AUTSSAR

Document Title Specification of Platform Health
Management

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 851

Document Status published

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release R24-11

Document Change History

Date

Release

Changed by

Description

2024-11-27

R24-11

AUTOSAR
Release
Management

o Removed Health Channels from
specification

e Changed return type of
RecoveryHandler API to
ara::core::Future

e Set SupervisedEntity class and
RecoveryAction APIs to final

e Update of threadsafety and exception
safety information on APIs

¢ Introduction of violation messages to
ReportCheckpoint() and constructors

2023-11-23

R23-11

AUTOSAR
Release
Management

e Addition of thread safety information to
PHM APIs

e Renaming of PHM security event

e Added "k" prefix to enum
TypeOfSupervision

o Addition of explanations and examples

AUTSSAR

AUTOSAR
Release
Management

2022-11-24 | R22-11

¢ Replaced Local Supervision with
Elementary Supervision

o Rework of state machine for Global
Supervision Status

e Removed API
GetGlobalSupervisionStatus() from
class RecoveryAction

e Introduction of PhmErrorDomain
functions and PhmException

e Specification of Start and Stop of
Supervisions

AUTOSAR
R21-11 Release
Management

2021-11-25

e Health Channels are set to obsolete

e Removed retry after failed notification to
State Management

e Removed GetLocalSupervisionStatus()
and GetGlobalSupervisionStatus() APls
from SupervisedEntity class

¢ Added Determination of Supervision
Status from Foundation
SWS_ HealthMonitoring

e Added Mode Dependent Configuration
Concept

¢ Alignment of Enumeration Literal Indices
of SupervisionStatus with Classic
Platform WdgM types

e Introduction of PhmErrorDomain

¢ Introduction of Watchdoglnterface

AUTSSAR

e Changed role of PHM to a monitor who
notifies State Management, thus rework
of logic and interfaces.

e Integration of Identity and Access

AUTOSAR Management for PHM
2020-11-30 R20-11 Release
Management e Moving specification of Health Channel
Supervision from Foundation to Adaptive
Platform
e Reintroduced Enum for Checkpoints and
Health Status
e Added recovery action via application
e Usage of ara: :core types in PHM
APls
AUTOSAR
2019-11-28 R19-11 Release e Set data types to uint32_t by default
Management o
o Editorial rework of chapters 7 and 8
e Changed Document Status from Final to
published
e Modified the API for Supervised Entity
AUTOSAR and Health Channel
2019-03-29 | 19-03 Release
Management o Modified the interface with the Execution
Manager
AUTOSAR ¢ Described the interfaces with functional
2018-10-31 18-10 Release clusters execution management and
Management state management
AUTOSAR
2018-03-29 18-03 Release e Initial release

Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Contents

1 Introduction and functional overview 8
2 Acronyms and Abbreviations 9
3 Related documentation 11
3.1 Input documents & related standards andnorms 11
3.2 Further applicable specification 11
4 Constraints and assumptions 12
41 Knownlimitations 12
4.2 Applicabilitytocardomains L. 13
5 Dependencies to other Functional Clusters 14
51 ProvidedInterfaces 14
5.2 RequiredInterfaces o 15
5.3 Additional dependencies on Execution Management 16
6 Requirements Tracing 17
7 Functional specification 20
7.1 Generaldescription 20
7.2 Supervision of Supervised Entities o oL 20
7.2.1 Start and Stop of Supervisionso Lo 24

7.2.1.1 Stopping of Alive Supervision for Self Terminating
Process 25

7.2.2 Supervision of processes started before Platform Health
Managemento 27
7.3 SupervisionModes 27
7.3.1 Effect of changingMode 27
7.4 Determination of Supervision Status 30
7.4.1 Determination of Elementary Supervision Status 30
7.4.2 Determination of Global Supervision Status 36
7.5 Recoveryactions 44
7.5.1 Notificaton to State Management 45
7.5.2 Handling of Hardware Watchdog 46
7.5.3 Configuration Parameters 47
7.6 Multiple processes and multiple instances 48
7.7 Functional cluster life-cycle 49
7.7.1 Startup 49
7.7.2 Shutdown 49
7.7.21 Handling of watchdog during shutdown 49
7.8 Reporting e 51
7.8.1 Security Events 51
7.8.2 LogMessageso 51

7.8.3 Violation Messages 51

AUTSSAR

8 API specification

8.1 Header: ara/phm/supervised_entities/{<si-namespace-derived-

directory-path-lower>}/{<phmssi-sn>}.h

8.1.1 Namespaces o
8.1.1.1 ara::phm::supervised_entities::{<hierarchical-

namespace-list-lower-skeleton>}

8.1.2 Non-Member Types

8.1.2.1 Enumeration: {<phmssi-sn>}
8.1.3 Global Variables
8.1.3.1 {<symbol-phm-checkpoint>}

8.2 Header: ara/phm/phm_error_domain.h
8.2.1 Non-Member Types

8.2.1.1 Enumeration: PhmErrco 0oL
8.2.2 Non-Member Functions
8.2.2.1 Other
8.2.3 Class: PhmErrorDomain
8.2.3.1 Public Member Types
8.2.3.2 Public Member Functions
8.24 Class: PhmException
8.2.4.1 Public Member Functions

8.3 Header: ara/phm/recovery_action.h
8.3.1 Non-Member Types

8.3.1.1 Enumeration: TypeOfSupervision
8.3.2 Class: RecoveryAction
8.3.2.1 Public Member Functions

8.4 Header: ara/phm/supervised_entity.h
8.4.1 Non-Member Types

8.4.1.1 Enumeration: ElementarySupervisionStatus
8.4.1.2 Enumeration: GlobalSupervisionStatus.
8.4.2 Class: SupervisedEntity
8.4.2.1 Public Member Functions

9 Service Interfaces

10 Configuration

10.1 Default Values
10.2 Semantic Constraints

Mentioned Manifest Elements
Demands and constraints on Base Software (normative)

Platform Extension API (normative)

C.1 Header: apext/phm/watchdog_interface.h
C.1.1 Class: Watchdoginterface
C1.1.1 Public Member Functions

AUTSSAR

D Not implemented requirements

E Change History of AUTOSAR traceable items

E.1

E.2

E.3

E.4

Traceable item history of this document according to AUTOSAR Re-
lease R21-11
E.1.1 Added Specification ltemsinR21-11.
E.1.2 Changed Specification ltemsin R21-11
E.1.3 Deleted Specification ltemsin R21-11
Traceable item history of this document according to AUTOSAR Re-
lease R22-11 e
E.2.1 Added Specification ltemsin R22-11.
E.2.2 Changed Specification ltemsin R22-11
E.2.3 Deleted Specification ltemsin R22-11
Traceable item history of this document according to AUTOSAR Re-
lease R23-11
E.3.1 Added Specification Itemsin R23-11.
E.3.2 Changed Specification ltems in R23-11
E.3.3 Deleted Specification ltemsin R23-11
Traceable item history of this document according to AUTOSAR Re-
lease R24-11
E.4.1 Added Specification ltemsinR24-11
E.4.2 Changed Specification ltems in R24-11
E.4.3 Deleted Specification ltemsin R24-11
E.4.4 Added Constraintsin R24-11
E.4.5 Changed Constraints in R24-11
E.4.6 Deleted Constraintsin R24-11

AUTSSAR

1 Introduction and functional overview

This document is the software specification of the Plat form Health Management
functional cluster within the Adaptive Platform [1].

The specification implements the requirements specified in [2, RS Platform Health
Management].

It also implements the general functionality described in the Foundation documents [3,
RS Health Monitoring] and [4, ASWS Health Monitoring].

Health Monitoringisrequiredby [5, 1SO 26262:2018] (under the terms control flow
monitoring, external monitoring facility, watchdog, logical monitoring, temporal moni-
toring, program sequence monitoring) and this specification is supposed to address all
relevant requirements from this standard.

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations that are only relevant within
this specification. A general list of acronyms and abbreviations is available in [6].

Acronym: Description:

E2E AUTOSAR End to End communication protection
mechanism

PHM Platform Health Management

SE Supervised Entity

Table 2.1: Acronyms and abbreviations used in the scope of this Document

Acronym:

Description:

Alive Supervision

Mechanism to check the timing constraints of cyclic
Supervised Entitys to be within the configured
min and max limits.

ara:.com Communication middleware for the AUTOSAR
Adaptive Platform

AUTOSAR Adaptive see [6] AUTOSAR Glossary

Platform

Checkpoint A point in the control flow of a Supervised Entity

where the activity is reported.

Daisy chaining

Chaining multiple instances of Health Monitoring

Deadline Supervision

Mechanism to check that the timing constraints for
execution of the transition from a Deadline Start
Checkpoint to a corresponding Deadline End
Checkpoint are within the configured min and max
limits.

Elementary Supervision
Status

Status that represents the current state of an Alive
Supervision, Deadline Supervision Or
Logical Supervision, based on the evaluation
(correct/incorrect) of the supervision.

Function Group

A Function Group is a set of coherent
Processes, Which need to be controlled consistently.
Depending on the state of the Function Group,
Processes are started or terminated. Function
Groups and their state are controlled by
StateManagement, see [7] for more details.

Y%

AUTSSAR

A

Function Group State

The element of State Management that characterizes
the current status of a set of (functionally coherent)
user level Applications. The set of Function
Groups and their Function Group Statesis
machine specific and are configured in the Machine
Manifest. See [7] for more details.

Global Supervision Status

Status that summarizes the Elementary
Supervision Status of a set of supervisions
within a Function Group.

Health Monitoring

Supervision of the software behaviour for correct
timing and sequence.

Logical Supervision

Kind of online supervision of software that checks if
the software (Supervised Entity or set of
Supervised Entities) is executed in the sequence
defined by the programmer (by the developed code).

Platform Health
Management

Health Monitoring for the Adaptive Platform

Process

Process is a loaded instance of an executable to be
executed on a machine.

Supervised Entity

A whole or part of a SswComponent Type which is
included in the supervision. A Supervised Entity
denotes a collection of Checkpoints within the
corresponding SwComponent Type. A
SwComponent Type can include zero, one or more
Supervised Entities. A Supervised Entity may
be instantiated multiple times, in which case each
instance is independently supervised.

Supervision Mode

State of a machine or Function Group in which
Supervised Entity Instances are to be monitored
with a specific set of configuration parameters.
Supervision parameters differ from one mode to other
as the behavior (timing or sequence) of Supervised
Entity changes from one mode to other. Modes are
mutually exclusive. A mode can be "Normal”,
"Degradation"”.

Table 2.2: Technical terms used in the Scope of this Document

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Explanation of Adaptive Platform Design
AUTOSAR_AP_EXP_PlatformDesign

[2] Requirements on Platform Health Management
AUTOSAR_AP_RS_PlatformHealthManagement

[3] Requirements on Health Monitoring
AUTOSAR_FO_RS_HealthMonitoring

[4] Specification of Health Monitoring
AUTOSAR_FO_ASWS_HealthMonitoring

[5] I1ISO 26262:2018 (all parts) — Road vehicles — Functional Safety
https://www.iso.org

[6] Glossary
AUTOSAR_FO_TR_Glossary

[7] Specification of State Management
AUTOSAR_AP_SWS_StateManagement

[8] Specification of Adaptive Platform Core
AUTOSAR_AP_SWS Core

[9] Specification of Execution Management
AUTOSAR_AP_SWS_ ExecutionManagement

[10] Explanation of Adaptive Platform Software Architecture
AUTOSAR_AP_EXP_SWArchitecture

[11] Specification of Intrusion Detection System Manager for Adaptive Platform
AUTOSAR_AP_SWS IntrusionDetectionSystemManager

[12] Specification of Manifest
AUTOSAR_AP_TPS_ManifestSpecification

[13] Guidelines for using Adaptive Platform interfaces
AUTOSAR_AP_EXP_InterfacesGuidelines

3.2 Further applicable specification

AUTOSAR provides a core specification [8] which is also applicable for this functional
cluster. The chapter "General requirements for all Functional Clusters" of [8] shall be
considered an additional and required specification for implementing this functional
cluster.

https://www.iso.org

AUTSSAR

4 Constraints and assumptions

4.1

Known limitations

Daisy chaining (i.e. forwarding Supervision Status or Checkpoint informa-
tion to an entity external to PHM or another PHM instance) is currently not sup-
ported in this document release.

Interface with the Diagnostic Manager is not specified in this release.

The configuration attribute for the alive notification cycle time (with respect to
PHM sending AliveNotification to watchdog interface) is not specified for this re-
lease.

A change in the value of Supervision (Alive/Deadline/Logical) configuration pa-
rameters between two Function Group States wherein the process being
supervised continues to execute on switching between these states is not con-
sidered. The Supervision continues as per configuration in the Supervision
Mode corresponding to old Function Group State.

Similar to above limitation, dynamic change between Supervision exclusion (dis-
able) and Supervision inclusion (enable) on Function Group State change
wherein the process under consideration continues to execute on change in
Function Group State is not supported. Supervision exclusion or inclusion
can be applied starting with the Function Group State in which execution of
the process begins and the same is applied until termination of the process.

Currently specified mechanism of Notifying State Management on Global Su-
pervision Status reaching state kStopped is insufficient in case of multiple
failures. It could happen that the Global Supervision Status remains in
state kSt opped without further notification to State Management about succes-
sive failures. Thereby the recovery might be hindered.

"PowerMode" dependent Supervision configuration is not supported in this re-
lease. See [7] for information on "PowerMode".

Supervision is not supported for non-reporting processes (for information regard-
ing what is a non-reporting process, please refer [9]). Rationale: Supervision
depends on process states. Non-reporting process is not expected to report its
Execution State to Execution Management. Hence, Platform Health Man-
agement cannot be informed about the necessary process states by Execution
Management.

Handling of multiple hardware watchdog instances is up to implementation and
not standardized in the specification.

State machine of Elementary Supervision Status is not specified for in-
ter process supervisions (inter process Deadline Supervisionand Logical
Supervision) in this release.

AUTSSAR

4.2 Applicability to car domains

No restriction

AUTSSAR

5 Dependencies to other Functional Clusters

This chapter defines the dependencies of this functional cluster to other functional clus-
ters. AUTOSAR decided not to standardize interfaces which are exclusively used be-
tween functional clusters to allow efficient implementations which might depend e.g.,
on the used operating system. The goal of this chapter is to provide an informative
guideline for the interactions between functional clusters without specifying syntactical
details. This ensures compatibility between documents specifying different functional
clusters and supports parallel implementation of different functional clusters. Details of
internal interfaces are up to the platform provider. Additional internal interfaces, param-
eters, and return values can be added. A detailed technical architecture documentation
of the overall AUTOSAR Adaptive Platform is provided in [10].

5.1 Provided Interfaces

This section provides an overview of the public interfaces provided by this functional
cluster towards other functional clusters.

«aapFunctionalClust... «aapFunctionalClust...
Execution Management Diagnostic Management
daemon-based daemon-based

«aapFunctionalClust... El
State Management

«aapFunctionalCluster»
Update and Configuration

Management
daemon-based

«aapFunctionalClust... El
Time Synchronization

daemon-based daemon-based

«use» «IJEE» «IJ$>> <<L|$>) «u_ﬁ»
«aapRequJiredPon»<aapReqti|iredPon» «aapRequliredPon» «aapReqLIJiredPortmaapReqluiredPon»

«aapAPl,aapPortinterface»
SupervisedEntity

+ ReportCheckpoint()

AN

«aapFunctionalCluster» El
Platform Health Management

daemon-based

Figure 5.1: Interfaces provided by Platform Health Management to other Functional Clus-
ters

Figure 5.1 shows interfaces provided by Platform Health Management to other
Functional Clusters within the AUTOSAR Adaptive Platform. Table 5.1 provides a com-
plete list of interfaces provided to other Functional Clusters within the AUTOSAR Adap-
tive Platform.

Interface Functional Cluster Purpose

SupervisedEntity Diagnostic Management Diagnostic Management should use this interface to
enable supervision of its daemon process(es) by
Platform Health Management.

AUTSSAR

Interface Functional Cluster

Purpose

Execution Management

Execution Management shall use this interface to
enable supervision of its process(es) by Plat form

Health Management.

State Management

State Management shall use this interface to enable
supervision of its process(es) by Plat form Health

Management.

Time Synchronization

Time Synchronization should use this interface to
enable supervision of its daemon process by Plat form
Health Management

Management

Update and Configuration

This interface should be used to supervise the daemon
process(es) of Update and Configuration
Management.

Table 5.1: Interfaces provided to other Functional Clusters

5.2 Required Interfaces

This section provides an overview of the public interfaces required by this functional
cluster from other functional clusters.

daemon-based

«aapFunctional Cluster»
Platform Health Management

g]

T
«use»

T
«use»

«use»
vV Vv vV
«aapAPl,aapNativelnterface» «aapAPl,aapNativelnterface» «aapPortinterface,aapAPI»

Logger ExecutionClient RecoveryAction

IsEnabled()

Log(Msgld, Params)
LogDebug(): LogStream
LogError(): LogStream
LogFatal(): LogStream
LogInfo(): LogStream
LogVerbose(): LogStream
LogWarn(): LogStream
WithLevel(): LogStream

ok +

+ Create

+ ReportExecutionState(ExecutionState): Result

+ Offer()

+ StopOffer()
«aapCallbackMethod»

+ RecoveryHandler()

Ay

AN

Ay

«aapProv;idedPon»

«aapFunctionalCluster» El
Log and Trace

«aapFunctional Cluster»
Execution Management
daemon-based

g]

«aapFunctional Cluster»
State Management
daemon-based

g]

Figure 5.2: Interfaces required by Platform Health Management from other Functional

Clusters

Figure 5.2 shows the interfaces required by Platform Health Management from
other Functional Clusters within the AUTOSAR Adaptive Platform. Table 5.2 provides a
complete list of required interfaces from other Functional Clusters within the AUTOSAR
Adaptive Platform.

AUTSSAR

Functional Cluster Interface Purpose

Execution ExecutionClient Platform Health Management uses this interface to

Management report the state of its daemon process to Execution
Management.

Log and Trace Logger Platform Health Management shall use this interface
to log standardized messages.

State Management RecoveryAction Platform Health Management uses this interface to

trigger failure recovery.

Table 5.2: Interfaces required from other Functional Clusters

5.3 Additional dependencies on Execution Management

The Platform Health Management functional cluster is dependent on the Execu-

tion Management Interface [9].

Following process state information is needed from Execution Management with re-
spect to processes for which supervision is configured:

e process reporting Execution State kRunning,

e process terminated,

e process is about to be informed by Execution Management to terminate.

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in AUTOSAR RS Plat-
formHealthManagement [2] and AUTOSAR RS HealthMonitoring [3] and links to the
fulfillment of these. Please note that if column “Satisfied by” is empty for a specific
requirement this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[RS_AP_00114]

C++ interface shall be compatible
with C++14

[SWS_PHM_01005]

[RS_AP_00119]

Return values / application errors

[SWS_PHM_01240] [SWS_PHM_01241]
[SWS_PHM_01242] [SWS_PHM_01243]
[SWS_PHM_01244] [SWS_PHM_01245]
[SWS_PHM_01246] [SWS_PHM_01247]
[SWS_PHM_01248] [SWS_PHM_01249]
[SWS_PHM_01250] [SWS_PHM_01251]

[RS_AP_00122]

Type names

[SWS_PHM_00424]

[RS_AP_00127]

Usage of ara::core types

[SWS_PHM_00424] [SWS_PHM_01245]
[SWS_PHM_01246]

[RS_AP_00130]

AUTOSAR Adaptive Platform shall
represent a rich and modern
programming environment

[SWS_PHM_00424]

[RS_AP_00134]

noexcept behavior of class
destructors

[SWS_PHM_01145] [SWS_PHM_01211]

[RS_AP_00159]

usage of "noexcept" specifier

[SWS_PHM_01123] [SWS_PHM_01127]
[SWS_PHM_01141] [SWS_PHM_01142]
[SWS_PHM_01143] [SWS_PHM_01144]
[SWS_PHM_01149] [SWS_PHM_01151]
[SWS_PHM_01214] [SWS_PHM _01215]
[SWS_PHM_01243] [SWS_PHM_01244]
[SWS_PHM_01247] [SWS_PHM_01248]
[SWS_PHM_01249] [SWS_PHM_01251]

[RS_AP_00170]

InstanceSpecifierMappingIntegrity
Violation

[SWS_PHM_01123] [SWS_PHM_01141]

[RS_AP_00171]

PortInterfaceMappingViolation

[SWS_PHM_01123] [SWS_PHM_01141]

[RS_AP_00172]

ProcessMappingViolation

[SWS_PHM_01123] [SWS_PHM_01141]

[RS_AP_00173]

InstanceSpecifierAlreadylnUse
Violation

[SWS_PHM_01123] [SWS_PHM_01141]

[RS_HM_09125]

Health Monitoring shall provide an
Alive Supervision

[SWS_PHM_01253] [SWS_PHM_01254]
[SWS_PHM_01331] [SWS_PHM_01332]
[SWS_PHM_01333] [SWS_PHM_01335]
[SWS_PHM_01336] [SWS_PHM_01337]
[SWS_PHM_01338]

[RS_HM_09159]

Health Monitoring shall be able to
report supervision errors.

