AUTSSAR

D t Titl Specification of Execution
LS U Management

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 721

Document Status published

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release R24-11

Document Change History

Date

Release

Changed by

Description

2024-11-27

R24-11

AUTOSAR
Release
Management

¢ Requirements for deterministic execution
are removed

e Added support for Function Group
access control

¢ API refinement (define lifetime of
arguments, error codes, removed
thread-safety information, return values)

e Added clarification on Execution
Dependencies

2023-11-23

R23-11

AUTOSAR
Release
Management

¢ Requirements for deterministic execution
are set to obsolete

e The right to create child processes can
be configured by integrator

e Added support for standardized trace
points

¢ API Refinement (ExecutionClient
termination handler, remove
FunctionGroup, C++ Core Guidelines
compliance)

e Clarification of Unrecoverable State

AUTSSAR

e Clarification on error handling during
Function Group State transition

AUTOSAR e Changes to ara: :exec: :ExecErrc
2022-11-24 | R22-11 | Release 9 o o
Management e Clarification on interaction between
Platform Health Management and
Execution Management
¢ Clarified handling of unexpected
Process termination
e ara::exec::StateClient API
AUTOSAR updated (constructor token removed)
2021-11-25 R21-11 Release
Management e Invalid state transitions identified and
handling defined
® ara::exec::DeterministicClient
APl and behaviour clarified
e Further refinement of State
Management APl and semantics
AUTOSAR e Update process lifecycle (terminating
2020-11-30 | R20-11 | Release report optional)
Management e Added Deterministic Synchronization
support
e EM-PHM interaction
e Further refinement of State
Management APl and semantics
e Introduced support for trusted platform
e Added support for non-reporting
2019-11-28 | Rig-11 | AUTOSAR Processes
Release
e Execution Management API uses Core
types
e Changed Document Status from Final to
published
¢ Refinement of State Management
AUTOSAR semantics
2019-03-29 | 19-03 Release
Management e Document structure modified to reflect

current template

AUTSSAR

o Refinement of Deterministic Execution

AUTOSAR
e Updated Process lifecycle to clarify
2018-10-31 | 18-10 Release Process and Execution States
Management
e Updated Application Recovery Actions
e Deterministic Execution
AUTOSAR e Resource Limitation
2018-03-29 18-03 Release
Management e State Management
o Fault Tolerance elaboration
e State Management elaboration,
introduction of Function Groups
AUTOSAR .
5017-10-27 | 17-10 Release e Recovery actions for Platform Health
Management Management
e Resource limitation and deterministic
execution
AUTOSAR
2017-03-31 17-03 Release o Initial release

Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Contents

1 Introduction and functional overview

1.1 What is Execution Management
1.2 Interaction with AUTOSAR Runtime for Adaptive

2 Acronyms and abbreviations

3 Related documentation

3.1 Input documents & related standards and norms
3.2 Further applicable specification

4 Constraints and assumptions
4.1 Known Limitations
5 Dependencies to other Functional Clusters

51 ProvidedInterfaces
52 RequirediInterfaces

6 Requirements Tracing
6.1 Not applicable requirements
7 Functional specification

7.1 Functional Cluster Lifecyle
711 Startup
7.1.2 Shutdown
7.1.3 Restart

7.2 Technical Overview e

7.2.1 Executable
7.2.2 Modelled Process
7.2.3 Execution Manifest
7.2.4 Machine Manifest
7.2.5 ManifestFormat

7.3 Execution Management Responsibilities
7.3.1 Errorhandling oL
7.4 Process Lifecycle Management L.

7.4.1 ExecutionState oL,
7411 Initialization oL
7.4.1.2 Termination
7.4.1.3 Unexpected Termination
7.4.1.4 Application Reporting

7.4.2 ProcessStates
7.4.2.1 Synchronization with Platform Health Management .

7.4.3 Trace Process State Transitions

7.4.4 Startup and Termination
7.4.41 Execution Dependency

7.4.4.2 SignalMask

AUTSSAR

8

7443 Arguments 45
7.4.4.4 Environment Variables 46
7.4.5 Machine Startup Sequence 47
7.5 StateManagement 50
7.5.1 Overview e e 50
7.5.2 Machine State, 50
7.5.2.1 Startup 55
7.5.2.2 Shutdown/Restart 57
7.5.3 Function Group State 58
7.5.4 State Interaction L L oL 62
7.5.5 State Transition 63
7.6 Resource Limitation 76
7.6.1 Resource Configuration 76
7.6.2 Resource Monitoring oL 78
7.6.3 Application-level Resource Configuration 79
7.6.3.1 CPUUsage, 79
7.6.3.2 Core Affinity 79
7.6.3.3 Scheduling 80
7.6.3.4 Memory Budget and Monitoring 82
7.6.3.5 Working Folder 84
7.7 FaultTolerance 85
7.7.1 Introduction 85
7.7.2 Scope 85
7.7.3 ThreatModel, 85
7.7.4 Execution Management internal Error handling 86
7.8 Security ... 88
7.8.1 Trusted Platform 88
7.8.1.1 Handling of failed authenticity checks 90
7.8.2 Identity and Access Management 93
API specification 94
8.1 TypeDefinitions 95
8.1.1 ExecutionState o Lo 95
8.1.2 ExecutionError 95
8.1.3 ExecutionErrorEvent oo oL oo 96
8.1.3.1 ExecutionErrorEvent::executionError 96
8.1.3.2 ExecutionErrorEvent::functionGroup 97
8.2 Class Definitions 97
8.2.1 ExecutionClientclass 97
8.2.1.1 ExecutionClient::ExecutionClient 98
8.2.1.2 ExecutionClient::Create 99
8.2.1.3 ExecutionClient::~ExecutionClient 99

8.2.1.4 ExecutionClient::ExecutionClient (deleted Copy
Constructor) L 100

8.2.1.5 ExecutionClient::operator= (deleted Copy assign-

mentoperator) oL 100

AUTSSAR

8.2.1.6 ExecutionClient::ExecutionClient (use of default
move constructor) 101

8.2.1.7 ExecutionClient::operator= (use of default move as-
signment) L L 101
8.2.1.8 ExecutionClient::ReportExecutionState 102
8.2.2 FunctionGroupclass. 102
8.2.2.1 FunctionGroup::FunctionGroup 103
8.2.2.2 FunctionGroup::FunctionGroup (Default Constructor) 103
8.2.2.3 FunctionGroup::FunctionGroup (Copy Constructor) . 104
8.2.24 FunctionGroup::FunctionGroup (Move Constructor) . 104
8.2.2.5 FunctionGroup::operator= (Copy assignment operator)105
8.2.2.6 FunctionGroup::operator= (Move assignment operator)105
8.2.2.7 FunctionGroup::~FunctionGroup 106
8.2.2.8 FunctionGroup::operator== 106
8.2.2.9 FunctionGroup::operator!=. 107
8.2.3 FunctionGroupStateclass. 107
8.2.3.1 FunctionGroupState::FunctionGroupState 108

8.2.3.2 FunctionGroupState::FunctionGroupState (Copy
Constructor) 108

8.2.3.3 FunctionGroupState::FunctionGroupState (Move
Constructor) oL 109

8.2.3.4 FunctionGroupState::operator= (Copy assignment
operator) 109

8.2.3.5 FunctionGroupState::operator= (Move assignment
operator) 110
8.2.3.6 FunctionGroupState::~FunctionGroupState 110
8.2.3.7 FunctionGroupState::operator== 111
8.2.3.8 FunctionGroupState::operator!=. 111
8.2.4 StateClientclass 112
8.2.4.1 StateClient::StateClient 113
8.2.4.2 StateClient::Create 113
8.2.4.3 StateClient::~StateClient 114
8.2.4.4 StateClient::StateClient (deleted Copy Constructor) . 115

8.2.4.5 StateClient::operator= (deleted Copy assignment op-
erator) 115

8.2.4.6 StateClient::StateClient (use of default move con-
structor) 115

8.2.4.7 StateClient::operator= (use of default move assign-
ment) 116
8.2.4.8 StateClient::SetState 116
8.2.4.9 StateClient::GetlnitialMachineStateTransitionResult . 118
8.2.4.10 StateClient::GetExecutionError 119
83 LogandTraceMessages. o i i it 120
8.4 Errors . .. 122
8.4.1 Execution Management errorcodes 122

8.4.2 ExecExceptionclass. 123

AUTSSAR

O W » o

8.4.2.1 ExecException::ExecException
8.4.3 GetExecErrorDomain function
8.4.4 MakeErrorCode function
8.4.5 ExecErrorDomainclass
8.4.5.1 ExecErrorDomain::ExecErrorDomain
8.4.5.2 ExecErrorDomain::Name
8.4.5.3 ExecErrorDomain::Message
8.4.5.4 ExecErrorDomain:: ThrowAsException

Service Interfaces
Mentioned Manifest Elements
Platform Extension Interfaces (normative)

Change history of AUTOSAR traceable items

C.1 Traceable item history of this document according to AUTOSAR Re-
lease R24-11 e

C.11 Added Specification ItemsinR24-11
C1.2 Changed Specification ltemsin R24-11
C.1.3 Deleted Specification ltemsin R24-11
C14 Added Constraintsin R24-11
C15 Changed Constraintsin R24-11
C.1.6 Deleted Constraints in R24-11

C.2 Traceable item history of this document according to AUTOSAR Re-
lease R23-11

C.21 Added Specification Itemsin R23-11.
caz2 Changed Specification ltems in R23-11
C.23 Deleted Specification ltemsin R23-11
C24 Added Constraintsin R23-11
C.25 Changed Constraints in R23-11
C.2.6 Deleted Constraints in R23-11

C.3 Traceable item history of this document according to AUTOSAR Re-
lease R22-11 e

C.3.1 Added Specification ItemsinR22-11
C.3.2 Changed Specification ltemsin R22-11
C.3.3 Deleted Specification ltemsin R22-11
C.3.4 Added Constraintsin R22-11
C.35 Changed Constraintsin R22-11
C.3.6 Deleted Constraints in R22-11

C.4 Traceable item history of this document according to AUTOSAR Re-
lease R21-11

C.4.1 Added Specification ltemsinR21-11
C4.2 Changed Specification ltems in R21-11
C4.3 Deleted Specification ltemsin R21-11
C44 Added Constraintsin R21-11
C45 Changed Constraintsin R21-11

129

139

140

AUTSSAR

C.5

C.6

C.7

C.8

C.9

C4.6 Deleted Constraints in R21-11 158
Traceable item history of this document according to AUTOSAR Re-
lease R20-11 e 158

C.5.1 Added Specification ltemsin R20-11. 158

C.5.2 Changed Specification ltems in R20-11 160

C.5.3 Deleted Specification ltemsin R20-11 161

C54 Added Constraints in R20-11 161

C.5.5 Changed Constraints in R20-11 161

C.5.6 Deleted Constraints in R20-11 161
Traceable item history of this document according to AUTOSAR Re-
lease R19-11 e 162

C.6.1 Added Specification Itemsin R19-11 162

C.6.2 Changed Specification ltems in R19-11 164

C.6.3 Deleted Specification ltems in R19-11 166

C.6.4 Added Constraintsin R19-11 166

C.6.5 Changed Constraints in R19-11 166

C.6.6 Deleted Constraints in R19-11 167
Traceable item history of this document according to AUTOSAR Re-
lease 19-03 e 167

C.7.1 Added Specification ltemsinR19-03. 167

C.7.2 Changed Specification ltemsin R19-03 167

C.7.3 Deleted Specification ltemsinR19-03 168

C.74 Added Constraintsin R19-03 168

C.7.5 Changed Constraints in R19-03 169

C.7.6 Deleted ConstraintsinR19-03 169
Traceable item history of this document according to AUTOSAR Re-
lease 18-10 e 169

C.8.1 Added Specification ltemsin18-10 169

C.8.2 Changed Specification ltemsin18-10 169

C.8.3 Deleted Specification ltemsin18-10 171

C.84 Added Constraintsin18-10 171

C.8.5 Changed Constraintsin18-10 171

C.8.6 Deleted Constraints in18-10 171
Traceable item history of this document according to AUTOSAR Re-
lease 18-03 e 171

C.9.1 Added Specification ltemsin18-03 171

C.9.2 Changed Specification ltemsin18-03 173

C.9.3 Deleted Specification temsin18-03 174

C94 Added Constraintsin18-03 175

C.9.5 Changed Constraintsin18-03 175

C.9.6 Deleted Constraintsin18-03 175

C.10 Traceable item history of this document according to AUTOSAR Re-
lease 17-10 e 175
C.10.1 Added Specification Itemsin17-10 175
C.10.2 Changed Specification ltemsin17-10 176

C.10.3 Deleted Specification ltemsin17-10 178

AUTSSAR

C.10.4 Added Constraintsin17-10 178
C.10.5 Changed Constraints in17-10 178
C.10.6 Deleted Constraints in17-10 178
C.11 Traceable item history of this document according to AUTOSAR Re-

lease 17-03 e 178
C.11.1 Added Specification Itemsin17-03 178
C.11.2 Changed Specification Items in17-03 180
C.11.3 Deleted Specification ltemsin17-03 180
C114 Added Constraints in17-03 180
C.11.5 Changed Constraintsin17-08 180
C.11.6 Deleted Constraints in17-03 180

AUTSSAR

1 Introduction and functional overview

This document is the software specification of the Execution Management func-
tional cluster within the Adaptive Platform Foundation.

Execution Management is responsible for the management of all aspects of system
execution including platform initialization and the startup / shutdown of applications.
Execution Management wWorks with, and configures, the Operating System to
perform run-time scheduling of applications.

Section 7 describes how Execution Management concepts are realized within the
AUTOSAR Adaptive Platform.

1.1 What is Execution Management

Execution Management is the functional cluster within the Adaptive Platform
Foundation thatis responsible for platform initialization and the startup and shutdown
of Modelled Processes. Modelled Processes are self-contained, e.g. have in-
ternal control of thread creation. Execution Management performs these tasks us-
ing information contained within one or more Manifest content such as when and
how Executables should be started. Execution Management also provides sup-
port for State Management (see Section 7.5) and Security (Section 7.8).

1.2 Interaction with AUTOSAR Runtime for Adaptive

The set of programming interfaces to the Adaptive Applications is called
AUTOSAR Runtime for Adaptive (ARA). The interfaces that constitute ARA include
those of Execution Management specified in Section 8.

Execution Management, in common with other applications is assumed to be a pro-
cess executed on a POSIX compliant operating system. Execution Management
is responsible for initiating execution of the processes in all the Functional Clusters,
Adaptive AUTOSAR Services, and user-level applications. Therefore, Execution Man-
agement has no standardized dependencies. The launching order of applications is
derived by Execution Management according to the specification defined in this
document to ensure proper startup of the AUTOSAR Adaptive Platform.

The Adaptive AUTOSAR Services are provided via mechanisms provided by the
Communication Management functional cluster [1] of the Adaptive Platform
Foundation. In order to use the Adaptive AUTOSAR Services, the functional clusters
in the Adaptive Platform Foundation must be properly initialized beforehand.
Please refer to the respective specifications regarding more information on Communi-
cation Management.

AUTSSAR

2 Acronyms and abbreviations

The glossary below includes acronyms and abbreviations relevant to this document.

Term

Description

Reporting Process

A type of Modelled Process with an associated Executable
where reportingBehavior is omitted ([TPS_MANI_01279]
[2]) or setto reportsExecutionState. A Reporting Pro-—
cess is expected to report its Execution State to Execution
Management.

Non-reporting Process

Atype of Modelled Process with an associated Executable
where reportingBehavior is set 1o doesNotReportExecu-
tionstate ([TPS_MANI_01279][2]). Please note that the Non-
reporting Process was not developed for the AUTOSAR Adap-
tive Platform and for this reason it is not using Adaptive
Platform Services. For example, it is not using ara::
exec: :ExecutionClient APl and therefore cannot report Ex-
ecution State to Execution Management. In general, this
type of a process is intended to allow integration of a software
that cannot be modified for use with the AUTOSAR Adaptive
Platform.

Companion Process

Atype of Reporting Process thatis associated with Non-re-
porting Process and used to determine when functionality
expected from Non-reporting Process is available. When-
ever functional dependencies on Non-reporting Processes
exist, the integrator can configure proxy Execution Depen-—
dencies onthe Companion Process and make the Compan-—
ion Process kRunning reporting conditional on monitored
Non-reporting Process.

Self-terminating Process

A type of Modelled Process that has terminationBehav-
ior configured to processIsSelfTerminating. This type of
Modelled Process is allowed to self initiate termination proce-
dure (i.e. just terminate with exit status EXTT_SUCCESS), or wait
for Execution Management to initiate termination procedure
via SIGTERM.

Unexpected Self-termination

The event consumed by Execution Management when a
Modelled Process terminates without justified reason, for ex-
ample:

e termination without prior request where termination-
Behavior is configured to processIsNotSel fTermi-
nating.

e termination before reporting kRunning.

Please note that every Unexpected Self-termination is
also an Unexpected Termination, SO requirements for the
later apply here as well.

Unexpected Termination

The event consumed by Execution Management when a

Modelled Process terminates with exit status other than 0
(EXIT_SUCCESS). Any kind of unhandled signal will result in an
Unexpected Termination and thus a non 0 exit status.

AUTSSAR

Undefined Function Group State

Any state of a Function Group, which is not modelled.
A Function Group is in an Undefined Function Group
State during state transition, if a state transition failed or if
an Unexpected Termination Or Unexpected Self-ter-
mination happened.

StateClient

State Management interface t0 Execution Management to
support Function Group State and Machine State man-
agement.

Unrecoverable State

A state entered by Execution Management in response to a
situation that it cannot resolve. In the state, Execution Man-
agement stops taking any further actions, terminates all pro-
cesses managed by Execution Management and provides a
facility for further project-specific handling.

Table 2.1: Technical Terms

The following technical terms used in this document are defined in the corresponding
document mentioned in the table below.

Term

Description

Communication Management

see [1] Specification of Communication Management

PLATFORM_CORE

see [2] TPS Manifest Specification

Modelled Process

see [3] Requirements on Execution Management

Execution Dependency

see [3] Requirements on Execution Management

Execution Management

see [3] Requirements on Execution Management

Function Group

see [3] Requirements on Execution Management

Function Group State

see [3] Requirements on Execution Management

Machine State

see [3] Requirements on Execution Management

Process State

see [3] Requirements on Execution Management

Operating System

see [4] Requirements on Operating System Interface

State Management

see [5] Requirements of State Management

Execution Manifest

see [6] Methodology for Adaptive Platform

Machine Manifest

see [6] Methodology for Adaptive Platform

Service Instance Manifest

see [6] Methodology for Adaptive Platform

Platform Health Management

see [7] Specification of Platform Health Management

Adaptive Application

see [8] AUTOSAR Gilossary

AUTOSAR Adaptive Platform

see [8] AUTOSAR Glossary

Adaptive Platform Foundation

see [8] AUTOSAR Glossary

Adaptive Platform Services see [8] AUTOSAR Gilossary
Manifest see [8] AUTOSAR Gilossary
Executable see [8] AUTOSAR Gilossary
Functional Cluster see [8] AUTOSAR Gilossary
Machine see [8] AUTOSAR Gilossary
Processed Manifest see [8] AUTOSAR Gilossary
Process see [8] AUTOSAR Gilossary
Service see [8] AUTOSAR Glossary

Service Interface

see [8] AUTOSAR Glossary

Service Discovery

see [8] AUTOSAR Gilossary

Trusted Platform

see [8] AUTOSAR Gilossary

Table 2.2: Reference to Technical Terms

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

The main documents that serve as input for the specification of the Execution Man-
agement are:

[1] Specification of Communication Management
AUTOSAR_AP_SWS_CommunicationManagement

[2] Specification of Manifest
AUTOSAR_AP_TPS_ManifestSpecification

[3] Requirements on Execution Management
AUTOSAR_AP_RS_ExecutionManagement

[4] Requirements on Operating System Interface
AUTOSAR_AP_RS OperatingSysteminterface

[5] Requirements of State Management
AUTOSAR_AP_RS_StateManagement

[6] Methodology for Adaptive Platform
AUTOSAR_AP_TR_Methodology

[7] Specification of Platform Health Management
AUTOSAR_AP_SWS_PlatformHealthManagement

[8] Glossary
AUTOSAR_FO_TR_Glossary

[9] Specification of Adaptive Platform Core
AUTOSAR_AP_SWS Core

[10] Explanation of Adaptive Platform Software Architecture
AUTOSAR_AP_EXP_SWArchitecture

[11] Specification of State Management
AUTOSAR_AP_SWS_StateManagement

[12] Safety Requirements for AUTOSAR Adaptive Platform and AUTOSAR Classic
Platform
AUTOSAR_FO_RS_ Safety

[13] Standard for Information Technology—Portable Operating System Interface
(POSIX(R)) Base Specifications, Issue 7
http://pubs.opengroup.org/onlinepubs/9699919799/

[14] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr, 'Basic
Concepts and Taxonomy of Dependable and Secure Computing’, IEEE Transac-

http://pubs.opengroup.org/onlinepubs/9699919799/

AUTSSAR

tions on Dependable and Secure Computing, Vol. 1, No. 1, January-March 2004

[15] Explanation of Adaptive Platform Design
AUTOSAR_AP_EXP_PlatformDesign

[16] Explanation of Identity and Access Management
AUTOSAR_AP_EXP_ldentityAndAccessManagement

[17] Specification of Execution Management
AUTOSAR_AP_SWS_ExecutionManagement

3.2 Further applicable specification

AUTOSAR provides a core specification [9] which is also applicable for Execution
Management. The chapter “General requirements for all FunctionalClusters” of this
specification shall be considered as an additional and required specification for imple-
mentation of Execution Management.

AUTSSAR

4 Constraints and assumptions

4.1 Known Limitations

This chapter lists known limitations of Execution Management and their relation to
this release of the AUTOSAR Adaptive Platform with the intent to provide an indi-
cation how Execution Management within the context of the AUTOSAR Adaptive
Plat form will evolve in future releases.

The following functionality is mentioned within this document but is not fully specified
in this release:

e Section 7.6 Resource Limitation and Section 7.7 Fault Tolerance have been ex-
panded in this release, but are not complete. In particular the contents will be
expanded with more properties and formal requirements in the next release.

e Thread safety and reentrancy of ara::exec APl was not considered in this release.

Section 6.1 details requirements from Execution Management Requirement Spec-
ification [3] that are not elaborated within this specification. The presence of these
requirements in this document ensures that the requirement tracing is complete and
also provides an indication of how Execution Management will evolve in future re-
leases of the AUTOSAR Adaptive Platform.

The functionality described above is subject to modification and will be considered for
inclusion in a future release of this document.

AUTSSAR

5 Dependencies to other Functional Clusters

This chapter provides an overview of the dependencies to other Functional Clusters in
the AUTOSAR Adaptive Platform. Section 5.1 “Provided Interfaces” lists the interfaces
provided by Execution Management to other Functional Clusters. Section 5.2 “
Required Interfaces” lists the interfaces required by Execution Management.

A detailed technical architecture documentation of the AUTOSAR Adaptive Platform is

provided in [10].

5.1 Provided Interfaces

«aapFunctionalClust... El
State Management Platform Health

Management

daemon-based daemon-based

«aapFunctionalClust... El

«aapFunctionalClust... El
Diagnostic Management

daemon-based

«aapFunctionalClust...
Update and Configuration
Management

Time Synchronization

daemon-based daemon-based

«aapFunctionalClust...

gl

+ ReportExecutionState(ExecutionState): Result

«use» «use» «use» «use» «use»
Vv Vv v v v
«aapAPl,aapNativelnterface»
ExecutionClient
+ Create

I

daemon-based

«aapFunctionalCluster»
Execution Management

gl

Figure 5.1: Interfaces provided by Execution Management to other Functional Clusters

Figure 5.1 shows the interfaces provided by Execution Management to other Func-

tional Clusters within the AUTOSAR Adaptive Platform.

«aapFunctionalCluster» El
State Management
daemon-based
T
<<L|;$» <<L|5.E>> «use»
\y «aapReq\Li}redPon» \y
«aapAPl,aapNativelnterface» «aapAPl,aapPortinterface» «aapAPl,aapNativelnterface»
StateClient FunctionGroup FunctionGroupState
+ Create(function) + Create(+ Create
+ GetExecutionError()
+ GetlnitialMachineStateTransitionResult()
+ SetState(FunctionGroupState): Future
I I I
| | |
«aapFunctionalCluster» E
Execution Management
daemon-based

Figure 5.2: Interfaces provided by Execution Management to State Management

Figure 5.2 shows the interfaces provided by Execution Management 0 State
Management. Table 5.1 provides a complete list of interfaces provided to other Func-

tional Clusters within the AUTOSAR Adaptive Platform.

AUT<

SAR

Interface Functional Cluster Purpose
ExecutionClient Diagnostic Management This interface is used to report the status of the
Diagnostic Management daemon process(es).
Platform Health Management Platform Health Management uses this interface to
report the state of its daemon process to Execution
Management.
State Management This interface shall be used to report the state of the
State Management process(es).
Time Synchronization Time Synchronization shall use this interface to
report the state of its daemon process.
Update and Configuration This interface shall be used by the daemon process(es)
Management inside Update and Configuration Management to
report their execution state to Execution Management.
Vehicle Update and Configuration This interface shall be used by the daemon process(es)
Management inside vehicle Update and Configuration
Management to report their execution state to Execution
Management.
FunctionGroup State Management This interface shall be used to construct
FunctionGroupStates.
FunctionGroup State Management This interface shall be used to request
State FunctionGroupState transitions.
StateClient State Management This interface shall be used to request
FunctionGroupState transitions.

Table 5.1: Interfaces provided to other Functional Clusters

5.2 Required Interfaces

«aapFunctionalCluster» E
Execution Management
daemon-based

«use»

T T
«use» «use»

\1/ «aapRe WredPon» \1/
«aapAPl,aapNativelnterf... «aapAPl,aapPortinterface» «aaplinternal»
Logger SupervisedEntity Multi-Process System Interface
IsEnabled() + ReportCheckpoint() + SetProcessConfiguration()

Log(Msgld, Params)
LogDebug(): LogStream
LogError(): LogStream
LogFatal(): LogStream
LoglInfo(): LogStream
LogVerbose(): LogStream
LogWamn(): LogStream
WithLevel(): LogStream

I I I

| | |

1 1 1
«aapFunctionalClust... El «aapFunctionalClust... El Operating System gl
Log and Trace Platform Health

Management
daemon-based

+ StartProcess()
+ TerminateProcess()

+ 4+ + o+ o+

Figure 5.3: Interfaces required by Execution Management from other Functional Clusters

Figure 5.3 shows the interfaces required by Execution Management from other
Functional Clusters within the AUTOSAR Adaptive Platform. Table 5.2 provides a com-
plete list of required interfaces from other Functional Clusters within the AUTOSAR
Adaptive Platform.

AUTSSAR

Functional Cluster Interface Purpose

Log and Trace Logger Execution Management shall use this interface to log
standardized messages.

Platform Health SupervisedEntity Execution Management shall use this interface to

Management

enable supervision of its process(es) by Plat form
Health Management.

Table 5.2: Interfaces required from other Functional Clusters

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [3] and links to the fulfill-
ment of these. Please note that if column “Satisfied by” is empty for a specific require-

ment this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[RS_AP_00114]

C++ interface shall be compatible
with C++14

[SWS_EM_02560] [SWS_EM_02561]

[RS_AP_00116]

Header file name

[SWS_EM_02544]

[RS_AP_00119]

Return values / application errors

[SWS_EM_02003] [SWS_EM_02276]
[SWS_EM_02278] [SWS_EM_02279]
[SWS_EM_02560] [SWS_EM_02561]
[SWS_EM _02562]

[RS_AP_00120]

Method and Function names

[SWS_EM_02003] [SWS_EM_02276]
[SWS_EM_02278] [SWS_EM_02279]
[SWS_EM_02283] [SWS_EM_02286]
[SWS_EM_02287] [SWS_EM_02288]
[SWS_EM_02289] [SWS_EM_02290]
[SWS_EM_02291] [SWS_EM_02542]
[SWS_EM_02560] [SWS_EM_02561]
[SWS_EM 02562]

[RS_AP_00121]

Parameter names

[SWS_EM_02003] [SWS_EM_02276]
[SWS_EM_02278] [SWS_EM_02283]
[SWS_EM_02288] [SWS_EM_02289]
[SWS_EM_02291] [SWS_EM_02542]
[SWS_EM_02560] [SWS_EM_02561]

[RS_AP_00122]

Type names

[SWS_EM_02281] [SWS_EM_02282]
[SWS_EM_02284] [SWS_EM_02541]
[SWS_EM_02544]

[RS_AP_00124]

Variable names

[SWS_EM_02544] [SWS_EM_02545]
[SWS_EM_02546]

[RS_AP_00125]

Enumerator and constant names

[SWS_EM_02000] [SWS_EM_02281]

[RS_AP_00127]

Usage of ara::core types

[SWS_EM_02281] [SWS_EM_02282]
[SWS_EM_02284]

[RS_AP_00128]

Error reporting

[SWS_EM_02003] [SWS_EM_02278]
[SWS_EM_02279] [SWS_EM_02542]
[SWS_EM_02562]

[RS_AP_00129]

Public types defined by functional
clusters shall be designed to allow
implementation without dynamic
memory allocation

[SWS_EM_02000] [SWS_EM_02269]
[SWS_EM 02281]

[RS_AP_00130]

AUTOSAR Adaptive Platform shall
represent a rich and modern
programming environment

[SWS_EM_02246] [SWS_EM_02247]
[SWS_EM_02248] [SWS_EM_02249]
[SWS_EM_02281] [SWS_EM_02282]
[SWS_EM_02283] [SWS_EM_02284]
[SWS_EM_02286] [SWS_EM_02287]
[SWS_EM_02288] [SWS_EM_02289]
[SWS_EM_02290] [SWS_EM_02291]

[RS_AP_00134]

noexcept behavior of class
destructors

[SWS_EM_02000] [SWS_EM_02002]
[SWS_EM_02272] [SWS_EM_02277]

[RS_AP_00137]

Connecting run-time interface with
model

[SWS_EM_02586]

[RS_AP_00138]

Return type of asynchronous function
calls

[SWS_EM_02278] [SWS_EM_02279]

[RS_AP_00139]

Return type of synchronous function
calls

[SWS_EM_02003] [SWS_EM_02276]
[SWS_EM_02542] [SWS_EM_02562]

Y%

AUTSSAR

Requirement

Description

Satisfied by

[RS_AP_00140]

Usage of "final specifier"

[SWS_EM_02282] [SWS_EM_02544]

[RS_AP_00142]

Handling of unsuccessful operations

[SWS_EM_02281]

[RS_AP_00143]

Use 32-bit integral types by default

[SWS_EM_02000]

[RS_AP_00144]

Availability of a named constructor

[SWS_EM_02276] [SWS_EM_02562]

[RS_AP_00145]

Availability of special member
functions

[SWS_EM_02002] [SWS_EM 02272]
[SWS_EM 02277] [SWS_EM _02325]
[SWS_EM_02330] [SWS_EM_02331]
[SWS_EM 02332] [SWS_EM 02563
[SWS_EM_02564] [SWS_EM_02565]
[SWS_EM_02566] [SWS_EM_02567]
[SWS_EM_02568] [SWS_EM_02580]
[SWS_EM 02581]

[RS_AP_00147]

Classes that are created with an
InstanceSpecifier as an argument are
not copyable, but at most movable.

[SWS_EM 02322] [SWS_EM 02327]

[RS_AP_00149]

Error handling for non-initialized
Functional Cluster

[SWS_EM_02281] [SWS_EM_02557]

[RS_AP_00150]

Provide only interfaces that are
intended to be used by AUTOSAR
Applications and Functional Clusters

[SWS_EM_02001] [SWS_EM_02263]
[SWS_EM_02269] [SWS_EM_02275]
[SWS_EM_02282] [SWS_EM_02284]

[RS_AP_00151]

C++ Core Guidelines

[SWS_EM_02331] [SWS_EM_02332]
[SWS_EM_02560] [SWS_EM_02561]
[SWS_EM_02566] [SWS_EM_02567]
[SWS_EM_02580] [SWS_EM_02581]

[RS_AP_00153]

Assignment operators should restrict
"this" to Ivalues

[SWS_EM_02330] [SWS_EM_02332]

[RS_AP_00154]

Internal namespaces

[SWS_EM_02001] [SWS_EM_02263]
[SWS_EM_02269] [SWS_EM_02275]
[SWS_EM_02281] [SWS_EM_02282]
[SWS_EM_02284] [SWS_EM_02290]
[SWS_EM_02291] [SWS_EM_02541]
[SWS_EM_02544]

[RS_AP_00155]

Avoidance of cluster-specific
initialization functions

[SWS_EM_02557]

[RS_AP_00156]

Naming conventions for L&T Context
ID

[SWS_EM 02569] [SWS_EM _02570]
[SWS_EM_02571] [SWS_EM_02572]

[RS_EM_00002]

Execution Management shall set-up
one process for the execution of each
Modelled Process.

[SWS_EM_01014] [SWS_EM_01015]
[SWS_EM_01041] [SWS_EM_01042]
[SWS_EM_01043]

[RS_EM_00005]

Execution Management shall support
the configuration of OS resource
budgets for process and groups of
processes.

[SWS_EM_02102] [SWS_EM_02103]
[SWS_EM_02106] [SWS_EM_02108]
[SWS_EM_02109]

[RS_EM_00008]

Execution Management shall support
the binding of all threads of a given
process to a specified set of
processor cores.

[SWS_EM_02104]

[RS_EM_00009]

Execution Management shall control
the right to create child process for
each process it starts.

[SWS_EM_01033] [SWS_EM_02559]

[RS_EM_00010]

Execution Management shall support
multiple instances of Executables.

[SWS_EM_01012] [SWS_EM_01072]
[SWS_EM_01078] [SWS_EM_02246]
[SWS_EM_02247] [SWS_EM_02248]
[SWS_EM_02249]

Y

AUTSSAR

A

Requirement

Description

Satisfied by

[RS_EM_00011]

Execution Management shall support
self-initiated graceful shutdown of
processes.

[SWS_EM_01006] [SWS_EM_01404]

[RS_EM_00014]

Execution Management shall support
a Trusted Platform.

[SWS_EM_02299] [SWS_EM_02300]
[SWS_EM_02301] [SWS_EM_02302]
[SWS_EM_02303] [SWS_EM_02305]
[SWS_EM_02306] [SWS_EM_02307]
[SWS_EM_02308] [SWS_EM_02309]
[SWS_EM_02556]

[RS_EM_00015]

Execution Management shall support
integrity and authenticity monitoring.

[SWS_EM_02300] [SWS_EM_02301]
[SWS_EM 02302] [SWS_EM_02303]
[SWS_EM_02305] [SWS_EM_02306]
[SWS_EM_02400] [SWS_EM_02556]

[RS_EM_00100]

Execution Management shall support
the ordered startup and shutdown of
processes.

[SWS_EM_01000] [SWS_EM_01001]
[SWS_EM_01050] [SWS_EM _01051]
[SWS_EM_CONSTR_00001]
[SWS_EM_CONSTR_01744]

[RS_EM_00101]

Execution Management shall support
State Management functionality.

[SWS_EM_01023] [SWS_EM_01032]
[SWS_EM_01033] [SWS_EM_01060]
[SWS_EM_01065] [SWS_EM_01066]
[SWS_EM_01067] [SWS_EM_01110]
[SWS_EM_02241] [SWS_EM_02245]
[SWS_EM_02250] [SWS_EM_02251]
[SWS_EM_02253] [SWS_EM_02255]
[SWS_EM_02258] [SWS_EM_02259]
[SWS_EM_02260] [SWS_EM_02263]
[SWS_EM_02266] [SWS_EM_02267]
[SWS_EM_02268] [SWS_EM_02269]
[SWS_EM_02272] [SWS_EM _02273]
[SWS_EM_02274] [SWS_EM_02275]
[SWS_EM_02276] [SWS_EM_02277]
[SWS_EM_02278] [SWS_EM_02279]
[SWS_EM_02280] [SWS_EM_02295]
[SWS_EM_02296] [SWS_EM_02297]
[SWS_EM_02298] [SWS_EM_02310]
[SWS_EM_02312] [SWS_EM_02315]
[SWS_EM_02316] [SWS_EM_02321]
[SWS_EM_02322] [SWS_EM_02324]
[SWS_EM_02325] [SWS_EM_02327]
[SWS_EM_02328] [SWS_EM_02329]
[SWS_EM_02330] [SWS_EM_02331]
[SWS_EM_02332] [SWS_EM_02541]
[SWS_EM_02542] [SWS_EM_02543]
[SWS_EM_02544] [SWS_EM_02545]
[SWS_EM_02546] [SWS_EM_02549]
[SWS_EM_02552] [SWS_EM_02555]
[SWS_EM_02561] [SWS_EM_02583]
[SWS_EM_02584] [SWS_EM_02585]

[SWS_EM_02586] [SWS_EM_CONSTR_02556]

[SWS_EM_CONSTR_02557]
[SWS_EM_CONSTR_02558]
[SWS_EM_CONSTR_02559]
[SWS_EM_CONSTR_02560]

AUTSSAR

A

Requirement

Description

Satisfied by

[RS_EM_00103]

Execution Management shall support
process lifecycle management.

