_PT_SNUM32 = 0x00000106, /* Signed four bytes */
213 PDU_PT_BYTEFIELD = 0x00000107, /* Structure contains an array of UNUM8

bytes with a maximum
214 length and actual length fields. See

ComParam BYTEFIELD
215 data type for the definition. */
216 PDU_PT_STRUCTFIELD = 0x00000108, /* Structure contains a void * pointer

to an array of
217 structures. The ComParamStructType

item determines the type
218 of structure to be typecasted onto

the void * pointer. This
219 structure contains a field for

maximum number of struct
220 entries and the actual number of

struct entries. See
221 ComParam STRUCTFIELD data type for

the definition. */
222 PDU_PT_LONGFIELD = 0x00000109 /* Structure contains an array of UNUM32

entries with a maximum
223 length and actual length fields. See

ComParam LONGFIELD Data
224 Type for the definition. */
225 } T_PDU_PT;
226

227 typedef enum E_PDU_CPST
228 {
229 PDU_CPST_SESSION_TIMING = 0x00000001, /* \see

PDU_PARAM_STRUCT_SESS_TIMING*/
230 PDU_CPST_ACCESS_TIMING = 0x00000002 /* \see

PDU_PARAM_STRUCT_ACCESS_TIMING*/
231 } T_PDU_CPST;
232

233 typedef struct
234 {
235 T_PDU_IT ItemType; /* See T_PDU_IT.*/
236 } PDU_ITEM;
237

238 typedef struct
239 {
240 T_PDU_IT ItemType; /* Value= one of the IOCTL constants from T_PDU_IT

(\ref
241 E_PDU_IT).*/
242 void* pData; /* Pointer to the specific IOCTL data structure.*/
243 } PDU_DATA_ITEM;
244

245 typedef struct
246 {
247 UNUM32 ProgVoltage_mv; /* Programming voltage [mV].*/
248 UNUM32 PinOnDLC; /* Pin number on Data Link Connector.*/
249 } PDU_IO_PROG_VOLTAGE_DATA;

122 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

250

251 typedef struct
252 {
253 UNUM32 DataSize; /* Number of bytes in the data array.*/
254 UNUM8* pData; /* Pointer to the data array.*/
255 } PDU_IO_BYTEARRAY_DATA;
256

257 typedef struct
258 {
259 T_PDU_FILTER
260 FilterType; /* type of filter being configured \see T_PDU_FILTER.*/
261 UNUM32 FilterNumber; /* Filter Number. Used to replace filters and stop
262 filters.*/
263 UNUM32 FilterCompareSize; /* Number of bytes used out of each of the

filter
264 messages arrays Range 1-12.*/
265 UNUM8 FilterMaskMessage[12]; /* Mask message to be ANDed to each

incoming
266 message.*/
267 UNUM8 FilterPatternMessage[12]; /* Pattern message to be compared to

the
268 incoming message after the
269 FilterMaskMessage has been applied.

*/
270 } PDU_IO_FILTER_DATA;
271

272 typedef struct
273 {
274 UNUM32
275 NumFilterEntries; /* Number of Filter entries in the filter list array.

*/
276 PDU_IO_FILTER_DATA* pFilterData; /* Pointer to an array of filter data.

*/
277 } PDU_IO_FILTER_LIST;
278

279 typedef struct
280 {
281 UNUM32 QueueSize; /* Maximum size of event queue. */
282 T_PDU_QUEUE_MODE QueueMode; /* Queue mode. see T_PDU_QUEUE_MODE event

queue
283 mode type values.*/
284 } PDU_IO_EVENT_QUEUE_PROPERTY_DATA;
285

286 typedef struct
287 {
288 UNUM32 hMod; /* Handle of a MVCI protocol module (IN parameter).*/
289 UNUM32 ResourceId; /* ID (IN parameter).*/
290 UNUM32 ResourceStatus; /* Resource Information Status (OUT Parameter).

*/
291 } PDU_RSC_STATUS_DATA;
292

293 typedef struct
294 {
295 T_PDU_IT ItemType; /*! value=PDU_IT_RSC_STATUS (IN parameter).*/
296 UNUM32

123 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

297 NumEntries; /* number of entries in pResourceStatusData (IN Parameter)
.*/

298 PDU_RSC_STATUS_DATA* pResourceStatusData; /* array to contain resource
status (IN Parameter).*/

299 } PDU_RSC_STATUS_ITEM;
300

301 typedef struct
302 {
303 T_PDU_IT ItemType; /* value= PDU_IT_PARAM.*/
304 UNUM32 ComParamId; /* ComParam Id.*/
305 T_PDU_PT ComParamDataType; /* Defines the data type of the ComParam \

ref
306 T_PDU_PT; ComParam data type.*/
307 T_PDU_PC ComParamClass; /* ComParam Class type.*/
308 void* pComParamData; /* pointer to ComParam data of type

ComParamDataType.*/
309 } PDU_PARAM_ITEM;
310

311 typedef struct
312 {
313 UNUM32 ModuleTypeId; /* MVCI protocol moduleTypeId.*/
314 UNUM32 hMod; /* handle of MVCI protocol module assigned by D-PDU.*/
315 CHAR8* pVendorModuleName; /* Vendor specific information string for the

unique
316 module identification.*/
317 CHAR8* pVendorAdditionalInfo; /* Vendor specific additional information

string.*/
318 T_PDU_STATUS ModuleStatus; /* Status of MVCI protocol module detected

by D-PDU
319 API session.*/
320 } PDU_MODULE_DATA;
321

322 typedef struct
323 {
324 T_PDU_IT ItemType; /* value= PDU_IT_MODULE_ID */
325 UNUM32 NumEntries; /* number of entries written to the pModuleData

array */
326 PDU_MODULE_DATA* pModuleData; /* pointer to array containing module

types and
327 module handles */
328 } PDU_MODULE_ITEM;
329

330 typedef struct
331 {
332 UNUM32 hMod; /* Module handle*/
333 UNUM32 NumIds; /* number of resources that match PDU_RSC_DATA */
334 UNUM32* pResourceIdArray; /* pointer to a list of resource ids*/
335 } PDU_RSC_ID_ITEM_DATA;
336

337 typedef struct
338 {
339 T_PDU_IT ItemType; /* value = PDU_IT_RSC_ID (IN parameter)*/
340 UNUM32 NumModules; /* number of entries in pResourceIdDataArray. */
341 PDU_RSC_ID_ITEM_DATA
342 *pResourceIdDataArray; /* pointer to an array of resource Id Item Data

*/

124 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

343 } PDU_RSC_ID_ITEM;
344

345 typedef struct
346 {
347 UNUM32 DLCPinNumber; /* Pin number on DLC */
348 UNUM32 DLCPinTypeId; /* Pin ID */
349 } PDU_PIN_DATA;
350

351 typedef struct
352 {
353 UNUM32 BusTypeId; /* Bus Type Id (IN parameter) */
354 UNUM32 ProtocolId; /* Protocol Id (IN parameter) */
355 UNUM32 NumPinData; /* Number of items in the following array */
356 PDU_PIN_DATA* pDLCPinData; /* Pointer to array of PDU_PIN_DATA

structures*/
357 } PDU_RSC_DATA;
358

359 typedef struct
360 {
361 UNUM32 hMod; /* Handle of the MVCI protocol module with conflict.*/
362 UNUM32 ResourceId; /* Conflicting Resource ID.*/
363 } PDU_RSC_CONFLICT_DATA;
364

365 typedef struct
366 {
367 T_PDU_IT ItemType; /* value= PDU_IT_RSC_CONFLICT.*/
368 UNUM32 NumEntries; /* Number of entries written to pRscConflictData.*/
369 PDU_RSC_CONFLICT_DATA
370 *pRscConflictData; /* Pointer to array of PDU_RSC_CONFLICT_DATA.*/
371 } PDU_RSC_CONFLICT_ITEM;
372

373 typedef struct
374 {
375 UNUM32 UniqueRespIdentifier; /* filled out by application */
376 UNUM32 NumParamItems; /* number of ComParams for the Unique Identifier

*/
377 PDU_PARAM_ITEM
378 *pParams; /* pointer to array of ComParam items to uniquely define a

ECU
379 response. The list is protocol specific */
380 } PDU_ECU_UNIQUE_RESP_DATA;
381

382 typedef struct
383 {
384 T_PDU_IT ItemType; /* Value= PDU_IT_UNIQUE_RESP_ID_TABLE */
385 UNUM32 NumEntries; /* Number of entries in the table.*/
386 PDU_ECU_UNIQUE_RESP_DATA* pUniqueData; /* Pointer to array of table

entries for each ECU response.*/
387 } PDU_UNIQUE_RESP_ID_TABLE_ITEM;
388

389 typedef struct
390 {
391 T_PDU_IT ItemType; /* Value= PDU_IT_RESULT or PDU_IT_STATUS or

PDU_IT_ERROR or
392 PDU_IT_INFO.*/
393 UNUM32

125 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

394 hCoP; /* If item is from a ComPrimitive then the hCop contains the
valid

395 ComPrimitive handle, else it contains PDU_HANDLE_UNDEF.*/
396 void* pCoPTag; /* ComPrimitive Tag. Should be ignored if
397 hCop=PDU_HANDLE_UNDEF.*/
398 UNUM32 Timestamp; /* Timestamp in microseconds.*/
399 void* pData; /* Points to the data for the specified Item Type.*/
400 } PDU_EVENT_ITEM;
401

402 typedef T_PDU_STATUS PDU_STATUS_DATA;
403

404 typedef struct
405 {
406 T_PDU_INFO InfoCode; /* Information code.*/
407 UNUM32 ExtraInfoData; /* Optional additional information.*/
408 } PDU_INFO_DATA;
409

410 typedef struct
411 {
412 T_PDU_ERR_EVT ErrorCodeId; /* Error code, binary information.*/
413 UNUM32 ExtraErrorInfoId; /* Optional additional error information, text
414 translation via MDF file. Binary

Information, 0
415 indicates no additional error information.