[SWS_PHM_01138] [SWS_PHM_01140]
[SWS_PHM_01141] [SWS_PHM_01142]
[SWS_PHM_01143] [SWS_PHM_01144]
[SWS_PHM_01145] [SWS_PHM_01149]
[SWS_PHM_01150] [SWS_PHM_01151]
[SWS_PHM_01152]

[RS_HM_09222]

Health Monitoring shall provide a
Logical Supervision

[SWS_PHM_01253] [SWS_PHM_01254]

[RS_HM_09226]

Health Monitoring shall be able to
wrongly trigger the serviced
watchdogs.

[SWS_PHM_00104] [SWS_PHM_00105]
[SWS_PHM_00106] [SWS_PHM_00107]

[RS_HM_09235]

Health Monitoring shall provide a
Deadline Supervision

[SWS_PHM_01253] [SWS_PHM_01254]

\Y

AUTSSAR

A

Requirement

Description

Satisfied by

[RS_HM_09237]

Health Monitoring shall provide an
interface to Supervised Entities
informing them about their
Supervision State.

[SWS_PHM_01137] [SWS_PHM_01358]

[RS_HM_09244]

Health Monitoring shall support
timeout watchdogs.

[SWS_PHM_01252]

[RS_HM_09245]

Health Monitoring shall support
window watchdogs.

[SWS_PHM_01252]

[RS_HM_09246]

Health Monitoring shall support
question-answer watchdogs.

[SWS_PHM_01252]

[RS_HM_09249]

Health Monitoring shall support
building safety-related systems.

[SWS_PHM_00101] [SWS_PHM_00104]
[SWS_PHM_00105] [SWS_PHM_00106]
[SWS_PHM_00107] [SWS_PHM_01252]
[SWS_PHM_01331] [SWS_PHM_01332]
[SWS_PHM_01333] [SWS_PHM_01334]
[SWS_PHM_01335] [SWS_PHM_01336]
[SWS_PHM_01337] [SWS_PHM_01338]

[RS_Ids_00810]

Basic SW security events

[SWS_PHM_01340]

[RS_PHM_00101]

Platform Health Management
shall provide a standardized C++
interface for the reporting of
Checkpoints

[SWS_PHM_00424] [SWS_PHM_00425]
[SWS_PHM_01123] [SWS_PHM_01127]
[SWS_PHM_01132] [SWS_PHM_01211]
[SWS_PHM_01212] [SWS_PHM_01213]
[SWS_PHM_01214] [SWS_PHM_01215]
[SWS_PHM_01229] [SWS_PHM_01341]

[RS_PHM_00104]

Platform Health Management
shall derive the Supervision Mode
from Function Group State(s).

[SWS_PHM_00240] [SWS_PHM_00241]
[SWS_PHM_00242] [SWS_PHM_00243]
[SWS_PHM_00244] [SWS_PHM_00245]
[SWS_PHM_01351] [SWS_PHM_01352]
[SWS_PHM_01353] [SWS_PHM_01354]
[SWS_PHM_01355] [SWS_PHM_01356]

[RS_PHM_00111]

Platform Health Management
shall determine Supervision status

[SWS_PHM_00216] [SWS_PHM_00217]
[SWS_PHM_00218] [SWS_PHM_00219]
[SWS_PHM_00220] [SWS_PHM_00221]
[SWS_PHM_00222] [SWS_PHM_00223]
[SWS_PHM_00224] [SWS_PHM_00225]
[SWS_PHM_00226] [SWS_PHM_00227]
[SWS_PHM_00228] [SWS_PHM_00229]
[SWS_PHM_00230] [SWS_PHM_00231]
[SWS_PHM_00232] [SWS_PHM_00233]
[SWS_PHM_00234] [SWS_PHM_00237]
[SWS_PHM_00238] [SWS_PHM_00239]
[SWS_PHM_01147] [SWS_PHM_01148]
[SWS_PHM_01342] [SWS_PHM_01343]
[SWS_PHM_01344] [SWS_PHM_01345]
[SWS_PHM_01346] [SWS_PHM_01347]
[SWS_PHM_01348] [SWS_PHM_01349]
[SWS_PHM_01350] [SWS_PHM_01351]
[SWS_PHM_01352] [SWS_PHM_01353]
[SWS_PHM_01354] [SWS_PHM_01355]
[SWS_PHM_01356] [SWS_PHM_01357]

[RS_PHM_00112]

Platform Health Management
shall provide configurable delays of
error reactions.

[SWS_PHM_00224] [SWS_PHM_00225]
[SWS_PHM_00228] [SWS_PHM_00229]
[SWS_PHM_00230] [SWS_PHM_00231]
[SWS_PHM_00238] [SWS_PHM_00239]

[RS_PHM_00114]

Platform Health Management
at highest safety integrity level

[SWS_PHM_00105] [SWS_PHM_00106]
[SWS_PHM_00107] [SWS_PHM_01252]

\Y

AUTSSAR

A

Requirement

Description

Satisfied by

[RS_PHM_00115]

If supervision of State Management
fails then Platform Health
Management shall trigger a watchdog
reset.

[SWS_PHM_00105]

[RS_PHM_00116]

If supervision of Execution
Management fails then Platform
Health Management shall trigger a
watchdog reset.

[SWS_PHM_00105]

[RS_PHM_00117]

Platform Health Management shall
notify State Management in case an
AUTOSAR Adaptive Platform
functional cluster, Adaptive
Application or service other than
Execution Management and State
Management fails.

[SWS_PHM_00101] [SWS_PHM_01147]
[SWS_PHM_01148]

[RS_PHM_00118]

PHM shall only process a checkpoint
reported from corresponding
processes.

[SWS_PHM_01229]

[RS_PHM_00119]

A security event shall be raised if a
checkpoint is reported from a
non-corresponding process.

[SWS_PHM_01339]

[RS_PHM_09240]

Platform Health Management
shall support multiple occurrences of
the same Supervised Entity.

[SWS_PHM_01211] [SWS_PHM 01212]
[SWS_PHM_01213] [SWS_PHM_01214]
[SWS_PHM_01215]

[RS_PHM_09241]

Health Monitoring shall support
multiple instances of Checkpoints in a
Supervised Entity occurrence.

[SWS_PHM_00424] [SWS_PHM_00425]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

7.1 General description

The Platform Health Management monitors applications with respect to timing
constraints (Alive Supervision and Deadline Supervision) and logical pro-
gram sequence (Logical Supervision). With the same means, functional clusters
like State Management and Execution Management can be monitored. In case of a
detected failure, Plat form Health Management notifies State Management. As
coordinator of the platform, State Management can decide how to handle the error and
trigger a suitable recovery action.

Platform Health Management has also an interface to the hardware watchdog and can
trigger a watchdog reaction in case of a critical failure where a notification to State
Management is not sufficient.

All the algorithms and the procedures for the Platform Health Management are
described in the Autosar Foundation document [4] and are not specified here: only the
Autosar Adaptive specificities, including the interfaces with the other functional clusters,
are shown here below.

The interfaces of Health Management to other Functional Clusters are only informative
and are not standardized.

7.2 Supervision of Supervised Entities

State Management coordinates the platform through Function Groups [7]. Within a
Function Group, there may be multiple Processes running.

Platform Health Management monitors Supervised Entitys. Each Super-
vised Entity maps to whole or part of a Process. The monitoring is active as long
as the corresponding Process is active.

Platform Health Management provides three kinds of supervisions to monitor
a Supervised Entity: Alive Supervision, Deadline Supervision and
Logical Supervision. The supervision algorithms are described in [4]. Only de-
tails specific for Adaptive Platform are described in this document.

The results of the supervisions of a supervised Entity Instance are reflected in
the Elementary Supervision Status.There exists one Elementary Super-—
vision Status per Alive, Deadline, Logical Supervision. The status of elemen-
tary supervisions within a Function Group is conglomerated in the corresponding
Global Supervision Status.

One Elementary Supervision Status contributesto only one Global Super-
vision Status. Which Elementary Supervision Status contributes to which

AUTSSAR

Global Supervision Status is determined by to which Global Supervision the
corresponding supervision belongs to in the Manifest.

Scope of Global Supervision: Global Supervision corresponds to whole or part of a
Function Group. A Global Supervision can contain all or a certain set of Elementary
Supervisions corresponding to processes controlled within a single Function Group
context. The mapping from Supervisions to Global Supervision is flexible. Through
configuration, user can decide which Supervisions belong to which Global Supervision.
But there are following restrictions:

¢ all Supervisions comprising a Global Supervision are corresponding to processes
controlled within a single Function Group context and

e a Supervision can be part of only one Global Supervision.

Function Group 1 Function Group 1
f Process A \ f Process A \
AliceSup_1 AliceSup_1
DeadlineSup_1 DeadlineSup_1
LogicalSup_1 LogicalSup_1
R ——
Global Supervision Global Supervision
(Process B) GS_1 (Process B) G5_1
AliceSup_2 AliceSup_2
DeadlineSup_2 DeadlineSup_2
LogicalSup_2 LogicalSup_2
A
(Process C) (Process C i
AliceSup_3 AliceSup_3
Global Supervision Global Supervision
DeadlineSup_3 G52 DeadlineSup_3 65 2
LogicalSup_3 LogicalSup_3
A —— L

Function Group 2 Function Group 2

Process D Process D

AliceSup_4 AliceSup_4

Global Supervision Global Supervision
DeadlineSup_4 G3_3 DeadlineSup_4 G3S_3

LogicalSup_4

LogicalSup_4

Figure 7.1: Allowed mappings of Elementary Supervisions to Global Supervisions

AUTSSAR

AliceSup_1

DeadlineSup_1

LogicalSup_1

Process B

AliceSup_2

DeadlineSup_2

LogicalSup_2

Process C

AliceSup_3

DeadlineSup_3

LogicalSup_3

(3T

It

P —

Function Group 1

(Process A)

Global Supervision

GS_1

Process D

AliceSup_4

DeadlineSup_4

LogicalSup_4

Globadl Supervision

GS_2

Function Group 2

Function Group 1

|

Process A

AliceSup_1

DeadiineSup_1

LogicalSup_1

Process B

AliceSup_2

DeadlineSup_2

LogicalSup_2

Process C

AliceSup_3

DeadlineSup_3

LogicalSup_3

i

1

e

Global Supervision
GS_1

Global Supervision
GS_2

Figure 7.2: Mappings of Elementary Supervisions to Global Supervisions which are not

supported

Example: Let Processes A, B and C be contained in Function Group 1 and Process
D be contained in Function Group 2. Then the following mappings are allowed, see

figure 7.1:

1. Supervisions corresponding to Process A and Process B comprising a Global
Supervision GS_1, Supervisions corresponding to Process C comprising another

Global Supervision GS_2.

2. All Supervisions corresponding to Processes in Function Group 2 are part of a

single Global Supervision GS_3.

3. All Alive and Deadline Supervisions corresponding to Processes A, B and C com-
prise a Global Supervision GS_1, all Logical Supervisions corresponding to Pro-

Process D

AliceSup_4

DeadlineSup_4

LogicalSup_4

Function Group 2

Global Supervision
GS_3

cesses A, B and C comprise another Global Supervision GS_2.

The following mappings are not allowed, see figure 7.2:

AUTSSAR

1. Supervisions corresponding to Processes C and D are part of a Global Supervi-
sion GS_2 since then the Global Supervision would span across multiple Func-
tion Groups.

2. Logical Supervision LogicalSup_1 corresponding to Process A is part of two
Global Supervisions GS_1 and GS_2.

As described in [4], the supervisions are based on checkpoints which are reported by
the supervised Entity Instance.

[SWS_PHM_01341] Reporting of Supervision Checkpoint mapped to No Super-
vision provision
Upstream requirements: RS_PHM_00101

[If @ SupervisionCheckpoint reported to Platform Health Management via
ara: :phm: :SupervisedEntity: :ReportCheckpoint is

e configured to (referenced in) NoCheckpointSupervision Or

e the corresponding Supervised Entity instance is configuredto NoSupervi-
sion

in the Supervision Mode corresponding to the Function Group State in which
the process is executing, then Plat form Health Management shall ignore the re-
porting of the SupervisionCheckpoint for evaluation of supervisions (Alive, Dead-
line and Logical). |

Note: The behavior in case of reported, undefined checkpoints is currently not speci-
fied. This will be specified in the next release.

[SWS_PHM_01229] Restricted access on reporting of Checkpoints
Upstream requirements: RS_PHM_00101, RS_PHM_00118

[The Platform Health Management shall ignore the execution of ara: :phm::
SupervisedEntity: :ReportCheckpoint for evaluation of Alive, Deadline and
Logical Supervision if the reporting process does not correspond to the reported su-
pervisionCheckpoint, i.e. reporting process is not the same as reported Super-—
visionCheckpoint.process.]|

Example: Consider SupervisionCheckpoint SV_CP_A is referencing Process
Proc_A through attribute SupervisionCheckpoint.process in the manifest and it
is referenced in AliveSupervision through attribute A1liveSupervision.check-
point. In runtime, if a process other than Proc_A (e.g: Proc_B) reports SV_CP_A,
then this reporting is not to be considered for evaluation of A1ive Supervision.

If a checkpoint is reported by the
tion and a potential security threat.

wrong" process, this is considered as access viola-

AUTSSAR

[SWS_PHM_01339] Reporting access violation w.r.t. checkpoints to IdsM
Upstream requirements: RS_PHM_00119

[If it occurs that the reported SupervisionCheckpoint does not corre-
spond to the process reporting it, i.e. reporting process is not the
same as reported SupervisionCheckpoint.process, THEN Security event
SEV_ACCESSVIOLATION_PHM_CHECKPOINT defined in [SWS_PHM_01340] shall be
reported to IdsM (see [11]) with the following context data:

¢ |dentity of the process which is violating the access permissions
e Function Group State in which process is executing when there is this violation

e Which SupervisionCheckpoint is getting reported

7.2.1 Start and Stop of Supervisions

[SWS_PHM_01331] Start of Alive Supervision
Upstream requirements: RS_HM_09125, RS_HM_09249

[The Platform Health Management shall start the first aliveReferenceCycle
of a configured AliveSupervision of a Supervised Entity Instance as soon as
the corresponding process reports Execution State kRunning. |

Rationale: Cyclic execution is expected only after process reached state kRunning.
Execution Management monitors that the process reaches state kRunning within a
configured timeout.

The information of process reporting Execution state kRunning is to be provided by
Execution Management. through a vendor specific Inter Functional Cluster Interface.

[SWS_PHM_01332] Checkpoints corresponding to Alive Supervision before
kRunning

Upstream requirements: RS_HM_09125, RS_HM_09249

[With respect to Alive Supervision, Platform Health Management shall ig-
nore Checkpoints reported by a Supervised Entity Instance before the corre-
sponding process reaches state kRunning. |

Implementation hint: The same time base should be used between Execution Man-
agement and Platform Health Management to synchronize the kRunning state
with the start of the Alive Supervision. See [SWS_PHM_01334] for details.

AUTSSAR

Note: The start of intra-process beadline Supervision and Logical Supervi-—
sion (i.e. Logical and Deadline Supervision with all referenced SupervisionCheck-
points corresponding to a single process) does not depend on the process reporting
Execution State kRunning. That is, the beadline Supervision and Logical
Supervision can start even before the process reaching state kRunning. Please
refer [4] for details of Deadline Supervision and Logical Supervision.

[SWS_PHM_01333] Termination of Supervised Processes
Upstream requirements: RS_HM_09125, RS_HM_09249

[As soon as Platform Health Management receives the information from Execu-
tion Management that a supervised process is about to be notified to terminate (by
issuing SIGTERM) or the process is terminated (considering the case of process termi-
nating abruptly, i.e. without SIGTERM issued by Execution Management), Plat form
Health Management shall stop all intra-process supervisions corresponding to the
process (that is stop all Alive, Deadline and Logical Supervision involving Supervi-
sionCheckpoints of the corresponding process only). |

Rationale: Process is expected to start terminating on receiving SIGTERM from Exe-
cution Management. Execution Management monitors the termination timeout once
it issues SIGTERM to the process. Considering this, additional monitoring of the pro-
cess by Platform Health Management via Supervisions is considered to be not
necessary.

[SWS_PHM_01334] Time Source for Supervisions
Upstream requirements: RS_HM_09249

[All timing aspects related to Plat form Health Management shall be measured in
the context of the reporting process using the same time source. |

To avoid effect of delays and jitter in the inter-process communication to Platform
Health Management, timing aspects related to Platform Health Management
(i.e. synchronization of kRunning state between Execution Management and Plat—
form Health Management, the timestamp w.r.t reporting of checkpoints (consider
Deadline Supervision)) shall be taken in the context of the reporting process using the
same time source.

Implementation Hint: ara::core::SteadyClock could be used to obtain time
stamp (in other words, for time keeping).

7.2.1.1 Stopping of Alive Supervision for Self Terminating Process

In case of a Self-Terminating Process, the process can intentionally terminate even
without SIGTERM being issued by Execution Management. Hence, it is necessary to
mark the point in time at which the process starts to (self-) terminate so thatthe 21ive

AUTSSAR

Supervision could be stopped. This is intended to be achieved by process reporting
a checkpoint named as terminatingCheckpoint. Additionally, a timeout (config-
urable) has to be monitored by Plat form Health Management t0 check that the
process terminates within this duration since reporting of terminatingCheckpoint.
This timeout check is to monitor that the process is not stuck in its execution and there-
fore is not terminating.

Note: Unless SIGTERM is issued to the process by Execution Management, Execution
Management will not monitor for process termination timeout.

Platform Health Management is to be informed by Execution Management re-
garding the termination of the process.

[SWS_PHM_01335] Stopping of Alive Supervision for Self-Terminating Process
Upstream requirements: RS_HM_09125, RS_HM_09249

[In case of Self-Terminating Process, Alive Supervision shall be stopped on
reporting of terminatingCheckpoint by the process or as soon as Platform
Health Management receives the information from Execution Management that the
process will be notified to terminate (by issuing SIGTERM), whichever is earlier. |

[SWS_PHM_01336] Timeout monitoring for termination of Self-Terminating Pro-
cess
Upstream requirements: RS_HM_09125, RS_HM_09249

[On reporting of terminatingCheckpoint by a Self-Terminating Process, Plat-
form Health Management shall start monitoring the timeout. That is, Plat-
form Health Management shall monitor that the process terminates within termi -
natingCheckpointTimeoutUntilTermination since reporting of terminat-
ingCheckpoint. In case the process takes longer than terminatingCheck-
pointTimeoutUntilTermination for termination, this shall be notified as failure
to State Management. |

[SWS_PHM_01337] Unintended termination of Self-Terminating Process
Upstream requirements: RS_HM_09125, RS_HM_09249

[If an Alive Supervision is configured for a Self Terminating Process and if the
process terminates without reporting terminatingCheckpoint and no SIGTERM
was issued to the process by Execution Management, then Plat form Health Man-
agement shall notify a failure of Alive Supervision to State Management via
ara::phm::RecoveryAction::RecoveryHandlerJ

AUTSSAR

[SWS_PHM_01338] Avoid redundant Monitoring of Termination for Self-
Terminating Process

Upstream requirements: RS_HM_09125, RS_HM_09249

[If an Alive Supervision is configured for a Self Terminating Process and
if after reporting of terminatingCheckpoint and before terminatingCheck-
pointTimeoutUntilTermination is elapsed Platform Health Management
receives the information from Execution Management that the process will be notified
to terminate via SIGTERM, then Plat form Health Management shall stop monitor-
ing the timeout. |

This is because, once SIGTERM is issued by Execution Management to the process,
Execution Management will monitor the process termination timeout.

7.2.2 Supervision of processes started before Platform Health Management

Start of Supervision (Alive Supervision/Deadline Supervision/Logical
Supervision) in case of processes that are started before Platform Health
Management process (e.g, process corresponding to Execution Management) is not
standardized. It is up to Adaptive Platform Vendor specific decision.

7.3 Supervision Modes

Expected execution (timing or sequence) of the Software can change based on certain
conditions. Hence, the value of the Supervision (Alive/Deadline/Logical) parameters
might have to be changed based on conditions. For each such condition a mode called
a supervision Mode can be configured. Currently, this condition can be configured
based on Function Group State.

Note: It is possible to exclude (disable) Supervision for a Supervised Entity In-
stance in a Supervision Mode. This can be achieved by configuring NoSupervi-
sion for the Supervised Entity Instance in the Supervision Mode.

