
Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Document Title Explanation of Adaptive Platform
Software Architecture

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 982

Document Status published

Part of AUTOSAR Standard Adaptive Platform
Part of Standard Release R24-11

Document Change History
Date Release Changed by Description

2024-11-27 R24-11
AUTOSAR
Release
Management

• Added the Functional Cluster
Automotive API Gateway.

• Extended the Use Case View and
Runtime View with use cases and
scenarios.

• Added information about supported bus
types and protocols.

• Described design principles and
patterns used in the Adaptive Platform.

2023-11-23 R23-11
AUTOSAR
Release
Management

• Extended the Use Case View and
Runtime View with use cases and
scenarios for the Functional Clusters
Time Synchronization and Platform
Health Management.

• Removed Functional Cluster Identity and
Access Management.

• Added Functional Clusters Vehicle
Update and Configuration Management
and Raw Data Stream.

5

1 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4

2022-11-24 R22-11
AUTOSAR
Release
Management

• Added an initial version of the Use Case
View that shows the main use cases for
the Functional Clusters of the AUTOSAR
Adaptive Platform.

• Reworked the Runtime View to show a
proposed internal realization of the use
cases in the Use Case View by means of
interaction diagrams.

• Added functional cluster Firewall

2021-11-25 R21-11
AUTOSAR
Release
Management

• Applied a more fine-grained description
schema for functional clusters and
interfaces in the Building Block View.

• Removed functional cluster RESTful
Communication

• Added functional cluster Adaptive
Intrusion Detection System Manager

• Added section for clarification of
diagnostic deployment options

2020-11-30 R20-11
AUTOSAR
Release
Management

• Initial release

2 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

3 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Contents

1 Introduction 8

1.1 Objectives . 8
1.2 Scope . 9
1.3 Document Structure . 9

2 Definition of Terms and Acronyms 10

2.1 Acronyms and Abbreviations . 10
2.2 Definition of Terms . 10

3 Related Documentation 11

3.1 References . 11

4 Overview and Goals 13

4.1 Requirements Overview . 13
4.2 Quality Goals . 15
4.3 Stakeholders . 15

5 Architecture Constraints 16

5.1 Internal Interfaces . 16
5.2 Distributed Work . 17

6 Quality Requirements 18

6.1 Quality Attributes . 18
6.1.1 AUTOSAR Adaptive Platform Standard 18
6.1.2 AUTOSAR Adaptive Platform Stack 20
6.1.3 AUTOSAR Adaptive Application 21

6.2 Quality Scenarios . 22

7 System Scope and Context 23

7.1 Adaptive Application . 23
7.2 Dependencies . 23

7.2.1 Crypto Provider . 23
7.2.2 Operating System . 24
7.2.3 Watchdog . 24

7.3 External Systems . 24
7.3.1 Diagnostic Tester . 25
7.3.2 Backend . 25
7.3.3 AdHoc Endpoint . 25
7.3.4 AUTOSAR Adaptive Platform 25
7.3.5 AUTOSAR Classic Platform 25
7.3.6 Third-party Platform . 26
7.3.7 Data Repository . 26

8 Solution Strategy 27

8.1 Architectural Approach . 27

4 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

8.2 Decomposition Strategy . 27
8.3 UML Profile . 28
8.4 Technology . 29

8.4.1 Implementation Language 29
8.4.2 Parallel Processing . 30

8.5 Design Principles . 30
8.5.1 Leveraging existing standards 30
8.5.2 SOLID principles . 30
8.5.3 Acyclic Dependencies Principle 31
8.5.4 Versioning of the Service Interface API 32
8.5.5 Platform Extensions . 32
8.5.6 Offer/StopOffer Pattern . 40

8.6 Deployment . 44
8.7 Verification and Validation . 45

9 Building Block View 46

9.1 Overview . 46
9.2 Runtime . 47

9.2.1 Execution Management . 47
9.2.2 State Management . 52
9.2.3 Log and Trace . 59
9.2.4 Core . 62
9.2.5 Operating System Interface 67

9.3 Communication . 69
9.3.1 Communication Management 69
9.3.2 Raw Data Stream . 72
9.3.3 Network Management . 76
9.3.4 Time Synchronization . 79
9.3.5 Automotive API Gateway . 84

9.4 Storage . 86
9.4.1 Persistency . 86

9.5 Security . 93
9.5.1 Cryptography . 94
9.5.2 Intrusion Detection System Manager 118
9.5.3 Firewall . 123

9.6 Safety . 124
9.6.1 Platform Health Management 124

9.7 Configuration . 129
9.7.1 Update and Configuration Management 129
9.7.2 Vehicle Update and Configuration Management 134
9.7.3 Registry . 140

9.8 Diagnostics . 142
9.8.1 Diagnostic Management . 142

10 Use-Case View 161

10.1 Runtime . 162
10.1.1 Execution Management . 162

5 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

10.1.2 State Management . 164
10.2 Communication . 166

10.2.1 Raw Data Stream . 166
10.2.2 Time Synchronization . 168
10.2.3 Automotive API Gateway . 170

10.3 Storage . 171
10.3.1 Persistency . 171

10.4 Security . 178
10.4.1 Firewall . 178

10.5 Safety . 180
10.5.1 Platform Health Management 180

10.6 Configuration . 183
10.6.1 Update and Configuration Management 183
10.6.2 Vehicle Update and Configuration Management 187

11 Runtime View 194

11.1 Runtime . 194
11.1.1 Execution Management . 194
11.1.2 State Management . 199

11.2 Communication . 201
11.2.1 Raw Data Stream . 201
11.2.2 Time Synchronization . 204

11.3 Storage . 207
11.3.1 Persistency . 207

11.4 Security . 211
11.4.1 Firewall . 211

11.5 Safety . 213
11.5.1 Platform Health Management 213

12 Deployment View 217

12.1 Vehicle Software Deployment . 217
12.2 Deployment of Software Packages on a Machine 218

13 Cross-cutting Concepts 220

13.1 Overview of Platform Entities . 220
13.2 Function Group . 221
13.3 Function Group State . 221
13.4 Software Cluster . 221
13.5 Machine . 224
13.6 Manifest . 224
13.7 Application Design . 225
13.8 Execution Manifest . 226
13.9 Service Instance Manifest . 226
13.10 Machine Manifest . 227
13.11 Diagnostics deployment . 227
13.12 Error Handling . 229
13.13 Trusted Platform . 229

6 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

13.14 Communication Mechanisms . 230
13.14.1 Lower Layer Protocols . 231
13.14.2 Network and Transport Layer Protocols 232
13.14.3 Application Layer Protocols 234
13.14.4 Communication APIs . 239

13.15 Service-Oriented Communication . 240

A Mentioned Class Tables 242

7 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

1 Introduction

This explanatory document provides detailed technical description of the software ar-
chitecture of the AUTOSAR Adaptive Platform standard with the main focus on the
architecture model.

1.1 Objectives

This document is an architecture description of the AUTOSAR Adaptive Platform in
accordance to [1, ISO/IEC 42010] and has the following main objectives:

• Identify the stakeholders of the AUTOSAR Adaptive Platform and their con-
cerns.

• Identify the system scope and provide overview information of the AUTOSAR
Adaptive Platform.

• Provide definitions for all used architecture viewpoints and a mapping of all
stakeholder concerns to those viewpoints.

• Provide an architecture view and its architecture models for each architecture
viewpoint used in this architecture description.

• Provide correspondence rules and correspondences among the contents of
this architecture description.

• Provide an architecture rationale (explanation, justification, reasoning for de-
cisions made) on a high level. A more in-depth documentation of decisions is
provided in [2, EXP_SWArchitecturalDecisions].

• Provide a record of known inconsistencies and gaps among the architecture
description.

There is some potential for ambiguity about the term "architecture". Association with
this term is quite different e.g., for a mass production project in contrast with Adap-
tive Platform standardization. For system development of an automotive embedded
computer the software architecture usually defines the details of the structural and the
behavioral architecture views down to module level. In contrast the architecture of AU-
TOSAR Adaptive Platform lacks such details deliberately to provide more degrees of
freedom for stack vendors in their solution design.

Beyond the specification of APIs the term "architecture" for Adaptive Platform refers to
guidelines how to apply the standard to concrete development projects.

This document describes the original architectural design of the AUTOSAR Adaptive
Platform including details how the building blocks should interact with each other. It is
an example how an implementation of the standard should work internally. However, a
stack vendor is free to choose another design as long as it complies with the binding
AUTOSAR Adaptive Platform standard.

8 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

1.2 Scope

This explanatory document applies to the AUTOSAR Adaptive Platform. It is recom-
mended to get an overview of the AUTOSAR Adaptive Platform for all members of the
working groups, stack vendors, and application developers.

1.3 Document Structure

This document is organized as follows. Section 4 provides an overview of the main
requirements for the AUTOSAR Adaptive Platform, the top quality goals of its architec-
ture, and a list of stakeholders that are affected by it. Section 5 lists requirements that
constrain design and implementation decisions or decisions about the development
process.

Section 6 is the base for discovering trade-offs and sensitivity points in the architecture
of the AUTOSAR Adaptive Platform by introducing a quality attribute tree followed by
the most important quality scenarios. The system context in which the AUTOSAR
Adaptive Platform is intended to be used is outlined in section 7. Section 8 summarizes
the fundamental decisions and solution strategies, that shape the architecture of the
AUTOSAR Adaptive Platform such as technology decisions or architectural patterns to
be used.

Sections 9 to 12 explain the software architecture from different view points. First, sec-
tion 9 explains the decomposition of the AUTOSAR Adaptive Platform into Functional
Clusters and their interdependencies. Then, section 11 demonstrates how the main
use cases are realized using the Functional Clusters in the AUTOSAR Adaptive Plat-
form. Section 12 shows different scenarios how applications based on the AUTOSAR
Adaptive Platform may be deployed.

Section 13 provides an overview of concepts and patterns used by the AUTOSAR
Adaptive Platform.

9 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

2 Definition of Terms and Acronyms

2.1 Acronyms and Abbreviations

Abbreviation / Acronym Description
DoIP Diagnostics over Internet Protocol
POSIX Portable Operating System Interface
SecOC AUTOSAR Secure Onboard Communication
TLS Transport Layer Security
UML Unified Modeling Language
VISS Vehicle Information Service Specification

2.2 Definition of Terms

This section lists terms that are specific to this document. A list of general terms for
AUTOSAR is provided in the [3, glossary].

Term Description
Functional Cluster A logical group of functionality within the AUTOSAR Adaptive

Platform. Functional Clusters are the second level of ab-
straction in the building block view (cf. Chapter 9). They are also
subject of the individual specification documents that make up
the AUTOSAR Adaptive Platform standard.

Function Group A set of modeled Processes. See Section 13.2 for details.
Thread The smallest sequence of instructions the can be managed in-

dependently by a scheduler. Multiple Threads can be exe-
cuted concurrently within one Process sharing resources such
as memory.

Watchdog An external component that supervises execution of the AU-
TOSAR Adaptive Platform. See Section 7.2.3 for details.

10 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

3 Related Documentation

This document provides a high-level overview of the AUTOSAR Adaptive Platform ar-
chitecture. It is closely related to general requirements for AUTOSAR Adaptive Plat-
form specified in [4, RS_Main] and [5, RS_General], and the architectural decisions
documented in [2, EXP_SWArchitecturalDecisions].

The individual building blocks of the architecture (Functional Clusters) are spec-
ified in separate documents. Each Functional Cluster defines one or more
requirements specification(s) (RS document), one or more software specification(s)
(SWS document) and one or more explanatory document(s) (EXP document). Please
refer to these documents for any details on the AUTOSAR Adaptive Platform standard.

3.1 References

[1] ISO 42010:2011 – Systems and software engineering – Architecture description
https://www.iso.org

[2] Explanation of Adaptive and Classic Platform Software Architectural Decisions
AUTOSAR_FO_EXP_SWArchitecturalDecisions

[3] Glossary
AUTOSAR_FO_TR_Glossary

[4] Main Requirements
AUTOSAR_FO_RS_Main

[5] General Requirements specific to Adaptive Platform
AUTOSAR_AP_RS_General

[6] ATAMSM: Method for Architecture Evaluation
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2000_005_001_-
13706.pdf

[7] Agile Software Development: Principles, Patterns, and Practices

[8] Guide to the Software Engineering Body of Knowledge, Version 3.0
www.swebok.org

[9] Specification of Manifest
AUTOSAR_AP_TPS_ManifestSpecification

[10] Explanation of Adaptive Platform Design
AUTOSAR_AP_EXP_PlatformDesign

[11] Explanation of MACsec and MKA Protocols implementation and configuration
guidelines
AUTOSAR_AP_EXP_MACsec

[12] Time Synchronization Protocol Specification

11 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

https://www.iso.org
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2000_005_001_13706.pdf
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2000_005_001_13706.pdf
www.swebok.org

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

AUTOSAR_FO_PRS_TimeSyncProtocol

[13] Specification of Communication Management
AUTOSAR_AP_SWS_CommunicationManagement

[14] SOME/IP Protocol Specification
AUTOSAR_FO_PRS_SOMEIPProtocol

[15] SOME/IP Service Discovery Protocol Specification
AUTOSAR_FO_PRS_SOMEIPServiceDiscoveryProtocol

[16] Specification of the AUTOSAR Network Management Protocol
AUTOSAR_FO_PRS_NetworkManagementProtocol

[17] Log and Trace Protocol Specification
AUTOSAR_FO_PRS_LogAndTraceProtocol

[18] Specification of Secure Onboard Communication Protocol
AUTOSAR_FO_PRS_SecOcProtocol

[19] Specification of Intrusion Detection System Protocol
AUTOSAR_FO_PRS_IntrusionDetectionSystem

[20] E2E Protocol Specification
AUTOSAR_FO_PRS_E2EProtocol

[21] Explanation of Service-Oriented Vehicle Diagnostics
AUTOSAR_AP_EXP_SOVD

[22] Requirements on Data Distribution Service
AUTOSAR_FO_RS_DataDistributionService

[23] Specification of Diagnostics
AUTOSAR_AP_SWS_Diagnostics

[24] Specification of Automotive API Gateway
AUTOSAR_AP_SWS_AutomotiveAPIGateway

[25] Specification of Raw Data Stream
AUTOSAR_AP_SWS_RawDataStream

[26] Specification of Sensor Interfaces
AUTOSAR_AP_SWS_SensorInterfaces

12 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4 Overview and Goals

In conventional automotive systems ECUs are used to replace or augment electro-
mechanical systems. Those resource constrained, deeply-embedded ECUs typically
perform basic control functions by creating electrical output signals (e.g. for actors)
based on input signals (e.g. from sensors) and information from other ECUs con-
nected to the vehicle network. Much of the control software is specifically designed
and implemented for the target vehicle and does not change significantly during vehi-
cle lifetime. The AUTOSAR Classic Platform standard addresses the needs of these
deeply-embedded systems.

Recent and future vehicle functions, such as highly automated driving, will introduce
complex and computing resource demanding software that shall fulfill strict safety, in-
tegrity and security requirements. Such software performs for example, environment
perception and behavior planning, and interacts with external backend and infrastruc-
ture systems. The software in the vehicle regularly needs to be updated during the
life-cycle of the vehicle, due to evolving external systems, improved or added function-
ality, or security problems. The AUTOSAR Classic Platform standard cannot fulfill the
needs of such systems. Therefore, AUTOSAR specifies a second software platform,
the AUTOSAR Adaptive Platform. It provides high-performance computing and com-
munication mechanisms as well as a flexible software configuration, for example, to
support software update over-the-air. Features that are specifically defined for the AU-
TOSAR Classic Platform, such as access to electrical signals and automotive specific
bus systems, can be integrated into the AUTOSAR Adaptive Platform but is not in the
focus of standardization.

4.1 Requirements Overview

This section provides an overview of the basic requirements for the AUTOSAR Adap-
tive Platform that impact its architecture. The corresponding requirement identifiers are
provided in square brackets. Please refer to [4, RS_Main] and [5, RS_General] for any
details, rationale or intended use-cases of these requirements.

Support of state-of-the-art Technology

The AUTOSAR Adaptive Platform aims to support resource-intensive (memory, cpu)
applications on state-of-the-art hardware. Therefore, the AUTOSAR Adaptive Platform
shall support high performance computing platforms [RS_Main_00002] as well as vir-
tualized environments [RS_Main_00511]. The AUTOSAR Adaptive Platform shall be
able to run multiple applications in parallel [RS_Main_00049], each with concurrent
application internal control flows [RS_Main_00050].

13 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Software Update and Configuration

The AUTOSAR Adaptive Platform shall support a flexible (configuration) data and soft-
ware update. Hereby, AUTOSAR Adaptive Platform shall support up- and download of
such update packages [RS_Main_00650] and change of communication and applica-
tion software at runtime [RS_Main_00503].

AUTOSAR shall provide a unified way to describe software systems deployed to
Adaptive and / or Classic platforms [RS_Main_00161]. That kind of description
shall also support the deployment and reallocation of AUTOSAR Application Software
[RS_Main_00150], and shall provide means to describe interfaces of the entire system
[RS_Main_00160].

Security

The AUTOSAR Adaptive Platform shall support the development of secure systems
[RS_Main_00514] with secure access to ECU data and services [RS_Main_00170],
and secure onboard communication [RS_Main_00510].

Safety

The AUTOSAR Adaptive Platform shall support the development of safety related
systems [RS_Main_00010] that are reliable [RS_Main_00011] and highly available
[RS_Main_00012]. The AUTOSAR Adaptive Platform specifications shall be analyz-
able and support methods to demonstrate the achievement of safety related properties
accordingly [RS_Main_00350].

Reuse and Interoperability

The AUTOSAR Adaptive Platform shall support standardized interoperability with
non-AUTOSAR software [RS_Main_00190] as well as (source code) portability for
AUTOSAR Adaptive Applications across different implementations of the platform
[RS_AP_00111]. Hereby, the AUTOSAR Adaptive Platform shall provide means to
describe a component model for application software [RS_Main_00080], and support
bindings for different programming languages [RS_Main_00513].

Communication

The AUTOSAR Adaptive Platform shall support standardized automotive communica-
tion protocols [RS_Main_00280] for intra ECU communication [RS_Main_01001] with
different network topologies [RS_Main_00230].

14 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Diagnostics

The AUTOSAR Adaptive Platform shall provide diagnostics means during runtime for
production and services purposes [RS_Main_00260].

4.2 Quality Goals

This section will list the top quality goals for the architecture whose fulfillment is of
highest importance to the major stakeholders in a future version of this document.
Please refer to the currently un-prioritized list of Quality Attributes in Section 6.1.

4.3 Stakeholders

This section lists the stakeholders of the AUTOSAR Adaptive Platform architecture and
their main expectations.

Role Expectation
Project Leader Overview of technical risks and technical debt in the AUTOSAR

Adaptive Platform.
Working Group Architecture Concise yet thorough documentation of the goals and driving

forces of the AUTOSAR Adaptive Platform. Documentation of
the original architectural design of the AUTOSAR Adaptive Plat-
form standard. Documentation of identified technical risks and
technical debt in the AUTOSAR Adaptive Platform.

Working Group Consolidated overview of the AUTOSAR Adaptive Platform ar-
chitecture. Realization of use-cases that span multiple Func-
tional Clusters. Usage of interfaces within the AUTOSAR
Adaptive Platform. Guidelines and patterns for Functional
Cluster and interface design.

Stack Developer Consolidated overview of the original architectural design of the
AUTOSAR Adaptive Platform. Realization of use-cases that span
multiple Functional Clusters. Usage of interfaces within the
AUTOSAR Adaptive Platform.

Application Developer Overview of the building blocks of the AUTOSAR Adaptive Plat-
form and their purpose and provided functionality. Explanation of
the concepts used in the AUTOSAR Adaptive Platform.

Integrator Overview and explanation of the original architectural design of
the AUTOSAR Adaptive Platform. Overview of extension points
of the AUTOSAR Adaptive Platform.

Table 4.1: Stakeholder table with roles and expectations

15 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

5 Architecture Constraints

AUTOSAR is a worldwide development partnership of vehicle manufacturers, suppli-
ers, service providers and companies from the automotive electronics, semiconductor
and software industry. AUTOSAR standardizes the AUTOSAR Adaptive Platform au-
tomotive middleware. The AUTOSAR Adaptive Platform is not a concrete implemen-
tation. The AUTOSAR Adaptive Platform standard leaves a certain degree of freedom
to implementers of the standard, as most standards do. On the one hand, more free-
dom enables competition among the different implementations and a broader choice
of properties for users of the AUTOSAR Adaptive Platform. On the other hand, a more
strict standardization makes the different implementations compatible and exchange-
able (within the standardized scope). Naturally, those attributes are in conflict. It is
usually a choice of the standardization organization to evaluate the attributes and de-
fine the desired level of strictness.

The AUTOSAR Classic Platform is rather strict in that sense by specifying a detailed
layered software architecture imposing many constraints on its implementations. The
AUTOSAR Adaptive Platform launched with a less strict approach. That less strict
approach puts constraints on the AUTOSAR Adaptive Platform architecture as outlined
below.

5.1 Internal Interfaces

An important architectural constraint is that only interfaces that are intended to be
used by applications or interfaces that are used to extend the functionality of the
AUTOSAR Adaptive Platform shall be standardized. Internal interfaces between the
building blocks of the AUTOSAR Adaptive Platform shall not be standardized. This
approach leaves a lot of freedom to design and optimize the internals of an AUTOSAR
Adaptive Platform stack. However, it also imposes constraints on how the AUTOSAR
Adaptive Platform architecture can be defined and described in this document. Also,
this means that it might not be possible to use different functional clusters from different
AUTOSAR Adaptive Platform stack vendors.

First, the existence of internal interfaces and their usage by other building blocks is in
most cases a recommendation and reflects the original design approach of the authors
of the standard. The same applies to any interactions described in this document that
make use of such internal interfaces.

Second, some quality attributes may be hard to ensure in general by the architec-
ture of the standard. Additional measures like security or safety considerations lack
well-defined inputs such as data flows or specifications of interdependencies. Con-
sequently, a more thorough design phase is required when an AUTOSAR Adaptive
Platform stack is implemented.

16 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

5.2 Distributed Work

Standardization of the AUTOSAR Adaptive Platform is a worldwide distributed effort.
The individual building blocks are specified by dedicated working groups in separate
documents to be able to scale in that distributed setup. This impacts the way the
AUTOSAR Adaptive Platform architecture is described in this document.

First, this document shows interfaces on an architectural level only. This document
does not specify details of interfaces such as individual operations. This keeps redun-
dancies and thus dependencies between this document and the documents actually
specifying the individual building blocks manageable. Another consequence is that the
interactions shown in this document are not based on actual operations specified in the
interfaces but rather on an architectural level as well.

Second, this document aims to provide guidance for the working groups in specify-
ing the individual building blocks by defining patterns and concepts to solve common
problems. This guidance should help to build a uniform and consistent standard from
ground up.

17 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

6 Quality Requirements

Quality requirements define the expectations of AUTOSAR Adaptive Platform stake-
holders for the quality and the attributes of the AUTOSAR Adaptive Platform standard
that indicate whether the quality factors are satisfied or not. Section 6.1 starts by list-
ing the quality attributes that, in the end, are used to assess whether the AUTOSAR
Adaptive Platform and its software architecture satisfies the expected quality factors or
not. Section 6.2 then provides quality scenarios that operationalize quality attributes
and turn them into measurable quantities by describing the reaction of the system to a
stimulus in a certain situation.

6.1 Quality Attributes

The AUTOSAR Adaptive Platform has many stakeholders with different concerns.
Thus, this document uses the following three quality attribute categories that corre-
spond to the three main stakeholder groups in order to make the requirements and
their impact on the architecture more comprehensible:

• AUTOSAR Adaptive Platform Standard: Quality requirements for the AU-
TOSAR standard itself. These requirements may directly affect the architecture
of the AUTOSAR Adaptive Platform.

• AUTOSAR Adaptive Platform Stack: Quality requirements for an implementa-
tion of the AUTOSAR standard as an AUTOSAR stack. These requirements may
indirectly affect the architecture of the AUTOSAR Adaptive Platform.

• AUTOSAR Adaptive Application: Quality requirements for an application based
on an AUTOSAR stack. These requirements may transitively affect the architec-
ture of the AUTOSAR Adaptive Platform.

The quality attributes are organized according to the Architecture Tradeoff Analysis
Method (ATAM) [6] as a tree, one for each of the quality attribute categories. The leafs
of those trees are the individual quality attributes.

6.1.1 AUTOSAR Adaptive Platform Standard

• Functional suitability

– The software architecture shall reflect the project objectives (POs) and be
the consistent source for all specifications (here: completeness with respect
to the PO; see also usability below).

– The standard shall not contain elements that are not traceable to POs,
change requests (CRs), or concepts.

18 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

– The standard shall contain at least one element derived from each PO, CR,
or concept.

• Performance efficiency

– The specification shall allow for a run-time efficient implementation. Run-
time efficiency refers to all resource consumption, CPU, RAM, ROM.

• Compatibility

– The standard shall retain older versions of its elements in the face of change.

– The standard shall be interoperable with pre-existing standards, especially
the AUTOSAR Classic Platform. Pre-existing standards means network pro-
tocols and the like.

– The standard shall adopt new versions of pre-existing standards only after
an impact analysis.

• Usability

– The use of the standard shall be as easy as possible for suppliers and appli-
cation developers. Easy means: not much material and resources required.

– The holistic approach shall not be broken (avoid different approaches in one
standard).

– The standard shall contain application sample code for all its elements.

– The standard shall contain documentation of the use cases for its elements.

– The standard shall document the semantics of its elements.

– The standard shall document its decisions, consequences, and implemen-
tation restrictions (both for stack & apps) including their rationale.

– The standards elements shall be easy to use and hard to misuse.

– The standard shall stick to pre-existing standards, as far as no functional
requirements are compromised.

– The standard shall be as stable as possible.

– AUTOSAR standards shall not change disruptive but rather evolve evolution-
ary (for example, backward-compatibility can be a help).

– The software architecture shall reflect the PO and be the consistent source
for all specifications (here: consistency; see also functional suitability
above).

• Reliability

– The standard shall classify its elements with respect to safety relevance (that
is, functional clusters shall be marked if they participate in safety critical
operations of the platform).

19 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

– The standard shall specify control flow restrictions between its elements in
order to achieve freedom from interference.

– The standard shall contain use case driven argumentation for safety sce-
narios that can be used to build a safety case. (This should help the stack
implementers in getting a certification, if they follow the standard.)

• Security

– The standard shall specify data flow restrictions between its elements, and
between applications.

– The standard shall classify its elements with respect to security sensitivity
(that is, functional clusters shall be marked if they handle sensitive data.)

– The standard shall contain use case driven argumentation for security sce-
narios that can be used to build a security case. (This should help the stack
implementers in getting a certification, if they follow the standard.)

• Maintainability

– It shall be possible in an efficient way to maintain AUTOSAR Adaptive Plat-
form without preventing the introduction of new technologies (efficient in
terms of effort on the modification of the standard).

– The impact set of a change shall be available.

– The standard shall be structured in a way that minimizes change impact.

– It shall be possible to drop/deprecate elements of the standard.

– It shall be easy to add new features/needs without breaking the maintain-
ability or the need to redesign the software architecture. Easy means quick,
with low effort, local changes only and no heavy side effects.

– The maturity of parts of the standard shall be visible.

– The process shall enforce an architectural impact analysis in a very early
stage of the change process.

– The process shall enforce minimizing changes, that is not adding similar
functionality multiple times.

• Portability

– Applications shall be portable between different stack implementations and
different machines.

– It shall be possible to scale the software architecture to the given project
needs.

6.1.2 AUTOSAR Adaptive Platform Stack

20 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

• Compatibility

– An AUTOSAR Adaptive Platform stack implementation shall be capable to
offer multiple versions of the same service.

– An instance of an AUTOSAR Adaptive Platform stack implementation shall
be able to co-exist with other instances on different machines, within the
same vehicle.

• Usability

– An AUTOSAR Adaptive Platform stack implementation shall explicitly doc-
ument restrictions on the application development that go beyond the stan-
dard.

• Maintainability

– An AUTOSAR Adaptive Platform stack implementation shall be traceable to
the contents of the standard.

– An AUTOSAR Adaptive Platform stack implementation shall support multiple
versions of the same service.

• Portability

– An AUTOSAR Adaptive Platform stack shall be portable to a different custom
hardware.

– An AUTOSAR Adaptive Platform stack shall provide mechanisms to replace
parts.

6.1.3 AUTOSAR Adaptive Application

• Usability

– No Goal: An application developer shall be able to supply custom implemen-
tation for pre-defined platform functionality.

• Maintainability

– An application shall explicitly state which parts of the standard it uses.

• Portability

– An application entirely based on AUTOSAR Adaptive Platform (i.e. with-
out custom extensions) shall be portable to another AUTOSAR Adaptive
Platform stack of the same version without modifications to the application
source code itself (source code compatibility).

21 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

6.2 Quality Scenarios

There are currently no quality scenarios defined for the AUTOSAR Adaptive Platform.

22 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

7 System Scope and Context

This chapter provides an overview of the AUTOSAR Adaptive Platform sys-
tem context by separating the AUTOSAR Adaptive Platform and its communi-
cation partners (e.g., external systems). Considering Figure 7.1, there are
three categories of communication partners for the AUTOSAR Adaptive Platform.

Operating System

Adaptive Application

Watchdog

«aapInternal»
Multi-Process

System Interface

«aapInternal»
TCP/IP Stack

«aapNativeInterf...
Platform Health
Management::

WatchdogInterface

«aapInternal»
Non-volatile Storage

AUTOSAR Adaptive Platform

«aapInternal»
Single-Process POSIX

API

«use»

«use»

«use» «use»«use» «use»

Figure 7.1: Overview of AUTOSAR Adaptive Platform and its context

The AUTOSAR Adaptive Platform is conceptually a middleware. AUTOSAR Adaptive
Platform provides services to Adaptive Applications beyond those available from
the underlying operating system, drivers, and extensions (cf. Section 7.2). Section
7.3 describes the third category that are external systems communicating with (an
Adaptive Application via) AUTOSAR Adaptive Platform.

7.1 Adaptive Application

Adaptive Applications are built on the functionality provided by the AUTOSAR
Adaptive Platform. They directly use the various interfaces provided by the individual
building blocks of AUTOSAR Adaptive Platform described in more detail in chapter 9.

7.2 Dependencies

7.2.1 Crypto Provider

Crypto Provider is a component that provides implementations of cryptographic
routines and hash functions to the AUTOSAR Adaptive Platform.

23 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

7.2.2 Operating System

The Operating System is the main component that AUTOSAR Adaptive Plat-
form uses to provide its services. The Operating System controls processes and
threads, and provides inter-process communication facilities. The Operating Sys-
tem also provides access to network interfaces, protocols like TCP/IP, and access to
non-volatile storage.

7.2.3 Watchdog

The Watchdog is a component to control the hardware watchdog of the machine an
AUTOSAR Adaptive Platform runs on.

7.3 External Systems

Vehicle

«device»
Machine

«executionEnvironment»
Adaptive Platform

«device»
Diagnostic

Tester

«device»
Backend

«device»
Ad-Hoc

Endpoint

«device»
ECU

«executionEnviron...
Classic Platform

«device»
Machine

«executionEnviron...
Adaptive Platform

«device»
ECU

«executionEnviron...
Third-Party Platform

«device»
Data Repository

«executionEnvironm...
Log Sink

«executionEnvironm...
Security Event Sink

0..*

«aracom,ethernet»

0..*

0..*

«ethernet»

0..*
0..*

0..*

0..*

«aracom,ethernet»

0..*

10..*0..*

«internet»

0..*

0..*
«ethernet,DoIP»

0..*

Figure 7.2: Overview of the AUTOSAR Adaptive Platform and external systems

The AUTOSAR Adaptive Platform supports applications that are operated in heteroge-
neous environments. This section lists the external systems that AUTOSAR Adaptive
Platform is intended to interface.

24 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

7.3.1 Diagnostic Tester

A tester is considered a physical or virtual device, which is located external to the Vehi-
cle Network. It may request diagnostic services to be handled by the AUTOSAR Adap-
tive Platform, for instance a UDS request that is processed by Diagnostic Manage-
ment.

7.3.2 Backend

Network node or network gateway that exchanges data with the AUTOSAR Adaptive
Platform usually via TCP/IP protocol suite and is reachable via a public or a private IP
address. Examples include an OEM cloud service node, a node in a private, e.g. home
network, or a node connected to the public internet.

7.3.3 AdHoc Endpoint

A node which communicates via wireless links (single hop or multi-hop connection)
with an AUTOSAR Adaptive Platform instance. Therefore, availability of services is
constrained to regional proximity (distance usually from few meters up to a few hundred
meters). Examples include a stationary roadside infrastructure or a road side user (e.g.
device attached to pedestrian).

7.3.4 AUTOSAR Adaptive Platform

An AUTOSAR Adaptive Platform instance may need to exchange information with
another AUTOSAR Adaptive Platform instance. Examples include the communi-
cation between Vehicle Update and Configuration Management and one or
more Update and Configuration Management instances to distribute and install
Software Packages in the vehicle.

7.3.5 AUTOSAR Classic Platform

An AUTOSAR Adaptive Platform instance may also need to exchange information
with an AUTOSAR Classic Platform instance. Examples include sending/receiv-
ing controller signals (e.g. transmitted via CAN bus) that are translated to ara::com
services connected via Ethernet network by an AUTOSAR Classic Platform in-
stance.

25 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

7.3.6 Third-party Platform

An objective of AUTOSAR is to enable service oriented communication between an
AUTOSAR Adaptive Platform instance and a 3rd-party Platform instance. Even though
a gateway function to map protocol data on both endpoints has not yet been specified,
this possibility is considered for the modelling of external actors.

7.3.7 Data Repository

A data repository may host/store data associated with events generated within the AU-
TOSAR Adaptive Platform, such as log events by Log and Trace or security events
by Intrusion Detection System Manager functional clusters. Such a reposi-
tory is located external to the AUTOSAR Adaptive Platform.

26 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

8 Solution Strategy

The AUTOSAR Adaptive Platform is a standard for an automotive middleware. It is
not a concrete implementation. The AUTOSAR Adaptive Platform standard leaves a
certain degree of freedom to its implementers by defining requirements and software
specifications that need to be fulfilled without specifying how.

8.1 Architectural Approach

To support the complex applications, while allowing maximum flexibility and scalabil-
ity in processing distribution and compute resource allocations, AUTOSAR Adaptive
Platform follows the concept of a service-oriented architecture (SOA). In a service-
oriented architecture a system consists of a set of services, in which one may use
another in turn, and applications that use one or more of the services depending on
its needs. Often service-oriented architectures exhibit system-of-system characteris-
tics, which AUTOSAR Adaptive Platform also has. A service, for instance, may reside
on a local ECU that an application also runs, or it can be on a remote ECU, which is
also running another instance of AP. The application code is the same in both cases -
the communication infrastructure will take care of the difference providing transparent
communication. Another way to look at this architecture is that of distributed comput-
ing, communicating over some form of message passing. At large, all these represent
the same concept. This message passing, communication-based architecture can also
benefit from the rise of fast and high-bandwidth communication such as Ethernet.

8.2 Decomposition Strategy

The building blocks of the AUTOSAR Adaptive Platform architecture are refined step-
by-step in this document according to the model depicted in figure 8.1. The top-level
categories are chosen to give an overview from a users perspective what kind of func-
tionality the AUTOSAR Adaptive Platform provides. A category contains one or more
Functional Clusters. The Functional Clusters of the AUTOSAR Adaptive
Platform are defined to group a specific coherent technical functionality. Functional
Clusters themselves specify a set of interfaces and components to provide and real-
ize that technical functionality. The building block view also contains information of the
Functional Clusters interdependencies based on interfaces from other Func-
tional Clusters they use. However, note that these interdependencies are recom-
mendations rather than strict specifications because they would constrain implementa-
tions.

27 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Category

Functional Cluster

Interface Component

1..*1..*

1..*

Figure 8.1: Type model of building blocks

8.3 UML Profile

The UML diagrams presented in this document use a UML profile to provide a more
precise semantics of the elements and relationships. Table 8.1 provides an overview
of the stereotypes in that profile and their semantics. The names of all stereotypes that
are specific to the AUTOSAR architecture are prefixed with aap (short for AUTOSAR
Architecture Profile) to make them easily distinguishable from standard UML stereo-
types and keywords.

Stereotype UML Meta-Class Semantics
aapInternal Interface Internal interfaces shall be used only by

Functional Clusters within the platform.
Internal interfaces shall be realized by
components that are part of the
respective stack implementation (i.e.,
another Functional Cluster, additional
middleware, drivers, or the operating
system).

aapPlatformExtension Interface Platform extension interfaces shall be
used only by Functional Clusters within
the platform. Platform extension
interfaces shall be realized either by
third-party components (including
application-level components) or
components are part of the respective
stack implementation (i.e., another
Functional Cluster, additional
middleware, drivers, or the operating
system).

aapAPI Interface An interface of the public API of the
platform. Such interfaces may be used
by Adaptive Applications and other
Functional Clusters within the platform.

5

28 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Stereotype UML Meta-Class Semantics
aapNativeInterface Interface An interface defined in the respective

programming language of the stack
implementation.

aapPortInterface Interface An aapPortInterface relates to an
element in the Manifest using the
InstanceSpecifier pattern. Such
interfaces are either defined in the
respective programming language of the
stack implementation or they are
generated in that language by the stack
tooling. The property Generated
specifies if they are generated.

aapAraComServiceInterface Interface An ara::com service interface defined
and configured in the Manifest. The
tooling of the stack implementation will
generate stub and skeleton
implementations of these interfaces in
the respective programming language.

aapFunctionalCluster Component A functional cluster of the AUTOSAR
Adaptive Platform.

aapServiceMethod Operation A method specified as part of an
ara::com service interface.

aapServiceField Property A field specified as part of an ara::com
service interface.

aapServiceEvent Property An event specified as part of an
ara::com service interface.

aapCallbackMethod Operation A method that acts as a callback.

aapProvidedPort Usage,
Realization

Denotes that the underlying relationship
is configured in the Manifest using a
provided port (PPortPrototype).

aapRequiredPort Usage,
Realization

Denotes that the underlying relationship
is configured in the Manifest using a
required port (RPortPrototype).

aapInformative Message Denotes that the message only has an
informative character. A concrete stack
implementation may use a different
design (name, type of message, order of
messages).

Table 8.1: Overview of Stereotypes

8.4 Technology

8.4.1 Implementation Language

C++ is the programming language of choice for the AUTOSAR Adaptive Platform and
Adaptive Applications. C++ was chosen due to its safer programming model

29 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

(compared to C) and availability of certified compilers that produce highly optimized
machine code. Such properties are especially important for safety- and performance-
critical, real-time applications (such as typical Adaptive Applications) where C++
has become more and more popular in the software industry and academics.

8.4.2 Parallel Processing

Although the design for AUTOSAR Adaptive Platform as a service-oriented architecture
inherently leverages parallel processing, the advancement of (heterogeneous) many-
core processors offers additional opportunities. The AUTOSAR Adaptive Platform is
designed to scale its functionality and performance as (heterogeneous) many-core
technologies advance. Hardware and platform interface specifications are one part
of that equation. However, advancements in operating system and hypervisor tech-
nologies as well as development tools (for example automatic parallelization) are also
crucial and are to be fulfilled by AUTOSAR Adaptive Platform providers, the software
industry, and academics.

8.5 Design Principles

The architecture of the AUTOSAR Adaptive Platform is based on several design prin-
ciples that are outlined below.

8.5.1 Leveraging existing standards

AUTOSAR Adaptive Platform aims to leverage existing standards and specifications
wherever possible. For example, AUTOSAR Adaptive Platform ist built on the existing
and open C++ standard (cf. Section 8.4.1) to facilitate a faster development of the
AUTOSAR Adaptive Platform itself and benefiting from the eco-systems of such stan-
dards. It is, therefore, a critical focus in developing the AUTOSAR Adaptive Platform
specification not to casually introduce a new replacement functionality that an existing
standard already offers. For instance, no new interfaces are casually introduced just
because an existing standard provides the functionality required but the interface is
superficially hard to understand.

8.5.2 SOLID principles

The SOLID principles [7] are a central part of the design principles of AUTOSAR. While
these five principles are all valid, only the Single-responsibility Principle, the Interface
Segregation Principle and the Dependency Inversion Principle are relevant on the ab-
straction level of this document. Therefore, they are elaborated in the following.

30 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

8.5.2.1 Single-responsibility Principle

The single-responsibility principle (SRP,SWEBOK3) [7] states that a component or class
should be responsible for a single part of the overall functionality provided by the soft-
ware. That responsibility should be encapsulated by the component or class. The
services provided by the component or class (via its interface(s)) should be closely
aligned with its responsibility.

The single-responsibility principle minimizes the reasons (i.e. a change to the single
responsibility) that require a change to its interface. Thus, it minimizes impact on clients
of such an interface and leads to a more maintainable architecture (or code).

8.5.2.2 Interface Segregation Principle

The interface segregation principle (ISP) [7], [8] states that clients should not be forced
to depend on methods that they don’t use. As a consequence of the interface segre-
gation principle, interfaces should be split up to reflect different roles of clients.

Similar to the single-responsibility principle, the segregation of interfaces reduce the
impact of a change to an interface to the clients and suppliers of an segregated inter-
face.

8.5.2.3 Dependency Inversion Principle

The dependency inversion principle (DIP) [7], [8] states that high-level building blocks
should not depend on low-level building blocks. Both should depend on abstractions
(e.g. interfaces). Furthermore, the dependency inversion principle states that abstrac-
tions (e.g. interfaces) should not depend on details. Details (e.g. a concrete imple-
mentation) should depend on abstractions.

The dependency inversion principle results in a decoupling of the implementations of
building blocks. This is important to scale implementation efforts (cf. Section 5.2) and
to perform proper integration tests.

8.5.3 Acyclic Dependencies Principle

The acyclic dependencies principle (ADP) [7], [8] states that dependencies between
building blocks should form a directed acyclic graph.

The acyclic dependencies principle helps to identify participating building blocks and
reason about error propagation and freedom from interference. In general, it also re-
duces the extend of building blocks to consider during activities such as test, build and
deployment.

31 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

8.5.4 Versioning of the Service Interface API

Communication API of the AUTOSAR Adaptive Platform is split into several abstraction
layers, each of which can use its own versioning schema to define compatibility rules on
that layer. Versioning of the Service Interface API should not be mixed with versioning
of the transport layer mechanism (e.g. SOME/IP), as the transport layer may define its
own compatibility rules based on the features used, and its version is separated from
that one defined for the Service Interface API, which belongs to the application layer.
But when the major version of the Service Interface is increased, the transport layer
version needs to be updated as well to indicate the influence of Service Interface level
changes.

8.5.5 Platform Extensions

The AUTOSAR Adaptive Platform supports extensions of its behavior by an OEM using
standardized extension interfaces, so called Platform Extension Interfaces.
The use of Platform Extension Interfaces is limited to cases in which it is
easier to provide an implementation of a behavior rather than configuring a generic
behavior via the Manifest. The implementation of a Platform Extension In-
terface is always provided by an OEM. Similar interfaces (e.g., Callbacks) that
extend the behavior of the AUTOSAR Adaptive Platform but are implemented by an
Adaptive Application are not considered to be Platform Extension Interfaces.

The Adaptive Platform differentiates between three types of platform extension inter-
faces, Callout, Callback, and Plugin. These interface types are described in the
subsequent sections.

8.5.5.1 Callout

The Callout pattern relies on the extension providing an implementation of one or
more functions or classes with a standardized name and signature. No implementation
is provided for Callouts by the stack vendor but they may be used by the Adaptive
Platform. The Callout becomes a part of the stack (e.g., an executable of a daemon
process). If the functions or classes are not implemented, the application or Adaptive
Platform will not compile or fail to start due to missing dependencies.

8.5.5.1.1 Purpose

A Callout is intended for adapting a specific mechanism in the Adaptive Platform to
OEM needs.

32 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

8.5.5.1.2 Applicability

The Callout pattern is applicable if exactly one such extension needs to be provided
for a given project and no runtime variability is required.

8.5.5.1.3 Class Structure

There is no special structure necessary to define a Callout.

8.5.5.1.4 Behavior

There is no special behavior necessary to define a Callout. The registration of the
Platform Extension Interface is performed statically by the linker.

8.5.5.1.5 Consequences

It is mandatory to provide an implementation of a Callout. This pattern adds no
runtime overhead and no registration at runtime is necessary.

8.5.5.1.6 Examples

• Freshness Value Manager in Communication Management

8.5.5.2 Callback

The Callback pattern relies on a dynamic registration of functionality to be invoked
asynchronously by the Adaptive Platform at a later point in time.

8.5.5.2.1 Purpose

The main purpose of Callbacks is to signal events e.g., asynchronous results. If the
Callback is registered from higher level functionality (i.e., an Adaptive Application),
the Callback is however not considered to be a Platform Extension Inter-
face.

33 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

8.5.5.2.2 Applicability

This pattern is applicable if the behavior extension can be realized in a single function.
The pattern is also applicable if the extension should be changed during runtime and/or
there should be more than one Callback registered. Parameters in a Callback may
be used to transfer data from the AUTOSAR Adaptive Platform to the Callback only.
Return values may be used to transfer data from the Callback back to the AUTOSAR
Adaptive Platform.

8.5.5.2.3 Class Structure

There are two supported patterns to realize callbacks in the Adaptive Platform:

1. By implementing a std::function in the Adaptive Application and registering (and
unregistering) it at runtime with the Adaptive Platform. Registration may be op-
tional (e.g., by a setter method) or mandatory (e.g., as parameter in the construc-
tor).

2. By implementing a skeleton and providing an implementation for a pure virtual
function. The implementation is then mandatory. Additional functionality can be
provided by the base class of the skeleton. In AUTOSAR, the derived class is
typically addressed with an InstanceSpecifier (please refer to ara::com Skeleton
as an example).

8.5.5.2.4 Behavior

Callbacks need to be registered and unregistered at runtime by the Adaptive Applica-
tion.

8.5.5.2.5 Consequences

Results or notifications that occurred prior to the registration or after the unregistration
will get lost. The Callback pattern introduces overhead for registering and unregis-
tering. In case of the skeleton approach, additional runtime overhead may result from
using a virtual function.

8.5.5.2.6 Examples

1. There are currently no such Callbacks in the Adaptive Platform that are Plat-
form Extension Interfaces.

2. DownloadService in Diagnostic Management.

34 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

8.5.5.3 Plugin

The Plugin pattern relies on a dynamic registration of a class together with meta-
information for selecting a Plugin at runtime.

8.5.5.3.1 Purpose

The Plugin pattern is intended to extend or adapt an existing framework with a larger
number of functions.

8.5.5.3.2 Applicability

This pattern is applicable if any number of extensions shall provide their behavior to
the Adaptive Platform an a concrete behavior needs to be chosen at runtime based on
e.g., input data.