*/
416 } PDU_ERROR_DATA;
417

418 typedef struct
419 {
420 UNUM32 NumFlagBytes; /* Number of bytes in pFlagData array.*/
421 UNUM8* pFlagData; /* Pointer to flag bytes used for TxFlag, RxFlag, and
422 CllCreateFlag.*/
423 } PDU_FLAG_DATA;
424

425 typedef struct
426 {
427 UNUM32 NumHeaderBytes; /* Number of header bytes contained in

pHeaderBytes
428 array. */
429 UNUM32 NumFooterBytes; /* Number of footer bytes contained in

pFooterBytes
430 array. */
431 UNUM8* pHeaderBytes; /* Reference pointer to Response PDU Header bytes,

NULL
432 if NumHeaderBytes = 0.*/
433 UNUM8* pFooterBytes; /* Reference pointer to Response PDU Footer bytes,

NULL
434 if NumFooterBytes = 0.*/
435 } PDU_EXTRA_INFO;
436

437 typedef struct
438 {
439 PDU_FLAG_DATA RxFlag;
440 UNUM32 UniqueRespIdentifier;
441 UNUM32 AcceptanceId;
442 PDU_FLAG_DATA TimestampFlags;

126 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

443 UNUM32 TxMsgDoneTimestamp;
444 UNUM32 StartMsgTimestamp;
445 PDU_EXTRA_INFO* pExtraInfo;
446 UNUM32 NumDataBytes;
447 UNUM8* pDataBytes;
448 } PDU_RESULT_DATA;
449

450 typedef struct
451 {
452 UNUM32 MVCI_Part1StandardVersion;
453 UNUM32 MVCI_Part2StandardVersion;
454 UNUM32 HwSerialNumber;
455 CHAR8 HwName[64];
456 UNUM32 HwVersion;
457 UNUM32 HwDate;
458 UNUM32 HwInterface;
459 CHAR8 FwName[64];
460 UNUM32 FwVersion;
461 UNUM32 FwDate;
462 CHAR8 VendorName[64];
463 CHAR8 PDUApiSwName[64];
464 UNUM32 PDUApiSwVersion;
465 UNUM32 PDUApiSwDate;
466 } PDU_VERSION_DATA;
467

468 typedef struct
469 {
470 UNUM32 ResponseType; /* 0 = positive response; 1 = negative response.*/
471 UNUM32 AcceptanceId; /* ID assigned by application to be returned in
472 PDU_RESULT_DATA, which indicates which expected
473 response matched.*/
474 UNUM32 NumMaskPatternBytes; /* number of bytes in the Mask Data and

Pattern
475 Data.*/
476 UNUM8* pMaskData; /* Pointer to Mask Data. Bits set to a ’1’ are care

bits,
477 ’0’ are don’t care bits.*/
478 UNUM8* pPatternData; /* Pointer to Pattern Data. Bytes to compare after

the
479 mask is applied.*/
480 UNUM32 NumUniqueRespIds; /* Number of items in the following array of

unique
481 response identifiers.*/
482 UNUM32* pUniqueRespIds; /* Array containing unique response identifiers

. Only
483 responses with a unique response identifier

found
484 in this array are considered, when trying to

match
485 them to this expected response. */
486 } PDU_EXP_RESP_DATA;
487

488 typedef struct
489 {
490 UNUM32 Time; /* Cycle time in ms for cyclic send operation or delay

time for

127 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

491 PDU_COPT_DELAY ComPrimitive.*/
492 SNUM32 NumSendCycles; /* Number of send cycles to be performed.*/
493 SNUM32 NumReceiveCycles; /* Number of receive cycles to be performed.*/
494 UNUM32 TempParamUpdate; /* Temporary ComParam settings for the

ComPrimitive.*/
495 PDU_FLAG_DATA TxFlag; /* Transmit Flag used to indicate protocol

specific
496 elements for the ComPrimitive’s execution..*/
497 UNUM32 NumPossibleExpectedResponses; /* number of entries in \ref
498 pExpectedResponseArray.*/
499 PDU_EXP_RESP_DATA
500 *pExpectedResponseArray; /* pointer to an array of expected responses.

*/
501 } PDU_COP_CTRL_DATA;
502

503 typedef struct
504 {
505 UNUM32 ParamMaxLen; /* Contains the maximum number of UNUM8 bytes the

ComParam
506 can contain in \ref pDataArray.*/
507 UNUM32 ParamActLen; /* Contains the actual number of UNUM8 bytes in
508 pDataArray..*/
509 UNUM8* pDataArray; /* Pointer to an array of \ref UNUM8 values.*/
510 } PDU_PARAM_BYTEFIELD_DATA;
511

512 typedef struct
513 {
514 T_PDU_CPST ComParamStructType; /* Type of ComParam Structure being used

.*/
515 UNUM32 ParamMaxEntries; /* Contains the maximum number of struct

entries in
516 \ref pStructArray.*/
517 UNUM32 ParamActEntries; /* Contains the maximum number of struct

entries the
518 ComParam can contain in \ref pStructArray.*/
519 void* pStructArray; /* Pointer to an array of structs (typecasted to

the \ref
520 ComParamStructType).*/
521 } PDU_PARAM_STRUCTFIELD_DATA;
522

523 typedef struct
524 {
525 UNUM16
526 session; /* Session Number, for the diagnostic session of ISO 15765-3.

*/
527 UNUM8 P2Max_high; /* Default P2Can_Server_max timing (1 ms resolution)
528 supported by the server for the activated

diagnostic
529 session. Used for ComParam CP_P2Max.*/
530 UNUM8 P2Max_low; /* Timing used for ComParam CP_P2Min (1 ms resolution)

.*/
531 UNUM8 P2Star_high; /* Enhanced (NRC 78 hex) P2Can_Server_max (10 ms
532 resolution) supported by the server for the

activated
533 diagnostic session. Used for ComParam CP_P2Star.

*/

128 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

534 UNUM8
535 P2Star_low; /* Timing (10 ms resolution) used for internal ECU use only

.*/
536 } PDU_PARAM_STRUCT_SESS_TIMING;
537

538 typedef struct
539 {
540 UNUM8 P2Min; /* Minimum time (0,5 ms resolution) between tester request

and
541 ECU response(s). Used for ComParam CP_P2Min.*/
542 UNUM8 P2Max; /* Maximum time between tester request and ECU response(s)

.*/
543 UNUM8 P3Min; /* Minimum time between end of ECU responses and start of

new
544 tester request.*/
545 UNUM8 P3Max; /* Maximum time between ECU responses and start of new

tester
546 request.*/
547 UNUM8 P4Min; /* Minimum inter byte time for tester request.*/
548 UNUM8 TimingSet; /* Set number allowing multiple sets of timing

parameters.*/
549 } PDU_PARAM_STRUCT_ACCESS_TIMING;
550

551 typedef struct
552 {
553 UNUM32 ParamMaxLen; /* Contains the maximum number of UNUM32 entries

the
554 ComParam can contain in \ref pDataArray.*/
555 UNUM32 ParamActLen; /* Contains the current number of UNUM32 entries

the
556 ComParam can contain in \ref pDataArray.*/
557 UNUM32* pDataArray; /* Pointer to an array of UNUM32 values.*/
558 } PDU_PARAM_LONGFIELD_DATA;
559

560 typedef void (*CALLBACKFNC)(T_PDU_EVT_DATA eventType, UNUM32 hMod, UNUM32
hCll, void* pCllTag, void* pAPITag);

561

562 EXTERNC T_PDU_ERROR PDUConstruct(CHAR8* pszOption, void* pAPITag);
563 EXTERNC T_PDU_ERROR PDUDestruct();
564 EXTERNC T_PDU_ERROR PDUModuleConnect(UNUM32 hMod);
565 EXTERNC T_PDU_ERROR PDUModuleDisconnect(UNUM32 hMod);
566 EXTERNC T_PDU_ERROR PDUGetModuleIds(PDU_MODULE_ITEM** pModuleIdList);
567 EXTERNC T_PDU_ERROR PDUGetResourceIds(UNUM32 hMod, PDU_RSC_DATA*

pResourceIdData, PDU_RSC_ID_ITEM** pResourceIdList);
568 EXTERNC T_PDU_ERROR PDUGetResourceStatus(PDU_RSC_STATUS_ITEM*

pResourceStatus);
569 EXTERNC T_PDU_ERROR PDUCreateComLogicalLink(UNUM32 hMod,
570 PDU_RSC_DATA* pRscData,
571 UNUM32 uiResourceId,
572 void* pCllTag,
573 UNUM32* phCll,
574 PDU_FLAG_DATA* pCllCreateFlag);
575 EXTERNC T_PDU_ERROR PDUDestroyComLogicalLink(UNUM32 hMod, UNUM32 hCll);
576 EXTERNC T_PDU_ERROR PDURegisterEventCallback(UNUM32 hMod, UNUM32 hCll,

CALLBACKFNC fnCB);