7.3.1 Effect of changing Mode

In AUTOSAR Adaptive Platform, Supervision Mode changes on Function
Group State change.

Function Group State change has following impact on processes:
e Certain processes are terminated.
e Certain processes are newly started.

e Certain processes are restarted.

AUTSSAR

e Remaining processes continue to execute.

Supervisions (Alive, Deadline and Logical) of the supervised Entitys correspond-
ing to the processes shall be handled as follows.

[SWS_PHM_00240] Supervisions on termination of process
Upstream requirements: RS_PHM_00104

[Alive Supervision, Deadline Supervision and Logical Supervision
shall be stopped on termination of the corresponding process. Results of Alive, Dead-
line and Logical Supervision shall be set to correct. |

The termination of the process could be due to various reasons. It could be due to
change in Function Group State (the process is not configured to be executed in
the new Function Group State), a self-terminating process is terminating on its own
or abrupt termination of a process (e.g. due to out of bound memory access).

Note:

1. On termination of process, Elementary Supervision Status of the corre-
sponding Supervised Entity Instance will be set to kDEACTIVATED.

2. For a process, monitoring is active when the process is executing (that is, when
the Execution state of the process is "Initializing" or "Running" or "Terminating").
It is deactivated (stopped) when the process is terminated.

[SWS_PHM_00241] Supervisions on Start of Process
Upstream requirements: RS_PHM_00104

[On start of the process for which a Supervision (Alive Supervision, Deadline
Supervision and/or Logical Supervision) is configured in the new Function
Group State, the Supervision (Alive Supervision, Deadline Supervision
and/or Logical Supervision) shall be performed as per the configured Supervi-
sion parameter values in the Ssupervision Mode corresponding to new Function
Group State.]

[SWS_PHM_00244] NoSupervision on Start of Process
Upstream requirements: RS_PHM_00104

[On start of the process in the new Function Group State, if NoSupervision
is configured for a Supervised Entity Instance corresponding to the process in
the Supervision Mode corresponding to the new Function Group State, then
no Supervision (N0 Alive Supervision, Deadline Supervision Or Logical
Supervision) shall be performed for the Supervised Entity Instance in the su-
pervision Mode corresponding to new Function Group State.]

AUTSSAR

Note: Even though it is supported to exclude (disable) Supervision in a particular

Supervision Mode, dynamic change between Supervision inclusion (enable) and
exclusion (disable) during execution of Process is not supported. Supervision exclusion
can be applied starting from the supervision Mode corresponding to the Function
Group State in which the execution of the process is started. Supervision exclusion
continues until the termination of the process. The same principle applies to a change
in supervision parameters.

: - ~ \
E:ar;ztlonGrouP off Q state-A k\ state-B Q state-C

Terminated
Process)
state Running /

Idle

Legend: k\ — Function Group state is in transition

Figure 7.3: Supervision Exclusion and change of Function Group State

Figure 7.3 shows an example: If Supervision is excluded in Function Group
State-A, same will continue in Function Group State-B. Supervision can be ap-
plied again in state-C wherein the process is restarted (but not in state-B).

[SWS_PHM_00242] Supervisions on Restart of Process
Upstream requirements: RS_PHM_00104

[Supervisions on restart of a process due to Function Group State change shall
be handled as termination of process (see [SWS_PHM_00240]) followed by start of
process (see [SWS_PHM_00241]). |

[SWS_PHM_00243] Continuation of Supervisions
Upstream requirements: RS_PHM_00104

[Supervisions (Alive, Deadline and Logical) shall be continued with same values of Su-
pervision parameters if the corresponding process continues to execute on Function
Group State change.]

[SWS_PHM_00245] Continuation of NoSupervision (Supervision Exclusion)
Upstream requirements: RS_PHM_00104

[If NoSupervision is configured for a Supervised Entity Instance in the Su-
pervision Mode corresponding to the Function Group State, in which the ex-
ecution of the corresponding process starts, then no Supervision (no Alive Super-—
vision, Deadline Supervision Of Logical Supervision) shall be continued
on change in Function Group State to a new state if the process continues to
execute on Function Group State change.]

AUTSSAR

7.4 Determination of Supervision Status

Based on the results of Alive Supervision, Deadline Supervision and Log-
ical Supervision the Elementary Supervision Status and Global Su-
pervision Status are determined. Please refer [4] for details of these Supervi-
sions.

7.4.1 Determination of Elementary Supervision Status

The Elementary Supervision Status state machine determines the status of an
individual A1ive Supervision, Deadline Supervision and Logical Super-—
vision. This is done based on the following:

1. Previous value of the Elementary Supervision Status,

2. Current values of the result (correct/incorrect) of the corresponding Alive Su-
pervision, Deadline Supervision and Logical Supervision

The state machine is initialized at the initialization of the P1latform Health Man-
agement. Note: In this release, only state machine for Elementary Supervision
Status for intra process supervision is specified.

[SWS_PHM_01342] Tracking of Elementary Supervision Status
Upstream requirements: RS_PHM_00111

[The Platform Health Management shall track the Elementary Supervision
Status of each Alive Supervision, Deadline Supervision and Logical
Supervision.]

Figure 7.4 shows the state machine for Elementary Supervision Status of a
supervision with all possible states.

[SWS_PHM_01343] States of state machine for Elementary Supervision Status
Upstream requirements: RS_PHM_00111

[The Platform Health Management shall have the Elementary Supervision
Statuses kOK, kDEACTIVATED, kEXPIRED and kFAILED. |

See also figure 7.4 and ara: :phm: :ElementarySupervisionStatus.

Please note that the status kFAILED is only relevant for Alive Supervision.

AUTSSAR

¢

(1)

J

kOK i7) — kDEACTIVATED

| (s)
e

(8) \

kFAILED
i3)

(2] |:5:|/

(4] j10)

kEXPIRED

_—
s

Figure 7.4: Elementary Supervision Status

For the transitions between the states of the Elementary Supervision Status
the following rules apply:

[SWS_PHM_01344] Initialization of state machine for Elementary Supervision
Status

Upstream requirements: RS_PHM_00111

[On start of Platform Health Management all state machines for Elementary
Supervision Status shall beinitializedto kDEACTIVATED andforAlive Super-—
vision the counter for failed Alive Supervision reference cycles shall be set to zero

(0).]
See transition (1) in figure 7.4.

[SWS_PHM_01345] Keep Elementary Supervision Status kOK
Upstream requirements: RS_PHM_00111

[If the Elementary Supervision Status is kOK and the results of the corre-
sponding supervision are correct, i.e. all checkpoints are reported according to config-
uration and in case of Alive Supervision the counter for failed Alive Supervision
reference cycles is zero, then the Platform Health Management shall keep the
supervision in the Elementary Supervision Status kOK.]

AUTSSAR

[SWS_PHM_01346] Switch Elementary Supervision Status from kOK to kEXPIRED
Upstream requirements: RS_PHM_00111

[If the Elementary Supervision Status is kOK AND in case the Elementary
Supervision Status corresponds to

1. Alive Supervision apermanent failure is detected, i.e. the counter for failed
Alive Supervision reference cycles exceeds failure tolerance failedRefer—
enceCyclesTolerance) OR

2. Deadline Supervision Ofr Logical Supervision the result of the super-
vision is incorrect

THENthePlatform Health Management shallchangethe Elementary Super-—
vision Status to kEXPIRED and stop the corresponding supervision. |

See transition (2) in figure 7.4.

The below requirements show the important difference of Alive Supervision ver-
Sus Deadline SupervisionandLogical Supervision:theAlive Supervi-
sion has an error tolerance for failed reference cycles.

[SWS_PHM_01347] Switch Elementary Supervision Status from kOK to kFAILED
Upstream requirements: RS_PHM_00111

[If Elementary Supervision Status is kOK AND the corresponding supervi-
sion is Alive Supervision AND a temporary failure is detected, i.e. the counter
for failed Alive Supervision reference cycles is greater than zero but does not ex-
ceed failure tolerance failedReferenceCyclesTolerance, THENthe Platform
Health Management shall change the Elementary Supervision Status to
kKFAILED. |

See transition (3) in figure 7.4.

[SWS_PHM_01348] Keep Elementary Supervision Status kFAILED

Upstream requirements: RS_PHM_00111
[If the Elementary Supervision Status is kFAILED AND the counter for failed
Alive Supervision reference cycles is greater than zero but does not exceed fail-

ure tolerance failedReferenceCyclesTolerance THENthe Platform Health
Management shall keep the Elementary Supervision Status kFAILED.|

[SWS_PHM_01349] Switch Elementary Supervision Status from kFAILED to kOK
Upstream requirements: RS_PHM_00111

[If the Elementary Supervision Status is kFAILED AND there is no failure
present in the Alive Supervision, i.e. the counter for failed Alive Supervision ref-

AUTSSAR

erence cycles is zero, THEN the Plat form Health Management shall change the
Elementary Supervision Status to kOK.|

See transition (5) in figure 7.4.

[SWS_PHM_01350] Switch Elementary Supervision Status from kFAILED to kEX-
PIRED

Upstream requirements: RS_PHM_00111

[If the Elementary Supervision Status is kFAILED AND if the Alive Su-
pervision has a permanent failure, i.e. the counter for failed Alive Supervision
reference cycles exceeds failure tolerance failedReferenceCyclesTolerance,
THENthe Platform Health Management shallchangethe Elementary Super-
vision Status to kEXPIRED and stop the corresponding supervision. |

See transition (6) in figure 7.4.

[SWS_PHM_01351] Switch Elementary Supervision Status from kOK to kDEAC-
TIVATED

Upstream requirements: RS_PHM_00111, RS_PHM_00104

[Ifthe Elementary Supervision StatusiSkOKANDPlatform Health Man-
agement receives the information from Execution Management that the corresponding
process is about to be notified to terminate (by issuing SIGTERM) or the process is ter-
minated (considering the case of process terminating abruptly, i.e. without STGTERM is-
sued by Execution Management), THEN the Plat form Health Management shall
change the Elementary Supervision Status to kDEACTIVATED and for Alive
Supervision the counter for failed Alive Supervision reference cycles shall be set to
zero (0).]

See transition (7) in figure 7.4.

[SWS_PHM_01352] Switch Elementary Supervision Status from kFAILED to kDE-
ACTIVATED

Upstream requirements: RS_PHM_00111, RS_PHM_00104

[If the Elementary Supervision Status is kFAILED AND Platform Health
Management receives the information from Execution Management that the corre-
sponding process is about to be notified to terminate (by issuing STGTERM) or the pro-
cess is terminated (considering the case of process terminating abruptly, i.e. without
SIGTERM issued by Execution Management), THEN the Platform Health Man-
agement shall change the Elementary Supervision Status to kDEACTIVATED
and the counter for failed Al1ive Supervision reference cycles shall be set to zero

(0).]

AUTSSAR

See transition (8) in figure 7.4.

[SWS_PHM_01353] Keep Elementary Supervision Status kDEACTIVATED
Upstream requirements: RS_PHM_00111, RS_PHM_00104

[If the Elementary Supervision Status is kDEACTIVATED then, unless there
is a switch to a Supervision Mode (due to change in corresponding Function
Group State) in which the corresponding supervision is configured to be monitored
AND

e for Alive Supervision: the corresponding Process reports Execution State
kRunning

e for Deadline Supervision and Logical Supervision: any checkpoint
corresponding to the supervision is reported

the Platform Health Management shall not perform the supervision and keep the
Elementary Supervision Status kDEACTIVATED. |

[SWS_PHM_01354] Switch Elementary Supervision Status from kDEACTIVATED
to kOK

Upstream requirements: RS_PHM_00111, RS_PHM_00104

[If the Elementary Supervision Status iS kDEACTIVATED AND there is a
switch to a Supervision Mode (due to change in corresponding Function Group
State) in which the supervised Entity Instance is configured to be monitored
AND

e for Alive Supervision: the corresponding Process reports Execution State
kRunning

e for Deadline Supervision: when first time the checkpoint of the Supervision
is reported

e for Logical Supervision: when first time the checkpoint of the Supervision
is reported and the supervision result for reporting of this checkpoint is correct

THEN Platform Health Management shall change the Elementary Supervi-
sion Status to kOK. |

See transition (9) in figure 7.4.

[SWS_PHM_01355] Switch Elementary Supervision Status from kEXPIRED to
kDEACTIVATED

Upstream requirements: RS_PHM 00111, RS_PHM_ 00104
[If the Elementary Supervision Status is kEXPIRED AND the Elementary

Supervision Status does not correspond to Operating System, Execution Man-
agement or State Management AND Platform Health Management receives the

AUTSSAR

information from Execution Management that the corresponding process is about to be
notified to terminate (by issuing STGTERM) or the process is terminated (considering
the case of process terminating abruptly, i.e. without STGTERM issued by Execution
Management), THEN the Platform Health Management shall change the Ele-
mentary Supervision Status 1o kDEACTIVATED andforAlive Supervision
the counter for failed Alive Supervision reference cycles shall be set to zero (0). |

See transition (4) in figure 7.4.

Note: Transition (4) is not applicable in case of Elementary Supervision Sta-
tus corresponding to supervision of Operating System, Execution Management or
State Management reaches kEXPIRED. In this case, recovery (state change from
kEXPIRED t0 kDEACTIVATED) is intended to be through watchdog action (see
[SWS_PHM_00105]).

Note: How to determine whether a supervision corresponds to Execution Manage-
ment/Operating System is not standardized. A relation to State Management can be
determined via the attribute functionClusterAffiliation inthe configuration of
Process:

Configuration of Supervisions (AliveSupervision/DeadlineSupervision/Log—
icalSupervision) have reference t0 SupervisionCheckpoint which in turn
refers Process in SupervisionCheckpoint.process.

This Process contains the attribute Process.functionClusterAffilia-
tion and one of the values standardized for this attribute by AUTOSAR is
"“STATE_MANAGEMENT™. In this way it is possible to Identify which Supervisions
correspond to State Management.

[SWS_PHM_01356] Keep Elementary Supervision Status kEXPIRED
Upstream requirements: RS_PHM_00111, RS_PHM_00104

[If the Elementary Supervision Status is kEXPIRED then, unless Platform
Health Management receives the information from Execution Management that the
corresponding process is about to be notified to terminate (by issuing SIGTERM) or the
process is terminated (considering the case of process terminating abruptly, i.e. without
SIGTERM issued by Execution Management), the Plat form Health Management
shall not perform the supervision and keep the Elementary Supervision Status
kEXPIRED. |

[SWS_PHM_01357] Switch Elementary Supervision Status from kDEACTIVATED
to kEXPIRED

Upstream requirements: RS_PHM_00111

[If the Elementary Supervision Status is kDEACTIVATED and it corresponds
to Logical Supervision, when first time the checkpoint of the supervision is
reported and the supervision result for reporting of this checkpoint is incorrect,
then Platform Health Management shall change the Elementary Supervi-
sion Status to kEXPIRED and stop the corresponding supervision. |

AUTSSAR

See transition (10) in figure 7.4.

Note: Transition (10) is applicable for Elementary Supervision Status of Log-—
ical Supervision only.

7.4.2 Determination of Global Supervision Status

The Global Supervision Status is determined based onthe Elementary Su-
pervision Status of a set of Alive, Deadline and/or Logical Supervisions within a
Function Group Which are configured as part of a single GlobalSupervision.

Global Supervision Status is "worst-of" all included Elementary Supervi-
sion Statuses.

The Global Supervision Status has similar values as the Elementary Su-
pervision Status. The main differences are the addition of the kSTOPPED value.
Figure 7.5 shows the values and transitions between them.

The Platform Health Management reports a detected failure to State Manage-
ment as soon as state kEXPIRED is reached. State kSTOPPED is used only for critical
failures which need a direct reaction via hardware watchdog. From AUTOSAR point
of view, this is relevant for failures in supervisions corresponding to Operating Sys-
tem, State Management or Execution Management. Platform Health Manage-
ment triggers the watchdog reaction by not setting a correct watchdog trigger condition
as soon as state kSTOPPED is reached, see [SWS_PHM_00105]. This transition and
therefore the reaction can be postponed for a configurable amount of time, named
expiredSupervisionTolerance. This could be used to allow clean-up activities
before a watchdog reset, e.g. writing the error cause, writing NVRAM data.

The expiredSupervisionTolerance is implemented within the state machine of
the Global Supervision Status. The defined state machine is in the state kEx-
PIRED while the error reaction is postponed. Since the transition to state kSTOPPED is
only applicable for supervisions triggering a watchdog reaction, the parameter ex-
piredSupervisionTolerance is only relevant in this case. That means, it is
mandatory to configure expiredSupervisionTolerance only in case of Global
Supervision corresponding to Operating System, State Management or Execu-
tion Management. A constraint in this regard is not added in [12] as Execution Man-
agement is not a modelled process and Operating System is not represented in the
model.

Achangein Global Supervision Status can be logged by Platform Health Man-
agement for test/debugging purposes.

[SWS_PHM_00219] Calculation of Global Supervision Status
Upstream requirements: RS_PHM_00111

[The Platform Health Management shall calculate the Global Supervision
Status of each configured GlobalSupervision. |

AUTSSAR

Whether the evaluation of Global Supervision Status and the Elementary
Supervision Status that it aggregates is time triggered (periodic evaluation) or
event triggered (on availability of a new result for Alive Supervision/Deadline
Supervision/ Logical Supervision) is up to Adaptive Platform Vendor’s deci-
sion.

[SWS_PHM_00216] States of the state machine for Global Supervision Status
Upstream requirements: RS_PHM_00111

[The Platform Health Management shall have the Global Supervision
Statuses kOK, kDEACTIVATED, kFAILED, kEXPIRED and kSTOPPED, Se€ ara: :
phm: :GlobalSupervisionStatus.]|

See also figure 7.5.

°

(1)

v

kDEACTIVATED

kOK w
A

(1o} ™7l

kFAILED
i3]

T~

(17)

S
N
|

(11) KEXPIRED
(8) [
A
(4] (13)

N

i12) KSTOPPED

(2) |
() \

Figure 7.5: Global Supervision Status

AUTSSAR

[SWS_PHM_00217] One Global Supervision Status per Global Supervision
Upstream requirements: RS_PHM_00111

[The Platform Health Management shall have one Global Supervision
Status per GlobalSupervision configured.

Each GlobalSupervision is a set of Alive Supervision, Deadline Su-
pervision and/or Logical Supervision corresponding to a single Function
Group. There can be one or more GlobalSupervision per Function Group.
But a GlobalSupervision does not span across multiple Function Groups.

[SWS_PHM_00218] Initialization of Global Supervision Status
Upstream requirements: RS_PHM_00111

[The Global Supervision Status shall be initialized with kDEACTIVATED. |

See transition (1) in figure 7.5.

The Platform Health Management provides a feature to postpone the error re-
action (the error reaction being not setting a correct watchdog trigger condition) for a
configurable amount of time, named expiredSupervisionTolerance.

[SWS_PHM_00220] Switch Global Supervision Status from kDEACTIVATED to kOK
Upstream requirements: RS_PHM_00111

[If the Global Supervision Status iS kDEACTIVATED, the Elementary Su-
pervision Status of at least one Alive, Deadline or Logical Supervision is kOK and
Nno supervision is in Elementary Supervision Status kFAILED Or kEXPIRED,
thenthe Platform Health Management shall change the Global Supervision
Status to kOK. |

See transition (2) in figure 7.5.

[SWS_PHM_00221] Keep Global Supervision Status kOK
Upstream requirements: RS_PHM_00111

[If the Global Supervision Status is kOK, the Elementary Supervision
Status of at least one Alive, Deadline or Logical Supervision is kOK and no super-
vision is in Elementary Supervision Status kFAILED or kEXPIRED, then the
Platform Health Management shall keep the Global Supervision Status
kOK. |

AUTSSAR

[SWS_PHM_00222] Switch Global Supervision Status from kOK to0 kDEACTIVATED
Upstream requirements: RS_PHM_00111

[If the Global Supervision Status is kOK or kFAILED or kEXPIRED AND the
Elementary Supervision Status of all Alive, Deadline and Logical Supervisions
iS kDEACTIVATED, thenthe Platform Health Management shall set the Global
Supervision Status to kDEACTIVATED and stop measuring Expired Supervision
Time. |

See transitions (6), (14) and (15) in figure 7.5.

These transitions can occur when State Management has caused change in the state
of the Function Group corresponding to the Global Supervision such that the Pro-
cesses corresponding to the supervised Entity instances whose Supervisions
(Alive Supervisions, Deadline Supervisions and/or Logical Supervi-
sions) are aggregated in the Global Supervision, are terminated. Typically, this can
occur due to change in Function Group State to Off state.