8.5.5.3.3 Class Structure

A Plugin is an implementation of an abstract base class. It is registered with meta-
information (e.g., an identifier obtained by calling GetID() in figure 8.2) to be able to
choose the right implementation at runtime. Alternatively, a plugin may decide itself if
it can handle a certain request (e.g., by calling Matches() in figure 8.2).

Adaptive Platform

Platform Extension 1

Plugin Interface

+ GetID()
+ Matches(String): boolean
+ Operation1(): int
+ Operation2(): void

Plugin1

+ Matches(String): boolean
+ Operation1(): int
+ Operation2(): void

Plugin2

+ Matches(String): boolean
+ Operation1(): int
+ Operation2(): void

Platform Extension 2

Figure 8.2: Class Structure of a Plugin

8.5.5.3.4 Behavior

The Plugin needs to be registered with the Adaptive Platform. The methods of the
Plugin are then called by the Adaptive Platform.

35 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

8.5.5.3.5 Consequences

This pattern requires a registration of the Plugin(s) at runtime. It is recommended
to register the plugins via the Manifest. This way, the AUTOSAR Adaptive Platform
can ensure that the extension is initialized/deinitialized correctly. Having a fixed list of
plugins defined in the Manifest also makes safety considerations easier because all
possible implementations and the conditions under which they are used are known.

This pattern adds some runtime overhead to differentiate between the Plugin, usually
by means of virtual functions. Using this pattern may complicate safety- and security
audits since the concrete implementation is chosen at runtime.

8.5.5.3.6 Examples

• UDS transport protocols in Diagnostic Management

• CryptoProvider in Cryptography

8.5.5.3.7 Configuration Patterns

There are three supported variants to configure Plugins in the Manifest. A variant
may be chosen based on the pros and cons listed for each variant.

8.5.5.3.7.1 Reference to Class

In this variant, the meta-class for configuring the Plugin type (XYPluginConfigu-
ration in figure 8.3) specifies an additional attribute (implementation in figure 8.3)
that is used to define the full qualified name of the class that implements the plugin.

XYPluginConfiguration

+ implementation: ClassNameString

Referrable

+ shortName: Identifier

Figure 8.3: Excerpt of Meta-Model

In the Manifest, one may then create any number of such Plugin configurations
and refer to the concrete classes that implement the Plugins.

36 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

PluginA: XYPluginConfiguration

+ implementation = a::b::PluginA
+ shortName = pluginA

PluginB: XYPluginConfiguration

+ implementation = c::d::PluginB
+ shortName = pluginB

Figure 8.4: Example of Configuration in the Manifest

The tooling needs to generate additional code based on the Manifest that registers
an instance of the class specified in the Plugin configuration with the Adaptive Plat-
form using the identifier (e.g., the shortName) of the Plugin.

Provided by OEM

Adaptive Platform

XYPlugin

+ GetID(): String
+ Operation1(): void
+ Operation2(): int

a::b::PluginA

+ GetID(): String
+ Operation1(): void
+ Operation2(): int

c::d::PluginB

+ GetID(): String
+ Operation1(): void
+ Operation2(): int

Figure 8.5: Example of Plugin Class Structure

Pros:

• High flexibility in the naming and namespace of the class that implements a Plu-
gin.

• Immediate feedback by the compiler/linker if a Plugin implementation is missing
or malformed.

Cons:

• References to implementation classes in the Manifest.

8.5.5.3.7.2 Generated Plugin Definition

This patterns defines Plugins in the Manifest without specifying an implementa-
tion. A header file needs to be generated that defines a class with a unique name
that implements the respective Plugin (e.g., the class name and namespace of the
generated class is derived from the plugin’s short name path in the Manifest). An im-
plementation needs to be provided according to the generated header file. Additional
code needs to be generated that registers an instance of the generated classes with
the stack using the identifier (e.g., the shortName) of the Plugin.

37 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

In this variant, the meta-class for configuring the Plugin type (XYPluginConfigu-
ration) does not specify any additional attribute that refers to the implementation of
the Plugin.

XYPluginConfiguration

Referrable

+ shortName: Identifier

Figure 8.6: Excerpt of Meta-Model

In the Manifest, one may then create any number of such Plugin configurations.

PluginA: XYPluginConfiguration

+ shortName = pluginA

PluginB: XYPluginConfiguration

+ shortName = pluginB

Figure 8.7: Example of Configuration in the Manifest

The tooling needs to generate a class definition (i.e. a header file) for each Plugin
configuration. The name of that class is derived from the full qualified name of the
Plugin configuration. The tooling also needs to generate additional code based on
the Manifest that registers an instance of that generated class with the Adaptive
Platform using the identifier (e.g., the shortName) of the Plugin. The OEM then
needs to provide an implementation of the generated class definitions similar to the
Callout pattern.

Provided by OEM

Generated

Adaptive Platform

XYPlugin

+ GetID(): String
+ Operation1(): void

«interface»
PluginA

+ GetID(): String

«interface»
PluginB

+ GetID(): String

PluginA

+ Operation1(): void

PluginB

+ Operation1(): void

Figure 8.8: Example of Plugin Class Structure

38 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Pros:

• No references to implementation classes in the Manifest.

• Immediate feedback by the compiler/linker if a Plugin implementation is missing
or malformed.

Cons:

• No flexibility in the naming and namespace of the class that implements a Plu-
gin. Implementations might not be directly reusable across projects.

8.5.5.3.7.3 Dynamic Library

This patterns defines plugins in the Manifest by means of dynamic libraries that are
part of a SoftwareCluster. In this variant, the meta-class for configuring the plugin
type (XYPluginConfiguration) refers to exactly one DynamicLibrary. The Dy-
namicLibrary is packaged as a separate file in the resulting Software Package.

Referrable

+ shortName: Identifier

XYPluginConfiguration DynamicLibrary

ARElement

+library

1

Figure 8.9: Excerpt of Meta-Model

In the Manifest, one may then create any number of such plugin configurations.
The DynamicLibrary must contain an implementation of the plugin class which is a
concrete class in this variant (i.e., the method names must be known). The register-
ing/unregistering requires no generated code and can be done completely inside the
AUTOSAR Adaptive Platform by loading the library dynamically. However, the operat-
ing system needs to support dynamic libraries.

Pros:

• No code generation / tooling required.

• High flexibility in the naming and namespace of the class that implements a Plu-
gin.

Cons:

• Missing or malformed Plugin implementation can only be detected at runtime.

• May complicate safety considerations because it is harder to prove which code is
actually executed.

39 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

• Cannot be used with statically linked binaries.

8.5.6 Offer/StopOffer Pattern

The Offer/StopOffer pattern was originally invented to control the invocations
of callbacks for ara::com service interfaces. The pattern is called ’Offer/StopOffer’ due
to the names of the two functions that enable and disable invocations. The Offer/-
StopOffer pattern generalized that approach and is now applied in several differ-
ent functional clusters.

8.5.6.1 Purpose

The Offer/StopOffer pattern controls when asynchronous callbacks may be in-
voked on an object. It decouples the lifecycle of an object from the ability to han-
dle asynchronous callbacks. The Offer/StopOffer pattern guards against race-
conditions that could arise if callbacks were already enabled during construction and
the callback would be invoked while the object is not yet fully initialized.

8.5.6.2 Applicability

The Offer/StopOffer pattern is applicable if the handling of asynchronous call-
backs shall be decoupled from the registration of the callback or the lifetime of the
object that defines a callback function.

8.5.6.3 Class Structure

The Offer/StopOffer pattern has two variants (see Figure 8.10).

• Variant 1 - Skeleton Approach: The first variant is called ’skeleton approach’ be-
cause it was first used in the skeleton class generated for an ara::com service in-
terface. This variant makes use of inheritance. The Offer and StopOffer func-
tions are defined and implemented in an abstract base class (ServiceSkele-
ton). One or more pure virtual function(s) in the abstract base class define the
signature(s) of the callback(s) (ServiceOperation). An application needs to
provide a concrete class that implements the pure virtual function(s). The func-
tions Offer and StopOffer should be final. The application-provided de-
structor needs to call StopOffer to prevent invocations of the callback on a
destructed object.

40 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

• Variant 2 - std::function: The second variant does not require inheritance. The
Offer and StopOffer functions are defined in a concrete class (Service) to-
gether with a function to register a std::function (provided by the application)
as a callback (RegisterCallback). The class Service should be final.

Variant 2: CallbackVariant 1: Skeleton

ServiceSkeleton

+ Offer(): Result
+ ServiceOperation(): void
+ StopOffer(): void

ServiceImpl

+ ServiceOperation(): void

Service

- executeCallback(): T
+ Offer(): Result
+ RegisterCallback(function): void
+ StopOffer(): void

Figure 8.10: Variants of the Offer/StopOffer Pattern

8.5.6.3.1 Offer()

Offer should be defined as:

ara::core::Result<void> Offer() final noexcept;

Offer should ignore repeated calls (without calling StopOffer in between). Other
kinds of errors can be reported with the Result, for example if a daemon process is not
available. The application is responsible for retrying the operation or e.g., terminating.
An application is free to add logical supervisions to detect repeated / unintended calls
to Offer.

8.5.6.3.2 StopOffer()

StopOffer should be defined as:

void StopOffer() final noexcept;

StopOffer should ignore repeated calls (without calling Offer in between).
StopOffer is not expected to fail in a recoverable way (that is why no Result is
returned). Once the call to StopOffer has completed, the callback is not invoked
afterwards. If a callback is executed when StopOffer is called, StopOffer needs to
block until the callback has finished. That way, the application can be sure that once
StopOffer has completed it is safe to free any resources required by the callback.
An application is free to add logical supervisions to detect repeated / unintended calls
to StopOffer.

Please note that the Offer/StopOffer pattern can be extended in several ways
to fit specific use cases, for example to have control over the order and execution
context (thread) of callbacks by means of an Executor. Also the names of the Offer,

41 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

StopOffer, and all other functions are not fixed and more meaningful names could
be chosen.

8.5.6.3.3 Participants

• Variant 1 - Skeleton Approach:

– ServiceSkeleton: An abstract class providing the functionality to en-
able/disable the invocation of the callback(s) (Offer and StopOffer). It
also defines at least one pure virtual function at defines the signature for
the callback (ServiceOperation). The ServiceSkeleton is defined as
part of the Adaptive Platform API.

– ServiceImpl: Inherits from the ServiceSkeleton and implements the
callbacks. The ServiceImpl class is part of the application.

• Variant 2 - std::function:

– Service: Provides functionality to register one or more callbacks (Reg-
isterCallback, but could also be done in a constructor if the callback
is mandatory) and functionality to enable/disable the invocation of the call-
back(s) (Offer and StopOffer).

8.5.6.4 Behavior

Figure 8.11 shows the registration, the usage, and the de-registration of a callback for
Variant 1 - Skeleton Approach.

42 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Application

Application Functional ClusterService:
ServiceImpl

loop

«aapInformative»
disableServiceRequests()

ServiceOperation()

«aapInformative» enableServiceRequests()

notify about offer()

«aapInformative»

notify about stopoffer()

«aapInformative»

request service()

«aapInformative»

StopOffer()

Offer(): Result

Figure 8.11: Variant 1 - Skeleton Approach

Figure 8.12 shows the registration, the usage, and the de-registration of a callback for
Variant 2 - std::function.

Application

Application :Service Functional Cluster

loop

notify about stopoffer()

«aapInformative»

«aapInformative» disableServiceRequests()

executeCallback(): T

StopOffer()

Offer(): Result

operator()

RegisterCallback(function)

notify about offer()

«aapInformative»

request service()

«aapInformative»

«aapInformative»
enableServiceRequests()

Figure 8.12: Variant 2 - std::function

43 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

8.5.6.5 Consequences

The Offer/StopOffer pattern requires more setup due to two separate calls to
create/register the callback and to enable invocations. Variant 1 - Skeleton Approach
may also introduce a small runtime overhead due to the use of virtual functions.

8.5.6.6 Examples

• Generated skeleton for ara::com service interfaces.

• SecurityAccess and many other APIs in Diagnostic Management.

• RecoveryAction in Platform Health Management

8.6 Deployment

The AUTOSAR Adaptive Platform supports the incremental deployment of applica-
tions, where resources and communications are managed dynamically to reduce the
effort for software development and integration, enabling short iteration cycles. Incre-
mental deployment also supports explorative software development phases. For prod-
uct delivery, the AUTOSAR Adaptive Platform allows the system integrator to carefully
limit dynamic behavior to reduce the risk of unwanted or adverse effects allowing safety
qualification. Dynamic behavior of an application will be limited by constraints stated
in the Execution Manifest (cf. Section 13.8), for example, dynamic allocation of
resources and communication paths are only possible in defined ways, within config-
ured ranges. Implementations of an AUTOSAR Adaptive Platform may further remove
dynamic capabilities from the software configuration for production use. Examples of
reduced behavioral dynamics might be:

• Pre-determination of the service discovery process

• Restriction of dynamic memory allocation to the startup phase only

• Fair scheduling policy in addition to priority-based scheduling

• Fixed allocation of processes to CPU cores

• Access to pre-existing files in the file-system only

• Constraints for AUTOSAR Adaptive Platform API usage by applications

• Execution of authenticated code only

44 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

8.7 Verification and Validation

The AUTOSAR Adaptive Platform standard uses a dedicated implementation of the
standard (AUTOSAR Adaptive Platform Demonstrator) to validate the requirements
and to verify the (still abstract) software design imposed by the individual software
specifications.

45 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9 Building Block View

This chapter provides an overview of the static structure of the AUTOSAR Adaptive
Platform by describing the high-level building blocks and their inter-dependencies.
Please note that the use of interfaces between Functional Clusters in the AU-
TOSAR Adaptive Platform is currently not standardized. An implementation of the AU-
TOSAR Adaptive Platform is free to define its own internal interfaces between Func-
tional Clusters or use different standardized interfaces than presented in this doc-
ument.

The description of all building blocks (FunctionalClusters) in this chapter uses the
same pattern. Each FunctionalCluster is described in a separate section of the
document that starts with an overview of the FunctionalCluster as outlined in Ta-
ble 9.1. The overview is followed by a sub-section called "Defined interfaces" that lists
all architectural interfaces specified in the namespace(s) of the FunctionalCluster.
Each interface is detailed in a separate table. Please be aware that those interfaces
do not correspond to classes in the ARA API in all cases, for example, there are addi-
tional interfaces defined to group C++ non-member functions because there is no such
concept in UML.

Name: The long name of the functional cluster.

Short Name: The short name of the functional cluster.

Category: The category of the functional cluster (see Section 9.1 for an overview).

Daemon-based: Denotes if the FunctionalCluster is intended to be implemented with a separate daemon
process or not. An implementation of the AUTOSAR Adaptive Platform is free to deviate from that.

Responsibilities: A description of the responsibilities of the FunctionalCluster.

Table 9.1: Example of a Functional Cluster overview table

The second to last subsection "Provided interfaces" lists all interfaces provided by
the FunctionalCluster to other FunctionalClusters. The last subsection "Re-
quired interfaces" lists all interfaces required by the FunctionalCluster from other
FunctionalClusters and external components like the operating system. However,
an implementation of the AUTOSAR Adaptive Platform is free to define its own internal
interfaces between Functional Clusters or use different standardized interfaces
than presented in the sections "Provided interfaces" and "Required interfaces".

9.1 Overview

Figure 9.1 provides an overview of the different categories of building blocks available
in the AUTOSAR Adaptive Platform. The categories are explained in more detail in the
subsequent sections.

46 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

AUTOSAR Adaptive Platform

Runtime Communication Storage

Security Safety Configuration

Diagnostics

Figure 9.1: Overview of the AUTOSAR Adaptive Platform and its building block cate-
gories

9.2 Runtime

«aapFunctionalCluster»
Execution Management

daemon-based

«aapFunctionalCluster»
Log and Trace

«aapFunctionalCluster»
Operating System Interface

«aapFunctionalCluster»
State Management

daemon-based

«aapFunctionalCluster»
Core

Figure 9.2: Functional Clusters in category Runtime

9.2.1 Execution Management

Name: Execution Management

Short Name: exec

Category: Runtime

Daemon-based: Yes
5

47 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Responsibilities: Execution Management is responsible to control Processes of the AUTOSAR Adaptive

Platform and Adaptive Applications. That is, it starts, configures, and stops Processes as
configured in Function Group States using interfaces of the Operating System. The
Operating System is responsible for runtime scheduling of those Processes. The configuration
of Processes that Execution Management performs includes limiting their resource
consumption (CPU time, memory) using Resource Groups provided by the Operating
System.

Execution Management is the entry point of AUTOSAR Adaptive Platform and is started by the
Operating System during system boot. Execution Management then controls the startup and
shutdown of the AUTOSAR Adaptive Platform (see use cases Start Adaptive Platform and
Shutdown Adaptive Platform for details). Execution Management optionally supports
authenticated startup where it maintains the chain of trust when starting from a Trust Anchor.
During authenticated startup Execution Management validates the authenticity and integrity of
Processes and shall prevent their execution if violations are detected. Through these
mechanisms, a trusted platform can be established.

9.2.1.1 Defined interfaces

The interfaces of Execution Management are categorized into interfaces for state
reporting (see Section 9.2.1.1.1) and interfaces for State Management (see Section
9.2.1.1.2).

9.2.1.1.1 Interfaces for state reporting

All processes started by Execution Management (i.e. all processes of the AU-
TOSAR Adaptive Platform and all processes of Adaptive Applications) shall report
their execution state back to Execution Management via the ExecutionClient
interface (cf. Figure 9.3).

«aapFunctionalCluster»
Execution Management

daemon-based

«aapAPI,aapNativeInterface»
ExecutionClient

+ Create()
+ ReportExecutionState(ExecutionState): Result

Adaptive Application

«use»

Figure 9.3: Interfaces for state reporting

Name: ExecutionClient
Technology: Native interface

Usage: Public API

5

48 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Description: This interface provides functionality for a Process to report its execution state to Execution

Management.

Create Named constructor for this interface.Operations:
ReportExecutionState Report the internal state of a Process to Execution

Management.

9.2.1.1.2 Interfaces for State Management

The StateClient API (cf. Figure 9.4) provides operations to control Function-
GroupStates.

«aapFunctionalCluster»
Execution Management

daemon-based

«aapFunctionalCluster»
State Management

daemon-based

«aapAPI,aapNativeInterface»
StateClient

+ Create(function)
+ GetExecutionError()
+ GetInitialMachineStateTransitionResult()
+ SetState(FunctionGroupState): Future

«aapAPI,aapNativeInterface»
FunctionGroupState

+ Create()

«aapAPI,aapPortInterface»
FunctionGroup

+ Create()

«use» «use»
«aapRequiredPort»

«use»

Figure 9.4: Interfaces for State Management

Name: StateClient
Technology: Native interface

Usage: Public API

Description: This interface provides the functionality to request FunctionGroupState transitions and to
perform error detection and error handling.

Create Named constructor of this interface. It requires a
callback to be invoked if a FunctionGroup changes its
state unexpectedly to an undefined
FunctionGroupState, i.e. without previous request
by SetState(). The affected FunctionGroup is
provided as an argument to the callback.

GetExecutionError Returns the execution error which changed the given
FunctionGroup to an undefined
FunctionGroupState.

GetInitialMachineStateTransitionResult Retrieve the result of Machine State initial transition
to Startup state.

Operations:

SetState Request a FunctionGroupState transition for a
single FunctionGroup.

49 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: FunctionGroup

Technology: Port interface

Generated: No

Meta-model
interface type:

StateClientInterface

Usage: Public API

Description: Represents a Function Group defined in the Manifest.

Operations: Create Creates a FunctionGroup.

Name: FunctionGroupState

Technology: Native interface

Usage: Public API

Description: Represents a Function Group State defined in the Manifest.

Operations: Create Creates a FunctionGroupState.

9.2.1.2 Provided interfaces

«aapFunctionalCluster»
Execution Management

daemon-based

«aapAPI,aapNativeInterface»
ExecutionClient

+ Create()
+ ReportExecutionState(ExecutionState): Result

«aapFunctionalClust...
State Management

daemon-based

«aapFunctionalClust...
Diagnostic Management

daemon-based

«aapFunctionalClust...
Platform Health

Management

daemon-based

«aapFunctionalClust...
Update and Configuration

Management

daemon-based

«aapFunctionalClust...
Time Synchronization

daemon-based

«use»«use» «use» «use»«use»

Figure 9.5: Users of the ExecutionClient interface

«aapFunctionalCluster»
Execution Management

daemon-based

«aapFunctionalCluster»
State Management

daemon-based

«aapAPI,aapNativeInterface»
StateClient

+ Create(function)
+ GetExecutionError()
+ GetInitialMachineStateTransitionResult()
+ SetState(FunctionGroupState): Future

«aapAPI,aapNativeInterface»
FunctionGroupState

+ Create()

«aapAPI,aapPortInterface»
FunctionGroup

+ Create()

«use»«use»
«aapRequiredPort»

«use»

Figure 9.6: Users of the State Management interfaces

50 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Interface Requiring functional clusters

Diagnostic Management

Platform Health Management

State Management

Time Synchronization

Update and Configuration Management

ExecutionClient

Vehicle Update and Configuration Management

FunctionGroup State Management

FunctionGroupState State Management

StateClient State Management

Table 9.2: Interfaces provided by Execution Management to other Functional Clusters

9.2.1.3 Required interfaces

«aapFunctionalCluster»
Execution Management

daemon-based

«aapFunctionalClust...
Log and Trace

«aapAPI,aapNativeInterf...
Logger

+ IsEnabled()
+ Log(MsgId, Params)
+ LogDebug(): LogStream
+ LogError(): LogStream
+ LogFatal(): LogStream
+ LogInfo(): LogStream
+ LogVerbose(): LogStream
+ LogWarn(): LogStream
+ WithLevel(): LogStream

«aapInternal»
Multi-Process System Interface

+ SetProcessConfiguration()
+ StartProcess()
+ TerminateProcess()

Operating System

«aapAPI,aapPortInterface»
SupervisedEntity

+ ReportCheckpoint()

«aapFunctionalClust...
Platform Health

Management
daemon-based

«use»«use»
«use»

«aapRequiredPort»

Figure 9.7: Interfaces required by Execution Management

Interface Purpose

ManifestAccessor Execution Management shall use this interface to read the
configuration of Function Groups and Processes from the
Manifest.

Multi-Process System Interface Execution Management shall use this interface to start, configure and
control os-level processes.

Log and Trace::Logger Execution Management shall use this interface to log standardized
messages.

Platform Health Management::SupervisedEntity Execution Management shall use this interface to enable supervision
of its process(es) by Platform Health Management.

Table 9.3: Interfaces required by Execution Management

51 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.2.2 State Management

Name: State Management

Short Name: sm

Category: Runtime

Daemon-based: Yes

Responsibilities: State Management determines the desired target state of the AUTOSAR Runtime for Adaptive
Applications based on various application-specific inputs. That target state is the set of active
Function Group States running on the AUTOSAR Runtime for Adaptive Applications. State
Management delegates to Execution Management to switch the individual Function Group
States.

State Management is a unique component in the AUTOSAR Adaptive Platform because it is not
entirely part of an AUTOSAR Adaptive Platform stack. The logic of State Management may be
implemented as application-specific code and then configured and integrated with an AUTOSAR
Adaptive Platform stack.

9.2.2.1 Defined interfaces

The interfaces of State Management are categorized into interfaces for triggering
state changes (see Section 9.2.2.1.1), interfaces for a SMControlApplication (see
Section 9.2.2.1.2), interfaces for notification of StateMachine transitions to any Adap-
tive Application (see Section 9.2.2.1.3), interfaces for requesting a Power Mode (see
Section 9.2.2.1.4), and interfaces for interaction with Update and Configuration
Management (see Section 9.2.2.1.5).

9.2.2.1.1 Interfaces for triggering state changes

State Management provides several interface blueprints to get and set its internal
state (cf. Figure 9.8).

«aapFunctionalCluster»
State Management

daemon-based

«aapAraComServiceInterface,aapAPI»
TriggerIn_{StateGroup}

«aapAccessControlled, aapServiceFie...
+ Trigger

«aapAraComServiceInterface,aapAPI»
TriggerOut_{StateGroup}

«aapAccessControlled, aapServiceFie...
+ Notifier

«aapAraComServiceInterface,aapAPI»
TriggerInOut_{StateGroup}

«aapAccessControlled, aapServiceField»
+ Notifier
+ Trigger

Adaptive Application

«use»
«aapRequiredPort»

«aapProvidedPort»«aapProvidedPort»

«use»
«aapRequiredPort»

«aapProvidedPort»

«use»
«aapRequiredPort»

Figure 9.8: Interfaces for triggering state changes

52 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: TriggerIn_{StateGroup}

Technology: ara::com service interface

Usage: Public API

Description: This interface is to be used by Adaptive Applications to trigger State Management to
change its internal state.

Fields: Trigger A value to be evaluated by State Management in a
project-specific way.

Name: TriggerOut_{StateGroup}

Technology: ara::com service interface

Usage: Public API

Description: This interface is to be used by Adaptive Applications to be informed when State
Management has changed its internal state.

Fields: Notifier To be set by State Management in a project-specific
way to inform Adaptive Applications about
changes within State Management.

Name: TriggerInOut_{StateGroup}

Technology: ara::com service interface

Usage: Public API

Description: This interface is to be used by Adaptive Applications to trigger State Management to
change its internal state and to get information when it is carried out.

Notifier To be set by State Management in a project-specific
way to inform Adaptive Applications about
changes within State Management.

Fields:

Trigger A value to be evaluated by State Management in a
project-specific way.

9.2.2.1.2 Interfaces for a SMControlApplication

The StateMachineService and UpdateAllowedService interfaces provide a
means for an Adaptive Application (called SMControlApplication) to inter-
act with State Management’s StateMachine.

53 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

«aapFunctionalCluster»
State Management

daemon-based

«aapAraComServiceInterface,aapAPI»
StateMachineService

«aapAccessControlled, aapServiceMethod»
+ RequestTransition()

Adaptive Application

SMControlApplication

«aapAraComServiceInterface,aapAPI»
UpdateAllowedService

«aapAccessControlled, aapServiceField»
+ UpdateAllowed

«aapProvidedPort»«aapProvidedPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 9.9: Interfaces for a SMControlApplication

Name: StateMachineService
Technology: ara::com service interface

Usage: Public API

Description: This interface is intended to be used by a SMControlApplication to interact with State
Management’s StateMachine.

Operations: RequestTransition Request a transition in the referenced StateMachine.

Name: UpdateAllowedService

Technology: ara::com service interface

Usage: Public API

Description: This interface is intended to be used by a SMControlApplication to grant an update session or
not.

Fields: UpdateAllowed Controls if an update is allowed or not.

9.2.2.1.3 Interfaces for StateMachine Notifications

The StateMachineNotification interface provides means for any Adaptive Appli-
cation to retrieve or get notifications about the current state of a particular StateMa-
chine. If a StateMachine is currently in transition between two different states, then the
value is InTransition.

54 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

«aapFunctionalCluster»
State Management

daemon-based

«aapAraComServiceInterface,aapAPI»
StateMachineNotification

«aapAccessControlled, aapServiceFie...
+ CurrentState

Adaptive Application

«use»

Figure 9.10: Notification interface for an Adaptive Application

Name: StateMachineNotification
Technology: ara::com service interface

Usage: Public API

Description: This interface provides means to retrieve or get notifications about the current state of a particular
StateMachine.

Fields: CurrentState The current state of the StateMachine.

9.2.2.1.4 Interfaces for requesting a Power Mode

The PowerMode interface propagates a diagnostic Power Mode request (Power-
Mode::message()) to all running Processes. These Processes then shall answer
the Power Mode request by calling PowerMode::event().

«aapFunctionalCluster»
State Management

daemon-based

«aapAPI,aapAraComServiceInterfa...
PowerMode

«aapAccessControlled, aapService...
+ event(PowerModeRespMsg*)
+ message(PowerModeMsg*)

Adaptive Application

«aapProvidedPort»

«use»
«aapRequiredPort»

Figure 9.11: Interface for handling a Power Mode request

Name: PowerMode
Technology: ara::com service interface

Usage: Public API

5

55 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Description: This interface provides functionality to handle Power Mode requests.

event All Processes which have received a Power Mode
request shall call this method to provide an answer to
State Management.

Operations:

message Sends a Power Mode request to all running
Processes.

9.2.2.1.5 Interfaces for interaction with Update and Configuration Management

«aapFunctionalCluster»
State Management

daemon-based

«aapAraComServiceInterface,aapInte...
UpdateRequest

«aapAccessControlled, aapServiceFie...
+ ResetMachineNotifier

«aapAccessControlled, aapServiceMe...
+ PrepareRollback()
+ PrepareUpdate()
+ RequestUpdateSession()
+ ResetMachine()
+ StopUpdateSession()
+ VerifyUpdate()

«aapFunctionalCluster»
Update and Configuration

Management
daemon-based

«aapProvidedPort»

«use»
«aapRequiredPort»

Figure 9.12: Interface for software update handling

Name: UpdateRequest

Technology: ara::com service interface

Usage: Internal

Description: This interface is intended to be used by Update and Configuration Management to interact
with State Management to perform updates (including installation and removal) of Software
Clusters.
PrepareRollback Prepares the affected Function Groups for a rollback.

PrepareUpdate Prepares the affected Function Groups for an
update.

RequestUpdateSession Requests an update session. State Management
might decline this request when the Machine is not in a
state to be updated.

ResetMachine Requests an orderly reset of the Machine. Before the
reset is performed all information within the Machine
shall be persisted.

StopUpdateSession Ends an update session.

Operations:

VerifyUpdate Verifies the affected Function Groups after an
update.

5

56 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Fields: ResetMachineNotifier To be set by State Management to inform Update

and Configuration Management about changes
during and after processing the method
ResetMachine.

9.2.2.2 Provided interfaces

«aapFunctionalCluster»
State Management

daemon-based

«aapAraComServiceInterface,aapInte...
UpdateRequest

«aapAccessControlled, aapServiceFie...
+ ResetMachineNotifier

«aapAccessControlled, aapServiceMe...
+ PrepareRollback()
+ PrepareUpdate()
+ RequestUpdateSession()
+ ResetMachine()
+ StopUpdateSession()
+ VerifyUpdate()

«aapPortInterface,aapAPI»
RecoveryAction

+ Offer()
+ StopOffer()

«aapCallbackMethod»
+ RecoveryHandler()

«aapFunctionalCluster»
Platform Health Management

daemon-based

«aapFunctionalCluster»
Update and Configuration

Management
daemon-based

«aapProvidedPort»«aapProvidedPort»

«use»
«aapRequiredPort»

«use»

Figure 9.13: Users of the State Management interfaces

Interface Requiring functional clusters

RecoveryAction Platform Health Management

UpdateRequest Update and Configuration Management

Table 9.4: Interfaces provided by State Management to other Functional Clusters

57 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.2.2.3 Required interfaces

«aapFunctionalCluster»
Platform Health Management

daemon-based

«aapFunctionalCluster»
State Management

daemon-based

«aapAPI,aapPortInterface»
SupervisedEntity

+ ReportCheckpoint()

«aapAPI,aapPortInterface»
NetworkHandle

+ GetNetworkRequestedState()
+ GetNetworkState()
+ RegisterNetworkRequestedStateChangeNotifier()
+ RegisterNetworkStateChangeNotifier()
+ SetNetworkRequestedState()
+ UnregisterNetworkRequestedStateChangeNotifier()
+ UnregisterNetworkStateChangeNotifier()

«aapFunctionalCluster»
Network Management

«aapAPI,aapPortInterface»
KeyValueStorage

+ DiscardPendingChanges()
+ GetAllKeys()
+ GetCurrentValueSize()
+ GetValue()
+ KeyExists()
+ RecoverKey()
+ RemoveAllKeys()
+ RemoveKey()
+ ResetKey()
+ SetValue()
+ SyncToStorage()

«aapFunctionalClust...
Persistency

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 9.14: Interfaces required by State Management

«aapFunctionalCluster»
Execution Management

daemon-based

«aapFunctionalCluster»
State Management

daemon-based

«aapAPI,aapNativeInterface»
StateClient

+ Create(function)
+ GetExecutionError()
+ GetInitialMachineStateTransitionResult()
+ SetState(FunctionGroupState): Future

«aapAPI,aapNativeInterface»
FunctionGroupState

+ Create()

«aapAPI,aapPortInterface»
FunctionGroup

+ Create()

«use»«use» «use»
«aapRequiredPort»

Figure 9.15: Interfaces of Execution Management required by State Management

Interface Purpose

Execution Management::ExecutionClient This interface shall be used to report the state of the State
Management process(es).

Execution Management::FunctionGroup This interface shall be used to construct FunctionGroupStates.

Execution Management::FunctionGroupState This interface shall be used to request FunctionGroupState
transitions.

Execution Management::StateClient This interface shall be used to request FunctionGroupState
transitions.

Log and Trace::Logger State Management shall use this interface to log standardized
messages.

Network Management::NetworkHandle This interface shall be used to retrieve information about the network
status of a NetworkHandle.

Persistency::KeyValueStorage Used to store the internal state of State Management.

Platform Health Management::SupervisedEntity State Management shall use this interface to enable supervision of its
process(es) by Platform Health Management.

Table 9.5: Interfaces required by State Management

58 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.2.3 Log and Trace

Name: Log and Trace

Short Name: log

Category: Runtime

Daemon-based: No

Responsibilities: Log and Trace provides functionality to build and log messages of different severity. An
Adaptive Application can be configured to forward log messages to various sinks, for
example to a network, a serial bus, the console, and to non-volatile storage.

9.2.3.1 Defined interfaces

The entry point to the Log and Trace framework is the CreateLogger() opera-
tion that constructs a new Logger context. Afterwards, new messages can be con-
structed using the LogStream that is returned by the operations in Logger, for exam-
ple LogInfo().

«aapFunctionalCluster»
Log and Trace

«aapAPI,aapNativeInterf...
Log and Trace::Logger

+ IsEnabled()
+ Log(MsgId, Params)
+ LogDebug(): LogStream
+ LogError(): LogStream
+ LogFatal(): LogStream
+ LogInfo(): LogStream
+ LogVerbose(): LogStream
+ LogWarn(): LogStream
+ WithLevel(): LogStream

Adaptive Application

«aapAPI,aapNativeInt...
Log and Trace

+ Arg()
+ BinFormat()
+ CreateLogger(): Logger
+ HexFormat()
+ remoteClientState()

«aapAPI,aapNativeInterface»
Log and Trace::LogStream

+ Flush(): void
+ operator<<(): void
+ WithLocation(): void

«use»«use»«use»

Figure 9.16: Interfaces of Log and Trace

Name: Logger

Technology: Native interface

Usage: Public API

Description: This interface represents a logger context. The logging framework defines contexts which can be
seen as logger instances within one application process or process scope. A context will be
automatically registered against the Logging back-end during creation phase, as well as
automatically de-registered during process shutdown phase.

IsEnabled Check if the provided log level is enabled in the current
configured log level.

Log Logs a message modeled in the Manifest.

LogDebug Creates a LogStream object with Debug severity.

Operations:

LogError Creates a LogStream object with Error severity.

5

59 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
LogFatal Creates a LogStream object with Fatal severity.

LogInfo Creates a LogStream object with Info severity.

LogVerbose Creates a LogStream object with Verbose severity.

LogWarn Creates a LogStream object with Warn severity.

WithLevel Creates a LogStream object with the provided log level.

Name: LogOperations

Technology: Native interface

Usage: Public API

Description: This interface provides access to the logging framework and utility operations to control the format
of value printed to the log output.

Arg Create a wrapper object. The wrapper object holds a
value and an optional name and unit of the value.

BinFormat Conversion of an integer into a binary value. Negatives
are represented in 2’s complement. The number of
represented digits depends on the overloaded
parameter type length.

CreateLogger Creates a Logger object, holding the context which is
registered in the logging framework.

HexFormat Conversion of an integer into a hexadecimal value.
Negatives are represented in 2’s complement. The
number of represented digits depends on the
overloaded parameter type length.

Operations:

remoteClientState Fetches the connection state from the DLT back-end of
a possibly available remote client.

Name: LogStream

Technology: Native interface

Usage: Public API

Description: This interface provides functionality to construct a single log message by appending data using
stream operators.

Flush Sends out the current log buffer and initiates a new
message stream. Calling this operation is only
necessary if the LogStream is intended to be reused
within the same scope.

WithLocation Add source file location into the message.

Operations:

operator<< Writes a value into the log message. Several overloads
exist to control the output format.

60 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.2.3.2 Provided interfaces

«aapFunctionalClust...
Log and Trace

«aapAPI,aapNativeInterface»
Logger

+ IsEnabled()
+ Log(MsgId, Params)
+ LogDebug(): LogStream
+ LogError(): LogStream
+ LogFatal(): LogStream
+ LogInfo(): LogStream
+ LogVerbose(): LogStream
+ LogWarn(): LogStream
+ WithLevel(): LogStream

«aapFunctionalClust...
Execution Management

daemon-based

«aapFunctionalClust...
Diagnostic Management

daemon-based

«aapFunctionalCluster»
Communication

Management
daemon-based

«aapFunctionalCluster»
Update and Configuration

Management
daemon-based

«aapFunctionalClust...
Persistency

«aapFunctionalCluster»
Intrusion Detection System

Manager
daemon-based

«aapFunctionalClust...
Time Synchronization

daemon-based

«aapFunctionalClust...
State Management

daemon-based

«aapFunctionalClust...
Network Management

«aapFunctionalClust...
Platform Health

Management
daemon-based

«aapFunctionalCluster»
Vehicle Update and Configuration

Management
daemon-based

«use» «use»«use»

«use»

«use» «use»«use»

«use»

«use» «use» «use»

Figure 9.17: Users of the Log and Trace interfaces

Interface Requiring functional clusters

Automotive API Gateway

Communication Management

Diagnostic Management

Execution Management

Intrusion Detection System Manager

Network Management

Persistency

Platform Health Management

Raw Data Stream

State Management

Time Synchronization

Update and Configuration Management

Logger

Vehicle Update and Configuration Management

Table 9.6: Interfaces provided by Log and Trace to other Functional Clusters

61 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.2.3.3 Required interfaces

«aapFunctionalCluster»
Log and Trace

«aapFunctionalCluster»
Time Synchronizationdaemon-based

«aapAPI,aapPortInterface»
Time Synchronization::

SynchronizedTimeBaseConsumer

+ GetRateDeviation()
+ GetTimeWithStatus(): SynchronizedTimeBaseStatus
+ RegisterStatusChangeNotifier()
+ RegisterSynchronizationStateChangeNotifier()
+ RegisterTimeLeapNotifier()
+ RegisterTimePrecisionMeasurementNotifier()
+ RegisterTimeValidationNotification()
+ UnregisterStatusChangeNotifier()
+ UnregisterSynchronizationStateChangeNotifier()
+ UnregisterTimeLeapNotifier()
+ UnregisterTimePrecisionMeasurementNotifier()
+ UnregisterTimeValidationNotification()

«aapInternal»
TCP/IP Stack

«aapInternal»
Non-volatile

Storage

Operating System

«use»«use»
«aapRequiredPort»

«use»

Figure 9.18: Interfaces required by LogAndTrace

Interface Purpose

ManifestAccessor Log and Trace shall use this interface to read information about
modeled messages from the Manifests.

Non-volatile Storage Log and Trace should use this interface to write log messages to a
non-volatile storage, e.g., a file in a filesystem.

TCP/IP Stack Log and Trace shall use this interface to write log messages to an
IP-based network stream.

Time Synchronization::SynchronizedTimeBase
Consumer

Log and Trace shall use this interface to determine the timestamps
that are associated with log messages.

Table 9.7: Interfaces required by Log and Trace

9.2.4 Core

Name: Core

Short Name: core

Category: Runtime

Daemon-based: No

Responsibilities: Core provides functionality for initialization and de-initialization of the AUTOSAR Runtime for
Adaptive Applications as well as termination of Processes.

62 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.2.4.1 Defined interfaces

«aapFunctionalCluster»
Core

«aapAPI,aapNativeInterf...
Core

+ Deinitialize()
+ Initialize()

«aapAPI,aapNativeInterface»
Core

+ Abort()
+ SetAbortHandler()

Figure 9.19: Interfaces of Core

9.2.4.1.1 Interfaces for initialization and de-initialization

The AUTOSAR Adaptive Platform for Applications needs to be initialized by an appli-
cation before it is used (using Initialize()) and de-initialized after it is no longer
used (using Deinitialize()).

Name: InitAndShutdown
Technology: Native interface

Usage: Public API

Description: This interface provides global initialization and shutdown functions that initialize respectively
de-initialize data structures and threads of the AUTOSAR Runtime for Adaptive Applications.

Deinitialize Destroy all data structures and threads of the AUTOSAR
Adaptive Runtime for Applications. After this call, no
interaction with the AUTOSAR Adaptive Runtime for
Applications is possible.

Operations:

Initialize Initializes data structures and threads of the AUTOSAR
Adaptive Runtime for Applications. Prior to this call, no
interaction with the AUTOSAR Adaptive Runtime for
Applications is possible.

9.2.4.1.2 Interfaces for process termination

The AUTOSAR Adaptive Platform for Applications provides an explicit abnormal termi-
nation facility using Abort().

Name: ProcessTermination
Technology: Native interface

Usage: Public API

Description: This interface provides operation for abnormal termination of processes.

Abort Abort the current process. This function will never return
to its caller.

Operations:

SetAbortHandler Set a custom global abort handler function and return
the previously installed one.

63 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.2.4.1.3 Interfaces for memory resources

«aapFunctionalCluster»
Core

«aapAPI,aapNativeInterface»
MemoryResource

+ allocate()
+ deallocate()
- do_allocate()
- do_deallocate()
- do_is_equal()
+ is_equal()

«aapAPI,aapNativeInterface»
MonotonicBufferResource

do_allocate()
do_deallocate()
do_is_equal()
+ release()
+ upstream_resource()

«aapAPI,aapNativeInterface»
SynchronizedPoolResource

do_allocate()
do_deallocate()
do_is_equal()
+ options()
+ release()
+ upstream_resource()

«aapAPI,aapNativeInterface»
UnsynchronizedPoolResource

do_allocate()
do_deallocate()
do_is_equal()
+ options()
+ release()
+ upstream_resource()

Figure 9.20: Interfaces for memory resources

Name: MemoryResource

Technology: Native interface

Usage: Public API

Description: Interface for memory resources.

allocate Allocates the specified amount of memory from this
MemoryResource.

deallocate Deallocates memory from this MemoryResource.

do_allocate Allocates the specified amount of memory from this
MemoryResource.

do_deallocate Deallocates memory from this MemoryResource.

do_is_equal Compare for equality with another MemoryResource.

Operations:

is_equal Compare for equality with another MemoryResource.

Name: MonotonicBufferResource
Technology: Native interface

Usage: Public API

Description: MonotonicBufferResource is a special-purpose MemoryResource that releases the allocated
memory only when the resource is destroyed. It is intended for very fast memory allocations in
situations where memory is used to build up a few objects and then is released all at once.

do_allocate Allocates the specified amount of memory from this
MemoryResource.

do_deallocate Deallocates memory from this MemoryResource.

do_is_equal Compare for equality with another MemoryResource.

release Release all allocated memory.

Operations:

upstream_resource Get the upstream MemoryResource.

64 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: SynchronizedPoolResource

Technology: Native interface

Usage: Public API

Description: SynchronizedPoolResource is a special-purpose MemoryResource that may be accessed
from multiple threads without external synchronization. Allocation requests are served from a
collection of pools that serve different block sizes.

do_allocate Allocates the specified amount of memory from this
MemoryResource.

do_deallocate Deallocates memory from this MemoryResource.

do_is_equal Compare for equality with another MemoryResource.

options Returns the options that control the pooling behavior of
this resource.

release Release all allocated memory.

Operations:

upstream_resource Get the upstream MemoryResource.

Name: UnsynchronizedPoolResource

Technology: Native interface

Usage: Public API

Description: UnsynchronizedPoolResource is a special-purpose MemoryResource that is not thread-safe.
Allocation requests are served from a collection of pools that serve different block sizes.

do_allocate Allocates the specified amount of memory from this
MemoryResource.

do_deallocate Deallocates memory from this MemoryResource.

do_is_equal Compare for equality with another MemoryResource.

options Returns the options that control the pooling behavior of
this resource.

release Release all allocated memory.

Operations:

upstream_resource Get the upstream MemoryResource.

9.2.4.1.4 Interfaces for memory handling

«aapFunctionalCluster»
Core

«aapAPI,aapNativeInterface»

+ NewDeleteResource()
+ NullMemoryResource()

«aapAPI,aapNativeInterface»

+ GetDefaultResource()
+ SetDefaultResource()

«aapAPI,aapNativeInterface»
PolymorphicAllocator

+ allocate()
+ allocate_bytes()
+ allocate_object()
+ construct()
+ deallocate()
+ deallocate_bytes()
+ deallocate_object()
+ delete_object()
+ destroy()
+ new_object()
+ resource()
+ select_on_container_copy_construction()

Figure 9.21: Interfaces for memory handling

65 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: StandardMemoryResourceOperations

Technology: Native interface

Usage: Public API

Description: Interface to get standard MemoryResources.

NewDeleteResource Get a MemoryResource that uses the global operator
new and operator delete to allocate memory.

Operations:

NullMemoryResource Get a MemoryResource that doesn’t perform any
allocation.

Name: DefaultMemoryResourceOperations

Technology: Native interface

Usage: Public API

Description: Interface to manage the default MemoryResource.

GetDefaultResource Get the default MemoryResource.Operations:

SetDefaultResource Set the default MemoryResource to be used.

Name: PolymorphicAllocator

Technology: Native interface

Usage: Public API

Description: An Allocator which exhibits different allocation behavior depending upon the MemoryResource
from which it is constructed.
allocate Allocate memory.

allocate_bytes Allocate raw aligned memory from the underlying
resource.

allocate_object Allocates raw memory suitable for an object or an array.

construct Constructs an object in allocated storage.

deallocate Deallocate memory.

deallocate_bytes Free raw memory.

deallocate_object Frees raw memory

delete_object Destroys and deallocates an object.

destroy Destroys an object in allocated storage.

new_object Allocates and constructs an object.

resource The underlying MemoryResource.

Operations:

select_on_container_copy_construction Create a new PolymorphicAllocator for use by a
container’s copy constructor.

9.2.4.1.5 Datatypes

The AUTOSAR Adaptive Platform for Applications defines several datatypes to be used
by applications and the platform APIs (e.g., as parameter or return types). Some of
them are derived from corresponding datatypes defined in the C++ standard library.

66 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: Result
Technology: Native interface

Usage: Public API

Description: This datatype wraps either a value or an error. It is used as the standard mechanism to return
values from APIs that may fail.

Error Access the contained error.

Value Access the contained value.

operator* Access the contained value.