[SWS_EM_01002] [SWS_EM_01003]
[SWS_EM_01004] [SWS_EM_01006]
[SWS_EM_01055] [SWS_EM_01210]
[SWS_EM_01211] [SWS_EM_01212]
[SWS_EM_01309] [SWS_EM _01314]
[SWS_EM_01401] [SWS_EM_01402]
[SWS_EM_01403] [SWS_EM_01404]
[SWS_EM_02000] [SWS_EM_02001]
[SWS_EM_02002] [SWS_EM_02003]
[SWS_EM_02243] [SWS_EM_02558]
[SWS_EM_02560] [SWS_EM_02562]
[SWS_EM_02563] [SWS_EM_02564]
[SWS_EM_02565] [SWS_EM_02566]
[SWS_EM_02567] [SWS_EM_02568]
[SWS_EM_02577] [SWS_EM_02578]
SWS_EM_02579] [SWS_EM_02580]

[RS_EM_00111]

Execution Management shall assist
identification of processes during
Machine runtime.

[]
[SWS_EM_02581] [SWS_EM_02582]
[SWS_EM_02400]

[RS_EM_00150]

Error Handling.

[SWS_EM_02032] [SWS_EM_02033]
[SWS_EM_02034] [SWS_EM_02547]
[SWS_EM_02548]

[RS_EM_00152]

Execution Management shall support
standardized trace points throughout
the state transitions.

[SWS_EM_02569] [SWS_EM_02570]
[SWS_EM_02571] [SWS_EM_02572]
[SWS_EM_02573] [SWS_EM_02574]
[SWS_EM_02575] [SWS_EM_02576]

Table 6.1: Requirements Tracing

6.1 Not applicable requirements

[SWS_EM_NA]

Upstream requirements: RS_AP_00111, RS_AP_00115, RS_AP_00135, RS_AP_00148, RS -

[These requirements are not applicable as they are not within the scope of this re-

lease. |

AP_00141, RS_AP_00146, RS_EM_00151, RS_EM_NA

AUTSSAR

7 Functional specification

Execution Management is a functional cluster contained in the Adaptive Plat-
form Foundation. Execution Management is responsible for all aspects of sys-
tem execution management including platform initialization and startup / shutdown of
applications.

Execution Management WOrKs in conjunction with the Operating System. In partic-
ular, Execution Management is responsible for configuring the Operating System to
perform run-time scheduling and resource monitoring of applications.

This chapter describes the functional behavior of Execution Management.

Section 7.2 presents an introduction to key terms within Execution Manage-—
ment focusing on the relationship between application, Executable, and Mod-
elled Process. With the latter, we refer to an instance of the meta-model
describing a process, it will eventually be realized by an operating system pro-
cess.

Section 7.3 covers the core Execution Management run-time responsibilities
including the start of applications.

Section 7.4 describes the lifecycle of applications including Modelled Process
state transitions and startup / shutdown sequences.

Section 7.5 covers several topics related to State Management within Execu—
tion Management including Function Group state management and state
transition behavior.

Section 7.6 describes how Execution Management supports resource man-
agement including the limitation of usage of CPU and memory by an application.

Section 7.7 provides an introduction to Fault Tolerance strategies in general. This
section will be expanded in a future release to describe how such strategies are
realized within Execution Management.

Section 7.8 covers the topic of Trusted Platform, i.e. ensuring the integrity
and authenticity of applications.

AUTSSAR

7.1 Functional Cluster Lifecyle

7.1.1 Startup

See Section 7.5.2.1.

7.1.2 Shutdown

See Section 7.5.2.2.

7.1.3 Restart

See Section 7.5.2.2.

7.2 Technical Overview

This chapter presents a short summary of the relationship between application, Exe-

cutable, and Modelled Process.

7.2.1 Executable

An Executable is a software unit which is part of an application. It has exactly one
entry point (main function) [SWS_OSI_01001]. An application can be implemented in

one or more Executables [TPS_MANI_01010] [2].

The lifecycle of Executables usually consists of:

process Step Software

Meta Information

Linked, configured and calibrated bi-
nary for deployment onto the target
Machine. The binary might contain
code which was generated at integra-
tion time.

Development
and Integration

Execution Manifest, see Section
7.23 and [2], and Service In-
stance Manifest (notused by Ex-
ecution Management).

Binary installed on the target Ma-
chine. Previous version (if any) re-
moved.

Deployment
and Removal

Processed Manifests, stored in a
platform-specific format which is effi-
ciently readable at Machine startup.

Process started as instance of the

Execution :
binary.

The Execution Management uses
contents of the processed Manifests
to start up and configure each pro-
cess individually.

Table 7.1: Executable Lifecycle

AUTSSAR

Executables which belong to the same Adaptive Application might need to be
deployed to different Machines, e.g. to one high performance Machine and one high
safety Machine.

Figure 7.1 shows the lifecycle of an Executable from deployment to execution.

design, development, integration

Y ; executable Application Igsetgqncci
Machine (binary) Manifest .
Manifest Manifest
SoftwareCluster
offboard
.......................... . /! NS
i i machine !
i process L installed :
| i . S I
(loaded executable instance) € executable \ SW Configuration ! |
| — 3 " — Management | i
]] o | i
' 1 1 PR | | :
v v V_V Y Y I deployment, }
i API API API - | authentication, | i
| other _ Execution processed 1, | instalaion | |
| | funetional 0§ < Management <—: maniests . —— ;
| clusters startup, configure OS, data base .
j shutdown, ... :

Figure 7.1: Executable Lifecycle from deployment to execution

7.2.2 Modelled Process

A Modelled Process is an instance of an Executable. On the AUTOSAR Adap-
tive Platform, a Modelled Process is realized at run-time as an OS process.
For details on how Execution Management starts and stops Processes see Sec-
tion 7.4.

Execution Management treats all Executables and the derived Modelled Pro-
cesses the same way, independent of application boundaries.

Remark: In this release of this document it is mostly assumed that Processes are
self-contained, i.e. that they take care of controlling thread creation and scheduling
by calling APIs of the Operating System Interface from within the code. Execution
Management only starts and terminates the Processes and while the Processes
are running, Execution Management only interacts with the Processes by provid-
ing State Management mechanisms (see Section 7.5).

AUTSSAR

7.2.3 Execution Manifest

An Execution Manifest is created together with a Service Instance Mani-
fest (not used by Execution Management) at design time and deployed onto a Ma-
chine together with the Executable it is attached to.

The Execution Manifest specifies the deployment related information of an Ex-
ecutable and describes in a standardized way the machine specific configuration
of Modelled Process properties (startup parameters, resource group assignment,
scheduling priorities etc.).

The Execution Manifest is bundled with the actual executable code in order to
support the deployment of the executable code onto the Machine.

Each instance of an Executable binary, i.e. each started Process, is individually
configurable, with the option to use a different configuration set per Machine State
or per Function Group State (see Section 7.5 and [TPS_MANI_01012], [TPS_-
MANI_01013], [TPS_MANI_01017] and [TPS_MANI_01041][2]).

To perform its necessary actions, Execution Management imposes a number of
requirements on the content of the Machine Manifest and Execution Manifest.
The validation of the configuration is expected to be done by the vendor tooling.

For more information regarding the Execution Manifest specification please see

[2].

7.2.4 Machine Manifest

The Machine Manifest is also created at integration time for a specific Machine
and is deployed like Execution Manifests whenever its contents change. The
Machine Manifest holds all configuration information which cannot be assigned to
a specific Executable or its instances (the Modelled Processes), i.e. which is
not already covered by an Execution Manifest Ora Service Instance Mani-—
fest.

The contents of a Machine Manifest includes the configuration of Machine prop-
erties and features (resources, safety, security, etc.). For details see [2].

7.2.5 Manifest Format

The Execution Manifests andthe Machine Manifest can be transformed from
the original standardized ARXML into a platform-specific format (called Processed
Manifest), which is efficiently readable at Machine startup. The format transforma-
tion can be done either off board at integration time or at deployment time, or on the
Machine (by Update and Configuration Management) at installation time.

AUTSSAR

7.3 Execution Management Responsibilities

Execution Management is responsible for all aspects of Process execution man-
agement. A Process is a loaded instance of an Executable, which is part of an
application.

Execution Management is started as part of the AUTOSAR Adaptive Platform
startup phase and is responsible for starting and terminating Processes.

Execution Management determines when, and possibly in which order, to start or
stop Processes, i.e. instances of the deployed Executables, based on information
inthe Machine Manifest and Execution Manifests.

Execution Management ensures that the integrity and authenticity of all Executa-
bles and Executable-related data (e.g. manifests) is checked. In the case of a
failed integrity or authenticity check, Execution Management carries out the mea-
sures defined in Section 7.8.

[SWS_EM_02558] Default value for permissionToCreateChildProcess attribute
Upstream requirements: RS_EM_00103

[A Modelled Process without a specified permissionToCreateChildProcess
attribute shall be considered by Execution Management as though the attribute was
set to false. |

[SWS_EM_02559] Restriction of process creation right for processes
Upstream requirements: RS_EM_00009

[If permissionToCreateChildProcess attribute is false then Execution Man-
agement shall restrict the rights of the created process such that it cannot start / create
other processes. |

The mechanism by which the restriction of [SWS_EM_02559] is implementation-
specific, but could be realized by configuring the process capability attribute mask at
the time of process creation (OS feature).

Please note that when setting permissionToCreateChildProcess to true, the in-
tegrator should consider several aspects:

¢ the safety and security implications of this configuration. Does this software come
from a trusted source? Is this configuration absolutely necessary for the software
to fulfill its task? etc.

e the process that creates child processes is responsible for termination of pro-
cesses that it creates; processes not started by Execution Management
are not controlled by Execution Management and exist outside of AUTOSAR
Adaptive Platform.

AUTSSAR

e the system resources used by the child processes are generally unplanned. It is
recommended to assign the parent to a dedicated ResourceGroup to limit the
impact on memory and CPU usage.

Depending on the Machine State or on any other Function Group State, de-
ployed Executables are started during AUTOSAR Adaptive Platform startup or
later, however it is not expected that all will begin active work immediately since many
Processes Will provide services to other Processes and therefore wait and “listen”
for incoming service requests.

Execution Management derives an ordering for startup/shutdown of deployed Exe-
cutables within the context of Machine and/or Function Group State changes based
on declared Execution Dependencies [SWS_EM_01050]. The dependencies are
described in the Execution Manifests, see [TPS_MANI_01041] [2].

Execution Management is not responsible for run-time scheduling of Processes
since this is the responsibility of the Operating System [SWS_OSI_01003]. How-
ever, Execution Management is responsible for initialization / configuration of the
OS to enable it to perform the necessary run-time scheduling and resource manage-
ment based on information extracted by Execution Management fromthe Machine
Manifest and Execution Manifests.

Execution Management does not perform standardized termination handling - the
response to receipt of a signal, e.9g. SIGTERM, by Execution Management is there-
fore implementation defined.

7.3.1 Error handling

All API operations can potentially raise errors.

[SWS_EM 02547] Obtain error information
Upstream requirements: RS_EM_00150

[According to Adaptive Platform Core [9], Execution Management shall provide
means to obtain information about errors that occurred during API calls. For that rea-
son, Execution Management can return the following errors:

e ara::exec::ExecErrc [SWS_EM_02281]

e ara::exec::ExecException [SWS_EM 02282]

e ara::exec::ExecException: :ExecException [SWS_EM_02283]

e ara::exec::ExecErrorDomain [SWS_EM_02284]

e ara::exec::ExecErrorDomain: :ExecErrorDomain [SWS_EM_02286]
e ara::exec::ExecErrorDomain: :Name [SWS_EM_02287]

e ara::exec::ExecErrorDomain: :Message [SWS_EM 02288]

AUTSSAR

e ara::exec::GetExecErrorDomain [SWS_EM 02290]

[SWS_EM 02548] Create error information
Upstream requirements: RS_EM_00150

[According to Adaptive Platform Core [9], Execution Management shall provide
means to create error information as listed below.

e ara::exec::ExecErrorDomain: : ThrowAsException [SWS_EM 02289]

e ara::exec::MakeErrorCode [SWS_EM_02291]

AUTSSAR

7.4 Process Lifecycle Management

7.4.1 Execution State

Execution States characterizes the internal lifecycle of a Process. In other words, they
describe it from the point of view of a Process that is executed. The states visible to
the Process are defined by the ara: :exec: :ExecutionState enumeration, see
[SWS_EM_02000].

Initializing . Terminating
create process _— Running ore dat
application ; . store data,
erform main | Terminate
allocate data F:‘unctionali t free resources,
resources initialization y exit

Figure 7.2: Execution States

The Execution State of a Process is used by Execution Management to construct
and maintain the Process State as described in Section 7.4.2. Execution State
change notifications from a Process result in Process State changes managed
by Execution Management. The Execution State and Process State are main-
tained separately so that there is no explicit dependency between a Process’s Ex-
ecution State and Execution Management’s Process State. This allows future
evolution of Process State without impacting the internal Execution State of the
Process.

7.4.1.1 Initialization

[SWS_EM_01401] ExecutionClient usage restriction
Upstream requirements: RS_EM_00103

[The AUTOSAR Adaptive Platformimplementation shall only allow a Process to
report its own ExecutionState. |

Because ara::exec::ExecutionClient handles the SIGTERM signal (see
[SWS_EM_02560], [SWS_EM_02562], or [SWS_EM_02577]), itis not possible to have
multiple instances of this class. Creating a second instance of ara::exec: :Ex—
ecutionClient is unnecessary and creates ambiguity. Please consider following
scenario, first instance is created with foo () as a termination handler and second
instance is created with bar () as a termination handler. Which termination handler
should be invoked, when SIGTERM is delivered?

AUTSSAR

[SWS_EM _02582] Single instance of ExecutionClient
Upstream requirements: RS_EM_00103

[ara::exec::ExecutionClient shall treat it as a Violation, when additional in-
stance is being created. |

Execution Management considers Process initialization complete when the pro-
cess State Running is reached whether this is achieved implicitly (by a Non-re-
porting Process) or explicitly through a Process reporting its Execution State.

A Process is required (see [SWS_EM_01004]) to report kRunning state using the
ara::exec::ExecutionClient: :ReportExecutionState [SWS_EM 02003]
method of class ara: :exec: :ExecutionClient, see [SWS_EM_02001]. It would
typically report after the completion of its initialization, but before Service Discov-
ery is completed. If the Process were to report kRunning only after Service Dis-
covery completion, the non-deterministic delays may impact other Processes, due
to delays in resolution of Execution Dependencies.

7.4.1.2 Termination

[SWS_EM_01055] Initiation of process termination
Upstream requirements: RS_EM_00103

[Execution Management shall initiate Process termination by sending the
SIGTERM signal to the Process. |

Note that from the perspective of Execution Management, requirement
[SWS_EM_01055] only requests the initiation of the steps necessary for grace-
ful termination under the control of the Process.

It is possible that a process that should be terminated according to [SWS_EM_01055],
e.g. during the handling of Execution Dependencies, is no longer alive. However,
as Execution Management can determine the status of child processes it would
thus not attempt to terminate a process that no longer exists.

Execution Management may send SIGTERM at any time, even before the Process
has reported kRunning state and thus the Process is still in the Tnitializing
Process State.

On receipt of SIGTERM, a Process commences the actual termination.

Execution Management provides a termination handler to minimize the required
signal handling in the Adaptive Application (see [SWS_EM_02577]).

AUTSSAR

[SWS_EM 02577] Call of Termination Handler
Upstream requirements: RS_EM_00103

[On receipt of SIGTERM ara: :exec: :ExecutionClient shall invoke the termina-
tion handler defined by ara: :exec: :ExecutionClient: :Create.|

Please note the API defines the execution context of the termination handler to be a
background thread which is maintained by the ara: :exec: :ExecutionClient. It
is not executed in a signal handler context, therefore usage of POSIX and ara APIs is
not restricted (potential restrictions in the contract of ara APls still apply).

During the Terminating state, the Process is expected to save persistent data and
free all internally used resources. The Process indicates completion of the Termi-
nating state by termination with exit status 0 (EXIT_SUCCESS).

Execution Management as the parent Process can detect termination of the child
Process and take the appropriate platform-specific actions such as processing exe-
cution dependencies that rely on the Terminated state and thus ensure that there is
no overlap between these Processes when both are running.

[SWS_EM_01314] Default value for terminationBehavior
Upstream requirements: RS_EM_00103

[Execution Management shall treata Modelled Process without specified ter-
minationBehavior as a Process that terminates only on request by Execution
Management. |

7.4.1.3 Unexpected Termination

[SWS_EM_01309] Unexpected Termination of a process
Upstream requirements: RS_EM_00103
[In case of Unexpected Termination outside a state transition resulting from previ-

ous request from ara::exec::StateClient::SetState, Execution Manage-—
ment shall perform the following actions:

1. log event, if logging is activated

2. Set the Function Group State (of the Function Group to which the rel-
evant Modelled Process was mapped) t0 Undefined Function Group
State.

3. Call undefinedStateCallback defined by ara::exec::StateClient with
ara::exec: :ExecutionErrorEvent.

AUTSSAR

If the state Management decides to invoke the ara::exec::StateClient::
GetExecutionError interface, after receiving the undefinedStateCallback
[SWS_EM_01309] or inside the callback, the ara: :exec: :ExecutionErrorEvent
will contain the same information as provided by the undefinedStateCallback. This is
guaranteed by [SWS_EM_02542]. Please note that [SWS_EM_01309] also applies

for Unexpected Self-termination.

Correct Execution State reporting performed by Processes is a part of consistent
behavior of Execution Management.

7.4.1.4 Application Reporting

[SWS_EM_02243] Handling Execution State Running
Upstream requirements: RS_EM_00103

[Execution Management shall return kInvalidTransition when a Process
reports Execution State kRunning (using the method ara::exec: :Execution-—
Client::ReportExecutionState) and the Process is not in Process State
Starting.|

To prevent denial-of-service attacks on Execution Management an implementation
could rate-limit acceptance of Execution State reports or could request the Operating
System to terminate the underlying process. However such reactions are not standard-
ized.

Execution Management differentiates between two types of Processes: Report—
ing Processes and Non-reporting Processes. Reporting Processes are
considered to be the normal form of Processes and Non-reporting Processes
are considered to be an exception.

Non-reporting Processes can be used to support running Executables which
have not been designed with the AUTOSAR Adaptive Platformin mind. For exam-
ple, if an Executable is available as binary only, if it is not feasible to patch its source
code or if the Executable is only used during development time.

The implicit transition to Running Process State is described by [SWS_EM_01402]

In safety related systems the system designer has to use Non-reporting Process
functionality with care. Such Processes will probably not provide safety critical func-
tionality and will not be monitored by Platform Health Management but still they
might influence other safety related Processes and therefore can introduce a safety
risk. To isolate Non-reporting Processes from safety critical parts Resource-
Group can be used (see Section 7.6).

An attempt to report Execution State by a Non-reporting Process is considered
an error by Execution Management.

AUTSSAR

[SWS_EM_01403] Reporting Non-reporting Process
Upstream requirements: RS_EM_00103

[ara::exec::ExecutionClient::ReportExecutionState shall treat it as a
Violation when invoked by a Non-reporting Process.]

7.4.2 Process States

Process States characterize the lifecycle of a Process from the point of view of
Execution Management. In other words, Process States represent the Exe-
cution Management internal tracking of the Execution States (see Section 7.4.1)
and hence there is no need for a standardized type. Note that each Process is in-
dependent and therefore has its own Process State. Process State is used by
Execution Management to resolve Execution Dependencies, manage timeouts, etc.

Additionally to the existing values for the Process State (Idle, Starting, Run-—
ning, Terminating, Terminated), the implementation may define its own Process
States, which are not in conflict/not replacing the existing ones.

Idle

Starting

process
created,

resources
allocated

Running

Terminating

Terminated
process
resources
freed

Figure 7.3: process Lifecycle

[SWS_EM _01002] Idle Process State
Upstream requirements: RS_EM_00103

[The Idle Process State shall be the Process State prior to creation of the
Process and to resource allocation. |

[SWS_EM _01003] Starting Process State
Upstream requirements: RS_EM_00103

[The Sstarting Process State shall apply when the Process has been created
and resources have been allocated. |

[SWS_EM_01004] Running Process State of Reporting Processes
Upstream requirements: RS_EM_00103

[The Running Process State shall apply to a Reporting Process after it has
reported kRunning Execution State to Execution Management. |

AUTSSAR

[SWS_EM _01402] Implicit Running Process State
Upstream requirements: RS_EM_00103

[ForNon-reporting Process the transition from Startingto Running Process
State shall implicitly apply after Execution Management has allocated the required
resources and created the run-time process. |

[SWS_EM_01404] Terminating Process State after Termination Request
Upstream requirements: RS_EM_00103, RS_EM_00011

[The Terminating Process State shall apply when Execution Management
sent SIGTERM signal to the Process. |

[SWS_EM_01006] Terminated Process State
Upstream requirements: RS_EM_00103, RS_EM_00011

[The Terminated Process State shall apply after the Process has terminated
and the Process resources have been freed. |

For[SWS_EM_01006], Execution Management observes the exit status of all Pro-
cesses. The mechanism is implementation dependent but could, for example, use the
POSIX waitpid () API.

From the resource allocation point of view, the Terminated Process State is sim-
ilar to the Idle Process State — there is N0 Process running and no resources
are allocated. However from the execution point of view, the Terminated Process
State is different from 1dle as it tells Execution Management that the Process
has already been executed, terminated and can be now restarted (if needed) as spec-
ified in [SWS_EM_01066]. The distinction between Process State Idle and Ter—
minated is relevant for resolving Execution Dependencies 0 Self-terminat-
ing Processes (see Section 7.4.4.1).

7.4.2.1 Synchronization with Platform Health Management

Platform Health Management requires Process State information for starting
and stopping of Supervisions. For details see [7].

Platform Health Management needs the information that a Supervised Process
reported Execution State kRunning ([SWS_EM_01004]) to start Alive Supervision.

[SWS_EM _01210] Report “kRunning received event” to Platform Health Manage-
ment

Upstream requirements: RS_EM_00103

[Execution Management shall inform Platform Health Management if a Su-
pervised Process has reported Execution State kRunning. |

AUTSSAR

Platform Health Management needs the information that termination of a Super-
vised Process will be initiated ((SWS_EM_01055]) to stop Intra-process Supervisions.

[SWS_EM 01211] Report “initiating process termination” event to Platform
Health Management
Upstream requirements: RS_EM_00103

[Execution Management shall inform Platform Health Management when a
Supervised Process termination is about to be initiated. |

Platform Health Management needs the information that a Supervised Process
is terminated ([SWS_EM_01006]) to supervise Self-terminating Processes.

[SWS_EM 01212] Report “process terminated” event to Platform Health Man-
agement

Upstream requirements: RS_EM_00103

[Execution Management shall inform Platform Health Management when a
Supervised Process is terminated. |

Hint: Which Processes are Supervised by Platform Health Management can
be determined by referring to the configuration of Plat form Health Management.

The above notifications are provided through Inter-Functional Cluster Interface(s) be-
tween Execution Management and Platform Health Management. AS such
interfaces are vendor-specific, their definition (signature) is not standardized.

If Execution Management is used in Safety Critical Platform, then it is suggested to
use Alive/Logical/Deadline supervision(s) and report their checkpoints appropriately to
Platform Health Management.

7.4.3 Trace Process State Transitions

The timing behavior of Processes is a mandatory part of the lifecycle of an applica-
tion. Wrong timing and timing shortages in Processes can lead to unexpected be-
havior or failures. Therefore it is important to provide a way to trace Process lifetime
events within the Execution Management. The following trace points are introduced
to be able to do a timing analysis of an application based on its Processes.

[SWS_EM_02573] State Transition logging — process created
Upstream requirements: RS_EM_00152

[Whenever Execution Management has created a process (see
[SWS_EM _01003]), Execution Management shall log a DltMessage of type

ProcessCreated.]

AUTSSAR

[SWS_EM_02574] State Transition logging — process kRunning received
Upstream requirements: RS_EM_00152

[Whenever Execution Management has received a kRunning (see
[SWS_EM_02003]), Execution Management shall log a DltMessage of type
ProcessKRunningReceived. |

[SWS_EM_02575] State Transition logging — process termination request
Upstream requirements: RS_EM_00152

[Whenever Execution Management is requesting a process to be terminated (see
[SWS_EM_01055]), Execution Management shall log a DltMessage of type Pro-
cessTerminationRequest.]

[SWS_EM_02576] State Transition logging — process terminated
Upstream requirements: RS_EM_00152

[Whenever a process terminates (independent of a success return result), Execution
Management shall log a DItMessage of type ProcessTerminated. |

7.4.4 Startup and Termination
7.4.4.1 Execution Dependency

Execution Management can derive an ordering for the startup and termination of
Processes Within State Management framework based on the declared Execu-
tion Dependencies. This ensures that applications are started before dependent
applications use the services that they provide and, likewise, that applications are shut-
down only when their provided services are no longer required.

The Execution Dependencies, see [TPS_MANI_01041] [2] and [constr_1606] [2],
are configured in the Execution Manifests, which is created at integration time
based on information provided by the application developer. An Execution Depen-—
dency defines the provider of functionality required by a Process necessary for that
Process to provide its own functionality. Execution Management ensures the de-
pendent Processes are in the state defined by the Execution Dependency before
the Process defining the dependency is started.

User-level applications are expected to use the service discovery mechanisms of Com-
munication Management as the primary mechanism for execution sequencing as
this is supported both within a Machine and across Machine boundaries. Thus user-
level applications should not rely on Execution Dependencies unless strictly nec-
essary. Which Processes are running depends on the current Function Group
States, including the Machine State, see Section 7.5. The integrator should en-
sure that all service dependencies are mapped to the State Management configuration,
i.e. that all dependent Processes are running when needed.

AUTSSAR

In real life, specifying a simple dependency to a Process might not be sufficient to
ensure that the depending service is actually provided. Since some Processes shall
reach a certain Execution State (see Section 7.4.1) to be able to offer their services to
other Processes, the dependency information shall also refer to Process State of
the Process specified as dependency. With that in mind, the dependency information
may be represented as a pair like: <process>.<processState>. For more details
regarding the Process States refer to Section 7.4.2.

The following dependency use-cases have been identified:

Dependency on Running Process State In case Process B has a simple depen-
dency on Process A, the Running Process State of Process A is specified
in the dependency section of Process B's Execution Manifest.

When Process B has a Running Execution Dependency t0 Process A,
then Process B will only be started once the Process A achieves Running
Process State.

Dependency on Terminated Process State In case Process D depends on
Self-terminating Process G, the Terminated Process State of Pro-
cess C is specified in the dependency section of Process D’s Execution
Manifest.

If Process Dhas Terminated Execution Dependency onProcess C, then
Process D will only be started once Process C reaches the Terminated state.

A Terminated Execution Dependency specified on a non self-terminating
Process IS considered to be a configuration error as this would indi-
cate a dependency that can only be fulfilled at the next group transition
[SWS_EM_CONSTR_00001]

Note: No use-case has been identified for an Execution Dependency on other
Process States,i.e. Idle or Terminating, and therefore these are not supported
for Execution Dependency configuration. See also [SWS_EM_CONSTR_01744].

[SWS_EM_CONSTR_01744] Definition of process state in the context of the Exe-
cution Dependency

Upstream requirements: RS_EM_00100

[The target ModeDeclaration referenced in the role ExecutionDependency.
processsState shall fulfill the following conditions:

e |t shall be owned by a ModeDeclarationGroup that is referenced by a Mod-
eDeclarationGroupPrototype (in the role t ype) that in turn shall be aggre-
gated by a Process.

e The shortNames of the encapsulated ModeDeclarations shall only be one of
the following values:

— Running

AUTSSAR

— Terminated

[SWS_EM_CONSTR_00001] Modeling execution dependency for the Termi-
nated state

Upstream requirements: RS_EM_00100

[A Terminated ModeDeclaration referenced in the Process.stateDepen-
dentStartupConfig.executionDependency shall only be allowed if the process
referenced in the stateDependentStartupConfig.executionDependency has
StartupConfig.terminationBehavior setto processIsSelfTerminating.]

Example 7.1

Consider a Process, DataLogger, which has an Execution Dependency on an-
other Process, Storage. For startup this means DatalLogger has a Execution
Dependency on Storage so the latter is required to be started by Execution Man-
agement before DataLogger so that DatalLogger can store its data.

Processes are only started by Execution Management if they reference a re-
quested Machine State Or Function Group State, but not because of config-
ured Execution Dependencies. Execution Dependencies are only used to
control a startup or terminate sequence at state transitions. Note that the scope of Ex—
ecution Dependency resolution is limited to one Function Group State only
(see [constr_1689] [2] and [SWS_EM_02245]).

[SWS_EM_01050] Start Dependent processes
Upstream requirements: RS_EM_00100

[During startup of a Process, Execution Management shall respect Execution
Dependencies by ensuring that each Process upon which the Process to be
started depends have reached its requested Process State (at some previous point
in time) during the current state transition before starting the Process. |

The same Execution Dependencies used to define the startup order are also used
to define the termination order. However the situation is reversed as Execution Man-—
agement is required to ensure that dependent Processes are terminated after the
Process to ensure that the services required remain available until no longer required.

[SWS_EM_01051] Termination of processes
Upstream requirements: RS_EM_00100
[During termination of a Process, Execution Management shall respect Execu-

tion Dependencies by ensuring that each Process upon which the Process to
be terminated depends is not terminated before termination of the Process. |

AUTSSAR

Example 7.2

Consider the same Process, DataLogger, as above which has an Execution De-
pendency on another Process, Storage. For termination the Execution Depen-
dency indicates Execution Management is required to only terminate Storage after
DataLogger so the latter can flush its data during termination.

Note that [SWS_EM_01051] merely requires Execution Management to not termi-
nate the dependent Processes before terminating a Process. It is not an error if the
Process has self-terminated so is not available to be terminated.

If N0 Execution Dependencies are specified between two Processes then no
order is imposed and they can be started or terminated in an arbitrary order.

Example 7.3
Consider three Processes:

e Storage, a service Process without any dependencies;

e StorageConsistencyChecker, a self-terminating Process, it requires Storage
tobe in Process State Running;

e ConfigReader, a service Process, it requires that the StorageConsistency-
Checker has reached Process State Terminated;

For startup this means Execution Management should start Storage and wait till
it reports kRunning, then Execution Management should start StorageConsis-
tencyChecker and wait till it terminates and only then start ConfigReader. For ter-
mination the Execution Dependency indicates that Execution Management can
terminate Storage and ConfigReader simultaneously because StorageConsistency-
Checker is already terminated and ConfigReader does not have a direct dependency
on Storage. If ConfigReader has to be terminated before Storage, then this can be
achieved by adding a direct Execution Dependency between ConfigReader and
Storage.

The required dependency information is provided by the application developer. It is
adapted to the specific Machine environment at integration time and made available
in the Execution Manifest.

Execution Management parses the information and uses it to build the startup se-
quence to ensure that the required antecedent Processes have reached a certain
Process State before starting a dependent Process [SWS_EM_01050].

[SWS_EM _01001] Execution Dependency error
Upstream requirements: RS_EM_00100

[If Execution Management needs to start Process A that depends on another
Process B and Process B is not part of the same Function Group State as
Process A, then Execution Management shall consider this as an Error and fail to
start Process A.|

AUTSSAR

Example 7.4

Let assume that Process “A” depends on the Running Process State of a Pro-
cess “B”. At a Machine State transition, Process “A” shall be started, because it
references the new Machine State. However, Process “B” does not reference that
Machine State, so itis not started. Due to the Execution Dependency between
the two Processes, Process “A” would never start running in the new Machine
State because it waits forever for Process “B”. This is considered to be a configura-
tion error and shall also cause run time error.

Please note that requirement [SWS_EM_01001] effectively forbids any Execution
Dependencies that spans outside of a single Function Group State (Or a Ma-
chine State) definition, see also [constr_1689] [2]. This is done on purpose, as
this kind of dependencies will introduce hidden dependencies between Function
Groups Of Function Group States and they will not be visible to state Man-
agement. For an illustration on which Execution Dependencies are permitted
see Figure 7.13. If dependencies between Function Groups need to be expressed
(e.g. mapping software could have dependency on GPS software), then this should be
done inside State Management. For more information see [11].

Unlike a Reporting Process,aNon-reporting ProcessiSinProcess State
Running directly after start. Regardless of whether the process has completed its
initialization phase and is ready to offer its services or not. This means that Running
Execution Dependencies are immediately satisfied and thus do not achieve the
original semantics when specified for a Non-reporting Processes without further
action.

This limitation can be overcome by introducing a Companion Process, which acts
as a representative of the Non-reporting Process. The Companion Process
waits for availability of the service provided by the Non-reporting Process and
reports kRunning t0 Execution Management. The Processes which in fact need
the services of the Non-reporting Process can be configured to be dependent on
the Companion Process. Please note that the Terminated Execution Depen-
dency is not affected as Execution Management is informed by the Operating
System when Non-reporting Processes are Terminated. Please see Figure
7.4 for more details.

AUTSSAR

state transition

Function Group1 [/~~~ FG1:Running ® L4
State b4 .

Terminated
@ Running ﬁ—/T
Idle !

Terminated

Running
Idle

T

Terminated

@ Running
ldle

Terminated

@ Running
ldle

I
I
I
I
I
I
I
I
I
I
I
|
|
|
I
|
|
I
|
|
|
|
I
4

Process State

Figure 7.4: Execution dependencies on Non-reporting Process

e Non-reporting Process (and Self-terminating Process) A refer-
ences FG1:Running. This process is started first (as it doesn’t have any Execu-
tion Dependencies configured) and automatically enters Running Process
State as per [SWS_EM_01402].

e Companion Process B is started after Non-reporting Process A (please
note that A and B are also standard AUTOSAR Processes) enter Running
state. Process B can use project specific method to assess if Process A is
fully functional and signal this to Execution Management by reporting (or not)
kRunning state.

e Process C is started when (and only when) Process B enters Running Pro-
cess State (i.e. reports kRunning). Please note this Execution Depen-—
dency will work independently from reporting / non-reporting configuration of
Process C.

AUTSSAR

e Process D has Terminated Execution Dependency configured on Self-
—terminating Process (and Non-reporting Process) A. As mentioned
earlier this works out of the box (no special action needed here).

7.4.4.2 Signal Mask

AUTOSAR Adaptive Platformis defining a POSIX based system for applications -
this includes POSIX signals. Signal handling is not a trivial task. Therefore interaction
with POSIX signals is limited to a necessary minimum in AUTOSAR Adaptive Plat-
form. The only reason for POSIX signal interaction is Execution Management’s
Process termination request (see [SWS_EM_01055]).

Execution Management starts Processes with a well defined signal mask to avoid
the situation of threads having an undefined signal mask (e.g. threads created by ara).

[SWS_EM_02578] Initial signal mask for Reporting Process
Upstream requirements: RS_EM_00103

[Execution Management shall start Reporting Processes with a signal mask
having all POSIX signals blocked except of:

e SIGABRT
e SIGBUS
e SIGFPE
e SIGILL

e SIGSEGV

The set of unblocked POSIX signals provided in [SWS_EM_02578] are raised by the
OS when an error occurs where there is no reasonable way to continue program exe-
cution. According to POSIX, ignoring these signals would lead to undefined behavior.
If one of these signals occurs, the default signal handling action, in this case abnor-
mal termination, is performed. Note also that the two POSIX signals s1GsToP and
SIGKILL cannot be caught or blocked.

Adaptive Application make use of ara::exec::ExecutionClient whichim-
plements catching the SIGTERM signal (see [SWS_EM_02577]).

Non-reporting Processes won't use the ara: :exec: :ExecutionClient and
will implement their own signal handling. For such applications Execution Manage-
ment prepares an empty signal mask.

AUTSSAR

[SWS_EM_02579] Initial signal mask for Non-Reporting process
Upstream requirements: RS_EM_00103

[Execution Management shall start Non-reporting Processes with an empty
signal mask. |

7.4.4.3 Arguments

Execution Management provides argument passing for a Process containing
one or more StateDependentStartupConfig inthe role Process.stateDepen—
dentStartupConfig. This permits different Processes to be started with different
arguments.

[SWS_EM_01012] Process Argument Passing
Upstream requirements: RS_EM_00010

[At the initiation of startup of a Process, the aggregated ProcessArgument of
the startupConfig referenced by the stateDependentStartupConfig shall be
passed to the Process by Execution Management based on [SWS EM 01072]
and [SWS_EM_01078]. |

Note that [SWS_EM_01012] deliberately does not specify the OS mechanism used to
start a Process, e.g. the exec-family based POSIX interface, as this is ultimately an
implementation specific property.

The first argument passed by Execution Management is the name of the Exe-
cutable.

[SWS_EM _01072] process Argument Zero
Upstream requirements: RS_EM_00010

[Argument 0 shall be set to name of the Executable. |

Execution Management Supports passing arguments to a Process in the same
way that a shell passes command line arguments to a POSIX process. Execution
Management assigns each argument.argument to an elementin the argv[] array,
starting at element index 1, and passes this to the Process main () function. Pro-
cessArgument ordering is used to preserve the semantics of an (option, argu-
ment) pair such as “-b value”, where the “~b” argument must precede the “value”
argument. This method supports the short form and long form argument passing con-
ventions typically used in POSIX environments.