129 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

577 EXTERNC T_PDU_ERROR PDUGetComParam(UNUM32 hMod, UNUM32 hCll, UNUM32
uiParamId, PDU_PARAM_ITEM** pParamItem);

578 EXTERNC T_PDU_ERROR PDUSetComParam(UNUM32 hMod, UNUM32 hCll, PDU_PARAM_ITEM

* pParamItem);
579 EXTERNC T_PDU_ERROR PDUConnect(UNUM32 hMod, UNUM32 hCll);
580 EXTERNC T_PDU_ERROR PDUDisconnect(UNUM32 hMod, UNUM32 hCll);
581 EXTERNC T_PDU_ERROR PDUStartComPrimitive(UNUM32 hMod,
582 UNUM32 hCll,
583 T_PDU_COPT uiCoPType,
584 UNUM32 uiCoPDataSize,
585 UNUM8* pCoPData,
586 PDU_COP_CTRL_DATA* pCopCtrlData,
587 void* pCoPTag,
588 UNUM32* phCoP);
589 EXTERNC T_PDU_ERROR PDUCancelComPrimitive(UNUM32 hMod, UNUM32 hCll, UNUM32

hCoP);
590 EXTERNC T_PDU_ERROR PDUGetEventItem(UNUM32 hMod, UNUM32 hCll,

PDU_EVENT_ITEM** pEventItem);
591 EXTERNC T_PDU_ERROR PDUDestroyItem(PDU_ITEM* pItem);
592 EXTERNC T_PDU_ERROR PDUGetVersion(UNUM32 hMod, PDU_VERSION_DATA*

pVersionData);
593 EXTERNC T_PDU_ERROR PDUGetLastError(UNUM32 hMod,
594 UNUM32 hCll,
595 T_PDU_ERR_EVT* pErrorCode,
596 UNUM32* phCoP,
597 UNUM32* pTimestamp,
598 UNUM32* pExtraErrorInfo);
599 EXTERNC T_PDU_ERROR PDUGetUniqueRespIdTable(UNUM32 hMod,
600 UNUM32 hCll,
601 PDU_UNIQUE_RESP_ID_TABLE_ITEM** pUniqueRespIdTable);
602 EXTERNC T_PDU_ERROR PDUSetUniqueRespIdTable(UNUM32 hMod,
603 UNUM32 hCll,
604 PDU_UNIQUE_RESP_ID_TABLE_ITEM* pUniqueRespIdTable);
605 EXTERNC T_PDU_ERROR
606 PDUIoCtl(UNUM32 hMod, UNUM32 hCll, UNUM32 uiIoCtlCommandId, PDU_DATA_ITEM*

pInputData, PDU_DATA_ITEM** pOutputData);
607 EXTERNC T_PDU_ERROR PDUGetObjectId(UNUM32 uiPDUObjectType, CHAR8*

pszShortName, UNUM32* pPDUObjectId);
608 EXTERNC T_PDU_ERROR PDUGetTimestamp(UNUM32 hMod, UNUM32* puiTimestamp);
609 EXTERNC T_PDU_ERROR PDUGetStatus(UNUM32 hMod,
610 UNUM32 hCll,
611 UNUM32 hCoP,
612 T_PDU_STATUS* puiStatusCode,
613 UNUM32* puiTimestamp,
614 UNUM32* puiExtraInfo);
615 EXTERNC T_PDU_ERROR PDUGetConflictingResources(UNUM32 uiResourceId,
616 PDU_MODULE_ITEM* pModuleList,
617 PDU_RSC_CONFLICT_ITEM** pConflictList);
618 EXTERNC T_PDU_ERROR PDULockResource(UNUM32 hMod, UNUM32 hCll, UNUM32

uiLockMask);
619 EXTERNC T_PDU_ERROR PDUUnlockResource(UNUM32 hMod, UNUM32 hCll, UNUM32

uiLockMask);
620

621

622 using BYTEFIELD_PTR = std::shared_ptr<const PDU_PARAM_BYTEFIELD_DATA>;
623 using STRUCTFIELD_PTR = std::shared_ptr<const PDU_PARAM_STRUCTFIELD_DATA>;

130 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

624 using LONGFIELD_PTR = std::shared_ptr<const PDU_PARAM_LONGFIELD_DATA>;
625

626 using ComParamData
627 = std::variant<UNUM8, SNUM8, UNUM16, SNUM16, UNUM32, SNUM32,

BYTEFIELD_PTR, STRUCTFIELD_PTR, LONGFIELD_PTR>;
628

629 /// @brief ComParamDictionary
630 class ComParamDictionary
631 {
632 public:
633 virtual ~ComParamDictionary() = default;
634

635 ///
636 /// @brief Get the ComParam based on its name.
637 ///
638 /// @param name ComParam name (e.g, CP_P2Max)
639 /// @return ComParam value
640 ///
641 virtual ComParamData getComParamByName(ara::core::StringView name)

const = 0;
642 };
643

644 /// @brief Communication Parameter Buffer
645 class ComParamBuffer : public ComParamDictionary
646 {
647 public:
648 ///
649 /// @brief Set ComParam based on the given PDU_PARAM_ITEM structure.
650 ///
651 /// @param param reference to PDU_PARAM_ITEM structure to be set
652 /// @return true if the ComParam is successfully set.
653 /// @return false if the ComParam Id is invalid or the paramType is

different
654 /// than UNUM32
655 ///
656 virtual bool setComParam(const PDU_PARAM_ITEM& param) = 0;
657

658 ///
659 /// @brief Get a ComParam based on its Id.
660 ///
661 /// @param paramId ComParam Id
662 /// @return pointer to the filled PDU_PARAM_ITEM structure or Null

pointer if
663 /// the ParamId is invalid.
664 ///
665 virtual std::shared_ptr<PDU_PARAM_ITEM> getComParam(UNUM32 paramId)

const = 0;
666 };
667

668 /// @brief Communication Parameter Buffer implementation
669 class ComParamBufferImpl final : public ComParamBuffer
670 {
671 public:
672 /// @copybrief ComParamBuffer::setComParam()
673 /// @copydetails ComParamBuffer::setComParam()
674 bool setComParam(const PDU_PARAM_ITEM& param) override;

131 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

675

676 /// @copybrief ComParamBuffer::getComParam()
677 /// @copydetails ComParamBuffer::setComParam()
678 std::shared_ptr<PDU_PARAM_ITEM> getComParam(UNUM32 paramId) const

override;
679

680 /// @copybrief ComParamDictionary::getComParamByName
681 /// @copydetails ComParamDictionary::getComParamByName
682 ComParamData getComParamByName(ara::core::StringView name) const

override;
683

684 ///
685 /// @brief Add a ComParam to the ComParams list (@params_)
686 ///
687 /// @param id ComParam Id
688 /// @param name ComParam name
689 /// @param paramType ComParam Type
690 /// @param paramClass ComParam Class
691 /// @param data ComParam value
692 /// @return true if the ComParam is successfully added.
693 /// false if the ComParam Id/name is invalid or the paramType

is
694 /// different than UNUM32
695 ///
696 bool addComParam(UNUM32 id,
697 const ara::core::String& name,
698 T_PDU_PT paramType,
699 T_PDU_PC paramClass,
700 const void* data);
701

702 ///
703 /// @brief Get the number of the ComParams.
704 ///
705 /// @return number of the ComParams
706 std::size_t size() const;
707

708 ///
709 /// @brief Add a ComParam to the URID table (@paramBuffer_)
710 ///
711 /// @param id ComParam Id
712 /// @param name ComParam name
713 /// @param paramType ComParam Type
714 /// @param paramClass ComParam Class
715 /// @param data ComParam value
716 /// @return true if the ComParam is successfully added.
717 /// false if the parameter class is different than

PDU_PC_UNIQUE_ID
718 ///
719 ara::core::String getComParamNameById(UNUM32 paramId) const;
720

721 /// @brief ComParam Key (Comparam Id and name)
722 struct ParamKey
723 {
724 UNUM32 id;
725 ara::core::String name;
726 };

132 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

727

728 /// @brief ComParam Type and Class
729 struct ComParameter
730 {
731 const T_PDU_PT paramType;
732 const T_PDU_PC paramClass;
733 ComParamData data;
734 };
735

736 /// @brief ComParamKey compare
737 struct cmpParamKey
738 {
739 bool operator()(const ParamKey& a, const ParamKey& b) const
740 {
741 if (a.id == b.id || a.name == b.name)
742 return false;
743 return (a.id < b.id) || (a.name < b.name);
744 }
745 };
746

747 using const_iterator = ara::core::Map<ParamKey, ComParameter,
cmpParamKey>::const_iterator;

748 const_iterator cbegin() const
749 {
750 return params_.cbegin();
751 }
752

753 const_iterator cend() const
754 {
755 return params_.cend();
756 }
757

758 private:
759 /// @brief List of ComParams
760 ara::core::Map<ParamKey, ComParameter, cmpParamKey> params_;
761 };
762

763 /// @brief URID Table Entry
764 class URIDTableEntry : public ComParamDictionary
765 {
766 public:
767 /// @brief Unique Response Identifier
768 virtual UNUM32 uniqueRespIdentifier() const = 0;
769 };
770

771 /// @brief Unique Response Identifier Table
772 class URIDTable
773 {
774 public:
775 virtual ~URIDTable() = default;
776

777 ///
778 /// @brief Check if there is an entry in the URID table.
779 ///
780 /// @return true if there is no entry in the URID table.
781 /// @return false if there is one or more entries in the URID table.