Operations:

operator-> Access the contained value.

9.2.4.2 Provided interfaces

Core currently provides no interfaces to other Functional Clusters.

9.2.4.3 Required interfaces

Core currently requires no interfaces.

9.2.5 Operating System Interface

Name: Operating System Interface

Short Name: n/a

Category: Runtime

Daemon-based: No

Responsibilities: The Operating System Interface provides services for implementing multi-threaded
real-time embedded applications (Adaptive Applications) which make use of the POSIX
PSE51 profile. That profile provides support to create Threads that may be executed in parallel on
modern multi-core processors and to control their properties such as stack memory or their
scheduling. In addition, primitives for shared resource access are provided such as Semaphores or
memory locking. Asynchronous (real-time) signals and message passing enable inter-process
communication. High resolution timers and clocks are provided to control real-time behavior
precisely. Some input/output functions are provided as well but no file system APIs.

POSIX PSE51 and the Operating System Interface do not provide any means to execute
and control Processes. Processes (of the AUTOSAR Adaptive Platform) are entirely controlled
by Execution Management via interfaces that are implementation specific.

Note that a typical AUTOSAR Adaptive Platform stack will not provide an actual implementation of
the Operating System Interface because all functionality is already provided by standard
libraries of the programming language (e.g. Standard C++ Library).

67 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.2.5.1 Defined interfaces

«aapFunctionalCluster»
Operating System Interface

«aapAPI,aapNativeInterface»
OperatingSystemInterface

Adaptive Application

«use»

Figure 9.22: Interfaces defined by Operating System Interface

Name: OperatingSystemInterface

Technology: Native interface

Usage: Public API

Description: This interface represents the POSIX PSE51 profile, which is the API for Adaptive
Applications. This interface is not detailed in this document.

9.2.5.2 Provided interfaces

«aapFunctionalCluster»
Operating System Interface

«aapFunctionalCluster»
Communication Management

daemon-based

«aapAPI,aapNativeInterface»
OperatingSystemInterface

«use»

Figure 9.23: Users of the OperatingSystemInterface interfaces

Interface Requiring functional clusters

OperatingSystemInterface Communication Management

Table 9.8: Interfaces provided by Operating System Interface to other Functional Clus-
ters

68 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.2.5.3 Required interfaces

«aapFunctionalCluster»
Operating System Interface

Operating System

«aapInternal»
Single-Process POSIX API

«use»

Figure 9.24: Interfaces required by Operating System Interface

Interface Purpose

Single-Process POSIX API The Operating System Interface uses services of the POSIX
PSE51 profile, e.g. Threads.

Table 9.9: Interfaces required by Operating System Interface

9.3 Communication

«aapFunctionalCluster»
Communication Management

daemon-based

«aapFunctionalCluster»
Network Management

«aapFunctionalCluster»
Time Synchronization

daemon-based

«aapFunctionalCluster»
Raw Data Stream

«aapFunctionalCluster»
Automotive API Gateway

daemon-based

Figure 9.25: Functional Clusters in category Communication

9.3.1 Communication Management

Name: Communication Management

Short Name: com

Category: Communication

Daemon-based: Yes

Responsibilities: Communication Management is responsible for all levels of service-oriented communication
between applications in a distributed real-time embedded environment. That is, intra-process
communication, inter-process communication and inter-machine communication. The latter is also
possible with AUTOSAR Classic Platforms and third-party platforms. Communication paths can be
established at design-, start-up-, and run-time. Communication Management consists of a
generic part that handles brokering and configuration as well as generated skeletons for service
providers and respective proxies for service consumers.

69 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.3.1.1 Defined interfaces

The interfaces of Communication Management are categorized into interfaces for
SecOC (see Section 9.3.1.1.1), and interfaces freshness value management (see Sec-
tion 9.3.1.1.2). Please note that a implementation of Communication Management
will generate additional interfaces for each modeled Service Interface, e.g. a Proxy
and a Skeleton interface. However, these generated interfaces are currently not cov-
ered in this document.

9.3.1.1.1 Interfaces for SecOC

«aapFunctionalCluster»
Communication Management

daemon-based

«aapAraComServiceInterface,aapAPI»
VerificationStatusConfigurationByDataId

«aapAccessControlled, aapServiceMeth...
+ VerifyStatusOverride()

«aapAraComServiceInterface,aapA...
VerificationStatus

«aapAccessControlled, aapServiceE...
+ VerificationStatus

«aapAraComServiceInterface,aapAPI»
VerificationStatusConfigurationByFreshnessId

«aapAccessControlled, aapServiceMethod»
+ VerifyStatusOverride()

Adaptive Application

«aapProvidedPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«aapProvidedPort»

«use»
«aapRequiredPort»

«aapProvidedPort»

Figure 9.26: Interfaces for SecOC

Name: VerificationStatus
Technology: ara::com service interface

Usage: Public API

Description: This interface provides an event to informed about the verification status of messages.

Events: VerificationStatus This event is fired for each verification and holds the
verification status.

Name: VerificationStatusConfigurationByDataId

Technology: ara::com service interface

Usage: Public API

Description: This interface provides functionality to control the verification status of messages.

Operations: VerifyStatusOverride This service method provides the ability to force to
accept or to drop a message with or without performing
the verification of authenticator or independent of the
authenticator verification result, and to force a specific
result allowing additional fault handling in the
application.

70 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: VerificationStatusConfigurationByFreshnessId

Technology: ara::com service interface

Usage: Public API

Description: This interface provides functionality to control the verification status of messages.

Operations: VerifyStatusOverride This service method provides the ability to force to
accept or to drop a message with or without performing
the verification of authenticator or independent of the
authenticator verification result, and to force a specific
result allowing additional fault handling in the
application.

9.3.1.1.2 Interfaces for freshness value management

«aapFunctionalCluster»
Communication Management

daemon-based

«aapNativeInterface,aapPlatformExtension»
FVM

+ GetRxFreshness()
+ GetTxFreshness()
+ Initial ize()

«use»

Figure 9.27: Interfaces for freshness value management

Name: FVM
Technology: Native interface

Usage: Platform extension

Description: This interface provides functionality for freshness value management.

GetRxFreshness Obtain the current freshness value for received
messages.

GetTxFreshness Obtain the current freshness value for transmitted
messages.

Operations:

Initialize Initializes freshness value manager plugin
implementation.

9.3.1.2 Provided interfaces

Communication Management currently provides no interfaces to other Func-
tional Clusters.

71 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.3.1.3 Required interfaces

«aapFunctionalCluster»
Communication Management

daemon-based

«aapFunctionalClust...
Log and Trace

«aapAPI,aapNativeInterf...
Logger

+ IsEnabled()
+ Log(MsgId, Params)
+ LogDebug(): LogStream
+ LogError(): LogStream
+ LogFatal(): LogStream
+ LogInfo(): LogStream
+ LogVerbose(): LogStream
+ LogWarn(): LogStream
+ WithLevel(): LogStream

«aapInternal»
TCP/IP Stack

Operating System

«aapInternal,aapNativeInte...
ManifestAccessor

Registry«aapFunctionalClust...
Cryptography

daemon-based

«aapAPI,aapNativeInterf...
CryptoStack

«use» «use»«use» «use»

Figure 9.28: Interfaces required by Communication Management

Interface Purpose

ManifestAccessor Communication Management shall use this interface to read service
information from the Manifests.

TCP/IP Stack Communication Management shall use this interface to establish and
control TCP/IP-based network connections.

Communication Management::FVM Communication Management shall use this interface to get freshness
values.

Cryptography::CryptoStack This interface may be used e.g., to establish encrypted connections and
generate / verify checksums (MAC).

Intrusion Detection System Manager::Event
Reporter

Communication Management may use this interface to report security
events.

Log and Trace::Logger Communication Management shall use this interface to log
standardized messages.

Operating System Interface::OperatingSystem
Interface

Communication Management should use this interface to create and
control Threads used by the implementation.

Table 9.10: Interfaces required by Communication Management

9.3.2 Raw Data Stream

Name: Raw Data Stream

Short Name: rds

Category: Communication

Daemon-based: No

Responsibilities: Raw Data Stream is responsible for raw communication between applications in a distributed
real-time embedded environment.

72 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.3.2.1 Defined interfaces

9.3.2.1.1 Raw Data Streaming using IP based protocols (network layer)

«aapAPI,aapPortInterface»
RawDataStreamClient

+ Connect()
+ Create()
+ ReadData()
+ Shutdown()
+ WriteData()

«aapAPI,aapPortInterface»
RawDataStreamServer

+ Create()
+ ReadData()
+ Shutdown()
+ WaitForConnection()
+ WriteData()

Adaptive Application

«aapFunctionalCluster»
Raw Data Stream

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 9.29: Interfaces for raw data streams using IP based protocols

Name: RawDataStreamClient
Technology: Port interface

Generated: No

Meta-model
interface type:

RawDataStreamClientInterface

Usage: Public API

Description: This interface provides functionality for a client reading and writing binary data streams over a IP
network connection.

Connect Sets up a socket connection for the raw data stream
defined by the instance, and establish a connection to
the TCP server.

Create Constructs a new RawDataStreamClient.

ReadData Requests to read a number of bytes of data from the
socket connection for the raw data stream defined by
the instance.

Shutdown Closes the socket connection for the raw data stream
defined by the instance. Both, the receiving and the
sending part of the socket connection shall be shut
down.

Operations:

WriteData Requests to write of a number of bytes to the socket
connection for the raw data stream defined by the
instance.

Name: RawDataStreamServer
Technology: Port interface

Generated: No

Meta-model
interface type:

RawDataStreamServerInterface

Usage: Public API

Description: This interface provides functionality for a server reading and writing binary data streams over a IP
network connection.

5

73 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Create Constructs a new RawDataStreamServer.

ReadData Requests to read a number of bytes of data from the
socket connection for the raw data stream defined by
the instance.

Shutdown Closes the socket connection for the raw data stream
defined by the instance. Both the receiving and the
sending part of the socket connection shall be shut
down.

WaitForConnection Initializes the socket and prepare the
RawDataStreamServer instance for incoming
connections.

Operations:

WriteData Requests to write of a number of bytes to the socket
connection for the raw data stream defined by the
instance.

9.3.2.1.2 Raw Data Streaming using IEEE1722 protocol (data link layer)

«aapFunctionalCluster»
Raw Data Stream

«aapAPI,aapPortInterface»
IEEE1722RawDataStreamConsumer

+ Connect()
+ Create()
+ ReadData()
+ Shutdown()

«aapAPI,aapPortInterface»
IEEE1722RawDataStreamProducer

+ Connect()
+ Create()
+ Shutdown()
+ WriteData()

Adaptive Application

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 9.30: Interfaces for raw data streams using the IEEE1722 protocol

Name: IEEE1722RawDataStreamConsumer
Technology: Port interface

Generated: No

Meta-model
interface type:

IEEE1722RawDataStreamConsumerInterface

Usage: Public API

Description: Provides functionality to consume (read) data via an IEEE1722 stream from a network connection.

Connect Sets up a data link socket connection and establishes
internal connection.

Create Constructs a new
IEEE1722RawDataStreamConsumer.

ReadData Requests to read IEEE1722 datagrams from the stream.

Operations:

Shutdown Shuts down the data link socket connection.

74 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: IEEE1722RawDataStreamProducer
Technology: Port interface

Generated: No

Meta-model
interface type:

IEEE1722RawDataStreamProducerInterface

Usage: Public API

Description: Provides functionality to produce (write) data via an IEEE1722 stream to a network connection.

Connect Sets up a data link socket connection and establishes
internal connection.

Create Constructs a new
IEEE1722RawDataStreamProducer.

Shutdown Shuts down the data link socket connection.

Operations:

WriteData Requests to write IEEE1722 datagrams to the stream.

9.3.2.2 Provided interfaces

Raw Data Stream currently provides no interfaces to other Functional Clus-
ters.

9.3.2.3 Required interfaces

«aapFunctionalClust...
Log and Trace

«aapAPI,aapNativeInterf...
Logger

+ IsEnabled(): bool
+ Log(MsgId, Params)
+ LogDebug(): LogStream
+ LogError(): LogStream
+ LogFatal(): LogStream
+ LogInfo(): LogStream
+ LogVerbose(): LogStream
+ LogWarn(): LogStream
+ WithLevel(): LogStream

«aapFunctionalClust...
Cryptography

daemon-based

«aapAPI,aapNativeInterf...
CryptoStack

«aapFunctionalCluster»
Raw Data Stream

«aapAPI,aapPortInterface»
SynchronizedTimeBaseConsumer

+ GetRateDeviation()
+ GetTimeWithStatus(): SynchronizedTimeBaseStatus
+ RegisterStatusChangeNotifier()
+ RegisterSynchronizationStateChangeNotifier()
+ RegisterTimeLeapNotifier()
+ RegisterTimePrecisionMeasurementNotifier()
+ RegisterTimeValidationNotification()
+ UnregisterStatusChangeNotifier()
+ UnregisterSynchronizationStateChangeNotifier()
+ UnregisterTimeLeapNotifier()
+ UnregisterTimePrecisionMeasurementNotifier()
+ UnregisterTimeValidationNotification()

«aapFunctionalCluster»
Time Synchronization

daemon-based

«use» «use» «use»

Figure 9.31: Interfaces required by Raw Data Stream

75 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

«aapInternal»
TCP/IP Stack

Operating System

«aapInternal,aapNativeInte...
ManifestAccessor

Registry

«aapFunctionalCluster»
Raw Data Stream

«use» «use»

Figure 9.32: Internal interfaces required by Raw Data Stream

Interface Purpose

ManifestAccessor Raw Data Stream uses this interface to read information from the
Manifest.

TCP/IP Stack Raw Data Stream uses this interface to establish and control TCP/
IP-based network connections and to establish data link layer socket
connections.

Cryptography::CryptoStack This interface may be used to establish encrypted connections.

Log and Trace::Logger Raw Data Stream uses this interface to log standardized messages.

Time Synchronization::SynchronizedTimeBase
Consumer

This interface is used to determine the current synchronized global time
for IEEE1722-based communication.

Table 9.11: Interfaces required by Raw Data Stream

9.3.3 Network Management

Name: Network Management

Short Name: nm

Category: Communication

Daemon-based: No

Responsibilities: Network Management provides functionality to request and query the network states for logical
network handles, Such network handles can be mapped to physical or partial networks.

76 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.3.3.1 Defined interfaces

«aapFunctionalCluster»
State Management

daemon-based

«aapAPI,aapPortInterface»
NetworkHandle

+ GetNetworkRequestedState()
+ GetNetworkState()
+ RegisterNetworkRequestedStateChangeNotifier()
+ RegisterNetworkStateChangeNotifier()
+ SetNetworkRequestedState()
+ UnregisterNetworkRequestedStateChangeNotifier()
+ UnregisterNetworkStateChangeNotifier()

«aapFunctionalCluster»
Network Management

«use»
«aapRequiredPort»

Figure 9.33: Interfaces for time base providers

Name: NetworkHandle
Technology: Port interface

Generated: No

Meta-model
interface type:

NetworkManagementPortInterface

Usage: Public API

Description: This interface provides information about network status of a NetworkHandle. This interface is
intended to be used by State Management only.

GetNetworkRequestedState Obtain the current network requested state, i.e. if the
PNC / VLAN / Physical Network is currently requested
or released.

GetNetworkState Obtain the current network state, i.e. if the PNC / VLAN /
Physical Network is currently active or not.

RegisterNetworkRequestedState
ChangeNotifier

Register a notifier function which is called if the current
network requested state is changed (i.e. changed into
FullCom or into NoCom). A maximum of one notifier can
be registered. Every further registration overwrites the
current registration.

RegisterNetworkStateChangeNotifier Register a notifier function which is called if the current
network state is changed (i.e. changed into FullCom or
into NoCom).

SetNetworkRequestedState Set a new network requested state. Setting a new
network requested state will request or release the PNC
/ VLAN / Physical Network.

UnregisterNetworkRequestedState
ChangeNotifier

Unregister a notifier function which is called if a current
network requested state is changed.

Operations:

UnregisterNetworkStateChangeNotifier Unregister a notifier function which is called if a current
network state is changed.

77 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.3.3.2 Provided interfaces

«aapFunctionalCluster»
State Management

daemon-based

«aapAPI,aapPortInterface»
NetworkHandle

+ GetNetworkRequestedState()
+ GetNetworkState()
+ RegisterNetworkRequestedStateChangeNotifier()
+ RegisterNetworkStateChangeNotifier()
+ SetNetworkRequestedState()
+ UnregisterNetworkRequestedStateChangeNotifier()
+ UnregisterNetworkStateChangeNotifier()

«aapFunctionalCluster»
Network Management

«use»
«aapRequiredPort»

Figure 9.34: Users of Network Management interfaces

Interface Requiring functional clusters

NetworkHandle State Management

Table 9.12: Interfaces provided by Network Management to other Functional Clusters

9.3.3.3 Required interfaces

«aapFunctionalCluster»
Network Management

«aapInternal»
TCP/IP Stack

«aapAPI,aapNativeInterface»
Log and Trace::Logger

+ IsEnabled()
+ Log(MsgId, Params)
+ LogDebug(): LogStream
+ LogError(): LogStream
+ LogFatal(): LogStream
+ LogInfo(): LogStream
+ LogVerbose(): LogStream
+ LogWarn(): LogStream
+ WithLevel(): LogStream

«aapFunctionalCluster»
Log and Trace

Operating System

«use» «use»

Figure 9.35: Interfaces required by Network Management

78 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Interface Purpose

ManifestAccessor Network Management shall use this interface to read information about
NmNetworkHandles from the Manifests.

TCP/IP Stack Network Management should use this interface to set and to determine
the status of IP-based networks.

Log and Trace::Logger Network Management shall use this interface to log standardized
messages.

Table 9.13: Interfaces required by Network Management

9.3.4 Time Synchronization

Name: Time Synchronization

Short Name: tsync

Category: Communication

Daemon-based: Yes

Responsibilities: Time Synchronization provides synchronized time information in distributed applications.
Synchronized time information between different applications and/or Machines is of paramount
importance when the correlation of different events across a distributed system is needed, either to
be able to track such events in time or to trigger them at an accurate point in time.

9.3.4.1 Defined interfaces

The interfaces of Time Synchronization are categorized into interfaces for provid-
ing time information (see Section 9.3.4.1.1), interfaces for consuming time information
(see Section 9.3.4.1.2), and interfaces for freshness value management (see Section
9.3.4.1.3).

9.3.4.1.1 Interfaces for time base providers

Time Synchronization defines the SynchronizedTimeBaseProvider inter-
face to provide time information for a synchronized time base.

79 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

«aapFunctionalCluster»
Time Synchronization

daemon-based

«aapAPI,aapPortInterface»
SynchronizedTimeBaseProvider

+ GetCurrentTime()
+ GetRateCorrection()
+ GetUserData()
+ RegisterTimeValidationNotification()
+ SetRateCorrection()
+ SetTime()
+ SetUserData()
+ UnregisterTimeValidationNotification()
+ UpdateTime()

Adaptive Application

«use»
«aapProvidedPort»

Figure 9.36: Interface for time base providers

Name: SynchronizedTimeBaseProvider

Technology: Port interface

Generated: No

Meta-model
interface type:

SynchronizedTimeBaseProviderInterface

Usage: Public API

Description: Provides access to a synchronized time base. It allows to get the current time point, the rate
deviation, the current status and the received user data.

GetCurrentTime Obtain the current time (regardless of the current sync
status).

GetRateCorrection Obtain the current rate deviation of the clock.

GetUserData Get the user defined data of the time base.

RegisterTimeValidationNotification Used by time provider applications to receive time sync
parameters. A maximum of one notifier can be
registered. Every further registration overwrites the
current registration.

SetRateCorrection Set the rate correction that will be applied to time values.

SetTime Set a new time value for the clock. Setting a new time
also triggers transmission on the bus.

SetUserData Set the user data of the time base.

UnregisterTimeValidationNotification Used by time provider applications to receive time sync
parameters.

Operations:

UpdateTime Set a new time value for the clock. The clock value is
only updated locally, transmission on the bus will
happen in the next cycle.

9.3.4.1.2 Interfaces for time base consumers

Time Synchronization defines the SynchronizedTimeBaseConsumer inter-
face to retrieve time information for a synchronized time base. SynchronizedTime-
BaseStatus is used to determine the status of a synchronized time base.

80 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

«aapFunctionalCluster»
Time Synchronizationdaemon-based

«aapAPI,aapPortInterface»
SynchronizedTimeBaseConsumer

+ GetRateDeviation()
+ GetTimeWithStatus(): SynchronizedTimeBaseStatus
+ RegisterStatusChangeNotifier()
+ RegisterSynchronizationStateChangeNotifier()
+ RegisterTimeLeapNotifier()
+ RegisterTimePrecisionMeasurementNotifier()
+ RegisterTimeValidationNotification()
+ UnregisterStatusChangeNotifier()
+ UnregisterSynchronizationStateChangeNotifier()
+ UnregisterTimeLeapNotifier()
+ UnregisterTimePrecisionMeasurementNotifier()
+ UnregisterTimeValidationNotification()

Adaptive Application

«aapAPI,aapNativeInterface»
SynchronizedTimeBaseStatus

+ GetCreationLocalTime()
+ GetCreationTime()
+ GetLeapJump()
+ GetSynchronizationStatus()
+ GetUserData()

«use»
«aapRequiredPort» «use»

Figure 9.37: Interfaces for time base consumers

Name: SynchronizedTimeBaseConsumer

Technology: Port interface

Generated: No

Meta-model
interface type:

SynchronizedTimeBaseConsumerInterface

Usage: Public API

Description: Provides access to the synchronized time base. It allows to get the current time point, the rate
deviation, the current status and the received user data.

GetRateDeviation Obtain the current rate deviation of the clock.

GetTimeWithStatus Obtain a snapshot of the current state of the clock. This
includes status flags, clock configuration and the actual
time value (local and synchronized) of the created status
object.

RegisterStatusChangeNotifier Register a notifier function which is called if a status flag
is changed (i.e. synchronization state, time leap or
userdata). A maximum of one notifier can be registered.
Every further registration overwrites the current
registration.

RegisterSynchronizationStateChange
Notifier

Register a notifier function which is called if a
synchronization state is changed. A maximum of one
notifier can be registered. Every further registration
overwrites the current registration.

RegisterTimeLeapNotifier Register a notifier function which is called if a time leap
happened. A maximum of one notifier can be registered.
Every further registration overwrites the current
registration.

Operations:

RegisterTimePrecisionMeasurement
Notifier

Register a notifier function which is called if a new time
precision snapshot is available. A maximum of one
notifier can be registered. Every further registration
overwrites the current registration. Time
Synchronization will not do any queuing. If needed
it has to be done within the notifier.

5

81 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
RegisterTimeValidationNotification Used by time consumer applications to receive time

sync parameters. A maximum of one notifier can be
registered. Every further registration overwrites the
current registration.

UnregisterStatusChangeNotifier Un-register a notifier function which is called if a status
flag is changed (i.e. synchronization state, time leap or
userdata).

UnregisterSynchronizationStateChange
Notifier

Un-register a notifier function which is called if a
synchronization state is changed.

UnregisterTimeLeapNotifier Un-register a notifier function which is called if a time
leap happened.

UnregisterTimePrecisionMeasurement
Notifier

Un-register a notifier function which is called if a new
time precision snapshot is available.

UnregisterTimeValidationNotification Un-register a notifier function for receiving time sync
parameters.

Name: SynchronizedTimeBaseStatus

Technology: Native interface

Usage: Public API

Description: Represents a snapshot of the current state of the clock (status flags, clock configuration, and the
actual time value (local and synchronized)).

GetCreationLocalTime Get the local time when this object was created.

GetCreationTime Get the creation time of this object.

GetLeapJump Determine the direction of a leap jump. Only the jump
until the previous object creation is included.

GetSynchronizationStatus Returns the synchronization state when the object was
created.

Operations:

GetUserData Returns the user defined data of the time base.

9.3.4.1.3 Interfaces for freshness value management

«aapFunctionalCluster»
Time Synchronization

daemon-based

«aapNativeInterface,aapPlatformExtension»
FVM

+ GetRxFreshness()
+ GetTxFreshness()
+ Initial ize()

«use»

Figure 9.38: Interfaces for freshness value management

Name: FVM
Technology: Native interface

Usage: Platform extension

5

82 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Description: This interface provides functionality for freshness value management.

GetRxFreshness Obtain the current freshness value for received
messages.

GetTxFreshness Obtain the current freshness value for transmitted
messages.

Operations:

Initialize Initializes the freshness value plugin manager.

9.3.4.2 Provided interfaces

«aapFunctionalCluster»
Time Synchronization

daemon-based

«aapFunctionalCluster»
Persistency

«aapFunctionalCluster»
Log and Trace

«aapAPI,aapPortInterface»
SynchronizedTimeBaseConsumer

+ GetRateDeviation()
+ GetTimeWithStatus(): SynchronizedTimeBaseStatus
+ RegisterStatusChangeNotifier()
+ RegisterSynchronizationStateChangeNotifier()
+ RegisterTimeLeapNotifier()
+ RegisterTimePrecisionMeasurementNotifier()
+ RegisterTimeValidationNotification()
+ UnregisterStatusChangeNotifier()
+ UnregisterSynchronizationStateChangeNotifier()
+ UnregisterTimeLeapNotifier()
+ UnregisterTimePrecisionMeasurementNotifier()
+ UnregisterTimeValidationNotification()

«aapFunctionalCluster»
Intrusion Detection System Manager

daemon-based

«aapFunctionalCluster»
Update and Configuration

Management
daemon-based

«aapFunctionalCluster»
Vehicle Update and Configuration

Management
daemon-based

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 9.39: Users of Time Synchronization interfaces

Interface Requiring functional clusters

Intrusion Detection System Manager

Log and Trace

Raw Data Stream

Update and Configuration Management

SynchronizedTimeBaseConsumer

Vehicle Update and Configuration Management

Table 9.14: Interfaces provided by Time Synchronization to other Functional Clusters

83 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.3.4.3 Required interfaces

Operating
System

«aapInternal»
Raw Socket API

«aapFunctionalCluster»
Time Synchronizationdaemon-based

«aapAPI,aapNativeInterf...
Logger

+ IsEnabled(): bool
+ Log(MsgId, Params)
+ LogDebug(): LogStream
+ LogError(): LogStream
+ LogFatal(): LogStream
+ LogInfo(): LogStream
+ LogVerbose(): LogStream
+ LogWarn(): LogStream
+ WithLevel(): LogStream

«aapAPI,aapPortInterface»
KeyValueStorage

+ DiscardPendingChanges()
+ GetAllKeys()
+ GetCurrentValueSize()
+ GetValue()
+ KeyExists()
+ RecoverKey()
+ RemoveAllKeys()
+ RemoveKey()
+ ResetKey()
+ SetValue()
+ SyncToStorage()

«aapFunctionalClust...
Persistency

«aapFunctionalClust...
Log and Trace

«aapAPI,aapNativeInterf...
CryptoStack

«aapFunctionalClust...
Cryptography

daemon-based

«use»
«use»

«aapRequiredPort»
«use»«use»

Figure 9.40: Interfaces required by Time Synchronization

Interface Purpose

ManifestAccessor Time Synchronization shall use this interface to read information
about TimeBaseResources as well as their providers and consumers
from the Manifests.

Raw Socket API Time Synchronization should use this interface to send and receive
raw ethernet packets as required by the time synchronization protocol.

Cryptography::CryptoStack Time Synchronization shall use this interface to generate / verify
checksums (MAC).

Execution Management::ExecutionClient Time Synchronization shall use this interface to report the state of
its daemon process.

Log and Trace::Logger Time Synchronization shall use this interface to log standardized
messages.

Persistency::KeyValueStorage Used to store the last received timestamp to enable a faster startup.

Platform Health Management::SupervisedEntity Time Synchronization should use this interface to enable
supervision of its daemon process by Platform Health Management

Time Synchronization::FVM Time Synchronization shall use this interface for freshness value
management.

Table 9.15: Interfaces required by Time Synchronization

9.3.5 Automotive API Gateway

Name: Automotive API Gateway

Short Name: aag

Category: Communication

Daemon-based: Yes
5

84 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Responsibilities: The Automotive API Gateway is responsible for communication with the external world

providing capabilities to get/set/subscribe to in-vehicle data using Vehicle Signal
Specification and VISS as a communication protocol.

9.3.5.1 Defined interfaces

The Automotive API Gateway currently defines no interfaces.

9.3.5.2 Provided interfaces

Automotive API Gateway currently provides no interfaces to other Functional
Clusters.

9.3.5.3 Required interfaces

«aapFunctionalCluster»
Automotive API Gateway

daemon-based

«aapAPI,aapNativeInterface»
Logger

+ IsEnabled(): bool
+ Log(MsgId, Params)
+ LogDebug(): LogStream
+ LogError(): LogStream
+ LogFatal(): LogStream
+ LogInfo(): LogStream
+ LogVerbose(): LogStream
+ LogWarn(): LogStream
+ WithLevel(): LogStream

«aapFunctionalCluster»
Log and Trace

«aapInternal»
TCP/IP Stack

Operating
System

«use» «use»

Figure 9.41: Interfaces required by the Automotive API Gateway

Interface Purpose

TCP/IP Stack The Automotive API Gateway shall use this interface to establish
and control TCP/IP-based network connections.

Log and Trace::Logger The Automotive API Gateway shall use this interface to log
messages.

Table 9.16: Interfaces required by Automotive API Gateway

85 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.4 Storage

«aapFunctionalCluster»
Persistency

Figure 9.42: Functional Clusters in category Storage

9.4.1 Persistency

Name: Persistency

Short Name: per

Category: Storage

Daemon-based: No

Responsibilities: Persistency provides functionality to store and retrieve information to/from non-volatile storage
of a Machine.

Persistent data is always private to one Process and is persisted across boot and ignition cycles.
There is no mechanism available to share data between different Processes using Persistency
to prevent a second path of data exchange besides Communication Management. However,
Persistency supports concurrent access from multiple threads of the same application running in
the context of the same Process.

Persistency offers integrity of the stored data and provides error detection and correction
schemes. Persistency also offers confidentiality of the stored data using encryption.

Persistency supports updating of its storages using pre-defined values, or deleting files or keys
during an update.

Persistency provides statistics, for example, the used storage space.

9.4.1.1 Defined interfaces

The interfaces of Persistency are categorized into interfaces for file access (see
Section 9.4.1.1.1), interfaces for a key-value-based data access (see Section 9.4.1.1.2)
and interfaces for general management of persistent data (see Section 9.4.1.1.3).

9.4.1.1.1 Interfaces for file storage

Persistency provides read and write access to plain files by means of a FileStor-
age (cf. Figure 9.43). A FileStorage has to be opened using OpenFileStorage
(). A FileStorage then provides access to several files using their name.

86 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

«aapFunctionalCluster»
Persistency

«aapAPI,aapPortInterface»
FileStorage

+ DeleteFile()
+ FileExists()
+ GetAllFileNames()
+ GetCurrentFileSize()
+ GetFileInfo()
+ OpenFileReadOnly(): ReadAccessor
+ OpenFileReadWrite(): ReadWriteAccessor
+ OpenFileWriteOnly(): ReadWriteAccessor
+ RecoverFile()
+ ResetFile()

«aapAPI,aapNativeInterface»
ReadAccessor

+ GetByte()
+ GetChar()
+ GetPosition()
+ GetSize()
+ IsEof()
+ MovePosition()
+ PeekByte()
+ PeekChar()
+ ReadBinary()
+ ReadLine()
+ ReadText()
+ SetPosition()

«aapAPI,aapNativeInterface»
ReadWriteAccessor

+ operator<<()
+ SetFileSize()
+ SyncToFile()
+ WriteBinary()
+ WriteText()

«aapAPI,aapNativeInterface»

+ GetCurrentFileStorageSize()
+ OpenFileStorage(): FileStorage
+ RecoverAllFiles()
+ ResetAllFi les()

Adaptive Application

«use»«use»«use» «use»

Figure 9.43: Interfaces for file storage

Name: FileStorageOperations

Technology: Native interface

Usage: Public API

Description: This interface provides functions to open and manage FileStorages.

GetCurrentFileStorageSize Returns the space in bytes currently occupied by a
FileStorage.

OpenFileStorage Opens a FileStorage.

RecoverAllFiles Recovers a FileStorage including all files.

Operations:

ResetAllFiles Resets a FileStorage including all files.

Name: FileStorage

Technology: Port interface

Generated: No

Meta-model
interface type:

PersistencyFileStorageInterface

Usage: Public API

Description: This interface provides functions to open and manage files.

DeleteFile Deletes a file from this FileStorage.

FileExists Checks if a file exists in this FileStorage.

GetAllFileNames Returns a list of all currently available files of this
FileStorage.

GetCurrentFileSize Returns the space in bytes currently occupied by the
content of a file of this FileStorage.

GetFileInfo Returns additional information on a file of this
FileStorage.

OpenFileReadOnly Opens a file of this FileStorage for reading.

OpenFileReadWrite Opens a file of this FileStorage for reading and
writing.

Operations:

OpenFileWriteOnly Opens a file of this FileStorage for writing.

5

87 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
RecoverFile Recovers a file of this FileStorage.

ResetFile Resets a file of this FileStorage to its initial content.

Name: ReadAccessor
Technology: Native interface

Usage: Public API

Description: This interface provides functions to read text and binary data from a file.

GetByte Returns the byte at the current position of the file,
advancing the current position.

GetChar Returns the character at the current position of the file,
advancing the current position.

GetPosition Returns the current position relative to the beginning of
the file.

GetSize Returns the current size of a file in bytes.

IsEof Checks if the current position is at end of file.

MovePosition Moves the current position in the file relative to the
origin.

PeekByte Returns the byte at the current position of the file.

PeekChar Returns the character at the current position of the file.

ReadBinary Reads all remaining bytes into a Vector of Byte, starting
from the current position.

ReadLine Reads a complete line of characters into a String,
advancing the current position accordingly.

ReadText Reads all remaining characters into a String, starting
from the current position.

Operations:

SetPosition Sets the current position relative to the beginning of the
file.

Name: ReadWriteAccessor
Technology: Native interface

Usage: Public API

Description: This interface provides functions to read and write text and binary data from / to a file.

SetFileSize Reduces the size of the file to ’size’, effectively removing
the current content of the file beyond this size.

SyncToFile Triggers flushing of the current file content to the
physical storage.

WriteBinary Writes binary data to the file.

WriteText Writes a string to the file.

Operations:

operator<< Writes a String to the file.

9.4.1.1.2 Interfaces for key-value storage

Persistency provides read and write access to data structured as key-value pairs
by means of the KeyValueStorage API (cf. Figure 9.44). A KeyValueStorage has

88 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

to be created by calling OpenKeyValueStorage(). A KeyValueStorage then pro-
vides access to data stored for individual keys using the GetValue() and SetValue
() operations.

«aapFunctionalCluster»
Persistency

«aapAPI,aapPortInterface»
KeyValueStorage

+ DiscardPendingChanges()
+ GetAllKeys()
+ GetCurrentValueSize()
+ GetValue()
+ KeyExists()
+ RecoverKey()
+ RemoveAllKeys()
+ RemoveKey()
+ ResetKey()
+ SetValue()
+ SyncToStorage()

«aapAPI,aapNativeInterface»

+ GetCurrentKeyValueStorageSize()
+ OpenKeyValueStorage(): KeyValueStorage
+ RecoverKeyValueStorage()
+ ResetKeyValueStorage()

Adaptive Application

«use» «use»

Figure 9.44: Interfaces for key-value-based data storage

Name: KeyValueStorageOperations

Technology: Native interface

Usage: Public API

Description: This interface provides functions to open and manage KeyValueStorages.

GetCurrentKeyValueStorageSize Returns the space in bytes currently occupied by a
KeyValueStorage.

OpenKeyValueStorage Opens a KeyValueStorage.

RecoverKeyValueStorage Recovers a KeyValueStorage.

Operations:

ResetKeyValueStorage Resets a KeyValueStorage to the initial state.

Name: KeyValueStorage

Technology: Port interface

Generated: No

Meta-model
interface type:

PersistencyKeyValueStorageInterface

Usage: Public API

Description: This interface provides functions to access values associated with keys.

DiscardPendingChanges Discards changed key-value pairs of the
KeyValueStorage an re-reads them from the physical
storage.

GetAllKeys Returns a list of all currently available keys of this
KeyValueStorage.

Operations:

GetCurrentValueSize Returns the size (in bytes) of the value assigned to a
key of this KeyValueStorage.

5

89 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
GetValue Returns the value assigned to a key of this

KeyValueStorage.

KeyExists Checks if a key exists in this KeyValueStorage.

RecoverKey Recovers a single key of this KeyValueStorage.

RemoveAllKeys Removes all keys and associated values from this
KeyValueStorage.

RemoveKey Removes a key and the associated value from this
KeyValueStorage.

ResetKey Resets a key of this KeyValueStorage to its initial
value.

SetValue Stores a key in this KeyValueStorage.

SyncToStorage Triggers flushing of changed key-value pairs of the
KeyValueStorage to the physical storage.

9.4.1.1.3 Interfaces for general persistency handling

Persistency provides operations for handling and recovery of persistent data of a
Process (cf. Figure 9.45).

«aapFunctionalCluster»
Persistency

«aapAPI,aapNativeInterface»

+ RegisterRecoveryReportCallback()

Adaptive Application

«use»

Figure 9.45: Interfaces for general persistency handling

Name: PersistencyHandlingOperations

Technology: Native interface

Usage: Public API

Description: This interface provides operations to manage persistent data.

Operations: RegisterRecoveryReportCallback Register a recovery reporting callback with
Persistency.

90 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.4.1.1.4 Installation and Update of Persistent Data

Persistency provides functionality to manage (install/update or reset to the initial
state) KeyValueStorages and FileStorages during the installation/update pro-
cess of applications and to cleanup any unused backup data afterwards (cf. Figure
9.46).

«aapFunctionalCluster»
Persistency

Adaptive Application

«aapAPI,aapNativeInterface»

+ CleanUpPersistency()
+ RegisterApplicationDataUpdateCallback()
+ ResetPersistency()
+ UpdatePersistency()

«use»

Figure 9.46: Interfaces for installation and update of persistent data

Name: InstallationAndUpdateOperations

Technology: Native interface

Usage: Public API

Description: This interface provides functions to manage KeyValueStorages and FileStorages during the
installation/update process of applications.

CleanUpPersistency Removes backup data and other unused data of all
KeyValueStorages and FileStorages.

RegisterApplicationDataUpdate
Callback

Registers an application data update callback with
Persistency.

ResetPersistency Resets all FileStorages and KeyValueStorages by
entirely removing their content.

Operations:

UpdatePersistency Updates all FileStorages and KeyValueStorages
after a new manifest was installed.

91 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.4.1.2 Provided interfaces

«aapFunctionalCluster»
Persistency

«aapFunctionalClust...
Diagnostic Management

daemon-based

«aapAPI,aapPortInterface»
FileStorage

+ DeleteFile()
+ FileExists()
+ GetAllFileNames()
+ GetCurrentFileSize()
+ GetFileInfo()
+ OpenFileReadOnly(): ReadAccessor
+ OpenFileReadWrite(): ReadWriteAccessor
+ OpenFileWriteOnly(): ReadWriteAccessor
+ RecoverFile()
+ ResetFile()

«aapFunctionalCluster»
Update and Configuration

Management
daemon-based

«aapFunctionalCluster»
Vehicle Update and

Configuration Management
daemon-based

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 9.47: Users of the FileStorage interface

«aapFunctionalCluster»
Persistency

«aapFunctionalCluster»
Time Synchronization

daemon-based

«aapFunctionalCluster»
Diagnostic Management

daemon-based

«aapFunctionalCluster»
State Management

daemon-based

«aapAPI,aapPortInterface»
KeyValueStorage

+ DiscardPendingChanges()
+ GetAllKeys()
+ GetCurrentValueSize()
+ GetValue()
+ KeyExists()
+ RecoverKey()
+ RemoveAllKeys()
+ RemoveKey()
+ ResetKey()
+ SetValue()
+ SyncToStorage()

«aapFunctionalCluster»
Update and Configuration

Management

daemon-based

«aapFunctionalCluster»
Vehicle Update and

Configuration Management

daemon-based

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 9.48: Users of the KeyValueStorage interface

Interface Requiring functional clusters

Diagnostic Management

Update and Configuration Management

FileStorage

Vehicle Update and Configuration Management

KeyValueStorage Diagnostic Management

5

92 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Interface Requiring functional clusters

State Management

Time Synchronization

Update and Configuration Management

Vehicle Update and Configuration Management

Table 9.17: Interfaces provided by Persistency to other Functional Clusters

9.4.1.3 Required interfaces

«aapFunctionalCluster»
Persistency

«aapAPI,aapNativeInterf...
CryptoStack

«aapFunctionalClust...
Cryptography

daemon-based

«aapAPI,aapNativeInterf...
Logger

+ IsEnabled(): bool
+ Log(MsgId, Params)
+ LogDebug(): LogStream
+ LogError(): LogStream
+ LogFatal(): LogStream
+ LogInfo(): LogStream
+ LogVerbose(): LogStream
+ LogWarn(): LogStream
+ WithLevel(): LogStream

«aapFunctionalClust...
Log and Trace

«aapInternal,aapNativ...
ManifestAccessor

Registry

«aapInternal»
Non-volatile Storage

Operating System

«use»«use»«use» «use»

Figure 9.49: Interfaces required by Persistency

Interface Purpose

ManifestAccessor Used to read configuration information from the Manifests.

Non-volatile Storage Used to access non-volatile storage provided by the underlying operating
system, for example, a file system.

Cryptography::CryptoStack Used to ensure confidentiality and integrity of the persisted data.

Log and Trace::Logger Used to provide information about errors and internal states and actions
of Persistency.

Table 9.18: Interfaces required by Persistency

9.5 Security

«aapFunctionalCluster»
Intrusion Detection System

Manager

daemon-based

«aapFunctionalCluster»
Cryptography

daemon-based

«aapFunctionalCluster»
Firewall

daemon-based

Figure 9.50: Functional Clusters in category Security

93 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.5.1 Cryptography

Name: Cryptography

Short Name: crypto

Category: Security

Daemon-based: Yes

Responsibilities: Cryptography provides various cryptographic routines to ensure confidentiality of data, to ensure
integrity of data (e.g., using hashes), and auxiliary functions for example key management and
random number generation. Cryptography is designed to support encapsulation of
security-sensitive operations and decisions in a separate component, such as a Hardware Security
Module (HSM). Additional protection of keys and key usage can be provided by constraining keys to
particular usages (e.g., decrypt-only), or limiting the availability of keys to individual applications.

Depending on application support, Cryptography can also be used to protect session keys and
intermediate secrets when processing cryptographic protocols such as TLS and SecOC.

9.5.1.1 Defined interfaces

9.5.1.1.1 Common interfaces

The main entry point for using the Cryptography API are the factory functions Load-
CryptoProvider() for using cryptographic routines, LoadKeyStorageProvider
() for access to the key store, and LoadX509Provider() for X.509 certificate han-
dling.

«aapAPI,aapNativeInterface»

+ GenerateRandomData()
+ GetSecureCounter()
+ LoadCryptoProvider()
+ LoadKeyStorageProvider()
+ LoadX509Provider()

«aapFunctionalCluster»
Cryptography

daemon-based

«aapAPI,aapNativeInt...
IOInterface

+ GetAllowedUsage()
+ GetCapacity()
+ GetCryptoObjectType()
+ GetObjectId()
+ GetPayloadSize()
+ GetPrimitiveId()
+ GetTypeRestriction()
+ IsObjectExportable()
+ IsObjectSession()
+ IsValid()
+ IsVolatile()
+ IsWritable()

«aapAPI,aapNativeInt...
Serial izable

+ ExportPublicly()

«aapAPI,aapNativeInt...
Volati leTrustedContainer

+ GetIOInterface()

Adaptive Application

«use» «use»«use» «use»

Figure 9.51: Common Interfaces of Cryptography

94 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: EntryPoint

Technology: Native interface

Usage: Public API

Description: This interface provides the main entry points for using the Cryptography API.

GenerateRandomData Generate random data of the requested size.

GetSecureCounter Get current value of 128 bit SecureCounter supported
by the Crypto Stack.

LoadCryptoProvider Factory that creates or returns existing single instance
of a specific CryptoProvider.

LoadKeyStorageProvider Factory that creates or returns an existing single
instance of the KeyStorageProvider.

Operations:

LoadX509Provider Factory that creates or returns an existing single
instance of the X509Provider.

Name: IOInterface
Technology: Native interface

Usage: Public API

Description: Interface for saving and loading of security objects.

GetAllowedUsage Return actual allowed key/seed usage flags defined by
the key slot prototype for this "Actor" and current content
of the container.

GetCapacity Return capacity of the underlying resource.

GetCryptoObjectType Return the type of the object referenced by this
IOInterface.

GetObjectId Return an ID of an object stored to this IOInterface.

GetPayloadSize Return size of an object payload stored in the underlying
buffer.

GetPrimitiveId Get vendor specific ID of the primitive.

GetTypeRestriction Return content type restriction.

IsObjectExportable Return the exportable attribute of an object stored to
the container.

IsObjectSession Return the session (or temporary) attribute of an
object as set.

IsValid Get whether the underlying KeySlot is valid.

IsVolatile Return volatility of the underlying buffer.

Operations:

IsWritable Get whether the underlying KeySlot is writable.

Name: Serializable
Technology: Native interface

Usage: Public API

Description: Serializable object interface.

Operations: ExportPublicly Serialize itself publicly.

Name: VolatileTrustedContainer
Technology: Native interface

Usage: Public API

5

95 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Description: This interface is used for buffering Cryptography API objects in RAM.

Operations: GetIOInterface Retrieve the IOInterface used for importing/
exporting objects into this container.

9.5.1.1.2 General cryptography interfaces

The CryptoProvider interface provides access to various cryptographic routines.
Each of those routines is managed by specializations of the CryptoContext inter-
face.