AUTSSAR

[SWS_EM _01078] Process Argument strings
Upstream requirements: RS_EM_00010

[ProcessArgument.argument shall be passed to the Process in order with the first
ProcessArgument.argument starting at Process Argument 1. |

The order in which the defined ProcessArgument are passed is defined by the or-
dered startupConfig.processArgument aggregation.

7.4.4.4 Environment Variables

Execution Management initializes environment variables for Processes. Process
specific environment variables are configured in its Execution Manifest. Machine
specific environment variables are configured in the Machine Manifest. During run-
time environment variables are accessible via POSIX getenv () command.

[SWS_EM_02246] process specific Environment Variables
Upstream requirements: RS_EM_00010, RS_AP_00130

[Execution Management shall prepare environment variables based on the config-
uration from Process.stateDependentStartupConfig.startupConfig.envi-
ronmentVariable and pass them during a Process start. |

[SWS_EM_02247] Machine specific Environment Variables
Upstream requirements: RS_EM_00010, RS_AP_00130

[Execution Management shall prepare environment variables based on the con-
figuration from Machine.environmentvVariable and pass them during a Process
start. |

Please note that AUTOSAR meta model uses TagWwithOptionalVvalue for environ-
ment variables definition ([TPS_MANI_01208] and [TPS_MANI_01209] [2]). As ex-
plained there, the value (TagWithOptionalValue.value) can be omitted as a way
of specifying environment variable with empty value.

[SWS_EM_02249] Missing value from Environment Variable definition
Upstream requirements: RS_EM_00010, RS_AP_00130
[Whenever Execution Management finds environment variable definition, that has

TagWithOptionalValue.value missing, it should use empty string as a value for
this environment variable. |

AUTSSAR

[SWS_EM_02248] Environment Variables precedence
Upstream requirements: RS_EM_00010, RS_AP_00130

[Whenever the same environment variable is configured within both the Execution
Manifest and the Machine Manifest then Execution Management shall use
the environment variable value from the Execution Manifest.]

7.4.5 Machine Startup Sequence

Execution Management is the AUTOSAR Adaptive Platform’s first process.
When ready, Execution Management initiates the Machine State transition
from the off state (the default state before EM is started) to the startup state
([SWS_EM_01023], [SWS_EM_02250]). During the transition, Execution Manage-
ment requests startup of processes that exist in the Startup Machine State.

After the necessary state transition conditions have been met (see Section 7.5.5 and
Section 7.5.2.1), Execution Management reports Machine State Startup tran-
sition confirmation to State Management ([SWS_EM 02241]). At that point, Exe-
cution Management hands over responsibility for Function Group state manage-
ment (i.e. initiation of state change requests) to State Management.

On a Machine, which can be any group of resources, i.e. a physical environment, a
virtualized environment over a hypervisor, or an OS-level virtualization (container), Ex-
ecution Management is not necessarily the first process launched; Other processes
needed by the system may exist, such as an Operating System init process, or an
Operating System Micro-kernel user-level processes like drivers, filesystem, etc.
All of these processes might be started and managed outside of the context of the
AUTOSAR Adaptive Platform.

Please note that an application consists of one or more Executables. Therefore to
launch an application, Execution Management starts Processes as instances of
each Executable.

[SWS_EM_01000] Startup order
Upstream requirements: RS_EM_00100

[The startup order of the platform-level Processes shall be determined by Execu-
tion Management based on Machine Manifest and Execution Manifest in-
formation. |

Please see Section 7.2.3.

Figure 7.5 shows the overall startup sequence.

AUTSSAR Specification of Execution Management

AUTOSAR AP R24-11

{ OS Boot]

Read (processed) Manifests

= . . Execution Manifest

5 Machine Manifest Instance(s)

e

)

o

©

= Y

(3] s N

= Start Application(s)

5 5

- [

‘5 e ‘ S g

§ Enter Machine State @)
\ ()

L 5
(* N (75

Stop Application(s)
—
- J

Figure 7.5: Startup sequence

48 of 180 Document ID 721: AUTOSAR_AP_SWS_ ExecutionManagement

AUTSSAR Specification of Execution Management

AUTOSAR AP R24-11

\ -
] A Machine
Reporting Non-Reporting]
Process Process 1
1
1
1
1

AUTOSAR Adaptive
Platform

Adaptive
Foundation and
services

Execution Managment

Init
Process

Figure 7.6: AUTOSAR Adaptive Platform Boundary

49 of 180 Document ID 721: AUTOSAR_AP_SWS_ExecutionManagement

AUTSSAR

7.5 State Management

7.5.1 Overview

State Management functional cluster defines the operational state of an AUTOSAR
Adaptive Platform, While Execution Management performs the transitions be-
tween different states.

The Execution Manifest allows to define in which states the Modelled Pro-
cesses have to run (see [2]). As mentioned before, a Modelled Process is an
instance of an Executable, which is part of an Adaptive Application. State
Management mechanisms grant full control over the set of applications to be executed
and ensures that Processes are only executed (and hence resources allocated) when
actually needed.

Four different states are relevant for Execution Management:

Execution State — An Execution States characterizes the internal lifecycle of each
started Process, see Section 7.4.1

Process State — Process States are managed by an Execution Management
internal state machine. For details see Section 7.4.2.

Machine State — see Section 7.5.2
Function Group State — see Section 7.5.3

An example for the interaction between these states will be shown in section Section
7.5.4.

7.5.2 Machine State

[SWS_EM_CONSTR_02556] Mandatory states
Upstream requirements: RS_EM_00101

[Execution Management requires that exactly one Function Group with the
name "MachineFG" is configured for each Machine. This Function Group has
several mandatory states:

e Off,

Verify,

Startup,

Shutdown, and

Restart.

AUTSSAR

In order to clarify the required contents of the "MachineFG" function group and its
type, the ARXML model AUTOSAR_MOD_GeneralDefinition_MachineFG.arxml (avail-
able in MOD_GeneralDefinitions) provides a definition.

Additional Machine States can be defined on a machine specific basis and are
therefore not standardized.

The Execution Manifest defines the relation between processes and Function
Group States. Therefore itis possible to determine the set of executed processes for
each Function Group State. AFunction Group State is modeled by means
of ModeDeclaration, see [TPS_MANI _03145] and [TPS_MANI_03194] [2].

In the API, a Function Group is represented by the class ara::exec: :Func-
tionGroup, see [SWS_EM_02263] and a Function Group State by the class
ara::exec: :FunctionGroupState, see [SWS_EM_02269]. Class ara: :exec: :
StateClient performs state management during the lifetime of a Machine, see
[SWS_EM_02275].

Machine States (as well as other Function Group States) are requested by
State Management. The set of active states is significantly influenced by vehicle-
wide events and modes. For details on state change management see Section 7.5.5.

[SWS_EM_01032] Machine States configuration
Upstream requirements: RS_EM_00101

[Execution Management shall obtain the configuration of Machine States from
Function Group "MachineFG" within the SoftwareCluster with category
PLATFORM_CORE. |

[SWS_EM_CONSTR_02557] Scope of machine Function Group
Upstream requirements: RS_EM_00101

[The function-Group that represents the Machine Function Group group (see
[SWS_EM_CONSTR_02556]) shall only be referenced in the role claimedFunction-
Group by a SoftwareCluster of category PLATFORM_CORE. |

Please note that according to [constr_1788] [2] there must be exactly one Soft-
wareCluster with category PLATFORM_CORE on each machine.

The start-up sequence from initial state startup to the point where state Manage-
ment, SM, requests the initial running machine state statexyz is illustrated in Figure
7.7.

AUTSSAR

Startup to initial StatexXyYz

Operating System ‘ ‘ Execution Management [State Management ‘

main()

.
>

CreateProcess(SM)

_ ReportExecutionState(kRunning): ara::core::Result<void>

<

Y Y
|

_ GetlnitialMachineStateTransitionResult(): ara::core::Future<void>

__ SetState(FunctionGroupState &stateXYZ): ara::core::Future<void=>

AA »
<<future invocation from SetState>> oy
‘ Operating System ‘ ‘ Execution Management ‘ [State Management ‘

Figure 7.7: Start-up Sequence — from Startup to initial running state Statexyz

A successful Function Group state change sequence is illustrated in Figure 7.8. Here,
on receipt of the state change request, Execution Management terminates running
Processes and then starts Processes active in the new state before confirming the
state change to state Management.

AUTSSAR

-«

Iil
| |
| |

|
|
|
|
|
|
|
|
|
T
|
|
|
|

| Statellient:SetState() |

H< ______ fuwre U

loop For all Process-StartupConfigs which do not refer to the target FG state /
T

T
[Process termination]
SIGTERMI)

|

|
7

|

|

|

|

|

|

|

|

|

|

| EXIT_SUCCESS() l__

: “““““ Can happenin
parallel

|

1

loop For all Process-StartupConfigs which refer to the target FG state /

[Process Start] | i Process B
: create()
| -
: ! ExecutionClient::ReportExecutionState(kRunning)
|
|
|
|
|
|
|

X

Success

v U

Figure 7.8: State Change Sequence - Success

Figure 7.9 shows a Function Group state change which is continued even if a termi-
nation timeout happens. Figure 7.10 shows a Function Group state change which is
aborted because of a start-up timeout.

AUTSSAR

I
I
! StateClient::SetState()

:Future

loop For all Process-StartupConfigs which refer to the target FG state/
|

[Process Start]

opt Start-up Timeout /'

I

I

I

I

1

)

)

1 loop For numberOfRestartAttempts times /

I

i i Process B

! o ____Greate) _______________-

) D-

)]

d {Start-up Timgout} !

! 1 ExecutionClient::ReportExecutionState(kRunning) X

= ?

i kil (e.g. via SIGKILL) !

i 0

! 1
N 1

f ‘Success >4

O
]
!

I
[l
[l
i I
[l

Figure 7.9: State Change Sequence - Termination Timeout

AUTSSAR

1 |
1 |
N StateClient::SetState() |

loop For all Process-StartupConfigs which refer to the target FG state/
|

opt Start-up Timeout /

[Process Start]

|
loop For numberOfRestartAttempts times/

i

1

1

|

i

I

1

}

1 1 Process B
: dr,,,,,,,,,,,,,,,,,,EE@?Q ,,,,,,,,,,,,,,,,,,
I

i {Start-up Timeo t}I i
1 |
I

|

I

I

I

|

I

I

I

I

i

ExecutionClient::ReportExecutionState(kRunning)

kil (e.g. via SIGKILL)

-t d--0--

:kFailed

o= !
1 i H

EMaborts Function Group state transition.
Function Group is in Undefined Function
Group State.SMhas toreact.

Figure 7.10: State Change Sequence - Start-up Timeout

There are more cases which lead to failure during Function Group state change, which
are not illustrated here. For details see Section 7.5.5 "State Transition" and Section
8.2.4.8 "StateClient::SetState".

7.5.2.1 Startup

[SWS_EM_02250] Machine State Startup
Upstream requirements: RS_EM_00101

[Execution Management shall enter Unrecoverable State if Execution
Management is not able to parse the startup state information of Function Group
"MachineFG". |

Execution Management depends on the existence of a Startup state
[SWS_EM_CONSTR_02556]. However, at run time the state may not be available
to Execution Management for @ number of reasons (e.g. misconfigured develop-
ment system, corrupted file system, memory errors etc.). While these situations may
not be common, to avoid implementation specific behavior, Execution Management
should have standardized reaction to them.

AUTSSAR

[SWS_EM_01023] Self initiation of Machine State Startup transition
Upstream requirements: RS_EM_00101

[Execution Management shall self initiate the state transition to the startup Ma-
chine State.]

Please note that for Machine State transitions, the requirements of section Section
7.5.5 apply.

[SWS_EM_02555] Failure in Machine State Startup transition
Upstream requirements: RS_EM_00101

[Execution Management shall enter Unrecoverable State inthe event of failed
transition to the Startup Machine State.|

A failure in transition to Startup Machine State is considered as a serious prob-
lem. In that event Execution Management can’t be sure what level of functionality is
available and if a failed state transition can be handled by Sstate Management. Itis
worth to note that the Sstate Management itself can be unavailable or its functionality
can be very limited at that point in time.

[SWS_EM_02241] Machine State Startup Completion
Upstream requirements: RS_EM_00101

[Upon completion of initial (self initiated) Machine State transition to the startup
state, Execution Management shall make the result of that transition available
to State Management through ara::exec::StateClient::GetInitialMa-—
chineStateTransitionResult API.|

[SWS_EM_02583] Machine State Startup transition result access
Upstream requirements: RS_EM_00101

[ara::exec::StateClient::GetInitialMachineStateTransitionResult
shall return kInvalidMetaModelIdentifier if the calling Process has no
FunctionGroupPortMapping t0 Function Group "MachineFG".]|

Please note that the notification in [SWS_EM 02241] is not done via broadcast mes-
sage but has to be requested by State Management viathe ara::exec::State-
Client::GetInitialMachineStateTransitionResult APIL.

The function ara::exec::StateClient::GetInitialMachineStateTransi-
tionResult retrieves the result of the Machine State’s initial transition to the Startup
state. After the Startup state is reached (as described by [SWS_EM_02241]) Execu-
tion Management does not initiate any further Function Group State changes
(this includes Machine State). Instead such changes are requested by State
Management and then performed by Execution Management.

AUTSSAR

Execution Management Will be controlled by other software entities and should
not execute any Function Group State changes on its own (with one exception:
[SWS_EM_01023]). This creates some expectations towards system configuration.
The specification expects that state Management will be configured to run in ev-
ery Machine State (thisincludes Startup, Shutdown and Restart) [SWS_SM -
CONSTR_00001] [11]. Above expectation is needed in order to ensure that there is
always a software entity that can introduce changes in the current state of the Ma-
chine. If (for example) system integrator doesn’t configure Sstate Management to
be started in Startup Machine State, then Machine will never be able transit to
any other state and will be stuck forever in it. This also applies to any other Machine
State that doesn’t have state Management configured.

The possibility that the Machine State transition to the Startup state is never
reached shall be taken into account. In this case the state Management can inter-
rupt the startup state transition and request e.g. a recovery state using the ara: :
exec::StateClient::SetState interface. The ara::exec::StateClient::
GetInitialMachineStateTransitionResult would return the value kOpera-
tionCanceled.

7.5.2.2 Shutdown/Restart

Execution Management does not perform shutdown/restart of the Machine to
avoid embedding project-specific behavior within Execution Management. Instead
a project-specific actor is expected to provide a mechanism to shutdown/restart the
Machine, such as, a standalone process that is configured to be started by Execu-
tion Management during transition to the Shutdown / Restart Machine State
or a process started in Startup Machine State that waits for a signal before shut-
ting down the Machine. This approach enables the control of both WHEN and HOW
shutdown/restart occurs to be managed in a project-specific manner. See [constr_-
1618] and [constr_1619] [2].

Requirements [SWS_EM_02241] and [SWS_EM_01023] dictate a dependency by

Execution Management on the presence of the Startup Machine State and
[SWS_EM_CONSTR_02556] mandates configuration of Sstartup and Shutdown /
Restart Machine States. However there is no equivalent requirement on Shut-
down Or Restart Machine States as their omission does not prevent Execution
Management from starting. Therefore, the response by Execution Management to
this misconfiguration is implementation-specific.

A request to Execution Management to change the current Machine State to
either Shutdown or Restart is handled the same as any other Function Group state
change request. From the point of view of Execution Management all Function
Groups are independent and therefore changes to them, can be applied without any
side effects.

However, from the point of view of State Management, where knowledge of the de-
pendencies between different Function Groups exist this may not be true. AUTOSAR

AUTSSAR

assumes that state Management will requests "MachineFG" Shutdown or Restart
when it’s valid to do so; see [11] for advice on how to orchestrate shutdown of the
Machine.

Please note it is system integrator’s responsibility to carefully consider when system
shutdown / restart should be requested because all Processes which are still running
will not be terminated by Execution Management, which means that they will not be
able to persist their data.

As mentioned in Section 7.5.2.1, AUTOSAR assumes that state Management will
be configured to run in Shutdown and Restart. State transition is not a trivial system
change and it can fail for a number of reasons - in which case State Management
should remain alive to report errors and wait for further instructions. Please note that
the purpose of entering the Shutdown or Restart state is to shutdown or restart the
Machine (this includes state Management) in a clean manner.

[SWS_EM_CONSTR_02558] Ability to shut down
Upstream requirements: RS_EM_00101

[In the context of one Machine, at least one Process shall have a stateDe-
pendentStartupConfig.functionGroupState that has the shortName Shut-
down. |

[SWS_EM_CONSTR_02559] Ability to restart
Upstream requirements: RS_EM_00101

[In the context of one Machine, at least one Process shall have a stateDepen-
dentStartupConfig.functionGroupState that has the shortName Restart.]

[SWS_EM_02549] MachineFG.Off handling
Upstream requirements: RS_EM_00101

[Execution Management shall refuse a request to change "MachineFG" Func-
tion Group Stateto Off with error kInvalidTransition.]

7.5.3 Function Group State

If there is a group of applications installed on the machine, it will be useful to have
ability of controlling them coherently. For that very reason the concept of Function
Groups was introduced to AUTOSAR Adaptive Platform.

Each Function Group hasits own set of Processes and set of states called Func-
tion Group States. Each Function Group State defines which Processes
shall be started when state Management requests Function Group State acti-
vation from Execution Management.

AUTSSAR

The Function Groups mechanism is very flexible and is intended as a tool used to
start and stop Processes of applications. System integrator can assign Processes
to a Function Group State and then requestit by State Management. For de-
tails on state change management see Section 7.5.5.

A Modelled Process may not be assigned to more than one Function Group
[constr_1688] [2]. To see why this constraint is required consider the contrary a Mod-
elled Process mapped to two states in two Function Groups. The Modelled
Process is now running in the two states and a Function Group State transition
in either state would require the Process to be terminated. This termination would
violate the integrity of the second Function Group State and hence the constraint
exists to prevent this situation.

In general, Machine States (see Section 7.5.2) are used to control machine lifecycle
(startup/shutdown/restart) and processes of platform level applications, while other
Function Group States individually control Processes which belong to groups
of user-level applications. Please note that this doesn’t mean that all Processes of
platform level applications have to be controlled by Machine States.

Figure 7.11 shows an example of state change sequence where several Pro-
cesses reference Machine States and Function Group States of two addi-
tional Function Groups FG1 and FG2. For simplicity, only the three static Process
States Idle, Running, and Terminated are shown for each process.

AUTSSAR

®

©

Function Group 1

®

Function Group 2

®
©

MachineFG | o ‘ ‘ Startup ‘ ‘ Running ‘ ‘ Diagnostics ‘ ‘Shutdown

State

Terminated
Running j
Idle i

Terminated |
Running y /l/
de |V

Terminated
Running
Idle

Process State

FG1:0ff ‘ ‘FGl:Running ‘ ‘FGl:Oﬁ
State

Terminated
Running
Idle

Terminated
Running
Idle

FG2:0ff ‘ ‘FGZ:Running ‘ ‘FGZ:FaIIhack‘ ‘FGZ‘ ‘FGZ:Diag ‘ ‘FGE:Oﬁ
State Off

Terminated
Running /1/
Idle

different
StartupConfigs

Terminated
Running

Idle \
same

StartupConfig

Figure 7.11: State dependent process control

Process A references the Machine State Startup. ltis a Self-termi-
nating Process, i.e. it terminates after executing once.

Process Breferences Machine States Startup and Running from different
StateDependentStartupConfigs [constr_10411]. Multiple startup configu-
rations are required as the process depends on the termination of Process A,
i.e. an Execution Dependency has been configured, as described in Section
7.4.4.1

Process C references Machine State Running only. It terminates when
Machine State Diagnostics isrequested by SsState Management.

Processes D and E references Function Group State FG1:Running only
and there is N0 Execution Dependency configured between them. Execu-
tion Management will start and terminate them in an arbitrary order (e.g. in
parallel if possible).

AUTSSAR

e Process F references FG2:Running and FG2:Fallback. It has different
startup configurations assigned to the two states, therefore it terminates at the
state transition and starts again, using a different startup configuration.

e Process G references FG2:Running and FG2:Fallback similarly to Pro-
cess F however the states are referenced from the same StateDepen-
dentStartupConfig therefore itis not restarted at the state transition and con-
tinues execution.

System design and integration should ensure that enough resources are available on
the machine at any time, i.e. the added resource consumption of all Processes which
reference simultaneously active states should be considered.

A proper system configuration requires that each Process references in its Ex—
ecution Manifest one or more Function Group States (which can be Ma-
chine States) ofthe same Function Group. Ifa Process doesn’t reference any
Function Group States it will never be started, for more details please refer to
[SWS_EM_01066] and Section 7.5.5 State Transition.

EachModelled Process isassignedto one or several startup configurations (Star-
tupConfig), which each can define the startup behavior in one or several Function
Group States (including Machine States). For details see [2]. By parsing this
information from the Execution Manifests, Execution Management can de-
termine which Modelled Processes need to be launched if a specific Function
Group State is entered, and which startup parameters are valid.

[SWS_EM_01033] process start-up configuration
Upstream requirements: RS_EM_00009, RS_EM_00101

[To enable a Modelled Process to be launched in multiple Function Group
States, Execution Management shall be able to configure the Process started
on every Function Group State change based on information provided in the Ex-
ecution Manifest.]|

Please note AUTOSAR doesn’t support the possibility of assigning a single Process
to more than one Function Group, see [constr_1688] [2].

[SWS_EM_01110] Off States
Upstream requirements: RS_EM_00101
[Each Function Group (including the Function Group "MachineFG") has an

Off State which shall be used by Execution Management as initial Function
Group State.]|

Within any FunctionGroup, including "MachineFG", the “0ff” state is mandatory
as the initial state [TPS_MANI_03195] [2] and cannot have Modelled Processes

AUTSSAR

mapped according to [constr_3424] [2]. [SWS_EM_01110] and [SWS_EM_01023] to-
gether define the very first Function Group state transition after the power up.

Processes reference in their Execution Manifest the states in which they want
to be executed. A state can be any Function Group State, including a Machine
State. For details see [2], especially "State-dependent Startup Configuration" chapter
and "Function Groups" chapter.

The arbitrary state change sequence as shown in Figure 7.8 applies to state changes
of any Function Group - just replace "MachineFG" by the name of the Function
Group. On receipt of the state change request, Execution Management terminates
no longer needed Processes and then starts Processes active in the new Func-
tion Group State before confirmingthe state changeto Sstate Management. For
details see Section 7.5.5.

7.5.4 State Interaction

Figure 7.12 shows a simplified example for the interaction between different types of
states, after state Management functional cluster has requested different Func-
tion Group States . One can see the state transitions of the Function Group
and the process and Execution States of one Process which references one state
of this Function Group, ignoring possible delays and dependencies if several Pro-
cesses were involved.

AUTSSAR

vehicle management, error management, diagnostics, authorized applications, etc.

A
ara:.com

State Management

A 4

Arbitration of input data (e.g. state requests, events) to determine current target states

5 £
1 1
SetState(State2) I return SetState(State3) : return
: (success) : (success)
Execution Management | i
1 [}
1 [}
FG1:State1
initial state of | Y Y
Function State Transition FG1:State2 State Transition FG1:State3
Group “FG1*
(example)
State Transitions A A
FG1 State managed by EM : !
: :
[} 1
Idle Starting Terminated
(Execution ¥ process v
Manifest Becute created, Schedule Running Eminate Terminating process
references resources re?;)euerges
FG1:State2) allocated
Process Lifecycle 1} ?
Process State | managed by EM . :
: i
1 [}
! SIGTERM : EXIT SUCCESS
ReportExecutionState 1
schedule g
Start() (Running)! | process
T : terminated
1
1
Initializing T i1l Terminating '
/ 'créate rocééé)\ | application erform main | Terminate ST AL :
/ p \ data P free resources, 1
allocate initialization eIz ext || F- l‘”gger
. resources
Execution State optional 4
1 confirm
process '

Figure 7.12: Interaction between states

7.5.5 State Transition

State Management can request to change one or several Function Group
States (including the Machine State), using APl described in Section8.2.4. ara: :
exec::StateClient::SetState allows State Management to request several

Function Group State changes in parallel.

If Machine State change is re-

quired, ara::exec: :FunctionGroup has to be created using an ara: :core::
InstanceSpecifier which is mapped to the ModeDeclarationGroupProto-
type representing MachineFG.

AUTSSAR

[SWS_EM 02298] Request of a state transition different to the state that the
Function Group is already in transition to

Upstream requirements: RS_EM_00101

[After successful validation of a ara: :exec::StateClient: :SetState call fora
Function Group that is already under state transition, Execution Management
shall cancel the ongoing Function Group State transition (and set that request’s
ara::core: :Future o kOperationCanceled) before starting the new Function
Group State transition (and returning a new ara: :core: :Future for the new re-
quest). |

[SWS_EM_02296] Request of a state transition to a state that the Function Group
is already in transition to

Upstream requirements: RS_EM_00101

[After successful validation of a ara: :exec::StateClient::SetState call fora
Function Group that is already under state transition, Execution Management
shall:

e set the ara::core::Future of the previous request to kOpera-
tionCanceled if there is one

e return anew ara: :core: :Future for the new request

e continue the ongoing Function Group state transition

There is only one situation where a transition to a state could be performed without a
previous request. When Execution Management is performing the initial transition
to "MachineFG" startup [SWS_EM_01023], State Management can decide to request
a different state of "MachineFG". In this situation there is no previous request, so
thereisno ara: :core: :Future, that can be set to kOperationCanceled.

Before Execution Management cancels an ongoing request according to
[SWS_EM_02298] or [SWS_EM_02296] the new request should be assessed as valid,
this includes, but is not limited to, [SWS_EM_02549].

Please note that [SWS_EM_02298] merely ensures that Execution Management
first informs the requester of the ongoing transition (instance of ara: :exec: :State-
Client) about the cancellation, before informing the new requester that the new re-
quest has been accepted. Both requesters could be the same instance of ara::
exec::StateClient.

AUTSSAR

[SWS_EM_02295] Request of a state transition to a state that the Function Group
is already in
Upstream requirements: RS_EM_00101

[ara::exec::StateClient::SetState shallignore the request and returnimme-
diately with success. |

Note that an error domain value is not used for [SWS_EM_02295] as this would be
interpreted as an error by State Management and thus trigger the associated error
handling.

There are no other requirements or assumtions on order in which requests from ara: :
exec::StateClient::SetState are processed.

Requesting the same Function Group State like before (independently if the pre-
vious state request is already finished or still ongoing) shall be prevented, because it
might lead to unwanted execution dependencies. When the same Function Group
State is to be requested again another state has to be requested before. Please
note that Sstate Management can repeat state transition request (to the same state)
if previous transition ended with error. This is allowed because a failed state transition
is considered as invalid Function Group State.

Since Execution Management allows a new ara: :exec::StateClient::Set-
State call to interrupt an ongoing transition and thus change the destination Func-
tion Group State of the transition, it may happen (especially in misconfigured sys-
tem, or during the development phase) that some of ara: :exec::StateClient::
SetState requests will be issued by mistake. It is in the best interest of Execution
Management to inform requester (instance of ara::exec::StateClient) of the
ongoing transition, that it had been canceled by a newer request as soon as possible.

AUTSSAR

(> state

> Process

—_— dependencv
—>X— = forbidden dependency

Figure 7.13: Example configuration for state transition

Before we specify how internals of a state transition works, let's consider an exam-
ple configuration illustrated in figure Figure 7.13. As we can see Execution De-
pendencies that spans outside of a Function Group and moreover of a single
Function Group State are forbidden. The dependency from Process B (inside
Function Group FG _B)to Process A (inside Function Group FG_A) is forbid-
den, as it would introduce hidden dependencies between Function Groups that are
not visible to State Management. If system configuration requires this kind of depen-
dencies, please see [11] for advice on how to configure them. Dependencies outside
of a single Function Group State definition are forbidden, as they would result in
starting a Process that is not configured to run in the given state. For more infor-
mation on Execution Dependencies see Section 7.4.4.1 ((SWS_EM 01001] and
[constr_1689] [2]).

Please note that Process B has different Execution Dependencies in Func-
tion Group State ABC and Function Group State XYZ. This configuration
requires existence of two different startup configurations (StateDependentStar—
tupConfig), which in turns will mandate Process B restart if State Management
request Function Group State change from ABC to XYZ. This is enforced by
[SWS_EM_02251].

AUTSSAR

From the above we can conclude that each Function Group is a separate entity
and state transition of one Function Group doesn’'t have side effects on another
Function Group. Please note that this is true from the point of view of Execution
Management and may differ from the point of view of State Management (see [11]
if you need more information on this).

In the following requirements the Execution Manifest of a Modelled Process
is the formal modelling of Process startup behaviour and is implemented by means
of the aggregation of meta-class stateDependentStartupConfiginthe role Pro-
cess ([TPS_MANI_01012] [2]).

The term "the Process references a State" indicates a functionGroupState that
references an instance of StateDependentStartupConfig within the Startup-
Config that is applicable for the Process associated with the specific Function
Group State.

CurrentState is the current (currently active) state of a Function Group for
which the state transition was requested; or the current Machine State if the Func-
tion Group has "MachineFg" name. In short thisis a Function Group State
Oor Machine State.

RequestedState is the state that will become the CurrentState, once the state
transition finishes successfully.

In other words CurrentState is the starting point of the transition, the list of the Pro-
cesses that should be currently running inside the Function Group (please note the
existence of self-terminating Processes). RequestedState is a destination
point of the state transition, the list of the Processes that will be running inside of
the Function Group once the state transition finishes successfully (please note the
existence of Self-terminating Processes).

StartupConfig is a StateDependentStartupConfig that is aggregated in the
role Process.stateDependentStartupConfig for a given Process.

State transition is a complicated process, however it is composed out of three simple
logical steps:

e Terminate all Processes that are currently running and are not needed in the
RequestedState

e Restartall Processes that are currently running and have StartupConfig that
differs between the CurrentState and the RequestedState

e Start all Processes that are not running currently and are needed in the Re-
questedState

Please see Section 7.4.1 and Section 7.4.2 for more detail information on how Exe-
cution Management handles termination and start of Processes (restart is a se-
quence of termination and start).

AUTSSAR

[SWS_EM_01060] State transition - termination behavior
Upstream requirements: RS_EM_00101

[On state transition Execution Management shall request termination
([SWS_EM _01055]) of each Process that references the CurrentState in its
Execution Manifest, but does not reference the RequestedState and has a
Process State different than [Idle or Terminated].]

[SWS_EM_02251] State transition - restart behavior
Upstream requirements: RS_EM_00101

[On state transition Execution Management shall terminate all Processes that
reference the CurrentState inits Execution Manifest, but references the Re—
questedState with different startupConfig and have Process State different
than [Idle or Terminated].|

Please note that [SWS_EM_02251] only request a termination of Processes, the start
part will fall under [SWS_EM_01066] requirement thus making the restart complete.

Execution Management monitors the time required by each Process to terminate.
The default value of the Process termination timeout is defined by the system inte-
grator in the Machine Manifest, see [TPS_MANI_03151] [2]. This value may be
overwritten in the startup configuration of individual Processes by defining the ter-
mination timeout parameter in the Execution Manifest, see [TPS_MANI_01278]

2].

[SWS_EM_01065] State transition - process termination timeout monitoring
Upstream requirements: RS_EM_00101

[Execution Management shall monitor the time required by the Process to termi-
nate (the time needed by the Process to reach the Terminated Process State).]

[SWS_EM_02255] State transition - process termination timeout reaction
Upstream requirements: RS_EM_00101

[In the event of a Process termination timeout (defined by configuration startup-
Config.timeout), Execution Management shall request the Operating Sys-
tem to forcibly terminate the underlying process. |

On multi-process POSIX platforms, this could be achieved using a SIGKILL signal.

[SWS_EM_02258] State transition - process termination timeout reporting
Upstream requirements: RS_EM_00101

[When the termination of a Process resulted in the timeout, Execution Manage-
ment shall log the event, if logging is activated. |

AUTSSAR

Execution Management continues a state-transition even in the presence of non-
terminating processes, since the target Function Group State will be reached as
these processes will be killed (see [SWS_EM_02255] and [SWS_EM_01060]). Con-
tinuing in case of a timeout on termination assures in particular, that the Function
Group State "Off" can always be reached (provided that a process termination on
OS level is always successful).

This is different in case of processes that timeout during start-up (see
[SWS_EM 02259]): these processes cannot be forced to start and the Function
Group State will not be reached.

[SWS_EM 01066] State transition - start behavior
Upstream requirements: RS_EM_00101

[On state transition Execution Management shall start all Processes that ref-
erences the RequestedState in its Execution Manifest and have Process
State thatis [Idle or Terminated)].]

Execution Management monitors the time required by each Process to start. The
start-up timeout is defined per Process startup configuration by the system integrator
inthe Execution Manifest, see [TPS_MANI_01277] [2].

[SWS_EM_02253] State transition - process start-up timeout monitoring
Upstream requirements: RS_EM_00101

[Execution Management shall monitor the time required by the Process to start-
up (the time between Execution Management requesting process creation from
the operating system and the Process successfully reporting the Running Process
State).|

Execution Management monitors the time required by each Process to start. The
value of the Process start-up timeout is defined by the system integrator in the Ex-
ecution Manifest, see [TPS_MANI_01277] [2]. Please note that startup time for
Non-reporting Processes iSzerobecause Non-reporting Processes imme-
diately switch from Process State Idle to Running skipping the starting state.

[SWS_EM_02260] State transition - process start-up timeout reaction
Upstream requirements: RS_EM_00101
[In the event of a Process start-up timeout (defined by configuration startupCon-

fig.timeout), Execution Management shall attempt to restart the Process up to
numberOfRestartAttempts times. |

Process start-up timeout is caused by a malfunction and therefore Execution Man-
agement requests termination of the Process by the operating system (e.g. using

AUTSSAR

SIGKILL) rather than requesting termination through SIGTERM as the Process is
assumed to be in an erroneous state.

[SWS_EM_02280] Effect on Execution Dependency
Upstream requirements: RS_EM_00101

[A restart attempt according to [SWS_EM_02260] shall not fulfill any terminated de-
pendencies. |

[SWS_EM 02310] State transition - process termination after start-up timeout
reaction
Upstream requirements: RS_EM_00101

[In case a Process start-up timeout occurred after Execution Management at-
temted to restart the Process numberOfRestartAttempts times, Execution
Management shall request the Operating System to terminate the underlying Pro-
cess.]

[SWS_EM_02259] State transition - process start-up timeout reporting
Upstream requirements: RS_EM_00101

[When the start-up of a Process resulted in the timeout, Execution Management
shall perform following actions:

1. Stop the Function Group State transition, so State Management can de-
cide how to proceed.

2. log event, if logging is activated
3. Setthe CurrentState o Undefined Function Group State.

4. Report kOperationFailed in the ara::exec::StateClient::SetState
interface to indicate that the State change request cannot be fulfilled.

5. Report the configured executionError via the ara::exec::State-
Client::GetExecutionError interface.

[SWS_EM_02552] State transition - integrity or authenticity check failed
Upstream requirements: RS_EM_00101

[When the start-up of a Process results in the failure of an integrity or authentic-
ity check and strictMode is active ((SWS_EM_02305]), Execution Management
shall perform following actions:

1. Stop the Function Group State transition, so State Management can de-
cide how to proceed.

2. log event, if logging is activated

AUTSSAR

3. Setthe CurrentState to Undefined Function Group State.

4. Report kIntegrityOrAuthenticityCheckFailed in the ara::exec::
StateClient::SetState interface to indicate that the State change request
cannot be fulfilled.

5. Report the configured executionError via the ara::exec::State-
Client::GetExecutionError interface.

[SWS_EM_02312] Order of process start-up timeout reaction
Upstream requirements: RS_EM_00101

[Execution Management shall perform the terminate reaction [SWS_EM_02310]
before reporting to State Management [SWS_EM_02259]. |

When starting new Processes, Execution Management iS obligated to perform
dependency resolution. When doing so it may came across a configuration where
Process B depends on Process A, but Process A needs to be restarted during
state change. Another example is a configuration where Process D depends on a
Self-terminating Process CtobeinProcess State Terminated. Process
C has to be started and terminated in the requested Function Group State to fulfill
D’s Execution Dependency. Please see Figure 7.14 for more details.

AUTSSAR

Information Classification: Internal

Function Group 2 FG2:Off FGZ:Running..// G2:Fallbac
State
different
StartupOptions

Terminated
@ Running A/Iﬁ
Idle [

. 1
1

dependency on process A
“Running”

Terminated

Running
Idle

Self
Termination

Terminated /
@ Running I/f
Idle :

I
|
I
I
Terminated ;
(:) Running . !
Idle : /
dependency on process C
“Terminated”

Figure 7.14: Dependency resolution during state change

[SWS_EM_02245] Dependency resolution during state change
Upstream requirements: RS_EM_00101

[Execution Management shall perform Execution Dependency resolution
against the Processes that are configured for Requestedstate. |

Please note that [SWS_EM_02245] doesn’t bring new functionality to state transition.
It merely ensures that [SWS_EM_02251] and [SWS_EM_01066] are performed on
Process A, before [SWS_EM_01066] is performed on Process B. If this order is
not ensured then [SWS_EM_02245] could not be satisfied as Process A will be a
Process that is configured for CurrentState and not for RequestedsState.