[SWS_PHM_00223] Switch Global Supervision Status from kOK to kFAILED
Upstream requirements: RS_PHM_00111

[If the Global Supervision Status is kOK, the Elementary Supervision
Status of at least one Alive, Deadline or Logical Supervision is kFAILED and no
supervision is in Elementary Supervision Status kEXPIRED, then the Plat-
form Health Management shall change the Global Supervision Status to
kKFAILED. |

See transition (7) in figure 7.5.

[SWS_PHM_00224] Switch Global Supervision Status from kOK to kEXPIRED for
SM/EM/OS supervision

Upstream requirements: RS_PHM_00111, RS_PHM_00112

[If the Global Supervision Status is kOK, the Elementary Supervision
Status of at least one Alive, Deadline or Logical Supervision is kEXPIRED and in
case the GlobalSupervision corresponds to Operating System, Execution Man-
agement or State Management the expiredSupervisionTolerance is configured
to a value larger than zero, then the Plat form Health Management shall change
the Global Supervision Status to kEXPIRED and start measuring Expired Su-
pervision Time. |

See transition (8) in figure 7.5.

Note: expiredSupervisionTolerance and hence the Expired Supervision Time
are applicable in case of Global Supervision Status corresponding to Operating Sys-
tem, Execution Management or State Management only.

AUTSSAR

[SWS_PHM_00225] Switch Global Supervision Status from kOK to kSTOPPED
Upstream requirements: RS_PHM_00111, RS_PHM_00112

[If the Global Supervision Status is kOK, the Elementary Supervision
Status of at least one Alive, Deadline or Logical Supervision is kEXPIRED, the
expiredSupervisionTolerance is configured to zero and the GlobalSupervi-
sion corresponds to Operating System, Execution Management or State Manage-
ment, then the P1lat form Health Management shall change the Global Super-
vision Status to kSTOPPED.]

See transition (9) in figure 7.5.

[SWS_PHM_00226] Keep Global Supervision Status kFAILED
Upstream requirements: RS_PHM_00111

[If the Global Supervision Status is kFAILED, the Elementary Supervi-
sion Status of at least one Alive, Deadline or Logical Supervision is kFAILED
and no supervision is in Elementary Supervision Status kEXPIRED, then the
Platform Health Management shall keep the Global Supervision Status
kKFAILED. |

[SWS_PHM_00227] Switch Global Supervision Status from kFAILED to kOK
Upstream requirements: RS_PHM_00111

[If the Global Supervision Status iS kFAILED, the Elementary Supervi-
sion Status of at least one Alive, Deadline or Logical Supervision is kOK and
no supervision is in Elementary Supervision Status kFAILED Or kEXPIRED,
thenthe Plat form Health Management shall change the Global Supervision
Status to kOK. |

See transition (10) in figure 7.5.

[SWS_PHM_00228] Switch Global Supervision Status from kFAILED to kEXPIRED
Upstream requirements: RS_PHM_00111, RS_PHM_00112

[If the Global Supervision Status is kFAILED, the Elementary Supervi-
sion Status of atleast one Alive, Deadline or Logical Supervision is kEXPIRED and
in case the GlobalSupervision corresponds to Operating System, Execution Man-
agement or State Management the expiredSupervisionTolerance is configured
to a value larger than zero, then the Plat form Health Management shall change
the Global Supervision Status to kEXPIRED and start measuring Expired Su-
pervision Time. |

See transition (11) in figure 7.5.

AUTSSAR

[SWS_PHM_00229] Switch Global Supervision Status from kFAILED to kSTOPPED
Upstream requirements: RS_PHM_00111, RS_PHM_00112

[If the Global Supervision Status is kFAILED, the Elementary Supervi-
sion Status of at least one Alive, Deadline or Logical Supervision is kEXPIRED, the
expiredSupervisionTolerance is configured to zero and the GlobalSupervi-
sion corresponds to Operating System, Execution Management or State Manage-
ment, then the P1lat form Health Management shall change the Global Super-
vision Status to kSTOPPED.]

See transition (12) in figure 7.5.

[SWS_PHM_00230] Keep Global Supervision Status kEXPIRED
Upstream requirements: RS_PHM_00111, RS_PHM_00112

[If the Global Supervision Status iS KEXPIRED,

e the GlobalSupervision corresponds to Operating System, Execution Man-
agement or State Management and the measured Expired Supervision Time is
less than the configured expiredSupervisionTolerance OR

e the GlobalSupervision DOES NOT correspond to Operating System, Execu-
tion Management or State Management and the Elementary Supervision
Status of at least one corresponding Alive, Deadline or Logical Supervision is
kEXPIRED,

then the Platform Health Management shall keep the Global Supervision
Status kEXPIRED. |

[SWS_PHM_00231] Switch Global Supervision Status from kEXPIRED to
kSTOPPED

Upstream requirements: RS_PHM_00111, RS_PHM_00112

[If the Global Supervision Status iS kEXPIRED,GlobalSupervision corre-
sponds to Operating System, Execution Management or State Management, the
Elementary Supervision Status of at least one Alive, Deadline or Logical Su-
pervision is kEXPIRED and the measured Expired Supervision Time is equal to
or greater than the configured expiredSupervisionTolerance, then the Plat-
form Health Management shall change the Global Supervision Status to
kSTOPPED. |

See transition (13) in figure 7.5.

Note: Transition (13) in figure 7.4 is only applicable for GlobalSupervision that
does correspond to Operating System, Execution Management or State Management.

AUTSSAR

[SWS_PHM_00232] Keep Global Supervision Status kSTOPPED
Upstream requirements: RS_PHM_00111

[If the Global Supervision Status is kSTOPPED, the Elementary Supervi-
sion Status of at least one Alive, Deadline or Logical Supervision is kEXPIRED
and the GlobalSupervision corresponds to Operating System, Execution Manage-
ment or State Management, then the Platform Health Management shall keep
the Global Supervision Status kSTOPPED. |

[SWS_PHM_00233] Switch Global Supervision Status from kEXPIRED to kOK
Upstream requirements: RS_PHM_00111

[If the Global Supervision Status iS kEXPIRED, the Elementary Supervi-
sion Status of at least one Alive, Deadline or Logical Supervision is kOK and
Nno supervision is in Elementary Supervision Status kFAILED Or kEXPIRED,
thenthe Plat form Health Management shall change the Global Supervision
Status to kOK. |

See transition (16) in figure 7.5.

This transition can occur when State Management has caused change in the state of
the Function Group corresponding to the Global Supervision such that the Process
corresponding to the Supervised Entity instance whose Elementary Super-—
vision Status caused the Global Supervision Status to reach state KEX-
PIRED is terminated or restarted.

[SWS_PHM_00234] Switch Global Supervision Status from kEXPIRED to kFAILED
Upstream requirements: RS_PHM_00111

[If the Global Supervision Status iS kEXPIRED, the Elementary Supervi-
sion Status of at least one Alive, Deadline or Logical Supervision is kFAILED
and no supervision is in Elementary Supervision Status kEXPIRED, then the
Platform Health Management shall change the Global Supervision Sta-
tus to kKFAILED. |

See transition (17) in figure 7.5.

This transition can occur when State Management has caused change in the state of
the Function Group corresponding to the Global Supervision such that the Process
corresponding to the Supervised Entity instance whose Elementary Super-—
vision Status caused the Global Supervision Status to reach state KEX-
PIRED is terminated or restarted. However, there exists another executing process
whose corresponding Supervised Entity instanceisin Elementary Supervi-
sion Status KFAILED and is not terminated or restarted.

Note: Transitions (15), (16) and (17) in figure 7.4 is not applicable in case of G1obal-
Supervision corresponding to Operating System, Execution Management or State

AUTSSAR

Management as Elementary Supervision Status of supervisions correspond-
ing to these is not allowed to leave the state kEXPIRED until watchdog action is taken
(see [SWS_PHM_00105]).

[SWS_PHM_00237] Switch Global Supervision Status from kDEACTIVATED to
kFAILED

Upstream requirements: RS_PHM_00111

[If the Global Supervision Status iS kDEACTIVATED, the Elementary Su-
pervision Status of at least one Alive, Deadline or Logical Supervision is
kFAILED and no supervision is in Elementary Supervision Status kEXPIRED,
thenthe Plat form Health Management shall change the Global Supervision
Status to kFAILED. |

See transition (3) in figure 7.5.

[SWS_PHM_00238] Switch Global Supervision Status from kDEACTIVATED to
kEXPIRED

Upstream requirements: RS_PHM_00111, RS_PHM_00112

[If the Global Supervision Status is kDEACTIVATED, the Elementary Su-
pervision Status of at least one Alive, Deadline or Logical Supervision is kEX-
PIRED and in case the GlobalSupervision corresponds to Operating System, Ex-
ecution Management or State Management the expiredSupervisionTolerance
is configured to a value larger than zero, then the Plat form Health Management
shall change the G1obal Supervision Status to kEXPIRED and start measuring
Expired Supervision Time. |

See transition (4) in figure 7.5.

[SWS_PHM_00239] Switch Global Supervision Status from kDEACTIVATED to
kSTOPPED

Upstream requirements: RS_PHM_00111, RS_PHM_00112

[If the Global Supervision Status is kDEACTIVATED, the Elementary Su-
pervision Status of at least one Alive, Deadline or Logical Supervision is kEX-
PIRED, the expiredSupervisionTolerance is configured to zero and the G1ob-
alSupervision corresponds to Operating System, Execution Management or State
Management, then the Plat form Health Management shall change the Global
Supervision Status to kSTOPPED. |

See transition (5) in figure 7.5.

Note: How to distinguish whether a GlobalSupervision corresponds to Execution
Management/State Management/Operating System is not standardized.

AUTSSAR

7.5 Recovery actions

The scope of Platform Health Management isto monitor the safety relevant Pro-
cesses on the platform and report detect failures to State Management. If a failure in
State Management is detected, P1at form Health Management can trigger a reac-
tion via hardware watchdog.

cmp PHM_Interfaces)

Applications or Clusters/Services g]

Configure

ol

Su pervisedEnlitvI‘
ReportCheckpoini

|
V
«arazphm»
ReportCheckpoint

+ ReportCheckpoint{Checkpoint)

ReportCheckpoint

State Manager g]
«arazphm= |7 =)

RecoveryAction RecoveryAction

RecoveryHandler

Configure RecoveryAction
————— RecoveryHandler

+ Offeri)

______ + RecoveryHandler{) =---—-
RecoveryAction + StopOffer() RecoveryAction
Offer Offer
RecoveryAction RecoveryAction
StopOffer StopOffer

‘Watchdoginterface

: ‘Watchdoglinterface
! FireWatchdogReaction

H AliveNotification

not defined yet

«External Interface»
Watchdoginterface

+ FireWatchdogReaction()
+ AliveNotification()

I
Hardware specific

Figure 7.6: Platform Health Management and the environment

AUTSSAR

7.5.1 Notificaton to State Management

The Platform Health Management debounces the failures of Supervised En-
titys, seethe Elementary Supervision Status kFAILED in chapter 7.4. After
the debouncing, a recovery action is necessary. Thus, Plat form Health Manage-
ment notifies State Management. State Management as a coordinator of the platform
can decide how a detected failure shall be handled and can trigger corresponding re-
covery actions. In most cases this might include switching the faulty Function Group
to another state. In case a failure cannot be handled, State Management can request
a watchdog reaction via corresponding error code to Platform Health Manage-
ment.

According to ISO 26262, it has to be ensured that a reaction is triggered after a safety-
relevant failure occurred. Therefore, Plat form Health Management has to make
sure that State Management receives the notification on a detected failure. The P1at-
form Health Management monitors the return of the ara: :phm: :RecoveryAc—
tion::RecoveryHandler with a configurable timeout. If no response by State Man-
agement is received in time, the PHM will do its own countermeasures by wrongly
triggering or stop triggering the serviced watchdog.

[SWS_PHM_00101] Notification to State Management due to Supervision failure
Upstream requirements: RS_HM_09249, RS _PHM_00117

[If the status of the mapped GlobalSupervision via RecoveryNotification-
ToPPortPrototypeMapping switches to state kExPIRED, the Platform Health Man-
agement shall notify State Management via the method ara: :phm::Recovery-
Action::RecoveryHandler. The parameter executionError shall contain the
corresponding Function Group and the current ProcessExecutionError. The
parameter supervision shall contain the TypeOfSupervision which causes the
transition to state kEXPIRED. |

Note: A GlobalSupervision corresponds to whole or part of a Function Group,
i.e. for each GlobalSupervision always the same Function Group is reported.
The ProcessExecutionError is defined within the startupConfig, wherefore the
executionError.executionError depends on the current used StartupConfig.

[SWS_PHM_00104] Reaction on timeout for notification to State Management
Upstream requirements: RS_HM_09249, RS _HM_09226

[The Platform Health Management shall stop calling apext: :phm::Watch-
dogInterface::AliveNotification and call apext::phm::WatchdogIn-
terface: :FireWatchdogReaction if

e a failure is detected AND

¢ a notification of this failure is sent to State Management via the method ara: :
phm: :RecoveryAction: :RecoveryHandler AND

AUTSSAR

¢ the time between failure detection and reception of an acknowledgment response
by State Management is longer than RecoveryNotification.recoveryNo—
tificationTimeout.

Note 1: Possible reasons that the acknowledgment response is not received within
given time interval: ara: :phm: :RecoveryAction: :RecoveryHandler is not of-
fered or IPC is not working.

Note 2: If the method ara: :phm: :RecoveryAction: :RecoveryHandler returns
without an error, no further action is taken.

[SWS_PHM_01147] Enable handler
Upstream requirements: RS_PHM_00111, RS_PHM_00117

[Platform Health Management shall enable potential invocations of ara::
phm: :RecoveryAction: :RecoveryHandler when ara::phm::RecoveryAc-
tion::0ffer is called. |

[SWS_PHM_01148] Disable handler
Upstream requirements: RS_PHM_00111, RS_PHM_00117

[Platform Health Management shall disable invocations of ara::phm::
RecoveryAction: :RecoveryHandler when ara::phm::RecoveryAction::
StopOffer is called. |

7.5.2 Handling of Hardware Watchdog

The Platform Health Management isthe only Functional Cluster with an interface
to the hardware watchdog. Therefore, the watchdog supervises Plat form Health
Management and PHM can initiate a reaction of the watchdog by stop triggering or
by sending a false trigger. Since this reaction means usually a reset of the machine,
it has an impact on all functions and should be used only as a last resort in order
to ensure freedom from interference. Failures that require a watchdog reaction are
supervision failures in State Management and Execution Management since in these
cases a recovery action via State Management as described in section 7.5.1 is not
possible.

Platform Health Management handles the hardware watchdog via the Watch-
doglnterface. PHM indicates aliveness to Watchdoglnterface cyclically. Watchdogln-
terface will trigger the hardware watchdog correctly as long as PHM indicates alive-
ness. If PHM does not report aliveness in configured time, Watchdoglnterface shall
initiate watchdog reaction.

AUTSSAR

In case a critical failure is detected, PHM can trigger recovery action through Watch-
doglnterface.

[SWS_PHM_00106] Alive Notification to Hardware Watchdog
Upstream requirements: RS_HM_09249, RS_HM_09226, RS_PHM_00114

[As long as no Global Supervision Status corresponding to State Manage-
ment or Execution Management has reached state kSTOPPED, Notification to State
Management has not failed and no error code kSMCanNotHandleRecovery was re-
ceived, Platform Health Management shall call apext: :phm: :WatchdogIn-—
terface::AliveNotification periodically.

[SWS_PHM_00105] Recovery Action for Failures in Execution Management or
State Management
Upstream requirements: RS_HM_09249, RS HM 09226, RS PHM_00115, RS_PHM_00116,
RS_PHM_00114

[If the Global Supervision Status corresponding to State Management or Exe-
cution Management switches to kSTOPPED, Platform Health Management shall
stop calling apext: :phm: :WatchdogInterface: :AliveNotification and call
apext::phm::WatchdogInterface::FireWatchdogReactionJ

[SWS_PHM_00107] Reaction on a return of kSMCanNotHandleRecovery for noti-
fication to State Management
Upstream requirements: RS_HM_09249, RS_HM_09226, RS_PHM_00114

[If the method ara: :phm: :RecoveryAction: :RecoveryHandler returns the er-
ror kSMCanNotHandleRecovery, the Platform Health Management shall stop
calling apext::phm::WatchdogInterface::AliveNotification and call
apext::phm::Watchdoglnterface::FireWatchdogReactionJ

7.5.3 Configuration Parameters

Configuration of recovery actions within Platform Health Management has one
parameter:

1. recoveryNotificationTimeout: the maximum acceptable amount of time
Platform Health Management waits for a response by State Management
after detection of failure.

AUTSSAR

7.6 Multiple processes and multiple instances

During the application deployment phase, a single Supervised Entity may be
instanciated several times: this happens for example when the same C++ object
class representing a Supervised Entity is explicitly instanciated inside the code or
when the same executable containing the Supervised Entity is started/run multi-
ple times. In such a case, each instance of the Ssupervised Entity is individually
supervised, each Alive Supervision, Deadline Supervision and Logical
Supervision generating an instance of Elementary Supervision Status.

A specific instance of a Supervised Entity identifies itself at run time via an In-
stanceSpecifier. The APl usage of the ara::core::InstanceSpecifier is specified in
SWS_CORE_10200 and chapter "InstanceSpecifier data type"™ in [8]. The modelling
relation of the InstanceSpecifier and its usage in PHM is explained in detail in the
chapter "‘Supervised Entities and Checkpoints™ in [12].

SWComponent X

SE_A
App1 App2
SWComponent X SWComponent X SWComponent X
Instance 1 Instance 2
SE_A SE_A SE_A

Process 1 Process 2

Figure 7.7: Example of multiple instance of the same Supervised Entity

Figure 7.7 shows an example of a single Supervised Entity (called SE_A) belong-
ing to a unique SW Component (SWComponent_X in the example). SWwComponent_X
is instanciated explicitly twice in the same process (Process 1) and another time in a
different process/application (process 2). In such a case, three instances of the Port
Prototype representing the Supervised Entity are created.

AUTSSAR

7.7 Functional cluster life-cycle

This section defines behavior of this functional cluster during its life-cycle. Please
note that there is a general behavior for ara::core::Initialize and ara::core::Deinitialize
defined in [8] by [SWS_CORE_90021] and [SWS_CORE_90022].

7.7.1 Startup

[SWS_PHM_01252] Handling of Watchdog after Startup

Upstream requirements: RS_HM 09249, RS _HM_ 09244, RS _HM 09245, RS _HM 09246, RS -
PHM_00114

[Platform Health Management shall call apext::phm::WatchdogInter-
face::AliveNotification before reporting kRunning to Execution Management
using the method ara: :exec: :ExecutionClient: :ReportExecutionState. |

The intention is to take over the control of the HW watchdog as early as possible.

More information on the machine startup sequence can be found in [10].

7.7.2 Shutdown

It is the integrators responsibility to make correct use of the shutdown mechanism. De-
tails for ensuring safe execution are given in [13]. Details on the sequence of machine
shutdown can be found in [10].

[SWS_PHM_01253] Termination of Supervisions at SIGTERM
Upstream requirements: RS_HM_09222, RS_HM_09125, RS_HM_09235

[Platform Health Management shall stop all configured supervisions (eg: delete
all supervision objects) after receiving SIGTERM. |

[SWS_PHM_01254] Global Supervision Status at SIGTERM
Upstream requirements: RS_HM_09222, RS_HM_09125, RS_HM_09235

[Platform Health Management shall change all Global Supervision Sta-
tuses to KDEACTIVATED after receiving SIGTERM. |

7.7.2.1 Handling of watchdog during shutdown

Handling of watchdog during and after Shutdown of Platform Health Management will
not be specified.

AUTSSAR

Note: Platform Health Management will no more be able to handle the servicing of the
watchdog once it is shutdown.

AUTSSAR

7.8 Reporting

7.8.1 Security Events

This section lists all security events defined by this functional cluster.

[SWS_PHM_01340] Security events for PHM
Status: DRAFT
Upstream requirements: RS _Ids_00810

Name Description ID
SEV_ACCESSVIOLATION_PHM_ Access violation with respect to reporting of checkpoint. 65
CHECKPOINT

7.8.2 Log Messages

This functional cluster does not define any non-verbose log messages (i.e., modelled
DLT messages).

7.8.3 Violation Messages

This section lists all violation messages (i.e., DLT messages logged for Violations ac-
cording to [SWS_CORE_00021]) defined by this functional cluster.