«aapFunctionalCluster»
Cryptography

daemon-based

«aapAPI,aapNativeInterface»
CryptoContext

+ GetCryptoPrimitiveId()
+ IsInitial ized()
+ MyProvider()

«aapAPI,aapNativeInterface»
CryptoProvider

+ AllocVolati leContainer()
+ ConvertToAlgId()
+ ConvertToAlgName()
+ CreateAuthCipherCtx()
+ CreateDecryptorPrivateCtx()
+ CreateEncryptorPublicCtx()
+ CreateHashDigest()
+ CreateHashFunctionCtx()
+ CreateKeyAgreementPrivateCtx()
+ CreateKeyDecapsulatorPrivateCtx()
+ CreateKeyDerivationFunctionCtx()
+ CreateKeyEncapsulatorPublicCtx()
+ CreateMessageAuthCodeCtx()
+ CreateMsgRecoveryPublicCtx()
+ CreateRandomGeneratorCtx()
+ CreateSigEncodePrivateCtx()
+ CreateSignature()
+ CreateSignerPrivateCtx()
+ CreateStreamCipherCtx()
+ CreateSymmetricBlockCipherCtx()
+ CreateSymmetricKeyWrapperCtx()
+ CreateVerifierPublicCtx()
+ ExportPublicObject()
+ ExportSecuredObject()
+ GeneratePrivateKey()
+ GenerateSeed()
+ GenerateSymmetricKey()
+ GetPayloadStorageSize()
+ GetSerial izedSize()
+ ImportPublicObject()
+ ImportSecuredObject()
+ LoadObject()
+ LoadPrivateKey()
+ LoadPublicKey()
+ LoadSecretSeed()
+ LoadSymmetricKey()

Adaptive Application

«use» «use»

Figure 9.52: General Cryptography Interfaces

96 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: CryptoProvider

Technology: Native interface

Usage: Public API

Description: This is a "factory" interface of all supported crypto primitives and a "trusted environment" for internal
communications between them.

AllocVolatileContainer Allocate a VolatileTrustedContainer according to
directly specified capacity.

ConvertToAlgId Convert a common name of crypto algorithm to a
correspondent vendor specific binary algorithm ID.

ConvertToAlgName Convert a vendor specific binary algorithm ID to a
correspondent common name of the crypto algorithm.

CreateAuthCipherCtx Create a symmetric authenticated cipher context.

CreateDecryptorPrivateCtx Create a decryption private key context.

CreateEncryptorPublicCtx Create an encryption public key context.

CreateHashDigest Construct signature object from directly provided
components of a hash digest.

CreateHashFunctionCtx Create a hash function context.

CreateKeyAgreementPrivateCtx Create a key-agreement private key context.

CreateKeyDecapsulatorPrivateCtx Create a key-decapsulator private key context of a key
encapsulation mechanism.

CreateKeyDerivationFunctionCtx Create a key derivation function context.

CreateKeyEncapsulatorPublicCtx Create a key-encapsulator public key context of a key
encapsulation mechanism.

CreateMessageAuthCodeCtx Create a symmetric message authentication code
context.

CreateMsgRecoveryPublicCtx Create a message recovery public key context.

CreateRandomGeneratorCtx Create a random number generator context.

CreateSigEncodePrivateCtx Create a signature encoding private key context.

CreateSignature Construct a signature object from directly provided
components of a digital signature/MAC or authenticated
encryption (AE/AEAD).

CreateSignerPrivateCtx Create a signature private key context.

CreateStreamCipherCtx Create a symmetric stream cipher context.

CreateSymmetricBlockCipherCtx Create a symmetric block cipher context.

CreateSymmetricKeyWrapperCtx Create a symmetric key-wrap algorithm context.

CreateVerifierPublicCtx Create a signature verification public key context.

ExportPublicObject Export publicly an object.

ExportSecuredObject Export a crypto object in a secure manner.

GeneratePrivateKey Allocate a new private key context of correspondent type
and generates the key value randomly.

GenerateSeed Generate a random Secret Seed object of requested
algorithm.

GenerateSymmetricKey Allocate a new symmetric key object and fill it by a new
randomly generated value.

GetPayloadStorageSize Return minimally required capacity of a key slot for
saving of the object’s payload.

GetSerializedSize Return required buffer size for serialization of an object
in specific format.

Operations:

ImportPublicObject Import publicly serialized object to a storage location.

5

97 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
ImportSecuredObject Import securely serialized object to the persistent or

volatile storage.

LoadObject Load any crypto object from the IOInterface
provided.

LoadPrivateKey Load a PrivateKey from the IOInterface provided.

LoadPublicKey Load a PublicKey from the IOInterface provided.

LoadSecretSeed Load a SecretSeed from the IOInterface provided.

LoadSymmetricKey Load a SymmetricKey from the IOInterface
provided.

Name: CryptoContext

Technology: Native interface

Usage: Public API

Description: A common interface of a mutable cryptographic context, i.e. that is not bound to a single crypto
object.

GetCryptoPrimitiveId Returns a CryptoPrimitiveId instance containing
instance identification.

IsInitialized Check if the crypto context is already initialized and
ready to use.

Operations:

MyProvider Get a reference to the CryptoProvider of this
context.

9.5.1.1.3 Cryptography context interfaces

«aapFunctionalCluster»
Cryptography

daemon-based

CryptoContext

«aapAPI,aapNativeInterface»
StreamCipherCtx

+ CountBytesInCache()
+ EstimateMaxInputSize()
+ EstimateRequiredCapacity()
+ FinishBytes()
+ GetBlockService()
+ GetTransformation()
+ IsBytewiseMode()
+ IsSeekableMode()
+ ProcessBlocks()
+ ProcessBytes()
+ Reset()
+ Seek()
+ SetKey()
+ Start()

ExtensionService

«aapAPI,aapNativeInterface»
BlockService

+ GetActualIvBitLength()
+ GetBlockSize()
+ GetIvSize()
+ IsValidIvSize()

Adaptive Application

«use» «use»

Figure 9.53: BlockService and CryptoContext Interfaces

98 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: BlockService
Technology: Native interface

Usage: Public API

Description: Extension meta-information service for block cipher contexts.

GetActualIvBitLength Get the actual bit-length of an initialization vector loaded
to the context.

GetBlockSize Get the block (or internal buffer) size of the base
algorithm.

GetIvSize Get default expected size of the initialization vector or
nonce.

Operations:

IsValidIvSize Verify validity of specific initialization vector length.

Name: StreamCipherCtx

Technology: Native interface

Usage: Public API

Description: Generalized stream cipher context interface covering all modes of operation.

CountBytesInCache Count number of bytes now kept in the context cache.

EstimateMaxInputSize Estimate maximal number of input bytes that may be
processed for filling of an output buffer without overflow.

EstimateRequiredCapacity Estimate minimal required capacity of the output buffer,
which is enough for saving a result of input data
processing.

FinishBytes Process the final part of message (that may be not
aligned to the block-size boundary).

GetBlockService Get the BlockService instance.

GetTransformation Get the kind of transformation configured for this
context: Encrypt or Decrypt.

IsBytewiseMode Check the operation mode for the byte-wise property.

IsSeekableMode Check if the seek operation is supported in the current
mode.

ProcessBlocks Process initial parts of message aligned to the
block-size boundary.

ProcessBytes Process a non-final part of message (that is not aligned
to the block-size boundary).

Reset Clear the crypto context.

Seek Set the position of the next byte within the stream of the
encryption/decryption gamma.

SetKey Set (deploy) a key to the stream cihper algorithm
context.

Operations:

Start Initialize the context for a new data stream processing or
generation (depending from the primitive).

99 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

«aapFunctionalCluster»
Cryptography

daemon-based

CryptoContext

«aapAPI,aapNativeInterface»
DecryptorPrivateCtx

+ GetCryptoService()
+ ProcessBlock()
+ Reset()
+ SetKey()

CryptoContext

«aapAPI,aapNativeInterface»
EncryptorPrivateCtx

+ GetCryptoService()
+ ProcessBlock()
+ Reset()
+ SetKey()

CryptoContext

«aapAPI,aapNativeInterface»
SymmetricBlockCipherCtx

+ GetCryptoService()
+ GetTransformation()
+ ProcessBlock()
+ ProcessBlocks()
+ Reset()
+ SetKey()

ExtensionService

«aapAPI,aapNativeInterface»
CryptoService

+ GetBlockSize()
+ GetMaxInputSize()
+ GetMaxOutputSize()

Adaptive Application

«use» «use» «use» «use»

Figure 9.54: CryptoService and CryptoContext Interfaces

Name: CryptoService

Technology: Native interface

Usage: Public API

Description: Extension meta-information service for cryptographic contexts.

GetBlockSize Get block (or internal buffer) size of the base algorithm.

GetMaxInputSize Get maximum expected size of the input data block.

Operations:

GetMaxOutputSize Get maximum possible size of the output data block.

Name: EncryptorPrivateCtx

Technology: Native interface

Usage: Public API

Description: Asymmetric decryption private key context interface.

GetCryptoService Get the CryptoService instance.

ProcessBlock Encrypt an input block according to the encryptor
configuration.

Reset Clear the crypto context.

Operations:

SetKey Set (deploy) a key to the decryptor private algorithm
context.

Name: DecryptorPrivateCtx

Technology: Native interface

Usage: Public API

Description: Asymmetric decryption private key context interface.

GetCryptoService Get the CryptoService instance.

ProcessBlock Decrypt an input block according to the decryptor
configuration.

Reset Clear the crypto context.

Operations:

SetKey Set (deploy) a key to the decryptor private algorithm
context.

100 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: SymmetricBlockCipherCtx

Technology: Native interface

Usage: Public API

Description: Interface of a symmetric block cipher context with padding.

GetCryptoService Get the CryptoService instance.

GetTransformation Get the kind of transformation configured for this
context: Encrypt or Decrypt.

ProcessBlock Process (encrypt / decrypt) an input block according to
the configuration.

ProcessBlocks Process (encrypt / decrypt) input blocks according to the
configuration.

Reset Clear the crypto context.

Operations:

SetKey Set (deploy) a key to the symmetric algorithm context.

«aapFunctionalCluster»
Cryptography

daemon-based

CryptoContext

«aapAPI,aapNativeInterface»
AuthCipherCtx

+ Check()
+ GetDigest()
+ GetDigestService()
+ GetMaxAssociatedDataSize()
+ GetTransformation()
+ ProcessConfidentialData()
+ Reset()
+ SetKey()
+ Start()
+ UpdateAssociatedData()

CryptoContext

«aapAPI,aapNativeInterface»
HashFunctionCtx

+ Finish()
+ GetDigest()
+ GetDigestService()
+ Start()
+ Update()

CryptoContext

«aapAPI,aapNativeInterface»
MessageAuthnCodeCtx

+ Check()
+ Finish()
+ GetDigest()
+ GetDigestService()
+ Reset()
+ SetKey()
+ Start()
+ Update()

Adaptive Application

BlockService

«aapAPI,aapNativeInterface»
DigestService

+ Compare()
+ GetDigestSize()
+ IsFinished()
+ IsStarted()

«use»«use» «use»«use»

Figure 9.55: DigestService and CryptoContext Interfaces

Name: DigestService

Technology: Native interface

Usage: Public API

Description: Extension meta-information service for digest producing contexts.

Compare Compare the calculated digest against an expected
value.

GetDigestSize Get the output digest size.

IsFinished Check current status of the stream processing: finished
or not.

Operations:

IsStarted Check current status of the stream processing: started
or not.

101 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: AuthCipherCtx

Technology: Native interface

Usage: Public API

Description: Generalized authenticated cipher context interface.

Check Check the calculated digest against an expected
signature object.

GetDigest Retrieve the calculated digest.

GetDigestService Get the DigestService instance.

GetMaxAssociatedDataSize Get maximal supported size of associated public data.

GetTransformation Get the kind of transformation configured for this
context: Encrypt or Decrypt.

ProcessConfidentialData Process confidential data and return the result.

Reset Clear the crypto context.

SetKey Set (deploy) a key to the authenticated cipher symmetric
algorithm context.

Start Initialize the context for a new data processing or
generation (depending from the primitive).

Operations:

UpdateAssociatedData Update the digest calculation by the specified data.

Name: HashFunctionCtx
Technology: Native interface

Usage: Public API

Description: Hash function interface.

Finish Finish the digest calculation and optionally produce the
"signature" object.

GetDigest Get requested part of calculated digest.

GetDigestService Get the DigestService instance.

Start Initialize the context for a new data stream processing or
generation (depending on the primitive).

Operations:

Update Update the digest calculation context by a new part of
the message.

Name: MessageAuthnCodeCtx

Technology: Native interface

Usage: Public API

Description: Keyed message authentication code context interface definition (MAC/HMAC).

Check Check the calculated digest against an expected
"signature" object.

Finish Finish the digest calculation and optionally produce the
"signature" object.

GetDigest Get requested part of calculated digest to existing
memory buffer.

GetDigestService Get the DigestService instance.

Reset Clear the crypto context.

Operations:

SetKey Set (deploy) a key to the message authn code algorithm
context.

5

102 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Start Initialize the context for a new data stream processing or

generation (depending from the primitive).

Update Update the digest calculation context by a new part of
the message.

«aapFunctionalCluster»
Cryptography

daemon-based

CryptoContext

«aapAPI,aapNativeInterf...
KeyDecapsulatorPrivateCtx

+ DecapsulateKey()
+ DecapsulateSeed()
+ GetEncapsulatedSize()
+ GetExtensionService()
+ GetKekEntropy()
+ Reset()
+ SetKey()

CryptoContext

«aapAPI,aapNativeInterf...
KeyEncapsulatorPublicCtx

+ AddKeyingData()
+ Encapsulate()
+ GetEncapsulatedSize()
+ GetExtensionService()
+ GetKekEntropy()
+ Reset()
+ SetKey()

CryptoContext

«aapAPI,aapNativeInt...
RandomGeneratorCtx

+ AddEntropy()
+ Generate()
+ GetExtensionService()
+ Seed()
+ SetKey()

CryptoContext

«aapAPI,aapNativeInterface»
SymmetricKeyWrapperCtx

+ CalculateWrappedKeySize()
+ GetExtensionService()
+ GetMaxTargetKeyLength()
+ GetTargetKeyGranularity()
+ Reset()
+ SetKey()
+ UnwrapConcreteKey()
+ UnwrapKey()
+ UnwrapSeed()
+ WrapKeyMaterial()

«aapAPI,aapNativeInterf...
ExtensionService

+ GetActualKeyBitLength()
+ GetActualKeyCOUID()
+ GetAllowedUsage()
+ GetMaxKeyBitLength()
+ GetMinKeyBitLength()
+ IsKeyAvailable()
+ IsKeyBitLengthSupported()

Adaptive Application

«use»«use»«use» «use» «use»

Figure 9.56: ExtensionService and CryptoContext Interfaces (1 of 2)

Name: ExtensionService
Technology: Native interface

Usage: Public API

Description: Basic meta-information service for all contexts.

GetActualKeyBitLength Get actual bit-length of a key loaded to the context.

GetActualKeyCOUID Get the CryptoObjectUid of the key deployed to the
context this extension service is attached to.

GetAllowedUsage Get allowed usages of this context (according to the key
object attributes loaded to this context).

GetMaxKeyBitLength Get maximum supported key length in bits.

GetMinKeyBitLength Get minimal supported key length in bits.

IsKeyAvailable Check if a key has been set to this context.

Operations:

IsKeyBitLengthSupported Verify if the specific key length is supported by the
context.

Name: KeyEncapsulatorPublicCtx

Technology: Native interface

Usage: Public API

Description: Asymmetric key encapsulation mechanism public key context interface.

AddKeyingData Add the content to be encapsulated (payload) according
to RFC 5990 ("keying data").

Operations:

Encapsulate Encapsulate the last set keying-data.

5

103 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
GetEncapsulatedSize Get fixed size of the encapsulated data block.

GetExtensionService Get the ExtensionService instance.

GetKekEntropy Get entropy (bit-length) of the key encryption key (KEK)
material.

Reset Clear the crypto context.

SetKey Set (deploy) a key to the key encapsulator public
algorithm context.

Name: KeyDecapsulatorPrivateCtx

Technology: Native interface

Usage: Public API

Description: Asymmetric key encapsulation mechanism private key context interface.

DecapsulateKey Decapsulate the keying data to be used for subsequent
processing (e.g. secure communication).

DecapsulateSeed Decapsulate key material.

GetEncapsulatedSize Get fixed size of the encapsulated data block.

GetExtensionService Get the ExtensionService instance.

GetKekEntropy Get entropy (bit-length) of the key encryption key (KEK)
material.

Reset Clear the crypto context.

Operations:

SetKey Set (deploy) a key to the key decapsulator private
algorithm context.

Name: SymmetricKeyWrapperCtx

Technology: Native interface

Usage: Public API

Description: Context of a symmetric key wrap algorithm (for AES it should be compatible with RFC3394 or
RFC5649).

CalculateWrappedKeySize Calculate size of the wrapped key in bytes from original
key length in bits.

GetExtensionService Get the ExtensionService instance.

GetMaxTargetKeyLength Get maximum length of the target key supported by the
implementation.

GetTargetKeyGranularity Get expected granularity of the target key (block size).

Reset Clear the crypto context.

SetKey Set (deploy) a key to the symmetric key wrapper
algorithm context.

UnwrapConcreteKey Execute the "key unwrap" operation for the provided
BLOB and produce a key object of the expected type.

UnwrapKey Execute the "key unwrap" operation for the provided
BLOB and produce a key object.

UnwrapSeed Execute the "key unwrap" operation for the provided
BLOB and produce a SecretSeed object.

Operations:

WrapKeyMaterial Execute the "key wrap" operation for the provided key
material.

104 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: RandomGeneratorCtx
Technology: Native interface

Usage: Public API

Description: Interface of a random number generator context.

AddEntropy Update the internal state of the RNG by mixing it with
the provided additional entropy.

Generate Return an allocated buffer with a generated random
sequence of the requested size.

GetExtensionService Get the ExtensionService instance.

Seed Set the internal state of the RNG using the provided
seed.

Operations:

SetKey Set the internal state of the RNG using the provided
seed.

«aapFunctionalCluster»
Cryptography

daemon-based

CryptoContext

«aapAPI,aapNativeInterf...
KeyAgreementPrivateCtx

+ AgreeKey()
+ AgreeSeed()
+ GetExtensionService()
+ Reset()
+ SetKey()

CryptoContext

«aapAPI,aapNativeInterface»
KeyDerivationFunctionCtx

+ AddSalt()
+ AddSecretSalt()
+ ConfigIterations()
+ DeriveKey()
+ DeriveSeed()
+ GetExtensionService()
+ GetKeyIdSize()
+ GetTargetAlgId()
+ GetTargetAllowedUsage()
+ GetTargetKeyBitLength()
+ Init()
+ Reset()
+ SetSourceKeyMaterial()

CryptoContext

«aapAPI,aapNativeInt...
MsgRecoveryPublicCtx

+ DecodeAndVerify()
+ GetExtensionService()
+ GetMaxInputSize()
+ GetMaxOutputSize()
+ Reset()
+ SetKey()

CryptoContext

«aapAPI,aapNativeInt...
SigEncodePrivateCtx

+ GetExtensionService()
+ GetMaxInputSize()
+ GetMaxOutputSize()
+ Reset()
+ SetKey()
+ SignAndEncode()

«aapAPI,aapNativeInterf...
ExtensionService

+ GetActualKeyBitLength()
+ GetActualKeyCOUID()
+ GetAllowedUsage()
+ GetMaxKeyBitLength()
+ GetMinKeyBitLength()
+ IsKeyAvailable()
+ IsKeyBitLengthSupported()

Adaptive Application

«use» «use»«use»«use» «use»

Figure 9.57: ExtensionService and CryptoContext Interfaces (2 of 2)

Name: KeyDerivationFunctionCtx

Technology: Native interface

Usage: Public API

Description: Key derivation function interface.

AddSalt Add a salt value stored in a non-secret memory region.

AddSecretSalt Add a secret salt value stored in a SecretSeed object.

ConfigIterations Configure the number of iterations that will be applied by
default.

DeriveKey Derive a symmetric key from the provided key material
and provided context configuration.

DeriveSeed Derive key material (secret seed) from the provided
"master" key material and the provided context
configuration.

Operations:

GetExtensionService Get the ExtensionService instance.
5

105 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
GetKeyIdSize Get the fixed size of the target key ID required by

diversification algorithm.

GetTargetAlgId Get the symmetric algorithm ID of target key.

GetTargetAllowedUsage Get allowed key usage of target key.

GetTargetKeyBitLength Get the bit-length of target (diversified) keys.

Init Initialize this context by setting at least the target key ID.

Reset Clear the crypto context.

SetSourceKeyMaterial Set (deploy) key-material to the key derivation algorithm
context.

Name: KeyAgreementPrivateCtx

Technology: Native interface

Usage: Public API

Description: Key agreement private key context interface (Diffie Hellman or conceptually similar).

AgreeKey Produce a common symmetric key via execution of the
key-agreement algorithm between this private key.

AgreeSeed Produce a common secret seed via execution of the
key-agreement algorithm between this private key.

GetExtensionService Get the ExtensionService instance.

Reset Clear the crypto context.

Operations:

SetKey Set (deploy) a key to the key agreement private
algorithm context.

Name: MsgRecoveryPublicCtx

Technology: Native interface

Usage: Public API

Description: A public key context for asymmetric recovery of a short message and its signature verification
(RSA-like).

DecodeAndVerify Process (encrypt / decrypt) an input block according to
the cryptor configuration.

GetExtensionService Get the ExtensionService instance.

GetMaxInputSize Get maximum expected size of the input data block.

GetMaxOutputSize Get maximum possible size of the output data block.

Reset Clear the crypto context.

Operations:

SetKey Set (deploy) a key to the msg recovery public algorithm
context.

Name: SigEncodePrivateCtx

Technology: Native interface

Usage: Public API

Description: A private key context for asymmetric signature calculation and short message encoding (RSA-like).

GetExtensionService Get the ExtensionService instance.

GetMaxInputSize Get maximum expected size of the input data block.

GetMaxOutputSize Get maximum possible size of the output data block.

Operations:

Reset Clear the crypto context.

5

106 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
SetKey Set (deploy) a key to the sig encode private algorithm

context.

SignAndEncode Process (encrypt / decrypt) an input block according to
the cryptor configuration.

«aapFunctionalCluster»
Cryptography

daemon-based

CryptoContext

«aapAPI,aapNativeInterface»
SignerPrivateCtx

+ GetSignatureService()
+ Reset()
+ SetKey()
+ Sign()
+ SignPreHashed()

CryptoContext

«aapAPI,aapNativeInterface»
VerifierPublicCtx

+ GetSignatureService()
+ Verify()
+ VerifyPrehashed()

ExtensionService

«aapAPI,aapNativeInterface»
SignatureService

+ GetRequiredHashAlgId()
+ GetRequiredHashSize()
+ GetSignatureSize()

Adaptive Application

«use»«use» «use»

Figure 9.58: SignatureService and CryptoContext Interfaces

Name: SignatureService

Technology: Native interface

Usage: Public API

Description: Extension meta-information service for signature contexts.

GetRequiredHashAlgId Get an ID of hash algorithm required by current
signature algorithm.

GetRequiredHashSize Get the hash size required by current signature
algorithm.

Operations:

GetSignatureSize Get size of the signature value produced and required
by the current algorithm.

Name: SignerPrivateCtx

Technology: Native interface

Usage: Public API

Description: Signature private key context interface.

GetSignatureService Get the SignatureService instance.

Reset Clear the crypto context.

SetKey Set (deploy) a key to the signer private algorithm
context.

Sign Sign a directly provided hash or message value.

Operations:

SignPreHashed Sign a provided digest value stored in the hash-function
context.

107 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: VerifierPublicCtx
Technology: Native interface

Usage: Public API

Description: Signature verification public key context interface.

GetSignatureService Get the SignatureService instance.

Verify Verify signature BLOB by a directly provided hash or
message value.

Operations:

VerifyPrehashed Verify a signature by a digest value stored in the
hash-function context.

9.5.1.1.4 Cryptographic object interfaces

«aapFunctionalCluster»
Cryptography

daemon-based

«aapAPI,aapNativeInter...
CryptoPrimitiveId

+ GetPrimitiveId()
+ GetPrimitiveName()

RestrictedUseObject

«aapAPI,aapNativeInterf...
PrivateKey

+ GetPublicKey()

RestrictedUseObject

«aapAPI,aapNativeInte...
SymmetricKey

Adaptive Application

«use»«use» «use»

Figure 9.59: Cryptographic Object Interfaces

«aapAPI,aapNativeInterf...
CryptoObject

«aapAPI,aapNativeInterf...
RestrictedUseObject

«aapAPI,aapNativeInterf...
PrivateKey

«aapAPI,aapNativeInterf...
PublicKey

«aapAPI,aapNativeInterf...
SecretSeed

«aapAPI,aapNativeInterf...
Signature

«aapAPI,aapNativeInterface»
Serial izable

«aapAPI,aapNativeInterf...
SymmetricKey

Figure 9.60: Taxonomy of Cryptographic Object Interfaces

Name: CryptoObject

Technology: Native interface

Usage: Public API

Description: A common interface for all cryptographic objects recognizable by the CryptoProvider.

5

108 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
GetCryptoPrimitiveId Return the CryptoPrimitiveId of this object.

GetObjectId Return the object’s COIdentifier, which includes the
object’s type and UID.

GetPayloadSize Return actual size of the object’s payload.

HasDependence Return the COIdentifier of the object that this object
depends on.

IsExportable Get the exportability attribute of the crypto object.

IsSession Return the session (or temporary) attribute of the
object.

Operations:

Save Save itself to provided IOInterface

Name: RestrictedUseObject

Technology: Native interface

Usage: Public API

Description: A common interface for all objects supporting the usage restriction.

Operations: GetAllowedUsage Get allowed usages of this object.

Name: CryptoPrimitiveId

Technology: Native interface

Usage: Public API

Description: Common interface for identification of all CryptoPrimitives and their keys and parameters.

GetPrimitiveId Get vendor specific ID of the primitive.Operations:

GetPrimitiveName Get a unified name of the primitive.

Name: SecretSeed
Technology: Native interface

Usage: Public API

Description: Secret seed object contains a raw bit sequence of specific length (without any filtering of allowed/
disallowed values).

Clone Clone this object to new session object.

Jump Set value of this seed object as a "jump" from it’s current
state to specified number of steps, according to
"counting" expression defined by a cryptographic
algorithm associated with this object.

JumpFrom Set value of this seed object as a "jump" from an initial
state to specified number of steps, according to
"counting" expression defined by a cryptographic
algorithm associated with this object.

Next Set next value of the secret seed according to
"counting" expression defined by a cryptographic
algorithm associated with this object.

Operations:

operator ˆ= XOR value of this seed object with another one and
save result to this object. If seed sizes in this object and
in the source argument are different then only
correspondent number of leading bytes in this seed
object shall be updated.

109 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: SymmetricKey

Technology: Native interface

Usage: Public API

Description: Symmetric Key interface.

Name: PublicKey

Technology: Native interface

Usage: Public API

Description: General asymmetric public key interface.

CheckKey Check the key for its correctness.Operations:

HashPublicKey Calculate hash of the public key value.

Name: PrivateKey

Technology: Native interface

Usage: Public API

Description: Generalized asymmetric private key interface.

Operations: GetPublicKey Get the public key correspondent to this private key.

Name: Signature

Technology: Native interface

Usage: Public API

Description: This interface is applicable for keeping the Digital Signature, Hash Digest, (Hash-based) Message
Authentication Code (MAC/HMAC).

GetHashAlgId Get an ID of hash algorithm used for this signature
object production.

Operations:

GetRequiredHashSize Get the hash size required by current signature
algorithm.

110 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.5.1.1.5 Cryptographic key handling interfaces

«aapFunctionalCluster»
Cryptography

daemon-based

«aapAPI,aapNativeInterface»
KeyStorageProvider

+ BeginTransaction()
+ CommitTransaction()
+ GetRegisteredObserver()
+ LoadKeySlot()
+ RegisterObserver()
+ RollbackTransaction()
+ UnsubscribeObserver()

«aapAPI,aapPortInterface»
KeySlot

+ Clear()
+ GetContentProps()
+ GetPrototypedProps()
+ IsEmpty()
+ MyProvider()
+ Open()
+ SaveCopy()

«aapAPI,aapNativeInterface»
UpdatesObserver

«aapCallbackMethod»
+ OnUpdate()

Adaptive Application

«use»
«use»

«aapRequiredPort»

«use»

Figure 9.61: Cryptographic Key Handling Interfaces

Name: KeyStorageProvider

Technology: Native interface

Usage: Public API

Description: Key Storage Provider interface.

BeginTransaction Begin new transaction for key slots update.

CommitTransaction Commit changes of the transaction to storage.

GetRegisteredObserver Get the currently registered UpdatesObserver for key
slots.

LoadKeySlot Load a key slot.

RegisterObserver Register an UpdatesObserver for key slots.

RollbackTransaction Rollback all changes executed during the transaction in
storage.

Operations:

UnsubscribeObserver Unregister an UpdatesObserver from key slots.

Name: KeySlot

Technology: Port interface

Generated: No

Meta-model
interface type:

CryptoKeySlot

Usage: Public API

Description: Key slot interface enables access to a physical key-slot.

Clear Clear the content of this key slot.

GetContentProps Get an actual properties of a content in the key slot.

GetPrototypedProps Get the prototyped properties of the key slot.

IsEmpty Check the slot for emptiness.

Operations:

MyProvider Retrieve the instance of the CryptoProvider that
owns this KeySlot.

5

111 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Open Open this key slot and return an IOInterface to its

content.

SaveCopy Save the content of a provided source IOInterface to
this key slot.

Name: UpdatesObserver

Technology: Native interface

Usage: Public API

Description: Interface for observing updates on key slots.

Operations: OnUpdate This method is called if the content of the specified slots
was changed.

9.5.1.1.6 X.509 certificate handling interfaces

«aapFunctionalCluster»
Cryptography

daemon-based

«aapAPI,aapNativeInterface»
X509CustomExtensionsParser

+ OnBitString()
+ OnBool()
+ OnGeneralizedTime()
+ OnIa5String()
+ OnInteger()
+ OnNull()
+ OnOctetString()
+ OnOid()
+ OnParsingEnd()
+ OnPrintableString()
+ OnSequenceEnd()
+ OnSequenceStart()
+ OnSetEnd()
+ OnSetStart()
+ OnUtcTime()
+ OnUtf8String()

«aapAPI,aapNativeInterface»
X509Provider

+ BuildDn()
+ CheckCertStatus()
+ CheckCertStatusOnline()
+ CleanupVolati leStorage()
+ CountCertsInChain()
+ CreateCertSignRequest()
+ CreateEmptyDn()
+ CreateEmptyExtensions()
+ CreateOcspRequest()
+ DecodeDn()
+ FindCertByDn()
+ FindCertByKeyIds()
+ FindCertBySn()
+ Import()
+ ImportCrl()
+ LoadCertificate()
+ ParseCert()
+ ParseCertChain()
+ ParseCertSignRequest()
+ ParseCustomCertExtensions()
+ ParseOcspResponse()
+ Remove()
+ SendRequest()
+ SetAsRootOfTrust()
+ SetPendingStatus()
+ UpdateCrlOnline()
+ VerifyCert()
+ VerifyCertChain()

Adaptive Application

«use»

«use»

Figure 9.62: X.509 Certificate Handling Interfaces

112 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: X509Provider
Technology: Native interface

Usage: Public API

Description: X.509 Provider interface supporting two internal storage types: volatile (or session) and persistent.

BuildDn Create completed X.500 Distinguished Name structure
from the provided string representation.

CheckCertStatus Check certificate status by directly provided OCSP
response.

CheckCertStatusOnline Check certificate status via On-line Certificate Status
Protocol (OCSP).

CleanupVolatileStorage Cleanup the volatile certificates storage.

CountCertsInChain Count number of certificates in a serialized certificate
chain represented by a single BLOB.

CreateCertSignRequest Create certification request for a private key loaded to
the context.

CreateEmptyDn Create an empty X.500 Distinguished Name (DN)
structure.

CreateEmptyExtensions Create an empty X.509 Extensions structure.

CreateOcspRequest Create OCSP request for specified certificate(s).

DecodeDn Decode X.500 Distinguished Name structure from the
provided serialized format.

FindCertByDn Find a certificate by the subject and issuer Distinguished
Names (DN).

FindCertByKeyIds Find a certificate by its SKID & AKID.

FindCertBySn Find a certificate by its serial number and issue DN.

Import Import the certificate to volatile or persistent storage.

ImportCrl Import Certificate Revocation List (CRL) or Delta CRL
from a memory BLOB.

LoadCertificate Load a certificate from the persistent certificate storage.

ParseCert Parse a serialized representation of the certificate and
create its instance.

ParseCertChain Parse a serialized representation of the certificate chain
and create their instances.

ParseCertSignRequest Parse a certificate signing request (CSR) provided by
the user.

ParseCustomCertExtensions Parse the custom X.509 extensions.

ParseOcspResponse Parse serialized OCSP response and create
correspondent interface instance.

Remove Remove specified certificate from the storage (volatile or
persistent) and destroy it.

SendRequest Send prepared certificate request to CA and save it to
volatile or persistent storage.

SetAsRootOfTrust Set specified CA certificate as a "root of trust".

SetPendingStatus Set the "pending" status associated to the CSR that
means that the CSR already sent to CA.

UpdateCrlOnline Get Certificate Revocation List (CRL) or Delta CRL via
on-line connection.

VerifyCert Verify status of the provided certificate by locally stored
CA certificates and CRLs only.

Operations:

VerifyCertChain Verify status of the provided certification chain by locally
stored CA certificates and CRLs only.

113 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: X509CustomExtensionsParser
Technology: Native interface

Usage: Public API

Description: X.509 custom extensions parser. This callback interface is to be implemented by an application.

OnBitString Called when a bit string is encountered.

OnBool Called when a boolean is encountered.

OnGeneralizedTime Called when a generalized time is encountered.

OnIa5String Called when an IA5 string is encountered.

OnInteger Called when an integer is encountered.

OnNull Called when a NULL is encountered.

OnOctetString Called when an octet string is encountered.

OnOid Called when an oid is encountered.

OnParsingEnd Called when the parsing is completed.

OnPrintableString Called when a printable string is encountered.

OnSequenceEnd Called when a sequence ends.

OnSequenceStart Called when a sequence starts.

OnSetEnd Called when a set ends.

OnSetStart Called when a set starts.

OnUtcTime Called when a UTC time is encountered.

Operations:

OnUtf8String Called when an UTF8 string is encountered.

«aapFunctionalCluster»
Cryptography

daemon-based

BasicCertInfo

«aapAPI,aapNativeInterface»
CertSignRequest

+ ExportASN1CertSignRequest()
+ GetSignature()
+ Verify()
+ Version()

BasicCertInfo

«aapAPI,aapPortInterface»
Certificate

+ AuthorityKeyId()
+ EndTime()
+ GetFingerprint()
+ GetStatus()
+ IsRoot()
+ IssuerDn()
+ SerialNumber()
+ StartTime()
+ SubjectKeyId()
+ VerifyMe()
+ X509Version()

X509Object

«aapAPI,aapNativeInterface»
X509DN

+ GetAttribute()
+ GetDnString()
+ SetAttribute()
+ SetDn()

Serializable

«aapAPI,aapNativeInterface»
X509PublicKeyInfo

+ GetAlgorithmId()
+ GetPublicKey()
+ GetRequiredHashAlgId()
+ GetRequiredHashSize()
+ GetSignatureSize()
+ IsSameKey()

Adaptive Application

«use»«use» «use»«use»

Figure 9.63: X.509 Certificate Object Interfaces

114 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

«aapAPI,aapNativeInt...
X509Object

«aapAPI,aapNativeInt...
BasicCertInfo

«aapAPI,aapNativeInt...
CertSignRequest

«aapAPI,aapPortInterf...
Certificate

«aapAPI,aapNativeInt...
OcspRequest

«aapAPI,aapNativeInt...
OcspResponse

«aapAPI,aapNativeInt...
X509DN

«aapAPI,aapNativeInt...
X509Extensions

«aapAPI,aapNativeInt...
Serial izable

«aapAPI,aapNativeInt...
X509PublicKeyInfo

Figure 9.64: Taxonomy of X.509 Certificate Object Interfaces

Name: OcspRequest

Technology: Native interface

Usage: Public API

Description: On-line Certificate Status Protocol Request.

Operations: Version Get version of the OCSP request format.

Name: OcspResponse

Technology: Native interface

Usage: Public API

Description: On-line Certificate Status Protocol Response.

Operations: Version Get version of the OCSP response format.

Name: Certificate
Technology: Native interface

Usage: Public API

Description: X.509 Certificate interface.

AuthorityKeyId Get the DER encoded AuthorityKeyIdentifier of
this certificate.

EndTime Get the NotAfter of the certificate.

GetFingerprint Calculate a fingerprint from the whole certificate.

GetStatus Return last verification status of the certificate.

IsRoot Check whether this certificate belongs to a root CA.

IssuerDn Get the issuer certificate DN.

SerialNumber Get the serial number of this certificate.

StartTime Get the NotBefore of the certificate.

Operations:

SubjectKeyId Get the DER encoded SubjectKeyIdentifier of
this certificate.

5

115 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
VerifyMe Verify signature of the certificate.

X509Version Get the X.509 version of this certificate object.

Name: CertSignRequest

Technology: Native interface

Usage: Public API

Description: Certificate Signing Request (CSR) object interface.

ExportASN1CertSignRequest Export this certificate signing request in DER encoded
ASN1 format.

GetSignature Return signature object of the request.

Verify Verifies self-signed signature of the certificate request.

Operations:

Version Return format version of the certificate request.

Name: X509Extensions
Technology: Native interface

Usage: Public API

Description: Interface of X.509 Extensions.

Operations: Count Count number of elements in the sequence.

Name: X509DN
Technology: Native interface

Usage: Public API

Description: Interface of X.509 Distinguished Name (DN).

GetAttribute Get a DN attribute.

GetDnString Get the whole Distinguished Name (DN) as a single
string.

SetAttribute Set a DN attribute.

Operations:

SetDn Set whole Distinguished Name (DN) from a single string.

Name: X509PublicKeyInfo

Technology: Native interface

Usage: Public API

Description: X.509 Public Key Information interface.

GetAlgorithmId Get the CryptoPrimitiveId instance of this class.

GetPublicKey Get public key object of the subject.

GetRequiredHashAlgId Get an ID of hash algorithm required by current
signature algorithm.

GetRequiredHashSize Get the hash size required by current signature
algorithm.

GetSignatureSize Get size of the signature value produced and required
by the current algorithm.

Operations:

IsSameKey Verify the sameness of the provided and kept public
keys.

116 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.5.1.2 Provided interfaces

«aapAPI,aapNativeInterface»
CryptoStack

«aapFunctionalCluster»
Cryptography

daemon-based

«aapFunctionalClust...
Persistency

«aapFunctionalCluster»
Communication

Management
daemon-based

«aapFunctionalCluster»
Update and Configuration

Management
daemon-based

«aapFunctionalCluster»
Vehicle Update and

Configuration Management
daemon-based

«aapFunctionalClust...
Diagnostic Management

daemon-based

«aapFunctionalCluster»
Raw Data Stream

«aapFunctionalClust...
Intrusion Detection System

Manager
daemon-based

«use» «use»«use» «use» «use»«use»«use»

Figure 9.65: Users of the Cryptography interfaces

Interface Requiring functional clusters

Communication Management

Diagnostic Management

Intrusion Detection System Manager

Persistency

Raw Data Stream

Time Synchronization

Update and Configuration Management

CryptoStack

Vehicle Update and Configuration Management

Table 9.19: Interfaces provided by Cryptography to other Functional Clusters

117 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.5.1.3 Required interfaces

«aapFunctionalCluster»
Cryptography

daemon-based

«aapAPI,aapNativeInterface»
UpdatesObserver

«aapCallbackMethod»
+ OnUpdate()

«aapAPI,aapNativeInterface»
X509CustomExtensionsParser

+ OnBitString()
+ OnBool()
+ OnGeneralizedTime()
+ OnIa5String()
+ OnInteger()
+ OnNull()
+ OnOctetString()
+ OnOid()
+ OnParsingEnd()
+ OnPrintableString()
+ OnSequenceEnd()
+ OnSequenceStart()
+ OnSetEnd()
+ OnSetStart()
+ OnUtcTime()
+ OnUtf8String()

«aapInternal,aapNativeInterf...
ManifestAccessor

Registry

«use» «use»«use»

Figure 9.66: Interfaces required by Cryptography

Interface Purpose

ManifestAccessor Cryptography shall use this interface to read its configuration
information from the Manifests.

Cryptography::UpdatesObserver Cryptography uses this interface to notify when a key has been
updated.

Cryptography::X509CustomExtensionsParser Cryptography uses this interface for propagating parser events.

Table 9.20: Interfaces required by Cryptography

9.5.2 Intrusion Detection System Manager

Name: Intrusion Detection System Manager

Short Name: idsm

Category: Security

Daemon-based: Yes

Responsibilities: Intrusion Detection System Manager provides functionality to report security events.

118 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.5.2.1 Defined interfaces

The interfaces of Intrusion Detection System Manager are categorized into
interfaces for reporting security events (see Section 9.5.2.1.1), interfaces for provid-
ing additional data for security events (see Section 9.5.2.1.2), and and interface for
receiving notifications about qualified security events (see Section 9.5.2.1.3).

9.5.2.1.1 Interfaces for Reporting Security Events

This section lists interfaces for reporting security events.

«aapFunctionalCluster»
Intrusion Detection System Manager

daemon-based

«aapPortInterface,aapAPI»
EventReporter

+ ReportEvent()

Adaptive Application

«aapAPI,aapPortInterface»
ReportingModeProvider

+ GetReportingMode()
+ SetReportingMode()

«use» «use»

Figure 9.67: Interfaces for reporting security events

Name: EventReporter

Technology: Port interface

Generated: No

Meta-model
interface type:

SecurityEventDefinition

Usage: Public API

Description: This interface is used to report security events to the Intrusion Detection System Manager.

Operations: ReportEvent Create a new security event at the Adaptive
Intrusion Detection System Manager.

Name: ReportingModeProvider

Technology: Port interface

Generated: No

Meta-model
interface type:

IdsmReportingModeProviderInterface

Usage: Public API

Description: Interface for providing reporting modes to the Intrusion Detection System Manager.

GetReportingMode Get the ReportingMode for an event type.Operations:

SetReportingMode Set the ReportingMode for an event type.

119 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.5.2.1.2 Interfaces for Providing Data for Security Events

This section lists interfaces for providing additional data for security events, for exam-
ple, timestamps or context data.

«aapFunctionalCluster»
Intrusion Detection System Manager

daemon-based

Adaptive Application

«aapAPI,aapPortInterface»
TimestampProvider

+ Offer()
+ StopOffer()

«aapCallbackMethod»
+ GetTimestamp()

«aapAPI,aapPortInterface»
ContextDataProvider

+ Offer()
+ StopOffer()

«aapCallbackMethod»
+ ModifyContextData()

«use»«use»

«aapProvidedPort»«aapProvidedPort»

Figure 9.68: Interfaces for providing additional data for security events

Name: ContextDataProvider
Technology: Port interface

Generated: No

Meta-model
interface type:

IdsmContextProviderInterface

Usage: Public API

Description: Interface for an Adaptive Application to modify the original context data.

ModifyContextData Callback to modify the original context data.

Offer Enables possible invocations of ModifyContextData
() by Intrusion Detection System Manager.

Operations:

StopOffer Disables invocations of ModifyContextData().

Name: TimestampProvider

Technology: Port interface

Generated: No

Meta-model
interface type:

IdsmTimestampProviderInterface

Usage: Public API

Description: Interface for an Adaptive Application to provide a timestamp.

GetTimestamp Callback function to retrieve the timestamp.

Offer Enables possible invocations of GetTimestamp() by
Intrusion Detection System Manager.

Operations:

StopOffer Disables invocations of GetTimestamp().

9.5.2.1.3 Interface for Receiving Notifications about Qualified Security Events

This section lists an interface for receiving notifications about qualified security events.

120 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

«aapFunctionalCluster»
Intrusion Detection System Manager

daemon-based

«aapAPI,aapPortInterface»
QualifiedEventsReceiver

+ Offer()
+ StopOffer()

«aapCallbackMethod»
+ OnEventQualification()

Adaptive Application

«use»

Figure 9.69: Interface for receiving notifications about qualified security events

Name: QualifiedEventsReceiver

Technology: Port interface

Generated: No

Meta-model
interface type:

IdsmQualifiedEventsReceiverInterface

Usage: Public API

Description: Interface for receiving qualified events from the Intrusion Detection System Manager.

Offer Enables invocations of OnEventQualification.

OnEventQualification This function is implemented by the application and
invoked by Intrusion Detection System
Manager on qualification of a security event with
versioned context data.

Operations:

StopOffer Disables invocations of OnEventQualification.

9.5.2.2 Provided interfaces

«aapFunctionalCluster»
Intrusion Detection System Manager

daemon-based

«aapPortInterface,aapAPI»
EventReporter

+ ReportEvent()

«aapFunctionalClust...
Communication

Management
daemon-based

«aapFunctionalClust...
Firewall

daemon-based

«aapFunctionalClust...
Diagnostic Management

daemon-based

«use»«use» «use»

Figure 9.70: Users of the Intrusion Detection System Manager interfaces

121 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Interface Requiring functional clusters

Communication Management

Diagnostic Management

EventReporter

Firewall

Table 9.21: Interfaces provided by Intrusion Detection System Manager to other Func-
tional Clusters

9.5.2.3 Required interfaces

«aapFunctionalCluster»
Intrusion Detection System Manager

daemon-based

«aapAPI,aapPortInterface»
SynchronizedTimeBaseConsumer

+ GetRateDeviation()
+ GetTimeWithStatus(): SynchronizedTimeBaseStatus
+ RegisterStatusChangeNotifier()
+ RegisterSynchronizationStateChangeNotifier()
+ RegisterTimeLeapNotifier()
+ RegisterTimePrecisionMeasurementNotifier()
+ RegisterTimeValidationNotification()
+ UnregisterStatusChangeNotifier()
+ UnregisterSynchronizationStateChangeNotifier()
+ UnregisterTimeLeapNotifier()
+ UnregisterTimePrecisionMeasurementNotifier()
+ UnregisterTimeValidationNotification()

«aapFunctionalCluster»
Time Synchronization

daemon-based

«aapAPI,aapNativeInterf...
Logger

+ IsEnabled(): bool
+ Log(MsgId, Params)
+ LogDebug(): LogStream
+ LogError(): LogStream
+ LogFatal(): LogStream
+ LogInfo(): LogStream
+ LogVerbose(): LogStream
+ LogWarn(): LogStream
+ WithLevel(): LogStream

«aapFunctionalClust...
Log and Trace

«aapInternal»
TCP/IP Stack

Operating
System

«aapAPI,aapNativeInterf...
CryptoStack

«aapFunctionalClust...
Cryptography

daemon-based

«use» «use»«use»«use»
«aapRequiredPort»

Figure 9.71: Interfaces required by Intrusion Detection System Manager

Interface Purpose

TCP/IP Stack Adaptive Intrusion Detection System Manager shall use this
interface to propagate qualified security events via the IDS protocol.

Cryptography::CryptoStack Adaptive Intrusion Detection System Manager uses this
interface to sign security events.

Intrusion Detection System Manager::Context
DataProvider

This interface is used to let an application modify the context data for
security events.

Intrusion Detection System Manager::Qualified
EventsReceiver

Used to notify about qualified events.

Intrusion Detection System Manager::
TimestampProvider

This interface is used to let an application provide a timestamp for
security events.