133 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

782 ///
783 virtual bool empty() const = 0;
784 virtual const URIDTableEntry& operator[](std::size_t pos) const = 0;
785

786 ///
787 /// @brief Create the URID Table (PDU_UNIQUE_RESP_ID_TABLE_ITEM

structure).
788 ///
789 /// @return pointer to the PDU_UNIQUE_RESP_ID_TABLE_ITEM structure.
790 ///
791 virtual std::shared_ptr<PDU_UNIQUE_RESP_ID_TABLE_ITEM> getTableItem()

const = 0;
792

793 ///
794 /// @brief Set an URID Table entry
795 ///
796 /// @return true if the URID Table entry is successfully set.
797 /// @return false if Wrong number of com parameters is provided or a

com
798 /// parameter not supported by the protocol
799 ///
800 virtual bool set(const PDU_UNIQUE_RESP_ID_TABLE_ITEM&) = 0;
801 };
802 /// @brief Unique Response ID Table Entry implementation
803 class URIDTableEntryImpl final : public URIDTableEntry
804 {
805 public:
806 explicit URIDTableEntryImpl(UNUM32 uniqueRespIdentifier = PDU_ID_UNDEF)

;
807

808 /// @brief Unique Response Identifier
809 UNUM32 uniqueRespIdentifier() const override;
810

811 /// @copybrief ComParamDictionary::getComParamByName
812 /// @copydetails ComParamDictionary::getComParamByName
813 ComParamData getComParamByName(ara::core::StringView name) const

override;
814

815 ///
816 /// @brief Get a ComParam ,based on its Id, from the URID table.
817 ///
818 /// @param paramId ComParam Id
819 /// @return pointer to the filled PDU_PARAM_ITEM structure or Null

pointer if
820 /// the ParamId is invalid.
821 ///
822 std::shared_ptr<PDU_PARAM_ITEM> getComParam(UNUM32 paramId) const;
823

824 ///
825 /// @brief Add a ComParam to the URID table (@paramBuffer_)
826 ///
827 /// @param id ComParam Id
828 /// @param name ComParam name
829 /// @param paramType ComParam Type
830 /// @param paramClass ComParam Class
831 /// @param data ComParam value

134 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

832 /// @return true if the ComParam is successfully added.
833 /// false if the parameter class is different than

PDU_PC_UNIQUE_ID
834 ///
835 bool addComParam(UNUM32 id,
836 const ara::core::String& name,
837 T_PDU_PT paramType,
838 T_PDU_PC paramClass,
839 const void* data);
840

841 std::size_t size() const;
842 ara::core::String getComParamNameById(UNUM32 paramId) const;
843

844 using const_iterator = ComParamBufferImpl::const_iterator;
845 const_iterator cbegin() const
846 {
847 return paramBuffer_->cbegin();
848 }
849

850 const_iterator cend() const
851 {
852 return paramBuffer_->cend();
853 }
854

855 private:
856 /// @brief Unique Response Identifier
857 UNUM32 uniqueRespIdentifier_;
858

859 /// @brief URID table
860 std::unique_ptr<ComParamBufferImpl> paramBuffer_;
861 };
862

863 /// @brief URID Table implementation
864 class URIDTableImpl final : public URIDTable
865 {
866 public:
867 /// @copybrief URIDTable::empty()
868 /// @copydetails URIDTable::empty()
869 bool empty() const override;
870 const URIDTableEntry& operator[](std::size_t pos) const override;
871

872 /// @copybrief URIDTable::getTableItem()
873 /// @copydetails URIDTable::getTableItem()
874 std::shared_ptr<PDU_UNIQUE_RESP_ID_TABLE_ITEM> getTableItem() const

override;
875 bool set(const PDU_UNIQUE_RESP_ID_TABLE_ITEM& tableItem) override;
876

877 /// @copybrief URIDTable::URIDTableImpl()
878 /// @copydetails URIDTable::URIDTableImpl()
879 explicit URIDTableImpl(URIDTableEntryImpl&& entry);
880

881 private:
882 /// @brief URID table entries
883 ara::core::Vector<URIDTableEntryImpl> entries_;
884 };
885

135 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

886 ///
887 /// @brief Diagnostic protocol data unit (D-PDU API)
888 ///
889 /// This class implement the main D-PDU API functions.
890 class PduApi
891 {
892 public:
893 ///
894 /// @brief Get the instance of the PduApi Singleton class
895 ///
896 /// @return instance of the PduApi Singleton class
897 ///
898 static PduApi* getInstance()
899 {
900 static PduApi instance;
901 return &instance;
902 }
903

904 ///
905 /// @brief Detecting all the available MVCI protocol modules
906 ///
907 /// @param OptionStr Not used
908 /// @param pAPITag Not used
909 /// @return PDU_ERR_SHARING_VIOLATION if the D-PDU API is already

constructed,
910 /// PDU_STATUS_NOERROR f the D-PDU API is not constructed and
911 /// available modules are detected.
912 ///
913 T_PDU_ERROR PDUConstruct(CHAR8* OptionStr, void* pAPITag);
914

915 ///
916 /// @brief Destroy/erase the available modules and their data
917 ///
918 /// Set the D-PDU API status to "Unconstructed"
919 /// @return PDU_STATUS_NOERROR
920 ///
921 T_PDU_ERROR PDUDestruct();
922

923 ///
924 /// @brief Establish connection to the specified MVCI protocol module
925 ///
926 /// Set the module status to "Ready"
927 /// @param hMod Handle of the MVCI protocl module to be connected.
928 /// @return PDU_ERR_PDUAPI_NOT_CONSTRUCTED if the D-PDU API is not
929 /// constructed,
930 /// PDU_ERR_INVALID_HANDLE if the MVCI protocol module Handle

is
931 /// invalid. PDU_STATUS_NOERROR if the module is successfully
932 /// connected.
933 ///
934 T_PDU_ERROR PDUModuleConnect(UNUM32 hMod);
935

936 ///
937 /// @brief Disconnect the specified MVCI protocol module
938 ///
939 /// Set the module status to "Available"

136 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

940 /// @param hMod Handle of the MVCI protocl module to be diconnected.
941 /// @return PDU_ERR_PDUAPI_NOT_CONSTRUCTED if the D-PDU API is not
942 /// constructed,
943 /// PDU_ERR_INVALID_HANDLE if the MVCI protocol module Handle

is
944 /// invalid.
945 /// PDU_STATUS_NOERROR if the module is successfully

disconnected.
946 ///
947 T_PDU_ERROR PDUModuleDisconnect(UNUM32 hMod);
948

949 ///
950 /// @brief Get module type Id, module handle information, vendor-

specific
951 /// string information and module status. Allocate

PDU_MODULE_ITEM
952 /// structure and fill the call-by-reference variable

pModuleIdList
953 /// @param pModuleIdList Pointer for storing the pointer to Module Type

Ids
954 /// and the Module handles for all the modules that are

connected.
955 /// @return PDU_ERR_PDUAPI_NOT_CONSTRUCTED if the D-PDU API is not
956 /// constructed,
957 /// PDU_ERR_INVALID_PARAMETERS if the pModuleIdList parameter

is
958 /// NULL.
959 /// PDU_STATUS_NOERROR if the function is successfully called.
960 ///
961 T_PDU_ERROR PDUGetModuleIds(PDU_MODULE_ITEM** pModuleIdList);
962

963 ///
964 /// @brief Destroy the given item.
965 ///
966 /// Free memory reserved by the D-PDU API for the given item.
967 /// @param pItem Pointer to the item to be destroyed.
968 /// @return PDU_ERR_PDUAPI_NOT_CONSTRUCTED if the D-PDU API is not
969 /// constructed,
970 /// PDU_ERR_INVALID_PARAMETERS if the pItem is invalid or NULL,
971 /// PDU_STATUS_NOERROR if the item type is sucessfully

destroyed.
972 ///
973 T_PDU_ERROR PDUDestroyItem(PDU_ITEM* pItem);
974

975 ///
976 /// @brief Create a ComLogicalLink for the given ressource Id.
977 ///
978 /// Stores the ComLogicalLink handle in phCll parameter.
979 /// @param hMod Hanlde of the MVCI protocl module.
980 /// @param pRscData Not used.
981 /// @param resourceId Ressource Id
982 /// @param pCllTag Not used.
983 /// @param phCll Call-by-reference for storage of the ComLogicalLink

handle.
984 /// @param pCllCreateFlag Not used.
985 /// @return PDU_ERR_PDUAPI_NOT_CONSTRUCTED if the D-PDU API is not

137 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

986 /// constructed,
987 /// PDU_ERR_INVALID_HANDLE if the MVCI protocol module Handle

is
988 /// invalid.
989 /// PDU_ERR_INVALID_PARAMETERS in case of Invalid NULL pointer

for
990 /// phCLL or invalid ressource id.
991 /// PDU_STATUS_NOERROR if the ComLogicalLink is sucessfully

created.
992 ///
993 T_PDU_ERROR PDUCreateComLogicalLink(UNUM32 hMod,
994 PDU_RSC_DATA* pRscData,
995 UNUM32 resourceId,
996 void* pCllTag,
997 UNUM32* phCll,
998 PDU_FLAG_DATA* pCllCreateFlag);
999