Dit-Message InstanceSpecifierMappingIntegrityViolation

Description InstanceSpecifier either cannot be resolved in the model in the context of your executable, or it refers to
a model element other than a PortPrototype. String format: "Violation detected in {processldentifier} at
{location}: Invalid InstanceSpecifer {instanceSpecifier} in a constructor of class: {className}"

Messageld 0x80001ffc

MessageType DLT_LOG_FATAL

Info

DIt-Argument ArgumentDescription ArgumentType ArgumentUnit
processldentifier Identifier of the process that caused the violation. uint8 [encoding UTF-8] NoUnit
location An implementation-defined identifier of the location uint8 [encoding UTF-8] NoUnit

where the violation was detected, for example
{filename}:{linenumber}.

instanceSpecifier | InstanceSpecifier used to try to create the object. uint8 [encoding UTF-8] NoUnit

className Name of the class that was instantiated. uint8 [encoding UTF-8] NoUnit

AUT<

SSAR

DIt-Message PortInterfaceMappingViolation
Description The type of mapping does not match the expected type of Portinterface: {portinterfaceTypeName}
referenced by a {mappingTypeName}. String format: "Violation detected in {processldentifier} at
{location}: Invalid InstanceSpecifer {instanceSpecifier} in a constructor of class: {className}"
Messageld 0x80001ffb
MessageType DLT_LOG_FATAL
Info
DIt-Argument ArgumentDescription ArgumentType ArgumentUnit
processldentifier Identifier of the process that caused the violation. uint8 [encoding UTF-8] NoUnit
location An implementation-defined identifier of the location uint8 [encoding UTF-8] NoUnit
where the violation was detected, for example
{filename}:{linenumber}.
instanceSpecifier | InstanceSpecifier used to try to create the object. uint8 [encoding UTF-8] NoUnit
className Name of the class that was instantiated. uint8 [encoding UTF-8] NoUnit
Dit-Message ProcessMappingViolation
Description Matching InstanceRef exists, but no matching (modelled) Process found that matches the (runtime)
process. String format: "Violation detected in {processldentifier} at {location}: Invalid InstanceSpecifer
{instanceSpecifier} in a constructor of class: {className}"
Messageld 0x80001ffa
MessageType DLT_LOG_FATAL
Info
Dit-Argument ArgumentDescription ArgumentType ArgumentUnit
processldentifier Identifier of the process that caused the violation. uint8 [encoding UTF-8] NoUnit
location An implementation-defined identifier of the location uint8 [encoding UTF-8] NoUnit
where the violation was detected, for example
{filename}:{linenumber}.
instanceSpecifier | InstanceSpecifier used to try to create the object. uint8 [encoding UTF-8] NoUnit
className Name of the class that was instantiated. uint8 [encoding UTF-8] NoUnit
Dit-Message InstanceSpecifierAlreadylnUseViolation
Description Violation message that is sent in case a constructor in the ara framework was called with an Instance
Specifier already in use in this process. String format: "Violation detected in {processldentifier} at
{location}: InstanceSpecifer {instanceSpecifier} in constructor of class {className} already in use in this
process”
Messageld 0x80001ff9
MessageType DLT_LOG_FATAL
Info
Dit-Argument ArgumentDescription ArgumentType ArgumentUnit
processldentifier Identifier of the process that caused the violation. uint8 [encoding UTF-8] NoUnit
location An implementation-defined identifier of the location uint8 [encoding UTF-8] NoUnit
where the violation was detected, for example
{filename}:{linenumber}.
instanceSpecifier | InstanceSpecifier used to try to create the object. uint8 [encoding UTF-8] NoUnit
className Name of the class that was instantiated. uint8 [encoding UTF-8] NoUnit

AUTSSAR

8 API specification

This chapter provides a reference of the APIs defined by this functional cluster. The
APl is described in the following chapters in tables. Table 8.1 explains the content that
is described in such an API table.

Kind: Defines the kind of the declaration that this API table describes. The following values are
supported:

e class (Declaration of a class)

o function (Declaration of a member or non-member function)
e struct (Declaration of a structure)

o type alias (Declaration of a type alias)

e enumeration (Declaration of an enumeration)

e variable (Declaration of a variable)

Header File: Defines the header file to be included according to [SWS_CORE_90001]
Forwarding Header Defines the forwarding header file to be included according to [SWS_CORE_90001]
File:
Scope: Defines the scope that may be a namespace (in case of a class or non-member function) or a
class declaration (in case of a member)
Symbol: Entity name
Thread Safety: Defines whether a function is thread-safe, not thread-safe, or conditional according to
[SWS_CORE_13200] and [SWS_CORE_13202]
Syntax: Description of C++ syntax
Template Param: ;I'em;olate parameter Template parameter(s) used to parametrize the template
0.*
Parameters (in): Parameter declaration Parameter(s) that are passed to the function
(0.7
Parameters (out): Parameter declaration Parameter(s) that are returned to the caller
(0.7
Return Value: Return type Type of the value that the function returns
Exception Safety: Defines whether a function is exception-safe, not exception safe or conditionally exception safe
Exceptions: List of exceptions that may be thrown from the function
Violations: List of violations that may occur in the function
Errors: Error type (0..%) List of defined error codes that may be returned by the function with

their recoverability class defined in [RS_AP_00160]. APIs can be
extended with vendor-specific error codes. These are not part of
the AUTOSAR SWS specifications

Description: Brief description of the function

Table 8.1: Explanation of an API table

AUTSSAR

8.1 Header: ara/phm/supervised_entities/{<si-namespace-
derived-directory-path-lowers>}/{<phmssi-sn>}.h

[SWS_PHM_01002] File name, includes and multiple inclusion guard |

Kind: Header File

Syntax: ara/phm/supervised_entities/
{<si-namespace-derived-directory-path-lower>}/{<phmssi-sn>}.h

Description: For each modeled PhmSupervisedEntityInterface a header file shall be generated
according to this directory and path/file name convention - a multiple inclusion guard shall be
placed around the whole header file as per [SWS_CORE_90002].

Descriptors: {<si-namespace- as per [SWS_PHM_01005] whereby: for each inner namespace in
derived-directory- the hierarchy, an inner directory shall be created to contain the
path-lower> header file
}

{<phmssi-sn>} The file name as given by PhmSupervisedEntityInterface.
shortName converted to lower-case.

Example:

// File=ara/phm/supervised_entities/n/n_plus_1/n_plus_2/si_checkpoint.
h (1)

#ifndef N_NPLUS1_NPLUS2_SI_CHECKPOINT_H_ (2)

#define N_NPLUS1_NPLUS2_SI_CHECKPOINT_H_ (2)

#endif // N_NPLUS1_NPLUS2_SI_CHECKPOINT_H_ (2)

8.1.1 Namespaces

8.1.1.1 ara::phm::supervised_entities::{<hierarchical-namespace-list-lower-
skeleton>}

[SWS_PHM_01005] Checkpoint Header File: service hamespace
Upstream requirements: RS_AP_00114

Kind: namespace

Header file: #include "ara/phm/supervised_entities/ {
<si-namespace-derived-directory-path-lower>}/{<phmssi-sn>}.h"

Scope: namespace ara::phm::supervised_entities

Syntax: namespace {<hierarchical-namespace-list-lower-skeleton>}

Description: The generator shall use the SymbolProps aggregated in the role Port Interface.

namespace. For each namespace in the ordered list: namespace[N+1] shall be an inner
namespace of namespace[N] converted to lower-case.

AUTSSAR

8.1.2 Non-Member Types

8.1.2.1

[SWS_PHM_00424]

Enumeration: {<phmssi-sn>}

Definition of APl enum ara::phm::supervised_entities::

{<hierarchical-namespace-list—-lower—-skeleton>}::{<phmssi-sn>}

Upstream requirements: RS_PHM_00101,

RS_PHM_09241, RS_AP_00130, RS_AP_00122,

RS_AP_00127
Kind: enumeration
Header file: #include "ara/phm/supervised_entities/ {

<si-namespace-derived-directory-path-lower>}/{<phmssi-sn>}.h"

Forwarding header file:

#include "ara/phm/supervised_entities/ {
<si-namespace-derived-directory-path-lower>}/{<phmssi-sn>}_fwd.h"

Scope: namespace ara::phm::supervised_entities::{
<hierarchical-namespace-list—-lower—-skeleton>}
Symbol: {<phmssi-sn>}
Underlying type: std::uint32_t
Syntax: enum class {<phmssi-sn>} : std::uint32_t {...};
Values: {<phm-checkpoint-
list>
}
Description: Defines the checkpoints for the ara: :phm: :PhmSupervisedEntityInterface
Descriptors: {<phm-checkpoint- Shown as "..." in Syntax. The list of enumerations (checkpoints) for

list> the PhmSupervisedEntityInterface. For each checkpointin
} {<phm-checkpoint-1list>}, [SWS_PHM_00425] shall be
applied.

8.1.3 Gilobal Variables

8.1.3.1 {<symbol-phm-checkpoint>}

[SWS_PHM_00425] Definition of API variable ara::phm::supervised_entities::
{<hierarchical-namespace-list-lower—skeleton>}::{<symbol-phm-

checkpoint>}

Upstream requirements: RS_PHM_00101, RS_PHM_09241

Kind:

variable

Header file:

#include "ara/phm/supervised_entities/ {
<si-namespace-derived-directory-path-lower>}/{<phmssi-sn>}.h"

\Y

AUTSSAR

Scope: namespace ara::phm::supervised_entities::{
<hierarchical-namespace-list-lower—-skeleton>}
Symbol: {<symbol-phm-checkpoint>}
Type: --
Syntax: {<symbol-phm-checkpoint>} = {<phm-checkpoint-value>};
Description: For each enumeration in {<phm-checkpoint-1list>} in [SWS_PHM_00424] there shall exist
a C++ enumerator declaration.
Descriptors: {<symbol-phm- The checkpoint enumerator symbol name as given by
checkpoint> PhmCheckpoint. shortName
}
{<phm-checkpoint— The checkpoint enumerator value as given by PhmCheckpoint.
value> checkpointId
}
Example:
enum class MyPhmCheckpoints : std::uint32_t {
Initializing = 00,
StartupTest = 10U,
InitializingFinished = 2U
bi

8.2 Header: ara/phm/phm_error_domain.h

8.2.1

8.2.1.1

Non-Member Types

Enumeration: PhmErrc

[SWS_PHM_01240] Definition of APl enum ara::phm::PhmErrc
Upstream requirements: RS_AP_00119

Kind: enumeration

Header file: #include "ara/phm/phm_error_domain.h"

Forwarding header file: | #include "ara/phm/phm_fwd.h"

Scope: namespace ara::phm

Symbol: PhmErrc

Underlying type: ara::core::ErrorDomain::CodeType

Shnnax: enum class PhmErrc : ara::core::ErrorDomain::CodeType {...};

Values: kOfferFailed= 2 Service could not be offered due to failure of communication with

Phm daemon

kSMCanNotHandle State Management cannot handle the recovery and PlatformHealth
Recovery=3 Management will take over by firing the watchdog.

Description: Defines an enumeration class for the Platform Health Management error codes.

AUTSSAR

8.2.2 Non-Member Functions

8.2.2.1 Other

8.2.2.1.1 GetPhmDomain

[SWS_PHM_01251] Definition of API function ara::phm::GetPhmDomain
Upstream requirements: RS_AP_00119, RS_AP_00159

Kind: function
Header file: #include "ara/phm/phm_error_domain.h"
Scope: namespace ara::phm
Synuuv constexpr const ara::core::ErrorDomain & GetPhmDomain () noexcept;
Return value: const ara::core::Error The global PhmErrorDomain object.
Domain &
Exception Safety: exception safe
Thread Safety: thread-safe
Description: Returns the global PhmErrorDomain object.

8.2.2.1.2 MakeErrorCode

[SWS_PHM_01244] Definition of API function ara::phm::MakeErrorCode
Upstream requirements: RS_AP_00119, RS_AP_00159

Kind: function
Header file: #include "ara/phm/phm_error_domain.h"
Scope: namespace ara: :phm
Synumv constexpr ara::core::ErrorCode MakeErrorCode (PhmErrc code,
ara::core::ErrorDomain: :SupportDataType data) noexcept;
Parameters (in): code Error code number.
data Vendor defined data associated with the error.
Return value: ara::core::ErrorCode An ErrorCode object.

Exception Safety: exception safe
Thread Safety: thread-safe
Description: Creates an error code.

AUTSSAR

8.2.3 Class: PhmErrorDomain

[SWS_PHM_01241] Definition of API class ara::phm::PhmErrorDomain
Upstream requirements: RS_AP_00119

Kind: class

Header file: #include "ara/phm/phm_error_domain.h"

Forwarding header file: | #include "ara/phm/phm_fwd.h"

Scope: namespace ara::phm

Symbol: PhmErrorDomain

Base class: ara::core::ErrorDomain

Synnzr: class PhmErrorDomain final : public ara::core::ErrorDomain {...};
Unique ID: As per ara: :phm: :PhmErrorDomain in [SWS_CORE_90023]

Description: Defines the error domain for Platform Health Management.

8.2.3.1 Public Member Types

8.2.3.1.1 Type Alias: Errc

[SWS_PHM_01245] Definition of API type ara::phm::PhmErrorDomain::Errc
Upstream requirements: RS_AP_00119, RS_AP_00127

Kind: type alias

Header file: #include "ara/phm/phm_error_domain.h"
Scope: class ara::phm::PhmErrorDomain
Symbol: Errc

Syntax: using Errc = PhmErrc;

Description: Alias for the error code value enumeration.

AUTSSAR

8.2.3.1.2 Type Alias: Exception

[SWS_PHM_01246]
main::Exception

Definition of API

Upstream requirements: RS_AP_00119, RS_AP_00127

type

ara::phm

::PhmErrorDo-

Kind: type alias

Header file: #include "ara/phm/phm_error_domain.h"

Scope: class ara::phm::PhmErrorDomain

Symbol: Exception

Syntax: using Exception = PhmException;
Description: Alias for the exception base class.

8.2.3.2 Public Member Functions

8.2.3.2.1

8.2.3.2.1.1

[SWS_PHM_01247] Definition of API function ara::phm

ErrorDomain

Special Member Functions

Default Constructor

Upstream requirements: RS_AP_00119, RS_AP_00159

::PhmErrorDomain::Phm

Kind: function

Header file: #include "ara/phm/phm_error_domain.h"
Scope: class ara::phm::PhmErrorDomain
Syntax: PhmErrorDomain () noexcept;
Exception Safety: exception safe

Thread Safety: thread-safe

Description: Creates a PhmErrorDomain instance.

AUTSSAR

8.2.3.2.2 Member Functions

8.2.3.2.2.1 Message

[SWS_PHM 01249]
main::Message

Definition of APl function ara::phm::PhmErrorDo-

Upstream requirements: RS_AP_00119, RS_AP_00159

Kind: function

Header file: #include "ara/phm/phm_error_domain.h"

Scope: class ara::phm::PhmErrorDomain

Syntax: const char * Message (CodeType errorCode) const noexcept override;

Parameters (in):

errorCode The error code number.

Return value:

const char * The message associated with the error code.

Exception Safety: exception safe
Thread Safety: thread-safe
Description: Returns the message associated with the error code.

8.2.3.2.2.2 Name

[SWS_PHM_01248] Definition of API function ara::phm::PhmErrorDomain::Name
Upstream requirements: RS_AP_00119, RS_AP_00159

Kind: function

Header file: #include "ara/phm/phm_error_domain.h"

Scope: class ara::phm::PhmErrorDomain

Syntax: const char *» Name () const noexcept override;
Return value: const char * "Phm".

Exception Safety: exception safe

Thread Safety: thread-safe

Description: Returns the name of the error domain.

AUTSSAR
8.2.3.2.2.3 ThrowAsException

[SWS_PHM_01250] Definition of APl function ara::phm::PhmErrorDo-
main::ThrowAsException

Upstream requirements: RS_AP_00119

Kind: function

Header file: #include "ara/phm/phm_error_domain.h"

Scope: class ara::phm::PhmErrorDomain

Syntax: void ThrowAsException (const ara::core::ErrorCode &errorCode) const
override;

Parameters (in): errorCode The error to throw.

Return value: None

Exception Safety: not exception safe

Thread Safety: thread-safe

Description: Throws the exception associated with the error code.
As per [SWS_CORE_10304], this function does not participate in overload resolution when C++
exceptions are disabled in the compiler toolchain.

8.2.4 Class: PhmException

[SWS_PHM_01242] Definition of API class ara::phm::PhmException
Upstream requirements: RS_AP_00119

Kind: class

Header file: #include "ara/phm/phm_error_domain.h"

Forwarding header file: | #include "ara/phm/phm_fwd.h"

Scope: namespace ara: :phm

Symbol: PhmException

Base class: ara::core::Exception

Syntax: class PhmException : public ara::core::Exception {...};
Description: Exception type thrown by Platform Health Management.

AUTSSAR

8.2.4.1 Public Member Functions
8.2.4.1.1 Constructors

8.2.4.1.1.1 PhmException

[SWS_PHM_01243] Definition of API function ara::phm::PhmException::PhmEx-
ception
Upstream requirements: RS_AP_00119, RS_AP_00159

Kind: function

Header file: #include "ara/phm/phm_error_domain.h"

Scope: class ara::phm::PhmException

Syntax: explicit PhmException (ara::core::ErrorCode errorCode) noexcept;
Parameters (in): errorCode The error code.

Exception Safety: exception safe

Thread Safety: thread-safe

Description: Construct a new PlatformHealthManagement exception object containing an error code.

8.3 Header: ara/phm/recovery_action.h

8.3.1 Non-Member Types

8.3.1.1 Enumeration: TypeOfSupervision

[SWS_PHM_01138] Definition of APl enum ara::phm::TypeOfSupervision
Upstream requirements: RS_HM_09159

Kind: enumeration

Header file: #include "ara/phm/recovery_action.h"

Forwarding header file: | #include "ara/phm/phm_fwd.h"

Scope: namespace ara::phm

Symbol: TypeOfSupervision

Underlying type: std::uint32_t

Syntax: enum class TypeOfSupervision : std::uint32_t {...};
Values: kAliveSupervision= 0 Supervision is of type AliveSupervision.

kDeadlineSupervision= 1 | Supervision is of type DeadlineSupervision.

\Y

AUTSSAR

A
kLogicalSupervision= 2 ‘ Supervision is of type LogicalSupervision.
Description: Enumeration of type of supervision. Scoped Enumeration of uint32_t.

8.3.2 Class: RecoveryAction

[SWS_PHM_01140] Definition of API class ara::phm::RecoveryAction

Upstream requirements: RS_HM_09159

Kind: class

Header file: #include "ara/phm/recovery_action.h"

Forwarding header file: | #include "ara/phm/phm_fwd.h"

Scope: namespace ara::phm

Symbol: RecoveryAction

Syntax: class RecoveryAction {...};
Description: RecoveryAction abstract class.

8.3.2.1 Public Member Functions
8.3.2.1.1 Special Member Functions

8.3.2.1.1.1 Copy Constructor

[SWS_PHM_01150] Definition of APl function ara::phm
tion::RecoveryAction

Upstream requirements: RS_HM_09159

::RecoveryAc-

Kind: function

Header file: #include "ara/phm/recovery_action.h"

Scope: class ara::phm::RecoveryAction

Syntax: RecoveryAction (const RecoveryAction &)=delete;
Description: The copy constructor for RecoveryAction shall not be used.

AUTSSAR
8.3.2.1.1.2 Move Constructor

[SWS_PHM_01149] Definition of APl function ara::phm::RecoveryAc-
tion::RecoveryAction

Upstream requirements: RS_HM_09159, RS_AP_00159

Kind: function
Header file: #include "ara/phm/recovery_action.h"
Scope: class ara::phm::RecoveryAction
Syntax: RecoveryAction (RecoveryAction &&ra) noexcept;
Parameters (in): ra The RecoveryAction object to be moved.
Exception Safety: exception safe
Thread Safety: implementation defined
Description: Move constructor for RecoveryAction.
]
8.3.2.1.1.3 Copy Assignment Operator

[SWS_PHM_01152] Definition of APl function ara::phm::RecoveryAc-
tion::operator=
Upstream requirements: RS_HM_09159

Kind: function

Header file: #include "ara/phm/recovery_action.h"

Scope: class ara::phm::RecoveryAction

Syntax: RecoveryAction & operator= (const RecoveryAction &)=delete;
Description: The copy assignment operator for RecoveryAction shall not be used.

AUTSSAR

8.3.2.1.1.4 Move Assignment Operator

[SWS_PHM 01151]

tion::operator=

Definition of APl function ara::phm::RecoveryAc-

Upstream requirements: RS_HM_09159, RS_AP_00159

Kind: function

Header file: #include "ara/phm/recovery_action.h"

Scope: class ara::phm::RecoveryAction

Syntax: RecoveryAction & operator= (RecoveryAction &&ra) noexcept;

Parameters (in):

ra

The RecoveryAction object to be moved.

Return value:

RecoveryAction &

The moved RecoveryAction object.

Exception Safety: exception safe
Thread Safety: thread-safe
Description: Move assignment operator for RecoveryAction.