Log and Trace::Logger Adaptive Intrusion Detection System Manager shall use this
interface to log standardized messages.

Time Synchronization::SynchronizedTimeBase
Consumer

Adaptive Intrusion Detection System Manager shall use this
interface to determine timestamps of security events.

Table 9.22: Interfaces required by Intrusion Detection System Manager

122 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.5.3 Firewall

Name: Firewall

Short Name: fw

Category: Security

Daemon-based: Yes

Responsibilities: The Firewall is responsible for filtering network traffic based on firewall rules to protect the
system from malicious messages. To this end, the Firewall parses the firewall rules from the
Manifest and configures the underlying firewall engine accordingly. The firewall engine can be
realized in different ways (e.g. on the level of the TCP/IP stack or even closer to the hardware),
which is considered to be an implementation detail.

Additionally, the Firewall supports handling of different modes (e.g. driving, parking, diagnostic
session) by enabling/disabling firewall rules based on the active mode. For blocked messages
security events to the Adaptive Intrusion Detection System Manager will be reported to
support the AUTOSAR intrusion detection system.

9.5.3.1 Defined interfaces

«aapFunctionalCluster»
Firewall

daemon-based

«aapAPI,aapPortInterface»
FirewallStateSwitchInterface

+ SwitchFirewallState()

Adaptive Application

«use»
«aapRequiredPort»

Figure 9.72: Interfaces of Firewall

Name: FirewallStateSwitchInterface
Technology: Port interface

Generated: No

Meta-model
interface type:

FirewallStateSwitchInterface

Usage: Public API

Description: Provides functionality to switch the firewall state.

Operations: SwitchFirewallState This method triggers a switch of the firewall state.

9.5.3.2 Provided interfaces

The Firewall does not provide interfaces to other Functional Clusters.

123 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.5.3.3 Required interfaces

«aapFunctionalCluster»
Firewall

daemon-based

«aapPortInterface,aapAPI»
EventReporter

+ ReportEvent()

«aapFunctionalCluster»
Intrusion Detection System Manager

daemon-based

«aapInternal»
TCP/IP Stack

Operating System

«use»«use»

Figure 9.73: Interfaces required by Firewall

Interface Purpose

TCP/IP Stack The Firewall uses this interface to enable/disable firewall rules.

Intrusion Detection System Manager::Event
Reporter

The Firewall uses this interface to report standardized security events.

Table 9.23: Interfaces required by Firewall

9.6 Safety

«aapFunctionalCluster»
Platform Health Management

daemon-based

Figure 9.74: Functional Clusters in category Safety

9.6.1 Platform Health Management

Name: Platform Health Management

Short Name: phm

Category: Safety

Daemon-based: Yes
5

124 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Responsibilities: Platform Health Management performs (aliveness, logical, and deadline) supervision of

Processes in safety-critical setups and reports failures to State Management. Platform
Health Management also controls the Watchdog that in turn supervises the Platform Health
Management.

An Alive Supervision checks that a supervised entity is not running too frequently and not too
rarely. A Deadline Supervision checks that steps in a supervised entity are executed within
the configured minimum and maximum time. A Logical Supervision checks that the control
flow during execution matches the designed control flow. All types of supervision can be used
independently and are performed based on reporting of Checkpoints by the supervised entity.

State Management and Execution Management are the fundamental Functional
Clusters of the AUTOSAR Adaptive Platform and need to run and work properly in any case.
Therefore, Platform Health Management shall always supervise the corresponding
Processes for State Management and Execution Management. Supervision failures in these
Processes shall be recovered by a reset of the Machine because the normal way of error
recovery (via State Management and Execution Management) is no longer reliable.

9.6.1.1 Defined interfaces

The interfaces of Platform Health Management are categorized into interfaces
for supervision (see Section 9.6.1.1.1), interfaces for performing recovery actions
(see Section 9.6.1.1.2), and interfaces for hardware watchdog handling (see Section
9.6.1.1.3).

9.6.1.1.1 Interfaces for supervision

Processes that are supervised by Platform Health Management shall report via
the SupervisedEntity interface when they have reached a certain checkpoint in
their control flow (see Figure 9.75). Platform Health Management independently
monitors that all checkpoints configured in the Manifest have been reached in time
and in the expected order (depending on the type of supervision).

«aapFunctionalCluster»
Platform Health Management

daemon-based

«aapAPI,aapPortInterface»
SupervisedEntity

+ ReportCheckpoint()

Adaptive Application

«use»
«aapProvidedPort»

Figure 9.75: Interfaces for supervision

125 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: SupervisedEntity

Technology: Port interface

Generated: No

Meta-model
interface type:

PhmSupervisedEntityInterface

Usage: Public API

Description: This interface provides functions to report checkpoints to Platform Health Management.

Operations: ReportCheckpoint Reports an occurrence of a checkpoint.

9.6.1.1.2 Interfaces for recovery

Platform Health Management defines the RecoveryAction API to trigger a re-
covery action in case a supervision failed (see Figure 9.76).

«aapFunctionalCluster»
Platform Health Management

daemon-based

«aapFunctionalCluster»
State Management

daemon-based

«aapPortInterface,aapAPI»
Platform Health Management::

RecoveryAction

+ Offer()
+ StopOffer()

«aapCallbackMethod»
+ RecoveryHandler()

«use»

«aapProvidedPort»

Figure 9.76: Interfaces for recovery

Name: RecoveryAction

Technology: Port interface

Generated: No

Meta-model
interface type:

PhmRecoveryActionInterface

Usage: Public API

Description: This interface provides functions to control triggering of recovery actions, to determine the status of
the supervision and a callback to perform recovery.

Offer Enables potential invocations of the callback
RecoveryHandler().

RecoveryHandler Callback to be invoked by Platform Health
Management upon a supervision failure. The handler
invocation needs to be enabled before using Offer().

Operations:

StopOffer Disables potential invocations of the callback
RecoveryHandler().

126 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.6.1.1.3 Interfaces for watchdog handling

Platform Health Management defines the WatchdogInterface extension API
to interact with the hardware watchdog (see Figure 9.77).

«aapFunctionalCluster»
Platform Health Management

daemon-based

«aapNativeInterface,aapPlatformExtension»
Platform Health Management::WatchdogInterface

+ AliveNotification()
+ FireWatchdogReaction()

Watchdog

«use»

Figure 9.77: Interfaces for watchdog handling

Name: WatchdogInterface

Technology: Native interface

Usage: Platform extension

Description: This interface provides functions to control the hardware watchdog.

AliveNotification Called cyclically by Platform Health Management
in configurable cycle time. Note: This time might differ
from the cycle time of triggering the "real" hardware
watchdog. If Platform Health Management does
not report aliveness in configured time,
WatchdogInterface shall initiate watchdog reaction.

Operations:

FireWatchdogReaction Initiates an error reaction of the hardware watchdog.

9.6.1.2 Provided interfaces

«aapFunctionalCluster»
Platform Health Management

daemon-based

«aapFunctionalClust...
Execution Management

daemon-based

«aapFunctionalClust...
State Management

daemon-based

«aapAPI,aapPortInterface»
SupervisedEntity

+ ReportCheckpoint()

«aapFunctionalClust...
Diagnostic Management

daemon-based

«aapFunctionalClust...
Time Synchronization

daemon-based

«aapFunctionalCluster»
Update and Configuration

Management
daemon-based

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 9.78: Users of the SupervisedEntity interface

127 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Interface Requiring functional clusters

Diagnostic Management

Execution Management

State Management

Time Synchronization

SupervisedEntity

Update and Configuration Management

Table 9.24: Interfaces provided by Platform Health Management to other Functional Clus-
ters

9.6.1.3 Required interfaces

«aapFunctionalCluster»
Platform Health Management

daemon-based

«aapAPI,aapNativeInterface»
ExecutionClient

+ Create()
+ ReportExecutionState(ExecutionState): Result

«aapFunctionalCluster»
Execution Management

daemon-based

«aapPortInterface,aapAPI»
RecoveryAction

+ Offer()
+ StopOffer()

«aapCallbackMethod»
+ RecoveryHandler()

«aapFunctionalCluster»
State Management

daemon-based

«aapAPI,aapNativeInterface»
Logger

+ IsEnabled()
+ Log(MsgId, Params)
+ LogDebug(): LogStream
+ LogError(): LogStream
+ LogFatal(): LogStream
+ LogInfo(): LogStream
+ LogVerbose(): LogStream
+ LogWarn(): LogStream
+ WithLevel(): LogStream

«aapFunctionalCluster»
Log and Trace

«use»«use»

«aapProvidedPort»

«use»

Figure 9.79: Interfaces required by Platform Health Management

Interface Purpose

ManifestAccessor Platform Health Management shall use this interface to read
information about SupervisedEntities from the Manifests.

Execution Management::ExecutionClient Platform Health Management uses this interface to report the state
of its daemon process to Execution Management.

Log and Trace::Logger Platform Health Management shall use this interface to log
standardized messages.

Platform Health Management::RecoveryAction Platform Health Management uses this interface to trigger failure
recovery.

Platform Health Management::Watchdog
Interface

Platform Health Management uses this interface to control the
hardware watchdog.

Table 9.25: Interfaces required by Platform Health Management

128 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.7 Configuration

Registry«aapFunctionalCluster»
Update and Configuration

Management

daemon-based

«aapFunctionalCluster»
Vehicle Update and Configuration

Management

daemon-based

Figure 9.80: Functional Clusters in category Configuration

9.7.1 Update and Configuration Management

Name: Update and Configuration Management

Short Name: ucm

Category: Configuration

Daemon-based: Yes

Responsibilities: Update and Configuration Management is responsible for updating, installing, removing and
keeping a record of the software on an AUTOSAR Adaptive Platform in a safe and secure way.

9.7.1.1 Defined interfaces

The interfaces of Update and Configuration Management are categorized into
general interfaces (see Section 9.7.1.1.1) and interfaces for the D-PDU API (see Sec-
tion 9.7.1.1.2).

129 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.7.1.1.1 General

Adaptive Application

«aapFunctionalCluster»
Update and Configuration Management

daemon-based

«aapAPI,aapAraComServiceInterface»
PackageManagement

«aapAccessControlled, aapServiceField»
+ CurrentStatus

«aapAccessControlled, aapServiceMethod»
+ Activate()
+ Cancel()
+ DeleteTransfer()
+ Finish()
+ GetHistory()
+ GetId()
+ GetProgress()
+ GetSwClusterChangeInfo()
+ GetSwClusterInfo()
+ GetSwClusterManifestInfo()
+ GetSwPackages()
+ ProcessSwPackage()
+ RegisterSoftwarePackage()
+ RevertProcessedSwPackages()
+ Rollback()
+ TransferData()
+ TransferExit()
+ TransferStart()

Diagnostic Application

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«aapProvidedPort»

Figure 9.81: General Interfaces of Update and Configuration Management

Name: PackageManagement

Technology: ara::com service interface

Usage: Public API

Description: This interface provides functionality for managing and transferring Software Packages to
Update and Configuration Management.

Activate Activates the processed components.

Cancel Aborts an ongoing processing of a Software
Package.

DeleteTransfer Delete a transferred Software Package.

Finish Finishes the processing for the current set of processed
Software Packages. It does a cleanup of all data of
the processing including the sources of the Software
Packages.

GetHistory Retrieve all actions that have been performed by
Update and Configuration Management.

Operations:

GetId Get the Update and Configuration Management
Instance Identifier.

5

130 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
GetProgress Get the progress information of the currently active state

in the Package Management state machine.

GetSwClusterChangeInfo Get a list of pending changes to the set of Software
Clusters on the Adaptive Platform. The returned list
includes all Software Clusters that are to be added,
updated or removed. The list of changes is extended in
the course of processing Software Packages.

GetSwClusterInfo Get a list of Software Clusters that are in state k
Present.

GetSwClusterManifestInfo Get general information of the Software Clusters
present in the platform.

GetSwPackages Get the Software Packages that available in Update
and Configuration Management.

ProcessSwPackage Process a previously transferred Software Package.

RegisterSoftwarePackage Registers a package that could already be in Machine’s
file system or to be downloaded.

RevertProcessedSwPackages Revert the changes done by processing (by calling
ProcessSwPackage()) of one or several Software
Packages.

Rollback Rollback the system to the state before the packages
were processed.

TransferData Block-wise transfer of a Software Package to
Update and Configuration Management.

TransferExit Finish the transfer of a Software Package to Update
and Configuration Management.

TransferStart Start the transfer of a Software Package.

Fields: CurrentStatus The current status of Update and Configuration
Management.

9.7.1.1.2 D-PDU API

«aapFunctionalCluster»
Update and Configuration

Management

daemon-based

D-PDU API

«aapAPI,aapNativeInterface»
D-PDU API

Adaptive Application

Flashing Adapter

«use»

Figure 9.82: D-PDU-API Interfaces

131 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: D-PDU API
Technology: Native interface

Usage: Public API

Description: This interface represents the Diagnostic Protocol Data Unit Application Programming Interface as
specified in ISO 22900-2 . This interface is not detailed in this document.

9.7.1.2 Provided interfaces

«aapFunctionalCluster»
Update and Configuration Management

daemon-based

«aapFunctionalCluster»
Vehicle Update and Configuration

Management
daemon-based

«aapAPI,aapAraComServiceInterface»
Update and Configuration Management::

PackageManagement

«aapAccessControlled, aapServiceField»
+ CurrentStatus

«aapAccessControlled, aapServiceMethod»
+ Activate()
+ Cancel()
+ DeleteTransfer()
+ Finish()
+ GetHistory()
+ GetId()
+ GetProgress()
+ GetSwClusterChangeInfo()
+ GetSwClusterInfo()
+ GetSwClusterManifestInfo()
+ GetSwPackages()
+ ProcessSwPackage()
+ RegisterSoftwarePackage()
+ RevertProcessedSwPackages()
+ Rollback()
+ TransferData()
+ TransferExit()
+ TransferStart()

«use»
«aapRequiredPort»

«aapProvidedPort»

Figure 9.83: Users of the Update and Configuration Management interfaces

Interface Requiring functional clusters

PackageManagement Vehicle Update and Configuration Management

Table 9.26: Interfaces provided by Update and Configuration Management to other Func-
tional Clusters

9.7.1.3 Required interfaces

Figures 9.84, 9.85, and 9.86 show the interfaces that are required by Update and
Configuration Management.

132 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

«aapFunctionalCluster»
Update and Configuration Management

daemon-based

«aapAPI,aapPortInterface»
FileStorage

+ DeleteFile()
+ FileExists()
+ GetAllFi leNames()
+ GetCurrentFileSize()
+ GetFileInfo()
+ OpenFileReadOnly(): ReadAccessor
+ OpenFileReadWrite(): ReadWriteAccessor
+ OpenFileWriteOnly(): ReadWriteAccessor
+ RecoverFile()
+ ResetFile()

«aapFunctionalCluster»
Persistency

«aapAPI,aapPortInterface»
KeyValueStorage

+ DiscardPendingChanges()
+ GetAllKeys()
+ GetCurrentValueSize()
+ GetValue()
+ KeyExists()
+ RecoverKey()
+ RemoveAllKeys()
+ RemoveKey()
+ ResetKey()
+ SetValue()
+ SyncToStorage()

«aapAPI,aapPortInterface»
SynchronizedTimeBaseConsumer

+ GetRateDeviation()
+ GetTimeWithStatus(): SynchronizedTimeBaseStatus
+ RegisterStatusChangeNotifier()
+ RegisterSynchronizationStateChangeNotifier()
+ RegisterTimeLeapNotifier()
+ RegisterTimePrecisionMeasurementNotifier()
+ RegisterTimeValidationNotification()
+ UnregisterStatusChangeNotifier()
+ UnregisterSynchronizationStateChangeNotifier()
+ UnregisterTimeLeapNotifier()
+ UnregisterTimePrecisionMeasurementNotifier()
+ UnregisterTimeValidationNotification()

«aapFunctionalCluster»
Time Synchronization

daemon-based

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 9.84: Interfaces required by Update and Configuration Management (part 1)

«aapAPI,aapNativeInterface»
Logger

+ IsEnabled()
+ Log(MsgId, Params)
+ LogDebug(): LogStream
+ LogError(): LogStream
+ LogFatal(): LogStream
+ LogInfo(): LogStream
+ LogVerbose(): LogStream
+ LogWarn(): LogStream
+ WithLevel(): LogStream

«aapFunctionalCluster»
Log and Trace

«aapFunctionalCluster»
Update and Configuration Management

daemon-based

«aapAPI,aapNativeInterface»
ExecutionClient

+ Create()
+ ReportExecutionState(ExecutionState): Result

«aapFunctionalCluster»
Execution Management

daemon-based

«use» «use»

Figure 9.85: Interfaces required by Update and Configuration Management (part 2)

133 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

«aapFunctionalClust...
Cryptography

daemon-based

«aapAPI,aapNativeInterf...
CryptoStack

«aapFunctionalCluster»
State Management

daemon-based

«aapAraComServiceInterface,aapIn...
UpdateRequest

«aapAccessControlled, aapServiceF...
+ ResetMachineNotifier

«aapAccessControlled, aapService...
+ PrepareRollback()
+ PrepareUpdate()
+ RequestUpdateSession()
+ ResetMachine()
+ StopUpdateSession()
+ VerifyUpdate()

«aapFunctionalCluster»
Update and Configuration Management

daemon-based

«aapProvidedPort»

«use»
«aapRequiredPort» «use»

Figure 9.86: Interfaces required by Update and Configuration Management (part 3)

Interface Purpose

ManifestAccessor Update and Configuration Management shall use this interface to
read information about its configuration from the Manifests.

Cryptography::CryptoStack This interface may be used e.g., to verify the integrity and authenticity of
Software Packages.

Execution Management::ExecutionClient This interface shall be used by the daemon process(es) inside Update
and Configuration Management to report their execution state to
Execution Management.

Log and Trace::Logger Update and Configuration Management shall use this interface to
log standardized messages.

Persistency::FileStorage Used to store files of received software packages.

Persistency::KeyValueStorage Used to store the internal state of Update and Configuration
Management.

Platform Health Management::SupervisedEntity This interface should be used to supervise the daemon process(es) of
Update and Configuration Management.

State Management::UpdateRequest This interface is used to interact with State Management of the
Adaptive Platform during an update.

Time Synchronization::SynchronizedTimeBase
Consumer

Update and Configuration Management shall use this interface to
get latest timestamp.

Table 9.27: Interfaces required by Update and Configuration Management

9.7.2 Vehicle Update and Configuration Management

Name: Vehicle Update and Configuration Management

Short Name: vucm

Category: Configuration

Daemon-based: Yes
5

134 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Responsibilities: Vehicle Update and Configuration Management is responsible for updating, installing,

removing and keeping a record of the software installed in an entire vehicle in a safe and secure
way. Hereby, Vehicle Update and Configuration Management enables to update the
software and its configuration flexibly through over-the-air updates (OTA).

9.7.2.1 Defined interfaces

«aapAPI,aapAraComServiceInterface»
VehiclePackageManagement

«aapAccessControlled, aapServiceField»
+ RequestedPackage
+ TransferState
+ VehicleConditionCollection

«aapAccessControlled, aapServiceMeth...
+ AllowCampaign()
+ CancelCampaign()
+ DeleteTransfer()
+ GetCampaignHistory()
+ GetSwClusterInfo()
+ GetSwPackages()
+ GetVehicleUCMInfo()
+ SwPackageInventory()
+ TransferData()
+ TransferExit()
+ TransferStart()
+ TransferVehiclePackage()

«aapAPI,aapAraComServiceInterface»
VehicleDriverApplicationInterface

«aapAccessControlled, aapServiceField»
+ ApprovalRequired
+ CampaignState
+ VehicleConditionCollection

«aapAccessControlled, aapServiceMeth...
+ AllowCampaign()
+ Approve()
+ CancelCampaign()
+ GetCampaignHistory()
+ GetSwClusterInfo()
+ GetSwPackageDescription()
+ GetVehiclePackageDescription()
+ ReportUnsupportedSafetyConditions()

«aapAPI,aapAraComServiceInterface»
VehicleStateManager

«aapAccessControlled, aapServiceField»
+ CampaignState
+ VehicleConditionCollection

«aapAccessControlled, aapServiceMet...
+ PublishSafetyState()
+ VehicleCheck()

«aapFunctionalCluster»
Vehicle Update and Configuration Managementdaemon-based

Adaptive Application

Vehicle State ManagerVehicle Driver InterfaceOTA Client

«aapProvidedPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«aapProvidedPort»«aapProvidedPort»

Figure 9.87: Interfaces of Vehicle Update and Configuration Management

Name: VehiclePackageManagement

Technology: ara::com service interface

Usage: Public API

Description: This interface provides functionality for managing and transferring Vehicle Packages and
Software Packages to Vehicle Update and Configuration Management.

AllowCampaign Allows a new campaign to start.

CancelCampaign Aborts an ongoing campaign processing of a Vehicle
Package.

DeleteTransfer Delete a transferred Software Package or Vehicle
Package.

Operations:

GetCampaignHistory Retrieve all actions that have been performed by
Vehicle Update and Configuration
Management.

5

135 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
GetSwClusterInfo Get a list of SoftwareClusters that are in state k

Present.

GetSwPackages Get the Software Packages that are part of current
campaign handled by Vehicle Update and
Configuration Management.

GetVehicleUCMInfo Get Vehicle Update and Configuration
Management version and a list of Update and
Configuration Management identifiers and
versions.

SwPackageInventory Performs an inventory of all Software Packages.

TransferData Block-wise transfer of a Software Package or
Vehicle Package to Vehicle Update and
Configuration Management.

TransferExit Finish the transfer of a Software Package or
Vehicle Package to Vehicle Update and
Configuration Management.

TransferStart Start the transfer of a Software Package to Vehicle
Update and Configuration Management.

TransferVehiclePackage Start the transfer of a Vehicle Package to Vehicle
Update and Configuration Management.

RequestedPackage Software Package to be transferred to Vehicle
Update and Configuration Management.

TransferState The current status of a campaign from an OTA Client
perspective.

Fields:

VehicleConditionCollection A set of safety conditions along with their corresponding
states.

Name: VehicleDriverApplicationInterface

Technology: ara::com service interface

Usage: Public API

Description: This interface provides functionality to interact with the vehicle driver, for example to approve
updates.

AllowCampaign Allow a new campaign to start.

Approve Inform Vehicle Update and Configuration
Management of the driver’s notification resolution.

CancelCampaign Aborts an ongoing campaign processing of a Vehicle
Package.

GetCampaignHistory Retrieve all actions that have been performed by
Vehicle Update and Configuration
Management.

GetSwClusterInfo Get general information of the Software Clusters
present in the Adaptive Platform.

GetSwPackageDescription Get the general information of the Software
Packages that are part of current campaign handled by
Vehicle Update and Configuration
Management.

GetVehiclePackageDescription Get the Vehicle Package metadata relevant for
communication with driver according to UN ECE 156.

Operations:

ReportUnsupportedSafetyConditions Inform Vehicle Update and Configuration
Management on all unsupported safety conditions.

5

136 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
ApprovalRequired Flag to inform an Adaptive Application if approval from a

driver is required at current state based on the Vehicle
Package Manifest.

CampaignState The status of the current campaign.

Fields:

VehicleConditionCollection A set of safety conditions along with their corresponding
states.

Name: VehicleStateManager

Technology: ara::com service interface

Usage: Public API

Description: This interface provides functionality for a Vehicle State Manager Adaptive Application to inform
Vehicle Update and Configuration Management about the safety state and policy of the
vehicle.

PublishSafetyState Called by the Vehicle State Manager Adaptive
Application when safety state is changed.

Operations:

VehicleCheck Called by the Vehicle State Manager Adaptive
Application to inform Vehicle Update and
Configuration Management of the vehicle check
resolution.

CampaignState The status of the current campaign.Fields:

VehicleConditionCollection A set of safety conditions along with their corresponding
computed states.

9.7.2.2 Provided interfaces

Vehicle Update and Configuration Management does not provide any inter-
faces to other Functional Clusters.

9.7.2.3 Required interfaces

Figures 9.88 and 9.89 show the interfaces that are required by Vehicle Update
and Configuration Management from Functional Clusters on the local Ma-
chine.

137 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

«aapAPI,aapPortInterface»
FileStorage

+ DeleteFile()
+ FileExists()
+ GetAllFi leNames()
+ GetCurrentFileSize()
+ GetFileInfo()
+ OpenFileReadOnly(): ReadAccessor
+ OpenFileReadWrite(): ReadWriteAccessor
+ OpenFileWriteOnly(): ReadWriteAccessor
+ RecoverFile()
+ ResetFile()

«aapFunctionalCluster»
Persistency

«aapAPI,aapPortInterface»
KeyValueStorage

+ DiscardPendingChanges()
+ GetAllKeys()
+ GetCurrentValueSize()
+ GetValue()
+ KeyExists()
+ RecoverKey()
+ RemoveAllKeys()
+ RemoveKey()
+ ResetKey()
+ SetValue()
+ SyncToStorage()

«aapAPI,aapPortInterface»
SynchronizedTimeBaseConsumer

+ GetRateDeviation()
+ GetTimeWithStatus(): SynchronizedTimeBaseStatus
+ RegisterStatusChangeNotifier()
+ RegisterSynchronizationStateChangeNotifier()
+ RegisterTimeLeapNotifier()
+ RegisterTimePrecisionMeasurementNotifier()
+ RegisterTimeValidationNotification()
+ UnregisterStatusChangeNotifier()
+ UnregisterSynchronizationStateChangeNotifier()
+ UnregisterTimeLeapNotifier()
+ UnregisterTimePrecisionMeasurementNotifier()
+ UnregisterTimeValidationNotification()

«aapFunctionalCluster»
Time Synchronization

daemon-based

«aapFunctionalCluster»
Vehicle Update and Configuration Management

daemon-based

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 9.88: Interfaces required by Vehicle Update and Configuration Management (part
1)

«aapAPI,aapNativeInterface»
Logger

+ IsEnabled()
+ Log(MsgId, Params)
+ LogDebug(): LogStream
+ LogError(): LogStream
+ LogFatal(): LogStream
+ LogInfo(): LogStream
+ LogVerbose(): LogStream
+ LogWarn(): LogStream
+ WithLevel(): LogStream

«aapFunctionalCluster»
Log and Trace

«aapAPI,aapNativeInterface»
ExecutionClient

+ Create()
+ ReportExecutionState(ExecutionState): Result

«aapFunctionalCluster»
Execution Management

daemon-based

«aapFunctionalCluster»
Vehicle Update and Configuration Management

daemon-based

«aapAPI,aapNativeInterface»
CryptoStack

«aapFunctionalCluster»
Cryptography

daemon-based

«use» «use» «use»

Figure 9.89: Interfaces required by Vehicle Update and Configuration Management (part
2)

Figure 9.90 shows the interfaces that are required by Vehicle Update and Con-
figuration Management from Update and Configuration Management in-
stances on the local and remote Machine(s) or Flashing Adapters that provide
the same service for third-party systems.

138 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

«aapFunctionalCluster»
Vehicle Update and Configuration Managementdaemon-based

«aapAPI,aapAraComServiceInterface»
PackageManagement

«aapAccessControlled, aapServiceField»
+ CurrentStatus

«aapAccessControlled, aapServiceMethod»
+ Activate()
+ Cancel()
+ DeleteTransfer()
+ Finish()
+ GetHistory()
+ GetId()
+ GetProgress()
+ GetSwClusterChangeInfo()
+ GetSwClusterInfo()
+ GetSwClusterManifestInfo()
+ GetSwPackages()
+ ProcessSwPackage()
+ RegisterSoftwarePackage()
+ RevertProcessedSwPackages()
+ Rollback()
+ TransferData()
+ TransferExit()
+ TransferStart()

Adaptive Application «aapFunctionalCluster»
Update and Configuration

Management

daemon-based

Flashing Adapter

«use»
«aapRequiredPort»

«aapProvidedPort» «aapProvidedPort»

Figure 9.90: Interfaces required by Vehicle Update and Configuration Management (part
3)

Interface Purpose

ManifestAccessor Vehicle Update and Configuration Management shall use this
interface to read information about its configuration from the Manifests.

Cryptography::CryptoStack This interface may be used e.g., to verify the integrity and authenticity of
Vehicle Packages.

Execution Management::ExecutionClient This interface shall be used by the daemon process(es) inside Vehicle
Update and Configuration Management to report their execution
state to Execution Management.

Log and Trace::Logger Vehicle Update and Configuration Management shall use this
interface to log standardized messages.

Persistency::FileStorage Used to store files of received vehicle packages.

Persistency::KeyValueStorage Used to store the internal state of Vehicle Update and
Configuration Management.

Time Synchronization::SynchronizedTimeBase
Consumer

Vehicle Update and Configuration Management shall use this
interface to get latest timestamp.

Update and Configuration Management::
PackageManagement

This interface is used to control different Update and Configuration
Management instances and e.g., applications implementing the same
interface located within the vehicle that act as an adapter to install
software packages on third-party systems. Vehicle Update and
Configuration Management is able to differentiate between the
service instances by matching the result of GetId with an ID provided in
a Software Package.

Table 9.28: Interfaces required by Vehicle Update and Configuration Management

139 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.7.3 Registry

Name: Registry

Short Name: n/a

Category: Configuration

Daemon-based: No

Responsibilities: Registry is an internal component of the AUTOSAR Adaptive Platform that provides access
information stored in the Manifest. It is not a standardized Functional Cluster intended to
be used by Adaptive Applications.

9.7.3.1 Defined interfaces

Registry

«aapInternal,aapNativeInterface»
ManifestAccessor

«aapFunctionalClust...
Communication

Management
daemon-based

«aapFunctionalClust...
Network Management

«aapFunctionalClust...
Time Synchronization

daemon-based

«aapFunctionalCluster»
Update and Configuration

Management
daemon-based

«aapFunctionalClust...
Diagnostic Management

daemon-based

«aapFunctionalClust...
Execution Management

daemon-based

«aapFunctionalClust...
Log and Trace

«aapFunctionalClust...
Platform Health

Management
daemon-based

«aapFunctionalClust...
Cryptography

daemon-based

«aapFunctionalClust...
Persistency

«aapFunctionalClust...
Vehicle Update and

Configuration
Management

daemon-based

«use» «use»

«use»

«use»«use»

«use»

«use»

«use»

«use» «use»«use»

Figure 9.91: Interfaces of Registry

Name: ManifestAccessor
Technology: Native interface

Usage: Internal

Description: This interface provides functionality to read information that was modeled in the Manifest(s). This
interface is not detailed in this document.

140 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.7.3.2 Provided interfaces

Registry

«aapInternal,aapNativeInterface»
ManifestAccessor

«aapFunctionalClust...
Communication

Management
daemon-based

«aapFunctionalClust...
Network Management

«aapFunctionalClust...
Time Synchronization

daemon-based

«aapFunctionalCluster»
Update and Configuration

Management
daemon-based

«aapFunctionalClust...
Diagnostic Management

daemon-based

«aapFunctionalClust...
Execution Management

daemon-based

«aapFunctionalClust...
Log and Trace

«aapFunctionalClust...
Platform Health

Management
daemon-based

«aapFunctionalClust...
Cryptography

daemon-based

«aapFunctionalClust...
Persistency

«aapFunctionalCluster»
Vehicle Update and

Configuration Management
daemon-based

«use»

«use» «use»

«use»

«use»«use»

«use»

«use»«use»«use» «use»

Figure 9.92: Users of the Registry interfaces

Interface Requiring functional clusters

Communication Management

Cryptography

Diagnostic Management

Execution Management

Log and Trace

Network Management

Persistency

Platform Health Management

Raw Data Stream

Time Synchronization

Update and Configuration Management

ManifestAccessor

Vehicle Update and Configuration Management

Table 9.29: Interfaces provided by Registry to other Functional Clusters

141 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.7.3.3 Required interfaces

Registry

«aapInternal»
Non-volati le Storage

Operating System

«use»

Figure 9.93: Interfaces required by Registry

Interface Purpose

Non-volatile Storage Registry uses this interface to read the information from the
Manifest(s).

Table 9.30: Interfaces required by Registry

9.8 Diagnostics

«aapFunctionalCluster»
Diagnostic Management

daemon-based

Figure 9.94: Functional Clusters in category Diagnostics

9.8.1 Diagnostic Management

Name: Diagnostic Management

Short Name: diag

Category: Diagnostics

Daemon-based: Yes

Responsibilities: Diagnostic Management is responsible for handling diagnostic events produced by the
individual Processes running in an AUTOSAR Runtime for Adaptive Applications. Diagnostic
Management stores such events and the associated data persistently according to rendition
policies. Diagnostic Management also provides access to diagnostic data for external
Diagnostic Clients via standardized network protocols (ISO 14229-5 (UDSonIP) which is
based on the ISO 14229-1 (UDS) and ISO 13400-2 (DoIP)).

142 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.8.1.1 Defined interfaces

9.8.1.1.1 Common interfaces

«aapFunctionalCluster»
Diagnostic Management

daemon-based

«aapNativeInterface,aapAPI»
Conversation

+ GetActivityStatus()
+ GetAllConversations()
+ GetConversation(): Conversation
+ GetConversationIdentifier()
+ GetCurrentActiveConversations()
+ GetDiagnosticSecurityLevel()
+ GetDiagnosticSecurityLevelShortName()
+ GetDiagnosticSession()
+ GetDiagnosticSessionShortName()
+ ResetToDefaultSession()
+ SetActivityNotifier()
+ SetDiagnosticSessionNotifier()
+ SetSecurityLevelNotifier()

Adaptive Application

«aapAPI,aapPortInterface»
DTCInformation

+ Clear()
+ EnableControlDtc()
+ GetControlDTCStatus()
+ GetCurrentStatus()
+ GetEventMemoryOverflow()
+ GetNumberOfStoredEntries()
+ SetControlDtcStatusNotifier()
+ SetDTCStatusChangedNotifier()
+ SetEventMemoryOverflowNotifier()
+ SetNumberOfStoredEntriesNotifier()
+ SetSnapshotRecordUpdatedNotifier()

«use»
«aapRequiredPort»

«use»

Figure 9.95: Common interfaces of Diagnostic Management (1 of 2)

Name: Conversation
Technology: Native interface

Usage: Public API

Description: This interface provides functionality to handle diagnostic conversations.

GetActivityStatus Represents the status of an active conversation.

GetAllConversations Get all possible conversations.

GetConversation Get one conversation based on given meta information.

GetConversationIdentifier Getter for the current identification properties of the
active conversation.

GetCurrentActiveConversations Get all currently active conversations.

GetDiagnosticSecurityLevel Represents the current active diagnostic Security
Level of an active conversation.

GetDiagnosticSecurityLevelShortName Converts the given diagnostic SecurityLevel into the
ShortName.

GetDiagnosticSession Represents the current active diagnostic session of an
active conversation.

GetDiagnosticSessionShortName Converts the given diagnostic session into the Short
Name.

ResetToDefaultSession Method to reset the current session to the default
session.

SetActivityNotifier Register a notifier function which is called if the activity
is changed.

SetDiagnosticSessionNotifier Register a notifier function which is called if the Session
is changed.

Operations:

SetSecurityLevelNotifier Register a notifier function which is called if the
SecurityLevel is changed.

143 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: DTCInformation
Technology: Port interface

Generated: No

Meta-model
interface type:

DiagnosticDTCInformationInterface

Usage: Public API

Description: This interface provides operations on DTC information per configured DiagnosticMemory
destination.

Clear Method for Clearing a DTC or a group of DTCs.

EnableControlDtc Enforce restoring ControlDTCStatus setting to enabled
in case the monitor has some conditions or states
demands to do so.

GetControlDTCStatus Contains the current status of the ControlDTCStatus.

GetCurrentStatus Retrieves the current UDS DTC status byte of the given
DTC identifier.

GetEventMemoryOverflow Contains the current event memory overflow status.

GetNumberOfStoredEntries Contains the number of currently stored fault memory
entries.

SetControlDtcStatusNotifier Registers a notifier function which is called if the control
DTC setting is changed.

SetDTCStatusChangedNotifier Register a notifier function which is called if a UDS DTC
status is changed.

SetEventMemoryOverflowNotifier Register a notifier function which is called if the current
event memory overflow status changed.

SetNumberOfStoredEntriesNotifier Register a notifier function which is called if the number
of currently stored fault memory entries changed.

Operations:

SetSnapshotRecordUpdatedNotifier Register a notifier function which is called if the
SnapshotRecord is changed.

«aapFunctionalCluster»
Diagnostic Management

daemon-based

«aapAPI,aapNativeInterface»
CancellationHandler

+ IsCanceled()
+ SetNotifier()

Adaptive Application

«aapAPI,aapNativeInterface»
MetaInfo

+ GetContext()
+ GetValue()

«use»«use»

Figure 9.96: Common interfaces of Diagnostic Management (2 of 2)

Name: CancellationHandler
Technology: Native interface

Usage: Public API

Description: This interface holds a shared state if the processing should be canceled.

Operations: IsCanceled Returns true in if the diagnostic service execution is
canceled.

5

144 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
SetNotifier Registers a notifier function which is called if the

diagnostic service execution is canceled.

Name: MetaInfo
Technology: Native interface

Usage: Public API

Description: This interface specifies a mechanism to provide meta information, i.e. from transport protocol layer,
to an interested application.

GetContext Get the context of the invocation.Operations:
GetValue Get the metainfo value for a given key.

9.8.1.1.2 Interfaces for request handling

«aapFunctionalCluster»
Diagnostic Management

daemon-based

Adaptive Application

«aapAPI,aapPortInterface»
Condition

+ GetCondition()
+ SetCondition()

«aapAPI,aapPortInterface»
OperationCycle

+ GetOperationCycle()
+ SetNotifier()
+ SetOperationCycle()

«aapAPI,aapPortInterface»
Indicator

+ GetIndicator()
+ SetNotifier()

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 9.97: Interfaces for request handling

Name: Condition
Technology: Port interface

Generated: No

Meta-model
interface type:

DiagnosticConditionInterface

Usage: Public API

Description: This interface provides functionality for condition management.

GetCondition Get the current condition.Operations:
SetCondition Set the current condition.

Name: OperationCycle

Technology: Port interface

Generated: No
5

145 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Meta-model
interface type:

DiagnosticOperationCycleInterface

Usage: Public API

Description: This interface provides functionality for handling of operation cycles.

GetOperationCycle Get the current OperationCycle.

SetNotifier Registers a notifier function which is called if the
OperationCycle is changed.

Operations:

SetOperationCycle Set the current OperationCycle.

Name: Indicator
Technology: Port interface

Generated: No

Meta-model
interface type:

DiagnosticIndicatorInterface

Usage: Public API

Description: This interface provides functionality for handling indicators.

GetIndicator Get current Indicator.Operations:
SetNotifier Register a notifier function which is called if the indicator

is updated.

«aapFunctionalCluster»
Diagnostic Managementdaemon-based

«aapPortInterface,a...
Monitor

+ Offer()
+ ReportMonitorAction()
+ StopOffer()

«aapPortInterface,aap...
GenericUDSService

+ HandleMessage()
+ Offer()
+ StopOffer()

«aapPortInterface,aap...
GenericDataIdentifier

+ Offer()
+ Read()
+ StopOffer()
+ Write()

«aapPortInterface,aap...
GenericRoutine

+ Offer()
+ RequestResults()
+ Start()
+ Stop()
+ StopOffer()

«aapPortInterface,aapAPI»
Event

+ GetDebouncingStatus()
+ GetDTCNumber()
+ GetEventStatus()
+ GetFaultDetectionCounter()
+ GetLatchedWIRStatus()
+ GetTestComplete()
+ SetEventStatusChangedNotifier()
+ SetLatchedWIRStatus()

Adaptive Application

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 9.98: Interfaces for generic request handling

Name: Monitor
Technology: Port interface

Generated: No

Meta-model
interface type:

DiagnosticMonitorInterface

Usage: Public API

Description: This interface provides functionality to report qualified and unqualified test results and to control
debouncing options.

Operations: Offer Enable forwarding of request messages from
Diagnostic Management.

5

146 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
ReportMonitorAction Report the status information being relevant for error

monitoring paths.

StopOffer Disable forwarding of request messages from
Diagnostic Management.

Name: Event
Technology: Port interface

Generated: No

Meta-model
interface type:

DiagnosticEventInterface

Usage: Public API

Description: This interface defines functionality for diagnostic events.

GetDTCNumber Returns the DTC-ID related to this event instance.

GetDebouncingStatus Get the current debouncing status.

GetEventStatus Returns the current diagnostic event status.

GetFaultDetectionCounter Returns the current value of Fault Detection Counter of
this event.

GetLatchedWIRStatus Returns the current warning indicator status.

GetTestComplete Get the status if the event has matured to test
completed (corresponds to FDC = -128 or FDC = 127).

SetEventStatusChangedNotifier Register a notifier function which is called if a diagnostic
event is changed.

Operations:

SetLatchedWIRStatus Set the warning indicator status.

Name: GenericDataIdentifier
Technology: Port interface

Generated: No

Meta-model
interface type:

DiagnosticDataIdentifierGenericInterface

Usage: Public API

Description: Generic interface to handle ReadDataByIdentifier and WriteDataByIdentifier requests.

Offer Enable forwarding of request messages from
Diagnostic Management.

Read Called for a ReadDataByIdentifier request for this
DiagnosticDataIdentifier.

StopOffer Disable forwarding of request messages from
Diagnostic Management.

Operations:

Write Called for a WriteDataByIdentifier request for this
DiagnosticDataIdentifier.

Name: GenericUDSService
Technology: Port interface

Generated: No

Meta-model
interface type:

DiagnosticGenericUdsInterface

Usage: Public API

Description: Generic interface to handle UDS messages.

5

147 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
HandleMessage Handles an UDS request message.

Offer Enable forwarding of request messages from
Diagnostic Management.

Operations:

StopOffer Disable forwarding of request messages from
Diagnostic Management.

Name: GenericRoutine
Technology: Port interface

Generated: No

Meta-model
interface type:

DiagnosticRoutineGenericInterface

Usage: Public API

Description: Generic interface to handle RoutineControl requests.

Offer Enable forwarding of request messages from
Diagnostic Management.

RequestResults Called for RoutineControl with SubFunction
RequestResults request for this Diagnostic
RoutineIdentifier.

Start Called for RoutineControl with SubFunction
Start request for this DiagnosticRoutine
Identifier.

Stop Called for RoutineControl with SubFunction Stop
request for this DiagnosticRoutineIdentifier.

Operations:

StopOffer Disable forwarding of request messages from
Diagnostic Management.

«aapFunctionalCluster»
Diagnostic Managementdaemon-based

«aapPortInterface,aapAPI»
Routine

+ Offer()
+ RequestResults()
+ Start()
+ Stop()
+ StopOffer()

«aapPortInterface,aapAPI»
DataIdentifier

+ Offer()
+ Read()
+ StopOffer()
+ Write()

«aapPortInterface,aapAPI»
DataElement

+ Offer()
+ Read()
+ StopOffer()

Adaptive Application

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 9.99: Generated interfaces for request handling

Name: DataIdentifier
Technology: Port interface

Generated: Yes

Meta-model
interface type:

DiagnosticDataIdentifierInterface

Usage: Public API

Description: Generated interface to handle ReadDataByIdentifier and WriteDataByIdentifier
requests.

5

148 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Offer Enable forwarding of request messages from

Diagnostic Management.

Read Called for a ReadDataByIdentifier request for this
DiagnosticDataIdentifier.

StopOffer Disable forwarding of request messages from
Diagnostic Management.

Operations:

Write Called for a WriteDataByIdentifier request for this
DiagnosticDataIdentifier.

Name: DataElement
Technology: Port interface

Generated: Yes

Meta-model
interface type:

DiagnosticDataElementInterface

Usage: Public API

Description: Generated interface to handle read requests for DataElements.

Offer Enable forwarding of request messages from
Diagnostic Management.

Read Called for reading a DataElement.

Operations:

StopOffer Disable forwarding of request messages from
Diagnostic Management.

Name: Routine
Technology: Port interface

Generated: Yes

Meta-model
interface type:

DiagnosticRoutineInterface

Usage: Public API

Description: Generated interface to handle RoutineControl requests.

Offer Enable forwarding of request messages from
Diagnostic Management.

RequestResults Called for RoutineControl with SubFunction
RequestResults request for this Diagnostic
RoutineIdentifier.

Start Called for RoutineControl with SubFunction
Start request for this DiagnosticRoutine
Identifier.

Stop Called for RoutineControl with SubFunction Stop
request for this DiagnosticRoutineIdentifier.

Operations:

StopOffer Disable forwarding of request messages from
Diagnostic Management.

149 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.8.1.1.3 Interfaces for security

«aapFunctionalCluster»
Diagnostic Management

daemon-based

«aapPortInterface,aapAPI»
SecurityAccess

+ CompareKey()
+ GetSeed()
+ Offer()
+ StopOffer()

Adaptive Application

«aapPortInterface,aapAPI»
ServiceValidation

+ Confirmation()
+ Offer()
+ StopOffer()
+ Validate()

«aapAPI,aapPortInterface»
Authentication

+ Offer()
+ StopOffer()
+ VerifyCertificateBidirectional()
+ VerifyCertificateUnidirectional()
+ VerifyOwnership()

«aapAPI,aapPortInterface»
TransmitCertificate

+ Offer()
+ Process()
+ StopOffer()

«use»
«aapProvidedPort»

«use»
«aapProvidedPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 9.100: Interfaces for security

Name: SecurityAccess

Technology: Port interface

Generated: No

Meta-model
interface type:

DiagnosticSecurityLevelInterface

Usage: Public API

Description: This interface provides functionality for handling SecurityAccess requests.

CompareKey This method is called, when a diagnostic request has
been finished, to notify about the outcome.

GetSeed Called for any request message.

Offer Enable forwarding of request messages from
Diagnostic Management.

Operations:

StopOffer Disable forwarding of request messages from
Diagnostic Management.

Name: ServiceValidation
Technology: Port interface

Generated: No

Meta-model
interface type:

DiagnosticServiceValidationInterface

Usage: Public API

Description: This interface provides functionality for handling ServiceValidation requests.

Confirmation This method is called, when a diagnostic request has
been finished, to notify about the outcome.

Offer Enable forwarding of request messages from
Diagnostic Management.

StopOffer Disable forwarding of request messages from
Diagnostic Management.

Operations:

Validate Called for any request message.

150 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: Authentication
Technology: Port interface

Generated: No

Meta-model
interface type:

DiagnosticAuthenticationInterface

Usage: Public API

Description: Interface to handle Authentication requests.

Offer Enable forwarding of request messages from
Diagnostic Management.

StopOffer Disable forwarding of request messages from
Diagnostic Management.

VerifyCertificateBidirectional This function accepts the certificate and challenge
received from the tester, verifies the certificate, and
creates a challenge, ephemeral Public Key and Proof Of
Ownership that must be returned to the tester. The
function also returns the server certificate that will be
used by the tester to verify the Proof Of Ownership.