1000 ///
1001 /// @brief Destroy the given ComLogicalLink
1002 ///
1003 /// Free memory reserved by the D-PDU API for the given
1004 /// ComLogicalLink.
1005 /// @param hMod Handle of the MVCI protocl module.
1006 /// @param hCll Handle of the ComLogicalLink to be destroyed.
1007 /// @return PDU_ERR_PDUAPI_NOT_CONSTRUCTED if the D-PDU API is not
1008 /// constructed,
1009 /// PDU_ERR_INVALID_HANDLE if the MVCI protocol module or
1010 /// ComLogicalLink handles are invalid,
1011 /// PDU_ERR_MODULE_NOT_CONNECTED if the MVCI protocol module

has not
1012 /// been connected (i.e the module is not in "Ready" state).
1013 /// PDU_STATUS_NOERROR if the ComLogicalLink is successfully
1014 /// destroyed.
1015 ///
1016 T_PDU_ERROR PDUDestroyComLogicalLink(UNUM32 hMod, UNUM32 hCll);
1017

1018 ///
1019 /// @brief Connect the ComLogicalLink to the vehicle bus.
1020 ///
1021 /// Associate the ComLogicalLink to the corresponding ComParams
1022 /// working buffer and the URID table. Set the ComLogicalLink to

the
1023 /// PDU_CLLST_ONLINE state.
1024 /// @param hMod Handle of MVCI protocol module.
1025 /// @param hCll Handle of the ComLogicalLink to be connected.
1026 /// @return PDU_ERR_PDUAPI_NOT_CONSTRUCTED if the module is not

constructed,
1027 /// PDU_ERR_MODULE_NOT_CONNECTED if the module is not connected

,
1028 /// PDU_ERR_INVALID_HANDLE if the MVCI protocol module or
1029 /// ComLogicalLink handles are invalid,
1030 /// PDU_ERR_CLL_CONNECTED if the ComLogicalLink is already in

the
1031 /// "online" state.
1032 /// PDU_STATUS_NOERROR if the ComLogicalLink is successfully
1033 /// connected.

138 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

1034 ///
1035 T_PDU_ERROR PDUConnect(UNUM32 hMod, UNUM32 hCll);
1036

1037 ///
1038 /// @brief Disonnect the ComLogicalLink from the vehicle bus.
1039 ///
1040 /// @param hMod Handle of MVCI protocol module.
1041 /// @param hCll Hanlde of the ComLogicalLink to be disconnected.
1042 /// @return PDU_ERR_PDUAPI_NOT_CONSTRUCTED if the module is not

constructed,
1043 /// PDU_ERR_MODULE_NOT_CONNECTED if the module is not connected

,
1044 /// PDU_ERR_CLL_NOT_CONNECTED if the ComLogicalLink is not

connected,
1045 /// PDU_ERR_INVALID_HANDLE if the MVCI protocol module or
1046 /// ComLogicalLink handles are invalid,
1047 /// PDU_STATUS_NOERROR if theComLogicalLink is successfully
1048 /// disconnected.
1049 ///
1050 T_PDU_ERROR PDUDisconnect(UNUM32 hMod, UNUM32 hCll);
1051

1052 ///
1053 /// @brief Register a callback function for event notification.
1054 ///
1055 /// Add the callback function pointer to the propoer

ComLogicalLink
1056 /// object.
1057 /// @param hMod Handle of MVCI protocol module.
1058 /// @param hCll Hanlde of the ComLogicalLink.
1059 /// @param fnCB Reference of callback function to be used for event
1060 /// notification.
1061 /// @return PDU_ERR_PDUAPI_NOT_CONSTRUCTED if the module is not

constructed,
1062 /// PDU_ERR_MODULE_NOT_CONNECTED if the module is not connected

,
1063 /// PDU_ERR_INVALID_HANDLE if the MVCI protocol module or
1064 /// ComLogicalLink handles are invalid,
1065 /// PDU_ERR_FCT_FAILED if the fnCB pointer is NULL.
1066 /// PDU_STATUS_NOERROR if the callback function is successfully
1067 /// registered.
1068 ///
1069 T_PDU_ERROR PDURegisterEventCallback(UNUM32 hMod, UNUM32 hCll,

CALLBACKFNC fnCB);
1070

1071 ///
1072 /// @brief Get the event item data (PDU_EVENT_ITEM) for the given event
1073 /// source.
1074 ///
1075 /// Allocate memory for PDU_EVENT_ITEM and fill out the event

item
1076 /// information.
1077 /// @param hMod Handle of MVCI protocol module.
1078 /// @param hCll Hanlde of the ComLogicalLink.
1079 /// @param pEventItem Call-by-reference place for storing the pointer

to the
1080 /// event item corresponding to the given event, hMod and hCLL.

139 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

1081 /// @return PDU_ERR_PDUAPI_NOT_CONSTRUCTED if the module is not
constructed,

1082 /// PDU_ERR_INVALID_PARAMETERS if pEventItem pointer is NULL.
1083 /// PDU_ERR_INVALID_HANDLE if the MVCI protocol module or
1084 /// ComLogicalLink handles are invalid,
1085 /// PDU_ERR_EVENT_QUEUE_EMPTY ifno more event items are

available,
1086 /// PDU_STATUS_NOERROR if the event item is successfully

retrieved.
1087 ///
1088 T_PDU_ERROR PDUGetEventItem(UNUM32 hMod, UNUM32 hCll, PDU_EVENT_ITEM**

pEventItem);
1089

1090 ///
1091 /// @brief Creates a ComPrimitive for sending/receiving data and place

it in
1092 /// the CoP Queue.
1093 ///
1094 /// @param hMod Handle of MVCI protocol module.
1095 /// @param hCll Hanlde of the ComLogicalLink.
1096 /// @param uiCoPType Type of the ComPrimitive to be started.
1097 /// @param uiCoPDataSize Size of the ComPrimitive data.
1098 /// @param pCoPData Reference of the buffer holding the data.
1099 /// @param pCopCtrlData Pointer to the control data structure for the
1100 /// ComPrimitive.
1101 /// @param pCoPTag Not used.
1102 /// @param phCoP Call-by-reference place for storage of ComPrimitive

handle
1103 /// @return PDU_ERR_PDUAPI_NOT_CONSTRUCTED if the module is not

constructed,
1104 /// PDU_ERR_INVALID_PARAMETERS if pCoPData or pCopCtrlData

pointers
1105 /// are NULL.
1106 /// PDU_ERR_INVALID_HANDLE if the MVCI protocol module or
1107 /// ComLogicalLink handles are invalid,
1108 /// PDU_ERR_FCT_FAILED if uiCoPType is different than
1109 /// PDU_COPT_SENDRECV (the current D-PDU API implementation

support
1110 /// only the Send-Receive type)
1111 /// PDU_STATUS_NOERROR if the ComPrimitive is successfully

started.
1112 ///
1113 T_PDU_ERROR PDUStartComPrimitive(UNUM32 hMod,
1114 UNUM32 hCll,
1115 T_PDU_COPT uiCoPType,
1116 UNUM32 uiCoPDataSize,
1117 UNUM8* pCoPData,
1118 PDU_COP_CTRL_DATA* pCopCtrlData,
1119 void* pCoPTag,
1120 UNUM32* phCoP);
1121

1122 ///
1123 /// @brief Get a ComParam from the ComParams buffer for the given

module and
1124 /// ComLogicalLink handles.
1125 ///

140 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

1126 /// Allocate memory for the PDU_PARAM_ITEM results and fill out
the

1127 /// ComParam information in it.
1128 /// @param hMod Handle of MVCI protocol module.
1129 /// @param hCll Hanlde of the ComLogicalLink.
1130 /// @param uiParamId ID value of the ComParam to be requested (see MDF

to get
1131 /// the list of ComParam IDs).
1132 /// @param pParamItem Call-by-reference place for storing the ComParam

item.
1133 /// @return PDU_ERR_PDUAPI_NOT_CONSTRUCTED if the module is not

constructed,
1134 /// PDU_ERR_MODULE_NOT_CONNECTED if the module is not connected

,
1135 /// PDU_ERR_INVALID_PARAMETERS if uiParamId is invalid or

pParamItem
1136 /// pointer is NULL,
1137 /// PDU_ERR_INVALID_HANDLE if the MVCI protocol module or
1138 /// ComLogicalLink handles are invalid,
1139 /// PDU_STATUS_NOERROR if the requested ComParam is

successfully
1140 /// retrieved.
1141 ///
1142 T_PDU_ERROR PDUGetComParam(UNUM32 hMod, UNUM32 hCll, UNUM32 uiParamId,

PDU_PARAM_ITEM** pParamItem);
1143

1144 ///
1145 /// @brief Set a ComParam in the ComParams buffer for the given module

and
1146 /// ComLogicalLink handles.
1147 ///
1148 /// @param hMod Handle of MVCI protocol module.
1149 /// @param hCll Hanlde of the ComLogicalLink.
1150 /// @param pParamItem ComParam item structure with the ComParam element

to be
1151 /// set.
1152 /// @return PDU_ERR_PDUAPI_NOT_CONSTRUCTED if the module is not

constructed,
1153 /// PDU_ERR_MODULE_NOT_CONNECTED if the module is not connected

,
1154 /// PDU_ERR_INVALID_PARAMETERS if pParamItem pointer is NULL or

the
1155 /// ComParam ID is invalid,
1156 /// PDU_ERR_INVALID_HANDLE if the MVCI protocol module or
1157 /// ComLogicalLink handles are invalid,
1158 /// PDU_ERR_FCT_FAILED if the ComLogicalLink is in "online"

state,
1159 /// PDU_STATUS_NOERROR if the given ComParam is successfully

set.
1160 ///
1161 T_PDU_ERROR PDUSetComParam(UNUM32 hMod, UNUM32 hCll, PDU_PARAM_ITEM*

pParamItem);
1162

1163 ///
1164 /// @brief Get information of all unique response identifiers

configured for

141 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

1165 /// the ComLogicalLink.
1166 ///
1167 /// @param hMod Handle of MVCI protocol module.
1168 /// @param hCll Hanlde of the ComLogicalLink.
1169 /// @param pUniqueRespIdTable Call-by-reference place for storing the