8.3.2.1.1.5 Destructor

[SWS_PHM_01145]

Definition of APl function ara::phm::RecoveryAc-

tion::~RecoveryAction
Upstream requirements: RS_HM_09159, RS_AP_00134

Kind: function

Header file: #include "ara/phm/recovery_action.h"

Scope: class ara::phm::RecoveryAction
Syntax: virtual ~RecoveryAction () noexcept;
Exception Safety: exception safe

Thread Safety: not thread-safe

Description: Destructor for RecoveryAction.

AUTSSAR

8.3.2.1.2 Constructors

8.3.2.1.2.1 RecoveryAction

[SWS_PHM_01141]

Definition of APl function ara::phm::RecoveryAc-

tion::RecoveryAction

Upstream requirements: RS_HM_09159, RS_AP_00159, RS_AP_00170, RS_AP_00171, RS_-
AP_00172, RS_AP_00173

Kind: function
Header file: #include "ara/phm/recovery_action.h"
Scope: class ara::phm::RecoveryAction
Syntax: explicit RecoveryAction (const ara::core::InstanceSpecifier &instance)
noexcept;
Parameters (in): instance instance specifier to the PPortPrototype of a PhmRecoveryAction
Interface
Exception Safety: exception safe
Thread Safety: thread-safe
Violations: InstanceSpeci-— InstanceSpecifier either cannot be resolved in the model in the
fierMappingIn-— context of your executable, or it refers to a model element other
tegrityViolation than a PortPrototype. String format: "Violation detected in {process
Identifier} at {location}: Invalid InstanceSpecifer {instanceSpecifier}
in a constructor of class: {className}"
PortInterfaceMap- A PortPrototype that is referenced by a
pingViolation RecoveryNotificationToPPortPrototypeMapping needs
to be typed by a
PhmSupervisionRecoveryNotificationInterface.
ProcessMappingVio- Matching InstanceRef exists, but no matching (modelled) Process
lation found that matches the (runtime) process. String format: "Violation
detected in {processldentifier} at {location}: Invalid Instance
Specifer {instanceSpecifier} in a constructor of class: {className}"
InstanceSpecifier— Violation message that is sent in case a constructor in the ara
AlreadyInUseViola- framework was called with an InstanceSpecifier already in use in
tion this process. String format: "Violation detected in {process
Identifier} at {location}: InstanceSpecifer {instanceSpecifier} in
constructor of class {className} already in use in this process"
Description: Creation of an RecoveryAction.

AUTSSAR

8.3.2.1.3 Member Functions

8.3.2.1.3.1 Offer

[SWS_PHM_01143] Definition of API function ara::phm::RecoveryAction::Offer
Upstream requirements: RS_HM_09159, RS_AP_00159

Kind: function

Header file: #include "ara/phm/recovery_action.h"

Scope: class ara::phm::RecoveryAction

Sﬁﬂﬂax: ara::core::Result< void > Offer () noexcept;

Return value: ara::core::Result< void > | A Result, being either empty or containing any of the errors defined
below.

Exception Safety: exception safe

Thread Safety: not thread-safe

Errors: PhmErrc::kOfferFailed rollback_semantics
Service could not be offered due to failure of communication with
Phm daemon

Description: Enables potential invocations of RecoveryHandler.

8.3.2.1.3.2 RecoveryHandler

[SWS_PHM 01142]

Definition of APl function ara::phm::RecoveryAc-

tion::RecoveryHandler
Upstream requirements: RS_HM_09159, RS_AP_00159

Kind: function

Header file: #include "ara/phm/recovery_action.h"

Scope: class ara::phm::RecoveryAction

Syntax: virtual ara::core::Future< void > RecoveryHandler (const

ara::exec::ExecutionErrorEvent &executionError, TypeOfSupervision
supervision) noexcept=0;

Parameters (in):

executionError Information on detected error, shall give further information for error

recovery.

supervision The type of elementary supervision which failed.

Return value:

ara::core::Future< void > | void if recovery is successful, otherwise it returns kSMCanNot
HandleRecovery error

Exception Safety:

exception safe

Thread Safety:

thread-safe

V

AUTSSAR

A

Errors: PhmErrc::kSMCanNot rollback_semantics
HandleRecovery

State Management cannot handle the recovery and PlatformHealth
Management will take over by firing the watchdog.

Description: RecoveryHandler to be invoked by PHM.

The handler invocation needs to be enabled before by a call of RecoveryAction::Offer.

8.3.2.1.3.3 StopOffer

[SWS_PHM_01144] Definition of API function ara::phm::RecoveryAction::Stop
Offer

Upstream requirements: RS_HM_09159, RS_AP_00159

Kind: function

Header file: #include "ara/phm/recovery_action.h"
Scope: class ara::phm::RecoveryAction
Syntax: void StopOffer () noexcept;
Return value: None

Exception Safety: exception safe

Thread Safety: not thread-safe

Description: Disables invocations of RecoveryHandler.

AUTSSAR

8.4 Header: ara/phm/supervised_entity.h

8.4.1

8.4.1.1

Non-Member Types

Enumeration: ElementarySupervisionStatus

[SWS_PHM_01358] Definition of APl enum ara::phm::ElementarySupervisionSta-

tus

Upstream requirements: RS_HM_09237

Kind:

enumeration

Header file:

#include "ara/phm/supervised_entity.h"

Forwarding header file:

#include "ara/phm/phm_fwd.h"

Scope: namespace ara::phm
Symbol: ElementarySupervisionStatus
Underlying type: std::uint32_t
Syntax: enum class ElementarySupervisionStatus : std::uint32_t {...};
Values: kOK= 0 Supervision is active and no failure is present.
kFailed= 1 A failure was detected but still within tolerance/debouncing.
kExpired= 2 A failure was detected and qualified.
kDeactivated= 4 Supervision is not active.
Description: Enumeration of elementary supervision status. Scoped Enumeration of uint32_t.

8.4.1.2 Enumeration: GlobalSupervisionStatus

[SWS_PHM_01137] Definition of APl enum ara::phm::GlobalSupervisionStatus
Upstream requirements: RS_HM_09237

Kind:

enumeration

Header file:

#include "ara/phm/supervised_entity.h"

Forwarding header file:

#include "ara/phm/phm_fwd.h"

Scope: namespace ara::phm

Symbol: GlobalSupervisionStatus

Underlying type: std::uint32_t

Syntax: enum class GlobalSupervisionStatus : std::uint32_t {...};

Values: kOK=0 At least one Elementary Supervision corresponding to the Global

Supervision is in status kOK and none in status kFailed or kExpired.

\Y

AUTSSAR

A

kFailed= 1 At least one Elementary Supervision corresponding to the Global
Supervision is in status kFailed but none in status kExpired.

kExpired= 2 At least one Elementary Supervision corresponding to the Global
Supervision is in status kExpired but the time elapsed since
reaching kExpired has not exceeded the tolerance.

kStopped= 3 At least one Elementary Supervision corresponding to the Global
Supervision is in status kExpired and the time elapsed since
reaching KExpired has exceeded the tolerance.

kDeactivated= 4 All Elementary Supervisions corresponding to the Global
Supervision are in status kDeactivated.

Description:

Enumeration of global supervision status. Scoped Enumeration of uint32_t.

8.4.2 Class: SupervisedEntity

[SWS_PHM_01132] Definition of API class ara::phm::SupervisedEntity
Upstream requirements: RS_PHM_00101

Kind:

class

Header file:

#include "ara/phm/supervised_entity.h"

Forwarding header file:

#include "ara/phm/phm_fwd.h"

Scope: namespace ara::phm
Symbol: SupervisedEntity
Syntax: template <typename EnumT>
class SupervisedEntity final {...};
Template param: typename EnumT An enum type that contains a list of checkpoint identifier
Description: SupervisedEntity Class.

AUTSSAR

8.4.2.1 Public Member Functions

8.4.2.1.1 Special Member Functions

8.4.2.1.1.1 Copy Constructor

[SWS_PHM_01212] Definition of APl function ara::phm::SupervisedEn-

tity::SupervisedEntity
Upstream requirements: RS_PHM_00101, RS_PHM_09240

Kind: function

Header file: #include "ara/phm/supervised_entity.h"

Scope: class ara::phm::SupervisedEntity

Syntax: SupervisedEntity (const SupervisedEntity &se)=delete;
Description: The copy constructor for SupervisedEntity shall not be used.

8.4.2.1.1.2 Move Constructor

[SWS_PHM_01214] Definition of APl function ara::phm::SupervisedEn-
tity::SupervisedEntity
Upstream requirements: RS_PHM_00101, RS_PHM_09240, RS_AP_00159

Kind: function

Header file: #include "ara/phm/supervised_entity.h"

Scope: class ara::phm::SupervisedEntity

Syntax: SupervisedEntity (SupervisedEntity &&se) noexcept;
Parameters (in): se The SupervisedEntity object to be moved.
Exception Safety: exception safe

Thread Safety: implementation defined

Description: Move constructor for SupervisedEntity.

AUTSSAR

8.4.2.1.1.3 Move Assignment Operator

[SWS_PHM_01215] Definition of APl function ara::phm::SupervisedEn-
tity::operator=
Upstream requirements: RS_PHM_00101, RS_PHM_09240, RS_AP_00159

Kind: function

Header file: #include "ara/phm/supervised_entity.h"

Scope: class ara::phm::SupervisedEntity

Syntax: SupervisedEntity & operator= (SupervisedEntity &&se) noexcept;
Parameters (in): se The SupervisedEntity object to be moved.

Return value: SupervisedEntity & The moved SupervisedEntity object.

Exception Safety: exception safe

Thread Safety: thread-safe

Description: Move assignment operator for SupervisedEntity.

8.4.2.1.1.4 Copy Assignment Operator

[SWS_PHM_01213] Definition of APl function ara::phm::SupervisedEn-
tity::operator=
Upstream requirements: RS_PHM_00101, RS_PHM_09240

Kind: function

Header file: #include "ara/phm/supervised_entity.h"

Scope: class ara::phm::SupervisedEntity

Syntax: SupervisedEntity & operator= (const SupervisedEntity &se)=delete;
Description: The copy assignment operator for SupervisedEntity shall not be used.

AUTSSAR

8.4.2.1.1.5 Destructor

[SWS_PHM 01211]

Definition of APl function ara::phm::SupervisedEn-

tity::~SupervisedEntity
Upstream requirements: RS_PHM_00101, RS_PHM_09240, RS_AP_00134

Kind: function

Header file: #include "ara/phm/supervised_entity.h"
Scope: class ara::phm::SupervisedEntity
Syntax: ~SupervisedEntity () noexcept;
Exception Safety: exception safe

Thread Safety: not thread-safe

Description: Destructor of a SupervisedEntity.

8.4.2.1.2 Constructors

8.4.2.1.2.1 SupervisedEntity

[SWS_PHM 01123]

Definition of APl function ara::phm::SupervisedEn-

tity::SupervisedEntity
Upstream requirements: RS_PHM_00101, RS_AP_00159, RS_AP_00170, RS_AP_00171, RS_-

AP_00172, RS_AP_00173

Kind: function

Header file: #include "ara/phm/supervised_entity.h"

Scope: class ara::phm::SupervisedEntity

Syntax: explicit SupervisedEntity (const ara::core::InstanceSpecifier

&instance) noexcept;

Parameters (in):

instance instance specifier of the supervised entity.

Exception Safety: exception safe
Thread Safety: thread-safe
Violations: InstanceSpeci-— InstanceSpecifier either cannot be resolved in the model in the
fierMappingIn-— context of your executable, or it refers to a model element other
tegrityViolation than a PortPrototype. String format: "Violation detected in {process
Identifier} at {location}: Invalid InstanceSpecifer {instanceSpecifier}
in a constructor of class: {className}"
PortInterfaceMap-— A PortPrototype thatis typed by a
pingViolation PhmSupervisedEntityInterface needs to be referenced by a
SupervisionCheckpoint.

V

AUTSSAR

A

ProcessMappingVio—
lation

A wrong process is trying to create this SupervisedEntity object (i.e.
none of the corresponding SupervisionCheckpoint references
includes a reference to the current process).

InstanceSpecifier-
AlreadyInUseViola-
tion

Violation message that is sent in case a constructor in the ara
framework was called with an InstanceSpecifier already in use in
this process. String format: "Violation detected in {process
Identifier} at {location}: InstanceSpecifer {instanceSpecifier} in
constructor of class {className} already in use in this process"

Description:

Creation of a SupervisedEntity.

8.4.2.1.3 Member Functions

8.4.2.1.3.1 ReportCheckpoint

[SWS_PHM_01127]

Definition of APl function ara::phm::SupervisedEn-

tity::ReportCheckpoint
Upstream requirements: RS_PHM_00101, RS_AP_00159

Kind: function

Header file: #include "ara/phm/supervised_entity.h"

Scope: class ara::phm::SupervisedEntity

Syntax: void ReportCheckpoint (EnumT checkpointId) noexcept;
Parameters (in): checkpointld checkpoint identifier.

Return value: None

Exception Safety: exception safe
Thread Safety: thread-safe
Violations: InsufficientPer— ReportCheckpoint was invoked by a process which is not modelled
missionsViolation by the corresponding SupervisionCheckpoint.process
reference.
Description: Reports an occurrence of a Checkpoint.

AUTSSAR

9 Service Interfaces

Platform Health Management does not specify any AUTOSAR Adaptive
Platform Service Interface.

AUTSSAR

10 Configuration

The configuration model of this functional cluster is defined in [12]. This chapter defines
the default values for attributes and semantic constraints for elements specified in [12]
that are part of the configuration model of this functional cluster.

Platform Health Management is configured using PlatformHealthManage-
mentContributions and their contents. The reporting to State Management is
configured using PhmSupervisionRecoveryNotificationInterface.

10.1 Default Values

This functional cluster does not define any default values for attributes specified in
[12].

10.2 Semantic Constraints

This section defines semantic constraints for elements specified in [12] that are part of
the configuration model of this functional cluster.

[SWS_PHM_CONSTR_00001] Configurable Namespace for PlatformHealthMan-
agement [PlatformHealthManagementInterface.namespace shall exist for
PhmSupervisedEntityInterface.|

AUTSSAR

A Mentioned Manifest Elements

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics. For further details,

please refer chapters corresponding to below mentioned tables in [12].

Chapter is generated.

Class AliveSupervision

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::PlatformHealthManagement

Note Defines an AliveSupervision for one checkpoint.

Base ARObject, Identifiable, MultilanguageReferrable, PhmSupervision, Referrable

Aggregated by | GlobalSupervision.aliveSupervision

Attribute Type Mult. Kind | Note

aliveReference TimeValue 0..1 attr Time period at which the Alive Supervision mechanism

Cycle compares the amount of received Alive Indications for the
SupervisionCheckpoint against the expectedAlive
Indications.

checkpoint SupervisionCheckpoint 0..1 ref Reference to a checkpoint in the context of Alive
Supervision.

expectedAlive Positivelnteger 0..1 attr Defines the amount of expected Alive Indications of the

Indications SupervisionCheckpoint within the aliveReferenceCycle.

failedReference | Positivelnteger 0..1 attr This attribute defines the acceptable amount of alive

Cycles ReferenceCycles with incorrect/failed AliveSupervision.

Tolerance

maxMargin Positivelnteger 0..1 attr Defines the amount of Alive Indications of the Supervision
Checkpoint that are acceptable to be additional to the
expectedAlivelndications within the aliveReferenceCycle.

minMargin Positivelnteger 0..1 attr Defines the amount of Alive Indications of the Supervision
Checkpoint that are acceptable to be missing to the
expectedAlivelndications within the aliveReferenceCycle.

terminating SupervisionCheckpoint 0..1 ref Reference to the SupervisionCheckpoint which is defined

Checkpoint as the terminating checkpoint of this AliveSupervision.

terminating TimeValue 0..1 attr Defines the time a process shall terminate after it has

Checkpoint announced its start of termination by reporting

TimeoutUntil terminatingCheckpoint.

Termination

Table A.1: AliveSupervision

Class DeadlineSupervision

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::PlatformHealthManagement

Note Defines an DeadlineSupervision for one transition.

Base ARObject, Identifiable, MultilanguageReferrable, PhmSupervision, Referrable

Aggregated by | GlobalSupervision.deadlineSupervision

Attribute Type Mulit. Kind | Note

maxDeadline TimeValue 0..1 attr Defines the longest time span before which the deadline
is considered to be met for transition.

minDeadline TimeValue 0..1 attr Defines the shortest time span after which the deadline is
considered to be met for transition.

transition CheckpointTransition 0..1 ref Reference to the transition in the context of a Deadline
Supervision.

Table A.2: DeadlineSupervision

AUT<

SSAR

Class GlobalSupervision
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::PlatformHealthManagement
Note This element defines a collection of AliveSupervisions, DeadlineSupervisions, and LogicalSupervisions
in order to provide an aggregated supervision state.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | PlatformHealthManagementContribution.globalSupervision
Attribute Type Mulit. Kind | Note
alive AliveSupervision * aggr Collection of AliveSupervisions in the context of this
Supervision GlobalSupervision.
deadline DeadlineSupervision * aggr Collection of DeadlineSupervisions in the context of this
Supervision GlobalSupervision.
logical LogicalSupervision * aggr Collection of LogicalSupervisions in the context of this
Supervision GlobalSupervision.
noCheckpoint NoCheckpoint * agor Definition of No Checkpoint Supervision.
Supervision Supervision
noSupervision NoSupervision * aggr Collection of NoSupervisions in the context of this Global
Supervision.
supervision SupervisionMode * aggr Collection of SupervisionModes in the context of this
Mode GlobalSupervision.
Stereotypes: atpSplitable
Tags: atp.Splitkey=supervisionMode.shortName
transition CheckpointTransition * aggr Collection of CheckpointTransitions in the context of this
GlobalSupervision.
Table A.3: GlobalSupervision
Class LogicalSupervision
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::PlatformHealthManagement
Note Defines a LogicalSupervision graph consisting of transitions, initial- and final checkpoints.
Base ARObject, Identifiable, MultilanguageReferrable, PhmSupervision, Referrable
Aggregated by | GlobalSupervision.logicalSupervision
Attribute Type Mulit. Kind | Note
finalCheckpoint SupervisionCheckpoint * ref Reference to the final Checkpoint(s) for this Logical
Supervision.
Tags: xml.sequenceOffset=20
initialCheckpoint | SupervisionCheckpoint * ref Reference to the initial Checkpoint(s) for this Logical
Supervision.
Tags: xml.sequenceOffset=10
transition CheckpointTransition * ref Reference to the transitions for this LogicalSupervision.
Tags: xml.sequenceOffset=30

Table A.4: LogicalSupervision

AUT<

SSAR

Class NoCheckpointSupervision
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::PlatformHealthManagement
Note Defines explicitly that NO supervision shall be applied for a set of SupervisionCheckpoints.
Base ARObject, Identifiable, MultilanguageReferrable, PhmSupervision, Referrable
Aggregated by | GlobalSupervision.noCheckpointSupervision
Attribute Type Mult. Kind | Note
checkpoint SupervisionCheckpoint * ref Reference to the set of SupervisionCheckpoints which
shall not be considered for any kind of supervision.
Table A.5: NoCheckpointSupervision
Class NoSupervision
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::PlatformHealthManagement
Note Defines explicitly that NO supervision shall be applied for a specific Supervised Entity instance.
Base ARObject, Identifiable, MultilanguageReferrable, PhmSupervision, Referrable
Aggregated by | GlobalSupervision.noSupervision
Attribute Type Mult. Kind | Note
process Process 0..1 ref Reference to the Process this NoSupervision applies to.
targetPhm RPortPrototype 0..1 iref Instance reference to the RPortPrototype which
Supervised represents the Supervised Entity instance.
Entity Stereotypes: atpUriDef
InstanceRef implemented by: RPortPrototypeln
ExecutablelnstanceRef
Table A.6: NoSupervision
Class PhmCheckpoint
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::Portinterface
Note This meta-class provides the ability to implement a checkpoint for interaction with the Platform Health
Management Supervised Entity.
Base ARObject, AtpFeature, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | AtpClassifier.atpFeature, PhmSupervisedEntityInterface.checkpoint
Attribute Type Mult. Kind | Note
checkpointld Positivelnteger 0..1 attr Defines the numeric value which is used to indicate the
reporting of this Checkpoint to the Phm.
Table A.7: PhmCheckpoint
Class PhmSupervisedEntityinterface
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::Portinterface
Note This meta-class provides the ability to implement a Portinterface for interaction with the Platform Health
Management Supervised Entity.
Tags: atp.recommendedPackage=PlatformHealthManagementinterfaces
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, PlatformHealthManagementinterface, Port
Interface, Referrable
Aggregated by | ARPackage.element
Attribute Type Mulit. Kind | Note
checkpoint PhmCheckpoint * aggr Defines the set of checkpoints which can be reported on

this supervised entity.