AUTSSAR

When considering Figure 7.14 we can imagine a following situation. Should self-
terminating Process C indicate it is running, reported kRunning t0 Execution
Management, but fails to terminate due to internal misbehaviour (for instance). Ex-
ecution Management remains unable to detect any fault in Process C (since it
previously reported kRunning), consequently it would be unable to start Process D
resulting in a deadlock that blocks Function Group State transition from comple-
tion. Projects that use Terminated Execution Dependency must handle this situation
outside of Execution Management, for example this can be done in State Man-
agement .

Description of Function Group State transition in this chapter may give impres-
sion that, it is required to first stop all Processes that are not needed in Requested-
State, before you can start any of the Processes that are needed. Please note that
this is not the case. Step by step approach of this chapter was chosen to introduce as
much clarity as possible, when describing Function Group State transition. Imple-
menters are free to parallelize as much steps (needed for state transition) as possible
for a particular implementation.

Execution Management considers a state transition has been performed success-
fully when the following have occurred:

e Dependency resolution ([SWS_EM_02245]) has been performed.
e All Processes expected to terminate have terminated ([SWS_EM_01060])

e All started ([SWS_EM 01066]) or restarted [SWS_EM 02251]) Reporting
Processes have reported kRunning.

Please be aware that [SWS_EM_02315] can also negatively impact the Function
Group State transition result.

[SWS_EM_01067] Actions on Completion State Transition
Upstream requirements: RS_EM_00101

[On successful completion of a state transition, Execution Management shall set
the CurrentsState to the RequestedState and report success back to State
Management. |

[SWS_EM 02315] Unexpected Termination of processes configured for the Re-
quested State during a Function Group State transition

Upstream requirements: RS_EM_00101

[In case of Unexpected Termination of a process configured for the Requestedstate,
Execution Management shall perform the following actions:

1. Stop the Function Group State transition, so State Management can de-
cide how to proceed.

2. log event, if logging is activated

AUTSSAR

3. Setthe CurrentState to Undefined Function Group State.

4. Report kUnexpectedTermination in the ara::exec::StateClient::
SetState interface to indicate that the State change request cannot be fulfilled.

5. Return the configured executionError via the ara::exec::StateClient::
GetExecutionError interface.

Please note that [SWS_EM_02315] also applies t0 Unexpected Self-termina-
tion.

[SWS_EM 02316] Unexpected Termination of a process not configured for the
Requested State during a Function Group State transition

Upstream requirements: RS_EM_00101

[In case of Unexpected Termination Of a Process not configured for the
RequestedState during a Function Group State, Execution Management
shall continue the Function Group State transition and log the event, if logging
is activated. |

If Process B depends on the termination of Process A during a Function Group
State transition (this means that both are configured for the RequestedState), the
transition fails if Process A dies unexpectedly before reaching the Terminated pro-
cess state ([SWS_EM_02315]).

However if a process is only configured for the CurrentState and it dies unexpect-
edly during the Function Group State transition, then this doesn’t stop the Func-
tion Group State transition. The Unexpected Termination islogged and nor-
mal state transition activities are resumed ([SWS_EM_02316]). The reason to continue
the transition is twofold:

e The Process was already marked to be terminated by Execution Manage-
ment (it was not configured for the RequestedsState). It is irrelevant from the
State Management point of view if it terminated as expected or due to an internal
error.

e Transition to the off state is always guaranteed to be successful and can be
used as a reaction to an error condition.

[SWS_EM_02297] StateClient usage restriction
Upstream requirements: RS_EM_00101
[stateClient API shall treat it as a Violation when invoked by a Process

with Process.functionClusterAffiliation configured to anything else than
STATE_MANAGEMENT. |

AUTSSAR

[SWS_EM 02584] SetState access control
Upstream requirements: RS_EM_00101

[ara::exec::StateClient::SetState shall return kInvalidMetaModelI-
dentifier if the calling Process does not have a FunctionGroupPortMapping
to the Function Group associated with the given Function Group State.|

If not protected stateClient can be used to destabilise Machine, see Section 8.2.4
for more details.

Please note that multiple Processes with State Management responsibilities can
be deployed on a single Machine. However, to maintain a consistent state of a Func-
tion Group, it is crucial that a Function Group is managed by a single State
Management Process. If multiple Processes were managing a Function Group,
it would create ambiguity with regards to which state Management Process is fi-
nally responsible. This could potentially lead to an inconsistent state of a Function
Group.

[SWS_EM_CONSTR_02560] Function Group shall be controlled by a single State
Management process

Upstream requirements: RS_EM_00101

[AFunction Group shall be referenced at most by one FunctionGroupPortMap-
ping.]

Creating multiple instances of the stateClient class inside a Process is unneces-
sary and leads to ambiguity in error handling responsibilities. This duplication makes it
unclear which stateClient is responsible for the error recovery and should be noti-
fied if a Function Group transitions to the Undefined Function Group State
(see [SWS_EM_01309]).

[SWS_EM_02585] Single StateClient instance
Upstream requirements: RS_EM_00101

[ara::exec::StateClient shall treat the creation of an additional instance as a
violation. |

AUTSSAR

7.6 Resource Limitation

Despite the correct behavior of a particular Adaptive Application in the system,
it is important to ensure any potentially incorrect behavior, as well as any unforeseen
interactions cannot cause interference in unrelated parts of the system [RS_SAF_-
10008][12]. As AUTOSAR Adaptive Platform also strives to allow consolidation of
several functions on the same machine, ensuring Freedom From Interference is a key
property to maintain.

However, AUTOSAR Adaptive Platform cannot support all mechanisms as de-
scribed in this overview chapter in a standardized way, because the availability highly
depends on the used Operating System.

In addition, it is important to consider that Execution Management is only respon-
sible for the correct configuration of the Machine. However, enforcing the associated
restrictions is usually done by either the Operating System or another application
like the Persistency service.

Some mechanisms that could be standardized will not yet be defined in this release.

7.6.1 Resource Configuration

This section provides an overview on resource assignment to Modelled Processes.
The resources considered in this specification are:

e RAM (e.g. for code, data, thread stacks, heap)

e CPU time

Other resources like persistent storage or I/O usage are also relevant, but are currently
out of scope for this specification.

In general, we need to distinguish between two resource demand values:

¢ Minimum resources, which need to be guaranteed so the process can reach its
Running state and perform its basic functionality.

e Maximum resources, which might be temporarily needed and shall not be ex-
ceeded at any time, otherwise an error can be assumed.

The following stakeholders are involved in resource management:
e Application Developer

The Application developer should know how much memory (RAM) and comput-
ing resources the Modelled Processes need to perform their tasks within a
specific time. This needs to be specified in the Application description (which
can be the pre-integration stage of the Execution Manifest) which is handed
over to the integrator. Additional constraints like a deadline for finishing a specific
task, e.g. cycle time, will usually also be configured here.

AUTSSAR

However, the exact requirements may depend on the specific use case, e.g.

— The RAM consumption might depend on the intended use, e.g. a video filter
might be configurable for different video resolutions, so the resource needs
might vary within a range.

— The computing power required depends on the processor type. i.e. the re-
source demands need to be converted into a computing time on that specific
hardware. Possible parallel thread execution on different cores also needs
to be considered here.

Therefore, while the Application developer should be able to bring estimates re-
garding the resource consumption, a precise usage cannot be provided out of
context.

e Integrator

The integrator knows the specific platform and its available resources and con-
straints, as well as other applications which may run at the same time as the
Modelled Processes to be configured. The integrator should assign avail-
able resources to the applications which can be active at the same time, which
is closely related to state Management configuration, see Section 7.5. If not
enough resources are available at any given time to fulfill the maximum resource
needs of all running Modelled Processes, assuming they are actually used
by the Modelled Processes, several steps have to be considered:

— Assignment of resource criticality to Modelled Processes, depending on
safety and functional requirements.

— Depending on the Operating System, maximum resources which cannot be
exceeded by design (e.g. Linux cgroups) can be assigned to a process or a
group of Processes.

— A scheduling policy has to be applied, so threads of Processes with high
criticality get guaranteed computing time and finish before a given deadline,
while threads of less critical Processes might not. For details see Section
7.6.3.1.

— If the summarized maximum RAM needs of all Processes, which can be
running in parallel at any given time, exceeds the available RAM, this cannot
be solved easily by prioritization, since memory assignment to low critical
Processes cannot just be removed without compromising the Process.
However, it should be ensured that Processes with high criticality have
ready access to their maximum resources at any time, while lower criticality
Processes need to share the remaining resources. For details see Section
7.6.3.4.

Based on the above, all the resource configuration elements are to be configured dur-
ing platform integration, most probably by the Integrator. To group these configuration
elements, we define a ResourceGroup. It may have several properties configured
to enable restricting applications running in the group. Subsequently, each Modelled

AUTSSAR

Process is required to belong to a ResourceGroup, clarifying how the Adaptive
Application will be constrained at the system level.

[SWS_EM_02102] Memory control
Upstream requirements: RS_EM_00005

[Execution Management shall use ResourceGroup.memUsage to configure the
maximum amount of RAM available for all Processes in the ResourceGroup before
loading any Process from the ResourceGroup. |

If a ResourceGroup does not have a configured RAM limit, then the Processes are
only bound by their implicit memory limit.

[SWS_EM_02103] CPU usage control
Upstream requirements: RS_EM_00005

[Execution Management shall use ResourceGroup.cpuUsage to configure the
maximum amount of CPU time available for all Processes in each ResourceGroup
before loading any Process from the ResourceGroup. |

If ResourceGroup does not have a configured CPU usage limit, then the processes
are only bound by their implicit CPU usage limit (priority, scheduling scheme...).

Because scheduling is done in very different ways depending on the Operating
System, the specific algorithm for scheduling as well as limiting the CPU usage is
not described [SWS_OSI_02002].

The intention of ResourceGroup is that limits are never reached and the Resource-
Group limits shall be configured by the integrator, based on measurement, not worst-
case execution time.

7.6.2 Resource Monitoring

As far as technically possible, the resources which are actually used by a Process
should be controlled at any given time. For the entire system, the monitoring part of
this activity is fulfilled by the Operating System. For details on CPU time monitoring see
Section 7.6.3.1. For RAM monitoring see Section 7.6.3.4. The monitoring capabilities
depend on the used Operating System. Depending on system requirements and safety
goals, an appropriate Operating System has to be chosen and configured accordingly,
in combination with other monitoring mechanisms (e.g. for execution deadlines) which
are provided by Platform Health Management.

Resource monitoring can serve several purposes, e.g.

AUTSSAR

e Detection of misbehavior of the monitored Process to maintain the provided
functionality and guarantee functional safety.

e Protection of other parts of the system by isolating the erroneous Processes
from unaffected ones to avoid resource shortage.

For Processes which are attempting to exceed their configured maximum resource
needs (see Section 7.6.1), one of the following alternatives is valid:

e The resource limit violation is considered as a failure and recovery actions may
need to be initiated. Therefore the specific violation gets reported to the state
Management, which then starts recovery actions.

e If the OS provides a way to limit resource consumption of a Process or a group
of Processes by design, explicit external monitoring is usually not necessary
and often not even possible. Instead, the limitation mechanisms make sure that
resource availability for other parts of the system is not affected by failures within
the enclosed Processes. When such by-design limitation is used, monitoring
mechanisms may still be used for the benefit of the platform, but are not re-
quired. Self-monitoring and out-of-process monitoring is currently out-of-scope in
AUTOSAR Adaptive Platform.

7.6.3 Application-level Resource Configuration

We need to be able to configure minimum, guaranteed resources (RAM, computing
time) and maximum resources.

7.6.3.1 CPU Usage

CPU usage is represented in a process by its threads. Generally speaking, Operat-
ing Systems use some properties of each thread’s configuration to determine when
to run it, and additionally constrain a group of threads to not use more than a defined
amount of CPU time. Because threads may be created at runtime, only the first thread
can be configured by Execution Management.

7.6.3.2 Core Affinity

[SWS_EM_02104] Core affinity
Upstream requirements: RS_EM_00008

[Execution Management shall configure the Core affinity of the Process ini-
tial thread (restricting it to a sub-set of cores in the system) based on the config-
uration ProcessToMachineMapping.shallRunOn and ProcessToMachineMap—
ping.shallNotRunOn. |

AUTSSAR

Requirement [SWS_EM_02104] together with [constr_1677] (which ensures mu-
tual exclusion of ProcessToMachineMapping.shallRunOn and ProcessToMa-—
chineMapping.shallNotRunOn for a specific process), permits the initial thread
(the “main” thread of the process) to be bound to certain cores [SWS_OSI_01012].
Depending on the capabilities of the Operating System the sub-set could be a sin-
gle core. If the Operating System does not support binding to specific cores then
the only supported sub-set is the entire set of cores.

7.6.3.3 Scheduling

Currently available POSIX compliant Operating Systems offer the scheduling poli-
cies required by POSIX, and in most cases additional, but different and incompatible
scheduling strategies. This means for now, the required scheduling properties need to
be configured individually, depending on the chosen OS.

Moreover, scheduling strategy is defined per thread and the POSIX standard al-
lows for modifying the scheduling policy at runtime for a given thread, using
pthread_setschedparam(). It is therefore not currently possible for the AUTOSAR
Adaptive Platform to enforce a particular scheduling strategy for an entire pro-
cess, but only for its first thread.

[SWS_EM_01014] Scheduling policy
Upstream requirements: RS_EM_00002

[Execution Management shall configure the process scheduling policy (when
launching a Process) based on the relevant configuration StartupConfig.
schedulingPolicy.]

For the detailed definitions of these policies, refer to [13]. Note, SCHED_OTHER shall be
treated as non real-time scheduling policy, and actual behavior of the policy is imple-
mentation specific. It should not be assumed that the scheduling behavior is compatible
between different AUTOSAR Adaptive Platform implementations, except that it is
a non real-time scheduling policy in a given implementation.

e [SWS_EM_01041] Scheduling FIFO
Upstream requirements: RS_EM_00002

[Execution Management shall be able to configure FIFO scheduling using
policy SCHED_FIFO. |

AUTSSAR

e [SWS_EM_01042] Scheduling Round-Robin
Upstream requirements: RS_EM_00002

[Execution Management shall be able to configure round-robin scheduling
using policy SCHED_RR. |

e [SWS_EM_01043] Scheduling Other
Upstream requirements: RS_EM_00002

[Execution Management shall be able to configure non real-time scheduling
using policy SCHED_OTHER. |

Note that the Scheduling Policies specified here are the minimal set. Depending on the
OS there may be more Scheduling Policies configurable.

Note that while Execution Management will ensure the proper configuration for the
first thread (that calls the main () function), it is the responsibility of the Process itself
to properly configure secondary threads.

[SWS_EM_01015] Scheduling priority
Upstream requirements: RS_EM_00002

[Execution Management shall support the configuration of a scheduling priority
when launching a Process based on the relevant configuration StartupConfig.
schedulingPriority.]

The available priority range and actual meaning of the scheduling priority depends on
the selected scheduling policy, see [constr_1692] [2], [TPS_MANI_01061] and [TPS_-
MANI_01188] [2].

7.6.3.3.1 Resource Management

In general, for deterministic behavior the required computing time is guaranteed and
violations are treated as errors, while best-effort subsystems are more robust and might
be able to mitigate sporadic violations, e.g. by continuing the calculation at the next
activation, or by providing a result of lesser quality. This means, if time (e.g. deadline
or runtime budget) monitoring is in place, the reaction on deviations is different for
deterministic and best-effort subsystems.

In fact, it may not even be necessary to monitor best-effort subsystems, since they by
definition are doing only a function that may not succeed. This leads to an architecture
where monitoring is an optional property.

The remaining critical property however is to guarantee that a particular process or set
of processes cannot adversely affect the behavior of other processes.

AUTSSAR

[SWS_EM 02106] ResourceGroup assignment
Upstream requirements: RS_EM_00005

[Execution Management shall configure the Process according to its Resource-
Group membership. |

7.6.3.4 Memory Budget and Monitoring

Processes require memory for their execution (e.g. code, data, heap, thread stacks).
Over the course of its execution however, not all of this memory is required at all times,
such that an OS can take advantage of this property to make these ranges of memory
available on-demand, and provide them to other Processes when the memory is no
longer used.

While this has clear advantages in terms of system flexibility as well as memory effi-
ciency, it also impacts the process performance: when a range of memory that was
previously unused should now be made available, the OS may have to execute some
amounts of potentially-unbounded activities to make this memory available. Often, the
reverse may also be happening, removing previously available (but unused) memory
from the Process under scope, to make it available to other Processes. This is
detrimental to an overall system determinism.

In order to ensure that sufficient memory is available at the start and for the whole
duration of the of a Process, some properties may need to be defined for each
Process.

[SWS_EM_02108] Maximum memory usage
Upstream requirements: RS_EM_00005
[Execution Management shall configure the Maximum memory usage of the Pro-

cess according to the configuration item Process.stateDependentStartupCon-
fig.resourceConsumption.memoryUsage. |

AUTSSAR Specification of Execution Management

AUTOSAR AP R24-11

<< Process >> << Process >>

Process A, which should be
limited

Process B, which provides basic
functionality (e.g. sockets,
filesystem, ...)

Address Space Does not contain Address Space
effects on other
__.Memory Usage processes

Main Thread Stack
Stack,

Main Thread Stack
Stack,

<<use>>, e.g. open() or socket()

Stack,
via IPC

Stack,

Heap

Heap Process A Maintenance

Data
BSS
BSS
Data
Data

Text/Code
Text/Code

Figure 7.15: Memory Usage.

The resourceConsumption.memoryUsage is the amount of memory which can be
allocated by the Process itself. Please be aware, depending on the OS and its con-
figuration this does not necessarily contain all the memory the process can allocate
within the system. For example in an OS where common functionality like a file system
is implemented on process level, the restricted Process might still lead to memory
allocations within the Process providing the file system.

On POSIX OS the memory limit is typically restricted by the resource RLIMIT_AS.

[SWS_EM_02109] process pre-mapping
Upstream requirements: RS_EM_00005

[Execution Management shall pre-map a Process if Process.preMapping is set
to true. |

Fully pre-mapping a Modelled Process ensures that code and data execution is not
going to be delayed at its first execution by demand-loading. This approach not only
supports predictable timing during system startup and first execution phases, but also
helps with safety where code handling error cases can be preloaded and made guar-
anteed to be available. In addition, pre-mapping avoids late issues where filesystem
may be corrupted and part of the Mode1l1led Process may not be loadable anymore.

83 of 180 Document ID 721: AUTOSAR_AP_SWS_ ExecutionManagement

AUTSSAR

7.6.3.5 Working Folder

The working folder of a process is not defined by configuration but rather is deliberately
left as an implementation-specific element. The required PSE51 POSIX profile does
not define that an Adaptive Application may use the path or file argument for
any function using a file pathname (e.g., open), instead only to specify the name of the
object without any file system semantics implied.

The PSE51 POSIX profile does not require the existence of a file system. Conse-
quently, paths in Adaptive Applications merely identify objects (e.g. in calls
to open () or stat ()). The usage of sub-parts of a given path (e.g. "/data" when
"/data/config.dat" was given) is implementation-defined.

AUTSSAR

7.7 Fault Tolerance

7.7.1 Introduction

What is Fault-Tolerance?

The method of coping with faults within a large-scale software system is termed fault
tolerance.

The model adopted for Execution Management is outlined in [14].

This section provides context to the application of fault tolerance concepts with respect
to Execution Management and perspective on how this contributes in overall plat-
form instance’s dependability.

Platform-wide Service Oriented Architecture fault tolerance aspects are outside the
scope of this document and are not further addressed.

7.7.2 Scope

Execution Management has a crucial influence on overall system behavior of the
AUTOSAR Adaptive Platform.

The effect of erroneous functionality, within Execution Management can have very
different severity depending on operational mode and fault type. For example, a fault
identified by Execution Management may have a local effect, influencing an inde-
pendent process only, or may become a root cause for a Machine wide failure.

It is therefore necessary not to specify only correct behavior but also to introduce alter-
native behavior in case of deviations.

Such mechanisms address a broad spectrum of concerns that emerge during Ma-
chine and Process Life Cycle Management.

The AUTOSAR Adaptive Platformarchitecture is composed of two levels; Applica-
tion and Platform Instance. The application level constitutes cooperative applications
intended to satisfy overall system’s needs and objectives and represents a service level
in vehicle context. The Platform Instance level as a reusable asset providing basic ca-
pabilities and platform level services. Fault tolerance within Execution Management
is therefore required to handle both levels.

7.7.3 Threat Model

The main threats which leading to incorrect behavior of software - whether application
or Platform Instance - is the presence of systematic defects or faults i.e. those incor-
porated during design phase and remaining dormant untill deployment. Other sources

AUTSSAR

of faults include physical faults, e.g. random hardware failures, that might influence re-
source allocation and correct execution, and interraction faults which can be a source
for incorrect state transition requests.

Machine/FG
State

propagation causation

Machine/FG
State

Figure 7.16: General Fault Tolerance scheme.

From the perspective of Execution Management, fault activation occures when re-
sulting Function Group State or combination of such is requested. Due to the
different nature of faults, these can lead to various types of deviations from expected
functional behavior and finally result in erroneous system functionality either in terms
of correct computational results or timing response.

In general, the implementation of fault tolerance mechanism is based on two consistent
steps - Error Detection and subsequent Error Recovery. The major focus of Error
Detection during Design Phase activities and thus the focus of Fault Tolerance in this
specification is on the analysis of potential Failure Modes and the consequent error
detection mechanisms that should later be incorporated into the implementation.

In contrast, Error Recovery consists of actions that should be taken in order to restore
the system’s state where the system can once again perform correct service delivery.
Binding of Error Detection and Recovery Actions should be a subject of platform wide
fault tolerance model.

Remark:The remainder of this section is the subject for elaboration for the next release
of this specification. Provision for fault-tolerance mechanisms will consider possible
faults, how they can lead to errors within Execution Management and the mecha-
nisms that are introduced to ensure error detection.

7.7.4 Execution Management internal Error handling

From System design point of view it is useful to have an Execution Management/OS
internal Unrecoverable State, which can be entered by Execution Manage-
ment when it has no other course of action. The Unrecoverable State is only
triggered by Execution Management.

AUTSSAR

[SWS_EM_02032] Behavior on entry to the Unrecoverable State
Upstream requirements: RS_EM_00150

[On entry to the Unrecoverable State,Execution Management shall invoke a
pre-cleanup action. |

[SWS_EM_02033] Behavior after execution of the pre-cleanup action
Upstream requirements: RS_EM_00150

[After execution of the pre-cleanup action, all Processes managed by Execution
Management shall be shutdown. |

[SWS_EM_02034] Behavior after termination of all processes managed by Exe-
cution Management

Upstream requirements: RS_EM_00150

[After all processes managed by Execution Management are terminated, a post-
cleanup action shall be called. |

The mechanism for invoking pre- and post-cleanup function is Platform specific. There
is no requirement on which actions should be taken at each stage.

It is not possible to give an exhaustive of list of when the Unrecoverable State
is entered. Potential examples when the Unrecoverable State should be entered
include:

e The underlying OS is not functioning as expected — for example failure of
SIGKILL (i.e. Execution Management cannot Kill processes).

e Execution Management has lost the ability to read the processed manifest,
i.e. nothing can be started / stopped.

e Execution Management cannot deliver responses (i.e. result of the requested
Function Group state transitions) to State Management. Essentially Exe-
cution Management Will never respond back to SM for technical reasons.

e Trusted platform configuration cannot be read meaning Execution Manage-
ment does not know it should run in a strictMode of monitorMode.

Note: Unrecoverable State should not be entered if Execution Management
can normally communicate with State Management —inthis caseitis State Man-
agement’s responsibility to handle system errors (i.e. failed startup attempts).

AUTSSAR

7.8 Security

7.8.1 Trusted Platform

From a security perspective, it is essential that all software executed on the Adaptive
Platform is trusted, i.e. the integrity and authenticity of the software is ensured.
Execution Management - as the entity responsible for Process creation - has to
take over this task.

A key requirement for a trusted Adaptive Platform is a Trust Anchor on the Machine
that is authentic by definition (hence that alternative name, "root of trust"). A Trust
Anchor is often realized as a public key stored in a secure environment, e.g. in non-
modifiable persistent memory or in an HSM. The trust has to be passed to Execution
Management by appropriate means, e.g. by a chain of trust. If the Machine does not
exhibit a Trust Anchor, it cannot be ensured that the Adaptive Platform is trusted.

[SWS_EM_02299] Availability of a Trust Anchor
Upstream requirements: RS_EM_00014

[If there is no Trust Anchor available on the Machine, the following require-
ments may be ignored: [SWS_EM_02300], [SWS_EM_02301], [SWS_EM_02302],
[SWS_EM_02303], [SWS_EM_02305], [SWS_EM_02306], [SWS_EM_02307],
[SWS_EM_02308], [SWS_EM_02309]. |

There are many ways to verify the integrity and authenticity of the Adaptive Platform.
A Trusted Platform can be realized e.g. (but not limited to) by

e Verification of the complete Ramdisk by the Bootloader

e Verification of individual Executables and data files, e.g. using OS-
functionalities or a trusted third-party process

e Verification of individual memory pages upon being loaded, e.g. using OS-
functionalities or a trusted third-party process

[SWS_EM_02300] Integrity and Authenticity of Machine configuration
Upstream requirements: RS_EM_00014, RS_EM_00015

[Execution Management shall ensure that the integrity and authenticity of Machine
information from the processed Mani fests are checked before use. |

[SWS_EM_02301] Integrity and Authenticity of each Executable
Upstream requirements: RS_EM_00014, RS_EM_00015

[Execution Management shall ensure that for every Process that is about to be
started, the integrity and authenticity of the Executable itself are checked. |

AUTSSAR

[SWS_EM_02302] Integrity and Authenticity of shared objects
Upstream requirements: RS_EM_00014, RS_EM_00015

[Execution Management shall ensure that for every Process that is about to be
started, the integrity and authenticity of each related shared object are checked. |

[SWS_EM 02303] Integrity and Authenticity of processed Execution Manifest
configurations

Upstream requirements: RS_EM_00014, RS_EM_00015

[Execution Management shall ensure that for every Process that is about to be
started, the integrity and authenticity of its corresponding processed Manifests are
checked. |

The information validated by [SWS_EM_02303] includes all manifest information, e.g.
Service Instance information, and not just the information directly used by Execution
Management.

From a security perspective, the rationale for choosing these items is as follows:

e Executables: Modifying the Executable itself allows an attacker to execute ar-
bitrary code on the machine;

e Manifests: Machine Manifests, Execution Manifests and Service
Instance Manifests describe what and how something should be executed
and are thus an obvious attack vector on the Adaptive Platform;

e Shared Objects: Shared objects can either contain code that is executed within
the context of the Process or data that (potentially) influences the execution of
a Process accessing this data. A modified shared object could consequently be
used to compromise the system.

In order to establish a Trusted Platform, it must be ensured that only trusted soft-
ware is launched. Therefore, a system designer has to ensure that Execution Man-
agement is started authentically. For instance, this could be realized by a chain of trust
as described in [15].

Execution Management in turn has to ensure that all Executable code on the
Adaptive Platform is authenticated before being executed. The complete authenticated
start-up sequence looks like this:

AUTSSAR

Trust Anchor authenticates and starts Bootloader

\4

Bootloader authenticates and starts OS

Y

OS authenticates and starts Execution Management

Y

Execution Management authenticates the Processed Manifests, reads
them and determines the application startup order based on the
dependency description.

Other Adaptive Platform Foundation modules are also started as
they are Applications described with Manifests

!

After successful authentication of Execution Manifest and Application
Executables, processes of Application Executables are instantiated
based on the startup order.

Figure 7.17: Authenticated start-up sequence

The integrity and authenticity of persistent data stored by applications is not considered
here. The Functional Cluster Persistency takes care of the integrity of this data.

7.8.1.1 Handling of failed authenticity checks

If the integrity and authenticity has been verified successfully, the system has to con-
tinue with its regular start-up process. If the integrity and authenticity check has failed,
however, Execution Management offers a configuration option on how to proceed
with the start-up process.

[SWS_EM 02305] Failed authenticity checks
Upstream requirements: RS_EM_00014, RS_EM_00015

[Execution Management shall select the trusted platform mode based on the value
of Machine.trustedPlatformExecutableLaunchBehavior. |

The configuration of the three modes is done via the trustedPlatformExe-
cutableLaunchBehavior attribute within the Processed Manifest. The config-
uration option is only allowed to be processed after the integrity and authenticity of the
relevant Processed Manifest has been verified.

AUTSSAR

These three modes of the Machine.trustedPlatformExecutableLaunchBe-
havior are:

e monitorMode
e noTrustedPlatformSupport

e strictMode

[SWS EM 02306] Launch Behavior Validation
Upstream requirements: RS_EM_00014, RS_EM_ 00015

[Execution Management shall stop the start-up sequence of the Adaptive Platform
if the integrity or authenticity check of the Processed Manifest containing the
trustedPlatformExecutableLaunchBehavior selection has failed and switch
to the unrecoverable state. |

The integrity and authenticity check applies to all trusted platform modes; to do oth-
erwise would leave the system open to attacks that maliciously corrupt the Manifest
information. Reaction to a failure is limited as, by definition, no Adaptive Appli-
cation otherthan Execution Management are running and hence are restricted to
implementation defined actions such as OS-level logging.

7.8.1.1.1 Monitor Mode

In monitorMode, the integrity and authenticity checks are performed, but the start-up
process is not affected. Hence, the Adaptive Platform starts up even if the file system
has been compromised.

[SWS_EM_02556] Monitor Mode
Upstream requirements: RS_EM 00014, RS_EM 00015

[IN monitorMode, if a check ([SWS_EM_02300], [SWS_EM_02301],
[SWS_EM 02302] and [SWS_EM_02303]) fails then Execution Management
shall log the failure and continue regular startup of the Adaptive Platform. |

monitorMode is useful when the integrator wants the system to keep running, even if
the platform is not considered trusted. In this case, the integrator might use additional
measures outside the scope of Adaptive AUTOSAR, like e.g. restricted key access
when using an HSM that supports this feature.

monitorMode is also useful during development phase, when frequent changes on
the Adaptive Platform are performed and keeping the authentication tag (e.g. signa-
tures) valid is a tedious task.

AUTSSAR

7.8.1.1.2 Strict Mode

In strictMode, the Adaptive Platform ensures that no Processes are executed,
where the integrity and authenticity of the corresponding Executable, manifests or
linked library could not be verified.

[SWS_EM_ 02307] Strict Mode - Execution manifest
Upstream requirements: RS_EM_00014

[In strictMode, Execution Management shall not initiate the execution of an Ex-
ecutable if the integrity or authenticity check of the corresponding processed Execu-
tion Manifest has failed. |

[SWS_EM_02308] Strict Mode - Service Instance manifests
Upstream requirements: RS_EM_00014

[In strictMode, Execution Management shall not initiate the execution of an Ex-
ecutable if the integrity or authenticity check of at least one of the corresponding pro-
cessed Service Instance Manifests has failed. |

[SWS_EM_02309] Strict Mode - Executables
Upstream requirements: RS_EM_00014

[In strictMode, Execution Management shall starta Process only if the integrity
and authenticity of the corresponding Executable was successfully verified. |

Executable code can be provided by executables and by statically linked shared objects
linked by the executable. Execution Management cannot determine dynamically
linked shared objects and thus these needs to be validated through an alternative,
implementation specific, mechanism.

Example: Consider an Adaptive Platform in st rictMode. Execution Management
has started several Executables after successfully verifying the integrity and authen-
ticity of the Executable, its related shared objects and its processed Execution
Manifest. Now, Execution Management wants to start another Executable,
where the authenticity check has failed. Execution Management does not launch
this Executable, because it is not trusted. The other Executables that passed the
authenticity check may however continue to run. When Execution Management at-
tempts to start another Executable it can be started as long as all authenticity checks
are passed.

AUTSSAR

7.8.2 Identity and Access Management

Following the "Principle of Least Privilege", Identity and Access Management (I1AM)
[16] was introduced in the Adaptive Platform. IAM allows to assign permissions to Mod-
elled Processes for accessing public Interfaces from Functional Clusters. Hence,
Modelled Processes have to be identifiable during runtime in order to lookup and
enforce permissions accordingly.

Execution Management starts Processes based on Modelled Processes.
Hence Execution Management is able to maintain the association between the two.
Execution Management supports IAM by revealing information about this associ-
ation. This allows IAM to authenticate processes during runtime with the help of the
operating system and Execution Management.

[SWS_EM_02400] Properties of IAM-configuration assigned to processes
Upstream requirements: RS_EM_00111, RS_EM_00015

[Execution Management shall associate the identity of a specific Modelled Pro-
cess with the identity of the corresponding Process during Process creation. |

The form of identity is implementation specifc but could, for example, be the process
identifier, a cryptographic token, user ID, etc.

Based on implementation requirements, Execution Management may expose inter-
faces that allow IAM to retrieve information about the association between Process
and Modelled Process identity. The exact form of this interface is implementation
defined.

AUTSSAR

8 API specification

This chapter provides a reference of the APIs defined by this functional cluster. The
APl is described in the following chapters in tables. Table 8.1 explains the content that
is described in such an API table.

Kind: Defines the kind of the declaration that this API table describes. The following values are
supported:

e class (Declaration of a class)

o function (Declaration of a member or non-member function)
e struct (Declaration of a structure)

o type alias (Declaration of a type alias)

e enumeration (Declaration of an enumeration)

e variable (Declaration of a variable)

Header File: Defines the header file to be included according to [SWS_CORE_90001]
Forwarding Header Defines the forwarding header file to be included according to [SWS_CORE_90001]
File:
Scope: Defines the scope that may be a namespace (in case of a class or non-member function) or a
class declaration (in case of a member)
Symbol: Entity name
Thread Safety: Defines whether a function is thread-safe, not thread-safe, or conditional according to
[SWS_CORE_13200] and [SWS_CORE_13202]
Syntax: Description of C++ syntax
Template Param: ;I'em;olate parameter Template parameter(s) used to parametrize the template
0.*
Parameters (in): Parameter declaration Parameter(s) that are passed to the function
(0.7
Parameters (out): Parameter declaration Parameter(s) that are returned to the caller
(0.7
Return Value: Return type Type of the value that the function returns
Exception Safety: Defines whether a function is exception-safe, not exception safe or conditionally exception safe
Exceptions: List of exceptions that may be thrown from the function
Violations: List of violations that may occur in the function
Errors: Error type (0..%) List of defined error codes that may be returned by the function with

their recoverability class defined in [RS_AP_00160]. APIs can be
extended with vendor-specific error codes. These are not part of
the AUTOSAR SWS specifications

Description: Brief description of the function

Table 8.1: Explanation of an API table

AUTSSAR
8.1 Type Definitions

8.1.1 ExecutionState

[SWS_EM_02000] Definition of APl enum ara::exec::ExecutionState
Upstream requirements: RS_EM_00103, RS_AP_00134, RS_AP_00125, RS_AP_00143, RS_-

AP_00129

[

Kind: enumeration

Header file: #include "ara/exec/execution_client.h"

Forwarding header file: | #include "ara/exec/exec_fwd.h"

Scope: namespace ara::exec

Symbol: ExecutionState

Underlying type: std::uint32_t

Syntax: enum class ExecutionState : std::uint32_t {...};

Values: kRunning= 0 After a Process has been started by Execution Management, it

reports ExecutionState kRunning.

Description: Defines the internal states of a Process. Scoped Enumeration of uint8_t .

]

Please note that ExecutionState includes only states reportable by the Process to
Execution Management and therefore does not include enumerations e.g. the
"Initializing" state mentioned in Figure 7.2 and Figure 7.12, which are an implied
states for Execution Management. The Initializing state starts when Process
is first scheduled (so no code executed yet) and ends when kRunning is re-
ported ([SWS_EM _01004]). The Terminating state starts when termination is re-
quested by Execution Management and ends when the Process terminates
([SWS_EM_01404]). For the reasons mentioned, Execution Management assumes
that Process is in initializing state until kRunning will be reported by it.

8.1.2 ExecutionError

[SWS_EM_02541] Definition of API type ara::exec::ExecutionError
Upstream requirements: RS_EM_00101, RS_AP_00122, RS_AP_00154

[
Kind: type alias
Header file: #include "ara/exec/execution_error_event.h"
Scope: namespace ara::exec
Symbol: ExecutionError

V

AUTSSAR

A

Syntax:

using ExecutionError = std::uint32_t;

Description:

Represents the execution error.

8.1.3 ExecutionErrorEvent

[SWS_EM _02544] Definition of API class ara::exec::ExecutionErrorEvent
Upstream requirements: RS_EM 00101, RS_AP_00116, RS_AP_00122, RS _AP 00124, RS -

AP_00140, RS_AP_00154

Kind:

struct

Header file:

#include "ara/exec/execution_error_event.h"

Forwarding header file:

#include "ara/exec/exec_fwd.h"

Scope: namespace ara::exec

Symbol: ExecutionErrorEvent

Syntax: struct ExecutionErrorEvent final {...};

Description: Represents an execution error event which happens in a Function Group.