Unique
1170 /// Response ID Table for the given CLL.
1171 /// @return PDU_ERR_PDUAPI_NOT_CONSTRUCTED if the module is not

constructed,
1172 /// PDU_ERR_MODULE_NOT_CONNECTED if the module is not connected

,
1173 /// PDU_ERR_INVALID_PARAMETERS if pUniqueRespIdTable pointer is

NULL
1174 /// or the ComParam ID is invalid,
1175 /// PDU_ERR_INVALID_HANDLE if the MVCI protocol module or
1176 /// ComLogicalLink handles are invalid,
1177 /// PDU_STATUS_NOERROR if the URID table is successfully

retrieved.
1178 ///
1179 T_PDU_ERROR
1180 PDUGetUniqueRespIdTable(UNUM32 hMod, UNUM32 hCll,

PDU_UNIQUE_RESP_ID_TABLE_ITEM** pUniqueRespIdTable);
1181

1182 ///
1183 /// @brief Set Unique Response Id Table for a ComLogicalLink.
1184 ///
1185 /// @param hMod Handle of MVCI protocol module.
1186 /// @param hCll Hanlde of the ComLogicalLink.
1187 /// @param pUniqueRespIdTable Call-by-reference witch contains the URID

table
1188 /// for the given ComLogicalLink.
1189 /// @return PDU_ERR_PDUAPI_NOT_CONSTRUCTED if the module is not

constructed,
1190 /// PDU_ERR_MODULE_NOT_CONNECTED if the module is not connected

,
1191 /// PDU_ERR_INVALID_PARAMETERS if pUniqueRespIdTable pointer is

NULL
1192 /// or the ComParam ID is invalid,
1193 /// PDU_ERR_INVALID_HANDLE if the MVCI protocol module or
1194 /// ComLogicalLink handles are invalid,
1195 /// PDU_ERR_FCT_FAILED if the ComLogicalLink is in "online"

state.
1196 /// PDU_STATUS_NOERROR if the URID table is successfully

retrieved.
1197 ///
1198 T_PDU_ERROR
1199 PDUSetUniqueRespIdTable(UNUM32 hMod, UNUM32 hCll,

PDU_UNIQUE_RESP_ID_TABLE_ITEM* pUniqueRespIdTable);
1200

1201 ~PduApi() = default;
1202

1203 private:
1204 enum class PduApiState
1205 {
1206 kUnconstructed = 0,
1207 kConstructed

142 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

1208 };
1209

1210 using PduDataType = std::variant<std::shared_ptr<PDU_EVENT_ITEM>,
1211 std::shared_ptr<PDU_PARAM_ITEM>,
1212 std::shared_ptr<PDU_RSC_DATA>,
1213 std::shared_ptr<PDU_MODULE_ITEM>,
1214 std::shared_ptr<PDU_RSC_ID_ITEM>,
1215 std::shared_ptr<PDU_UNIQUE_RESP_ID_TABLE_ITEM>>;
1216

1217 PduApi();
1218

1219 /// @brief Allocate PDU_MODULE_ITEM structure and fill the call-by-
reference

1220 /// variable pModuleIdList
1221 ///
1222 /// @return the filled PDU_MODULE_ITEM structure
1223 std::shared_ptr<PDU_MODULE_ITEM> createModuleItem();
1224

1225 /// @brief D-PDU API states (constructed, Not constructed)
1226 PduApiState pduapiStatus_{PduApiState::kUnconstructed};
1227

1228 /// @brief list of the available MVCI protocol modules.
1229 ara::core::Map<UNUM32, Module> availableModules_;
1230

1231 /// @brief D-PDU API data, events and param items
1232 std::list<PduDataType> pduData_;
1233 };

143 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

G Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

G.1 Traceable item history of this document according to AU-
TOSAR Release R23-11

G.1.1 Added Specification Items in R23-11

Number Heading

[SWS_VUCM_00136] Definition of Application Error Domain of functional cluster VUCM

[SWS_VUCM_00177] Definition of ImplementationDataType SwNameVersionVectorType

[SWS_VUCM_00178] Definition of Port VehiclePackageManagement provided by functional cluster
VUCM

[SWS_VUCM_00179] Definition of Port VehicleStateManagerInterface provided by functional
cluster VUCM

[SWS_VUCM_00180] Definition of Port VehicleDriverApplicationInterface provided by functional
cluster VUCM

[SWS_VUCM_00181] Definition of ServiceInterface VehiclePackageManagement

[SWS_VUCM_00182] Definition of ServiceInterface VehicleDriverApplicationInterface

[SWS_VUCM_00183] Definition of ServiceInterface VehicleStateManagerInterface

[SWS_VUCM_00210] Transferring of software packages on kProcessing state

[SWS_VUCM_00251] Definition of ImplementationDataType CampaignHistoryType

[SWS_VUCM_00252] Definition of ImplementationDataType CampaignResultType

[SWS_VUCM_00253] Definition of ImplementationDataType UCMStepErrorType

[SWS_VUCM_00254] Definition of ImplementationDataType UCMHistoryVectorType

[SWS_VUCM_00255] Definition of ImplementationDataType SoftwarePackageStepType

[SWS_VUCM_00256] Definition of ImplementationDataType UCMMasterResolutionType

[SWS_VUCM_00268] Definition of ImplementationDataType SwPackageDescType

[SWS_VUCM_00269] Definition of ImplementationDataType SwPackageDescVectorType

[SWS_VUCM_00290] Definition of ImplementationDataType UCMHistoryType

[SWS_VUCM_00291] Definition of ImplementationDataType UCMStepErrorVectorType

[SWS_VUCM_00296] Definition of ImplementationDataType CampaignHistoryVectorType

[SWS_VUCM_00297] Retry Strategy for ServiceBusy

[SWS_VUCM_00298] Retry Strategy for UpdateSessionRejected

[SWS_VUCM_00304] Definition of ImplementationDataType UCMMasterResolutionVectorType

[SWS_VUCM_00307] Definition of ImplementationDataType VehicleUCMInfo

[SWS_VUCM_00308] Definition of ImplementationDataType UCMIdentifiersAndVersionsType
5

144 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

4
Number Heading

[SWS_VUCM_01003] V-UCM checks states of UCMs
[SWS_VUCM_01005] V-UCM is discovering UCMs in vehicle

[SWS_VUCM_01011] TransferVehiclePackage InsufficientMemory

[SWS_VUCM_01013] Too big block size received by V-UCM

[SWS_VUCM_01014] Packages transferring sequence

[SWS_VUCM_01015] Invalid Vehicle Package manifest

[SWS_VUCM_01016] Invalid Package Manifest

[SWS_VUCM_01017] RequestedPackage field

[SWS_VUCM_01018] TransferVehiclePackage kBusyWithCampaign

[SWS_VUCM_01019] V-UCM initialization
[SWS_VUCM_01020] Retry Strategy for BlockInconsistent

[SWS_VUCM_01021] Definition of Port PackageManagement required by functional cluster VUCM

[SWS_VUCM_01101] Provide information of installed Software Clusters in vehicle
[SWS_VUCM_01103] Inform Backend of needed Software Packages for an update

[SWS_VUCM_01105] Interaction of V-UCM with Vehicle Driver
[SWS_VUCM_01109] V-UCM provides a safety interface

[SWS_VUCM_01114] Definition of ImplementationDataType SafetyConditionType

[SWS_VUCM_01117] V-UCM VehicleConditionCollection field
[SWS_VUCM_01118] V-UCM waiting for vehicle driver approval

[SWS_VUCM_01119] Report information of Software Packages

[SWS_VUCM_01120] Provide Software Packages general information

[SWS_VUCM_01122] Supported physical layers by D-PDU API implementation

[SWS_VUCM_01123] Supported application layers by D-PDU API implementation

[SWS_VUCM_01124] Supported protocols by D-PDU API implementation

[SWS_VUCM_01131] PDUIoCtl(PDU_IOCTL_RESET)

[SWS_VUCM_01132]
PDUIoCtl(PDU_IOCTL_START_MSG_FILTER), PDUIoCtl(
PDU_IOCTL_CLEAR_MSG_FILTER), PDUIoCtl(
PDU_IOCTL_STOP_MSG_FILTER)

[SWS_VUCM_01135] Get Software Clusters descriptions from a vehicle

[SWS_VUCM_01138] Definition of ImplementationDataType SafetyStateType

[SWS_VUCM_01139] V-UCM configured behavior when vehicle safety is not met

[SWS_VUCM_01177] Definition of ImplementationDataType CampaignStateType

[SWS_VUCM_01178] Definition of ImplementationDataType TransferStateType

[SWS_VUCM_01201] Sequential orchestration of campaigns

[SWS_VUCM_01203] CampaignState field

[SWS_VUCM_01204] Initial state
[SWS_VUCM_01205] V-UCM internal state persistency

[SWS_VUCM_01207] Trigger on kSoftwarePackage_Transferring state

[SWS_VUCM_01209] Trigger on kProcessing state
5

145 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

4
Number Heading

[SWS_VUCM_01212] Trigger on kActivating state

[SWS_VUCM_01214] Final action on kVehicleChecking state

[SWS_VUCM_01215] Trigger on kCancelling state

[SWS_VUCM_01216] Final action on kCancelling state

[SWS_VUCM_01217] Monitoring of UCMs

[SWS_VUCM_01218] Transition from kIdle state to kSyncing state

[SWS_VUCM_01219] Transition from kSyncing state to kIdle state

[SWS_VUCM_01220] Transition from kIdle state to kVehiclePackageTransferring and
kTransferring states