Table A.8: PhmSupervisedEntitylnterface

AUT<

SSAR

Class PhmSupervisionRecoveryNotificationinterface
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::Portinterface
Note This meta-class represents a Portinterface that can be taken for implementing a PHM Supervision
notification.
Tags: atp.recommendedPackage=PlatformHealthManagementinterfaces
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, PhmAbstractRecoveryNotificationInterface,
PlatformHealthManagementinterface, Portinterface, Referrable
Aggregated by | ARPackage.element
Attribute Type Mulit. Kind | Note
Table A.9: PhmSupervisionRecoveryNotificationinterface
Class PlatformHealthManagementContribution
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::PlatformHealthManagement
Note This element defines a contribution to the Platform Health Management.
Tags: atp.recommendedPackage=PlatformHealthManagementContributions
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable, UploadableDeploymentElement, UploadablePackageElement
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
checkpoint SupervisionCheckpoint * aggr Collection of checkpoints in the context of a Platform
HealthManagementContribution.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=checkpoint.shortName
xml.sequenceOffset=10
global GlobalSupervision * aggr Collection of GlobalSupervisions in the context of a
Supervision PlatformHealthManagementContribution.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=globalSupervision.shortName
xml.sequenceOffset=30
healthChannel HealthChannel * aggr Collection of HealthChannels in the context of a Platform
HealthManagementContribution.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=healthChannel.shortName
xml.sequenceOffset=40
supervision SupervisionMode * aggr Collection of SupervisionModeConditions in the context of
ModeCondition Condition a PlatformHealthManagementContribution.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=supervisionModeCondition.shortName
xml.sequenceOffset=20
Table A.10: PlatformHealthManagementContribution
Class PlatformHealthManagementinterface (abstract)
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::Portinterface
Note This meta-class provides the abstract ability to define a PortInterface for the interaction with Platform

Health Management.

\Y%

SSAR

AUT<

A
Class PlatformHealthManagementinterface (abstract)
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Portinterface, Referrable
Subclasses PhmAbstractRecoveryNotificationinterface, PhmRecoveryActioninterface, PhmSupervisedEntityInterface
Aggregated by | ARPackage.element
Attribute Type Mulit. Kind | Note
Table A.11: PlatformHealthManagementinterface
Class Portinterface (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Note Abstract base class for an interface that is either provided or required by a port of a software component.
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtpoType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable
Subclasses AbstractRawDataStreaminterface, AbstractSynchronizedTimeBaselnterface, ClientServerinterface,
Cryptolnterface, Datalnterface, DiagnosticPortInterface, FirewallStateSwitchInterface, IdsmAbstractPort
Interface, LogAndTracelnterface, ModeSwitchinterface, NetworkManagementPortinterface, Persistency
Interface, PlatformHealthManagementinterface, Servicelnterface, StateManagementPortinterface,
Triggerinterface
Aggregated by | ARPackage.element
Attribute Type Mulit. Kind | Note
namespace SymbolProps * aggr | This represents the SymbolProps used for the definition
(ordered) of a hierarchical namespace applicable for the generation
of code artifacts out of the definition of a Servicelnterface.
Stereotypes: atpSplitable
Tags: atp.Splitkey=namespace.shortName
Table A.12: Portinterface
Class PortPrototype (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note Base class for the ports of an AUTOSAR software component.
The aggregation of PortPrototypes is subject to variability with the purpose to support the conditional
existence of ports.
Base ARObject, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable
Subclasses AbstractProvidedPortPrototype, AbstractRequiredPortPrototype
Aggregated by | AtpClassifier.atpFeature, SwComponentType.port
Attribute Type Mult. Kind | Note
clientServer ClientServerAnnotation * agor Annotation of this PortPrototype with respect to client/
Annotation server communication.
delegatedPort DelegatedPort 0..1 agor Annotations on this delegated port.
Annotation Annotation
ioHwAbstraction | loHwAbstractionServer * aggr Annotations on this 10 Hardware Abstraction port.
Server Annotation
Annotation
modePort ModePortAnnotation * aggr Annotations on this mode port.
Annotation
nvDataPort NvDataPortAnnotation * agor Annotations on this non voilatile data port.
Annotation

\Y%

AUTSSAR

A
Class PortPrototype (abstract)
parameterPort ParameterPort * aggr Annotations on this parameter port.
Annotation Annotation
portPrototype PortPrototypeProps 0..1 aggr | This attribute allows for the definition of further
Props qualification of the semantics of a PortPrototype.
senderReceiver SenderReceiver * agar Collection of annotations of this ports sender/receiver
Annotation Annotation communication.
triggerPort TriggerPortAnnotation * aggr | Annotations on this trigger port.
Annotation
Table A.13: PortPrototype
Class Process
Package M2::AUTOSARTemplates::AdaptivePlatform::ExecutionManifest
Note This meta-class provides information required to execute the referenced Executable.
Tags: atp.recommendedPackage=Processes
Base ARElement, ARObject, AbstractExecutionContext, AtpClassifier, CollectableElement, Identifiable,
MultilanguageReferrable, PackageableElement, Referrable, UploadableDeploymentElement, Uploadable
PackageElement
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
design ProcessDesign 0..1 ref This reference represents the identification of the
design-time representation for the Process that owns the
reference.
executable Executable * ref Reference to executable that is executed in the process.
Stereotypes: atpUriDef
functionCluster String 0..1 attr This attribute specifies which functional cluster the
Affiliation Process is affiliated with.
numberOf Positivelnteger 0..1 attr This attribute defines how often a process shall be
RestartAttempts restarted if the start fails.
numberOfRestartAttempts = "0" OR Attribute not existing,
start once
numberOfRestartAttempts = "1", start a second time
preMapping Boolean 0..1 attr This attribute describes whether the executable is
preloaded into the memory.
processState ModeDeclarationGroup 0..1 aggr Set of Process States that are defined for the process.
Machine Prototype This attribute is used to support the modeling of execution
dependencies that utilize the condition of process state.
Please note that the process states may not be modeled
arbitrarily at any stage of the AUTOSAR workflow
because the supported states are standardized in the
context of the SWS Execution Management [9].
stateDependent | StateDependentStartup * aggr | Applicable startup configurations.
StartupConfig Config

Table A.14: Process

SSAR

AUT<

Class ProcessExecutionError

Package M2::AUTOSARTemplates::AdaptivePlatform::ExecutionManifest

Note This meta-class has the ability to describe the value of a execution error along with a documentation of its
semantics.
Tags: atp.recommendedPackage=ProcessExecutionErrors

Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable, UploadableDeploymentElement, UploadablePackageElement

Aggregated by | ARPackage.element

Attribute Type Mult. Kind | Note

executionError Positivelnteger 0..1 attr This attribute defines the numeric value which Execution

Management and Platform Health Management reports
to State Management if the Process terminates
unexpectedly or violates its supervision. It shall give
further error information for error recovery.

Table A.15: ProcessExecutionError

Class RecoveryNotification
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::PlatformHealthManagement
Note This meta-class represents a PHM action that can trigger a recovery operation inside a piece of State
Management software.
Tags: atp.recommendedPackage=RecoveryNotifications
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable, UploadableDeploymentElement, UploadablePackageElement
Aggregated by | ARPackage.element
Attribute Type Mulit. Kind | Note
recovery TimeValue 0..1 attr The maximum acceptable amount of time (in seconds),
Notification Platform Health Management waits for an
Timeout acknowledgement by State Management after sending
the notification.
Table A.16: RecoveryNotification
Class RecoveryNotificationToPPortPrototypeMapping
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::PlatformHealthManagement
Note This meta-class represents the ability to associate a RecoveryNotification to a PPortPrototype while also
being able to identify the respective Process in which the actual recovery executes.
Tags: atp.recommendedPackage=RecoveryNotificationMappings
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable, UploadableDeploymentElement, UploadablePackageElement
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
process Process 0..1 ref Reference to the process which represents the State
Management instance that the recovery notification shall
be applied to.
recoveryAction PPortPrototype 0..1 iref This reference identifies the PortPrototype to be
addressed as part of a PHM recovery.
InstanceRef implemented by: PPortPrototypeln
ExecutablelnstanceRef
recovery RecoveryNotification 0..1 ref This reference identifies the applicable Recovery
Notification Notification to be mapped.

Table A.17: RecoveryNotificationToPPortPrototypeMapping

AUT<

SSAR

Class Referrable (abstract)
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::ldentifiable
Note Instances of this class can be referred to by their identifier (while adhering to namespace borders).
Base ARObject
Subclasses AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint, BswModuleClientServerEntry, Bsw
VariableAccess, CouplingPortTrafficClassAssignment, Cpp/mplementationDataTypeContextTarget,
DiagnosticEnvModeElement, EthernetPriorityRegeneration, ExclusiveAreaNestingOrder, HwDescription
Entity, ImplementationProps, ModeTransition, MultilanguageReferrable, NmNetworkHandle, Pnc
Mappingldent, SingleLanguageReferrable, SoConlPduldentifier, SocketConnectionBundle, Someip
RequiredEventGroup, TimeSyncServerConfiguration, TpConnectionldent
Attribute Type Mult. Kind | Note
shortName Identifier 1 attr This specifies an identifying shortName for the object. It
needs to be unique within its context and is intended for
humans but even more for technical reference.
Stereotypes: atpldentityContributor
Tags:
xml.enforceMinMultiplicity=true
xml.sequenceOffset=-100
shortName ShortNameFragment * aggr | This specifies how the Referrable.shortName is
Fragment composed of several shortNameFragments.
Tags: xml.sequenceOffset=-90
Table A.18: Referrable
Class StartupConfig
Package M2::AUTOSARTemplates::AdaptivePlatform::ExecutionManifest
Note This meta-class represents a reusable startup configuration for processes..
Tags: atp.recommendedPackage=StartupConfigs
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable, UploadableDeploymentElement, UploadablePackageElement
Aggregated by | ARPackage.element
Attribute Type Mulit. Kind | Note
environment TagWithOptionalValue * aggr | This aggregation represents the collection of environment
Variable variables that shall be added to the respective Process’s
environment prior to launch.
executionError ProcessExecutionError 0..1 ref this reference is used to identify the applicable execution
error
permissionTo Boolean 0..1 attr This attribute defines if Process is permitted to create
CreateChild child Processes. When setting this parameter to true two
Process things should be kept in mind: 1) safety and security
implication of this configuration, 2) the fact that Process
will assume management responsibilities for child
Processes (i.e. it will be responsible for terminating
Processes that it creates).
process ProcessArgument * aggr | This aggregation represents the collection of
Argument command-line arguments applicable to the enclosing
(ordered) StartupConfig.
scheduling String 0..1 attr This attribute represents the ability to define the
Policy scheduling policy for the initial thread of the application.
scheduling Integer 0..1 attr This is the scheduling priority requested by the
Priority application itself.
termination TerminationBehavior 0..1 attr This attribute defines the termination behavior of the
Behavior Enum Process.

AUTSSAR

A
Class StartupConfig
timeout EnterExitTimeout 0..1 aggr This aggregation can be used to specify the timeouts for
launching and terminating the process depending on the
StartupConfig.
Table A.19: StartupConfig
Class SupervisionCheckpoint
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::PlatformHealthManagement
Note This element contains an instance reference to a RPortPrototype representing a checkpoint for Platform
Health Management.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | PlatformHealthManagementContribution.checkpoint
Attribute Type Mult. Kind | Note
checkpointld Positivelnteger 0..1 attr Defines the numeric value which is used to identify the
reporting of this SupervisionCheckpoint to the Phm.
phmCheckpoint | PhmCheckpoint 0..1 iref Instance reference to the PhmCheckpoint defined in the
context of a PortInterface.
Stereotypes: atpUriDef
InstanceRef implemented by: PhmCheckpointin
ExecutablelnstanceRef
process Process 0..1 ref Reference to the Process this checkoint shall be
monitored.
Table A.20: SupervisionCheckpoint
Class SupervisionMode
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::PlatformHealthManagement
Note This element defines a SupervisionMode.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | GlobalSupervision.supervisionMode
Attribute Type Mulit. Kind | Note
active PhmSupervision * ref The reference defines which PhmSupervisions shall be
Supervision active in this specific SupervisionMode.
expired TimeValue 0..1 attr Defines in this SupervisionMode the acceptable amount
Supervision of time with EXPIRED supervision status of the enclosing
Tolerance GlobalSupervision before it is considered STOPPED.
modeCondition SupervisionMode 0..1 ref Reference to SupervisionModeCondition (Condition
Condition under which the configuration made under this
SupervisionMode are to be applied).
Table A.21: SupervisionMode
Class SwComponentType (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note Base class for AUTOSAR software components.
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtpType, CollectableElement,

Identifiable, MultilanguageReferrable, PackageableElement, Referrable

\Y%

AUTSSAR

A
Class SwComponentType (abstract)
Subclasses AdaptiveApplicationSwComponentType, AtomicSwComponentType, CompositionSwComponentType,
ParameterSwComponentType
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
port PortPrototype * aggr | The PortPrototypes through which this SwComponent
Type can communicate.
The aggregation of PortPrototype is subject to variability
with the purpose to support the conditional existence of
PortPrototypes.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=port.shortName, port.variationPoint.short
Label
vh.latestBindingTime=preCompileTime
portGroup PortGroup * aggr A port group being part of this component.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=portGroup.shortName, portGroup.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime
swComponent SwComponent 0..1 aggr | This adds a documentation to the SwComponentType.
Documentation Documentation Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=swComponentDocumentation, sw
ComponentDocumentation.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=-10
Table A.22: SwComponentType
Class SymbolProps
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note This meta-class represents the ability to contribute a part of a namespace.
Base ARObject, ImplementationProps, Referrable
Aggregated by | Allocator.namespace, ApApplicationErrorDomain.namespace, AtomicSwComponentType.symbolProps,
CpplmplementationDataType.namespace, ImplementationDataType.symbolProps, Portinterface.
namespace, SecurityEventDefinition.eventSymbolName
Attribute Type Mult. Kind | Note

Table A.23: SymbolProps

AUTSSAR

B Demands and constraints on Base Software
(normative)

This functional cluster defines no demands or constraints for the Base Software on
which the AUTOSAR Adaptive Platform is running on (usually a POSIX-compatible

operating system).

AUTSSAR

C Platform Extension API (normative)

The focus of the APls in this section are for OEM-specific platform extensions. The
abstraction of the interfaces is lower which could lead to a higher machine dependency.

C.1 Header: apext/phm/watchdog_interface.h

C.1.1 Class: Watchdoglnterface

[SWS_PHM_01257] Definition of API class apext::phm::Watchdoglnterface
Upstream requirements: RS_PHM_00101

[

Kind: class
Header file: #include "apext/phm/watchdog_interface.h"

Forwarding header file: | #include "apext/phm/phm_fwd.h"

Scope: namespace apext::phm

Symbol: Watchdoglnterface

Syntax: class WatchdogInterface {...};

Description: class for interface to hardware watchdog
|

C.1.1.1 Public Member Functions
C.1.1.1.1 Member Functions

C.1.1.1.1.1 AliveNotification

[SWS_PHM_01255] Definition of API function apext::phm::Watchdoginter-
face::AliveNotification
Upstream requirements: RS_PHM_00101, RS_PHM_09240

[
Kind: function
Header file: #include "apext/phm/watchdog_interface.h"
Scope: class apext::phm::WatchdogInterface
Syntax: void AliveNotification ();
Return value: None

Y%

AUTSSAR

A
Exception Safety: not exception safe
Thread Safety: implementation defined
Description: Called cyclically by PHM in configurable cycle time. Note: This time might differ from the cycle

time of triggering the "real" hardware watchdog.

If PHM does not report aliveness in configured time, Watchdoglnterface shall initiate watchdog
reaction

C.1.1.1.1.2 FireWatchdogReaction

[SWS_PHM_01256] Definition of API function apext::phm::Watchdoginter-
face::FireWatchdogReaction

Upstream requirements: RS_PHM_00101

Kind: function

Header file: #include "apext/phm/watchdog_interface.h"
Scope: class apext::phm::WatchdogInterface
Syntax: void FireWatchdogReaction ();

Return value: None

Exception Safety: not exception safe

Thread Safety: implementation defined

Description: Interface to fire an error reaction of the Watchdog.

AUTSSAR

D Notimplemented requirements

This functional cluster implements all functional requirements specified in the corre-
sponding requirement specifications.

AUTSSAR

E Change History of AUTOSAR traceable items

Please note that the lists in this chapter also include specification items that have been
removed from the specification in a later version. These constraints and specification
items do not appear as hyperlinks in the document.

E.1 Traceable item history of this document according to
AUTOSAR Release R21-11

E.1.1 Added Specification Items in R21-11

Number

Heading

[SWS_PHM_00106]

Recovery Action for Failures in Execution or State Management

[SWS_PHM_00201]

[SWS_PHM_00202]

[SWS_PHM_00203]

[SWS_PHM_00204]

[SWS_PHM_00205]

[SWS_PHM_00206]

[SWS_PHM_00207]

[SWS_PHM_00208]

[SWS_PHM_00209]

[SWS_PHM_00210]

[SWS_PHM_00211]

[SWS_PHM_00212]

[SWS_PHM_00213]

[SWS_PHM_00214]

[SWS_PHM_00215]

[SWS_PHM_00216]

[SWS_PHM_00217]

[SWS_PHM_00218]

[SWS_PHM_00219]

[SWS_PHM_00220]

[SWS_PHM_00221]

[SWS_PHM_00222]

[SWS_PHM_00223]

[SWS_PHM_00224]

[SWS_PHM_00225]

[SWS_PHM_00226]

AUTSSAR

Number

Heading

[SWS_PHM_00227]

[SWS_PHM_00228]

[SWS_PHM_00229]

[SWS_PHM_00230]

[SWS_PHM_00231]

[SWS_PHM_00232]

[SWS_PHM_00233]

[SWS_PHM_00234]

[SWS_PHM_00235]

[SWS_PHM_00236]

[SWS_PHM_00237]

[SWS_PHM_00238]

[SWS_PHM_00239]

[SWS_PHM_00240]

Supervisions on termination of process

[SWS_PHM_00241]

Supervisions on Start of Process

[SWS_PHM_00242]

Supervisions on Restart of Process

[SWS_PHM_00243]

Continuation of Supervisions

[SWS_PHM_00244]

NoSupervision on Start of Process

[SWS_PHM_00245]

Continuation of NoSupervision (Supervision Exclusion)

[SWS_PHM_01240]

[SWS_PHM_01241]

Table E.1: Added Specification Items in R21-11

E.1.2 Changed Specification Iltems in R21-11

Number

Heading

[SWS_PHM_00101]

Notification to State Management due to Supervision failure

[SWS_PHM_00104]

Reaction on timeout for notification to State Management

[SWS_PHM_00105]

Recovery Action for Failures in Execution Management or State
Management

[SWS_PHM_01005]

Namespace of generated header files for a Supervised Entity

[SWS_PHM_01113]

Namespace of generated header files for a Health Channel

[SWS_PHM_01127]

[SWS_PHM_01128]

[SWS_PHM 01132]

[SWS_PHM_01136]

AUTSSAR

Number

Heading

[SWS_PHM_01137]

[SWS_PHM_01142]

[SWS_PHM_01143]

[SWS_PHM_01146]

[SWS_PHM_01149]

[SWS_PHM_01150]

[SWS_PHM_01151]

[SWS_PHM_01152]

[SWS_PHM 01212]

[SWS_PHM_01213]

[SWS_PHM_01214]

[SWS_PHM_01215]

[SWS_PHM_01222]

[SWS_PHM_01223]

[SWS_PHM_01224]

[SWS_PHM_01225]

[SWS_PHM_01227]

Consistency of Checkpoint Identifier

[SWS_PHM_01228]

Reporting of undefined Checkpoint Identifier

[SWS_PHM_01229]

Restricted access on reporting of Checkpoints

[SWS_PHM_01233]

[SWS_PHM_01234]

[SWS_PHM_01235]

[SWS_PHM_01236]

[SWS_PHM_01238]

[SWS_PHM_01328]

Consistency of Health Status Identifier

[SWS_PHM_01329]

Reporting of undefined Health Status Identifier

[SWS_PHM_01330]

Restricted access on reporting of Health Status

Table E.2: Changed Specification Iltems in R21-11

E.1.3 Deleted Specification ltems in R21-11

Number

Heading

[SWS_PHM_00103]

Timeout Monitoring for notification to State Management

[SWS_PHM_00321]

Underlying data types

[SWS_PHM_00458]

Creation of PHM service interface

[SWS_PHM_01010]

PHM Class

\Y

AUTSSAR

Number

Heading

[SWS_PHM_01013]

Header file existence

[SWS_PHM_01018]

Header file namespace

[SWS_PHM_01101]

Folder structure for header files

[SWS_PHM_01116]

Definition of an identifier for a Supervised Entity

[SWS_PHM_01120]