8.1.3.1 ExecutionErrorEvent::executionError

[SWS_EM_02545]

Definition of API variable ara::exec::ExecutionError

Event::executionError
Upstream requirements: RS_EM_00101, RS_AP_00124

Kind: variable

Header file: #include "ara/exec/execution_error_event.h"

Scope: struct ara::exec::ExecutionErrorEvent

Symbol: executionError

Type: ExecutionError

Syntax: ExecutionError executionError;

Description: The execution error of the Process which unexpectedly terminated .

AUTSSAR
8.1.3.2 ExecutionErrorEvent::functionGroup

[SWS_EM 02546] Definition of APl variable ara::exec::ExecutionError
Event::functionGroup
Upstream requirements: RS_EM_00101, RS_AP_00124

[
Kind: variable
Header file: #include "ara/exec/execution_error_event.h"
Scope: struct ara::exec::ExecutionErrorEvent
Symbol: functionGroup
Type: FunctionGroup
Syntax: FunctionGroup functionGroup;
Description: The function group in which the error occurred .

J

8.2 Class Definitions

As specified in [9] AUTOSAR Adaptive Platform requires initialization and deinitial-
ization, see [SWS_CORE_10001] and [SWS_CORE_10002]. Usage of Execution
Management APl beforeacallto ara::core::Initialize, orafterara::core::
Deinitialize will result in implementation defined behavior, see [SWS_CORE_-
90022] and [SWS_CORE_15005].

[SWS_EM_02557] Initialization and deinitialization of Execution Management API
Upstream requirements: RS_AP_00155, RS_AP_00149

[Execution Management shall implement all actions necessary for the initialization
and deinitialization of ara: : exec APIs within the standard ara::core::Initial-
ize and ara::core::Deinitialize APIs.]

8.2.1 ExecutionClient class

The Execution State API provides the functionality for a Process to report its state to
the Execution Management.

AUTSSAR

[SWS_EM_02001] Definition of API class ara::exec::ExecutionClient
Upstream requirements: RS_EM_00103, RS_AP_00154, RS_AP_00150

Kind:

class

Header file:

#include "ara/exec/execution_client.h"

Forwarding header file:

#include "ara/exec/exec_fwd.h"

Scope: namespace ara::exec

Symbol: ExecutionClient

Syntax: class ExecutionClient final {...};

Description: Class to implement operations on Execution Client.

Notes: To eventually implement the Named Constructor Idiom, the developer may either make the

default constructor private or delete it and define a non-default constructor.

8.2.1.1

[SWS_EM_02560]

Definition

Client::ExecutionClient

Upstream requirements: RS_EM_00103, RS_AP_00114,

ExecutionClient::ExecutionClient

of APl function ara::exec::Execution

RS AP 00119, RS_AP 00120, RS -

AP_00121, RS_AP_00151

Kind: function

Header file: #include "ara/exec/execution_client.h"

Scope: class ara::exec::ExecutionClient

Syntax: ExecutionClient (std::function< void()> terminationHandler)

noexcept (false);

Parameters (in):

terminationHandler

Callback which is called if ExecutionClient receives SIGTERM
signal. The callback is executed in a background thread. A typical
implementation of this callback will set a global flag (and potentially
unblock other threads) to perform a graceful termination. Lifetime:
it is expected that terminationHandler remains callable, during
entire lifetime of the ExecutionClient instance. This is especially
important if, terminationHandler is bound to an instance of a class
(e.g. using std::bind).

Exception Safety: not exception safe
Thread Safety: implementation defined
Errors: ara::exec::ExecErrc:kNo | --
Communication Communication error occurred.
ara::.exec::ExecErrc::k --
InvalidArgument Given terminationHandler doesn’t contain a callable function.
Description: Regular constructor for ExecutionClient.

AUTSSAR

8.2.1.2 ExecutionClient::Create

[SWS_EM 02562] Definition of API function ara::exec::ExecutionClient::Create
Upstream requirements: RS_AP_00119, RS_AP_00120, RS_AP_00128, RS_AP_00139, RS_-

AP_00144, RS_EM_00103

Kind: function

Header file: #include "ara/exec/execution_client.h"

Scope: class ara::exec::ExecutionClient

Syntax: static ara::core::Result< ExecutionClient > Create (std::function<

void()> terminationHandler) noexcept;

Parameters (in):

terminationHandler Callback which is called if ExecutionClient receives SIGTERM
signal. The callback is executed in a background thread. A typical
implementation of this callback will set a global flag (and potentially
unblock other threads) to perform a graceful termination. Lifetime:
it is expected that terminationHandler remains callable, during
entire lifetime of the ExecutionClient instance. This is especially
important if, terminationHandler is bound to an instance of a class
(e.g. using std::bind).

Return value:

ara::.core::Result<
ExecutionClient >

a result that contains either a ExecutionClient object or an error.

Exception Safety: exception safe
Thread Safety: implementation defined
Errors: ara::exec::ExecErrc::kNo | --
Communication Communication error occurred.
ara::exec::ExecErrc::k -
InvalidArgument Given terminationHandler doesn’t contain a callable function.
Description: Named constructor for ExecutionClient.
Notes: This named constructor may call a constructor defined by the developer.

8.2.1.3 ExecutionClient::~ExecutionClient

[SWS _EM 02002] Definition of API
Client::~ExecutionClient

Upstream requirements: RS_AP_00134, RS_AP_00145, RS_EM_00103

function

ara::exec::Execution

Kind: function

Header file: #include "ara/exec/execution_client.h"
Scope: class ara::exec::ExecutionClient
Syntax: ~ExecutionClient () noexcept;
Exception Safety: exception safe

Y%

AUTSSAR

A
Thread Safety: implementation defined
Description: noexcept destructor
Notes: Since ExecutionClient overtake the responsibility for handling SIGTERM signal, it should reset
SIGTERM handler back to its original value, when destructor is called.

8.2.1.4 ExecutionClient::ExecutionClient (deleted Copy Constructor)

[SWS_EM 02563] Definition of APl function ara::exec::Execution
Client::ExecutionClient

Upstream requirements: RS_AP_00145, RS_EM_00103

Kind: function

Header file: #include "ara/exec/execution_client.h"

Scope: class ara::exec::ExecutionClient

Syntax: ExecutionClient (const ExecutionClient &)=delete;
Description: Suppress default copy construction for ExecutionClient.

8.2.1.5 ExecutionClient::operator= (deleted Copy assignment operator)

[SWS_EM_02564] Definition of APl function ara::exec::Execution
Client::operator=

Upstream requirements: RS_AP_00145, RS_EM_00103

Kind: function

Header file: #include "ara/exec/execution_client.h"

Scope: class ara::exec::ExecutionClient

Syntax: ExecutionClient & operator= (const ExecutionClient &)=delete;
Description: Suppress default copy assignment for ExecutionClient.

AUTSSAR

8.2.1.6 ExecutionClient::ExecutionClient (use of default move constructor)

[SWS_EM_02580]

Definition of APl function ara

Client::ExecutionClient
Upstream requirements: RS_AP_00145, RS_AP_00151, RS_EM_00103

::exec::Execution

Kind: function

Header file: #include "ara/exec/execution_client.h"

Scope: class ara::exec::ExecutionClient

Syntax: ExecutionClient (ExecutionClient &&rval) noexcept;
Parameters (in): rval reference to move

Exception Safety: exception safe

Thread Safety: implementation defined

Description: Intentional use of default move constructor for ExecutionClient.

8.2.1.7 ExecutionClient::operator= (use of default move assignment)

[SWS_EM_02581]
Client::operator=

Definition of APl function ara

Upstream requirements: RS_AP_00145, RS_AP_00151, RS_EM_00103

::exec::Execution

Kind: function

Header file: #include "ara/exec/execution_client.h"

Scope: class ara::exec::ExecutionClient

Syntax: ExecutionClient & operator= (ExecutionClient &&rval) noexcept;

Parameters (in):

rval reference to move

Return value:

ExecutionClient & the new reference

Exception Safety: exception safe
Thread Safety: implementation defined
Description: Intentional use of default move assignment for ExecutionClient.

AUTSSAR

8.2.1.8 ExecutionClient::ReportExecutionState

[SWS_EM 02003] Definition of API function ara::exec::ExecutionClient::Report
ExecutionState
Upstream requirements: RS_EM_00103, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_-
AP_00128, RS_AP_00139

Kind: function
Header file: #include "ara/exec/execution_client.h"
Scope: class ara::exec::ExecutionClient
Syntax: ara::core::Result< void > ReportExecutionState (ExecutionState state)
noexcept;
Parameters (in): state Value representing the current Process state, that should be
reported.
Return value: ara::core::Result< void > | An instance of ara::core::Result. The instance holds an ErrorCode
containing either one of the specified errors or a void-value.
Exception Safety: exception safe
Thread Safety: implementation defined
Errors: ara::exec::ExecErrc::kNo
Communication Communication error between Application and Execution
Management, e.g. unable to get confirmation that report was
received.
ara::exec::ExecErrc::k
InvalidTransition Invalid transition request (e.g. to Running when already in Running
state)
Description: Interface for a Process to report its internal state to Execution Management.

8.2.2 FunctionGroup class

An instance of this class will represent Function Group defined inside meta-model
(ARXML). This class is intended to be an implementation specific representation, of
information inside meta-model. Once created based on ARXML path, its internal value
stays bounded to it for entire lifetime of a object.

[SWS_EM_02263] Definition of API class ara::exec::FunctionGroup
Upstream requirements: RS_EM_00101, RS_AP_00154, RS_AP_00150

[

Kind: class

Header file: #include "ara/exec/function_group.h"

Forwarding header file: | #include "ara/exec/exec_fwd.h"

\Y

AUTSSAR

A
Scope: namespace ara::exec
Symbol: FunctionGroup
Syntax: class FunctionGroup final {...};
Description: Class representing Function Group defined in meta-model (ARXML).
Notes: Once created based on ARXML path, it's internal value stay bounded to it for entire lifetime of an
object.

8.2.2.1 FunctionGroup::FunctionGroup

[SWS_EM_02586] Definition of API function ara::exec::FunctionGroup::Function

Group

Upstream requirements: RS_AP_00137, RS_EM_00101

Kind: function

Header file: #include "ara/exec/function_group.h"

Scope: class ara::exec::FunctionGroup

Syntax: FunctionGroup (const ara::core::InstanceSpecifier &instance) noexcept;
Parameters (in): instance instance specifier to the RPortPrototype of a StateClientInterface.
Exception Safety: exception safe

Thread Safety: implementation defined

Description: Creates an instance of FunctionGroup.

8.2.2.2 FunctionGroup::FunctionGroup (Default Constructor)

[SWS_EM_02321] Definition of API function ara::exec::FunctionGroup::Function

Group

Upstream requirements: RS_EM_00101

Kind: function

Header file: #include "ara/exec/function_group.h"
Scope: class ara::exec::FunctionGroup
Syntax: FunctionGroup ()=delete;

\Y

AUTSSAR

A

Description: Default constructor.

Notes: Default constructor is deleted in favour of regular constructor.

8.2.2.3 FunctionGroup::FunctionGroup (Copy Constructor)

[SWS_EM_02322] Definition of API function ara::exec::FunctionGroup::Function
Group

Upstream requirements: RS_AP_00147, RS_EM_00101

Kind: function

Header file: #include "ara/exec/function_group.h"

Scope: class ara::exec::FunctionGroup

Syntax: FunctionGroup (const FunctionGroup &other)=delete;

Description: Copy constructor.

Notes: To prevent problems with resource allocations during copy operation, this class is non-copyable.

8.2.2.4 FunctionGroup::FunctionGroup (Move Constructor)

[SWS_EM_02328] Definition of API function ara::exec::FunctionGroup::Function
Group
Upstream requirements: RS_EM_00101

Kind: function

Header file: #include "ara/exec/function_group.h"

Scope: class ara::exec::FunctionGroup

Syntax: FunctionGroup (FunctionGroup &&other) noexcept;

Parameters (in): other FunctionGroup instance to move to a newly constructed object.
Exception Safety: exception safe

Thread Safety: implementation defined

Description: Move constructor.

AUTSSAR

8.2.2.5 FunctionGroup::operator= (Copy assignment operator)

[SWS_EM 02327] Definition of APl function ara::exec::Function
Group::operator=
Upstream requirements: RS_AP_00147, RS_EM_00101

Kind: function

Header file: #include "ara/exec/function_group.h"

Scope: class ara::exec::FunctionGroup

Syntax: FunctionGroup & operator= (const FunctionGroup &other)=delete;
Description: Copy assignment operator.

Notes: To prevent problems with resource allocations during copy operation, this class is non-copyable.

8.2.2.6 FunctionGroup::operator= (Move assignment operator)

[SWS_EM 02329] Definition of APl function ara::exec::Function
Group::operator=
Upstream requirements: RS_EM_00101

Kind: function

Header file: #include "ara/exec/function_group.h"

Scope: class ara::exec::FunctionGroup

Syntax: FunctionGroup & operator= (FunctionGroup &&other) noexcept;

Parameters (in): other FunctionGroup instance to move to this object.

Return value: FunctionGroup & reference to the object on which the move assignment operator
was invoked

Exception Safety: exception safe

Thread Safety: implementation defined

Description: Move assignment operator.

AUTSSAR

8.2.2.7 FunctionGroup::~FunctionGroup

[SWS_EM_02266] Definition of APl function ara::exec::Function
Group::~FunctionGroup
Upstream requirements: RS_EM_00101

[

Kind: function

Header file: #include "ara/exec/function_group.h"

Scope: class ara::exec::FunctionGroup

Syntax: ~FunctionGroup () noexcept;

Exception Safety: exception safe

Thread Safety: implementation defined

Description: Destructor of the FunctionGroup instance.
]
8.2.2.8 FunctionGroup::operator==
[SWS _EM 02267] Definition of APl function ara::exec::Function
Group::operator==

Upstream requirements: RS_EM_00101

[

Kind: function

Header file: #include "ara/exec/function_group.h"

Scope: class ara::exec::FunctionGroup

Syntax: bool operator== (const FunctionGroup &other) const noexcept;

Parameters (in): other FunctionGroup instance to compare this one with.

Return value: bool true in case both FunctionGroups are representing exactly the

same meta-model element, false otherwise.

Exception Safety: exception safe
Thread Safety: implementation defined
Description: eq operator to compare with other FunctionGroup instance.

AUTSSAR

8.2.2.9 FunctionGroup::operator!=

[SWS_EM_02268]
Group::operator!=

Definition of APl function ara::exec::Function

Upstream requirements: RS_EM_00101

Kind: function

Header file: #include "ara/exec/function_group.h"

Scope: class ara::exec::FunctionGroup

Syntax: bool operator!= (const FunctionGroup &other) const noexcept;

Parameters (in): other FunctionGroup instance to compare this one with.

Return value: bool false in case both FunctionGroups are representing exactly the
same meta-model element, true otherwise.

Exception Safety: exception safe
Thread Safety: implementation defined
Description: uneq operator to compare with other FunctionGroup instance.

8.2.3 FunctionGroupState class

An instance of this class will represent Function Group State definedinside meta-
model (ARXML). This class is intended to be an implementation specific representa-
tion, of information inside meta-model. Once created based on ARXML path, its inter-
nal value stays bounded to it for entire lifetime of a object.

[SWS_EM_02269] Definition of API class ara::exec::FunctionGroupState
Upstream requirements: RS_EM_00101, RS_AP_00154, RS_AP_00150, RS_AP_00129

Kind:

class

Header file:

#include "ara/exec/function_group_state.h"

Forwarding header file:

#include "ara/exec/exec_fwd.h"

Scope: namespace ara::exec

Symbol: FunctionGroupState

Syntax: class FunctionGroupState final {...};

Description: Class representing Function Group State defined in meta-model (ARXML).

Notes: Once created based on ARXML path, it's internal value stay bounded to it for entire lifetime of an

object.

AUTSSAR

8.2.3.1 FunctionGroupState::FunctionGroupState

[SWS_EM_02324]

Definition of APl function ara::exec::FunctionGroup

State::FunctionGroupState
Upstream requirements: RS_EM_00101

Kind: function

Header file: #include "ara/exec/function_group_state.h"

Scope: class ara::exec::FunctionGroupState

Syntax: FunctionGroupState (const FunctionGroup &functionGroup,

ara::core::StringView state) noexcept;

Parameters (in):

functionGroup the FunctionGroup instance the state shall be connected with.

state short name of the ModeDeclaration which represents the Function
Group State.

Exception Safety: exception safe
Thread Safety: implementation defined
Description: Creates an instance of FunctionGroupState.

8.2.3.2 FunctionGroupState::FunctionGroupState (Copy Constructor)

[SWS_EM_02325]

Definition of APl function ara::exec::FunctionGroup

State::FunctionGroupState
Upstream requirements: RS_EM_00101, RS_AP_00145

Kind: function

Header file: #include "ara/exec/function_group_state.h"

Scope: class ara::exec::FunctionGroupState

Syntax: FunctionGroupState (const FunctionGroupState &other) noexcept;

Parameters (in):

other FunctionGroupState instance to be copied

Exception Safety: exception safe
Thread Safety: implementation defined
Description: Copy constructor.

AUTSSAR

8.2.3.3 FunctionGroupState::FunctionGroupState (Move Constructor)

[SWS_EM_02331]

Definition of APl function ara::exec::FunctionGroup

State::FunctionGroupState
Upstream requirements: RS_EM_00101, RS_AP_00145, RS_AP_00151

Kind: function

Header file: #include "ara/exec/function_group_state.h"

Scope: class ara::exec::FunctionGroupState

Syntax: FunctionGroupState (FunctionGroupState &&other) noexcept;

Parameters (in): other FunctionGroupState instance to be moved to a newly constructed
object.

Exception Safety: exception safe

Thread Safety: implementation defined

Description: Move constructor.

8.2.3.4 FunctionGroupState::operator= (Copy assignment operator)

[SWS_EM_02330]
State::operator=

Definition of APl function ara::exec::FunctionGroup

Upstream requirements: RS_EM_00101, RS_AP_00153, RS_AP_00145

Kind: function

Header file: #include "ara/exec/function_group_state.h"

Scope: class ara::exec::FunctionGroupState

Syntax: FunctionGroupState & operator= (const FunctionGroupState &other) &

noexcept;

Parameters (in):

other FunctionGroupState instance to be copied

Return value:

FunctionGroupState & reference to the object on which the copy assignment operator was

invoked
Exception Safety: exception safe
Thread Safety: implementation defined
Description: Copy assignment operator.

AUTSSAR

8.2.3.5 FunctionGroupState::operator= (Move assignment operator)

[SWS_EM_02332]
State::operator=

Definition of APl function ara::exec::FunctionGroup

Upstream requirements: RS_EM_00101, RS_AP_00153, RS_AP_00145, RS_AP_00151

Kind: function

Header file: #include "ara/exec/function_group_state.h"

Scope: class ara::exec::FunctionGroupState

Syntax: FunctionGroupState & operator= (FunctionGroupState &&other) &

noexcept;

Parameters (in):

other

FunctionGroupState instance to move to this object.

Return value:

FunctionGroupState &

reference to the object on which the move assignment operator
was invoked

Exception Safety: exception safe
Thread Safety: implementation defined
Description: Move assignment operator.

8.2.3.6 FunctionGroupState::~FunctionGroupState

[SWS_EM_02272]

Definition of APl function ara::exec::FunctionGroup
State::~FunctionGroupState

Upstream requirements: RS_EM_00101, RS_AP_00134, RS_AP_00145

Kind: function

Header file: #include "ara/exec/function_group_state.h"
Scope: class ara::exec::FunctionGroupState
Sﬁﬂnax: ~FunctionGroupState () noexcept;
Exception Safety: exception safe

Thread Safety: implementation defined

Description: Destructor of the FunctionGroupState instance.

AUTSSAR

8.2.3.7 FunctionGroupState::operator==

[SWS_EM_02273]
State::operator==

Definition of APl function ara::exec::FunctionGroup

Upstream requirements: RS_EM_00101

Kind: function

Header file: #include "ara/exec/function_group_state.h"

Scope: class ara::exec::FunctionGroupState

Syntax: bool operator== (const FunctionGroupState &other) const noexcept;

Parameters (in): other FunctionGroupState instance to compare this one with.

Return value: bool true in case both FunctionGroupStates are representing exactly the
same meta-model element, false otherwise.

Exception Safety: exception safe
Thread Safety: implementation defined
Description: eq operator to compare with other FunctionGroupState instance.

8.2.3.8 FunctionGroupState::operator!=

[SWS_EM_02274]
State::operator!=

Definition of APl function ara::exec::FunctionGroup

Upstream requirements: RS_EM_00101

Kind: function

Header file: #include "ara/exec/function_group_state.h"

Scope: class ara::exec::FunctionGroupState

Syntax: bool operator!= (const FunctionGroupState &other) const noexcept;

Parameters (in): other FunctionGroupState instance to compare this one with.

Return value: bool false in case both FunctionGroupStates are representing exactly
the same meta-model element, true otherwise.

Exception Safety: exception safe
Thread Safety: implementation defined
Description: uneq operator to compare with other FunctionGroupState instance.

AUTSSAR

8.2.4 StateClient class

Class used to perform Function Group state management operation needed during
lifetime of a Machine. State Management during its own lifetime will need to start
and stop software, that is intended to run on a Machine managed by it. This can
be achieved by performing state transition of a Function Group to which required
software is assigned. Integrator will assign software to run in a particular state (of
Function Group) and State Management can start it, by requesting Execution
Management to perform state transition (of this Function Group) to the mentioned
state. Execution Management will then start mentioned software and report tran-
sition result back to state Management. Please note that stopping software can be
done in similar way (i.e. Function Group state transition, to a state in which software
is not configured to be run).

[SWS_EM_02275] Definition of API class ara::exec::StateClient
Upstream requirements: RS_EM_00101, RS_AP_00154, RS_AP_00150

Kind: class
Header file: #include "ara/exec/state_client.h"

Forwarding header file: | #include "ara/exec/exec_fwd.h"

Scope: namespace ara::exec

Symbol: StateClient

Syntax: class StateClient final {...};

Description: StateClient is an interface of Execution Management that is used by State Management to

request transitions between Function Group States or to perform other related operations.

Notes: StateClient opens communication channel to Execution Management (e.g. POSIX FIFO). Each
Process that intends to perform state management, should create an instance of this class and it
should have rights to use it. To eventually implement the Named Constructor Idiom, the
developer may either make the default constructor private or delete it and define a non-default
constructor.

AUTSSAR

8.2.4.1 StateClient::StateClient

[SWS_EM_02561] Definition of API function ara::exec::StateClient::StateClient

Upstream requirements: RS_EM_00101, RS_AP_00114, RS_AP_00119, RS_AP_00120, RS_-
AP_00121, RS_AP_00151

Kind: function

Header file: #include "ara/exec/state_client.h"

Scope: class ara::exec::StateClient

Syntax: StateClient (std::function< void(const ara::exec::ExecutionErrorEvent

&) > undefinedStateCallback) noexcept (false);

Parameters (in):

undefinedStateCallback

callback to be invoked by StateClient library if a FunctionGroup
changes its state unexpectedly to an Undefined Function Group
State, i.e. without previous request by SetState(). The affected
FunctionGroup and ExecutionError is provided as an argument to
the callback in form of ExecutionErrorEvent Lifetime: it is expected
that undefinedStateCallback remains callable, during entire lifetime
of the StateClient instance. This is especially important if,
undefinedStateCallback is bound to an instance of a class (e.g.
using std::bind).

Exception Safety: not exception safe
Thread Safety: implementation defined
Errors: ara::.exec::ExecErrc:kNo | --
Communication communication error occurred
ara::exec::ExecErrc::k -
InvalidArgument Given terminationHandler doesn’t contain a callable function.
Description: Regular constructor for StateClient.

8.2.4.2 StateClient::Create

[SWS_EM_02276] Definition of API function ara::exec::StateClient::Create

Upstream requirements: RS_EM_00101, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_-
AP_00139, RS_AP_ 00144

Kind: function

Header file: #include "ara/exec/state_client.h"

Scope: class ara::exec::StateClient

Syntax: static ara::core::Result< StateClient > Create (std::function<

void(const ara::exec::ExecutionErrorEvent &)> undefinedStateCallback)

noexcept;

\Y

AUTSSAR

A

Parameters (in): undefinedStateCallback callback to be invoked by StateClient library if a FunctionGroup
changes its state unexpectedly to an Undefined Function Group
State, i.e. without previous request by SetState(). The affected
FunctionGroup and ExecutionError is provided as an argument to
the callback in form of ExecutionErrorEvent. Lifetime: it is expected
that undefinedStateCallback remains callable, during entire lifetime
of the StateClient instance. This is especially important if,
undefinedStateCallback is bound to an instance of a class (e.g.
using std::bind).

Return value: ara::core::Result< State a result that contains either a StateClient object or an error.
Client >

Exception Safety: exception safe

Thread Safety: implementation defined

Errors: ara::exec::ExecErrc::kNo --
Communication communication error occurred

ara:.exec::ExecErrc:k --

InvalidArgument Given terminationHandler doesn’t contain a callable function.

Description: Named constructor for StateClient.

Notes: This named constructor may call a private constructor defined by the developer.

8.2.4.3 StateClient::~StateClient

[SWS_EM_02277] Definition of API function ara::exec::StateClient::~StateClient
Upstream requirements: RS_AP_00134, RS_AP_00145, RS_EM_00101

Kind: function

Header file: #include "ara/exec/state_client.h"
Scope: class ara::exec::StateClient
Syntax: ~StateClient () noexcept;
Exception Safety: exception safe

Thread Safety: implementation defined

Description: noexcept destructor

AUTSSAR

8.2.4.4 StateClient::StateClient (deleted Copy Constructor)

[SWS_EM_02565] Definition of API function ara::exec::StateClient::StateClient
Upstream requirements: RS_AP_00145, RS_EM_00103

Kind: function

Header file: #include "ara/exec/state_client.h"

Scope: class ara::exec::StateClient

Syntax: StateClient (const StateClient &)=delete;
Description: Suppress default copy construction for StateClient.

8.2.4.5 StateClient::operator= (deleted Copy assignment operator)

[SWS_EM_02568] Definition of API function ara::exec::StateClient::operator=
Upstream requirements: RS_AP_00145, RS_EM_00103

Kind: function

Header file: #include "ara/exec/state_client.h"

Scope: class ara::exec::StateClient

Syntax: StateClient & operator= (const StateClient &)=delete;
Description: Suppress default copy assignment for StateClient.

8.2.4.6 StateClient::StateClient (use of default move constructor)

[SWS_EM_02566] Definition of API function ara::exec::StateClient::StateClient
Upstream requirements: RS_AP_00145, RS_AP_00151, RS_EM_00103

Kind: function

Header file: #include "ara/exec/state_client.h"

Scope: class ara::exec::StateClient

Syntax: StateClient (StateClient &&rval) noexcept;

V

AUTSSAR

A
Parameters (in): rval | reference to move
Exception Safety: exception safe
Thread Safety: implementation defined
Description: Intentional use of default move constructor for StateClient.

8.2.4.7 StateClient::operator= (use of default move assignment)

[SWS_EM_02567] Definition of API function ara::exec::StateClient::operator=
Upstream requirements: RS_AP_00145, RS_AP_00151, RS_EM_00103

Kind: function

Header file: #include "ara/exec/state_client.h"

Scope: class ara::exec::StateClient

Syntax: StateClient & operator= (StateClient &&rval) noexcept;

Parameters (in):

rval reference to move

Return value:

StateClient & the new reference

Exception Safety: exception safe
Thread Safety: implementation defined
Description: Intentional use of default move assignment for StateClient.

8.2.4.8 StateClient::SetState

[SWS_EM_02278] Definition of API function ara::exec::StateClient::SetState

Upstream requirements: RS_EM_00101, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_-

AP_00138, RS_AP_00128

Kind: function

Header file: #include "ara/exec/state_client.h"

Scope: class ara::exec::StateClient

Syntax: ara::core::Future< void > SetState (const FunctionGroupState &state)

const noexcept;

\Y%

AUTSSAR

A

Parameters (in):

state

representing meta-model definition of a state inside a specific
Function Group. Execution Management will perform state
transition from the current state to the state identified by this
parameter.

Return value:

ara::.core::Future< void >

void if requested transition is successful, otherwise it returns Exec
ErrorDomain error.

Exception Safety: exception safe
Thread Safety: implementation defined
Errors: ara::exec::ExecErrc::k --
’ OperationCanceled if transition to the requested Function Group state was cancelled by
a newer request
ara::exec::ExecErrc:k -
OperationFailed if transition to the requested Function Group state failed
ara::exec::ExecErrc::kNo | --
Communication if StateClient can’t communicate with Execution Management (e.g.
IPC link is down)
ara::exec::ExecErrc::k -
InvalidTransition if transition to the requested state is prohibited (e.g. Off state for
MachineFG) or the requested Function Group State is invalid (e.g.
does not exist anymore after a software update)
ara::exec::ExecErrc::k -
IntegrlterAUthent'C'tY if an integrity or authenticity check failed during state transition.
CheckFailed
ara::exec::ExecErrc::k --
UnexpectedTermination | one of the processes terminated in an unexpected way during the
state transition.
ara::exec::ExecErrc::k --
InvalidMetaModel The given Function Group State couldn’t be found in the Processed
Identifier Manifest or Process does not have a mapping to the Function
Group of the requested Function Group State.
Description: Method to request state transition for a single Function Group.

This method will request Execution Management to perform state transition and return
immediately. Returned ara::core::Future can be used to determine result of requested transition.

Asynchronous nature of ara::exec::StateClient::SetState makes the re-
turned ara::core::Future dependable on lifetime of the instance from which it
was received. It is expected that once state change request is received by Execution
Management, it will be processed independently of lifetime of the instance from which

it was requested.

Please note that the qualified short names representing FunctionGroups and Func-
tionGroupStates could be quite long. They can be replaced by implementation specific
data types to speed up any checks that have to be performed by the SetState method.
This is enabled by the FunctionGroupState data-type.

AUTSSAR

8.2.4.9 StateClient::GetlnitialMachineStateTransitionResult

[SWS_EM_02279] Definition of API function ara::exec::StateClient::GetlnitialMa-
chineStateTransitionResult
Upstream requirements: RS_EM_00101, RS_AP_00119, RS_AP_00120, RS_AP_00138, RS_-

AP_00128

Kind: function

Header file: #include "ara/exec/state_client.h"

Scope: class ara::exec::StateClient

Syntax: ara::core::Future< void > GetInitialMachineStateTransitionResult ()
const noexcept;

Return value: ara::core::Future< void > | void if requested transition is successful, otherwise it returns Exec

ErrorDomain error.

Exception Safety: exception safe

Thread Safety: implementation defined

Errors: ara::exec::ExecErrc::k -

OperationCanceled StateManagement may decide to cancel SWS_EM_01023
transition and start specific startup sequence. This could happen
for number of reasons and one of them could be interrupted
Machine update sequence.

ara::exec::ExecErrc::k --

OperationFailed if transition to the requested Function Group state failed

ara::exec::ExecErrc::kNo --

Communication if StateClient can’t communicate with Execution Management (e.g.
IPC link is down)

ara::exec::ExecErrc::k --

InvalidMetaModel Process does not have a mapping to MachineFG.

Identifier

Description: Method to retrieve result of Machine State initial transition to Startup state.

Notes: This method allows State Management to retrieve the result of a transition specified by SWS_
EM_01023 and SWS_EM_02241. Please note that this transition happens once per machine life
cycle, thus the result delivered by this method shall not change (unless machine is started
again).

Please note that concerns about returned ara: : core: :Future from ara: :exec::
StateClient::SetState apply for ara::exec::StateClient::GetInitial-
MachineStateTransitionResult.

AUTSSAR

8.2.4.10 StateClient::GetExecutionError

[SWS_EM_02542] Definition of API function ara::exec::StateClient::GetExecution

Error
Upstream requirements: RS_EM_00101, RS_AP_00120, RS_AP_00121, RS_AP_00128, RS_-
AP_00139
[
Kind: function
Header file: #include "ara/exec/state_client.h"
Scope: class ara::exec::StateClient
Syntax: ara::core::Result< ara::exec::ExecutionErrorEvent > GetExecutionError

(const ara::exec::FunctionGroupState &functionGroupState) noexcept;

Parameters (in):

functionGroupState

Function Group State of interest.

Return value:

ara:.core::Result<
ara::.exec::Execution
ErrorEvent >

The execution error which changed the Function Group of the given
Function Group State to an Undefined Function Group State.

Exception Safety: exception safe
Thread Safety: implementation defined
Errors: ara::exec::ExecErrc::k -
OperationFailed The Function Group of the given Function Group State is not in an
Undefined Function Group State.
ara::exec::ExecErrc::kNo --
Communication if StateClient can’t communicate with Execution Management (e.g.
IPC link is down)
ara::exec::ExecErrc::k --
InvalidMetaModel The given Function Group State couldn’t be found in the Processed
Identifier Manifest or Process does not have a mapping to the Function
Group of the given Function Group State.
Description: Returns the execution error which changed the Function Group of the given Function Group

State to an Undefined Function Group State.

This function will return with error and will not return an ExecutionErrorEvent object, if the
Function Group is in a defined Function Group state again.

[SWS_EM_02543] Default value for ExecutionError
Upstream requirements: RS_EM_00101

[In case of Unexpected Termination Or Unexpected Self-termination ofa
Modelled Process Which does not have an executionError configured, Execu—
tion Management shall report the ExecutionError value 1.]

AUTSSAR

8.3 Log and Trace Messages

[SWS_EM _02569] LogMessage ProcessCreated
Status: DRAFT
Upstream requirements: RS_EM_00152, RS_AP_00156

DIt-Message ProcessCreated

Description Message that is sent by the Execution Management right after the Execution Management successfully
created a process.

Messageld 0x80004001

MessageType DLT_TRACE_VFB

Info

DIt-Argument ArgumentDescription ArgumentType ArgumentUnit

processld OS specific PID which has been assigned to the uint32 NoUnit
process.

processName Shortname of the Process element which has been uint8 [encoding UTF-8] NoUnit
started.

is_created is created predefined text

[SWS_EM_02570] LogMessage ProcessKRunningReceived
Status: DRAFT
Upstream requirements: RS_EM_00152, RS_AP_00156

DIt-Message ProcessKRunningReceived

Description Message that is sent by the Execution Management when the Execution Management received a k
Running from ara::exec::ExecutionClient::ReportExecutionState.

Messageld 0x80004002

MessageType DLT_TRACE_VFB

Info

Dit-Argument ArgumentDescription ArgumentType ArgumentUnit

processld OS specific PID which has been assigned to the uint32 NoUnit
process.

received_k received kRunning predefined text

Running

AUTSSAR

[SWS_EM_02571] LogMessage ProcessTerminationRequest
Status: DRAFT
Upstream requirements: RS_EM_00152, RS_AP_00156

Dit-Message ProcessTerminationRequest

Description Message that is sent by the Execution Management when the Execution Management requested to
terminate a process.

Messageld 0x80004003

MessageType DLT_TRACE_VFB

Info

Dit-Argument ArgumentDescription ArgumentType ArgumentUnit

execution_ Execution Management requested to terminate predefined text

management__

requested_to_

terminate

processld OS specific PID which has been assigned to the uint32 NoUnit
process.

[SWS_EM_02572] LogMessage ProcessTerminated

Status: DRAFT
Upstream requirements: RS_EM_00152, RS_AP_00156

Dit-Message ProcessTerminated

Description Message that is sent by the Execution Management when the Execution Management received an
EXIT_SUCCESS or an unexpected termination from the process.

Messageld 0x80004004

MessageType DLT_TRACE_VFB

Info

Dit-Argument ArgumentDescription ArgumentType ArgumentUnit

processld OS specific PID which has been assigned to the uint32 NoUnit
process.

is_terminated is terminated predefined text

AUTSSAR

8.4 Errors

The Execution Management cluster implements an error handling based on ara: :
core: :Result. The errors supported by the Execution Management cluster are
listed in Section 8.4.1.

8.4.1 Execution Management error codes

[SWS_EM 02281] Definition of APl enum ara::exec::ExecErrc

Upstream requirements: RS_AP_00130, RS_AP_00122, RS_AP_00127, RS_AP_00154, RS_-
AP_00125, RS_AP_00142, RS_AP_00129, RS_AP_00149

Kind: enumeration

Header file: #include "ara/exec/exec_error_domain.h"

Forwarding header file: | #include "ara/exec/exec_fwd.h"

Scope: namespace ara::exec
Symbol: ExecErrc
Underlying type: ara::core::ErrorDomain::CodeType
Syntax: enum class ExecErrc : ara::core::ErrorDomain::CodeType {...};
Values: kNoCommunication= 3 Communication error occurred, e.g. request cannot be send or
result cannot be retrieved
kinvalidMetaModel Wrong meta model identifier passed to a function
Identifier= 4

kOperationCanceled= 5 Transition to the requested Function Group state was canceled by a
newer request

kOperationFailed= 6 Requested operation could not be performed, e.g. Function Group
state transition cannot be finished because kRunning was not
reported on time

klnvalidTransition= 9 Invalid transition (e.g. Process attempted to report kRunning, when
it was already in a Running Process State)

kintegrityOrAuthenticity Integrity or authenticity check for a Process to be spawned in the
CheckFailed= 14 requested Function Group state failed
kUnexpected Unexpected Termination during a Function Group State transition
Termination= 15 occurred
kinvalidArgument= 16 Passed argument doesn’t appear to be valid.