VerifyCertificateUnidirectional This function accepts the certificate received from the
tester, verifies it, and creates a challenge and
ephemeral public key that must be returned to the tester.

Operations:

VerifyOwnership This function accepts the Proof Of Ownership received
from the tester and verifies it with the Public Key of the
certificate received in the
VerifyCertificateUnidirectional /
VerifyCertificateBidirectional against the
server challenge created in the last call to
VerifyCertificateUnidirectional /
VerifyCertificateBidirectional.

Name: TransmitCertificate
Technology: Port interface

Generated: No

Meta-model
interface type:

DiagnosticTransmitCertificateInterface

Usage: Public API

Description: Interface to handle subfunction TransmitCertificate of UDS service Authentication.

Offer Enable forwarding of request messages from
Diagnostic Management.

Process Process a certificate sent by a diagnostic tester.

Operations:

StopOffer Disable forwarding of request messages from
Diagnostic Management.

151 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.8.1.1.4 Interfaces for Upload and Download

«aapFunctionalCluster»
Diagnostic Managementdaemon-based

«aapPortInterface,aap...
DownloadService

+ DownloadData()
+ Offer()
+ RequestDownload()
+ RequestDownloadExit()
+ StopOffer()

«aapPortInterface,aap...
UploadService

+ Offer()
+ RequestUpload()
+ RequestUploadExit()
+ StopOffer()
+ UploadData()

Adaptive Application

Diagnostic Application

«aapProvidedPort»

«use»

«aapProvidedPort»

«use»

Figure 9.101: Interfaces for Upload and Download

Name: UploadService

Technology: Port interface

Generated: No

Meta-model
interface type:

DiagnosticUploadInterface

Usage: Public API

Description: Upload service interface.

Offer Enable forwarding of request messages from
Diagnostic Management.

RequestUpload Called for RequestUpload.

RequestUploadExit Called for RequestTransferExit.

StopOffer Disable forwarding of request messages from
Diagnostic Management.

Operations:

UploadData Called for TransferData following a previous
RequestUpload.

Name: DownloadService
Technology: Port interface

Generated: No

Meta-model
interface type:

DiagnosticDownloadInterface

Usage: Public API

Description: Download service interface.

DownloadData Called for TransferData following a previous
RequestDownload.

Offer Enable forwarding of request messages from
Diagnostic Management.

Operations:

RequestDownload Called for RequestDownload.

5

152 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
RequestDownloadExit Called for RequestTransferExit.

StopOffer Disable forwarding of request messages from
Diagnostic Management.

9.8.1.1.5 Interfaces for Managing Multiple Conditions, Events, and Monitors

«aapFunctionalCluster»
Diagnostic Management

daemon-based

«aapAPI,aapPortInterface»
MultipleCondition

+ GetCondition()
+ SetCondition()

«aapAPI,aapPortInterface»
MultipleEvent

+ GetDebouncingStatus()
+ GetDTCNumber()
+ GetEventStatus()
+ GetFaultDetectionCounter()
+ SetEventStatusChangedNotifier()

«aapAPI,aapPortInterface»
MultipleMonitor

+ ConfigureMonitor()
+ Offer()
+ ReportMonitorAction()
+ StopOffer()

Adaptive Application

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 9.102: Interfaces for Managing Multiple Conditions, Events, and Monitors

Name: MultipleCondition

Technology: Port interface

Generated: No

Meta-model
interface type:

DiagnosticMultipleConditionInterface

Usage: Public API

Description: Interface for multiple condition operations.

GetCondition Get condition state of the requested condition.Operations:

SetCondition Set condition state of the requested condition.

Name: MultipleEvent

Technology: Port interface

Generated: No

Meta-model
interface type:

DiagnosticMultipleEventInterface

Usage: Public API

Description: Interface to implement operations on diagnostic Events with the multiple event interfaces.

GetDTCNumber Returns the DTC-ID related to requested event.

GetDebouncingStatus Get the current debouncing status of the requested
event.

Operations:

GetEventStatus Returns the current status of the requested event.

5

153 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
GetFaultDetectionCounter Returns the current value of Fault Detection Counter of

the selected event.

SetEventStatusChangedNotifier Register a notifier function which is called if a diagnostic
event is changed. A consecutive call of this method will
overwrite the previous registered notifier.

Name: MultipleMonitor

Technology: Port interface

Generated: No

Meta-model
interface type:

DiagnosticMultipleMonitorInterface

Usage: Public API

Description: Interface to implement monitor operations on the multiple monitor interfaces.

ConfigureMonitor Configures a monitor with counter-based debouncing.
Any overloaded ConfigureMonitor shall be only called
once per monitor. The monitor can only be used after
this initialization step.

Offer Enable forwarding request messages from
Diagnostic Management to this handler.

ReportMonitorAction Function to report the status information being relevant
for error monitoring paths. Calls with invalid monitor
Handle are ignored.

Operations:

StopOffer Disable forwarding request messages from
Diagnostic Management to this handler.

9.8.1.1.6 Interfaces for UDS Transportlayer API

«aapFunctionalCluster»
Diagnostic Management

daemon-based

«aapNativeInterface,aapPlatformExtens...
UdsTransportProtocolHandler

+ GetHandlerID()
+ GetPeriodicHandler()
+ Initial ize()
+ NotifyReestablishment()
+ Start()
+ Stop()
+ Transmit()

«aapNativeInterface,aapPlatformExtens...
UdsTransportProtocolMgr

+ ChannelReestablished()
+ HandleMessage()
+ HandlerStopped()
+ IndicateMessage()
+ NotifyMessageFailure()
+ PeriodicTransmitConfirmation()
+ TransmitConfirmation()

UDS Transportlayer Extension

«use» «use»

Figure 9.103: Interfaces for the UDS Transportlayer API (1 of 2)

154 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: UdsTransportProtocolHandler

Technology: Native interface

Usage: Platform extension

Description: This interface provides functionality for general Transport Protocol handling.

GetHandlerID Return the UdsTransportProtocolHandlerID,
which was given to the implementation during
construction (ctor call).

GetPeriodicHandler Returns the corresponding periodic Transport Protocol
handler.

Initialize Initializes the handler.

NotifyReestablishment Notify the Diagnostic Management core if the given
channel has been re-established.

Start Start processing the implemented UDS Transport
Protocol.

Stop Indicate that this instance should terminate.

Operations:

Transmit Transmit a UDS message via the underlying UDS
Transport Protocol channel.

Name: UdsTransportProtocolMgr

Technology: Native interface

Usage: Platform extension

Description: This interface provides functionality to manage messages and their handling.

ChannelReestablished Notification call from the given transport channel, that it
has been reestablished since the last (Re)Start from the
UdsTransportProtocolHandler to which this
channel belongs.

HandleMessage Hands over a valid received UDS message (currently
this is only a request type) from transport layer to
session layer.

HandlerStopped Notification from handler, that it has stopped now (e.g.
closed down network connections, freed resources,
etc...)

IndicateMessage Indicates a message start.

NotifyMessageFailure Indicates, that the message indicated via
IndicateMessage() has failure and will not lead to a
final HandleMessage() call.

PeriodicTransmitConfirmation Confirmation of sent messages and number.

Operations:

TransmitConfirmation Notification about the outcome of a transmit request
called by core Diagnostic Management at the
handler via Transmit()

155 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

«aapFunctionalCluster»
Diagnostic Management

daemon-based

«aapNativeInterface,aapPlatformExtensi...
UdsMessage

+ AddMetaInfo()
+ GetPayload()
+ GetSa()
+ GetTa()
+ GetTaType()

«aapNativeInterface,aapPlatformExtens...
UdsTransportProtocolPeriodicHandler

+ GetMaxPayloadLength()
+ GetNumberOfPeriodicMessages()
+ PeriodicTransmit()

UDS Transportlayer Extension

«use» «use»

Figure 9.104: Interfaces for the UDS Transportlayer API (2 of 2)

Name: UdsMessage

Technology: Native interface

Usage: Platform extension

Description: Represents an UDS message exchanged between Diagnostic Management’s generic core (Uds
TransportProtocolMgr) and a specific implementation of UdsTransportProtocolHandler
on diagnostic request reception path or diagnostic response transmission path.

AddMetaInfo Called by the transport plugin to add channel specific
meta-info.

GetPayload Get the UDS message data starting with the SID (A_
Data as per ISO).

GetSa Get the source address of the UDS message.

GetTa Get the target address of the UDS message.

Operations:

GetTaType Get the target address type (phys/func) of the UDS
message.

Name: UdsTransportProtocolPeriodicHandler

Technology: Native interface

Usage: Platform extension

Description: This interface provides functionality for Transport Protocol handling of periodic messages.

GetMaxPayloadLength Reports the maximum payload length supported for a
single periodic transmission on the channel.

GetNumberOfPeriodicMessages Reports the Transport Protocol implementation and
connection specific number of periodic messages.

Operations:

PeriodicTransmit Sends all the messages in the list in the given order.

156 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.8.1.1.7 Interfaces for DoIP API

«aapFunctionalCluster»
Diagnostic Management

daemon-based

«aapPortInterface,aapPlatformExtension»
DoIPGroupIdentification

+ GetGidStatus()
+ Offer()
+ StopOffer()

«aapPortInterface,aapPlatformExtension»
DoIPActivationLine

+ GetActivationLineState()
+ GetNetworkInterfaceId()
+ Offer()
+ StopOffer()
+ UpdateActivationLineState()

DoIP Extension

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 9.105: Interfaces for the DoIP API (1 of 2)

Name: DoIPGroupIdentification

Technology: Port interface

Generated: No

Meta-model
interface type:

DiagnosticDoIPGroupIdentificationInterface

Usage: Platform extension

Description: This interface provides functionality to get the GID state of the DoIP protocol.

GetGidStatus Called to get the current GID state for the DoIP protocol.

Offer Enable forwarding of request messages from
Diagnostic Management.

Operations:

StopOffer Disables forwarding of request messages from
Diagnostic Management.

Name: DoIPActivationLine
Technology: Port interface

Generated: No

Meta-model
interface type:

DiagnosticDoIPActivationLineInterface

Usage: Platform extension

Description: This interface provides functionality to control the DoIP activation line.

GetActivationLineState Get the current activation line state.

GetNetworkInterfaceId Get the network interface Id for which this instance is
responsible.

Offer Enable provision of the activation line state to
Diagnostic Management.

StopOffer Disable provision of the activation line state to
Diagnostic Management.

Operations:

UpdateActivationLineState Update current activation line state.

157 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

«aapFunctionalCluster»
Diagnostic Management

daemon-based

«aapPortInterface,aapPlatformExtension»
DoIPPowerMode

+ GetDoIPPowerMode()
+ Offer()
+ StopOffer()

«aapPortInterface,aapPlatformExtension»
DoIPTriggerVehicleAnnouncement

+ GetDoIPTriggerVehicleAnnouncement()
+ TriggerVehicleAnnouncement()

DoIP Extension

«use»
«aapRequiredPort»

«use»
«aapProvidedPort»

Figure 9.106: Interfaces for the DoIP API (2 of 2)

Name: DoIPPowerMode
Technology: Port interface

Generated: No

Meta-model
interface type:

DiagnosticDoIPPowerModeInterface

Usage: Platform extension

Description: This interface provides functionality to control the power mode via DoIP.

GetDoIPPowerMode Called to get the current Power Mode for the DoIP
protocol.

Offer Enable forwarding of request messages from
Diagnostic Management.

Operations:

StopOffer Disable forwarding of request messages from
Diagnostic Management.

Name: DoIPTriggerVehicleAnnouncement

Technology: Port interface

Generated: No

Meta-model
interface type:

DiagnosticDoIPTriggerVehicleAnnouncementInterface

Usage: Platform extension

Description: This interface provides functionality to trigger a vehicle announcement via DoIP.

GetDoIPTriggerVehicleAnnouncement Get the DoIPTriggerVehicleAnnouncement
interface.

Operations:

TriggerVehicleAnnouncement Send out vehicle announcements on the given network
interface Id.

9.8.1.2 Provided interfaces

Diagnostic Management does not provide any interfaces to other Functional Clus-
ters.

158 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

9.8.1.3 Required interfaces

«aapFunctionalCluster»
Diagnostic Managementdaemon-based

«aapAPI,aapPortInterface»
FileStorage

+ DeleteFile()
+ FileExists()
+ GetAllFileNames()
+ GetCurrentFileSize()
+ GetFileInfo()
+ OpenFileReadOnly(): ReadAccessor
+ OpenFileReadWrite(): ReadWriteAccessor
+ OpenFileWriteOnly(): ReadWriteAccessor
+ RecoverFile()
+ ResetFile()

«aapAPI,aapNativeInterface»
Logger

+ IsEnabled(): bool
+ Log(MsgId, Params)
+ LogDebug(): LogStream
+ LogError(): LogStream
+ LogFatal(): LogStream
+ LogInfo(): LogStream
+ LogVerbose(): LogStream
+ LogWarn(): LogStream
+ WithLevel(): LogStream

«aapFunctionalCluster»
Persistency

«aapFunctionalCluster»
Log and Trace

«aapAPI,aapPortInterface»
KeyValueStorage

+ DiscardPendingChanges()
+ GetAllKeys()
+ GetCurrentValueSize()
+ GetValue()
+ KeyExists()
+ RecoverKey()
+ RemoveAllKeys()
+ RemoveKey()
+ ResetKey()
+ SetValue()
+ SyncToStorage()

«use»
«aapRequiredPort»

«use»«use»
«aapRequiredPort»

Figure 9.107: Interfaces required by Diagnostic Management

«aapFunctionalCluster»
Diagnostic Management

daemon-based

«aapPortInterface,aapAPI»
EventReporter

+ ReportEvent()

«aapFunctionalCluster»
Intrusion Detection System Manager

daemon-based

«aapAPI,aapNativeInterface»
CryptoStack

«aapFunctionalCluster»
Cryptography

daemon-based

«use» «use»

Figure 9.108: Security-related Interfaces required by Diagnostic Management

«aapFunctionalClust...
Diagnostic Management

daemon-based

«aapInternal»
TCP/IP Stack

Operating System

«use»

Figure 9.109: Interfaces required by Diagnostic Management from external components

159 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Interface Purpose

ManifestAccessor Diagnostic Management shall use this interface to read its
configuration information from the Manifests.

TCP/IP Stack This interface is used for DoIP Transport Protocols.

Cryptography::CryptoStack This interface may be used e.g., to access keys for secure diagnostics.

Diagnostic Management::Authentication

Diagnostic Management::Communication
Control

This interface should be used to realize UDS Service 0x28 -
CommunicationControl.

Diagnostic Management::DataElement This interface is used to handle read DataElement requests.

Diagnostic Management::DataIdentifier This interface is used to handle ReadDataByIdentifier and Write
DataByIdentifier requests.

Diagnostic Management::DoIPActivationLine This interface is used to control a DoIP Transport Layer implementation.

Diagnostic Management::DoIPGroup
Identification

This interface is used to control a DoIP Transport Layer implementation.

Diagnostic Management::DoIPPowerMode This interface is used to control a DoIP Transport Layer implementation.

Diagnostic Management::DoIPTriggerVehicle
Announcement

This interface is used to control a DoIP Transport Layer implementation.

Diagnostic Management::DownloadService This interface is used to handle download requests.

Diagnostic Management::GenericDataIdentifier This interface is used to handle ReadDataByIdentifier and Write
DataByIdentifier requests.

Diagnostic Management::GenericRoutine This interface is used to handle RoutineControl requests.

Diagnostic Management::GenericUDSService This interface is used to handle UDS requests.

Diagnostic Management::Routine This interface is used to handle RoutineControl requests.

Diagnostic Management::SecurityAccess This interface is used to handle SecurityAccess requests.

Diagnostic Management::ServiceValidation This interface is used to handle ServiceValidation requests.

Diagnostic Management::TransmitCertificate

Diagnostic Management::UdsMessage This interface is used to access an UDS Transport Layer implementation.

Diagnostic Management::UdsTransportProtocol
Handler

This interface is used to access an UDS Transport Layer implementation.

Diagnostic Management::UdsTransportProtocol
Mgr

This interface is used to access an UDS Transport Layer implementation.

Diagnostic Management::UdsTransportProtocol
PeriodicHandler

This interface is used to access an UDS Transport Layer implementation.

Diagnostic Management::UploadService This interface is used to handle upload requests.

Execution Management::ExecutionClient This interface is used to report the status of the Diagnostic
Management daemon process(es).

Intrusion Detection System Manager::Event
Reporter

Diagnostic Management uses this interface to report standardized
security events.

Log and Trace::Logger Diagnostic Management shall use this interface to log standardized
messages.

Persistency::FileStorage Used to store associated data of diagnostic trouble codes (e.g., freeze
frames).

Persistency::KeyValueStorage Used to store properties of diagnostic trouble codes and diagnostic
sessions.

Platform Health Management::SupervisedEntity Diagnostic Management should use this interface to enable
supervision of its daemon process(es) by Platform Health
Management.

Table 9.31: Interfaces required by Diagnostic Management

160 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

10 Use-Case View

This chapter provides an overview of the use cases of the AUTOSAR Adaptive Plat-
form. The use cases are defined on the level of the Functional Clusters in the
AUTOSAR Adaptive Platform. The chapter structure corresponds to the Building Block
View in Section 9.

The use cases in this chapter are specified in a solution-neutral way. As a conse-
quence, include and extend relationships are used sparingly to avoid "programming"
with use cases. Please refer to the individual scenarios in chapter 11 that provide a
detailed insight how the use cases could be implemented and how they refer to each
other.

The use cases are described using tables that are based on the template shown in
Table 10.1. Some rows are optional and will be left out if empty. Each use case has
one or more scenarios. The default scenarios show a successful execution of the use
case. Other scenarios show error or alternate cases.

Name: The name of this use case
Description: A brief description of this use case.

Supporting: If yes, this use case is defined just for factoring out common behavior by
means of include or extend relationships only. The use case is not triggered
directly by an actor and usually does not have own scenarios. This row is
optional.

Triggering
Actors:

The name of an actor that
triggers this use case. This row
is optional.

A brief description how the actor triggers
the use case.

Participating
Actors:

The name of an actor that
participates in this use case.
This row is optional.

A brief description how the actor
participates the use case.

Base use case: The name of the use case that this use cases specializes. This row is optional.

Included use
cases:

The name of an use case that is
included by this use case. This
row is optional.

A brief description of the reason for
including the use case.

Extending use
cases:

The name of an use case that
extends this use case. This row
is optional.

A brief description of the condition for
extending this use case.

Preconditions: A list of preconditions that need to be fulfilled before the use case can be
executed.

Invariants: A list of invariants that need to be fulfilled before the use case can be
executed, while the use case is executed, and after the use case has been
executed.

Postconditions: A list of postconditions that need to be fulfilled after the use case has been
executed.

Scenarios: The name of the scenario. This
row is optional.

A brief description of the scenario.

Table 10.1: Template for Use Cases

161 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

10.1 Runtime

10.1.1 Execution Management

Adaptive Platform

Execution Management

«aapUseCase»

Start Adaptive Platform

«aapUseCase»

Shutdown Adaptive
Platform

Operating System

(from
Actors)

«aapFunctionalCluster»
State Management

daemon-based

«aapUseCase»

Change Function Group
State

Adaptive Application

(from
Actors)

«aapFunctionalCluster»
Platform Health Management

daemon-based«aapParticipates»

«aapTriggers»

«aapParticipates»

«aapTriggers»

«aapTriggers»

«include»

«aapTriggers»

«include»

«aapParticipates»

Figure 10.1: Use cases for Execution Management

10.1.1.1 Start Adaptive Platform

Name: Start Adaptive Platform

Description: This use case describes the start of the AUTOSAR Adaptive Platform.

Triggering
Actors:

Operating System The Operating System triggers this
use case by starting Execution
Management as the first process of the
AUTOSAR Adaptive Platform. The
Operating System also participates in
this use case by starting processes.

Included use
cases:

Change Function Group
State

This use case is included to perform the
transition to the Machine Function
Group State named Startup.

Preconditions: • The base software, for example a operating system or a hypervisor, is
initialized and running.

Invariants: • The configuration of the base software remains unchanged, in particular the
processes of base software.

Postconditions: • The standardized Machine Function Group State named Startup
has been entered.

5

162 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Scenarios: Start Adaptive Platform

with Supervision of
Adaptive Applications

This is the default scenario showing the
startup of the Adaptive Platform with an
supervision of Adaptive Applications. It
therefore includes the startup of
Platform Health Management that
performs supervision and the startup of
an Adaptive Application that is supervised
as part of the Startup Machine Function
Group State. Additional Functional
Clusters and Application processes may
need to be started in addition depending
on the Adaptive Platform implementation
and project-specific needs.

Table 10.2: Use-Case Start Adaptive Platform

10.1.1.2 Shutdown Adaptive Platform

Name: Shutdown Adaptive Platform

Description: This use case describes the shutdown of the AUTOSAR Adaptive Platform.

Triggering
Actors:

State Management State Management triggers this use
case by requesting the standardized
Machine Function Group State
named Shutdown.

Participating
Actors:

Operating System The Operating System participates in
this use case by starting and stopping
processes.

Included use
cases:

Change Function Group
State

This use case is included to perform the
transition to the Machine Function
Group State named Shutdown.

Preconditions: None
Invariants: None
Postconditions: • The AUTOSAR Adaptive Platform has been shutdown.

Scenarios: Shutdown Adaptive
Platform with
Supervision of Adaptive
Applications

This is the default scenario showing the
regular shutdown of the Adaptive
Platform. It includes the shutdown of
Platform Health Management that
performs supervision of applications.

Table 10.3: Use-Case Shutdown Adaptive Platform

10.1.1.3 Change Function Group State

163 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: Change Function Group State

Description: This use case describes the change of a Function Group State. The use
case is applicable to both, Function Group States defined by an
application as well as predefined Function Group States of the
AUTOSAR Adaptive Platform (i.e., Machine Function Group State).
See Sections 13.2 and 13.3 for details.

Triggering
Actors:

State Management State Management triggers this use
case by requesting a Function Group
State from Execution Management.

Operating System The Operating System participates in
this use case by starting / stopping
processes as requested by Execution
Management.

Adaptive Application The Adaptive Application
participates in this use case by reporting
its execution state to Execution
Management.

Participating
Actors:

Platform Health Management Platform Health Management
participates in this use case by using
information from Execution
Management about processes to be
newly started or terminated for
coordination with supervision checkpoints.

Preconditions: None
Invariants: • The configuration of the base software remains unchanged, in particular the

processes of base software.

Postconditions: • The requested Function Group State has been entered successfully.

Scenarios: Change Function Group
State

This is the default scenario showing the
regular change of a Function Group
State.

Table 10.4: Use-Case Change Function Group State

10.1.2 State Management

Adaptive Platform

State Management

Adaptive Application

«aapUseCase»

Change System State

«aapFunctionalCluster»
Execution Management

daemon-based

«aapUseCase»

Recover from
Supervision Failure

«aapFunctionalCluster»
Platform Health
Management

daemon-based

«aapTriggers»

«extend»

«aapTriggers»

«aapParticipates»

Figure 10.2: Use cases for State Management

164 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

10.1.2.1 Change System State

Name: Change System State

Description: This use case describes the change the state of the system (i.e., the
configuration and extent of the running Processes).

Triggering
Actors:

Adaptive Application The Adaptive Application triggers
this use case by changing the value of the
field Trigger in a TriggerIn or
TriggerInOut service interface.

Participating
Actors:

Execution Management Execution Management participates in
this use case by requesting a start or
termination of processes from the
Operating System.

Preconditions: • The system is not in Machine State Shutdown.

Invariants: None
Postconditions: • The system state (i.e. the configuration and extent of running Processes)

has changed.

Change System State This is the default scenario showing a
state change reaction by State
Management after a change to a
TriggerIn or TriggerInOut service
interface.

Scenarios:

Reject Trigger Input This is an alternate scenario
demonstrating how a change to a
TriggerIn or TriggerInOut service
interface does not lead to a state change
reaction by State Management.

Table 10.5: Use-Case Change System State

10.1.2.2 Recover from Supervision Failure

Name: Recover from Supervision Failure

Description: This use case describes the recovery from a supervision failure reported by
Platform Health Management.

Triggering
Actors:

Platform Health Management Platform Health Management
triggers this use case.

Extending use
cases:

Change System State Change System State extends this
use case if State Management decides
to switch the system state to recover from
a supervision failure.

5

165 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Preconditions: • State Management needs to be registered with the RecoveryAction

interface of Platform Health Management.
Invariants: None
Postconditions: No postconditions defined at the moment.

Recover by System State
Change

This is the default scenario showing a
recovery from a supervision failure by
switching the system state.

Scenarios:

Recover by Watchdog
Reset

This alternate scenario shows a recovery
from a supervision failure by triggering a
Watchdog reset.

Table 10.6: Use-Case Recover from Supervision Failure

10.2 Communication

10.2.1 Raw Data Stream

Raw Data Stream

Adaptive Platform

Adaptive Application

(from
Actors)

Send Raw Data Stream

Receive Raw Data
Stream

Operating System

(from
Actors)

«aapParticipates»

«aapParticipates»

«aapTriggers»

«aapTriggers»

Figure 10.3: Use cases for Raw Data Stream

Raw Data Stream supports IP based protocols (network layer) and the IEEE1722
protocol (data link layer) to send and receive data. However, from a use case perspec-
tive, the protocols are not differentiated.

10.2.1.1 Send Raw Data Stream

166 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: Send Raw Data Stream
Description: This use case demonstrates sending of raw data.

Triggering
Actors:

Adaptive Application The Adaptive Application triggers
this use case by requesting a the
transmission of data from Raw Data
Stream.

Participating
Actors:

Operating System The Operating System participates in
this use case by handling the lower level
protocol(s) used to transmit data packets
on the network.

Preconditions: • Internal connection to a network layer or data link layer socket is established

• In case the TCP protocol is used for data transmission, a connection
between client and server is established

Invariants: None
Postconditions: • The requested provided data has been transmitted.

Send IEEE1722 Stream This scenario shows sending data via the
IEEE1722 protocol (data link layer).

Scenarios:

Send IP Stream This scenario shows sending data via an
IP-based protocol (network layer).

Table 10.7: Use-Case Send Raw Data Stream

10.2.1.2 Receive Raw Data Stream

Name: Receive Raw Data Stream
Description: This use case demonstrates receiving of raw data.

Triggering
Actors:

Adaptive Application The Adaptive Application triggers
this use case by requesting to read data
from Raw Data Stream.

Participating
Actors:

Operating System The Operating System participates in
this use case by handling the lower level
protocol(s) used to receive data packets
on the network.

Preconditions: • Internal connection to a network layer or data link layer socket is established

• In case the TCP protocol is used for data transmission, a connection
between client and server is established

Invariants: None
Postconditions: None

Receive IEEE1722 Stream This scenario shows receiving data via the
IEEE1722 protocol (data link layer).

Scenarios:

Receive IP Stream This scenario shows receiving data via an
IP-based protocol (network layer).

Table 10.8: Use-Case Receive Raw Data Stream

167 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

10.2.2 Time Synchronization

The use cases for Time Synchronization are separated into use cases for Time
Synchronization Master (see Section 10.2.2.1) and Time Synchronization Slave (see
Section 10.2.2.2) are described below.

10.2.2.1 Time Synchronization Master

Time Synchronization

Adaptive Platform

Adaptive Application

(from
Actors)

«aapUseCase»

Set Value of Time
Base

«aapUseCase»

Provide
Measurement Data

«aapTriggers»

«aapTriggers»

Figure 10.4: Use cases for Time Synchronization Master

10.2.2.1.1 Set Value Of Time Base

Name: Set Value Of Time Base
Description: This use case describes setting the value of a time base.

Triggering
Actors:

Adaptive Application The Adaptive Application triggers
this use case by providing a value for the
time base.

Preconditions: None
Invariants: None
Postconditions: None
Scenarios: Set Value Of Time Base This is a default scenario showing the

update of the time base value.

Table 10.9: Use-Case Set Value Of Time Base

10.2.2.1.2 Provide Measurement Data

168 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: Provide Measurement Data
Description: This use case describes providing measurement data such as timing details.

Triggering
Actors:

Adaptive Application The Adaptive Application triggers
this use case by providing detailed timing
data.

Preconditions: None
Invariants: None
Postconditions: None
Scenarios: Provide Measurement Data This scenario is not detailed in this

document due to its simplicity.

Table 10.10: Use-Case Provide Measurement Data

10.2.2.2 Time Synchronization Slave

Time Synchronization

Adaptive Platform

Adaptive Application

(from
Actors)

«aapUseCase»

Get Value of Time
Base

«aapUseCase»

Receive Notification

«aapTriggers»

«aapTriggers»

Figure 10.5: Use cases for Time Synchronization Slave

10.2.2.2.1 Get Value Of Time Base

Name: Get Value Of Time Base
Description: This use case describes getting the value of a time base.

Triggering
Actors:

Adaptive Application The Adaptive Application triggers
this use case by asking for a time value.

Preconditions: None
Invariants: None
Postconditions: None
Scenarios: Get Value Of Time Base This is a default scenario showing the

retrieval of the time base value by an
Adaptive Application.

Table 10.11: Use-Case Get Value Of Time Base

169 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

10.2.2.2.2 Receive Notification

Name: Receive Notification
Description: This use case describes receiving of a notification.

Triggering
Actors:

Adaptive Application The Adaptive Application triggers
this use case by registering status change
notifier.

Preconditions: The Adaptive Application needs to be registered with the Time
Synchronization Slave.

Invariants: None
Postconditions: None
Scenarios: Receive Notification This is a default scenario showing the

reception of a notification by the
Adaptive Application in case of
either a change of the synchronization
status or user data, or a leap jump.

Table 10.12: Use-Case Receive Notification

10.2.3 Automotive API Gateway

Automotive API Gateway

Adaptive Platform

«aapUseCase»

Access Data

«aapUseCase»

Access Data inside
Classic Application

«aapUseCase»

Access Data inside
Adaptive ApplicationOnboard Client

(from
Actors)

Offboard Client

(from
Actors)

Adaptive Application

(from
Actors)

Classic Application

(from
Actors)

«aapParticipates»

«aapTriggers»

«aapTriggers»

«aapParticipates»

Figure 10.6: Use cases for the Automotive API Gateway

10.2.3.1 Access Data

Name: Access Data
Description: This use case describes accessing data inside the vehicle in a uniform way.

This means being able to read, write, and subscribe to data.
5

170 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Offboard Client An Offboard Client triggers this use

case by using one of the access functions
that the Automotive API Gateway
provides.

Triggering
Actors:

Onboard Client An Offboard Client triggers this use
case by using one of the access functions
that the Automotive API Gateway
provides.

Adaptive Application An Adaptive Application provides
access to certain data to make it
accessible via the Automotive API
Gateway.

Participating
Actors:

Classic Application A Classic Application provides
access to certain data to make it
accessible via the Automotive API
Gateway.

Preconditions: None
Invariants: None
Postconditions: None

Access Data inside Adaptive
Application

This is a specialization where the data
that is accessed is managed by an
Adaptive Application.

Scenarios:

Access Data inside Classic
Application

This is a specialization where the data
that is accessed is managed by a
Classic Application.

Table 10.13: Use-Case Access Data

10.3 Storage

10.3.1 Persistency

The use cases for Persistency are organized into three categories. Section 10.3.1.1
lists the use cases for reading persistent data. Section 10.3.1.2 lists the use cases for
storing persistent data. Section 10.3.1.3 lists the use cases related to monitoring of
persistent storage.

171 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

10.3.1.1 Read Persistent Data

Adaptive Platform

Persistency

Adaptive Application

(from
Actors)

«aapFunctionalCluster»
Cryptography

daemon-based

Operating System

(from
Actors)

«aapUseCase»

Read Persistent Data

«aapUseCase»

Read Persistent Data
with Unique ID

«aapUseCase»

Read Persistent Data
from File

«aapUseCase»

Detect and Correct Data
Errors

«aapUseCase»

Decrypt Persistent Data

«aapParticipates»

«aapTriggers»

«extend»

«aapParticipates»

«extend»

Figure 10.7: Use Cases for Reading Persistent Data

10.3.1.1.1 Read Persistent Data from File

Name: Read Persistent Data from File
Description: This use case describes reading persistent data from a file.

Triggering
Actors:

Adaptive Application The Adaptive Application triggers
this use case.

Participating
Actors:

Operating System The Operating System participates in
this use case by providing access to the
underlying storage.

Base use case: Read Persistent Data
Detect and Correct Data
Errors

Detect and Correct Data Errors
extends this use case if redundancy is
configured in the Manifest (see
PersistencyRedundancyHandling).

Extending use
cases:

Decrypt Persistent Data Decrypt Persistent Data extends
this use case if encryption is configured in
the Manifest (see PersistencyDe-
ploymentToCryptoKeySlotMapping
or PersistencyDeploymentElement-
ToCryptoKeySlotMapping).

Preconditions: • The requested file exists.

Invariants: None
Postconditions: None
Scenarios: Read Persistent Data

from File
This is the default scenario showing how
persistent data is read from a file.

Table 10.14: Use-Case Read Persistent Data from File

172 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

10.3.1.1.2 Read Persistent Data with Unique ID

Name: Read Persistent Data With Unique ID

Description: This use case describes reading persistent data associated with a unique ID
(key).

Triggering
Actors:

Adaptive Application The Adaptive Application triggers
this use case.

Participating
Actors:

Operating System The Operating System participates in
this use case by providing access to the
underlying storage.

Base use case: Read Persistent Data
Detect and Correct Data
Errors

Detect and Correct Data Errors
extends this use case if redundancy is
configured in the Manifest (see
PersistencyRedundancyHandling).

Extending use
cases:

Decrypt Persistent Data Decrypt Persistent Data extends
this use case if encryption is configured in
the Manifest (see PersistencyDe-
ploymentToCryptoKeySlotMapping
or PersistencyDeploymentElement-
ToCryptoKeySlotMapping).

Preconditions: • The requested unique ID (key) exists.

Invariants: None
Postconditions: None
Scenarios: Read Persistent Data

with Unique ID
This is the default scenario showing how
data is read with a unique ID (key).

Table 10.15: Use-Case Read Persistent Data With Unique ID

10.3.1.1.3 Decrypt Persistent Data

173 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: Decrypt Persistent Data

Description: This use case describes the decryption of persistent data. It is part of the
scenarios of the concrete use cases Read Persistent Data with
Unique ID and Read Persistent Data from File

Participating
Actors:

Cryptography Cryptography participates in this use
case by decrypting data.

Preconditions: • Encryption/decryption is configured in the Manifest (see
PersistencyDeploymentToCryptoKeySlotMapping or
PersistencyDeploymentElementToCryptoKeySlotMapping).

Invariants: None
Postconditions: None
Scenarios: None, see use cases Read Persistent Data with Unique ID and

Read Persistent Data from File.

Table 10.16: Use-Case Decrypt Persistent Data

10.3.1.1.4 Detect and Correct Data Errors

Name: Detect and Correct Data Errors
Description: An Adaptive Application attempts to read data that is stored safely, using

CRCs/hash values and redundant copies. The read access performs a check
of data and redundancy information. In case the data is valid, it is returned.
Otherwise, if it is corrupted and cannot be restored from an undamaged
redundant copy, an error is returned.

Preconditions: • Redundancy is configured in the Manifest (see
PersistencyRedundancyHandling).

Invariants: None
Postconditions: • Valid data is returned or an error is returned.
Scenarios: None, see use cases Read Persistent Data with Unique ID and

Read Persistent Data from File.

Table 10.17: Use-Case Detect and Correct Data Errors

174 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

10.3.1.2 Store Persistent Data

Adaptive Platform

Persistency

«aapUseCase»

Encrypt Persistent Data

Adaptive Application

(from
Actors)

«aapFunctionalCluster»
Cryptography

daemon-based

Operating System

(from
Actors)

«aapUseCase»

Store Persistent Data

«aapUseCase»

Store Persistent Data
with Unique ID

«aapUseCase»

Store Persistent Data in
File

«aapUseCase»

Add Redundancy

«aapParticipates»

«extend»

«aapTriggers»

«extend»

«aapParticipates»

Figure 10.8: Use Cases for Storing Persistent Data

10.3.1.2.1 Store Persistent Data in File

Name: Store Persistent Data in File
Description: This use case describes storing persistent data in a file.

Triggering
Actors:

Adaptive Application The Adaptive Application triggers
this use case.

Participating
Actors:

Operating System The Operating System participates in
this use case by providing access to the
underlying storage.

Base use case: Store Persistent Data
Encrypt Persistent Data Encrypt Persistent Data extends

this use case if encryption is configured in
the Manifest (see PersistencyDe-
ploymentToCryptoKeySlotMapping
or PersistencyDeploymentElement-
ToCryptoKeySlotMapping).

Extending use
cases:

Add Redundancy Add Redundancy extends this use case
if encryption is configured in the
Manifest (see
PersistencyRedundancyHandling).

Preconditions: • The requested file exists.

Invariants: None
Postconditions: None
Scenarios: Store Persistent Data in

File
This is the default scenario showing how
persistent data is stored in a file.

Table 10.18: Use-Case Store Persistent Data in File

175 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

10.3.1.2.2 Store Persistent Data with Unique ID

Name: Store Persistent Data with Unique ID

Description: This use case describes storing persistent data associated with an unique ID
(key).

Triggering
Actors:

Adaptive Application The Adaptive Application triggers
this use case.

Participating
Actors:

Operating System The Operating System participates in
this use case by providing access to the
underlying storage.

Base use case: Store Persistent Data
Encrypt Persistent Data Encrypt Persistent Data extends

this use case if encryption is configured in
the Manifest (see PersistencyDe-
ploymentToCryptoKeySlotMapping
or PersistencyDeploymentElement-
ToCryptoKeySlotMapping).

Extending use
cases:

Add Redundancy Add Redundancy extends this use case
if encryption is configured in the
Manifest (see
PersistencyRedundancyHandling).

Preconditions: • The requested unique ID (key) exists.

Invariants: None
Postconditions: None
Scenarios: Store Persistent Data

with Unique ID
This is the default scenario showing how
persistent data is stored with a unique ID
(key).

Table 10.19: Use-Case Store Persistent Data with Unique ID

10.3.1.2.3 Encrypt Persistent Data

Name: Encrypt Persistent Data

Description: This use case describes the encryption of persistent data. It is part of the
scenarios of the concrete use cases Store Persistent Data with
Unique ID and Store Persistent Data in File

Participating
Actors:

Cryptography The Cryptography participates in this
scenario by encrypting persistent data.

Preconditions: • Encryption/decryption is configured in the Manifest (see
PersistencyDeploymentToCryptoKeySlotMapping or
PersistencyDeploymentElementToCryptoKeySlotMapping).

Invariants: None
5

176 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Postconditions: None
Scenarios: None, see use cases Store Persistent Data with Unique ID and

Store Persistent Data in File.

Table 10.20: Use-Case Encrypt Persistent Data

10.3.1.2.4 Add Redundancy

Name: Add Redundancy

Description: An adaptive application attempts to store data safely by storing it together with
CRCs/hash values and/or additional copies of that data.

Preconditions: • Redundancy is configured in the Manifest (see
PersistencyRedundancyHandling).

Invariants: None
Postconditions: • Data is stored together with redundant data.

Scenarios: None, see use cases Store Persistent Data with Unique ID and
Store Persistent Data in File.

Table 10.21: Use-Case Add Redundancy

10.3.1.3 Monitoring

Adaptive Platform

Persistency

Adaptive Application

(from
Actors)

Operating System

(from
Actors)

«aapUseCase»

Get Storage Size

«aapParticipates»

«aapTriggers»

Figure 10.9: Use Cases for Monitoring

10.3.1.3.1 Get Storage Size

177 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: Get Storage Size

Description: This use case describes determining the size of the storage space occupied
by persistent data.

Triggering
Actors:

Adaptive Application The Adaptive Application triggers
this use case.

Participating
Actors:

Operating System The Operating System participates in
this use case by providing information
from underlying storage.

Preconditions: None
Invariants: None
Postconditions: None

Get FileStorage Size This scenario shows how to obtain
information about occupied storage space
of a FileStorage.

Scenarios:

Get KeyValueStorage Size This scenario shows how to obtain
information about occupied storage space
of a KeyValueStorage.

Table 10.22: Use-Case Get Storage Size

10.4 Security

10.4.1 Firewall

Firewall

Adaptive Platform

Adaptive Application

(from
Actors)

Operating System

(from
Actors)

«aapUseCase»

Switch Firewall State

«aapUseCase»

Report Security Event

«aapFunctionalCluster»
Intrusion Detection System

Manager

daemon-based

«aapTriggers»

«aapTriggers» «aapParticipates»

«aapParticipates»

Figure 10.10: Use cases for Firewall

10.4.1.1 Switch Firewall State

178 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: Switch Firewall State
Description: This use case describes switching the firewall state.

Triggering
Actors:

Adaptive Application The Adaptive Application triggers
this use case.

Participating
Actors:

Operating System The Operating System participates in
this use case by applying the firewall rules
associated with the target firewall state to
its TCP/IP stack or, for example, a
hardware firewall.

Preconditions: None
Invariants: None
Postconditions: • The active firewall state has changed to the requested target state.

• The configured firewall rules have been applied to the underlying firewall
implementation.

Scenarios: Switch Firewall State This is the default scenario showing the
switch of the firewall state.

Table 10.23: Use-Case Switch Firewall State

10.4.1.2 Report Security Event

Name: Report Security Event

Description: This use case describes reporting a Security Event to Intrusion
Detection System Manager if a message is received that matches a
configured rule for blocked messages.

Triggering
Actors:

Operating System The Operating System triggers this
use case by informing the Firewall that
a message was received that matches a
configured rule for blocked messages.

Participating
Actors:

Intrusion Detection System
Manager

Intrusion Detection System
Manager participates in this use case by
handling the generated Security
Event.

Preconditions: • A rule for blocked messages and a corresponding Security Event have
been configured in the Manifest.

Invariants: None
Postconditions: • A Security Event has been generated and forwarded to the

Intrusion Detection System Manager.
Scenarios: Report Security Event This is the default scenario showing the

reporting of a security event.

Table 10.24: Use-Case Report Security Event

179 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

10.5 Safety

10.5.1 Platform Health Management

10.5.1.1 Manage Watchdog

Platform Health Management

Adaptive Platform

«aapFunctionalClust...
State Management

daemon-based

«aapUseCase»

Manage Watchdog

Watchdog

(from
Actors)

«aapParticipates» «aapParticipates»

Figure 10.11: Use case Manage Watchdog

Name: Manage Watchdog

Description: This use case describes managing the watchdog.

Triggering Event: The use case is triggered by an internal event (successfull supervision cycle).

Participating
Actors:

Watchdog The Watchdog participates in this use
case by receiving "alive" notification from
the Platform Health Management
periodically.

Preconditions: None
Invariants: Maximum time to reset the watchdog has not expired.

Postconditions: None
Scenarios: Manage Watchdog This scenario shows managing the

watchdog.

Table 10.25: Use-Case Manage Watchdog

10.5.1.2 Report Supervision Failure

Platform Health Management

Adaptive Platform

«aapFunctionalCluster»
State Management

daemon-based

«aapUseCase»

Report Supervision
Failure

Watchdog

(from
Actors)

«aapParticipates» «aapParticipates»

Figure 10.12: Use case Report Supervision Failure

180 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: Report Supervision Failure

Description: This use case describes reporting a supervision failure.

Triggering Event: The use case is triggered by a supervision failure detected by Platform
Health Management.
State Management State Management participates in this

use case by handling recovery.
Participating
Actors:

Watchdog The Watchdog participates in this use
case if the supervision failure can not be
handled.

Preconditions: • State Management has enabled potential invocation of
RecoveryHandler() by calling the method Offer().

Invariants: None
Postconditions: None
Scenarios: Report Supervision

Failure
This default scenario shows the reporting
of a supervision failure.

Table 10.26: Use-Case Report Supervision Failure

10.5.1.3 Recover from Critical Supervision Failure

Platform Health Management

Adaptive Platform

«aapUseCase»

Recover from Critical
Supervision Failure

«aapUseCase»

Watchdog Reset

Watchdog

(from
Actors)

«aapParticipates»

«include»

Figure 10.13: Use case Recover from Critical Supervision Failure

Name: Recover from Critical Supervision Failure

Description: This use case describes the recovery from a critical supervision failure, i.e.,
Execution Management or State Management processes failed.

Triggering Event: The use case is triggered by a critical supervision failure detected by
Platform Health Management.

5

181 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Included use
cases:

Watchdog Reset This use case is included to perform
recovery by requesting a watchdog reset
upon failure of Execution Management
or State Management.

Preconditions: • Execution Management and State Management processes are
supervised by Platform Health Management.

Invariants: None
Postconditions: • Platform Health Management establishes a supervision on

Execution Management and State Management processes after the
Adaptive Platform has restarted.

Recover from Critical
Supervision Failure in
Execution Management

This scenario shows a recovery from a
supervision failure in Execution
Management.

Scenarios:

Recover from Critical
Supervision Failure in
State Management

This scenario shows a recovery from a
supervision failure in State
Management.

Table 10.27: Use-Case Recover from Critical Supervision Failure

10.5.1.4 Report Checkpoint

Platform Health Management

Adaptive Platform

«aapUseCase»

Report Checkpoint

Adaptive Application

(from
Actors)

«aapFunctionalCluster»
State Management

daemon-based

«aapFunctionalCluster»
Intrusion Detection System

Manager

daemon-based

«aapFunctionalCluster»
Time Synchronization

daemon-based

«aapFunctionalCluster»
Update and Configuration

Management
daemon-based

«aapFunctionalCluster»
Diagnostic Management

daemon-based

«aapFunctionalCluster»
Execution Management

daemon-based

«aapFunctionalCluster»
Cryptography

daemon-based

«aapFunctionalCluster»
Communication

Management
daemon-based

«aapTriggers»

«aapTriggers»

«aapParticipates,aapTriggers»

«aapTriggers»

«aapTriggers»

«aapTriggers»

«aapTriggers»

«aapTriggers»

«aapTriggers»

Figure 10.14: Use case Report Checkpoint

182 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: Report Checkpoint

Description: This use case describes reporting a checkpoint.

Adaptive Application The Adaptive Application triggers
this use case by reporting a checkpoint.

Triggering
Actors:

Daemon-based Functional
Cluster

A daemon-based functional cluster
triggers this use case by reporting a
checkpoint.

Participating
Actors:

Intrusion Detection System
Manager

Intrusion Detection System
Manager participates in this use case if
access is denied by generating a security
event.

Preconditions: None
Invariants: None
Postconditions: None
Scenarios: Report Checkpoint This scenario shows how to report a

checkpoint.