[SWS_VUCM_01221] Transition from kVehiclePackageTransferring state and
kTransferring state to kCancelling state

[SWS_VUCM_01222] Transition from kVehiclePackageTransferring state to
kSoftwarePackage_Transferring state

[SWS_VUCM_01227] Transition from kSoftwarePackage_Transferring state and
kTransferring state to kCancelling state

[SWS_VUCM_01228] Transition from kSoftwarePackage_Transferring state and
kTransferring state to kProcessing state and kUpdating state

[SWS_VUCM_01229] SafetyConditions while processing stream

[SWS_VUCM_01234] Transition from kProcessing state to kActivating state

[SWS_VUCM_01236] Transition from kProcessing state and kUpdating state to kCancelling
state

[SWS_VUCM_01239] Transition from kActivating state and kUpdating state to kCancelling
state

[SWS_VUCM_01240] Transition from kActivating state to kVehicleChecking state

[SWS_VUCM_01241] Transition from kVehicleChecking state and kUpdating state to
kCancelling state

[SWS_VUCM_01242] Transition from kVehicleChecking state and kUpdating state to kIdle
state

[SWS_VUCM_01243] Transition from kCancelling state to kIdle state

[SWS_VUCM_01244] Cancellation of an update campaign shall be possible

[SWS_VUCM_01246] Unreachable UCM during update campaign

[SWS_VUCM_01247] Method to read History Report

[SWS_VUCM_01248] Content of History Report

[SWS_VUCM_01265] TransferState field
[SWS_VUCM_01266] Subordinate Not Available On The Network
[SWS_VUCM_01267] Vehicle State Manager Communication Error

[SWS_VUCM_01268] Vehicle Driver Interface Communication Error
[SWS_VUCM_01269] Campaign cancellation history

[SWS_VUCM_01270] New campaign disabling

[SWS_VUCM_01271] New campaign enabling

[SWS_VUCM_01272] VehicleCheck call not permitted
5

146 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

4
Number Heading

[SWS_VUCM_01273] CancelCampaign kCancelFailed error

[SWS_VUCM_01274] CancelCampaign kOperationNotPermitted error

[SWS_VUCM_01275] Safety conditions during activation

[SWS_VUCM_01276] Transition from kRollingBackFailed state to kIdle state

[SWS_VUCM_01277] Transition from kCancelling state to kRollingBackFailed state

[SWS_VUCM_01278] V-UCM behaviour in case a safety condition is not supported by Vehicle
State Manager

[SWS_VUCM_01279] Keep history of Driver notification during campaign

[SWS_VUCM_01280] Maximum campaign duration

[SWS_VUCM_01301] Vehicle Package authentication

[SWS_VUCM_01302] Vehicle Package authentication failure

[SWS_VUCM_01303] Dependencies between Software Clusters

[SWS_VUCM_01305] Vehicle Package format

[SWS_VUCM_01306] TransferExit Invalid package manifest

[SWS_VUCM_01307] Vehicle Package format not supported

[SWS_VUCM_01308] Check Vehicle Package version compatibility against V-UCM version

[SWS_VUCM_01309] Definition of ImplementationDataType VehicleConditionCollectionType

[SWS_VUCM_01310] Definition of ImplementationDataType VehicleConditionType

[SWS_VUCM_01311] Semantic versionning

Table G.1: Added Specification Items in R23-11

G.1.2 Changed Specification Items in R23-11

none

G.1.3 Deleted Specification Items in R23-11

none

147 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

G.1.4 Added Constraints in R23-11

Number Heading

[SWS_VUCM_CONSTR_00003] Exclusive use of Vehicle Driver Interface
[SWS_VUCM_CONSTR_00004] Unsupported safety by Vehicle driver interface

[SWS_VUCM_CONSTR_00005] Safety state change

[SWS_VUCM_CONSTR_00006] Exclusive use of Vehicle State Manager

[SWS_VUCM_CONSTR_00007] Unsupported safety conditions by Vehicle State Manager

[SWS_VUCM_CONSTR_00009] Safety condition change

[SWS_VUCM_CONSTR_00011] Flashing Adapter provided interface

[SWS_VUCM_CONSTR_00013] Confidential information protection

[SWS_VUCM_CONSTR_00015] Trigger on kVehicleChecking state

[SWS_VUCM_CONSTR_00016] OTA Client use of RequestedPackage field

[SWS_VUCM_CONSTR_00017] Interaction of V-UCM with Vehicle Driver
[SWS_VUCM_CONSTR_00018] V-UCM uniqueness in vehicle

Table G.2: Added Constraints in R23-11

G.1.5 Changed Constraints in R23-11

none

G.1.6 Deleted Constraints in R23-11

none

G.2 Traceable item history of this document according to AU-
TOSAR Release R24-11

G.2.1 Added Specification Items in R24-11

Number Heading

[SWS_VUCM_01022] Definition of ImplementationDataType CampaignStateProgressInfoType

[SWS_VUCM_01023] UcmStep order

[SWS_VUCM_01024] LogMessage CampaignStarted

[SWS_VUCM_01025] LogMessage CampaignAborted

[SWS_VUCM_01026] LogMessage SoftwarePackageTransferStarted
5

148 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

4
Number Heading

[SWS_VUCM_01027] LogMessage SoftwarePackageTransferFinished

[SWS_VUCM_01028] LogMessage VehiclePackageTransferFailed

[SWS_VUCM_01029] LogMessage SoftwarePackageTransferFailed

[SWS_VUCM_01030] LogMessage UpdateStarted

[SWS_VUCM_01031] LogMessage CampaignFailed

[SWS_VUCM_01032] LogMessage CampaignSuccessful

[SWS_VUCM_01033] Unreachable UCM during Packages transferring sequence

[SWS_VUCM_01034] Retry Strategy for Transfer methods

[SWS_VUCM_01140] Definition of ImplementationDataType VehiclePackageDescriptionType

[SWS_VUCM_01141] V-UCM behavior in case a safety condition is not supported by Vehicle Driver
Interface

[SWS_VUCM_01142] Definition of Field VehicleDriverApplicationInterface.ApprovalRequired

[SWS_VUCM_01143] Definition of Field VehicleDriverApplicationInterface.CampaignState

[SWS_VUCM_01144] Definition of Field VehicleDriverApplicationInterface.VehicleCondition
Collection

[SWS_VUCM_01145] Definition of Method VehicleDriverApplicationInterface.CancelCampaign

[SWS_VUCM_01146] Definition of Method VehicleDriverApplicationInterface.AllowCampaign

[SWS_VUCM_01147] Definition of Method VehicleDriverApplicationInterface.Approve

[SWS_VUCM_01148] Definition of Method VehicleDriverApplicationInterface.ReportUnsupported
SafetyConditions

[SWS_VUCM_01149] Definition of Method VehicleDriverApplicationInterface.GetCampaignHistory

[SWS_VUCM_01150] Definition of Method VehicleDriverApplicationInterface.GetSwClusterInfo

[SWS_VUCM_01151] Definition of Method VehicleDriverApplicationInterface.GetSwPackage
Description

[SWS_VUCM_01152] Definition of Method VehicleDriverApplicationInterface.GetVehiclePackage
Description

[SWS_VUCM_01156] Definition of Field VehiclePackageManagement.TransferState

[SWS_VUCM_01157] Definition of Field VehiclePackageManagement.CampaignState

[SWS_VUCM_01158] Definition of Field VehiclePackageManagement.RequestedPackage

[SWS_VUCM_01159] Definition of Field VehiclePackageManagement.VehicleConditionCollection

[SWS_VUCM_01160] Definition of Method VehiclePackageManagement.CancelCampaign

[SWS_VUCM_01161] Definition of Method VehiclePackageManagement.AllowCampaign

[SWS_VUCM_01162] Definition of Method VehiclePackageManagement.DeleteTransfer

[SWS_VUCM_01163] Definition of Method VehiclePackageManagement.TransferData

[SWS_VUCM_01164] Definition of Method VehiclePackageManagement.TransferExit

[SWS_VUCM_01165] Definition of Method VehiclePackageManagement.TransferStart

[SWS_VUCM_01166] Definition of Method VehiclePackageManagement.TransferVehiclePackage

[SWS_VUCM_01167] Definition of Method VehiclePackageManagement.GetCampaignHistory

[SWS_VUCM_01168] Definition of Method VehiclePackageManagement.GetSwClusterInfo

[SWS_VUCM_01169] Definition of Method VehiclePackageManagement.GetSwPackages
5

149 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

4
Number Heading

[SWS_VUCM_01170] Definition of Method VehiclePackageManagement.GetVehicleUCMInfo

[SWS_VUCM_01171] Definition of Method VehiclePackageManagement.SwPackageInventory

[SWS_VUCM_01172] Definition of Field VehicleStateManagerInterface.CampaignState

[SWS_VUCM_01173] Definition of Field VehicleStateManagerInterface.VehicleConditionCollection

[SWS_VUCM_01174] Definition of Method VehicleStateManagerInterface.PublishSafetyState