Description: Defines an enumeration class for the Execution Management error codes.

Please note Execution Management intentionally does not consider, a wrong meta
model identifier passed to a function, as a violation. Violation handling as required
by [RS_AP_00142] leads to Unexpected Termination, which would be reported
to and handled by state Management. Note that for APls intended to be used by
State Management itself, this error handling strategy is not considered to contribute

AUTSSAR

to robust system design (State Management would be terminated by [RS_AP_-
00142]). Therefore ara::exec APls which are intended to be used by Sstate Manage-
ment return kInvalidMetaModelIdentifier instead, as this allows implementa-
tion of fallback strategies within state Management.

If @ kNoCommunication occurs at Execution Management Or State Manage-
ment level (or communication between both), the system may need to enter an Un-
recoverable State. The internal mechanisms can detect this issue in the moment
that a communication attempt occurs. This is not the case for applications that are
using the interface of the ExecutionClient or StateClient - they eventually get
a communication error in the moment of the AP use, i.e. possibly after the actual error
occurrence. However, this is not problematic as the recovery options are limited from
a client side viewpoint.

8.4.2 ExecException class

[SWS_EM_02282] Definition of API class ara::exec::ExecException

Upstream requirements: RS_AP_00130, RS_AP_00122, RS_AP_00127, RS_AP_00154, RS_-
AP_00150, RS_AP 00140

Kind: class
Header file: #include "ara/exec/exec_error_domain.h"

Forwarding header file: | #include "ara/exec/exec_fwd.h"

Scope: namespace ara::exec

Symbol: ExecException

Base class: ara::core::Exception

Syntax: class ExecException final : public ara::core::Exception {...};
Description: Defines a class for exceptions to be thrown by the Execution Management.

AUTSSAR
8.4.2.1 ExecException::ExecException

[SWS_EM_02283] Definition of API function ara::exec::ExecException::ExecEx-
ception
Upstream requirements: RS_AP_00120, RS_AP_00121, RS_AP_00130

Kind: function

Header file: #include "ara/exec/exec_error_domain.h"

Scope: class ara::exec::ExecException

Syntax: explicit ExecException (ara::core::ErrorCode errorCode) noexcept;
Parameters (in): errorCode The error code.

Exception Safety: exception safe

Thread Safety: implementation defined

Description: Constructs a new ExecException object containing an error code.

8.4.3 GetExecErrorDomain function

[SWS_EM 02290] Definition of API function ara::exec::GetExecErrorDomain
Upstream requirements: RS_AP_00120, RS_AP_00130, RS_AP_00154

Kind: function

Header file: #include "ara/exec/exec_error_domain.h"

Scope: namespace ara::exec

Syntax: const ara::core::ErrorDomain & GetExecErrorDomain () noexcept;

Return value: const ara::core::Error Return a reference to the global ExecErrorDomain object.
Domain &

Exception Safety: exception safe

Thread Safety: implementation defined

Description: Returns a reference to the global ExecErrorDomain object.

AUTSSAR

8.4.4 MakeErrorCode function

[SWS_EM_02291] Definition of API function ara::exec::MakeErrorCode
Upstream requirements: RS_AP_00120, RS_AP_00121, RS_AP_00130, RS_AP_00154

Kind: function

Header file: #include "ara/exec/exec_error_domain.h"

Scope: namespace ara::exec

Syntax: ara::core: :ErrorCode MakeErrorCode (ara::exec::ExecErrc code,

ara::core::ErrorDomain: :SupportDataType data) noexcept;

Parameters (in):

code Error code number.

data Vendor defined data associated with the error.

Return value:

ara::core::ErrorCode An ErrorCode object.

Exception Safety: exception safe
Thread Safety: implementation defined
Description: Creates an instance of ErrorCode.

8.4.5 ExecErrorDomain class

The error handling requires an ara: :core: :ErrorDomain, which can be used to
check the errors returned via ara: : core: :Result.

[SWS_EM 02284] Definition of API class ara::exec::ExecErrorDomain
Upstream requirements: RS_AP_00130, RS_AP_00122, RS_AP_00127, RS_AP_00154, RS_-

AP_00150
[
Kind: class
Header file: #include "ara/exec/exec_error_domain.h"
Forwarding header file: | #include "ara/exec/exec_fwd.h"
Scope: namespace ara::exec
Symbol: ExecErrorDomain
Base class: ara::core::ErrorDomain
Synnm: class ExecErrorDomain final : public ara::core::ErrorDomain {...};
Unique ID: As per ara: :exec: :ExecErrorDomain in [SWS_CORE_90023]
Description: Defines a class representing the Execution Management error domain.

AUTSSAR

8.4.5.1 ExecErrorDomain::ExecErrorDomain

[SWS_EM _02286] Definition of API function ara::exec::ExecErrorDomain::Exec
ErrorDomain

Upstream requirements: RS_AP_00120, RS_AP_00130

Kind: function

Header file: #include "ara/exec/exec_error_domain.h"
Scope: class ara::exec::ExecErrorDomain
Syntax: ExecErrorDomain () noexcept;
Exception Safety: exception safe

Thread Safety: implementation defined

Description: Constructs a new ExecErrorDomain object.

8.4.5.2 ExecErrorDomain::Name

[SWS_EM _02287] Definition of API function ara::exec::ExecErrorDomain::Name
Upstream requirements: RS_AP_00120, RS_AP_00130

Kind: function

Header file: #include "ara/exec/exec_error_domain.h"

Scope: class ara::exec::ExecErrorDomain

Syntax: const char x Name () const noexcept override;
Return value: const char * "Exec".

Exception Safety: exception safe

Thread Safety: implementation defined

Description: Returns a string constant associated with ExecErrorDomain.

AUTSSAR

8.4.5.3 ExecErrorDomain::Message

[SWS_EM_02288]
main::Message

Definition of APl function ara::exec::ExecErrorDo-

Upstream requirements: RS_AP_00120, RS_AP_00121, RS_AP_00130

Kind: function

Header file: #include "ara/exec/exec_error_domain.h"

Scope: class ara::exec::ExecErrorDomain

Syntax: const char » Message (CodeType errorCode) const noexcept override;

Parameters (in):

errorCode The error code number.

Return value:

const char *

The message associated with the error code.

Exception Safety: exception safe
Thread Safety: implementation defined
Description: Returns the message associated with errorCode.

8.4.5.4 ExecErrorDomain::ThrowAsException

[SWS_EM_02289] Definition of API function ara::exec::ExecErrorDomain::Throw

AsException

Upstream requirements: RS_AP_00120, RS_AP_00121, RS_AP_00130

Kind: function

Header file: #include "ara/exec/exec_error_domain.h"

Scope: class ara::exec::ExecErrorDomain

Synkut void ThrowAsException (const ara::core::ErrorCode &errorCode) const

noexcept (false) override;

Parameters (in):

errorCode The error to throw.

Return value:

None

Exception Safety: not exception safe
Thread Safety: implementation defined
Description: Creates a new instance of ExecException from errorCode and throws it as a C++ exception. As

per [SWS_CORE_10304], this function does not participate in overload resolution when C++
exceptions are disabled in the compiler toolchain.

AUTSSAR

9 Service Interfaces

This chapter lists all provided and required service interfaces of the Execution Man-
agement.

There are no service interfaces defined in this release.

AUTSSAR

A Mentioned Manifest Elements

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Class Executable

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::ApplicationStructure

Note This meta-class represents an executable program.
Tags: atp.recommendedPackage=Executables

Base ARElement, ARObject, AtpClassifier, CollectableElement, Identifiable, MultilanguageReferrable,
PackageableElement, Referrable, UploadableDesignElement, UploadablePackageElement

Aggregated by | ARPackage.element

Attribute Type Mult. Kind | Note

buildType BuildTypeEnum 0..1 attr This attribute describes the buildType of a module and/or

platform implementation.

implementation
Props

Executable aggr | This aggregation contains the collection of
ImplementationProps implementation-specific properties necessary to properly
build the enclosing Executable.

minimumTimer TimeValue 0..1 attr This attribute describes the minimum timer resolution

Granularity (TimeValue of one tick) that is required by the Executable.

reporting ExecutionState 0..1 attr this attribute controls the execution state reporting

Behavior ReportingBehavior behavior of the enclosing Executable.

Enum

rootSw RootSwComponent 0..1 aggr | This represents the root SwCompositionPrototype of the

Component Prototype Executable. This aggregation is required (in contrast to a

Prototype direct reference of a SwComponentType) in order to
support the definition of instanceRefs in Executable
context.

traceSwitch TraceSwitch * aggr | Configuration of the Msgld based trace switch

Configuration

Configuration Tags: atp.Status=draft

version StrongRevisionLabel 0..1 attr Version of the executable.
String
Table A.1: Executable
Class ExecutionDependency
Package M2::AUTOSARTemplates::AdaptivePlatform::ExecutionManifest
Note This element defines a ProcessState in which a dependent process needs to be before the process that
aggregates the ExecutionDependency element can be started.
Base ARObject
Aggregated by | StateDependentStartupConfig.executionDependency
Attribute Type Mult. Kind | Note
processState ModeDeclaration 0..1 iref This represent the applicable modeDeclaration that
represents an ProcessState.
InstanceRef implemented by: ModelnProcessinstance
Ref

Table A.2: ExecutionDependency

SSAR

AUT<

Enumeration ExecutionStateReportingBehaviorEnum
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::ApplicationStructure
Note This enumeration provides options for controlling of how an Executable reports its execution state to
the Execution Management
Aggregated by Executable.reportingBehavior
Literal Description
doesNotReport The Executable shall not report its execution state to the Execution Management.
ExecutionState Tags: atp.EnumerationLiterallndex=1
reportsExecution The Executable shall report its execution state to the Execution Management.
State Tags: atp.EnumerationLiterallndex=0
Table A.3: ExecutionStateReportingBehaviorEnum
Class FunctionGroupPortMapping
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::ExecutionManagement
Note This class is used to associate a PortPrototype typed by a StateClientInterface with the actual function
group to which the state changes communicated over the PortPrototype shall apply.
Tags:
atp.Status=draft
atp.recommendedPackage=FunctionGroupPortMappings
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable, UploadableDeploymentElement, UploadablePackageElement
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
functionGroup ModeDeclarationGroup 0..1 ref This reference identifies the applicable function group for
Prototype which the state change shall be executed.
Tags: atp.Status=draft
process Process 0..1 ref This reference identifies the Process of the state client
Tags: atp.Status=draft
rPortPrototype RPortPrototype 0..1 iref This reference identifies the applicable PortPrototype for
InExecutable the function group state change.
Stereotypes: atpUriDef
Tags: atp.Status=draft
InstanceRef implemented by: RPortPrototypeln
ExecutablelnstanceRef
Table A.4: FunctionGroupPortMapping
Class Machine
Package M2::AUTOSARTemplates::AdaptivePlatform::SubSystemDesign::MachineManifest
Note Machine that represents an Adaptive Autosar Software Stack.
Tags: atp.recommendedPackage=Machines
Base ARElement, ARObject, AtpClassifier, AtpFeature, AtpStructureElement, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable, UploadableDeployment
Element, UploadablePackageElement
Aggregated by | ARPackage.element, AtpClassifier.atpFeature
Attribute Type Mult. Kind | Note
default EnterExitTimeout 0..1 aggr | This aggregation defines a default timeout in the context
Application of a given Machine with respect to the launching and
Timeout termination of applications.

\Y%

AUT<

SSAR

A
Class Machine
environment TagWithOptionalValue * aggr | This aggregation represents the collection of environment
Variable variables that shall be added to the environment defined
on the level of the enclosing Machine.
Stereotypes: atpSplitable
Tags: atp.Splitkey=environmentVariable
machineDesign MachineDesign 0..1 ref Reference to the MachineDesign this Machine is
implementing.
module AdaptiveModule * aggr Configuration of Adaptive Autosar module instances that
Instantiation Instantiation are running on the machine.
Stereotypes: atpSplitable
Tags: atp.Splitkey=modulelnstantiation.shortName
processor Processor * aggr This represents the collection of processors owned by the
enclosing machine.
secure SecureCommunication * aggr Target-configuration of secure communication protocol
Communication Deployment configuration settings to crypto module entities.
Deployment Stereotypes: atpSplitable
Tags: atp.Splitkey=secureCommunication
Deployment.shortName
trustedPlatform TrustedPlatform 0..1 attr This attribute controls the behavior of how authentication
Executable ExecutableLaunch affects the ability to launch for each Executable.
LaunchBehavior | BehaviorEnum
Table A.5: Machine
Class ModeDeclaration
Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration
Note Declaration of one Mode. The name and semantics of a specific mode is not defined in the meta-model.
Base ARObject, AtpClassifier, AtoFeature, AtpStructureElement, Identifiable, MultilanguageReferrable,
Referrable
Aggregated by | AtpClassifier.atpFeature, ModeDeclarationGroup.modeDeclaration
Attribute Type Muit. Kind | Note
value Positivelnteger 0..1 attr The RTE shall take the value of this attribute for
generating the source code representation of this Mode
Declaration.
Table A.6: ModeDeclaration
Class ModeDeclarationGroup
Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration
Note A collection of Mode Declarations. Also, the initial mode is explicitly identified.
Tags: atp.recommendedPackage=ModeDeclarationGroups
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable, UploadableDesignElement,
UploadablePackageElement
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
initialMode ModeDeclaration 0..1 ref The initial mode of the ModeDeclarationGroup. This

mode is active before any mode switches occurred.

AUTSSAR

A
Class ModeDeclarationGroup
mode ModeDeclaration * aggr | The ModeDeclarations collected in this ModeDeclaration
Declaration Group.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=modeDeclaration.shortName, mode
Declaration.variationPoint.shortLabel
vh.latestBindingTime=blueprintDerivationTime
Table A.7: ModeDeclarationGroup
Class ModeDeclarationGroupPrototype
Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration
Note The ModeDeclarationGroupPrototype specifies a set of Modes (ModeDeclarationGroup) which is
provided or required in the given context.
Base ARObject, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | AtpClassifier.atpFeature, BswModuleDescription.providedModeGroup, BswModuleDescription.required
ModeGroup, FirewallStateSwitchinterface.firewallStateMachine, FunctionGroupSet.functionGroup, Mode
SwitchInterface.modeGroup, Process.processStateMachine, StateManagementStateNotification.state
Machine
Attribute Type Mult. Kind | Note
type ModeDeclarationGroup 0..1 tref The "collection of ModeDeclarations" (= ModeDeclaration
Group) supported by a component
Stereotypes: isOfType
Table A.8: ModeDeclarationGroupPrototype
Class Process
Package M2::AUTOSARTemplates::AdaptivePlatform::ExecutionManifest
Note This meta-class provides information required to execute the referenced Executable.
Tags: atp.recommendedPackage=Processes
Base ARElement, ARObject, AbstractExecutionContext, AtpClassifier, CollectableElement, Identifiable,
MultilanguageReferrable, PackageableElement, Referrable, UploadableDeploymentElement, Uploadable
PackageElement
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
design ProcessDesign 0..1 ref This reference represents the identification of the
design-time representation for the Process that owns the
reference.
executable Executable * ref Reference to executable that is executed in the process.
Stereotypes: atpUriDef
functionCluster String 0..1 attr This attribute specifies which functional cluster the
Affiliation Process is affiliated with.
numberOf Positivelnteger 0..1 attr This attribute defines how often a process shall be
RestartAttempts restarted if the start fails.
numberOfRestartAttempts = "0" OR Attribute not existing,
start once
numberOfRestartAttempts = "1", start a second time
preMapping Boolean 0..1 attr This attribute describes whether the executable is
preloaded into the memory.

AUTSSAR

A

Class Process

processState ModeDeclarationGroup 0..1 aggr Set of Process States that are defined for the process.

Machine Prototype This attribute is used to support the modeling of execution
dependencies that utilize the condition of process state.
Please note that the process states may not be modeled
arbitrarily at any stage of the AUTOSAR workflow
because the supported states are standardized in the
context of the SWS Execution Management [17].

stateDependent | StateDependentStartup * aggr Applicable startup configurations.

StartupConfig Config

Table A.9: Process

Class ProcessArgument

Package M2::AUTOSARTemplates::AdaptivePlatform::ExecutionManifest

Note This meta-class has the ability to define command line arguments for processing by the Main function.

Base ARObject

Aggregated by | StartupConfig.processArgument

Attribute Type Mulit. Kind | Note

argument String 0..1 attr This represents one command-line argument to be
processed by the executable software.

Table A.10: ProcessArgument

Class ProcessToMachineMapping

Package M2::AUTOSARTemplates::AdaptivePlatform::SubSystemDesign::MachineManifest

Note This meta-class has the ability to associate a Process with a Machine. This relation involves the definition

of further properties, e.g. timeouts.

Base ARObject, Identifiable, MultilanguageReferrable, Referrable

Aggregated by | ProcessToMachineMappingSet.processToMachineMapping

Attribute Type Mult. Kind | Note

design ProcessDesignTo 0..1 ref This reference represents the identification of the

MachineDesignMapping design-time representation for the ProcessToMachine

Mapping that owns the reference.

machine Machine 0..1 ref This reference identifies the Machine in the context of the
ProcessToMachineMapping.

nonOsModule NonOsModule 0..1 ref This supports the optional case that the process

Instantiation Instantiation represents a platform module.

persistency UriString 0..1 attr This attribute identifies a central place for the mapped

CentralStorage Process to store the list of available storages and version

URI information.

process Process 0..1 ref This reference identifies the Process in the context of the
ProcessToMachineMapping.

shallNotRunOn ProcessorCore * ref This reference indicates a collection of cores onto which
the mapped process shall not be executing.

shallRunOn ProcessorCore * ref This reference indicates a collection of cores onto which
the mapped process shall be executing.

Table A.11: ProcessToMachineMapping

AUT<

SSAR

Class Referrable (abstract)
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::ldentifiable
Note Instances of this class can be referred to by their identifier (while adhering to namespace borders).
Base ARObject
Subclasses AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint, BswModuleClientServerEntry, Bsw
VariableAccess, CouplingPortTrafficClassAssignment, Cpp/mplementationDataTypeContextTarget,
DiagnosticEnvModeElement, EthernetPriorityRegeneration, ExclusiveAreaNestingOrder, HwDescription
Entity, ImplementationProps, ModeTransition, MultilanguageReferrable, NmNetworkHandle, Pnc
Mappingldent, SingleLanguageReferrable, SoConlPduldentifier, SocketConnectionBundle, Someip
RequiredEventGroup, TimeSyncServerConfiguration, TpConnectionldent
Attribute Type Mulit. Kind | Note
shortName Identifier 1 attr This specifies an identifying shortName for the object. It
needs to be unique within its context and is intended for
humans but even more for technical reference.
Stereotypes: atpldentityContributor
Tags:
xml.enforceMinMultiplicity=true
xml.sequenceOffset=-100
shortName ShortNameFragment * aggr | This specifies how the Referrable.shortName is
Fragment composed of several shortNameFragments.
Tags: xml.sequenceOffset=-90
Table A.12: Referrable
Class ResourceConsumption
Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption
Note Description of consumed resources by one implementation of a software.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | EcuResourceEstimation.bswResourceEstimation, EcuResourceEstimation.rteResourceEstimation,
Implementation.resourceConsumption, StateDependentStartupConfig.resourceConsumption
Attribute Type Mulit. Kind | Note
memoryUsage MemoryUsage * aggr Collection of the memory allocated by the owner.
Stereotypes: atpSplitable
Tags: atp.Splitkey=memoryUsage.shortName
Table A.13: ResourceConsumption
Class ResourceGroup
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::AdaptiveModule
Implementation
Note This meta-class represents a resource group that limits the resource usage of a collection of processes.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | OsModulelnstantiation.resourceGroup
Attribute Type Mult. Kind | Note
cpuUsage Positivelnteger 0..1 attr CPU resource limit in percentage of the total CPU
capacity on the machine.
memUsage Positivelnteger 0..1 attr Memory limit in bytes.

Table A.14: ResourceGroup

AUTSSAR

Class SoftwareCluster
Package M2::AUTOSARTemplates::AdaptivePlatform::SoftwareDistribution
Note This meta-class represents the ability to define an uploadable software-package, i.e. the SoftwareCluster
shall contain all software and configuration for a given purpose.
Tags: atp.recommendedPackage=SoftwareClusters
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable, UploadableDeploymentElement, UploadablePackageElement
Aggregated by | ARPackage.element
Attribute Type Mulit. Kind | Note
artifact ArtifactChecksum * aggr This aggregation carries the checksums for artifacts
Checksum contained in the enclosing SoftwareCluster. Please note
that the value of these checksums is only applicable at
the time of configuration.
Stereotypes: atpSplitable
Tags: atp.Splitkey=artifactChecksum.shortName, artifact
Checksum.uri
artifactLocator ArtifactLocator * aggr This aggregation represents the artifact locations that are
relevant in the context of the enclosing SoftwareCluster
claimed ModeDeclarationGroup * ref Each SoftwareCluster can reserve the usage of a given
FunctionGroup Prototype functionGroup such that no other SoftwareCluster is
allowed to use it
conflictsTo SoftwareCluster 0..1 aggr | This aggregation handles conflicts. If it yields true then
DependencyFormula the SoftwareCluster shall not be installed.
Stereotypes: atpSplitable
Tags: atp.Splitkey=conflictsTo
contained ARElement * ref This reference represents the collection of model
ARElement elements that cannot derive from UploadablePackage
Element and that contribute to the completeness of the
definition of the SoftwareCluster.
Stereotypes: atpSplitable
Tags: atp.Splitkey=containedARElement
containedFibex FibexElement * ref This allows for referencing FibexElements that need to be
Element considered in the context of a SoftwareCluster.
contained UploadablePackage * ref This reference identifies model elements that are required
Package Element to complete the manifest content.
Element Stereotypes: atpSplitable
Tags: atp.Splitkey=containedPackageElement
contained Process * ref This reference represent the processes contained in the
Process enclosing SoftwareCluster.
dependsOn SoftwareCluster 0..1 aggr This aggregation can be taken to identify a dependency
DependencyFormula for the enclosing SoftwareCluster.
Stereotypes: atpSplitable
Tags: atp.Splitkey=dependsOn
design SoftwareClusterDesign * ref This reference represents the identification of all Software
ClusterDesigns applicable for the enclosing Software
Cluster.
Stereotypes: atpUriDef
diagnostic SoftwareCluster 0..1 ref This reference identifies the applicable SoftwareCluster
Deployment DiagnosticDeployment DiagnosticDeploymentProps that are applicable for the
Props Props referencing SoftwareCluster.
installation SoftwareCluster 0..1 attr This attribute controls the behavior of the SoftwareCluster
Behavior InstallationBehavior in terms of installation.

Enum

AUTSSAR

A
Class SoftwareCluster
license Documentation * ref This attribute allows for the inclusion of the full text of a
license of the enclosing SoftwareCluster. In many cases
open source licenses require the inclusion of the full
license text to any software that is released under the
respective license.
module AdaptiveModule * ref This reference identifies AdaptiveModulelnstantiations
Instantiation Instantiation that need to be included with the SoftwareCluster in order
to establish infrastructure required for the installation of
the SoftwareCluster.
Stereotypes: atpSplitable
Tags: atp.Splitkey=modulelnstantiation
releaseNotes Documentation 0..1 ref This attribute allows for the explanations of changes since
the previous version. The list of changes might require
the creation of multiple paragraphs of test.
typeApproval String 0..1 attr This attribute carries the homologation information that
may be specific for a given country.
vendorld Positivelnteger 0..1 attr Vendor ID of this Implementation according to the
AUTOSAR vendor list.
vendor CryptoService 0..1 ref This reference identifies the certificate that represents the
Signature Certificate vendor’s signature.
version StrongRevisionLabel 0..1 attr This attribute can be used to describe a version
String information for the enclosing SoftwareCluster.
Table A.15: SoftwareCluster
Class StartupConfig
Package M2::AUTOSARTemplates::AdaptivePlatform::ExecutionManifest
Note This meta-class represents a reusable startup configuration for processes..
Tags: atp.recommendedPackage=StartupConfigs
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable, UploadableDeploymentElement, UploadablePackageElement
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
environment TagWithOptionalValue * aggr | This aggregation represents the collection of environment
Variable variables that shall be added to the respective Process’s
environment prior to launch.
executionError ProcessExecutionError 0..1 ref this reference is used to identify the applicable execution
error
permissionTo Boolean 0..1 attr This attribute defines if Process is permitted to create
CreateChild child Processes. When setting this parameter to true two
Process things should be kept in mind: 1) safety and security
implication of this configuration, 2) the fact that Process
will assume management responsibilities for child
Processes (i.e. it will be responsible for terminating
Processes that it creates).
process ProcessArgument * aggr | This aggregation represents the collection of
Argument command-line arguments applicable to the enclosing
(ordered) StartupConfig.
scheduling String 0..1 attr This attribute represents the ability to define the
Policy scheduling policy for the initial thread of the application.
scheduling Integer 0..1 attr This is the scheduling priority requested by the
Priority application itself.
termination TerminationBehavior 0..1 attr This attribute defines the termination behavior of the
Behavior Enum Process.

AUT<

SSAR

A
Class StartupConfig
timeout EnterExitTimeout 0..1 aggr This aggregation can be used to specify the timeouts for
launching and terminating the process depending on the
StartupConfig.
Table A.16: StartupConfig
Class StateDependentStartupConfig
Package M2::AUTOSARTemplates::AdaptivePlatform::ExecutionManifest
Note This meta-class defines the startup configuration for the process depending on a collection of machine
states.
Base ARObject
Aggregated by | Process.stateDependentStartupConfig
Attribute Type Mulit. Kind | Note
execution ExecutionDependency * aggr | This attribute defines that all processes that are
Dependency referenced via the ExecutionDependency shall be
launched and shall reach a certain ProcessState before
the referencing process is started.
functionGroup ModeDeclaration * iref This represent the applicable functionGroupMode.
State InstanceRef implemented by: FunctionGroupStateln
FunctionGroupSetinstanceRef
resource ResourceConsumption 0..1 aggr | This aggregation provides the ability to define resource
Consumption consumption boundaries on a per-process-startup-config
basis.
resourceGroup ResourceGroup 0..1 ref Reference to an applicable resource group.
startupConfig StartupConfig 0..1 ref Reference to a reusable startup configuration with startup
parameters.
Table A.17: StateDependentStartupConfig
Class TagWithOptionalValue
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses:: TagWithOptionalValue
Note A tagged value is a combination of a tag (key) and a value that gives supplementary information that is
attached to a model element. Please note that keys without a value are allowed.
Base ARObject
Aggregated by | AbstractServicelnstance.capabilityRecord, Machine.environmentVariable, ProvidedSomeipService
Instance.capabilityRecord, RequiredSomeipServicelnstance.capabilityRecord, SdClientConfig.capability
Record, SdServerConfig.capabilityRecord, StartupConfig.environmentVariable
Attribute Type Muit. Kind | Note
key String 0..1 attr Defines a key.
sequenceOffset Integer 0..1 attr The sequenceOffset attribute supports the use case
where TagWithOptionalValue is aggregated as splitable. If
multiple aggregations define the same value of attribute
key then the order in which the value collection is merged
might be significant. As an example consider the
modeling of the $PATH environment variable by means of
a meta class TagWithOptionalValue. The sequenceOffset
describes the relative position of each contribution in the
concatenated value. The contributions are sorted in
increasing integer order.
value String 0..1 attr Defines the corresponding value.

Table A.18: TagWithOptionalValue

AUTSSAR

Enumeration TerminationBehaviorEnum

Package M2::AUTOSARTemplates::AdaptivePlatform::ExecutionManifest

Note This enumeration provides options for controlling of how a Process terminates.
Aggregated by StartupConfig.terminationBehavior

Literal Description

processlsNotSelf
Terminating

The Process terminates only on request from Execution Management.

Tags: atp.EnumerationLiterallndex=0

processlsSelf

The Process is allowed to terminate without request from Execution Management.

Terminating Tags: atp.EnumerationLiterallndex=1
Table A.19: TerminationBehaviorEnum
Enumeration TrustedPlatformExecutableLaunchBehaviorEnum
Package M2::AUTOSARTemplates::AdaptivePlatform::SubSystemDesign::MachineManifest
Note This enumeration provides options for controlling the behavior of how authentication affects the ability
to launch an Executable.
Aggregated by Machine.trustedPlatformExecutableLaunchBehavior
Literal Description

monitorMode

An Executable shall always launch, even if the corresponding authentication fails

Tags: atp.EnumerationLiterallndex=1

noTrustedPlatform
Support

This value shall be used if there is no TrustedPlatform support on the Machine

Tags: atp.EnumerationLiteralindex=2

strictMode

An Executable shall not launch if the corresponding authentication fails.

Tags: atp.EnumerationLiterallndex=0

Table A.20: TrustedPlatformExecutableLaunchBehaviorEnum

AUTSSAR

B Platform Extension Interfaces (normative)

This functional cluster does not specify any Platform Extension Interfaces.

AUTSSAR

C Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

C.1 Traceable item history of this document according to
AUTOSAR Release R24-11

C.1.1 Added Specification Iltems in R24-11

Number

Heading

[SWS_EM _02582]

Single instance of ExecutionClient

[SWS_EM_02583]

Machine State Startup transition result access

[SWS_EM_02584]

SetState access control

[SWS_EM_02585]

Single StateClient instance

[SWS_EM_02586]

Definition of API function ara::exec::FunctionGroup::FunctionGroup

Table C.1: Added Specification Items in R24-11

C.1.2 Changed Specification Items in R24-11

Number

Heading

[SWS_EM_01000]

Startup order

[SWS_EM _01001]

Execution Dependency error

[SWS_EM_01002]

Idle Process State

[SWS_EM_01003]

Starting Process State

[SWS_EM_01006]

Terminated Process State

[SWS_EM_01012]

Process Argument Passing

[SWS_EM_01014]

Scheduling policy

[SWS_EM_01015]

Scheduling priority

[SWS_EM_01033]

process start-up configuration

[SWS_EM_01050]

Start Dependent processes

[SWS_EM 01051]

Termination of processes

[SWS_EM_01055]

Initiation of process termination

[SWS_EM_01060]

State transition - termination behavior

[SWS_EM_01065]

State transition - process termination timeout monitoring

[SWS_EM_01066]

State transition - start behavior

\Y%

AUTSSAR

A

Number

Heading

[SWS_EM_01078]

Process Argument strings

[SWS_EM_01210]

Report "kRunning received event" to Platform Health Management

[SWS_EM 01211]

Report "initiating process termination" event to Platform Health Management

[SWS_EM_01212]

Report "process terminated" event to Platform Health Management

[SWS_EM_01314]

Default value for terminationBehavior

[SWS_EM_01401]

ExecutionClient usage restriction

[SWS_EM_01404]

Terminating Process State after Termination Request

[SWS_EM_02000]

Definition of APl enum ara::exec::ExecutionState

[SWS_EM_02002]

Definition of API function ara::exec::ExecutionClient::~ExecutionClient

[SWS_EM_02003]

Definition of API function ara::exec::ExecutionClient::ReportExecutionState

[SWS_EM_02032]

Behavior on entry to the Unrecoverable State

[SWS_EM_02033]

Behavior after execution of the pre-cleanup action

[SWS_EM_02034]

Behavior after termination of all processes managed by Execution
Management

[SWS_EM_02102]

Memory control

[SWS_EM_02103]

CPU usage control

[SWS_EM_02104]

Core affinity

[SWS_EM_02106]

ResourceGroup assignment

[SWS_EM_02108]

Maximum memory usage

[SWS_EM_02109]

process pre-mapping

[SWS_EM_02243]

Handling Execution State Running

[SWS_EM_02245]

Dependency resolution during state change

[SWS_EM_02246]

process specific Environment Variables

[SWS_EM_02247]

Machine specific Environment Variables

[SWS_EM_02250]

Machine State Startup

[SWS_EM_02251]

State transition - restart behavior

[SWS_EM_02253]

State transition - process start-up timeout monitoring

[SWS_EM_02255]

State transition - process termination timeout reaction

[SWS_EM_02258]

State transition - process termination timeout reporting

[SWS_EM_02259]

State transition - process start-up timeout reporting

[SWS_EM_02260]

State transition - process start-up timeout reaction

[SWS_EM_02263]

Definition of API class ara::exec::FunctionGroup

[SWS_EM_02266]

Definition of API function ara::exec::FunctionGroup::~FunctionGroup

[SWS_EM_02267]

Definition of API function ara::exec::FunctionGroup::operator==

[SWS_EM_02268]

Definition of API function ara::exec::FunctionGroup::operator!=

[SWS_EM_02269]

Definition of API class ara::exec::FunctionGroupState

[SWS_EM_02272]

Definition of API function ara::exec::FunctionGroupState::~FunctionGroup
State

[SWS_EM_02273]

Definition of API function ara::exec::FunctionGroupState::operator==

\Y

AUTSSAR

A

Number

Heading

[SWS_EM_02274]

Definition of API function ara::exec::FunctionGroupState::operator!=

[SWS_EM_02276]

Definition of API function ara::exec::StateClient::Create

[SWS_EM_02277]

Definition of API function ara::exec::StateClient::~StateClient

[SWS_EM_02278]

Definition of API function ara::exec::StateClient::SetState

[SWS_EM_02279]

Definition of API function ara::exec::StateClient::GetlnitialMachineState
TransitionResult

[SWS_EM _02281]

Definition of APl enum ara::exec::ExecErrc

[SWS_EM_02282]

Definition of API class ara::exec::ExecException

[SWS_EM_02283]

Definition of API function ara::exec::ExecException::ExecException

[SWS_EM_02284]

Definition of API class ara::exec::ExecErrorDomain

[SWS_EM_02286]

Definition of API function ara::exec::ExecErrorDomain::ExecErrorDomain

[SWS_EM_02287]

Definition of API function ara::exec::ExecErrorDomain::Name

[SWS_EM_02288]

Definition of API function ara::exec::ExecErrorDomain::Message

[SWS_EM_02289]

Definition of API function ara::exec::ExecErrorDomain::ThrowAsException

[SWS_EM_02290]

Definition of API function ara::exec::GetExecErrorDomain

[SWS_EM_02291]

Definition of API function ara::exec::MakeErrorCode

[SWS_EM_02296]

Request of a state transition to a state that the Function Group is already in
transition to

[SWS_EM_02297]

StateClient usage restriction

[SWS_EM_02298]

Request of a state transition different to the state that the Function Group is
already in transition to

[SWS_EM 02301]

Integrity and Authenticity of each Executable

[SWS_EM_02302]

Integrity and Authenticity of shared objects

[SWS_EM_02303]

Integrity and Authenticity of processed Execution Manifest configurations

[SWS_EM_02306]

Launch Behavior Validation

[SWS_EM_02307]

Strict Mode - Execution manifest

[SWS_EM_02308]

Strict Mode - Service Instance manifests

[SWS_EM_02309]

Strict Mode - Executables

[SWS_EM_02310]

State transition - process termination after start-up timeout reaction

[SWS_EM_02315]

Unexpected Termination of processes configured for the Requested State
during a Function Group State transition

[SWS_EM_02316]

Unexpected Termination of a process not configured for the Requested State
during a Function Group State transition

[SWS_EM_02321]

Definition of API function ara::exec::FunctionGroup::FunctionGroup

[SWS_EM_02322]

Definition of API function ara::exec::FunctionGroup::FunctionGroup

[SWS_EM_02324]

Definition of API function ara::exec::FunctionGroupState::FunctionGroup
State

[SWS_EM_02325]

Definition of API function ara::exec::FunctionGroupState::FunctionGroup
State

[SWS_EM_02327]

Definition of API function ara::exec::FunctionGroup::operator=

[SWS_EM_02328]

Definition of API function ara::exec::FunctionGroup::FunctionGroup

\Y

AUTSSAR

A

Number

Heading

[SWS_EM_02329]

Definition of API function ara::exec::FunctionGroup::operator=

[SWS_EM_02330]

Definition of API function ara::exec::FunctionGroupState::operator=

[SWS_EM 02331]

Definition of API function ara::exec::FunctionGroupState::FunctionGroup
State

[SWS_EM 02332]

Definition of API function ara::exec::FunctionGroupState::operator=

[SWS_EM_02400]

Properties of IAM-configuration assigned to processes

[SWS_EM_02541]

Definition of API type ara::exec::ExecutionError

[SWS_EM_02542]

Definition of API function ara::exec::StateClient::GetExecutionError

[SWS_EM_02543]

Default value for ExecutionError

[SWS_EM_02545]

Definition of API variable ara::exec::ExecutionErrorEvent::executionError

[SWS_EM_02546]

Definition of API variable ara::exec::ExecutionErrorEvent::functionGroup

[SWS_EM_02549]

MachineFG.Off handling

[SWS_EM 02552]