Table 10.28: Use-Case Report Checkpoint

10.6 Configuration

10.6.1 Update and Configuration Management

Update and Configuration Management

Adaptive Platform

«aapFunctionalCluster»
Vehicle Update and

Configuration Management

daemon-based

«aapFunctionalClust...
Log and Trace

«aapFunctionalClust...
Persistency

«aapUseCase»

Transfer SW Package

«aapUseCase»

Process SW Package

«aapFunctionalClust...
Cryptography

daemon-based

«aapParticipates»

«aapParticipates»

«aapParticipates»

«aapParticipates»

«aapTriggers»

«aapTriggers»

Figure 10.15: Use cases for transferring and processing SW packages

Name: Transfer SW Package

Description: Transfer package data and meta data needed for processing and activation in
block wise or in streaming fashion.

5

183 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Triggering
Actors:

Vehicle Update and
Configuration Management

Starting from a vehicle package transfer
request, transfer to an individual Update
and Configuration Management
instance is triggered.

Persistency Enables persistent storage for data that is
in transfer.

Participating
Actors:

Log and Trace Logs of status information related to the
Software Package transfer.

Preconditions: • Sufficient memory is available to transfer the Software Package.

• Service API has been successfully subscribed to by triggering applications
for initiating the data transfer.

Invariants: • Transfer of data has no impact on running processes and existing
installations associated with the software modifications.

Postconditions: • Transfer of data has been completed or state has been stored for a
suspended transfer to enable continuation.

Table 10.29: Use-Case Transfer SW Package

Name: Process SW Package

Description: Modifies individual Software Package. Use case name is a synonym for any
kinds of modification of the software installation, i.e., updating a Software
Package, adding a new Software Package, and removing a Software Package.

Triggering
Actors:

Vehicle Update and
Configuration Management

Starting from a vehicle package activation
request, processing of an individual
Software Package is triggered.

Cryptography May provide specific cryptographic
services like verification of Software
Package authenticity, integrity, and
decryption of confidential data.

Participating
Actors:

Log and Trace Logs processing related status
information.

Preconditions: • Software Package data is stored completely and consistently in memory or
persistent storage.

• Triggering actors have subscribed successfully to call service method for
processing Software Packages.

• Update and Configuration Management is currently not involved in
execution of any task with an ongoing processing, activation, or rollback.

Invariants: • Running processes associated with the Software Packages to be processed
are not impacted.

Postconditions: • Package processing of all Software Packages in consideration has been
completed.

Table 10.30: Use-Case Process SW Package

184 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Update and Configuration Management

Adaptive Platform

«aapFunctionalCluster»
Vehicle Update and

Configuration Management

daemon-based

«aapFunctionalClust...
Log and Trace

«aapFunctionalClust...
Cryptography

daemon-based

«aapUseCase»

Activate SW Package

«aapFunctionalClust...
State Management

daemon-based

«aapUseCase»

Perform Rollback

«aapTriggers»

«aapParticipates»

«aapParticipates»

«aapParticipates»

«aapTriggers»

«aapParticipates»

«aapParticipates»

«aapParticipates»

Figure 10.16: Use cases for activating and rolling-back SW packages

Name: Activate SW Package

Description: Software Package processed for the local Machine shall become active in a
next step. This includes shutting down running processes associated with the
previous version of the Software Package and potentially removing installed
previous version(s) of the Software Package.

Triggering
Actors:

Vehicle Update and
Configuration Management

Starting from a vehicle package activation
request, update to individual Update and
Configuration Management
instances is triggered.

State Management For the activation of software, setting of a
specific state for the Adaptive Platform
instance is required.

Cryptography May provide specific cryptographic
services like verification of Software
Package authenticity, and integrity.

Participating
Actors:

Log and Trace Logs activation related status information.

Preconditions: • Triggering actors have subscribed successfully to call service method for
activation of Software Packages.

• All Software Packages for activation have been successfully processed.

• Update and Configuration Management is currently not involved in
execution of any task with an ongoing processing, activation, or rollback.

Invariants: None
Postconditions: • Activation of all Software Packages in consideration has been completed.

Table 10.31: Use-Case Activate SW Package

185 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: Perform Rollback
Description: Request to revert the Software Package processing task and clean up all

related data.
Triggering
Actors:

Vehicle Update and
Configuration Management

Receiving one of various triggers to
initiate Software Package rollback request
for an Update and Configuration
Management instance.

State Management For the rollback of software, setting of a
specific state for the Adaptive Platform
instance is required.

Cryptography May provide specific cryptographic
services like verification of Software
Package authenticity, and integrity.

Participating
Actors:

Log and Trace Logs rollback related status information.

Preconditions: • Triggering actors have subscribed successfully to call service method for
activation of Software Packages.

• Update and Configuration Management is currently not involved in
execution of any task with an ongoing processing, activation, or rollback.

Invariants: None
Postconditions: • The system has reached the state as before of the processing tasks for the

Software Packages in consideration (all relevant processes have been
terminated and all data required for operation have been removed).

Table 10.32: Use-Case Perform Rollback

Update and Configuration Management

Adaptive Platform

«aapFunctionalCluster»
Vehicle Update and

Configuration Management

daemon-based

«aapFunctionalClust...
Cryptography

daemon-based

«aapUseCase»

Provide SW Package
Update Information«aapTriggers» «aapParticipates»

Figure 10.17: Use case for providing update related information

Name: Provide SW Package Update Information

Description: Provide various types of information for various purposes related to software
update, for example, about ongoing campaign, history, Software Cluster
information, available software for update, etc.

Triggering
Actors:

Vehicle Update and
Configuration Management

Vehicle Update and
Configuration Management is
requested to provide specific information
about Software Package update related
information on Adaptive Platform.

5

186 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Participating
Actors:

Cryptography May provide specific cryptographic
services like verification of authenticity of
an information request.

Preconditions: • Triggering actors have subscribed successfully to call service method for
information request.

• Update and Configuration Management is currently not involved in
execution of any task with an ongoing processing, activation, or rollback.

Invariants: • This use case is supposed to change no data at all.

Postconditions: • Data obtained may have a limited (even very short) validity, e.g., those
related to an ongoing campaign.

Table 10.33: Use-Case Provide SW Package Update Information

10.6.2 Vehicle Update and Configuration Management

Adaptive Platform

Vehicle Update and Configuration
Management

Vehicle Update and Configuration
Management

«aapUseCase»

Transfer Vehicle Data

OTA Client

(from
Actors)

Diagnostic Application

(from
Actors)

«aapFunctionalCluster»
Persistency

«aapFunctionalCluster»
Update and Configuration

Management
daemon-based

Flashing Adapter

(from
Actors)

«aapFunctionalCluster»
Log and Trace

«aapParticipates»

«aapParticipates»

«aapTriggers»

«aapTriggers»

«aapParticipates»

«aapParticipates»

Figure 10.18: Use case Transfer Vehicle Data

Name: Transfer Vehicle Data
Description: Transfer the data for updating SW for the whole vehicle.

Triggering
Actors:

OTA Client A client that controls package transfer on
behalf of a back-end application (external
to the vehicle). Vehicle Update and
Configuration Management might be
the original trigger and query what is
available in remote repository/backend
and compare with internal state of
Software Clusters and versions.

5

187 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Diagnostic Application An application that triggers the package

transfer as part of a diagnostic routine on
behalf of an external diagnostic client.

Update and Configuration
Management

Update and Configuration
Management optionally transfers software
packages to Adaptive Platform target
machines (if not done at a later stage).

Flashing Adapter Transfers or streams software packages to
non-Adaptive Platform target machines
(Classic Platform or 3rd-party platform).

Persistency Enables persistent storage for data that is
in transfer.

Participating
Actors:

Log and Trace Logs data transfer related status
information.

Preconditions: • Sufficient memory or persistent storage available to cover transfer of data.

• Service APIs for Vehicle Update and Configuration Management
have been successfully subscribed to by triggering applications for initiating
the data transfer.

Invariants: • Runtime system (processes, data stored, ...) is not impacted by the transfer.

Postconditions: • Transfer of data has been completed or state has been stored for a
suspended transfer to enable continuation.

Table 10.34: Use-Case Transfer Vehicle Data

Adaptive Platform

Vehicle Update and Configuration Management

«aapUseCase»

Activate Campaign

OTA Client

(from
Actors)

Diagnostic Application

(from
Actors)

«aapFunctionalCluster»
Update and Configuration

Management
daemon-based

Flashing Adapter

(from
Actors)

«aapFunctionalCluster»
Log and Trace

Vehicle Driver Interface

(from
Actors)

«aapFunctionalCluster»
Cryptography

daemon-based«aapUseCase»

Activate Safe
Campaign

Vehicle State Manager

(from
Actors)

«aapUseCase»

Activate Campaign
with User Interaction

«aapTriggers»

«aapParticipates»

«aapTriggers»

«aapParticipates»

«aapParticipates»«aapParticipates»

«aapParticipates»

«aapTriggers»

«aapParticipates»

Figure 10.19: Use case Activate Campaign and derived use cases

188 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: Activate Campaign

Abstract: Yes
Description: Triggers the modification of Software (new installations, updates and removal)

on individual machines. This use case is abstract and serves as a base use
case for others.
OTA Client A client that controls activation in behalf of

a trigger from back-end application
(external to the vehicle).

Diagnostic Application An application that triggers the activation
as part of a diagnostic routine in behalf of
a diagnostic client.

Triggering
Actors:

Vehicle Driver Interface An application that triggers the activation
in behalf of a user initiated activation.

Update and Configuration
Management

Update and Configuration
Management optionally transfers or
streams Software Package(s) (if not done
at an earlier stage) and installs and
activates it / them on Adaptive Platform
target machines.

Flashing Adapter Optionally transfers SW Package(s) (if not
done at an earlier stage) and installs and
activates it / them to non-Adaptive
Platform target machines.

Cryptography May provide specific cryptographic
services like verification of vehicle
package authenticity, integrity and
decryption of confidential data.

Participating
Actors:

Log and Trace Logs activation related status information.

Preconditions: • Vehicle package data is stored completely and consistently in memory or
persistent storage.

• Triggering actors have subscribed successfully to call service method for
campaign activation.

• Currently no other campaign activation or campaign cancellation is
executed, which might cause conflicts on any of the local instances
(Adaptive Platform, Classic Platform or 3rd-party platform).

Invariants: None
Postconditions: • All Update and Configuration Management instances involved in the

activation have successfully completed the tasks associated with the
activation campaign.

Table 10.35: Use-Case Activate Campaign

189 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Name: Activate Safe Campaign

Description: Extends the Activate Campaign use case to indicate changes to the safety
condition. Some actions need to be taken to ensure that a software
modification can start or continue in a safe context.

Triggering
Actors:

Vehicle State Manager Indicates state changes of the vehicle,
which are related to safety conditions to
be met for a specific modification
campaign.

Base use case: Activate Campaign

Preconditions: • Safety conditions for software modification are currently not satisfied.

Invariants: None
Postconditions: None

Table 10.36: Use-Case Activate Safe Campaign

Name: Activate Campaign with User Interaction

Description: Extends the Activate Safe Campaign use case to indicate changes to
the safety condition, which require user interaction. Some actions need to be
taken by the user to ensure that a software modification can start or continue
in a safe context.

Participating
Actors:

Vehicle Driver Interface A user gets informed to take some
action(s) in order to enable continuation or
start of a software modification campaign.

Base use case: Activate Safe Campaign

Preconditions: • Safety conditions for software modification, which requires action(s) by the
user are currently not satisfied.

Invariants: None
Postconditions: None

Table 10.37: Use-Case Activate Campaign with User Interaction

190 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Adaptive Platform

Vehicle Update and Configuration Management

OTA Client

(from
Actors)

Diagnostic Application

(from
Actors)

«aapFunctionalCluster»
Update and Configuration

Management
daemon-based

Flashing Adapter

(from
Actors)

«aapFunctionalCluster»
Log and Trace

Vehicle Driver Interface

(from
Actors)

«aapFunctionalCluster»
Cryptography

daemon-based

«aapUseCase»

Cancel Campaign

«aapParticipates»

«aapParticipates»

«aapTriggers»

«aapParticipates»

«aapTriggers»

«aapParticipates»

«aapTriggers»

Figure 10.20: Use case Cancel Campaign

Name: Cancel Campaign

Description: Request to cancel an ongoing campaign, which has been requested for
activation before.
OTA Client A client that triggers the cancellation in

behalf of back-end application (external to
the vehicle).

Diagnostic Application An application that triggers the
cancellation as part of a diagnostic routine
in behalf of a diagnostic client.

Triggering
Actors:

Vehicle Driver Interface An application that triggers the
cancellation in behalf of a user initiated
request.

Update and Configuration
Management

Update and Configuration
Management is requested to stop any
activity associated with the software
modification and take actions to reach the
state for software package management
before the modification of the software
package has been triggered.

Flashing Adapter Is requested by means of diagnostic
routines to revert to the state before
software modification has been triggered.

Cryptography May provide specific cryptographic
services like verification of authenticity of
the cancellation request.

Participating
Actors:

Log and Trace Logs data transfer related status
information.

5

191 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Preconditions: • Triggering actors have subscribed successfully to call service method for

campaign cancellation.

• Currently no other campaign activation or campaign cancellation is
executed, which might cause conflicts on any of the local instances
(Adaptive Platform, Classic Platform or 3rd-party platform).

Invariants: None
Postconditions: • All instances involved in the activation have reached the same state as

before the software modification has been initiated.

Table 10.38: Use-Case Cancel Campaign

Adaptive Platform

Vehicle Update and Configuration Management

OTA Client

(from
Actors)

Diagnostic Application

(from
Actors)

«aapFunctionalCluster»
Update and Configuration

Management
daemon-based

Flashing Adapter

(from
Actors)

Vehicle Driver Interface

(from
Actors)

«aapFunctionalCluster»
Cryptography

daemon-based

«aapUseCase»

Provide Vehicle
Update Information

«aapParticipates»

«aapParticipates»

«aapTriggers» «aapParticipates»

«aapTriggers»

«aapTriggers»

Figure 10.21: Provide Vehicle Update Information

Name: Provide Vehicle Update Information

Description: Provide various types of information for various purposes around vehicle
update, for example, about ongoing campaign, history, Software Cluster
information, available software for update, etc.

OTA Client A client that triggers certain vehicle
package update operations may obtain
certain type of operational data and may
forward this to a back-end application
(external to the vehicle).

Triggering
Actors:

Diagnostic Application An application that triggers certain vehicle
package update operations as part of a
diagnostic routine in behalf of a diagnostic
client.

5

192 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Vehicle Driver Interface An application that receives solicited or

unsolicited information related to vehicle
package update, that may be displayed to
a human user (driver, ...).

Update and Configuration
Management

Update and Configuration
Management is requested to provide
specific information about software
package update related information on
Adaptive Platform.

Flashing Adapter Is requested to provide specific
information about software package
update related information on Classic
Platform and / or 3rd-party platform.

Participating
Actors:

Cryptography May provide specific cryptographic
services like verification of authenticity of
an information request.

Preconditions: • Triggering actors have subscribed successfully to call service method for
information request.

Invariants: • This use case is supposed to change no data at all.

Postconditions: • Data obtained may have a limited (even very short) validity, e.g., those
related to an ongoing campaign.

Table 10.39: Use-Case Provide Vehicle Update Information

193 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

11 Runtime View

This chapter shows the original design approach of the AUTOSAR Adaptive Platform
for implementing selected use cases. The presented use cases currently cover just
a small part of the functionality of the AUTOSAR Adaptive Platform. More use cases
will be added in future versions of this document. Please note that individual imple-
mentations of the AUTOSAR Adaptive Platform may always choose a different design
internally. Thus, interaction partners, the type of messages, and their order may dif-
fer. Implementation-specific messages are denoted with the stereotype aapInfor-
mative. All default scenarios show a successful execution of the respective use case.
Other scenarios show error cases or alternate cases.

11.1 Runtime

11.1.1 Execution Management

11.1.1.1 Start Adaptive Platform

11.1.1.1.1 Scenario: Start Adaptive Platform with Supervision of Adaptive Ap-
plications

194 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

:Operating System

«aapFunctionalCluster»

:Execution Management

:WatchdogInterface

«aapFunctionalCluster»

:State Management

«aapFunctionalCluster»

:Platform Health Management

opt

opt

:Adaptive Application

«aapFunctionalCluster»

:Core

loop Supervision Loop

ref
Change Function Group State (Running)

exec()

«aapInformative»

«aapInformative»
performSupervision()

ReportExecutionState(kRunning): Result

exec()

«aapInformative»

SetState(Startup)

enable()

main()

«aapInformative»

Initial ize()

GetInitialMachineStateTransitionResult()

ReportExecutionState(kRunning): Result

ReportCheckpoint()

main()

«aapInformative»

AliveNotification()

exec()

«aapInformative»

Offer()

AliveNotification()
main()

«aapInformative»

ReportExecutionState(kRunning): Result

main()

«aapInformative»

Figure 11.1: Scenario: Start Adaptive Platform with Supervision of Adaptive Applica-
tions

Figure 11.1 shows the default scenario for Start Adaptive Platform with an
supervision of Adaptive Applications. It therefore includes the startup of Platform
Health Management that performs supervision and the startup of an Adaptive Appli-
cation that is supervised as part of the Startup Machine Function Group State.

During the preceding startup of the Machine the Operating System performs ini-
tialization steps in an implementation-specific way. These steps include starting any
middleware related to the Operating System, including device-drivers and services

195 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

handling low-level middleware. The AUTOSAR Adaptive Platform demands that the
Watchdog is enabled prior to the startup of the AUTOSAR Adaptive Platform, for ex-
ample, the Watchdog could already be enabled by the Bootloader or the Operat-
ing System.

Execution Management is started by the Operating System as the first process
of the AUTOSAR Adaptive Platform. Execution Management then controls the
startup of the AUTOSAR Adaptive Platform by activating the standardized Function
Group State called Startup of the Machine Function Group State. This trig-
gers the start of additional processes that are configured to run in the Startup state. It
is mandatory that State Management is part of the Startup state. Other processes
of the AUTOSAR Adaptive Platform, for example Platform Health Management
and application processes may also be part of the Startup state (see Figure 11.1).

Platform Health Management is responsible to service the Watchdog. Thus, the
time between enabling the Watchdog during the start of the Machine and the start of
Platform Health Management needs to be less than the Watchdog timeout. The
integrator needs to fulfill this constraint.

After the Startup state has been reached, State Management takes over control
to determine the desired Function Group States.

11.1.1.2 Shutdown Adaptive Platform

11.1.1.2.1 Scenario: Shutdown Adaptive Platform with Supervision of Adaptive
Applications

«aapFunctionalCluster»

:State Management

«aapFunctionalCluster»

:Execution Management

«aapFunctionalCluster»

:Platform Health Management

:Operating System

shutdownApp

ref
Change Function Group State (Shutdown)

SIGTERM()

main()

«aapInformative»

shutdown()

«aapInformative»

exec() «aapInformative»

SIGTERM()

StopOffer()

SIGTERM()

SIGTERM()

Figure 11.2: Scenario: Shutdown Adaptive Platform with Supervision of Adaptive Appli-
cations

196 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Figure 11.2 shows the default scenario for Shutdown Adaptive Platform with a
supervision of Adaptive Applications. It therefore includes the shutdown of Platform
Health Management that performs supervision.

The shutdown is triggered by State Management by requesting the standardized
Machine Function Group State called Shutdown. In general, it is assumed that
the only processes configured to run in the Shutdown state are Execution Man-
agement, State Management, and an application that issues a shutdown request
towards the Operating System (shutdownApp in Figure 11.2). That application
is usually specific for the Operating System and/or project and therefore not an
Adaptive Application. The use of an external application that performs the shutdown
keeps Execution Management free from project-specific functionality. Execution
Management will perform an orderly shutdown of the other running application and
platform processes (including Platform Health Management) before starting the
application process that issues a shutdown request towards the Operating Sys-
tem. The Operating System terminates the remaining processes of the AUTOSAR
Adaptive Platform (i.e. State Management, Execution Management) and shuts
down the Machine in an implementation-specific way.

11.1.1.3 Change Function Group State

11.1.1.3.1 Scenario: Change Function Group State

197 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

«aapFunctionalClust...

:State Management

«aapFunctionalClust...

:Execution Management

:Operating System

loop Terminate obsolete Processes

«aapFunctionalClust...

:Platform Health
Management

old: Adaptive Application 0..*

new: Adaptive Application
0..*

«aapFunction...

:Core

loop Start Processes

main()

«aapInformative»

Deinitialize()

processStarted(process, timestamp)

«aapInformative»

«aapInformative»
stopSupervision()

startStateTransition(old, new)

«aapInformative»

SIGTERM()

«aapInformative»
determineObsoleteProcesses()

processTerminating(process) «aapInformative»

SetState(FunctionGroupState)

«aapInformative»
startAliveSupervision()

ReportCheckpoint()

Initial ize()

ReportExecutionState(kRunning)

«aapInformative»
determineProcessesToStart()

exec()

«aapInformative»

Figure 11.3: Scenario: Change Function Group State

Figure 11.3 shows the default scenario for Change Function Group State. The
scenario is triggered by State Management. Execution Management will termi-
nate all processes that are not part of the requested target Function Group State
or that have a different StateDependentStartupConfig.

Just before terminating a process (with a SIGTERM signal), Execution Manage-
ment notifies Platform Health Management that will stop all supervisions of the
process. Consequently, State Management will not receive any information about
failed supervisions during the shutdown of the process. The shutdown is monitored by
Execution Management by means of StartupConfig.timeout configured in the
Manifest.

Afterwards, Execution Management starts the processes of the target Function
Group State in the order imposed by their StateDependentStartupConfig.
When a processes reports its execution state as kRunning, Execution Manage-
ment notifies Platform Health Management to start Alive Supervision for

198 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

that process. Other kinds of supervisions (Deadline Supervision, and Logical
Supervision) are started when the first checkpoint is reported for them.

11.1.2 State Management

11.1.2.1 Change System State

11.1.2.1.1 Scenario: Change System State

«aapFunctionalCluster»

:State Management

«aapFunctionalCluster»

:Execution Management

app: Adaptive Application

TriggerOut_{StateGroup}::notify(value)

«aapInformative»
determineDesiredFGSate(): desiredState

TriggerIn_{StateGroup}::Set(value)

SetState(desiredState)

«aapInformative»
handleNewFGState()

Figure 11.4: Scenario: Change System State

Figure 11.4 shows the default scenario for Change System State. An Adaptive
Application changes a field in the TriggerIn service interface. Alternatively, the
TriggerInOut interface may be used (not shown). Based on the new input data,
State Management determines a new desired system state, that is a set of desired
Function Group States, and requests these Function Group States from
Execution Management by calling SetState().

After the new system state has been reached, State Management updates the fields
in the TriggerOut (and TriggerInOut, not shown) interfaces accordingly.

11.1.2.1.2 Scenario: Reject Trigger Input

199 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

app: Adaptive Application

«aapFunctionalCluster»

:State Management

{desiredState =
currentState}

«aapInformative»
determineDesiredFGState(): desiredState

TriggerIn_{StateGroup}::Set(value)

Figure 11.5: Scenario: Reject Trigger Input

Figure 11.5 shows an alternate scenario of Change System State. An Adaptive
Application changes a field in the or TriggerIn (alternatively TriggerInOut)
service interface. Despite the new input data, State Management determines that
the current system state is still the desired system state. Therefore, no further action
is taken by State Management.

11.1.2.2 Recover from Supervision Failure

11.1.2.2.1 Scenario: Recover by System State Change

«aapFunctionalCluster»

:Platform Health
Management

«aapFunctionalCluster»

:State Management

«aapFunctionalCluster»

:Execution Management

ref
Change System State

supervisionFailed()«aapInformative»

«aapInformative»
handleFailedSupervision()

Offer()

RecoveryHandler()
«aapInformative»

determineDesiredFGState(): desiredState

Figure 11.6: Scenario: Recover by System State Change

Figure 11.6 shows the default scenario for Recover from Supervision Failure.
After a supervision failure has been detected by Platform Health Management,
Platform Health Management notifies State Management by invoking the call-
back method RecoveryHandler(). State Management then determines a new
desired state (which may be the same as the current state) and requests corresponding
Function Group State transitions from Execution Management.

200 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

11.1.2.2.2 Scenario: Recover by Watchdog Reset

«aapFunctionalCluster»

:Platform Health
Management

«aapFunctionalCluster»

:State Management

:WatchdogInterface

supervisionFailed()«aapInformative»

:kSMCanNotHandleRecovery

FireWatchdogReaction()

RecoveryHandler()

«aapInformative»
handleFailedSupervision()

Offer()

Figure 11.7: Scenario: Recover by Watchdog Reset

Figure 11.7 shows an alternate scenario for Recover from Supervision Fail-
ure. After a supervision failure has been detected by Platform Health Manage-
ment, Platform Health Management notifies State Management by invoking
the call-back method RecoveryHandler(). In this scenario, State Management
cannot handle the failure and returns the error code kSMCanNotHandleRecovery
from the call-back. Platform Health Management then handles this failure by trig-
gering a Watchdog reset.

11.2 Communication

11.2.1 Raw Data Stream

11.2.1.1 Send Raw Data Stream

11.2.1.1.1 Scenario: Send IEEE1722 Stream

201 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

:IEEE1722RawDataStreamProducer

:Adaptive
Application

loop Write Data

Connect()

Shutdown()

Create()

WriteData()

Figure 11.8: Scenario: Send IEEE1722 Stream

Figure 11.8 shows the scenario for Send Raw Data Stream that makes use of the
IEEE1722 protocol. The Adaptive Application needs to connect to an IEEE1722
stream using Connect(). Afterwards, the Adaptive Application may transmit
any number of datagrams by calling WriteData(). If the stream is no longer needed,
the Adaptive Application may shutdown the connection using Shutdown().

11.2.1.1.2 Scenario: Send IP Stream

Client Server

Client: Adaptive
Application

:RawDataStreamClient

loop Write Data

:RawDataStreamServer

Server: Adaptive
Application

��������� 	�
��
��� 	 ��	
	�	�

�	������� 	�
�� ��� ��
� �
���� �

�	����
�	� ��
���� �����
 ��� ������

�����
	 �� ���
 �	�� ����� ��

��	�� ����� 	� �	
 ������

��������� 	�
��
��� 	

��	
	�	� �	������� 	�
�� ���

��
� �
���� � �	����
�	�

��
���� �����
 ��� ������ �����

	 �� ��
�������� ����� �� ��	��

����� 	� �	
 ������

ACK()

«aapInformative»

data()

«aapInformative»

ReadData()

SYN-ACK()

«aapInformative»

WaitForConnection()Connect()

Create()

WriteData()

Create()

Shutdown()

ACK()

«aapInformative»

ACK()

«aapInformative»

SYN()

«aapInformative»

FIN()

«aapInformative»

FIN()

«aapInformative»

Figure 11.9: Scenario: Send IP Stream

202 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Figure 11.9 shows the scenario for Send Raw Data Stream that makes use of an
IP-based protocol (i.e., TCP or UDP). The Client Adaptive Application needs
to connect to a Server using Connect(). If TCP is configured as a protocol, the
underlying TCP connection will be established with the Server. Afterwards, the Client
Adaptive Application may transmit data to the Server by calling WriteData().
The Server Adaptive Application may receive the data transmitted by the Client
by calling ReadData(). The segmentation of data is handled internally. Please note
that Client and Server are both able to receive and transmit via the same stream for
some types of protocol configurations (e.g., TCP). If the stream is no longer needed,
the Client Adaptive Application may shutdown the connection using Shutdown
().

11.2.1.2 Receive Raw Data Stream

11.2.1.2.1 Scenario: Receive IEEE1722 Stream

:Adaptive
Application

:IEEE1722RawDataStreamConsumer

loop Read Data

Shutdown()

Create()

Connect()

ReadData()

Figure 11.10: Scenario: Receive IEEE1722 Stream

Figure 11.10 shows the scenario for Receive Raw Data Stream that makes use
of the IEEE1722 protocol. The Adaptive Application needs to connect to an
IEEE1722 stream using Connect(). Afterwards, the Adaptive Application may
receive any number of datagrams by calling ReadData(). If the stream is no longer
needed, the Adaptive Application may shutdown the connection using Shut-
down().

11.2.1.2.2 Scenario: Receive IP Stream

203 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Client Server

Client: Adaptive
Application

:RawDataStreamClient

loop Read Data

:RawDataStreamServer

Server: Adaptive
Application

��������� 	�
��
��� 	 ��	
	�	�

�	������� 	�
�� ��� ��
� �
���� �

�	����
�	� ��
���� �����
 ��� ������

�����
	 �� ���
 �	�� ����� ��

��	�� ����� 	� �	
 ������

��������� 	�
��
��� 	

��	
	�	� �	������� 	�
�� ���

��
� �
���� � �	����
�	�

��
���� �����
 ��� ������ �����

	 �� ��
�������� ����� �� ��	��

����� 	� �	
 ������

ACK()

«aapInformative»

Shutdown()

FIN()

«aapInformative»

FIN()

«aapInformative»

ACK()

«aapInformative»

ReadData()

Create()

SYN-ACK()

«aapInformative»

Connect() WaitForConnection()

data()

«aapInformative»

WriteData()

SYN()

«aapInformative»

ACK()

«aapInformative»

Create()

Figure 11.11: Scenario: Receive IP Stream

Figure 11.11 shows the scenario for Receive Raw Data Stream that makes use of
an IP-based protocol (i.e., TCP or UDP). The Client Adaptive Application needs
to connect to a Server using Connect(). If TCP is configured as a protocol, the under-
lying TCP connection will be established with the Server. Afterwards, the Server Adap-
tive Application transmits data by calling WriteData(). The Client Adaptive
Application may receive the data transmitted by the Server by calling ReadData()
. The segmentation of data is handled internally. Please note that Client and Server
are both able to receive and transmit via the same stream for some types of protocol
configurations (e.g., TCP). If the stream is no longer needed, the Client Adaptive
Application may shutdown the connection using Shutdown().

11.2.2 Time Synchronization

This section shows interactions for Time Synchronization Master (see Section 11.2.2.1)
and Time Synchronization Slave (see Section 11.2.2.2).

204 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

11.2.2.1 Time Synchronization Master

11.2.2.1.1 Set Value of Time base

11.2.2.1.1.1 Scenario: Set Value Of Time Base

:Adaptive Application «aapFunctionalCluster»

Master: Time
Synchronization

«aapFunctionalCluster»

Slave 1: Time
Synchronization

«aapFunctionalCluster»

Slave 2: Time
Synchronization

sync()

sync()

SetTime()

Figure 11.12: Scenario: Set Value Of Time Base

Figure 11.12 shows the default scenario for Set Value Of Time Base. The Adap-
tive Application sets a value for the Time Base in Time Synchronization Master
by calling SetTime(). Then, Time Synchronization Master distributes the updated
time value with all other connected Time Synchronization Slaves.

11.2.2.2 Time Synchronization Slave

11.2.2.2.1 Get Value of Time base

11.2.2.2.1.1 Scenario: Get Value Of Time Base

:Adaptive Application «aapFunctionalCluster»

Slave: Time Synchronization

«aapFunctionalCluster»

Master: Time Synchronization

sync()

GetTimeWithStatus(): SynchronizedTimeBaseStatus

GetCreationTime()

Figure 11.13: Scenario: Get Value of Time Base

Figure 11.13 shows the default scenario for Get Value of Time Base. The Time
Synchronization Slave already knows the current time due to a prior synchronization
message from Time Synchronization Master. Once the Adaptive Application
calls the method GetTimeWithStatus(), the Time Synchronization Slave provides

205 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

an SynchronizedTimeBaseStatus object that reflects the time (GetCreation-
Time()) and the synchronization status (GetSynchronizationStatus()) when
that object was created.

11.2.2.2.2 Receive Notification

11.2.2.2.2.1 Scenario: Receive Notification

Consumer: Adaptive
Application

«aapFunctionalCluster»

Slave: Time Synchronization

alt

[Synchronization status changed]

[Leap Jump]

[User Data Changed]

«aapFunctionalCluster»

Master: Time Synchronization

«aapInformative»
handleUserDataChanged()

«aapInformative»
handleSynchronizationStatus()

InvokeStatusFlagNotifier()

RegisterStatusChangeNotifier()

«aapInformative»
handleLeapJump()

sync()

UnregisterStatusChangeNotifier()

Figure 11.14: Scenario: Receive Notification

Figure 11.14 shows the default scenario for Receive Notification. A notifier
must be registered with the Time Synchronization Slave by calling RegisterSta-
tusChangeNotifier() as a precondition for Adaptive Application to be able
to receive a notification. The Time Synchronization Slave has the current time available
thanks to the synchronization from the Time Synchronization Master. Then, one of 3
cases can occur:

1. The synchronization status changed in Time Synchronization Slave.

2. A leap jump was detected.

3. The user data associated with the time base changed.

After the occurrence one of these 3 cases, the Time Synchronization Slave informs the
Adaptive Application about the change by invoking the call-back function. If the

206 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Adaptive Application no longer wants to receive notifications it may unregister
by calling the method UnregisterStatusChangeNotifier().

11.3 Storage

11.3.1 Persistency

11.3.1.1 Read Persistent Data from File

11.3.1.1.1 Scenario: Read Persistent Data from File

:Adaptive Application

«aapFunctionalCluster»

:Persistency

loop

[not readAccessor.IsEof()]

:Operating System

«aapFunctionalCluster»

:Cryptography

alt

[KeySlotMapping exists in Manifest and keySlotUsage = encryption]

loop

alt

[KeySlotMapping exists in Manifest and keySlotUsage = encryption]

alt

[Redundancy enabled in Manifest]

ref
Initial ize Cipher

ref
Detect and Correct Data Errors

l ine= ReadLine()

open()

«aapInformative»

read()

«aapInformative»

readAccessor= OpenFileReadOnly(): ReadAccessor

OpenFileStorage(): FileStorage

ProcessBlock()

Figure 11.15: Scenario: Read Persistent Data from File

Figure 11.15 shows the default scenario for Read Persistent Data from File.
The Adaptive Application needs to open a FileStorage by calling Open-
FileStorage(). Afterwards, the Adaptive Application needs to open an indi-
vidual file by calling OpenFileReadOnly() or OpenFileReadWrite() depending
if the Adaptive Application needs to write data to the file as well. Then, the

207 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Adaptive Application can read data via the methods provided by ReadAcces-
sor either as binary data or text data.

If enabled in the Manifest, Persistency will detect and try to correct data errors
when reading from a file. If the file or FileStorage is configured to use encryption,
the contents of the file will be transparently decrypted during read.

11.3.1.2 Read Persistent Data with Unique ID

11.3.1.2.1 Scenario: Read Persistent Data with Unique ID

:Adaptive Application

«aapFunctionalCluster»

:Persistency

«aapFunctionalCluster»

:Cryptography

:Operating System

ref
Detect and Correct Data Errors

alt

[KeySlotMapping exists in Manifest and keySlotUsage = encryption]

ref
Initialize Cipher

alt

[Redundancy enabled in the Manifest]

ProcessBlock()

GetValue(key)

OpenKeyValueStorage(): KeyValueStorage

open()

«aapInformative»

read()

«aapInformative»

Figure 11.16: Scenario: Read Persistent Data with Unique ID

Figure 11.16 shows the default scenario for Read Persistent Data with
Unique ID. The Adaptive Application needs to open a KeyValueStorage by
calling OpenKeyValueStorage(). Then, the Adaptive Application can read
data associated to a key by calling GetValue().

If enabled in the Manifest, Persistency will detect and try to correct data errors
when reading data. If the individual key or KeyValueStorage is configured to use
encryption, data will be transparently decrypted during read.

208 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

11.3.1.3 Store Persistent Data in File

11.3.1.3.1 Scenario: Store Persistent Data in File

:Adaptive Application

«aapFunctionalCluster»

:Persistency

:Operating System

«aapFunctionalCluster»

:Cryptography

alt

[KeySlotMapping exists in Manifest and keySlotUsage = encryption]

alt

[KeySlotMapping exists in Manifest and keySlotUsage = encryption]

alt

[Redundancy enabled in Manifest]

ref
Initial ize Cipher

ref
Store Redundant Data

WriteText()

ProcessBlock()

write()

«aapInformative»

OpenFileStorage(): FileStorage

OpenFileWriteOnly(): ReadWriteAccessor

open()

«aapInformative»

Figure 11.17: Scenario: Store Persistent Data in File

Figure 11.17 shows the default scenario for Store Persistent Data in File.
The Adaptive Application needs to open a FileStorage by calling Open-
FileStorage(). Afterwards, the Adaptive Application needs to open an in-
dividual file for writing by calling OpenFileWriteOnly() or OpenFileReadWrite
() depending if the Adaptive Application needs to read data from the file as
well. Then, the Adaptive Application can store data via the methods provided by
ReadWriteAccessor either as binary data or text data.

If enabled in the Manifest, Persistency stores redundant data to detect and cor-
rect errors when reading from a file later. If the file or FileStorage is configured to
use encryption, data will be encrypted before it is written to the underlying storage.

209 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

11.3.1.4 Store Persistent Data with Unique ID

11.3.1.4.1 Scenario: Store Persistent Data with Unique ID

:Adaptive Application

«aapFunctionalCluster»

:Persistency

:Operating System

«aapFunctionalCluster»

:Cryptography

alt

[KeySlotMapping exists in Manifest and keySlotUsage = encryption]

ref
Initial ize Cipher

alt

[Redundancy enabled in Manifest]

ref
Store Redundant Data

open()

«aapInformative»

SyncToStorage()

SetValue()

write()

«aapInformative»

ProcessBlock()

OpenKeyValueStorage(): KeyValueStorage

Figure 11.18: Scenario: Store Persistent Data with Unique ID

Figure 11.18 shows the default scenario for Store Persistent Data with
Unique ID. The Adaptive Application needs to open a KeyValueStorage by
calling OpenKeyValueStorage(). Then, the Adaptive Application can store
data associated to a key by calling SetValue(). The data is updated in memory
by calling SetValue() but not written to persistent storage. The Adaptive Ap-
plication needs to call SyncToStorage() to write one or more such changes to
persistent storage.

If enabled in the Manifest, Persistency stores redundant data to detect and cor-
rect errors when reading from a KeyValueStorage later. If the key or KeyVal-
ueStorage is configured to use encryption, data will be encrypted before it is written
to the underlying storage.

11.3.1.5 Get Storage Size

11.3.1.5.1 Scenario: Get FileStorage Size

210 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

:Adaptive Application

«aapFunctionalCluster»

:Persistency

:Operating System

GetCurrentFileStorageSize()

getSize()

«aapInformative»

Figure 11.19: Scenario: Get FileStorage Size

Figure 11.19 shows the scenario of the use case Get Storage Size in case
of a FileStorage. The Adaptive Application needs to call GetCurrent-
FileStorageSize() to determine the current size.

11.3.1.5.2 Scenario: Get KeyValueStorage Size

:Adaptive Application

«aapFunctionalCluster»

:Persistency

:Operating System

GetCurrentKeyValueStorageSize()

getSize()

«aapInformative»

Figure 11.20: Scenario: Get KeyValueStorage Size

Figure 11.20 shows the scenario of the use case Get Storage Size in case of a
KeyValueStorage. The Adaptive Application needs to call GetCurrentKey-
ValueStorageSize() to determine the current size.

11.4 Security

11.4.1 Firewall

11.4.1.1 Switch Firewall State

11.4.1.1.1 Scenario: Switch Firewall State

211 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

:Adaptive Application

«aapFunctionalCluster»

:Firewall

:Operating System

loop

[foreach FirewallRule]

SwitchFirewallState()

applyRule()

«aapInformative»

Figure 11.21: Scenario: Switch Firewall State

Figure 11.21 shows the default scenario for Switch Firewall State. The Adap-
tive Application triggers the state switch by calling SwitchFirewallState()
. The Firewall will then apply the FirewallRules configured for the request state
in an implementation-specific way (e.g., using tools provided with the TCP/IP stack of
the Operating System).

11.4.1.2 Report Security Event

11.4.1.2.1 Scenario: Report Security Event

:Operating System

«aapFunctionalCluster»

:Firewall

«aapFunctionalCluster»

:Intrusion Detection System
Manager

ReportEvent()

«aapInformative»
raiseSecurityEvent()

«aapInformative»
packetBlocked()

handlePacketBlocked()

«aapInformative»

Figure 11.22: Scenario: Report Security Event

Figure 11.22 shows the default scenario for Report Security Event. The Op-
erating System (or another component that implements the actual firewall) reports
that a packet has been blocked by a specific rule to the Firewall. If a Security
Event has been configured for that rule in the Manifest, the Firewall will create a
corresponding Security Event and report it to Intrusion Detection System
Manager by calling ReportEvent(). Intrusion Detection System Manager
will then handle the Security Event accordingly.

212 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

11.5 Safety

11.5.1 Platform Health Management

11.5.1.1 Manage Watchdog

11.5.1.1.1 Scenario: Manage Watchdog

«aapFunctionalCluster»

:Platform Health Management

:Watchdog

loop «aapInformative»
checkSupervisions()

AliveNotification()

Figure 11.23: Scenario: Manage Watchdog

Figure 11.23 shows the default scenario for Manage Watchdog. Platform Health
Management regularly checks its supervisions. Platform Health Management
also calls the method AliveNotification() cyclically in order to report aliveness
to the Watchdog.

11.5.1.2 Report Supervision Failure

11.5.1.2.1 Scenario: Report Supervision Failure

213 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

«aapFunctionalCluster»

:Platform Health
Management

«aapFunctionalCluster»

:State Management

:Adaptive
Application

alt

[action handled]

[watchdog reaction requested]

[timeout]

������� 	
� � ����
	 �

	����� ��������
� ���
��

������
��� ���
���� 	
�

� �
����� ��������
���

:Watchdog

StopOffer()

FireWatchdogReaction()

:kFireWatchdogReaction

ReportCheckpoint(wrongCheckpointId)

Offer()

RecoveryHandler()

FireWatchdogReaction()

:kActionHandled

«aapInformative»
handleSupervisionFailure()

Figure 11.24: Scenario: Report Supervision Failure

Figure 11.24 illustrates the default scenario for Report Supervision Failure. As
a precondition, State Management needs to call the method Offer() in order to
register for notifications.

Whenever Platform Health Management detects a supervision failure it notifies
State Management by invoking the callback method RecoveryHandler(). If the
call to State Management does not return within the timeout configured in the Man-
ifest, Platform Health Management needs to call the method FireWatchdo-
gReaction() to perform a restart of the Machine.

During its shutdown State Management needs to call the method StopOffer() to
disable further invocations of RecoveryHandler().

11.5.1.3 Recover from Critical Supervision Failure

11.5.1.3.1 Scenario: Recover from Critical Supervision Failure in Execution
Management

214 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

«aapFunctionalCluster»

:Platform Health
Management

:Watchdog«aapFunctionalCluster»

:Execution Management

������� 	
� � ����
	 �

	����� ��������
� ���
��

������
��� ���
���� 	
�

� �
����� ��������
���

FireWatchdogReaction()

«aapInformative»
handleSupervisionFailure()

ReportCheckpoint(wrongCheckpointId)

Figure 11.25: Scenario: Recover from Critical Supervision Failure in Execution Manage-
ment

The figure 11.25 shows a scenario for Report Supervision Failure that han-
dles recovery from a critical supervision failure in Execution Management. Such
failures are considered as critical failures because Execution Management is re-
quired to recover from supervision failures. Thus, a supervision failure in Execution
Management results in Platform Health Management calling the method Fire-
WatchdogReaction() to perform a restart of the Machine.

11.5.1.3.2 Scenario: Recover from Critical Supervision Failure in State Manage-
ment

«aapFunctionalCluster»

:Platform Health
Management

«aapFunctionalCluster»

:State Management

:Watchdog

������� 	
� � ����
	 �

	����� ��������
� ���
��

������
��� ���
���� 	
�

� �
����� ��������
���

FireWatchdogReaction()

ReportCheckpoint(wrongCheckpointId)

«aapInformative»
handleSupervisionFailure()

Figure 11.26: Scenario: Recover from Critical Supervision Failure in State Management

The figure 11.26 shows a scenario for Report Supervision Failure that han-
dles recovery from a critical supervision failure in State Management. Such failures
are considered as critical failures because State Management is required to recover
from supervision failures. Thus, a supervision failure in State Management results
in Platform Health Management calling the method FireWatchdogReaction
() to perform a restart of the Machine.

11.5.1.4 Report Checkpoint

11.5.1.4.1 Scenario: Report Checkpoint

215 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

:Adaptive Application «aapFunctionalCluster»

:Platform Health
Management

alt

[access granted]

[access denied]

«aapFunctionalCluster»

:Intrusion Detection System
Manager

«aapInformative»
handleReportedCheckpoint()

ReportCheckpoint()

ReportEvent()

«aapInformative»
checkAccess()

Figure 11.27: Scenario: Report Checkpoint

Figure 11.27 shows the default scenario for Report Checkpoint. The Adaptive
Application reports a checkpoint to Platform Health Management by call-
ing the method ReportCheckpoint(). After that, Platform Health Manage-
ment checks if the Adaptive Application is allowed to report the checkpoint.
Then, Platform Health Management handles the reported checkpoint internally
depending on the type of the supervision mode.

If access is denied, Platform Health Management reports this event to Intru-
sion Detection System Manager by calling the method ReportEvent().

216 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

12 Deployment View

This chapter provides an overview of exemplary deployment scenarios for an AU-
TOSAR Adaptive Platform. Since the AUTOSAR Adaptive Platform is highly config-
urable in its deployment, this section rather provides constraints on supported deploy-
ments and a selection of relevant deployment scenarios.

12.1 Vehicle Software Deployment

«device»
Vehicle

«device»
machine1: Machine

«executionEnvironment»
:Adaptive Runtime

«device»
gateway: Machine

«executionEnvironment»
:Adaptive Runtime

:Backend System :Diagnostic Client

«execut...
OTA Client
Application

«execut...
Update and

Configuration
Management

«executa...
Update and

Configuration
Management

«device»
ecu1: ECU

«executionEnviron...
:Classic Platform

«aapFunctionalCluster»
Vehicle Update and

Configuration Management

daemon-based

OTA Client

«aapFunctionalCluster»
Update and Configuration

Management

daemon-based

«execut...
Vehicle Update

and Configuration
Management

«manifest»

«manifest»

«manifest»

«manifest»

Figure 12.1: Exemplary vehicle software update scenario

Vehicle Update and Configuration Management allows to install and update
software within an entire vehicle. The vehicle packages are transferred (over-the-air) by
an application OTA Client to Vehicle Update and Configuration Manage-
ment. Vehicle Update and Configuration Management then controls the up-
date process in the vehicle and distributes individual software packages to the Ma-
chines and ECUs within a vehicle.