Definition of an identifier for a Health Channel

[SWS_PHM_01121]

Definition of an identifier for a Health Channel Prototype

[SWS_PHM_01124]

Copy constructor for the use by SupervisedEntity and by HealthChannel

[SWS_PHM_01125]

The Platform Health Management shall provide a protected method
ReportCheckpoint, provided by PHM

[SWS_PHM_01126]

The Platform Health Management shall provide a protected method
ReportHealthStatus, provided by PHM

[SWS_PHM_01131]

Identifier Identifier Class Template

[SWS_PHM_01133]

Definition of an identifier for a Supervised Entity Prototype

[SWS_PHM_01134]

[SWS_PHM_01135]

[SWS_PHM_01160]

Restricted access on GetLocalSupervisionsStatus

[SWS_PHM_01161]

Restricted access on GetGlobalSupervisionStatus

Table E.3: Deleted Specification Items in R21-11

E.2 Traceable item history of this document according to
AUTOSAR Release R22-11

E.2.1 Added Specification Items in R22-11

Number

Heading

[SWS_PHM_01242]

[SWS_PHM_01243]

[SWS_PHM_01244]

[SWS_PHM_01245]

[SWS_PHM_01246]

[SWS_PHM_01247]

[SWS_PHM_01248]

[SWS_PHM_01249]

[SWS_PHM_01250]

[SWS_PHM_01251]

[SWS_PHM_01252]

Handling of Watchdog after Startup

Y%

AUTSSAR

A

Number

Heading

[SWS_PHM_01253]

Termination of Supervisions at SIGTERM

[SWS_PHM_01254]

Global Supervision Status at SIGTERM

[SWS_PHM_01331]

Start of Alive Supervision

[SWS_PHM_01332]

Checkpoints corresponding to Alive Supervision before kRunning

[SWS_PHM_01333]

Termination of Supervised Processes

[SWS_PHM_01334]

Time Source for Supervisions

[SWS_PHM_01335]

Stopping of Alive Supervision for Self-Terminating Process

[SWS_PHM_01336]

Timeout monitoring for termination of Self-Terminating Process

[SWS_PHM_01337]

Unintended termination of Self-Terminating Process

[SWS_PHM_01338]

Avoid redundant Monitoring of Termination for Self-Terminating Process

[SWS_PHM_01339]

Reporting access violation w.r.t. checkpoints to IdsM

[SWS_PHM_01341]

Reporting of Supervision Checkpoint mapped to No Supervision provision

[SWS_PHM_01342]

Tracking of Elementary Supervision Status

[SWS_PHM_01343]

States of state machine for Elementary Supervision Status

[SWS_PHM_01344]

Initialization of state machine for Elementary Supervision Status

[SWS_PHM_01345]

Keep Elementary Supervision Status kOK

[SWS_PHM_01346]

Switch Elementary Supervision Status from kOK to kEXP IRED

[SWS_PHM_01347]

Switch Elementary Supervision Status from kOK to kFATILED

[SWS_PHM_01348]

Keep Elementary Supervision Status kFAILED

[SWS_PHM_01349]

Switch Elementary Supervision Status from kFATLED to kOK

[SWS_PHM_01350]

Switch Elementary Supervision Status from kFATLED to kEXPIRED

[SWS_PHM_01351]

Switch Elementary Supervision Status from kOK to kDEACTIVATED

[SWS_PHM_01352]

Switch Elementary Supervision Status from kFATILED to kDEACTIVATED

[SWS_PHM_01353]

Keep Elementary Supervision Status kDEACTIVATED

[SWS_PHM_01354]

Switch Elementary Supervision Status from kDEACTIVATED to kOK

[SWS_PHM_01355]

Switch Elementary Supervision Status from kEXPIRED to kDEACTIVATED

[SWS_PHM_01356]

Keep Elementary Supervision Status kEXPIRED

[SWS_PHM_01357]

Switch Elementary Supervision Status from kDEACTIVATED t0 kEXPIRED

[SWS_PHM_01358]

Table E.4: Added Specification Items in R22-11

AUTSSAR

E.2.2 Changed Specification Iltems in R22-11

Number

Heading

[SWS_PHM_00101]

Notification to State Management due to Supervision failure

[SWS_PHM_00105]

Recovery Action for Failures in Execution Management or State
Management

[SWS_PHM_00106]

Recovery Action for Failures in Execution or State Management

[SWS_PHM_00216]

States of the state machine for Global Supervision Status

[SWS_PHM_00217]

One Global Supervision Status per Global Supervision

[SWS_PHM_00218]

Initialization of Global Supervision Status

[SWS_PHM_00220]

Switch Global Supervision Status from kDEACTIVATED to kOK

[SWS_PHM_00221]

Keep Global Supervision Status kOK

[SWS_PHM_00222]

Switch Global Supervision Status from kOK to kDEACTIVATED

[SWS_PHM_00223]

Switch Global Supervision Status from kOK to kFAILED

[SWS_PHM_00224]

Switch Global Supervision Status from kOK to kEXPIRED for SM/EM/OS
supervision

[SWS_PHM_00225]

Switch Global Supervision Status from kOK to kSTOPPED

[SWS_PHM_00226]

Keep Global Supervision Status kFAILED

[SWS_PHM_00227]

Switch Global Supervision Status from kFATLED to kOK

[SWS_PHM_00228]

Switch Global Supervision Status from kFATILED to kEXPIRED

[SWS_PHM_00229]

Switch Global Supervision Status from kFATLED to kSTOPPED

[SWS_PHM_00230]

Keep Global Supervision Status kEXPIRED

[SWS_PHM_00231]

Switch Global Supervision Status from kEXPIRED t0 kSTOPPED

[SWS_PHM_00232]

Keep Global Supervision Status kSTOPPED

[SWS_PHM_00233]

Switch Global Supervision Status from kEXPIRED t0 kOK

[SWS_PHM_00234]

Switch Global Supervision Status from kEXPIRED t0 kFAILED

[SWS_PHM_00237]

Switch Global Supervision Status from kDEACTIVATED to kFAILED

[SWS_PHM_00238]

Switch Global Supervision Status from kDEACTIVATED t0 kEXPIRED

[SWS_PHM_00239]

Switch Global Supervision Status from kDEACTIVATED to kSTOPPED

[SWS_PHM_00424]

Enumeration for Supervised Entity

[SWS_PHM_00457]

[SWS_PHM_01123]

[SWS_PHM _01137]

[SWS_PHM_01229]

Restricted access on reporting of Checkpoints

[SWS_PHM_01240]

[SWS_PHM_01241]

Table E.5: Changed Specification Items in R22-11

AUTSSAR

E.2.3 Deleted Specification Items in R22-11

Number

Heading

[SWS_PHM_00201]

[SWS_PHM_00202]

[SWS_PHM_00203]

[SWS_PHM_00204]

[SWS_PHM_00205]

[SWS_PHM_00206]

[SWS_PHM_00207]

[SWS_PHM_00208]

[SWS_PHM_00209]

[SWS_PHM_00210]

[SWS_PHM_00211]

[SWS_PHM_00212]

[SWS_PHM_00213]

[SWS_PHM_00214]

[SWS_PHM_00215]

[SWS_PHM_00235]

[SWS_PHM_00236]

[SWS_PHM_01136]

[SWS_PHM_01146]

[SWS_PHM_01227]

Consistency of Checkpoint Identifier

[SWS_PHM_01228]

Reporting of undefined Checkpoint Identifier

Table E.6: Deleted Specification Items in R22-11

E.3 Traceable item history of this document according to
AUTOSAR Release R23-11

E.3.1 Added Specification Iltems in R23-11

Number

Heading

[SWS_PHM_01340]

Security events for PHM

Table E.7: Added Specification Items in R23-11

AUTSSAR

E.3.2 Changed Specification Items in R23-11

Number Heading
[SWS_PHM_00457] Definition of API function ara::phm::HealthChannel::HealthChannel
[SWS_PHM_01123] Definition of API function ara::phm::SupervisedEntity::SupervisedEntity

[SWS_PHM_01127]

Definition of API function ara::

phm

::SupervisedEntity::ReportCheckpoint

[SWS_PHM_01128]

Definition of API function ara::

phm

::HealthChannel::ReportHealthStatus

[SWS_PHM_01138]

Definition of APl enum ara::phm::TypeOfSupervision

[SWS_PHM_01141] Definition of API function ara::phm::RecoveryAction::RecoveryAction
[SWS_PHM_01142] Definition of API function ara::phm::RecoveryAction::RecoveryHandler
[SWS_PHM_01143] Definition of API function ara::phm::RecoveryAction::Offer
[SWS_PHM_01144] Definition of API function ara::phm::RecoveryAction::StopOffer
[SWS_PHM_01231] 'Ii)stfiicr:ri;[ion of API function ara::phm::HealthChannelAction::HealthChannel
[SWS_PHM_01237] Definition of API function ara::phm::HealthChannelAction::RecoveryHandler
[SWS_PHM_01238] Definition of API function ara::;phm::HealthChannelAction::Offer
[SWS_PHM_01239] Definition of API function ara::phm::HealthChannelAction::StopOffer

[SWS_PHM_01240]

Definition of APl enum ara::phm::PhmErrc

[SWS_PHM_01241]

Definition of API class ara::phm::PhmErrorDomain

[SWS_PHM_01250]

Definition of API function ara::phm::PhmErrorDomain::ThrowAsException

[SWS_PHM_01339]

Reporting access violation w.r.t. checkpoints to IdsM

E.3.3 Deleted Specification Items in R23-11

Table E.8: Changed Specification Items in R23-11

Number

Heading

[SWS_PHM_00100]

Scope of Global Supervision

Table E.9: Deleted Specification Items in R23-11

E.4 Traceable item history of this document according to
AUTOSAR Release R24-11

E.4.1 Added Specification Items in R24-11

Number

Heading

[SWS_PHM_00107]

Management

Reaction on a return of kSMCanNotHandleRecovery for notification to State

Table E.10: Added Specification Iltems in R24-11

AUTSSAR

E.4.2 Changed Specification Iltems in R24-11

Number

Heading

[SWS_PHM_00104]

Reaction on timeout for notification to State Management

[SWS_PHM_00105]

Recovery Action for Failures in Execution Management or State

Management

[SWS_PHM_00106]

Alive Notification to Hardware Watchdog

[SWS_PHM_00424]

Definition of APl enum ara::phm::supervised_entities:: {
<hierarchical-namespace-list-lower-skeleton>}:ii{

<phmssi-sn>}

[SWS_PHM_00425]

Definition of API variable ara::phm::supervised_entities:: {
<hierarchical-namespace-list-lower-skeleton>}:ii{
<symbol-phm-checkpoint>}

[SWS_PHM_01002]

File name, includes and multiple inclusion guard

[SWS_PHM_01005]

Checkpoint Header File: service namespace

[SWS_PHM_01123]

Definition of API function ara::phm::SupervisedEntity::SupervisedEntity

[SWS_PHM_01127]

Definition of API function ara::phm::SupervisedEntity::ReportCheckpoint

[SWS_PHM_01132]

Definition of API class ara::phm::SupervisedEntity

[SWS_PHM_01141]

Definition of API function ara::

phm:

:RecoveryAction::RecoveryAction

[SWS_PHM_01142]

Definition of API function ara::

phm::

RecoveryAction::RecoveryHandler

[SWS_PHM_01143]

Definition of API function ara::

phm::

RecoveryAction::Offer

[SWS_PHM_01144]

Definition of API function ara::

phm::

RecoveryAction::StopOffer

[SWS_PHM_01145]

Definition of API function ara::

phm::

RecoveryAction::~RecoveryAction

[SWS_PHM_01149]

Definition of API function ara::

phm::

RecoveryAction::RecoveryAction

[SWS_PHM_01150]

Definition of API function ara::

phm::

RecoveryAction::RecoveryAction

[SWS_PHM_01151]

Definition of API function ara::

phm::

RecoveryAction::operator=

[SWS_PHM _01152]

Definition of API function ara::

phm::

RecoveryAction::operator=

[SWS_PHM_01211]

Definition of API function ara::

phm::

SupervisedEntity::~SupervisedEntity

[SWS_PHM_01212]

Definition of API function ara::

phm:

:SupervisedEntity::SupervisedEntity

[SWS_PHM_01213]

Definition of API function ara::

phm::

SupervisedEntity::operator=

[SWS_PHM_01214]

Definition of API function ara::

phm::

SupervisedEntity::SupervisedEntity

[SWS_PHM_01215]

Definition of API function ara::

phm::

SupervisedEntity::operator=

[SWS_PHM_01240]

Definition of APl enum ara::phm::PhmErrc

[SWS_PHM_01241]

Definition of API class ara::phm::PhmErrorDomain

[SWS_PHM_01243]

Definition of API function ara::

phm::

PhmException::PhmException

[SWS_PHM_01244]

Definition of API function ara::

phm::

MakeErrorCode

[SWS_PHM_01247]

Definition of API function ara::

phm::

PhmErrorDomain::PhmErrorDomain

[SWS_PHM_01248]

Definition of API function ara::

phm::

PhmErrorDomain::Name

[SWS_PHM_01249]

Definition of API function ara::

phm::

PhmErrorDomain::Message

[SWS_PHM_01250]

Definition of API function ara::

phm::

PhmErrorDomain::ThrowAsException

[SWS_PHM_01251]

Definition of API function ara::

phm::

GetPhmDomain

[SWS_PHM_01252]

Handling of Watchdog after Startup

Y%

AUT<

SAR

A

Number

Heading

[SWS_PHM_01340]

Security events for PHM

Table E.11: Changed Specification ltems in R24-11

E.4.3 Deleted Specification Items in R24-11

Number

Heading

[SWS_PHM_00010]

Not initialized Health Channel

[SWS_PHM_00102]

Notification to State Management due to Health Status

[SWS_PHM_00426]

Namespace for Checkpoints

[SWS_PHM_00457]

Definition of API function ara::phm::HealthChannel::HealthChannel

[SWS_PHM_01020]

Folder structure for Supervised Entity files

[SWS_PHM_01113]

Namespace of generated header files for a Health Channel

[SWS_PHM_01114]

Folder structure for Health Channel files

[SWS_PHM_01115]

Generated header files for Health Channel

[SWS_PHM_01118]

Enumeration for Health Channel

[SWS_PHM_01119]

Definition of enumerators of Health Channel

[SWS_PHM_01122]

Definition of API class ara::;phm::HealthChannel

[SWS_PHM_01128]

Definition of API function ara::phm::HealthChannel::ReportHealthStatus

[SWS_PHM_01129]

Enumeration for Health Channel

[SWS_PHM_01139]

Definition of API class ara::;phm::HealthChannelAction

[SWS_PHM_01221]

Definition of API function ara::phm::HealthChannel::~HealthChannel

[SWS_PHM_01222]

Definition of API function ara::phm::HealthChannel::HealthChannel

[SWS_PHM_01223]

Definition of API function ara::phm::HealthChannel::operator=

[SWS_PHM_01224]

Definition of API function ara::phm::HealthChannel::HealthChannel

[SWS_PHM_01225]

Definition of API function ara::phm::HealthChannel::operator=

[SWS_PHM_01231]

Definition of API function
ara::phm::HealthChannelAction::HealthChannelAction

[SWS_PHM_01232]

Definition of API function
ara::;phm::HealthChannelAction::~HealthChannelAction

[SWS_PHM_01233]

Definition of API function
ara::phm::HealthChannelAction::HealthChannelAction

[SWS_PHM_01234]

Definition of API function
ara::;phm::HealthChannelAction::HealthChannelAction

[SWS_PHM_01235]

Definition of API function ara::phm::HealthChannelAction::operator=

[SWS_PHM_01236]

Definition of API function ara::phm::HealthChannelAction::operator=

[SWS_PHM_01237]

Definition of API function ara::phm::HealthChannelAction::RecoveryHandler

[SWS_PHM_01238]

Definition of API function ara::phm::HealthChannelAction::Offer

V

AUTSSAR

A

Number

Heading

[SWS_PHM_01239]

Definition of API function ara::phm::HealthChannelAction::StopOffer

[SWS_PHM_01328]

Consistency of Health Status Identifier

[SWS_PHM_01329]

Reporting of undefined Health Status Identifier

[SWS_PHM_01330]

Restricted access on reporting of Health Status

Table E.12: Deleted Specification Items in R24-11

E.4.4 Added Constraints in R24-11

Number Heading

[SWS_PHM_-

CONSTR_- Configurable Namespace for PlatformHealthManagement
00001]

Table E.13: Added Constraints in R24-11

E.4.5 Changed Constraints in R24-11

none

E.4.6 Deleted Constraints in R24-11

none

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Further applicable specification

	4 Constraints and assumptions
	4.1 Known limitations
	4.2 Applicability to car domains

	5 Dependencies to other Functional Clusters
	5.1 Provided Interfaces
	5.2 Required Interfaces
	5.3 Additional dependencies on Execution Management

	6 Requirements Tracing
	7 Functional specification
	7.1 General description
	7.2 Supervision of Supervised Entities
	7.2.1 Start and Stop of Supervisions
	7.2.1.1 Stopping of Alive Supervision for Self Terminating Process

	7.2.2 Supervision of processes started before Platform Health Management

	7.3 Supervision Modes
	7.3.1 Effect of changing Mode

	7.4 Determination of Supervision Status
	7.4.1 Determination of Elementary Supervision Status
	7.4.2 Determination of Global Supervision Status

	7.5 Recovery actions
	7.5.1 Notificaton to State Management
	7.5.2 Handling of Hardware Watchdog
	7.5.3 Configuration Parameters

	7.6 Multiple processes and multiple instances
	7.7 Functional cluster life-cycle
	7.7.1 Startup
	7.7.2 Shutdown
	7.7.2.1 Handling of watchdog during shutdown

	7.8 Reporting
	7.8.1 Security Events
	7.8.2 Log Messages
	7.8.3 Violation Messages

	8 API specification
	8.1 Header: ara/phm/supervised_entities/{<si-namespace-derived-directory-path-lower>}/{<phmssi-sn>}.h
	8.1.1 Namespaces
	8.1.1.1 ara::phm::supervised_entities::{<hierarchical-namespace-list-lower-skeleton>}

	8.1.2 Non-Member Types
	8.1.2.1 Enumeration: {<phmssi-sn>}

	8.1.3 Global Variables
	8.1.3.1 {<symbol-phm-checkpoint>}

	8.2 Header: ara/phm/phm_error_domain.h
	8.2.1 Non-Member Types
	8.2.1.1 Enumeration: PhmErrc

	8.2.2 Non-Member Functions
	8.2.2.1 Other

	8.2.3 Class: PhmErrorDomain
	8.2.3.1 Public Member Types
	8.2.3.2 Public Member Functions

	8.2.4 Class: PhmException
	8.2.4.1 Public Member Functions

	8.3 Header: ara/phm/recovery_action.h
	8.3.1 Non-Member Types
	8.3.1.1 Enumeration: TypeOfSupervision

	8.3.2 Class: RecoveryAction
	8.3.2.1 Public Member Functions

	8.4 Header: ara/phm/supervised_entity.h
	8.4.1 Non-Member Types
	8.4.1.1 Enumeration: ElementarySupervisionStatus
	8.4.1.2 Enumeration: GlobalSupervisionStatus

	8.4.2 Class: SupervisedEntity
	8.4.2.1 Public Member Functions

	9 Service Interfaces
	10 Configuration
	10.1 Default Values
	10.2 Semantic Constraints

	A Mentioned Manifest Elements
	B Demands and constraints on Base Software (normative)
	C Platform Extension API (normative)
	C.1 Header: apext/phm/watchdog_interface.h
	C.1.1 Class: WatchdogInterface
	C.1.1.1 Public Member Functions

	D Not implemented requirements
	E Change History of AUTOSAR traceable items
	E.1 Traceable item history of this document according to AUTOSAR Release R21-11
	E.1.1 Added Specification Items in R21-11
	E.1.2 Changed Specification Items in R21-11
	E.1.3 Deleted Specification Items in R21-11

	E.2 Traceable item history of this document according to AUTOSAR Release R22-11
	E.2.1 Added Specification Items in R22-11
	E.2.2 Changed Specification Items in R22-11
	E.2.3 Deleted Specification Items in R22-11

	E.3 Traceable item history of this document according to AUTOSAR Release R23-11
	E.3.1 Added Specification Items in R23-11
	E.3.2 Changed Specification Items in R23-11
	E.3.3 Deleted Specification Items in R23-11

	E.4 Traceable item history of this document according to AUTOSAR Release R24-11
	E.4.1 Added Specification Items in R24-11
	E.4.2 Changed Specification Items in R24-11
	E.4.3 Deleted Specification Items in R24-11
	E.4.4 Added Constraints in R24-11
	E.4.5 Changed Constraints in R24-11
	E.4.6 Deleted Constraints in R24-11