State transition - integrity or authenticity check failed

[SWS_EM_02555]

Failure in Machine State Startup transition

[SWS_EM_02557]

Initialization and deinitialization of Execution Management API

[SWS_EM_02558]

Default value for permissionToCreateChildProcess attribute

[SWS_EM_02559]

Restriction of process creation right for processes

[SWS_EM_02560]

Definition of API function ara::exec::ExecutionClient::ExecutionClient

[SWS_EM 02561]

Definition of API function ara::exec::StateClient::StateClient

[SWS_EM 02562

Definition of API function ara::exec::ExecutionClient::Create

[SWS_EM_02563]

Definition of API function ara::exec::ExecutionClient::ExecutionClient

[SWS_EM_02564]

Definition of API function ara::exec::ExecutionClient::operator=

[SWS_EM_02565]

Definition of API function ara::exec::StateClient::StateClient

[SWS_EM_02566]

Definition of API function ara::exec::StateClient::StateClient

[SWS_EM 02567]

Definition of API function ara::exec::StateClient::operator=

[SWS_EM_02568]

Definition of API function ara::exec::StateClient::operator=

[SWS_EM_02569]

LogMessage ProcessCreated

[SWS_EM_02570]

LogMessage ProcessKRunningReceived

[SWS_EM 02571]

LogMessage ProcessTerminationRequest

[SWS_EM_02572]

LogMessage ProcessTerminated

[SWS_EM_02573]

State Transition logging — process created

[SWS_EM_02574]

State Transition logging — process kRunning received

[SWS_EM_02575]

State Transition logging — process termination request

[SWS_EM 02576]

State Transition logging — process terminated

[SWS_EM 02577]

Call of Termination Handler

[SWS_EM_02578]

Initial signal mask for Reporting Process

[SWS_EM_02579]

Initial signal mask for Non-Reporting process

[SWS_EM_02580]

Definition of API function ara::exec::ExecutionClient::ExecutionClient

\Y

AUTSSAR

A

Number

Heading

[SWS_EM 02581]

Definition of API function ara::exec::ExecutionClient::operator=

Table C.2: Changed Specification Items in R24-11

C.1.3 Deleted Specification ltems in R24-11

Number

Heading

[SWS_EM_01013]

Function Group State

[SWS_EM_01030]

Restriction of process creation right for processes

[SWS_EM_01107]

Function Group configuration

[SWS_EM_01301]

Cyclic Execution

[SWS_EM _01302]

Cyclic Execution Control

[SWS_EM_01303]

Cyclic Execution Control Sequence

[SWS_EM_01304]

Service Modification

[SWS_EM_01305]

Worker Pool

[SWS_EM_01306]

processing Container Objects

[SWS_EM_01310]

Get Activation Time

[SWS_EM_01311]

Activation Time Unknown

[SWS_EM_01312]

Get Next Activation Time

[SWS_EM_01313]

Next Activation Time Unknown

[SWS_EM_01320]

Number of DeterministicClients

[SWS_EM_01321]

Minimum number of required synchronization requests

[SWS_EM_01322]

Calculation of the next cycle

[SWS_EM_01323]

Total kRun loop count

[SWS_EM_01324]

Infinite kRun loop

[SWS_EM_01325]

Synchronization Request Message

[SWS_EM_01326]

Synchronization Response Message

[SWS_EM _01327]

Return of the wait point API

[SWS_EM_01328]

Immediate return from wait point

[SWS_EM 01351]

Execution Cycle Time

[SWS_EM_01352]

Execution Cycle Timeout

[SWS_EM_01353]

Event-triggered Cycle Activation

[SWS_EM_02201]

Definition of APl enum ara::exec::ActivationReturnType

[SWS_EM_02203]

Definition of API type ara::exec::DeterministicClient::TimeStamp

[SWS_EM_02210]

Definition of API class ara::exec::DeterministicClient

[SWS_EM_02211] Definition of API function ara::exec::DeterministicClient::DeterministicClient

[SWS_EM_02215] Definition of API function ara::exec::DeterministicClient::~DeterministicClient

\Y

AUTSSAR

A

Number

Heading

[SWS_EM 02217]

Definition of API function ara::exec::DeterministicClient::WaitForActivation

[SWS_EM_02221]

Definition of API function ara::exec::DeterministicClient::RunWorkerPool

[SWS_EM_02225]

Definition of API function ara::exec::DeterministicClient::GetRandom

[SWS_EM_02226]

Definition of API function ara::exec::DeterministicClient::SetRandomSeed

[SWS_EM_02231]

Definition of API function ara::exec::DeterministicClient::GetActivationTime

[SWS_EM_02236]

Definition of API function
ara::.exec::DeterministicClient::GetNextActivationTime

[SWS_EM_02254]

Misconfigured process - assigned to more than one Function Group

[SWS_EM_02292]

[SWS_EM_02313]

Unexpected Termination of starting Processes during Function
Group State transition

[SWS_EM_02314]

Unexpected Termination of terminating Processes during Function
Group State transition

[SWS_EM_02323]

Definition of API function ara::exec::FunctionGroup::Create

[SWS_EM_02326]

Definition of API function ara::exec::FunctionGroupState::Create

[SWS_EM_02510]

Definition of API class ara::exec::WorkerRunnable

[SWS_EM_02511]

Definition of API function ara::exec::WorkerRunnable::WorkerRunnable

[SWS_EM _02512]

Definition of API function ara::exec::WorkerRunnable::~WorkerRunnable

[SWS_EM_02513]

Definition of API function ara::exec::WorkerRunnable::WorkerRunnable

[SWS_EM _02514]

Definition of API function ara::exec::WorkerRunnable::WorkerRunnable

[SWS_EM_02515]

Definition of API function ara::exec::WorkerRunnable::operator=

[SWS_EM_02520]

Definition of API function ara::exec::WorkerRunnable::Run

[SWS_EM_02530]

Definition of API class ara::exec::WorkerThread

[SWS_EM_02531]

Definition of API function ara::exec::WorkerThread::WorkerThread

[SWS_EM_02532]

Definition of API function ara::exec::WorkerThread::~WorkerThread

[SWS_EM_02533]

Definition of API function ara::exec::WorkerThread::WorkerThread

[SWS_EM_02534]

Definition of API function ara::exec::WorkerThread::WorkerThread

[SWS_EM_02535]

Definition of API function ara::exec::WorkerThread::operator=

[SWS_EM_02540]

Definition of API function ara::exec::WorkerThread::GetRandom

[SWS_EM_02550]

Execution Cycle Termination

[SWS_EM_02551]

Missing DeterministicClient

Table C.3: Deleted Specification Items in R24-11

AUTSSAR

C.1.4 Added Constraints in R24-11

Number Heading

[SWS_EM_-

CONSTR_- Function Group shall be controlled by a single State Management process
02560]

Table C.4: Added Constraints in R24-11

C.1.5 Changed Constraints in R24-11

Number

Heading

[SWS_EM_-
CONSTR_-
00001]

Modeling execution dependency for the Terminated state

[SWS_EM -
CONSTR._-
01744]

Definition of process state in the context of the Execution Dependency

[SWS_EM_-
CONSTR_-
02556]

Mandatory states

[SWS_EM -
CONSTR_-
02557]

Scope of machine Function Group

[SWS_EM -
CONSTR_-
02558]

Ability to shut down

[SWS_EM -
CONSTR_-
02559]

Ability to restart

Table C.5: Changed Constraints in R24-11

C.1.6 Deleted Constraints in R24-11

none

AUTSSAR

C.2 Traceable item history of this document according to
AUTOSAR Release R23-11

C.2.1 Added Specification Iltems in R23-11

Number

Heading

[SWS_EM_02295]

Request of a state transition to a state that the Function Group is already
in

[SWS_EM_02296]

Request of a state transition to a state that the Function Group is already
in transition to

[SWS_EM_02315]

Unexpected Termination of Processes configured for the
RequestedState during a Function Group State transition

[SWS_EM_02316]

Unexpected Termination of a Process not configured for the
RequestedState during a Function Group State transition

[SWS_EM_02511]

Definition of API function ara::exec::WorkerRunnable::WorkerRunnable

[SWS_EM_02512]

Definition of API function ara::exec::WorkerRunnable::~WorkerRunnable

[SWS_EM_02513]

Definition of API function ara::exec::WorkerRunnable::WorkerRunnable

[SWS_EM_02514]

Definition of API function ara::exec::WorkerRunnable::WorkerRunnable

[SWS_EM_02515]

Definition of API function ara::exec::WorkerRunnable::operator=

[SWS_EM_02533]

Definition of API function ara::exec::WorkerThread::WorkerThread

[SWS_EM_02534]

Definition of API function ara::exec::WorkerThread::WorkerThread

[SWS_EM_02535]

Definition of API function ara::exec::WorkerThread::operator=

[SWS_EM_02556]

Monitor Mode

[SWS_EM 02557]

[SWS_EM_02558]

Default value for permissionToCreateChildProcess attribute

[SWS_EM_02559]

Restriction of process creation right for processes

[SWS_EM_02560]

Definition of API function ara::exec::ExecutionClient::ExecutionClient

[SWS_EM_02561]

Definition of API function ara::exec::StateClient::StateClient

[SWS_EM 02562

Definition of API function ara::exec::ExecutionClient::Create

[SWS_EM_02563]

Definition of API function ara::exec::ExecutionClient::ExecutionClient

[SWS_EM _02564]

Definition of API function ara::exec::ExecutionClient::operator=

[SWS_EM_02565]

Definition of API function ara::exec::StateClient::StateClient

[SWS_EM_02566]

Definition of API function ara::exec::StateClient::StateClient

[SWS_EM_02567]

Definition of API function ara::exec::StateClient::operator=

[SWS_EM_02568]

Definition of API function ara::exec::StateClient::operator=

[SWS_EM_02569]

LogMessage ProcessCreated

[SWS_EM_02570]

LogMessage ProcessKRunningReceived

[SWS_EM 02571]

LogMessage ProcessTerminationRequest

[SWS_EM 02572

LogMessage ProcessTerminated

[SWS_EM_02573]

State Transition logging — process created

V

AUTSSAR

A

Number

Heading

[SWS_EM_02574]

State Transition logging — process kRunning received

[SWS_EM_02575]

State Transition logging — process termination request

[SWS_EM_02576]

State Transition logging — process terminated

[SWS_EM_02577]

Call of Termination Handler

[SWS_EM 02578]

Initial signal mask for Reporting Process

[SWS_EM_02579]

Initial signal mask for Non-Reporting process

[SWS_EM_02580] Definition of API function ara::exec::ExecutionClient::ExecutionClient

[SWS_EM_02581] Definition of API function ara::exec::ExecutionClient::operator=

Table C.6: Added Specification Iltems in R23-11

C.2.2 Changed Specification Items in R23-11

Number

Heading

[SWS_EM_01030]

Restriction of process creation right for processes

[SWS_EM_01050]

Start Dependent processes

[SWS_EM_01301]

Cyclic Execution

[SWS_EM_01302]

Cyclic Execution Control

[SWS_EM_01303]

Cyclic Execution Control Sequence

[SWS_EM_01304]

Service Modification

[SWS_EM_01305]

Worker Pool

[SWS_EM_01306]

processing Container Objects

[SWS_EM_01309]

Unexpected Termination of a Process

[SWS_EM_01310]

Get Activation Time

[SWS_EM_01311]

Activation Time Unknown

[SWS_EM_01312]

Get Next Activation Time

[SWS_EM_01313]

Next Activation Time Unknown

[SWS_EM_01320]

Number of DeterministicClients

[SWS_EM_01321]

Minimum number of required synchronization requests

[SWS_EM _01322]

Calculation of the next cycle

[SWS_EM_01323]

Total kRun loop count

[SWS_EM_01324]

Infinite kRun loop

[SWS_EM_01325]

Synchronization Request Message

[SWS_EM_01326]

Synchronization Response Message

[SWS_EM_01327]

Return of the wait point API

[SWS_EM_01328]

Immediate return from wait point

[SWS_EM 01351]

Execution Cycle Time

Y%

AUTSSAR

A

Number

Heading

[SWS_EM 01352]

Execution Cycle Timeout

[SWS_EM_01353]

Event-triggered Cycle Activation

[SWS_EM_02000]

Definition of APl enum ara::exec::ExecutionState

[SWS_EM_02001]

Definition of API class ara::exec::ExecutionClient

[SWS_EM_02002]

Definition of API function ara::exec::ExecutionClient::~ExecutionClient

[SWS_EM_02003]

Definition of API function ara::exec::ExecutionClient::ReportExecutionState

[SWS_EM_02032]

On entry to the Unrecoverable State,

[SWS_EM_02033]

After execution of the pre-cleanup action,

[SWS_EM_02034]

After all Processes managed by Execution Management terminated,

[SWS_EM_02108]

Maximum memory usage

[SWS_EM_02109]

process pre-mapping

[SWS_EM_02201]

Definition of APl enum ara::exec::ActivationReturnType

[SWS_EM_02203]

Definition of API type ara::exec::DeterministicClient::TimeStamp

[SWS_EM_02210]

Definition of API class ara::exec::DeterministicClient

[SWS_EM _02211]

Definition of API function ara::

exec:

:DeterministicClient:

:DeterministicClient

[SWS_EM_02215]

Definition of API function ara::

exec:

:DeterministicClient:

:~DeterministicClient

[SWS_EM_02217]

Definition of API function ara::

exec:

:DeterministicClient:

‘WaitForActivation

[SWS_EM_02221]

Definition of API function ara::

exec:

:DeterministicClient:

:RunWorkerPool

[SWS_EM_02225]

Definition of API function ara::

exec:

:DeterministicClient:

:GetRandom

[SWS_EM_02226]

Definition of API function ara::

exec:

:DeterministicClient:

:SetRandomSeed

[SWS_EM_02231]

Definition of API function ara::

exec:

:DeterministicClient:

:GetActivationTime

[SWS_EM_02236]

Definition of API function ara::

Time

exec:

:DeterministicClient:

:GetNextActivation

[SWS_EM_02250]

Machine State Startup

[SWS_EM_02263]

Definition of API class ara::exec::FunctionGroup

[SWS_EM_02266]

Definition of API function ara::exec::FunctionGroup::~FunctionGroup

[SWS_EM _02267]

Definition of API function ara::exec::FunctionGroup::operator==

[SWS_EM_02268]

Definition of API function ara::exec::FunctionGroup::operator!=

[SWS_EM_02269]

Definition of API class ara::exec::FunctionGroupState

[SWS_EM 02272]

Definition of API function ara::exec::FunctionGroupState::~FunctionGroup

State

[SWS_EM_02273]

Definition of API function ara::exec::FunctionGroupState::operator==

[SWS_EM_02274]

Definition of API function ara::exec::FunctionGroupState::operator!=

[SWS_EM_02275]

Definition of API class ara::exec::StateClient

[SWS_EM_02276]

Definition of API function ara::exec::StateClient::Create

[SWS_EM_02277]

Definition of API function ara::exec::StateClient::~StateClient

[SWS_EM_02278]

Definition of API function ara::exec::StateClient::SetState

[SWS_EM_02279]

Definition of API function ara::exec::StateClient::GetlnitialMachineState

TransitionResult

[SWS_EM _02281]

Definition of APl enum ara::exec::ExecErrc

\Y%

AUTSSAR

A

Number

Heading

[SWS_EM_02282]

Definition of API class ara::exec::ExecException

[SWS_EM_02283]

Definition of API function ara::exec::ExecException::ExecException

[SWS_EM_02284]

Definition of API class ara::exec::ExecErrorDomain

[SWS_EM_02286]

Definition of API function ara::exec::ExecErrorDomain::ExecErrorDomain

[SWS_EM_02287]

Definition of API function ara::exec::ExecErrorDomain::Name

[SWS_EM_02288]

Definition of API function ara::exec::ExecErrorDomain::Message

[SWS_EM_02289]

Definition of API function ara::exec::ExecErrorDomain::ThrowAsException

[SWS_EM_02290]

Definition of API function ara::exec::GetExecErrorDomain

[SWS_EM_02291]

Definition of API function ara::exec::MakeErrorCode

[SWS_EM_02292]

[SWS_EM_02306]

Launch Behavior Validation

[SWS_EM_02313]

Unexpected Termination of starting Processes during Function
Group State transition

[SWS_EM _02314]

Unexpected Termination of terminating Processes during Function
Group State transition

[SWS_EM_02321]

Definition of API function ara::exec::FunctionGroup::FunctionGroup

[SWS_EM_02322]

Definition of API function ara::exec::FunctionGroup::FunctionGroup

[SWS_EM_02323]

Definition of API function ara::exec::FunctionGroup::Create

[SWS_EM_02324]

Definition of API function ara::exec::FunctionGroupState::FunctionGroup
State

[SWS_EM_02325]

Definition of API function ara::exec::FunctionGroupState::FunctionGroup
State

[SWS_EM_02326]

Definition of API function ara::exec::FunctionGroupState::Create

[SWS_EM 02327]

Definition of API function ara::exec::FunctionGroup::operator=

[SWS_EM_02328]

Definition of API function ara::exec::FunctionGroup::FunctionGroup

[SWS_EM_02329]

Definition of API function ara::exec::FunctionGroup::operator=

[SWS_EM_02330]

Definition of API function ara::exec::FunctionGroupState::operator=

[SWS_EM_02331]

Definition of API function ara::exec::FunctionGroupState::FunctionGroup
State

[SWS_EM 02332]

Definition of API function ara::exec::FunctionGroupState::operator=

[SWS_EM_02510]

Definition of API class ara::exec::WorkerRunnable

[SWS_EM_02520]

Definition of API function ara::exec::WorkerRunnable::Run

[SWS_EM_02530]

Definition of API class ara::exec::WorkerThread

[SWS_EM_02531]

Definition of API function ara::exec::WorkerThread::WorkerThread

[SWS_EM_02532]

Definition of API function ara::exec::WorkerThread::~WorkerThread

[SWS_EM_02540]

Definition of API function ara::exec::WorkerThread::GetRandom

[SWS_EM_02541]

Definition of API type ara::exec::ExecutionError

[SWS_EM_02542]

Definition of API function ara::exec::StateClient::GetExecutionError

[SWS_EM_02544]

Definition of API class ara::exec::ExecutionErrorEvent

[SWS_EM_02545]

Definition of API variable ara::exec::ExecutionErrorEvent::executionError

\Y

AUTSSAR

A

Number

Heading

[SWS_EM_02546]

Definition of API variable ara::exec::ExecutionErrorEvent::functionGroup

[SWS_EM_02547]

Obtain error information

[SWS_EM_02548]

Create error information

[SWS_EM_02550]

Execution Cycle Termination

[SWS_EM 02551]

Missing DeterministicClient

Table C.7: Changed Specification Items in R23-11

C.2.3 Deleted Specification ltems in R23-11

Number

Heading

[SWS_EM_02030]

[SWS_EM_02553]

Rejecting a state transition to a state that the FG is already in

[SWS_EM_02554]

Rejecting a state transition to a state that the FG is already transition to

Table C.8: Deleted Specification Items in R23-11

C.2.4 Added Constraints in R23-11

Number Heading

[SWS_EM_-

CONSTR_- Mandatory states

02556]

[SWS_EM_-

CONSTR_- Scope of machine Function Group

02557]

[SWS_EM -

CONSTR_- Ability to shut down

02558]

[SWS_EM_-

CONSTR_- Ability to restart

02559]

Table C.9: Added Constraints in R23-11

C.2.5 Changed Constraints in R23-11

none

AUTSSAR

C.2.6 Deleted Constraints in R23-11

none

C.3 Traceable item history of this document according to
AUTOSAR Release R22-11

C.3.1 Added Specification Iltems in R22-11

Number

Heading

[SWS_EM_01210]

Report “kRunning received event” to Platform Health Management

[SWS_EM_01211]

Report “initiating process termination” event to Platform Health Management

[SWS_EM 01212]

Report “process terminated” event to Platform Health Management

[SWS_EM 02552]

State transition - integrity or authenticity check failed

[SWS_EM_02553]

Rejecting a state transition to a state that the FG is already in

[SWS_EM_02554]

Rejecting a state transition to a state that the FG is already transition to

[SWS_EM_02555]

Failure in Machine State Startup transition

[SWS_EM_-
CONSTR_00001]

Modeling execution dependency for the Terminated state

[SWS EM -
CONSTR_01744]

Definition of process state in the context of the ExecutionDependency

Table C.10: Added Specification Items in R22-11

C.3.2 Changed Specification Items in R22-11

Number

Heading

[SWS_EM_01013]

Function Group State

[SWS_EM_01067]

Actions on Completion State Transition

[SWS_EM_01078]

Process Argument strings

[SWS_EM_01107]

Function Group configuration

[SWS_EM_01110]

Off States

[SWS_EM_01314]

Default value for terminationBehavior

[SWS_EM_01320]

Number of DeterministicClients

[SWS_EM_01321]

Minimum number of required synchronization requests

[SWS_EM_01322]

Calculation of the next cycle

[SWS_EM_01323]

Total kRun loop count

[SWS_EM_01324]

Infinite kRun loop

AUTSSAR

A

Number

Heading

[SWS_EM_01403]

Reporting Non-reporting Process

[SWS_EM_02000]

[SWS_EM_02001]

[SWS_EM_02002]

[SWS_EM_02003]

[SWS_EM_02030]

[SWS_EM_02108]

Maximum memory usage

[SWS_EM_02201]

[SWS_EM_02203]

[SWS_EM_02210]

[SWS_EM _02211]

[SWS_EM_02215]

[SWS_EM _02217]

[SWS_EM_02221]

[SWS_EM_02225]

[SWS_EM_02226]

[SWS_EM_02231]

[SWS_EM_02236]

[SWS_EM_02241]

Machine State Startup Completion

[SWS_EM_02254]

Misconfigured process - assigned to more than one Function Group

[SWS_EM_02263]

[SWS_EM_02266]

[SWS_EM_02267]

[SWS_EM_02268]

[SWS_EM_02269]

[SWS_EM_02272]

[SWS_EM_02273]

[SWS_EM_02274]

[SWS_EM_02275]

[SWS_EM_02276]

[SWS_EM _02277]

[SWS_EM_02278]

[SWS_EM _02279]

[SWS_EM_02280]

Effect on Execution Dependency

[SWS_EM_02281]

[SWS_EM_02282]

[SWS_EM_02283]

[SWS_EM _02284]

[SWS_EM_02286]

AUT<=

SAR

Number

Heading

[SWS_EM_02287]

[SWS_EM_02288]

[SWS_EM_02289]

[SWS_EM_02290]

[SWS_EM_02291]

[SWS_EM_02292]

[SWS_EM _02297]

StateClient usage restriction

[SWS_EM_02298]

Canceling ongoing state transition

[SWS_EM_02299]

Availability of a Trust Anchor

[SWS_EM_02306]

Launch Behavior Validation

[SWS_EM_02321]

[SWS_EM_02322]

[SWS_EM_02323]

[SWS_EM_02324]

[SWS_EM_02325]

[SWS_EM_02326]

[SWS_EM_02327]

[SWS_EM_02328]

[SWS_EM_02329]

[SWS_EM_02330]

[SWS_EM_02331]

[SWS_EM_02332]

[SWS_EM_02400]

Properties of IAM-configuration assigned to processes

[SWS_EM_02510]

[SWS_EM_02520]

[SWS_EM_02530]

[SWS_EM_02531]

[SWS_EM 02532]

[SWS_EM_02540]

[SWS_EM_02541]

[SWS_EM _02542]

[SWS_EM_02544]

[SWS_EM_02545]

[SWS_EM_02546]

Table C.11: Changed Specification Items in R22-11

AUTSSAR

C.3.3 Deleted Specification ltems in R22-11

Number

Heading

[SWS_EM_01308]

Random Numbers

[SWS_EM_02107]

Maximum heap

[SWS_EM_02304]

Integrity and Authenticity of processed Service Instance Manifests

[SWS_EM -
CONSTR_0001]

Modeling execution dependency for the Terminated state

[SWS_EM_-
CONSTR_1744]

Definition of process state in the context of the ExecutionDependency

Table C.12: Deleted Specification Iltems in R22-11

C.3.4 Added Constraints in R22-11

none

C.3.5 Changed Constraints in R22-11

none

C.3.6 Deleted Constraints in R22-11

none

C.4 Traceable item history of this document according to
AUTOSAR Release R21-11

C.4.1 Added Specification Iltems in R21-11

Number

Heading

[SWS_EM_02547]

Obtain error information

[SWS_EM_02548]

Create error information

[SS'IYI\:,{STEMTCON_ Definition of process state in the context of the ExecutionDependency
[SS'IYI\:,{SB(I?MTCON- Modeling execution dependency for the Terminated state

V

AUTSSAR

A

Number

Heading

[SWS_EM_02549]

MachineFG.Off handling

[SWS_EM_02551]

Missing DeterministicClient

[SWS_EM_02550]

Execution Cycle Termination

[SWS_EM_01328]

Immediate return from wait point

[SWS_EM_02323]

FunctionGroup::Create

[SWS_EM_02321]

FunctionGroup::FunctionGroup

[SWS_EM_02322]

FunctionGroup::FunctionGroup (Copy Constructor)

[SWS_EM_02328]

FunctionGroup::FunctionGroup (Move Constructor)

[SWS_EM_02327]

FunctionGroup::operator= (Copy assignment operator)

[SWS_EM_02329]

FunctionGroup::operator= (Move assignment operator)

[SWS_EM_02326]

FunctionGroupState::Create

[SWS_EM_02324]

FunctionGroupState::FunctionGroupState

[SWS_EM_02325]

FunctionGroupState::FunctionGroupState (Copy Constructor)

[SWS_EM 02331]

FunctionGroupState::FunctionGroupState (Move Constructor)

[SWS_EM_02330]

FunctionGroupState::operator= (Copy assignment operator)

[SWS_EM_02332]

FunctionGroupState::operator= (Move assignment operator)

Table C.13: Added Specification Items in R21-11

C.4.2 Changed Specification Items in R21-11

Number

Heading

[SWS_EM_01309]

Unexpected Termination of a process

[SWS_EM_02243]

Handling Execution State Running

[SWS_EM_01032]

Machine States configuration

[SWS_EM_02241]

Machine State Startup Completion

[SWS_EM_02254]

Misconfigured process - assigned to more than one Function Group

[SWS_EM_01060]

State transition - termination behavior

[SWS_EM_02255]

State transition - process termination timeout reaction

[SWS_EM_02258]

State transition - process termination timeout reporting

[SWS_EM_02313]

Unexpected Termination of starting processes during Function Group State
transition

[SWS_EM_02314]

Unexpected Termination of terminating processes during Function Group
State transition

[SWS_EM 01351]

Execution Cycle Time

[SWS_EM_01352]

Execution Cycle Timeout

[SWS_EM_01353]

Event-triggered Cycle Activation

Y

AUT<

SAR

Number

Heading

[SWS_EM_01308]

Random Numbers

[SWS_EM_01313]

Next Activation Time Unknown

[SWS_EM_02102]

Memory control

[SWS_EM_02103]

CPU usage control

[SWS_EM_02104]

Core affinity

[SWS_EM_01014]

Scheduling policy

[SWS_EM_02107]

Maximum heap

[SWS_EM_02108]

Maximum system memory usage

[SWS_EM_02109]

process pre-mapping

[SWS_EM_02300]

Integrity and Authenticity of Machine configuration

[SWS_EM_02303]

Integrity and Authenticity of processed Execution Manifest configurations

[SWS_EM_02304]

Integrity and Authenticity of processed Service Instance Manifests

[SWS_EM_02305]

Failed authenticity checks

[SWS_EM_02306]

Launch Behavior Validation

[SWS_EM_02309]

Strict Mode - Executables

[SWS_EM_02276]

StateClient::StateClient

[SWS_EM_02281]

Execution Management error codes

Table C.14: Changed Specification Items in R21-11

C.4.3 Deleted Specification ltems in R21-11

Number

Heading

[SWS_EM_01405]

Terminating Process State after Terminating Report

[SWS_EM_01073]

Simple Arguments

[SWS_EM_01074]

Short form arguments with option value

[SWS_EM_01075]

Short form Arguments without option value

[SWS_EM_01076]

Long form Arguments with option value

[SWS_EM_01077]

Long form Arguments without option value

[SWS_EM_01109]

Misconfigured Process - not assigned to a Function Group

[SWS_EM_01307]

Worker Object

[SWS_EM_02202]

ActivationTimeStampReturnType

[SWS_EM_02216]

DeterministicClient::WaitForNextActivation

[SWS_EM_02220]

DeterministicClient::RunWorkerPool

[SWS_EM_02230]

DeterministicClient::GetActivationTime

[SWS_EM_02235]

DeterministicClient::GetNextActivationTime

[SWS_EM_02264]

FunctionGroup::Preconstruct

\Y

AUTSSAR

A

Number

Heading

[SWS_EM_02265]

FunctionGroup::FunctionGroup

[SWS_EM_02270]

FunctionGroupState::Preconstruct

[SWS_EM_02271]

FunctionGroupState::FunctionGroupState

Table C.15: Deleted Specification Items in R21-11

C.4.4 Added Constraints in R21-11

none

C.4.5 Changed Constraints in R21-11

none

C.4.6 Deleted Constraints in R21-11

none

C.5 Traceable item history of this document according to
AUTOSAR Release R20-11

C.5.1 Added Specification Iltems in R20-11

Number

Heading

[SWS_EM_01314]

Default value for terminationBehavior

[SWS_EM_01309]

Unexpected Termination of a process

[SWS_EM_01078]

Process Argument strings

[SWS_EM 02311]

Order of process termination timeout reaction

[SWS_EM_02310]

State transition - process termination after start-up timeout reaction

[SWS_EM_02312]

Order of process start-up timeout reaction

[SWS_EM_02280]

Effect on Execution Dependency

[SWS_EM_02313]

Unexpected Termination of starting processes during Function Group State
transition

[SWS_EM _02314]

Unexpected Termination of terminating processes during Function Group
State transition

\Y%

AUTSSAR

A

Number

Heading

[SWS_EM_01320]

Number of DeterministicClients

[SWS_EM_01321]

Minimum number of required synchronization requests

[SWS_EM_01322]

Calculation of the next cycle

[SWS_EM_01323]

Total kRun loop count

[SWS_EM_01324]

Infinite kRun loop

[SWS_EM_01325]

Synchronization Request Message

[SWS_EM_01326]

Synchronization Response Message

[SWS_EM _01327]

Return of the wait point API

[SWS_EM 02032]

On entry to the Unrecoverable State

[SWS_EM_02033]

After execution of the pre-cleanup action

[SWS_EM_02034]

After all processes managed by Execution Management terminated,

[SWS_EM_02400]

Properties of IAM-configuration assigned to processes

[SWS_EM_02203]

DeterministicClient:: TimeStamp

[SWS_EM_02541]

ExecutionError

[SWS_EM_02544]

ExecutionErrorEvent

[SWS_EM_02545]

ExecutionErrorEvent::executionError

[SWS_EM_02546]

ExecutionErrorEvent::functionGroup

[SWS_EM_02510]

WorkerRunnable class

[SWS_EM_02520]

WorkerRunnable::Run

[SWS_EM_02530]

WorkerThread class

[SWS_EM_02531]

WorkerThread::WorkerThread

[SWS_EM_02532]

WorkerThread:: WorkerThread

[SWS_EM_02540]

WorkerThread::GetRandom

[SWS_EM_02217]

DeterministicClient::WaitForActivation

[SWS_EM_02221]

DeterministicClient::RunWorkerPool

[SWS_EM_02226]

DeterministicClient::SetRandomSeed

[SWS_EM_02231]

DeterministicClient::GetActivationTime

[SWS_EM_02236]

DeterministicClient::GetNextActivationTime

[SWS_EM 02542]

StateClient::GetExecutionError

[SWS_EM_02543]

Default value for ExecutionError

[SWS_EM_02290]

GetExecErrorDomain

[SWS_EM_02291]

MakeErrorCode

Table C.16: Added Specification ltems in R20-11

AUTSSAR

C.5.2 Changed Specification Items in R20-11

Number

Heading

[SWS_EM_02243]

Handling Execution State Running

[SWS_EM_01405]

Terminating Process State after Terminating Report

[SWS_EM_01073]

Simple Arguments

[SWS_EM_01074]

Short form arguments with option value

[SWS_EM_01075]

Short form Arguments without option value

[SWS_EM_01076]

Long form Arguments with option value

[SWS_EM_01077]

Long form Arguments without option value

[SWS_EM_01032]

Machine States configuration

[SWS_EM_02250]

Machine State Startup

[SWS_EM_02258]

State transition - Process termination timeout reporting

[SWS_EM_02260]

State transition - Process start-up timeout reaction

[SWS_EM_02259]

State transition - Process start-up timeout reporting

[SWS_EM_01067]

Confirm State Changes

[SWS_EM_02297]

StateClient usage restriction

[SWS_EM_02000]

ExecutionState

[SWS_EM_02202]

ActivationTimeStampReturnType

[SWS_EM_02216]

DeterministicClient::WaitForNextActivation

[SWS_EM_02220]

DeterministicClient::RunWorkerPool

[SWS_EM_02230]

DeterministicClient::GetActivationTime

[SWS_EM_02235]

DeterministicClient::GetNextActivationTime

[SWS_EM_02263]

FunctionGroup class

[SWS_EM_02264]

FunctionGroup::Preconstruct

[SWS_EM_02265]

FunctionGroup::FunctionGroup

[SWS_EM_02266]

FunctionGroup:: FunctionGroup

[SWS_EM_02267]

FunctionGroup::operator==

[SWS_EM_02268]

FunctionGroup::operator!=

[SWS_EM_02269]

FunctionGroupState class

[SWS_EM_02270]

FunctionGroupState::Preconstruct

[SWS_EM_02271]

FunctionGroupState::FunctionGroupState

[SWS_EM_02272]

FunctionGroupState:: FunctionGroupState

[SWS_EM_02273]

FunctionGroupState::operator==

[SWS_EM_02274]

FunctionGroupState::operator!=

Table C.17: Changed Specification Items in R20-11

AUTSSAR

C.5.3 Deleted Specification ltems in R20-11

Number

Heading

[SWS_EM_01071]

Premature Termination of a Reporting Process

[SWS_EM_02244]

Handling Execution State Terminating

[SWS_EM_01024]

Machine State Shutdown

[SWS_EM_02242]

Further Function Group State Changes

[SWS_EM_02257]

Recovery Action APl Security

[SWS_EM_02076]

Get Process States Information

[SWS_EM_02077]

Process State Transition Event

[SWS_EM_01016]

Process Restart

[SWS_EM _01062]

Process Restart Behavior

[SWS_EM_01063]

Process Restart Failed

[SWS_EM_01064]

Process Restart Successful

[SWS_EM_02261]

Enter Unrecoverable State

[SWS_EM_02262]

Enter Unrecoverable State Behavior

Table C.18: Deleted Specification Iltems in R20-11

C.5.4 Added Constraints in R20-11

none

C.5.5 Changed Constraints in R20-11

none

C.5.6 Deleted Constraints in R20-11

none

AUTSSAR

C.6 Traceable item history of this document according to
AUTOSAR Release R19-11

C.6.1 Added Specification Iltems in R19-11

Number Heading

[SWS_EM 01401] Process Self Reporting

[SWS_EM_01402] Implicit Running Process State

[SWS_EM_01403] Reporting Non-reporting Process

[SWS_EM_01404] Terminating Process State after Termination Request
[SWS_EM_01405] Terminating Process State after Terminating Report

[SWS_EM_02002]

[SWS_EM_02003]

[SWS_EM_02030]

[SWS_EM_02211]

[SWS_EM_02215]

[SWS_EM_02216]

[SWS_EM_02220]

[SWS_EM_02225]

[SWS_EM_02230]

[SWS_EM_02235]

[SWS_EM_02257] Recovery Action APl Security

[SWS_EM_02258] State transition - Process termination timeout reporting
[SWS_EM_02259] State transition - Process start-up timeout reporting
[SWS_EM_02260] State transition - Process start-up timeout reaction
[SWS_EM_02261] Enter Unrecoverable State

[SWS_EM_02262] Enter Unrecoverable State Behavior

[SWS_EM_02263]

[SWS_EM_02264]

[SWS_EM_02265]

[SWS_EM_02266]

[SWS_EM_02267]

[SWS_EM_02268]

[SWS_EM_02269]

[SWS_EM_02270]

[SWS_EM_02271]

[SWS_EM_02272]

[SWS_EM_02273]

[SWS_EM_02274]

AUTSSAR

Number

Heading

[SWS_EM_02275]

[SWS_EM _02276]

[SWS_EM_02277]

[SWS_EM_02278]

[SWS_EM_02279]

[SWS_EM_02281]

[SWS_EM_02282]

[SWS_EM_02283]

[SWS_EM_02284]

[SWS_EM_02286]

[SWS_EM_02287]

[SWS_EM_02288]

[SWS_EM_02289]

[SWS_EM_02290]

[SWS_EM_02291]

[SWS_EM_02292]

[SWS_EM_02297]

StateClient usage restriction

[SWS_EM_02298]

Canceling ongoing state transition

[SWS_EM_02299]

Availability of a Trust Anchor

[SWS_EM_02300]

Integrity and Authenticity of processed Machine Manifest

[SWS_EM_02301]