[SWS_VUCM_01175] Software Package deletion

[SWS_VUCM_01176] Software Package authentication failure

[SWS_VUCM_01179] Definition of Method VehicleStateManagerInterface.VehicleCheck

[SWS_VUCM_01180] DeleteTranfer OperationNotPermited error

[SWS_VUCM_01282] Transition from kVehicleChecking state to kIdle state

[SWS_VUCM_01283] Errors returned by UCM during campaign

[SWS_VUCM_01312] Campaign start - log start of update campaign

[SWS_VUCM_01313] Campaign abort - log abort of update campaign

[SWS_VUCM_01314] Software Package transfer - log start of Software Package transfer

[SWS_VUCM_01315] Software Package transfer - log end of Software Package transfer

[SWS_VUCM_01316] Vehicle Package transfer failure - log failure during transfer of Vehicle
Package

[SWS_VUCM_01317] Software Package transfer failure - log failure during transfer of
Software Package

[SWS_VUCM_01318] Start of update - log start of update process

[SWS_VUCM_01319] Campaign result - log failure of update campaign

[SWS_VUCM_01320] Campaign result - log success of update campaign

Table G.3: Added Specification Items in R24-11

G.2.2 Changed Specification Items in R24-11

Number Heading

[SWS_VUCM_00136] Definition of Application Error Domain of functional cluster VUCM

[SWS_VUCM_00181] Definition of ServiceInterface VehiclePackageManagement

[SWS_VUCM_00182] Definition of ServiceInterface VehicleDriverApplicationInterface

[SWS_VUCM_00183] Definition of ServiceInterface VehicleStateManagerInterface

[SWS_VUCM_00252] Definition of ImplementationDataType CampaignResultType

[SWS_VUCM_00256] Definition of ImplementationDataType VUCMResolutionType

[SWS_VUCM_00268] Definition of ImplementationDataType SwPackageDescType

[SWS_VUCM_00304] Definition of ImplementationDataType VUCMResolutionVectorType

[SWS_VUCM_01003] V-UCM checks states of UCMs
5

150 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

4
Number Heading

[SWS_VUCM_01018] TransferVehiclePackage kBusyWithCampaign

[SWS_VUCM_01118] V-UCM waiting for vehicle driver approval

[SWS_VUCM_01207] Trigger on kSoftwarePackage_Transferring state

[SWS_VUCM_01218] Transition from kIdle state to kSyncing state

[SWS_VUCM_01219] Transition from kSyncing state to kIdle state

[SWS_VUCM_01220] Transition from kIdle state to kVehiclePackageTransferring

[SWS_VUCM_01221] Transition from kVehiclePackageTransferring state

[SWS_VUCM_01227] Transition from kSoftwarePackage_Transferring state to
kCancelling state

[SWS_VUCM_01228] Transition from kSoftwarePackage_Transferring state to
kProcessing state

[SWS_VUCM_01234] Transition from kProcessing state to kActivating state

[SWS_VUCM_01236] Transition from kProcessing state to kCancelling state

[SWS_VUCM_01239] Transition from kActivating state to kCancelling state

[SWS_VUCM_01241] Transition from kVehicleChecking state to kCancelling state

[SWS_VUCM_01242] Transition from kVehicleChecking stateto kIdle state

[SWS_VUCM_01243] Transition from kCancelling state to kIdle state

[SWS_VUCM_01244] Cancellation of an update campaign shall be possible

[SWS_VUCM_01246] Unreachable UCM during update campaign

[SWS_VUCM_01265] TransferState field
[SWS_VUCM_01266] Subordinate Not Available On The Network
[SWS_VUCM_01270] New campaign disabling

[SWS_VUCM_01276] Transition from kRollingBackFailed state to kIdle state

[SWS_VUCM_01277] Transition from kCancelling state to kRollingBackFailed state

[SWS_VUCM_01278] V-UCM behaviour in case a safety condition is not supported by Vehicle
State Manager

[SWS_VUCM_01305] Vehicle Package format

[SWS_VUCM_01307] Vehicle Package format not supported

[SWS_VUCM_01308] Check Vehicle Package version compatibility against V-UCM version

Table G.4: Changed Specification Items in R24-11

G.2.3 Deleted Specification Items in R24-11

none

151 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

Specification of Vehicle Update and Configuration
Management

AUTOSAR AP R24-11

G.2.4 Added Constraints in R24-11

Number Heading

[SWS_VUCM_CONSTR_00019] Safety handling after reboot

Table G.5: Added Constraints in R24-11

G.2.5 Changed Constraints in R24-11

Number Heading

[SWS_VUCM_CONSTR_00017] Interaction of V-UCM with Vehicle Driver

Table G.6: Changed Constraints in R24-11

G.2.6 Deleted Constraints in R24-11

none

152 of 152 Document ID 1090: AUTOSAR_AP_SWS_VehicleUpdateAndConfigurationManagement

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Further applicable specification

	4 Constraints and assumptions
	4.1 Known limitations
	4.2 Applicability to car domains

	5 Dependencies to other Functional Clusters
	5.1 Provided Interfaces
	5.2 Required Interfaces

	6 Requirements Tracing
	7 Functional specification
	7.1 Functional cluster life-cycle
	7.1.1 Startup
	7.1.2 Shutdown

	7.2 Technical Overview
	7.3 V-UCM general behavior
	7.4 UCM identification
	7.5 V-UCM Software Packages transfer or streaming
	7.6 V-UCM retry strategy
	7.7 Adaptive Applications interacting with V-UCM
	7.7.1 OTA Client
	7.7.2 Vehicle Driver Interface
	7.7.3 Vehicle State Manager
	7.7.4 Flashing Adapter
	7.7.5 UCM Diagnostic Application
	7.7.6 Non Adaptive Platform update
	7.7.6.1 D-PDU API implementation support
	7.7.6.2 Not required D-PDU API concepts
	7.7.6.3 Not required D-PDU API functions
	7.7.6.4 Classic platform update with V-UCM and diagnostic tool

	7.8 Status reporting
	7.8.1 States
	7.8.2 States Transitions

	7.9 Campaign cancelling
	7.10 Campaign Reporting
	7.11 Content of Vehicle Package
	7.12 Vehicle update security and confidentiality
	7.13 Reporting
	7.13.1 Security Events
	7.13.2 Log Messages
	7.13.2.1 Standardized Logging

	7.13.3 Violation Messages
	7.13.4 Production Errors

	8 API specification
	9 Service Interfaces
	9.1 Type definitions
	9.1.1 CampaignHistoryType
	9.1.2 CampaignHistoryVectorType
	9.1.3 CampaignResultType
	9.1.4 VUCMResolutionVectorType
	9.1.5 VUCMResolutionType
	9.1.6 UCMStepErrorVectorType
	9.1.7 UCMStepErrorType
	9.1.8 SoftwarePackageStepType
	9.1.9 UCMHistoryType
	9.1.10 UCMHistoryVectorType
	9.1.11 CampaignStateType
	9.1.12 CampaignStateProgressInfoType
	9.1.13 TransferStateType
	9.1.14 SafetyConditionType
	9.1.15 VehicleConditionCollectionType
	9.1.16 VehicleConditionType
	9.1.17 SafetyStateType
	9.1.18 SwNameVersionVectorType
	9.1.19 VehicleUCMInfo
	9.1.20 UCMIdentifiersAndVersionsType
	9.1.21 SwPackageDescType
	9.1.22 SwPackageDescVectorType
	9.1.23 VehiclePackageDescriptionType

	9.2 Provided Service Interfaces
	9.2.1 Vehicle Package Management
	9.2.2 Vehicle Driver Application Interface
	9.2.3 Vehicle State Manager

	9.3 Required Interface
	9.4 Application Errors
	9.4.1 Application Error Domain
	9.4.1.1 UCMErrorDomain

	10 Configuration
	10.1 Default Values
	10.2 Semantic Constraints

	A Mentioned Manifest Elements
	B Platform Extension API (normative)
	C Interfaces to other Functional Clusters (informative)
	C.1 Overview
	C.2 Interface Tables

	D Packages distribution within vehicle detailed sequence examples
	D.1 Collect information of present Software Clusters in vehicle
	D.2 Action computation
	D.2.1 Pull package from Backend into vehicle
	D.2.2 Push package from backend into vehicle

	D.3 Packages transfer from backend into targeted UCM
	D.4 Package processing
	D.5 Package activation
	D.6 Package rollback
	D.7 Campaign reporting

	E Security Analysis of Installation and Update
	E.1 Securing Vehicle Package
	E.2 Securing Calls to V-UCM
	E.3 Suppressing Call to V-UCM
	E.4 Resource Starvation

	F Demonstrator Examples
	G Change history of AUTOSAR traceable items
	G.1 Traceable item history of this document according to AUTOSAR Release R23-11
	G.1.1 Added Specification Items in R23-11
	G.1.2 Changed Specification Items in R23-11
	G.1.3 Deleted Specification Items in R23-11
	G.1.4 Added Constraints in R23-11
	G.1.5 Changed Constraints in R23-11
	G.1.6 Deleted Constraints in R23-11

	G.2 Traceable item history of this document according to AUTOSAR Release R24-11
	G.2.1 Added Specification Items in R24-11
	G.2.2 Changed Specification Items in R24-11
	G.2.3 Deleted Specification Items in R24-11
	G.2.4 Added Constraints in R24-11
	G.2.5 Changed Constraints in R24-11
	G.2.6 Deleted Constraints in R24-11