Integrity and Authenticity of each Executable

[SWS_EM_02302]

Integrity and Authenticity of shared objects

[SWS_EM_02303]

Integrity and Authenticity of processed Execution Manifests

[SWS_EM_02304]

Integrity and Authenticity of processed Service Instance Manifests

[SWS_EM_02305]

Failed authenticity checks

[SWS_EM_02306]

Machine Manifest

[SWS_EM_02307]

Strict Mode - Execution manifest

[SWS_EM_02308]

Strict Mode - Service Instance manifests

[SWS_EM_02309]

Strict Mode - Executables

Table C.19: Added Specification Items in R19-11

AUTSSAR

C.6.2 Changed Specification Items in R19-11

Number

Heading

[SWS_EM_01000]

Startup order

[SWS_EM_01001]

Execution Dependency error

[SWS_EM 01002]

Idle Process State

[SWS_EM_01003]

Starting Process State

[SWS_EM_01004]

Running Process State of Reporting Processes

[SWS_EM_01006]

Terminated Process State

[SWS_EM_01012]

Process Argument Passing

[SWS_EM_01013]

Function Group State

[SWS_EM_01014]

Scheduling policy

[SWS_EM_01015]

Scheduling priority

[SWS_EM_01016]

Process Restart

[SWS_EM_01023]

Self initiation of Machine State Startup transition

[SWS_EM_01024]

Machine State Shutdown

[SWS_EM_01025]

Machine State Restart

[SWS_EM_01030]

Restriction of process creation right for Processes

[SWS_EM_01032]

Machine States configuration

[SWS_EM_01033]

Process start-up configuration

[SWS_EM_01041]

Scheduling FIFO

[SWS_EM_01042]

Scheduling Round-Robin

[SWS_EM_01043]

Scheduling Other

[SWS_EM_01050]

Start Dependent Processes

[SWS_EM_01051]

Termination of Processes

[SWS_EM_01055]

Initiation of Process termination

[SWS_EM_01060]

State transition - termination behavior

[SWS_EM_01062]

Process Restart Behavior

[SWS_EM_01063]

Process Restart Failed

[SWS_EM_01064]

Process Restart Successful

[SWS_EM_01065]

State transition - Process termination timeout monitoring

[SWS_EM_01066]

State transition - start behavior

[SWS_EM 01067]

Finish of a successful state transition

[SWS_EM_01071]

Premature Termination of a Reporting Process

[SWS_EM_01072]

Process Argument Zero

[SWS_EM_01073]

Simple Arguments

[SWS_EM_01074]

Short form arguments with option value

[SWS_EM_01075]

Short form Arguments without option value

[SWS_EM_01076]

Long form Arguments with option value

Y%

AUTSSAR

A

Number

Heading

[SWS_EM_01077]

Long form Arguments without option value

[SWS_EM_01107]

Function Group configuration

[SWS_EM_01109]

Misconfigured Process - not assigned to a Function Group

[SWS_EM_01110]

Off States

[SWS_EM_01301]

Cyclic Execution

[SWS_EM_01302]

Cyclic Execution Control

[SWS_EM_01303]

Cyclic Execution Control Sequence

[SWS_EM_01304]

Service Modification

[SWS_EM_01305]

Worker Pool

[SWS_EM_01306]

Processing Container Objects

[SWS_EM_01308]

Random Numbers

[SWS_EM_01310]

Get Activation Time

[SWS_EM_01311]

Activation Time Unknown

[SWS_EM 01312]

Get Next Activation Time

[SWS_EM_01313]

Next Activation Time Unknown

[SWS_EM 01351]

Execution Cycle Time

[SWS_EM_01352]

Execution Cycle Timeout

[SWS_EM_01353]

Event-triggered Cycle Activation

[SWS_EM_02076]

Get Process States Information

[SWS_EM_02077]

Process State Transition Event

[SWS_EM_02102]

Memory control

[SWS_EM_02103]

CPU usage control

[SWS_EM_02104]

Core affinity

[SWS_EM_02106]

ResourceGroup assignment

[SWS_EM_02107]

Maximum heap

[SWS_EM_02108]

Maximum system memory usage

[SWS_EM_02109]

Process pre-mapping

[SWS_EM_02241]

Machine State Startup Completion

[SWS_EM_02242]

Further Function Group State Changes

[SWS_EM_02243]

Handling Execution State Running

[SWS_EM_02244]

Handling Execution State Terminating

[SWS_EM_02245]

Dependency resolution during state change

[SWS_EM_02246]

Process specific Environment Variables

[SWS_EM_02247]

Machine specific Environment Variables

[SWS_EM_02248]

Environment Variables precedence

[SWS_EM_02249]

Missing value from Environment Variable definition

[SWS_EM_02250]

Machine State Startup

[SWS_EM_02251]

State transition - restart behavior

[SWS_EM_02253]

State transition - Process start-up timeout monitoring

Y%

AUTSSAR

A

Number

Heading

[SWS_EM_02254]

Misconfigured Process - assigned to more than one Function Group

[SWS_EM_02255]

State transition - Process termination timeout reaction

Table C.20: Changed Specification Items in R19-11

C.6.3 Deleted Specification Items in R19-11

Number

Heading

[SWS_EM_01005]

Terminating Process State

[SWS_EM_01018]

Enter Safe State

[SWS_EM_01026]

State Change

[SWS_EM_01028]

Get State Information

[SWS_EM_01034]

Deny State Change Request

[SWS_EM_01053]

Execution State Running

[SWS_EM_01061]

Enter Safe State Behavior

[SWS_EM_01068]

State transition - Process start-up timeout reporting

[SWS_EM_01070]

Acknowledgement of termination request

[SWS_EM_01400]

Execution Dependency resolution

[SWS_EM_02044]

State Change in Progress

[SWS_EM_02049]

State Change Failed

[SWS_EM_02050]

State Information Success

[SWS_EM_02056]

State Change Failed

[SWS_EM_02057]

State Change Successful

[SWS_EM_02058]

State Transition Timeout

[SWS_EM_02252]

State transition - Process termination timeout reporting

[SWS_EM_02256]

State transition - Process start-up timeout reaction

Table C.21: Deleted Specification Iltems in R19-11

C.6.4 Added Constraints in R19-11

none

C.6.5 Changed Constraints in R19-11

none

AUTSSAR

C.6.6 Deleted Constraints in R19-11

none

C.7 Traceable item history of this document according to
AUTOSAR Release 19-03

C.7.1 Added Specification Items in R19-03

Number

Heading

[SWS_EM_02250]

Machine State Startup

[SWS_EM_02251]

State transition - restart behavior

[SWS_EM_02252]

State transition - Process termination timeout reporting

[SWS_EM_02253]

State transition - Process start-up timeout monitoring

[SWS_EM_02254]

Misconfigured Process - assigned to more than one Function Group

[SWS_EM_02255]

State transition - Process termination timeout reaction

[SWS_EM_02256]

State transition - Process start-up timeout reaction

Table C.22: Added Specification Iltems in R19-03

C.7.2 Changed Specification Items in R19-03

Number

Heading

[SWS_EM_01001]

Execution Dependency error

[SWS_EM_01005]

Terminating Process State

[SWS_EM 01012]

Process Argument Passing

[SWS_EM_01013]

Function Group State

[SWS_EM_01014]

Scheduling policy

[SWS_EM_01015]

Scheduling priority

[SWS_EM_01023]

Self initiation of Machine State Startup transition

[SWS_EM_01024]

Machine State Shutdown

[SWS_EM_01025]

Machine State Restart

[SWS_EM_01060]

State transition - termination behavior

[SWS_EM_01065]

State transition - Process termination timeout monitoring

[SWS_EM_01066]

State transition - start behavior

[SWS_EM_01067]

Finish of a successful state transition

[SWS_EM_01068]

State transition - Process start-up timeout reporting

[SWS_EM_01109]

Misconfigured Process - not assigned to a Function Group

\Y

AUTSSAR

Number

Heading

[SWS_EM_01110]

Off States

[SWS_EM_01400]

Execution Dependency resolution

[SWS_EM_02000]

[SWS_EM_02001]

[SWS_EM_02201]

[SWS_EM_02202]

[SWS_EM_02210]

[SWS_EM_02241]

Machine State Startup Completion

[SWS_EM_02245]

Dependency resolution during state change

[SWS_EM_02246]

Process specific Environment Variables

Table C.23: Changed Specification Iltems in R19-03

C.7.3 Deleted Specification Items in R19-03

Number

Heading

[SWS_EM_01035]

Machine State Restart behavior

[SWS_EM_01036]

Machine State Shutdown behavior

[SWS_EM_02002]

ExecutionClient::~ExecutionClient API

[SWS_EM_02003]

ExecutionClient::ReportExecutionState API

[SWS_EM_02030]

ExecutionClient::ExecutionClient API

[SWS_EM_02070]

ExecutionReturnType Enumeration

[SWS_EM_02211]

DeterministicClient:

:DeterministicClient API

[SWS_EM_02215]

DeterministicClient:

:~DeterministicClient API

[SWS_EM_02216]

DeterministicClient:

‘WaitForNextActivation API

[SWS_EM_02220]

DeterministicClient:

:RunWorkerPool API

[SWS_EM_02225]

DeterministicClient:

:GetRandom API

[SWS_EM_02230]

DeterministicClient:

:GetActivationTime API

[SWS_EM_02235]

DeterministicClient:

:GetNextActivationTime API

Table C.24: Deleted Specification Items in R19-03

C.7.4 Added Constraints in R19-03

none

AUTSSAR

C.7.5 Changed Constraints in R19-03

none

C.7.6 Deleted Constraints in R19-03

none

C.8 Traceable item history of this document according to
AUTOSAR Release 18-10

C.8.1 Added Specification Items in 18-10

none

C.8.2 Changed Specification Items in 18-10

Number

Heading

[SWS_EM_01000]

Startup order

[SWS_EM 01001]

Execution Dependency error

[SWS_EM_01004]

Running Process State

[SWS_EM_01005]

Terminating Process State

[SWS_EM_01012]

Process Argument Passing

[SWS_EM_01013]

Machine State and Function Group State

[SWS_EM_01014]

Scheduling policy

[SWS_EM_01015]

Scheduling priority

[SWS_EM_01018]

Override State

[SWS_EM_01023]

Machine State Startup

[SWS_EM_01024]

Machine State Shutdown

[SWS_EM_01025]

Machine State Restart

[SWS_EM_01026]

State Change

[SWS_EM_01028]

Get State Information

[SWS_EM_01033]

Process start-up configuration

[SWS_EM_01034]

Deny State Change Request

[SWS_EM_01035]

Machine State Restart behavior

[SWS_EM_01036]

Machine State Shutdown behavior

[SWS_EM _01037]

Machine State Startup behavior

[SWS_EM_01039]

Scheduling priority range for SCHED_FIFO and SCHED_RR

Y%

AUTSSAR

A

Number

Heading

[SWS_EM_01040]

Scheduling priority range for SCHED_OTHER

[SWS_EM_01041]

Scheduling FIFO

[SWS_EM_01042]

Scheduling Round-Robin

[SWS_EM_01043]

Scheduling Other

[SWS_EM_01053]

Execution State Running

[SWS_EM_01060]

Shutdown state change behavior

[SWS_EM_01065]

Shutdown state timeout monitoring behavior

[SWS_EM_01066]

Start state change behavior

[SWS_EM_01067]

Confirm State Changes

[SWS_EM_01069]

Self-terminating Process State

[SWS_EM_01070]

Acknowledgement of termination request

[SWS_EM_01071]

Initiation of Process self-termination

[SWS_EM_01072]

Process Argument Zero

[SWS_EM_01074]

Short form arguments with option value

[SWS_EM_01075]

Short form Arguments without option value

[SWS_EM_01076]

Long form Arguments with option value

[SWS_EM_01077]

Long form Arguments without option value

[SWS_EM_01107]

Function Group configuration

[SWS_EM_01109]

Misconfigured Process instances

[SWS_EM_01110]

Off States

[SWS_EM_02000]

ExecutionState Enumeration

[SWS_EM_02001]

[SWS_EM_02002]

ExecutionClient::~ExecutionClient API

[SWS_EM_02003]

ExecutionClient::ReportExecutionState API

[SWS_EM_02030]

ExecutionClient::ExecutionClient API

[SWS_EM_02044]

State Change in Progress

[SWS_EM_02049]

State Change Failed

[SWS_EM_02070]

ExecutionReturnType Enumeration

[SWS_EM_02109]

Process pre-mapping

[SWS_EM_02210]

[SWS_EM_NA]

Table C.25: Changed Specification Items in 18-10

AUTSSAR

C.8.3 Deleted Specification Items in 18-10

Number Heading

[SWS_EM_01044] Machine States Identification
[SWS_EM_01108] Function Group State
[SWS_EM_01111] No reference to Off State

Table C.26: Deleted Specification Items in 18-10

C.8.4 Added Constraints in 18-10

none

C.8.5 Changed Constraints in 18-10

none

C.8.6 Deleted Constraints in 18-10

none

C.9 Traceable item history of this document according to
AUTOSAR Release 18-03

C.9.1 Added Specification Iltems in 18-03

Number Heading

[SWS_EM 01044] Machine States Identification
[SWS_EM_01063] Process Restart Failed

[SWS_EM_01064] Process Restart Successful
[SWS_EM_01065] Shutdown state timeout monitoring behavior
[SWS_EM_01066] Start state change behavior
[SWS_EM_01067] Confirm State Changes

[SWS_EM_01068] Report start-up timeout

[SWS_EM_01069] Self-terminating Process State
[SWS_EM_01070] Acknowledgement of termination request

Y%

AUTSSAR

A

Number

Heading

[SWS_EM_01071]

Initiation of Process self-termination

[SWS_EM_01072]

Application Argument Zero

[SWS_EM_01073]

Simple Arguments

[SWS_EM_01074]

Short form arguments with option value

[SWS_EM_01075]

Short form Arguments without option value

[SWS_EM_01076]

Long form Arguments with option value

[SWS_EM_01077]

Long form Arguments without option value

[SWS_EM 01301]

Cyclic Execution

[SWS_EM_01302]

Cyclic Execution Control

[SWS_EM_01305]

Worker Pool

[SWS_EM_01308]

Random Numbers

[SWS_EM_01310]

Get Activation Time

[SWS_EM_01311]

Activation Time Unknown

[SWS_EM_01312]

Get Next Activation Time

[SWS_EM_01313]

Next Activation Time Unknown

[SWS_EM_02058]

State Transition Timeout

[SWS_EM 02102]

Memory control

[SWS_EM_02103]

CPU usage control

[SWS_EM_02104]

Core affinity

[SWS_EM_02106]

ResourceGroup assignment

[SWS_EM_02107]

Maximum heap

[SWS_EM_02108]

Maximum system memory usage

[SWS_EM_02109]

Process pre-mapping

[SWS_EM_02201]

ActivationReturnType Enumeration

[SWS_EM_02202]

ActivationTimeStampReturnType Enumeration

[SWS_EM_02210]

[SWS_EM_02211]

DeterministicClient::DeterministicClient API

[SWS_EM_02215]

DeterministicClient::~DeterministicClient API

[SWS_EM_02216]

DeterministicClient::WaitForNextActivation API

[SWS_EM_02220]

DeterministicClient::RunWorkerPool API

[SWS_EM_02225]

DeterministicClient::GetRandom API

[SWS_EM_02230]

DeterministicClient::GetActivationTime API

[SWS_EM_02235]

DeterministicClient::GetNextActivationTime API

Table C.27: Added Specification Items in 18-03

AUTSSAR

C.9.2 Changed Specification Iltems in 18-03

Number

Heading

[SWS_EM_01000]

Startup order

[SWS_EM_01001]

Execution Dependency error

[SWS_EM 01002]

Idle Process State

[SWS_EM_01003]

Starting Process State

[SWS_EM_01004]

Running Process State

[SWS_EM_01005]

Terminating Process State

[SWS_EM_01006]

Terminated Process State

[SWS_EM_01012]

Application Argument Passing

[SWS_EM_01013]

Machine State and Function Group State

[SWS_EM _01014]

Scheduling policy

[SWS_EM_01015]

Scheduling priority

[SWS_EM_01016]

Restart Process

[SWS_EM_01018]

Override State

[SWS_EM_01023]

Machine State Startup

[SWS_EM _01024]

Machine State Shutdown

[SWS_EM_01025]

Machine State Restart

[SWS_EM_01026]

State Change

[SWS_EM_01028]

Get State Information

[SWS_EM_01030]

Start of Process execution

[SWS_EM 01032]

Machine States Obtainment

[SWS_EM_01033]

Application start-up configuration

[SWS_EM_01034]

Deny State Change Request

[SWS_EM_01035]

Machine State Restart behavior

[SWS_EM_01036]

Machine State Shutdown behavior

[SWS_EM_01037]

Machine State Startup behavior

[SWS_EM_01041]

Scheduling FIFO

[SWS_EM_01042]

Scheduling Round-Robin

[SWS_EM_01043]

Scheduling Other

[SWS_EM_01050]

Start Dependent Processes

[SWS_EM_01051]

Shutdown Processes

[SWS_EM_01053]

Application State Running

[SWS_EM_01055]

Initiation of Process termination

[SWS_EM_01058]

Shutdown of the Operating System

[SWS_EM_01059]

Restart of the Operating System

[SWS_EM_01060]

Shutdown state change behavior

[SWS_EM_01061]

Override State Interrupt

\Y%

AUTSSAR

A

Number

Heading

[SWS_EM 01062]

Restart Process Behavior

[SWS_EM_01107]

Function Group name

[SWS_EM_01108]

Function Group State

[SWS_EM_01109]

State References

[SWS_EM_01110]

Off States

[SWS_EM_02001]

[SWS_EM_02044]

State Change in Progress

[SWS_EM_02049]

State Change Failed

[SWS_EM_02050]

State Information Success

[SWS_EM_02056]

State Change Failed

[SWS_EM_02057]

State Change Successful

[SWS_EM_NA]

Table C.28: Changed Specification Iltems in 18-03

C.9.3 Deleted Specification Items in 18-03

Number

Heading

[SWS_EM_01017]

Application Binary Name

[SWS_EM_01056]

State Manager

[SWS_EM_01112]

StartupConfig

[SWS_EM_01201]

Core Binding

[SWS_EM_02005]

StateReturnType Enumeration

[SWS_EM_02006]

[SWS_EM_02007]

StateClient::StateClient API

[SWS_EM_02008]

StateClient::~StateClient API

[SWS_EM_02031]

Application State Reporting

[SWS_EM_02041]

ResetCause Enumeration

[SWS_EM_02042]

ApplicationClient::SetLastResetCause API

[SWS_EM_02043]

ApplicationClient::GetLastResetCause API

[SWS_EM_02047]

StateClient::GetState API

[SWS_EM_02048]

Function Group State change in progress

[SWS_EM_02051]

Machine State change in progress

[SWS_EM_02054]

StateClient::SetState API

[SWS_EM_02055]

Function Group State change in progress

[SWS_EM_02071]

[SWS_EM_02072]

Retrieving Machine State

Y%

AUTSSAR

A
Number Heading
[SWS_EM_02073] Retrieving Function Group State
[SWS_EM_02074] Setting Machine State
[SWS_EM_02075] Setting Function Group State

Table C.29: Deleted Specification Items in 18-03

C.9.4 Added Constraints in 18-03

none

C.9.5 Changed Constraints in 18-03

none

C.9.6 Deleted Constraints in 18-03

none

C.10 Traceable item history of this document according to
AUTOSAR Release 17-10

C.10.1 Added Specification Iltems in 17-10

Number Heading
[SWS_EM_01001] Execution Dependency error
[SWS_EM_01016] RestartProcess API
[SWS_EM_01018] OverrideState API
[SWS_EM_01032] Machine States
[SWS_EM_01061] OverrideState APl interrupt
[SWS_EM_01062] RestartProcess behaviour
[SWS_EM_01107] Function Group name
[SWS_EM_01108] Function Group State
[SWS_EM_01109] State References
[SWS_EM_01110] Off States

AUTSSAR

A

Number

Heading

[SWS_EM _01111]

No reference to Off State

[SWS_EM_01112]

StartupConfig

[SWS_EM_01201]

Core Binding

[SWS_EM_02041]

ResetCause Enumeration

[SWS_EM_02042]

ApplicationClient::SetLastResetCause API

[SWS_EM_02043]

ApplicationClient::GetLastResetCause API

[SWS_EM_02044]

Machine State change in progress

[SWS_EM_02047]

StateClient::GetState API

[SWS_EM_02048]

Function Group State change in progress

[SWS_EM_02049]

State change failed

[SWS_EM_02050]

State change successful

[SWS_EM_02051]

Machine State change in progress

[SWS_EM_02054]

StateClient::SetState API

[SWS_EM_02055]

Function Group State change in progress

[SWS_EM_02056]

State change failed

[SWS_EM_02057]

State change successful

[SWS_EM_02070]

ApplicationReturnType Enumeration

[SWS_EM_02071]

[SWS_EM_02072]

Retrieving Machine State

[SWS_EM_02073]

Retrieving Function Group State

[SWS_EM_02074]

Setting Machine State

[SWS_EM_02075]

Setting Function Group State

[SWS_EM_NA]

Table C.30: Added Specification Iltems in 17-10

C.10.2 Changed Specification Items in 17-10

Number

Heading

[SWS_EM_01000]

Startup order

[SWS_EM_01002]

Idle Process State

[SWS_EM_01003]

Starting Process State

[SWS_EM_01004]

Running Process State

[SWS_EM_01005]

Terminating Process State

[SWS_EM_01006]

Terminated Process State

[SWS_EM_01012]

Application Argument Passing

[SWS_EM_01013]

Machine State and Function Group State

Y%

AUTSSAR

Number

Heading

[SWS_EM_01014]

Scheduling policy

[SWS_EM_01015]

Scheduling priority

[SWS_EM_01017]

Application Binary Name

[SWS_EM_01023]

Machine State Startup

[SWS_EM_01024]

Machine State Shutdown

[SWS_EM_01025]

Machine State Restart

[SWS_EM_01026]

State change

[SWS_EM_01028]

GetState API

[SWS_EM_01030]

Start of Application execution

[SWS_EM_01033]

Application start-up configuration

[SWS_EM_01034]

Deny State change request

[SWS_EM_01035]

Machine State Restart behavior

[SWS_EM_01036]

Machine State Shutdown behavior

[SWS_EM_01037]

Machine State Startup behavior

[SWS_EM_01039]

Scheduling priority range for SCHED_FIFO and SCHED_RR

[SWS_EM_01040]

Scheduling priority range for SCHED_OTHER

[SWS_EM_01041]

Scheduling FIFO

[SWS_EM_01042]

Scheduling Round-Robin

[SWS_EM_01043]

Scheduling Other

[SWS_EM_01050]

Start dependent Application Executables

[SWS_EM 01051]

Shutdown Application Executables

[SWS_EM_01053]

Application State Running

[SWS_EM_01055]

Application State Termination

[SWS_EM_01056]

State Manager

[SWS_EM_01058]

Shutdown of the Operating System

[SWS_EM_01059]

Restart of the Operating System

[SWS_EM_01060]

State change behavior

[SWS_EM_02000]

ApplicationState Enumeration

[SWS_EM_02001]

[SWS_EM_02002]

ApplicationClient::~ApplicationClient API

[SWS_EM_02003]

ApplicationClient::ReportApplicationState API

[SWS_EM_02005]

StateReturnType Enumeration

[SWS_EM_02006]

[SWS_EM_02007]

StateClient::StateClient API

[SWS_EM_02008]

StateClient::~StateClient API

[SWS_EM_02030]

ApplicationClient::ApplicationClient API

[SWS_EM_02031]

Application State Reporting

Table C.31: Changed Specification Items in 17-10

AUTSSAR

C.10.3 Deleted Specification Items in 17-10

Number Heading

[SWS_EM_00017] Application Processes
[SWS_EM_01027] Rejection of Client Requests
[SWS_EM_01029] SetMachineState API
[SWS_EM_01052] Application State Tnitializing
[SWS_EM_01057] Machine State Change arbitration

[SWS_EM_02009]

[SWS_EM_02014]

[SWS_EM_02019]

[SWS_EM 99999

Table C.32: Deleted Specification Iltems in 17-10

C.10.4 Added Constraints in 17-10

none

C.10.5 Changed Constraints in 17-10

none

C.10.6 Deleted Constraints in 17-10

none

C.11 Traceable item history of this document according to
AUTOSAR Release 17-03

C.11.1 Added Specification ltems in 17-03

Number Heading
[SWS_EM_00017] Application Processes
[SWS_EM_01000] Startup order
[SWS_EM_01002] Idle Process State

AUTSSAR

Number

Heading

[SWS_EM_01003]

Starting Process State

[SWS_EM_01004]

Running Process State

[SWS_EM_01005]

Terminating Process State

[SWS_EM_01006]

Terminated Process State

[SWS_EM_01012]

Application Argument Passing

[SWS_EM_01013]

Machine State

[SWS_EM_01014]

Scheduling policy

[SWS_EM_01015]

Scheduling priority

[SWS_EM_01017]

Application Binary Name

[SWS_EM_01023]

Machine State Startup

[SWS_EM_01024]

Machine State Shutdown

[SWS_EM_01025]

Machine State Restart

[SWS_EM_01026]

Machine State change

[SWS_EM_01027]

Rejection of Client Requests

[SWS_EM_01028]

GetMachineState API

[SWS_EM_01029]

SetMachineState API

[SWS_EM_01030]

Start of Application execution

[SWS_EM_01033]

Application start-up configuration

[SWS_EM_01034]

Deny SetMachineState APl Request

[SWS_EM_01035]

Machine State Restart behavior

[SWS_EM_01036]

Machine State Shutdown behavior

[SWS_EM _01037]

Machine State Startup behavior

[SWS_EM_01039]

Scheduling priority range for SCHED_FIFO and SCHED_RR

[SWS_EM_01040]

Scheduling priority range for SCHED_OTHER

[SWS_EM_01041]

Scheduling FIFO

[SWS_EM_01042]

Scheduling Round-Robin

[SWS_EM_01043]

Scheduling Other

[SWS_EM_01050]

Start dependent Application Executables

[SWS_EM 01051]

Shutdown Application Executables

[SWS_EM 01052]

Application State Tnitializing

[SWS_EM_01053]

Application State Running

[SWS_EM_01055]

Application State Termination

[SWS_EM_01056]

Machine State Management Application

[SWS_EM_01057]

Machine State Change arbitration

[SWS_EM_01058]

Shutdown of the Operating System

[SWS_EM_01059]

Restart of the Operating System

[SWS_EM_01060]

Machine State change behavior

[SWS_EM_02000]

Y%

AUTSSAR

Number

Heading

[SWS_EM_02001]

[SWS_EM_02002]

[SWS_EM_02003]

[SWS_EM_02005]

[SWS_EM_02006]

[SWS_EM_02007]

[SWS_EM_02008]

[SWS_EM_02009]

[SWS_EM_02014]

[SWS_EM_02019]

[SWS_EM_02030]

[SWS_EM_02031]

Application State Reporting

[SWS_EM_99999]

[SWS_OSI_01007]

Table C.33: Added Specification Iltems in 17-03

C.11.2 Changed Specification Items in 17-03

none

C.11.3 Deleted Specification Items in 17-03

none

C.11.4 Added Constraints in 17-03

none

C.11.5 Changed Constraints in 17-03

none

C.11.6 Deleted Constraints in 17-03

none

	1 Introduction and functional overview
	1.1 What is Execution Management
	1.2 Interaction with AUTOSAR Runtime for Adaptive

	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Further applicable specification

	4 Constraints and assumptions
	4.1 Known Limitations

	5 Dependencies to other Functional Clusters
	5.1 Provided Interfaces
	5.2 Required Interfaces

	6 Requirements Tracing
	6.1 Not applicable requirements

	7 Functional specification
	7.1 Functional Cluster Lifecyle
	7.1.1 Startup
	7.1.2 Shutdown
	7.1.3 Restart

	7.2 Technical Overview
	7.2.1 Executable
	7.2.2 Modelled Process
	7.2.3 Execution Manifest
	7.2.4 Machine Manifest
	7.2.5 Manifest Format

	7.3 Execution Management Responsibilities
	7.3.1 Error handling

	7.4 Process Lifecycle Management
	7.4.1 Execution State
	7.4.1.1 Initialization
	7.4.1.2 Termination
	7.4.1.3 Unexpected Termination
	7.4.1.4 Application Reporting

	7.4.2 Process States
	7.4.2.1 Synchronization with Platform Health Management

	7.4.3 Trace Process State Transitions
	7.4.4 Startup and Termination
	7.4.4.1 Execution Dependency
	7.4.4.2 Signal Mask
	7.4.4.3 Arguments
	7.4.4.4 Environment Variables

	7.4.5 Machine Startup Sequence

	7.5 State Management
	7.5.1 Overview
	7.5.2 Machine State
	7.5.2.1 Startup
	7.5.2.2 Shutdown/Restart

	7.5.3 Function Group State
	7.5.4 State Interaction
	7.5.5 State Transition

	7.6 Resource Limitation
	7.6.1 Resource Configuration
	7.6.2 Resource Monitoring
	7.6.3 Application-level Resource Configuration
	7.6.3.1 CPU Usage
	7.6.3.2 Core Affinity
	7.6.3.3 Scheduling
	7.6.3.4 Memory Budget and Monitoring
	7.6.3.5 Working Folder

	7.7 Fault Tolerance
	7.7.1 Introduction
	7.7.2 Scope
	7.7.3 Threat Model
	7.7.4 Execution Management internal Error handling

	7.8 Security
	7.8.1 Trusted Platform
	7.8.1.1 Handling of failed authenticity checks

	7.8.2 Identity and Access Management

	8 API specification
	8.1 Type Definitions
	8.1.1 ExecutionState
	8.1.2 ExecutionError
	8.1.3 ExecutionErrorEvent
	8.1.3.1 ExecutionErrorEvent::executionError
	8.1.3.2 ExecutionErrorEvent::functionGroup

	8.2 Class Definitions
	8.2.1 ExecutionClient class
	8.2.1.1 ExecutionClient::ExecutionClient
	8.2.1.2 ExecutionClient::Create
	8.2.1.3 ExecutionClient::~ExecutionClient
	8.2.1.4 ExecutionClient::ExecutionClient (deleted Copy Constructor)
	8.2.1.5 ExecutionClient::operator= (deleted Copy assignment operator)
	8.2.1.6 ExecutionClient::ExecutionClient (use of default move constructor)
	8.2.1.7 ExecutionClient::operator= (use of default move assignment)
	8.2.1.8 ExecutionClient::ReportExecutionState

	8.2.2 FunctionGroup class
	8.2.2.1 FunctionGroup::FunctionGroup
	8.2.2.2 FunctionGroup::FunctionGroup (Default Constructor)
	8.2.2.3 FunctionGroup::FunctionGroup (Copy Constructor)
	8.2.2.4 FunctionGroup::FunctionGroup (Move Constructor)
	8.2.2.5 FunctionGroup::operator= (Copy assignment operator)
	8.2.2.6 FunctionGroup::operator= (Move assignment operator)
	8.2.2.7 FunctionGroup::~FunctionGroup
	8.2.2.8 FunctionGroup::operator==
	8.2.2.9 FunctionGroup::operator!=

	8.2.3 FunctionGroupState class
	8.2.3.1 FunctionGroupState::FunctionGroupState
	8.2.3.2 FunctionGroupState::FunctionGroupState (Copy Constructor)
	8.2.3.3 FunctionGroupState::FunctionGroupState (Move Constructor)
	8.2.3.4 FunctionGroupState::operator= (Copy assignment operator)
	8.2.3.5 FunctionGroupState::operator= (Move assignment operator)
	8.2.3.6 FunctionGroupState::~FunctionGroupState
	8.2.3.7 FunctionGroupState::operator==
	8.2.3.8 FunctionGroupState::operator!=

	8.2.4 StateClient class
	8.2.4.1 StateClient::StateClient
	8.2.4.2 StateClient::Create
	8.2.4.3 StateClient::~StateClient
	8.2.4.4 StateClient::StateClient (deleted Copy Constructor)
	8.2.4.5 StateClient::operator= (deleted Copy assignment operator)
	8.2.4.6 StateClient::StateClient (use of default move constructor)
	8.2.4.7 StateClient::operator= (use of default move assignment)
	8.2.4.8 StateClient::SetState
	8.2.4.9 StateClient::GetInitialMachineStateTransitionResult
	8.2.4.10 StateClient::GetExecutionError

	8.3 Log and Trace Messages
	8.4 Errors
	8.4.1 Execution Management error codes
	8.4.2 ExecException class
	8.4.2.1 ExecException::ExecException

	8.4.3 GetExecErrorDomain function
	8.4.4 MakeErrorCode function
	8.4.5 ExecErrorDomain class
	8.4.5.1 ExecErrorDomain::ExecErrorDomain
	8.4.5.2 ExecErrorDomain::Name
	8.4.5.3 ExecErrorDomain::Message
	8.4.5.4 ExecErrorDomain::ThrowAsException

	9 Service Interfaces
	A Mentioned Manifest Elements
	B Platform Extension Interfaces (normative)
	C Change history of AUTOSAR traceable items
	C.1 Traceable item history of this document according to AUTOSAR Release R24-11
	C.1.1 Added Specification Items in R24-11
	C.1.2 Changed Specification Items in R24-11
	C.1.3 Deleted Specification Items in R24-11
	C.1.4 Added Constraints in R24-11
	C.1.5 Changed Constraints in R24-11
	C.1.6 Deleted Constraints in R24-11

	C.2 Traceable item history of this document according to AUTOSAR Release R23-11
	C.2.1 Added Specification Items in R23-11
	C.2.2 Changed Specification Items in R23-11
	C.2.3 Deleted Specification Items in R23-11
	C.2.4 Added Constraints in R23-11
	C.2.5 Changed Constraints in R23-11
	C.2.6 Deleted Constraints in R23-11

	C.3 Traceable item history of this document according to AUTOSAR Release R22-11
	C.3.1 Added Specification Items in R22-11
	C.3.2 Changed Specification Items in R22-11
	C.3.3 Deleted Specification Items in R22-11
	C.3.4 Added Constraints in R22-11
	C.3.5 Changed Constraints in R22-11
	C.3.6 Deleted Constraints in R22-11

	C.4 Traceable item history of this document according to AUTOSAR Release R21-11
	C.4.1 Added Specification Items in R21-11
	C.4.2 Changed Specification Items in R21-11
	C.4.3 Deleted Specification Items in R21-11
	C.4.4 Added Constraints in R21-11
	C.4.5 Changed Constraints in R21-11
	C.4.6 Deleted Constraints in R21-11

	C.5 Traceable item history of this document according to AUTOSAR Release R20-11
	C.5.1 Added Specification Items in R20-11
	C.5.2 Changed Specification Items in R20-11
	C.5.3 Deleted Specification Items in R20-11
	C.5.4 Added Constraints in R20-11
	C.5.5 Changed Constraints in R20-11
	C.5.6 Deleted Constraints in R20-11

	C.6 Traceable item history of this document according to AUTOSAR Release R19-11
	C.6.1 Added Specification Items in R19-11
	C.6.2 Changed Specification Items in R19-11
	C.6.3 Deleted Specification Items in R19-11
	C.6.4 Added Constraints in R19-11
	C.6.5 Changed Constraints in R19-11
	C.6.6 Deleted Constraints in R19-11

	C.7 Traceable item history of this document according to AUTOSAR Release 19-03
	C.7.1 Added Specification Items in R19-03
	C.7.2 Changed Specification Items in R19-03
	C.7.3 Deleted Specification Items in R19-03
	C.7.4 Added Constraints in R19-03
	C.7.5 Changed Constraints in R19-03
	C.7.6 Deleted Constraints in R19-03

	C.8 Traceable item history of this document according to AUTOSAR Release 18-10
	C.8.1 Added Specification Items in 18-10
	C.8.2 Changed Specification Items in 18-10
	C.8.3 Deleted Specification Items in 18-10
	C.8.4 Added Constraints in 18-10
	C.8.5 Changed Constraints in 18-10
	C.8.6 Deleted Constraints in 18-10

	C.9 Traceable item history of this document according to AUTOSAR Release 18-03
	C.9.1 Added Specification Items in 18-03
	C.9.2 Changed Specification Items in 18-03
	C.9.3 Deleted Specification Items in 18-03
	C.9.4 Added Constraints in 18-03
	C.9.5 Changed Constraints in 18-03
	C.9.6 Deleted Constraints in 18-03

	C.10 Traceable item history of this document according to AUTOSAR Release 17-10
	C.10.1 Added Specification Items in 17-10
	C.10.2 Changed Specification Items in 17-10
	C.10.3 Deleted Specification Items in 17-10
	C.10.4 Added Constraints in 17-10
	C.10.5 Changed Constraints in 17-10
	C.10.6 Deleted Constraints in 17-10

	C.11 Traceable item history of this document according to AUTOSAR Release 17-03
	C.11.1 Added Specification Items in 17-03
	C.11.2 Changed Specification Items in 17-03
	C.11.3 Deleted Specification Items in 17-03
	C.11.4 Added Constraints in 17-03
	C.11.5 Changed Constraints in 17-03
	C.11.6 Deleted Constraints in 17-03