217 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

12.2 Deployment of Software Packages on a Machine

«device»
Machine

Platform

«software package»
Platform Core Package

tags
Multipl icity = 1
SoftwareCluster.category = PLATFORM_CORE

«software package»
Platform Package

tags
Multipl icity = *
SoftwareCluster.category = PLATFORM

Operating System

«aapFunctionalClust...
Platform Health

Management
daemon-based

«aapFunctionalCl...
State Management

daemon-based

«aapFunctionalCl...
Execution Management

daemon-based

Bootloader / Hypervisor

user

platformVendor

machineVendor

Legend

Watchdog

«software package»
Application Package

tags
Multipl icity = *
SoftwareCluster.category = APPLICATION_LAYER

«aapFunctionalCluster»
Diagnostic Management

daemon-based

«aapFunctionalClust...
Cryptography

daemon-based

���� �� �� �	�
���� �������� ��� �������� �� ��� ������
 ���

������
 ��� ��������
�� ����

«aapFunctionalCluster»
Update and Configuration

Management
daemon-based

«manifest»

«manifest»«manifest»

«manifest»

«manifest»

«manifest»

«manifest»

«manifest»

Figure 12.2: Exemplary deployment of Software Packages on a Machine

Update and Configuration Management manages the software installed on a
Machine using one or more Software Packages. The configuration of the contents
of a Software Package is done in the Manifest by means of a Software Clus-
ter. Software Cluster defines the enumeration attribute category with the val-
ues APPLICATION, PLATFORM, and PLATFORM_CORE. Some rules apply on the use of
the Software Cluster category and corresponding Software Packages which
are outlined in the following.

For a Machine there shall exist exactly one Software Cluster with category
PLATFORM_CORE. The corresponding Platform Core Package needs to include
all required core components provided by the Platform Vendor and Machine
Vendor, for example the operating system, device drivers, and the required Func-
tional Clusters of the Adaptive Platform (see Figure 12.2). It is assumed that at
least the Functional Clusters Execution Management, State Management,
and Update and Configuration Management are part of the Platform Core
Package since they are required to install any additional Software Packages. How-
ever, the concrete extend of a Platform Core Package is vendor and/or project
specific. A Platform Core Package cannot be removed. The Software Clus-
ter with category PLATFORM_CORE needs to be self-contained and therefore shall
not have dependencies to other Software Clusters.

Optional Functional Clusters of the Adaptive Platform may be distributed as
part of any number of additional Software Clusters with category PLATFORM
within Platform Packages. Such Software Clusters may depend on the the

218 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Software Cluster with category PLATFORM_CORE (see Figure 12.2). Platform
Packages may be installed and removed as needed.

Application components should be distributed as part of additional Software Clus-
ters with category APPLICATION within Application Packages. Such Soft-
ware Clusters may depend on the on Software Clusters with any kind of cat-
egory (see Figure 12.2). Application Packages may be installed and removed
as needed.

The Platform Core Package and Platform Packages shall include all required
Functional Cluster daemons and their respective configuration (e.g., startup con-
figuration). This frees applications (distributed as Application Packages) from tak-
ing care of the configuration of the platform.

219 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

13 Cross-cutting Concepts

This section provides an overview of cross-cutting concepts and patterns used in the
AUTOSAR Adaptive Platform.

13.1 Overview of Platform Entities

The AUTOSAR Adaptive Platform defines design entities that several Functional
Clusters depend on. Figure 13.1 provides an overview of these entities, their logical
relationships, and the Functional Clusters that depend on them. For the sake of
brevity, this overview uses simplifications and abstractions over the actual specifica-
tions in the [9, manifest specification].

Software Package Software Cluster

- diagnosticConfig [0..1]
- version

Function Group

ProcessExecutable

«aapFunctionalCluster»
Execution Management

daemon-based

«aapFunctionalCluster»
State Management

daemon-based

Function Group State

«aapFunctionalCluster»
Platform Health Management

daemon-based

PhmSupervision Supervision Checkpoint

Startup Configuration

- options
- schedulingPriority

Adaptive
Application

«aapFunctionalCluster»
Update and Configuration Management

daemon-based

+state

0..*

2..*

+/requiredCluster
0..*

+process 1

1

0..*

0..*

+executionDependecy
0..*

+executable1

+/checkpoints

1..*

Figure 13.1: Overview of platform entities and their logical relationships

A Software Package is a digitally signed package that can be installed/uninstalled
via Update and Configuration Management. A Software Package contains
exactly one Software Cluster (see Section 13.4 for details). A Software Clus-
ter refers to a set of Executables (and other files). The corresponding executable
file then holds the executable code for the Machine that the AUTOSAR Adaptive Plat-
form runs on.

Additionally, a Software Cluster configuration collects a set of Processes (cf.
Section 13.4) and related entities. A Process refers to an Executable and provides
different Startup Configuration values, for example parameters, a scheduling

220 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

priority, and resource constraints. A Startup Configuration of a Process ap-
plies to one or more Function Group States. Function Group States belong
to a Function Group.

During runtime, State Management requests to enter a Function Group State
from Execution Management. Execution Management then terminates and
starts the Processes accordingly using the underlying Operating System.

For safety-critical systems, Platform Health Management performs supervision
of Processes according to rules (logical sequence, deadlines) defined in PhmSuper-
visions. A PhmSupervision refers to a number of Supervision Checkpoints.
During runtime, a process reports whenever it has reached such a checkpoint in its
control flow.

13.2 Function Group

A Function Group (meta-class ModeDeclarationGroup) is (logically) made up a
set of modeled Processes that provide a certain functionality. For example, a Func-
tion Group could be an application, or a service. A special Function Group is the
Machine State that groups the Process of the AUTOSAR Adaptive Platform itself.
A Function Group contains a set of Function Group States.

13.3 Function Group State

A Function Group State (meta-class ModeDeclaration) defines which Pro-
cesses of a Function Group with what configuration parameters shall be running
or not. The Machine State (that refers to the Processes of the AUTOSAR Adap-
tive Platform itself) defines at least the following Function Group States: Off,
Startup, Shutdown, and Restart.

13.4 Software Cluster

A Software Cluster configuration refers to a set of modeled Processes. Those
Processes are (transitively) used by one or more Function Group(s). Hereby, a
Function Group and its associated entities shall be part of only one Software
Cluster. In other words, Function Groups that span several Software Clus-
ters are invalid. A Software Cluster is packaged into one Software Package
- the atomic installable/updateable unit managed by Update and Configuration
Management. A Software Cluster may depend on other Software Clusters.
Such dependencies are expressed by version constraints. Please note that a Soft-
ware Cluster is only used to configure deployment aspects. A Software Clus-
ter is not a runtime entity.

221 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

A Software Cluster may specify a diagnostic configuration (DiagnosticCon-
tributionSet). A DiagnosticContributionSet specifies a single physical di-
agnostic address (and any number of functional addresses). All Software Clusters
referencing the same DiagnosticContributionSet belong to the same physical
diagnostic address. The diagnostic configuration applies to Processes that are con-
tained in a Software Cluster. That means, at runtime, any diagnostic event pro-
duced by those Processes will be associated with the diagnostic address. Please
refer to Section 13.11 for further details on the diagnostic deployment.

An exemplary Software Cluster during application design is shown in Figure 13.2.
The application Software Cluster(s) are modeled/configured in the same way as
the platform Software Cluster by defining Function Groups with Function
Group States and associating StartupConfigurations of Processes to them.

A Software Cluster serves as a grouping entity during application design. As a
result, entities within a Software Cluster, in particular the Function Groups, do
not need to have a unique (simple) name within the overall model because their path is
still unique. This allows to design Software Clusters independently, for example,
by external suppliers.

a: Software Cluster

e1: Executable

fg1: Function Group

normal: Function
Group State

off: Function Group
State

degraded: Function
Group State

executionManifest: Manifest

p1: Process

cfg1: Startup
Configuration

platform: Software Cluster

:Manifest

EM: Process

:Startup
Configuration

����� �����	�
 	��
���	 �� ��������

b: Software Cluster

e2: Executable

executionManifest: Manifest

fg2: Function Group

off: Function Group
State

normal: Function
Group State

p2: Process

cfg2: Startup
Configuration

Figure 13.2: Exemplary Software Cluster during application design

222 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

From such a standardized model, an equivalent implementation-specific configura-
tion for Execution Management is derived that is used during runtime (see Figure
13.3). That configuration advises Execution Management to start and configure
processes accordingly when a Function Group State is requested. Hereby, Ex-
ecution Management (logically) merges configurations contributed by all installed
Software Packages. Other Functional Clusters that depend on configuration
provided in the Manifests merge the configurations contributed by all installed Soft-
ware Packages in the same way. Please also note that there is no corresponding
runtime entity for a Software Cluster (see Figure 13.3).

:Execution ManagementPlatform EM
Configuration

fg1 EM
Configuration

����� ���	
����� �� �� ���	��� �� ����

	�����
������ 	��� �� ������
����� ��

���
������

fg2 EM
Configuration

e1: Executable

fg1: Function Group

normal: Function
Group State

off: Function Group
State

degraded: Function
Group State

p1: Process

cfg1: Startup
Configuration

e2: Executable

fg2: Function Group

off: Function Group
State

normal: Function
Group State

p2: Process

cfg2: Startup
Configuration

����� ���	
����� �� �� ���	��� �� ����

	�����
������ 	��� �� ������
����� ��

���
������

Figure 13.3: Impact of exemplary Software Cluster during runtime

All Processes related to the Functional Clusters of the AUTOSAR Adaptive
Platform should be referenced only in Software Clusters of category PLAT-
FORM_CORE or PLATFORM. This allows for platform-independent development of
Software Clusters of category APPLICATION_LAYER.

In case a Functional Cluster may need multiple logical instances (for example,
Diagnostic Management has a logical instance per diagnostic address), an imple-
mentation of the Functional Cluster should still use a single physical (daemon)
process.

An AUTOSAR Adaptive Platform vendor may deviate from this design guide but should
provide additional countermeasures to keep Adaptive Applications portable.

223 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

13.5 Machine

The AUTOSAR Adaptive Platform regards hardware it runs on as a Machine. The ra-
tionale behind that is to achieve a consistent platform view regardless of any virtualiza-
tion technology which might be used. The Machine might be a real physical machine,
a fully-virtualized machine, a para-virtualized OS, an OS-level-virtualized container or
any other virtualized environment.

On hardware, there can be one or more Machine, and only a single instance of AU-
TOSAR Adaptive Platform runs on a machine. It is generally assumed that this hard-
ware includes a single chip, hosting a single or multiple Machines. However, it is also
possible that multiple chips form a single Machine if the AUTOSAR Adaptive Platform
implementation allows it.

13.6 Manifest

A Manifest represents a piece of AUTOSAR model description that is created to
support the configuration of an AUTOSAR Adaptive Platform product and which is up-
loaded to the AUTOSAR Adaptive Platform product, potentially in combination with
other artifacts (like binary files) that contain executable code to which the Manifest
applies. Please note that a typical Adaptive Application will make use of several
distinct but interrelated Manifests. Hereby, the individual Manifests contribute in-
formation to the complete application model. For example, each Software Cluster
may contribute a self-contained set of Manifests to configure its functionality.

The usage of a Manifest is limited to the AUTOSAR Adaptive Platform. This does
not mean, however, that all ARXML produced in a development project that targets
the AUTOSAR Adaptive Platform is automatically considered a Manifest. In fact,
the AUTOSAR Adaptive Platform is usually not exclusively used in a vehicle project.
A typical vehicle will most likely be also equipped with a number of ECUs developed
on the AUTOSAR Classic Platform and the system design for the entire vehicle will,
therefore, have to cover both, ECUs built on top of the AUTOSAR Classic Platform and
Machines created on top of the AUTOSAR Adaptive Platform.

In principle, the term Manifest could be defined such that there is conceptually just
one "Manifest" and every deployment aspect would be handled in this context. This
does not seem appropriate because it became apparent that Manifest-related model-
elements exist that are relevant in entirely different phases of a typical development
project.

This aspect is taken as the main motivation that next to the application design it is
necessary to subdivide the definition of the term Manifest in three different partitions:

Application Design This kind of description specifies all design-related aspects that
apply to the creation of application software for the AUTOSAR Adaptive Platform. It
is not necessarily required to be deployed to the adaptive platform machine, but the
application design aids the definition of the deployment of application software in the

224 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Execution Manifest and Service Instance Manifest. See Section 13.7 for
details.

Execution Manifest This kind of Manifest is used to specify the deployment-related
information of applications running on the AUTOSAR Adaptive Platform. An Execu-
tion Manifest is bundled with the actual executable code to support the integration
of the executable code onto the machine. See Section 13.8 for details.

Service Instance Manifest This kind of Manifest is used to specify how service-
oriented communication is configured in terms of the requirements of the underlying
transport protocols. A Service Instance Manifest is bundled with the actual
executable code that implements the respective usage of service-oriented communi-
cation. See Section 13.9 for details.

Machine Manifest This kind of Manifest is supposed to describe deployment-related
content that applies to the configuration of just the underlying machine (i.e. without any
applications running on the machine) that runs an AUTOSAR Adaptive Platform. A
Machine Manifest is bundled with the software taken to establish an instance of
the AUTOSAR Adaptive Platform. See Section 13.10 for details.

The temporal division between the definition (and usage) of different kinds of Mani-
fest leads to the conclusion that in most cases different physical files will be used to
store the content of the three kinds of Manifest. In addition to the Application Design
and the different kinds of Manifest, the AUTOSAR Methodology supports a System
Design with the possibility to describe Software Components of both AUTOSAR Plat-
forms that will be used in a system in one single model. The Software Components
of the different AUTOSAR platforms may communicate in a service-oriented way with
each other. But it is also possible to describe a mapping of signals to services to create
a bridge between the service-oriented communication and the signal-based communi-
cation.

13.7 Application Design

The application design describes all design-related modeling that applies to the cre-
ation of application software for the AUTOSAR AP. Application Design focuses on the
following aspects:

• Data types used to classify information for the software design and implementa-
tion

• Service interfaces as the pivotal element for service-oriented communication

• Definition how service-oriented communication is accessible by the application

• Persistency Interfaces as the pivotal element to access persistent data and files

• Definition how persistent storage is accessible by the application

• Definition how files are accessible by the application

225 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

• Definition how crypto software is accessible by the application

• Definition how the Platform Health Management is accessible by the application

• Definition how Time Bases are accessible by the application

• Serialization properties to define the characteristics of how data is serialized for
the transport on the network

• Description of client and server capabilities

• Grouping of applications in order to ease the deployment of software.

The artifacts defined in the application design are independent of a specific deployment
of the application software and thus ease the reuse of application implementations for
different deployment scenarios.

13.8 Execution Manifest

The purpose of the execution manifest is to provide information that is needed for the
actual deployment of an application onto the AUTOSAR AP. The general idea is to
keep the application software code as independent as possible from the deployment
scenario to increase the odds that the application software can be reused in different
deployment scenarios. With the execution manifest the instantiation of applications is
controlled, thus it is possible to

• instantiate the same application software several times on the same machine, or
to

• deploy the application software to several machines and instantiate the applica-
tion software per machine.

The Execution manifest focuses on the following aspects:

• Startup configuration to define how the application instance shall be started. The
startup includes the definition of startup options and access roles. Each startup
may be dependent on machines states and/or function group states.

• Resource Management, in particular resource group assignments.

13.9 Service Instance Manifest

The implementation of service-oriented communication on the network requires con-
figuration which is specific to the used communication technology (e.g. SOME/IP).
Since the communication infrastructure shall behave the same on the provider and the
requesters of a service, the implementation of the service shall be compatible on both
sides.

The Service Instance Manifest focuses on the following aspects:

226 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

• Service interface deployment to define how a service shall be represented on the
specific communication technology.

• Service instance deployment to define for specific provided and required service
instances the required credentials for the communication technology.

• The configuration of E2E protection

• The configuration of Security protection

• The configuration of Log and Trace

13.10 Machine Manifest

The machine manifest allows to configure the actual adaptive platform instance running
on specific hardware (machine).

The Machine Manifest focuses on the following aspects:

• Configuration of the network connection and defining the basic credentials for the
network technology (e.g. for Ethernet this involves setting of a static IP address
or the definition of DHCP).

• Configuration of the service discovery technology (e.g. for SOME/IP this involves
the definition of the IP port and IP multi-cast address to be used).

• Definition of the used machine states.

• Definition of the used function groups.

• Configuration of the adaptive platform functional cluster implementations (e.g.
the operating system provides a list of OS users with specific rights).

• The configuration of the Crypto platform Module.

• The configuration of Platform Health Management.

• The configuration of Time Synchronization.

• Documentation of available hardware resources (e.g. how much RAM is avail-
able; how many processor cores are available).

13.11 Diagnostics deployment

Each Software Cluster may reference a diagnostic configuration (Diagnostic-
ContributionSet). Nevertheless, multiple DiagnosticContributionSets can
be utilized in a Machine. Each DiagnosticContributionSet may be used in sev-
eral Software Clusters. This concept provides a lot of flexibility in the assignment
of diagnostic addresses to Software Clusters. For example, in one extreme this
allows to use a single diagnostic address for the whole Machine (see Figure 13.4), in

227 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

another extreme a single diagnostic address per Software Cluster could be used
(see Figure 13.5). Deployment scenarios in between those extremes are also possible.

Shared diagnostic address 0x1234

Platform Core: Software Cluster

- category = PLATFORM_CORE

Platform: Software Cluster

- category = PLATFORM

������ ��	� 	
�	 ������� �������	��� ��� ������� 	� 	
� ������	� ��������	��
��� ���� ���� ��� ����	��

app1: Software Cluster

- category = APPLICATION_LAYER

app2: Software Cluster

- category = APPLICATION_LAYER

���� 	
�

������	����	���	����	

������� �� ������	� ��������

���� 	
� ���	���� ����	���

�
��� 	
� ����

������	����	���	����	� 	
�

������	� ������ �

��	���	����� ��	����� �� 	
�

�	
�� ���	���� ����	����

shared: DiagnosticContributionSet

- diagnosticAddress = 0x1234
- DID 0x2314
- DID 0x4321

� ����� ������	� ������� �

�
���� �� ��� ���	���� ����	���

� 	
� �������� ��� ���	����

����	��� ����� 	� 	
� ����

�
����

������	����	���	����	

������� � � � ��� ������

���	 ���� ���� 	
����
��	 ���

������	����	���	����	� ���

	
� ���� ������	� ��������

Figure 13.4: Example defining a single diagnostic address for the whole Machine

Diagnostic address 0x04Dinagnostic address 0x03

Diagnostic address 0x02Diagnostic address 0x01

Platform Core: Software Cluster

- category = PLATFORM_CORE
- diagnosticAddress = 0x3

Platform: Software Cluster

- category = PLATFORM
- diagnosticAddress = 0x4

������ ��	� 	
�	 ������� �������	��� ���

������� 	� 	
� ������	� ��������	��
���

���� ���� ��� ����	��

app1: Software Cluster

- category = APPLICATION_LAYER

app2: Software Cluster

- category = APPLICATION_LAYER

:DiagnosticContributionSet

- diagnosticAddress = 0x01
- DID 0x2314

�
� ���� ��� ��� �� ���� �� ���	���� ����	��� �	
 � �������	 ������	� ��������

:DiagnosticContributionSet

- diagnosticAddress = 0x04
- DID 0x1234

:DiagnosticContributionSet

- diagnosticAddress = 0x03
- DID 0x1234

���
 ���	���� ����	��
��

�� ��� ������	� �������

� 	
� ��������

:DiagnosticContributionSet

- diagnosticAddress = 0x02
- DID 0x4123

Figure 13.5: Example using one diagnostic address for each Software Cluster

In the case of a distributed DiagnosticContributionSet, each Software Clus-
ter shall include its related diagnostic configuration objects (for example, the Data
Identifier configuration). The merge of such a split DiagnosticContribution-
Set is done internally by the AUTOSAR Adaptive Platform (e.g. during installation or
during start up the Diagnostic Management daemon).

228 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

13.12 Error Handling

Proper handling of errors during runtime is an important aspect to build safe and se-
cure systems. The AUTOSAR Adaptive Platform does provide means for raising and
handling of such errors on different levels in the platform.

Platform Health Management detects errors (errors in the logical control flow,
missed deadlines, and missed liveness reporting) at the level of Processes and
performs recovery actions (for example, degradation) according to rules defined in
the Manifest. Execution Management detects unexpected termination of Pro-
cesses and reports to State Management for handling of such errors.

During execution of a Process of an Adaptive Application, different abnormal
conditions might be detected and need to be handled and/or reported. The follow-
ing types of unsuccessful operations are distinguished within the AUTOSAR Adaptive
Platform:

• An Error is the inability of an AUTOSAR Runtime for Adaptive Applications API
function to fulfill its specified purpose. An Error it is often a consequence of
invalid and/or unexpected input data. An Error is considered to be recoverable
and therefore shall be handled by applications.

• A Violation is the consequence of failed pre- or post-conditions of internal
state of the AUTOSAR Runtime for Adaptive Applications. A Violation is con-
sidered to be non-recoverable.

• A Corruption is the consequence of the corruption of a system resource, e.g.
stack or heap overflow, or a hardware memory flaw (for example, a detected bit
flip). A Corruption is considered to be non-recoverable.

• A failed default allocation is the inability of the AUTOSAR Runtime for
Adaptive Applications’s default memory allocation mechanism to satisfy an allo-
cation request (for example, there is not enough free memory available).

Violations and Corruptions are non-recoverable (by the application itself) and
will lead to an immediate termination of the application process. It is expected that
a Violation or Corruption will very rarely be experienced by an application in
a production environment. A Corruption is usually caused by faulty hardware. A
Violation is usually caused by misuse of the ARA APIs or inconsistencies between
the code and the Manifest (e.g., InstanceSpecifier referring to an element in the
Manifest that does not exist) which should have been detected by quality assurance
mechanisms upfront.

13.13 Trusted Platform

To guarantee the correct function of the system, it is crucial to ensure that the code ex-
ecuted on the AUTOSAR Adaptive Platform is unaltered (integrity) and has legitimate
origin (authenticity). Keeping this property allows the integrator to build a Trusted

229 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Platform. A key property of a system that implements a Trusted Platform is a
Trust Anchor (also called Root of Trust). A Trust Anchor is often realized
as a public key that is stored in a secure environment, e.g. in non-modifiable persistent
memory or in an Hardware Security Module. A system designer is responsible
to ensure that the system starts beginning with a Trust Anchor and that the chain of
trust is kept until the Execution Management is launched. Depending on the mech-
anism that is chosen by the system designer to establish the chain of trust, the integrity
and authenticity of the entire system (including all executables) may be checked during
system start-up. Alternatively, the system designer might only ensure that the already
executed software has been checked regarding integrity and authenticity and Execu-
tion Management takes over responsibility on continuing the chain of trust when it
takes over control of the system. In the latter case, the system integrator is responsible
to ensure that the Execution Management is configured accordingly.

Passing trust requires that a trusted entity checks (using trusted functionality) that the
entity down the chain is authentic. The Trust Anchor (the first entity in the chain) is
authentic by definition. An example of such a chain of trust could look like this: The
Trust Anchor authenticates the bootloader before the bootloader is being started.
In each subsequent step in the boot process, the to-be-started executable shall be au-
thenticated first, for example by the executable started previously or by some external
entity like an Hardware Security Module. After the relevant parts of the Operat-
ing System have been authentically started, it shall launch Execution Manage-
ment as one of its first processes in the same manner passing trust to the AUTOSAR
Adaptive Platform. Then, Execution Management takes over the responsibility of
authenticating Adaptive Applications before launching them.

As stated above, if authenticity is not checked by the functionality of the Trust An-
chor itself, which is authentic by definition, the functionality that shall be applied to
verify authenticity of an executable has to be authenticated as well before it is applied.
For instance, if the Crypto Functional Cluster shall be used to verify authentic-
ity of executables, the Crypto Functional Cluster itself shall be authenticated by
some trusted entity before it is used.

13.14 Communication Mechanisms

As communication is a fundamental principle of AP, this subsection provides an
overview of the communication protocols and APIs in use and the intended purpose.
Structuring of the protocol overview has been organized according to ISO OSI model
into lower layer protocols (up to data link layer), network and transport layer protocols
and application layer protocols (session, presentation and application layer). The com-
munication APIs include the communication interfaces offered to the Adaptive Appli-
cations, i.e. communication related interfaces of the ara framework (see [10, platform
design]). There is no implication that protocol deployment is mandatory for a proper
setup of an Adaptive Machine. For some protocols this may depend on the project
specific requirements.

230 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

For a better understanding of the AUTOSAR context following categories of protocol
usage are introduced and included in the overview:

• native: Protocol (fields) has / have been specified especially for AUTOSAR us-
age. There is a protocol specification available.

• adapted: AP includes features of a protocol (suite) defined by 3rd party and may
modify some of them and / or extend them with AUTOSAR specific extensions as
part of the standard. The extension is part of a protocol specification.

• supported: AP includes features of a protocol (suite) defined by 3rd party in native
form in the standard. The protocol is referred to within requirement specification
items and optionally SW specification item(s) and / or the Manifest to define pro-
tocol specific properties.

• external standard: In contrast to 3rd party protocol (suite) mentioned in cate-
gory ’supported’, protocols within this category are not part of any AUTOSAR
specification items (but may be mentioned in technical reports, explanatory doc-
uments or added as notes and alike). Their usage is not binding from AUTOSAR
perspective, but some potential opportunities may be recognized in combination
with functionality covered by the AUTOSAR standard. Specific usage examples
are provided where suitable. Potentially listing external standard protocols could
be a non-exhaustive task. Therefore, inclusion in the overview should be justified
due to high potential in Automotive context and consequently for the ecosystem
of Adaptive Platform. A rationale should provide further explanation.

The protocols listed in this subsection in general don’t consider support for external
vehicle connectivity (lower layers up to ISO OSI transport layer) due to completely
different ecosystems, such as the following examples:

• Wireless connectivity for long and mid-range communication (e.g. C-V2X stan-
dard based on 3GPP Rel. 14 and beyond or IEEE 802.11p)

• Wireless nearfield connectivity e.g. for the purpose of sensor and user device
connectivity (e.g. IEEE 802.11 a/b/g, Bluetooth LE, ..)

• Connectivity via plug-in user devices (e.g. USB, AUX, AV, SD„ ..)

13.14.1 Lower Layer Protocols

Protocol AUTOSAR
Context

Rationale AUTOSAR Reference

Ethernet supported Ethernet MAC layer is a prerequisite
for service-oriented communication.
Configuration parameters are
defined for access of Ethernet type
media in Automotive context.

EthernetCommunica-
tionConnector in [9,
Specification of
Manifest]

5

231 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Protocol AUTOSAR

Context
Rationale AUTOSAR Reference

Ethernet over
CAN XL

supported Support of CAN XL media is
included in the standard to offer
tunneling of Ethernet frames. For
this case configuration parameters
are defined to access CAN XL
controller.

"CanXlProps" in [9,
Specification of
Manifest]

MACsec supported MACsec provides cryptographic
protection for MAC frames
according to IEEE 802.1AE.
AUTOSAR standard defines
creation and maintenance of secure
channel and association (such as
the MACsec key agreement).

[11, Explanation of
MACsec and MKA
Protocols
implementation and
configuration
guidelines]

TimeSync
Protocol

adopted The time synchronization protocol
(derived from IEEE 802.1 AS) is
used to synchronize time bases and
the corresponding Ethernet
messages and supports
measurement of time differences
between Ethernet frames. It is
supposed to be applicable for
time-critical and safety-related
automotive applications. Support for
VLAN tagging is based on IEEE
802.1Q.

[12, Time
Synchronization
Protocol Specification]

Table 13.1: Lower layer protocols relevant to AP

13.14.2 Network and Transport Layer Protocols

Protocol AUTOSAR
Context

Rationale AUTOSAR Reference

IPv4 &
Companion
Protocols (ARP,
ICMPv4)

supported Network protocol to exchange IP
datagrams if IPv4 endpoint option
(addressing scheme) is configured.
Even though not mentioned by
AUTOSAR specification ARP
(address resolution protocol) is
implicitly included for an IPv4
endpoint. The protocol is used to
provide the association between the
IPv4 network address and the MAC
address. This mechanism is needed
to determine the correct MAC
address for IP datagram delivery.

5

"Ipv4Props" in [9,
Specification of
Manifest]

5

232 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Protocol AUTOSAR

Context
Rationale AUTOSAR Reference

4
Due to the different format of the
addressing schemes static mapping
without resolution is usually not
feasible. In addition, ICMPv4 should
be considered in a network with
IPv4 endpoints. This protocol is
used to exchange IPv4 network
related status and error messages
between these endpoints.

IPv6 &
Companion
Protocols (NDP,
ICMPv6)

supported Network protocol to exchange IP
datagrams if IPv6 endpoint option
(addressing scheme) is configured.
Even though not mentioned by
AUTOSAR specification NDP
(Network Discovery Protocol) is
implicitly included for IPv6
endpoints. NDP replaces ARP in an
IPv6 network. It is responsible for
discovery and IPv6 address
configuration tasks. In addition,
ICMPv6 (Internet Control Message
Protocol v6) should be considered in
a network with IPv6 endpoints. This
protocol is used to exchange IPv6
network related status and error
messages between these endpoints.

"Ipv6Props" in [9,
Specification of
Manifest]

TCP supported Transmission Control Protocol is
used as a reliable transport protocol
to exchange service-oriented
communication messages between
two endpoints. For this purpose, a
TCP port mapping can be
configured.

"TcpProps" in [9,
Specification of
Manifest]

UDP supported User Datagram Protocol is used as
a time sensitive transport protocol to
exchange service-oriented
communication messages between
two endpoints. For this purpose, a
UDP port mapping can be
configured.

"UdpProps" in [9,
Specification of
Manifest]

5

233 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Protocol AUTOSAR

Context
Rationale AUTOSAR Reference

IPSec supported IPsec provides cryptographic
protection for IP datagrams in IPv4
and IPv6 networks. IP related
information specified for IPsec
configuration can be used for
authenticating the remote endpoint.
Implicitly IKEv2 (Internet Key
Exchange) protocol v2 is used to set
up the security association between
the IP endpoints by means of key
generation and exchange.

[13, Specification of
Communication
Management]

[9, Specification of
Manifest]AP-TPS-
ManifestSpecification

Table 13.2: Network and transport layer protocols relevant to AP

13.14.3 Application Layer Protocols

Protocol AUTOSAR
Context

Rationale AUTOSAR Reference

SOME/IP native Scalable service-oriented
middleware over IP provides a
transport for service-oriented
communication over an IP network.
It is based on service definitions that
list the functionality that the service
provides. A service can consist of a
combinations of zero up to multiple
events, methods and fields.

[14, SOME/IP Protocol
Specification]

SOME/IP SD native This protocol is the service
discovery part for service-oriented
communication over an IP network.
The main task is communicating the
availability of functional entities
called services and controlling the
send behavior of event messages.
This allows sending only event
messages to receivers requiring
them (Publish/Subscribe).

[15, SOME/IP Service
Discovery Protocol
Specification]

5

234 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Protocol AUTOSAR

Context
Rationale AUTOSAR Reference

S2S native The service-oriented communication
can be exchanged between AP and
CP instances. If information
contained in signal-based messages
needs to be shared as service or
vice versa, a signal-to-service
conversion is needed. The
signal-based payload for such type
of communication needs to be
carried in a SOME/IP message.

[13, Specification of
Communication
Management
subsection
"Signal-Based Network
binding"]

UDP NM native Main purpose of the network
management protocol (based on
UDP) is to coordinate one or more
groups of machines to wake up and
shutdown their communication stack
synchronously. The NM algorithm is
based on periodic NM messages,
which are received by all nodes in
an NM cluster. Reception of NM
messages indicates that sending
nodes want to keep NM cluster
awake. If any node does not need
communication anymore, it stops
sending NM messages.

[16, Specification of
Network Management
Protocol]

DLT native The protocol allows sending
diagnostic, log and trace information
onto the communications network.
The purpose is to collect debug
information from applications or
other SW components, add
metadata to the debug information
before transmitting it to the receiver.
In addition, the DLT protocol allows
filtering of debug information
depending on the severity level.

[17, Log and Trace
Protocol Specification]

5

235 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Protocol AUTOSAR

Context
Rationale AUTOSAR Reference

SecOC native Authentication and integrity
protection of sensitive data is
necessary to protect correct and
safe functionality of the vehicle
systems - this ensures that received
data comes from an authentic
machine and has the correct value.
The SecOC protocol described in
this document verifies the
authenticity and freshness of
PDU-based communication
between machines within the vehicle
architecture. The approach requires
both the sending machine and the
receiving machine to implement a
SecOC module.

[18, Specification of
Secure Onboard
Communication
Protocol]

IDS native The main use case for the Intrusion
Detection System Protocol is the
propagation of qualified security
events in a way that is independent
from the machine or the used
communication mechanism. IDS
monitoring instances can be
allocated to all nodes of the vehicle
architecture that are security
relevant. This decision is typically
based on a security analysis of the
vehicle E/E architecture.

[19, Specification of
Intrusion Detection
System Protocol]

E2E native For safe communication integrity of
messages can be ensured by the
end-to-end protection offered by
E2E protocol. End-to-end protection
assumes that safety-related data
exchange shall be protected at
runtime against the effects of faults
within the communication link.
End-to-end protection detects faults
and reports a status in addition to
the data to the application. The
application is responsible for
handling such faults.

[20, E2E Protocol
Specification]

Table 13.3: Application layer protocols native to AP

236 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Protocol AUTOSAR
Context

Rationale AUTOSAR Reference

DHCPv4 external
standard

The protocol is used to enable an
IPv4 endpoint to obtain IPv4
network configuration (like IP
address, subnet mask, etc.)
dynamically from a serving instance
in the vehicle network.

no reference

DHCPv6 supported The protocol is used to enable an
IPv6 endpoint to obtain IPv6
network configuration (like IP
address, subnet mask, etc.)
dynamically from a serving instance
in the vehicle network.

"Dhcpv6Props" in [9,
Specification of
Manifest]

IPC external
standard

Interprocess communication may be
beneficial for the exchange of data
between two processes, which are
located in the same machine. A
significant advantage of IPC is the
lightweight type of communication,
i.e. less resources are requested.
There are different mechanisms,
such as shared memory, message
queues, pipes or sockets.

[10, Explanation of
Adaptive Platform
Design]

DNS supported The domain name service can be
used by an Adaptive Application, for
example to resolve the host name of
a communication peer to the
corresponding IP address. If
supported by an Adaptive Machine,
a DNS server needs to be
configured, which can be requested
for the name resolving.

"dnsServerAddress" in
[9, Specification of
Manifest]

mDNS external
standard

Multicast DNS protocol is used for
the same purpose like DNS, i.e.
name resolving between
communication peers. mDNS is a
special variant where no server
instance is needed for the
resolution. This works especially in
small networks with a limited
number of peers. The name
resolution request is sent as a
multicast message addressed to all
peers to provide the requested
information. Within AUTOSAR
relevance is considered in context of
SOVD, as discovery of the SOVD
gateway by the backend connectivity
could be accomplished by using
mDNS.

[21, Explanation of
Service-Oriented
Vehicle Diagnostics]

5

237 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Protocol AUTOSAR

Context
Rationale AUTOSAR Reference

DDS supported DDS is a middleware protocol and
API standard for data-centric
connectivity standardized by the
Object Management Group. It can
be considered as an alternative to
SOME/IP to implement
service-oriented communication.

[22, Requirements on
Data Distribution
Service]

DoIP supported The Diagnostics over Internet
Protocol (Communication protocol of
automotive electronics according to
ISO-13400-2[5]) is an option to
transport diagnostic messages
(UDS) over the network.

[23, Specification of
Diagnostic Manager
subsection "DoIP"]

TLS / DTLS supported A transport layer security (TLS)
channel works on top of TCP
protocol and may provide
authenticity, integrity and
confidentiality. It may be used in
combination with SOME/IP or DDS
network binding to provide the
mentioned security services for
these protocols. In contrast
datagram transport layer security
channel provides equivalent security
services like TLS for applications
based on UDP transport.

[13, Specification of
Communication
Management]

[9, Specification of
Manifest]AP-TPS-
ManifestSpecification

OAuth 2.0 external
standard

This stands for Open Authorization
and is an IETF based standard to
authorize access to web resources.
In AUTOSAR it may be used for
authorization access to SOVD
(service-oriented vehicle
diagnostics) resources.

[21, Explanation of
Service-Oriented
Vehicle Diagnostics]

HTTP / HTTPS external
standard

Hypertext transport protocol
(secured) is an IETF standard to
exchange information between a
web server and client. For
SOVD-based communication, the
diagnostic manager requires one or
more socket connections including
port and IP address to be able to
establish an HTTP resp. HTTPS
connection with an external entity.

[23, Specification of
Diagnostic Manager
subsection "SOVD
Transport Layer"]

5

238 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Protocol AUTOSAR

Context
Rationale AUTOSAR Reference

VISS external
standard

The protocol may be used by an
external entity to request and
receive specific vehicle signal
information from a vehicle network
via Automotive API. At the gateway
connecting the external and the
vehicle internal network, this
protocol needs to be mapped to an
internal communication protocol
supported by the Adaptive
Machine(s) being responsible to
satisfy the service request.

[24, Specification of
Automotive API
Gateway]

Table 13.4: Application layer protocols not native to AP

13.14.4 Communication APIs

In addition to communication protocols which may be executed on an Adaptive Ma-
chine, this subsection provides an overview about communication APIs which might be
used by an Adaptive Application.

API Rationale AUTOSAR Reference
ara::com This API provides calls for service-oriented

communication according to the publish / subscribe
pattern. Network bindings are provided for SOME/IP
protocol, DDS protocol and signal-to service mapping
for communication with endpoints, which use exchange
of signals.

[13, Specification of
Communication
Management]

ara::rds This API is considered for the exchange of raw data,
between e.g. certain sensor devices and applications,
which need to process such data.

[25, Specification of
Raw Data Stream]

ara::adi::sensoritf Data communication between sensors and data fusion
unit e.g. for automated driving functions, which might be
on an AP instance. This is part of ISO 23150 standard.

[26, Specification of
Sensor Interfaces]

SOVD as part
of ara::diag

The service-oriented vehicle diagnostic API extends the
possibilities for diagnostics communication according to
the related ASAM standard. A client of this API may be
triggered by a diagnostic request, which is external to
the vehicle and could be re-directed to different AP and
CP instances for satisfying the request.

[23, Specification of
Diagnostic Manager
subsection "SOVD
Transport Layer"]

5

239 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
API Rationale AUTOSAR Reference
ara::aag Automotive API that is realized by the Automotive API

Gateway provides access for external endpoints to
request services from Adaptive Applications. A mapping
is requested at the border of the vehicle to map
communication mechanisms between the external
network and the AP communication means (ara::com)

[24, Specification of
Automotive API
Gateway]

Table 13.5: Communication APIs relevant to AP

13.15 Service-Oriented Communication

The interaction in Service Oriented Architecture is between service providers and ser-
vice consumers in which one provides some data and functionality and the other con-
sumes it. Before the service consumer can use the data the service provider offers,
the two parties need to come to a contract agreement. The contract agreement in
AUTOSAR is specified in the form of a Service Interface (meta-class ServiceInter-
face). The Service Interface defines in detail which methods, fields, and events the
service provider offers. The service consumer can rely that these methods, fields, and
events that are defined in the Service Interface will be supplied by the service provider.
Service Interfaces are modeled in AUTOSAR using ARXML during application design
(see [9] for details).

In the application design the services are provided to other components by applica-
tion software components (meta-class AdaptiveApplicationSwComponentType).
Ports (meta-class PortPrototype) are used to describe the interconnection between
Software Components. Each Port of a Software Component is typed by an interface
(e.g., a Service Interface). In other words each Port definition is of a specific type and
can only connect Software Components defining Ports of the same type. Each Soft-
ware Component is able to define multiple Ports. A Port that is typed by a Service
Interface defines a Service Instance. A PPort (Provided Port, meta-class PPort-
Prototype) provides a Service Instance and an RPort (Required Port, meta-class
RPortPrototype) consumes a Service Instance. This means that the same Ser-
vice Interface may be provided by different PPorts (of the same or of different Software
Components) as a different Service Instance. An RPort indicates that a Software Com-
ponent needs to use a Service Interface and that it searches for a provided Service
Instance (using Service Discovery or static configuration). Please note that there may
be many consumers for the same provided Service Instance in a system.

The modeling of Software Components on application design level in the AUTOSAR
model (ARXML) is standardized by AUTOSAR. On the other hand a C++ Software
Component Framework is not standardized by AUTOSAR and the implementation of a
modeled component can be freely chosen by the implementer.

During the life cycle of a Service Interface, the content of the service may change
(because consumers have change requests or errors need to be fixed). AUTOSAR

240 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

supports the versioning of a Service Interface to indicate whether the service was
changed in a backward compatible way or in an incompatible way. If the minor version
number of a Service Interface is increased it means that the Service Interface was
changed in a compatible way (e.g. by adding new functionality to the service), so that
existing consumers are able to use the Service Interface without any changes. If the
major version of a Service Interface increases it means that the service was changed
in a non backward compatible way so that existing consumers may need to be adapted
to the updated Service Interface.

241 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

A Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables represent-
ing meta-classes mentioned in the context of this document. Please refer to [9] for
additional details.

Class AdaptiveApplicationSwComponentType

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::ApplicationStructure

Note This meta-class represents the ability to support the formal modeling of application software on the
AUTOSAR adaptive platform. Consequently, it shall only be used on the AUTOSAR adaptive platform.

Tags: atp.recommendedPackage=AdaptiveApplicationSwComponentTypes

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, SwComponentType

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

internalBehavior AdaptiveSwcInternal
Behavior

0..1 aggr This aggregation represents the internal behavior of the
AdaptiveApplicationSwComponentType for the AUTOSAR
adaptive platform.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=internalBehavior.shortName, internal
Behavior.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

Table A.1: AdaptiveApplicationSwComponentType

Class DiagnosticContributionSet

Package M2::AUTOSARTemplates::DiagnosticExtract::DiagnosticContribution

Note This meta-class represents a root node of a diagnostic extract. It bundles a given set of diagnostic model
elements. The granularity of the DiagonsticContributionSet is arbitrary in order to support the aspect of
decentralized configuration, i.e. different contributors can come up with an own DiagnosticContribution
Set.

Tags: atp.recommendedPackage=DiagnosticContributionSets

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

common
Properties

DiagnosticCommon
Props

0..1 aggr This attribute represents a collection of diagnostic
properties that are shared among the entire Diagnostic
ContributionSet.

Stereotypes: atpSplitable
Tags: atp.Splitkey=commonProperties

element DiagnosticCommon
Element

* ref This represents a DiagnosticCommonElement considered
in the context of the DiagnosticContributionSet

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=element.diagnosticCommonElement,
element.variationPoint.shortLabel
vh.latestBindingTime=postBuild

5

242 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Class DiagnosticContributionSet

serviceTable DiagnosticServiceTable * ref This represents the collection of DiagnosticServiceTables
to be considered in the scope of this Diagnostic
ContributionSet.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=serviceTable.diagnosticServiceTable, service
Table.variationPoint.shortLabel
vh.latestBindingTime=postBuild

Table A.2: DiagnosticContributionSet

Class FirewallRule
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Firewall

Note Firewall Rule that defines the control information in individual packets.

Tags:
atp.Status=candidate
atp.recommendedPackage=FirewallRules

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadableDesignElement , UploadablePackageElement

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

bucketSize PositiveInteger 0..1 attr This attribute defines the capacity of the queue for rate
limitation (leaky-bucket Algorithm).

Tags: atp.Status=candidate

dataLinkLayer
Rule

DataLinkLayerRule 0..1 aggr Configuration of rules on the Data Link Layer

Tags: atp.Status=candidate

ddsRule DdsRule 0..1 aggr Configuration of firewall rules for DDS.

Tags: atp.Status=candidate

doIpRule DoIpRule 0..1 aggr Configuration of firewall rules for DoIP messages

Tags: atp.Status=candidate

networkLayer
Rule

NetworkLayerRule 0..1 aggr Configuration of rules on the Network Layer

Tags: atp.Status=candidate

payloadByte
PatternRule

PayloadBytePattern
Rule

* aggr Configuration of generic firewall rules

Tags: atp.Status=candidate

refillAmount PositiveInteger 0..1 attr This attribute defines the output rate that describes how
many packets leave the queue per second (leaky-bucket
Algorithm).

Tags: atp.Status=candidate

someipRule SomeipProtocolRule 0..1 aggr Configuration of firewall rules for SOME/IP messages

Tags: atp.Status=candidate

someipSdRule SomeipSdRule 0..1 aggr Configuration of firewall rules for SOME/IP Service
Discovery messages

Tags: atp.Status=candidate

transportLayer
Rule

TransportLayerRule 0..1 aggr Configuration of rules on the Transport Layer

Tags: atp.Status=candidate

Table A.3: FirewallRule

243 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Class ModeDeclaration
Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration

Note Declaration of one Mode. The name and semantics of a specific mode is not defined in the meta-model.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Aggregated by AtpClassifier .atpFeature, ModeDeclarationGroup.modeDeclaration

Attribute Type Mult. Kind Note

value PositiveInteger 0..1 attr The RTE shall take the value of this attribute for
generating the source code representation of this Mode
Declaration.

Table A.4: ModeDeclaration

Class ModeDeclarationGroup

Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration

Note A collection of Mode Declarations. Also, the initial mode is explicitly identified.

Tags: atp.recommendedPackage=ModeDeclarationGroups

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, UploadableDesignElement ,
UploadablePackageElement

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

initialMode ModeDeclaration 0..1 ref The initial mode of the ModeDeclarationGroup. This
mode is active before any mode switches occurred.

mode
Declaration

ModeDeclaration * aggr The ModeDeclarations collected in this ModeDeclaration
Group.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=modeDeclaration.shortName, mode
Declaration.variationPoint.shortLabel
vh.latestBindingTime=blueprintDerivationTime

Table A.5: ModeDeclarationGroup

Class PPortPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Component port providing a certain port interface.

Base ARObject , AbstractProvidedPortPrototype, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable,
MultilanguageReferrable, PortPrototype, Referrable

Aggregated by AtpClassifier .atpFeature, SwComponentType.port

Attribute Type Mult. Kind Note

provided
Interface

PortInterface 0..1 tref The interface that this port provides.

Stereotypes: isOfType

Table A.6: PPortPrototype

244 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Class PersistencyDeploymentElementToCryptoKeySlotMapping

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::CryptoDeployment

Note This meta-class represents the ability to define a mapping between the PersistencyDeploymentElement
and a CryptoKeySlot.

Tags: atp.recommendedPackage=FCInteractions

Base ARElement , ARObject , CollectableElement , FunctionalClusterInteractsWithFunctionalClusterMapping,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, UploadableDeployment
Element , UploadablePackageElement

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

cryptoAlgorithm
String

String 0..1 attr This attribute defines the cryptographic algorithm used for
hashing, encryption, decryption, signature/MAC
verification, or MAC generation.

cryptoKeySlot CryptoKeySlot 0..1 ref This reference represents the mapped CryptoKeySlot.

keySlotUsage CryptoKeySlotUsage
Enum

0..1 attr This attribute defines the role of the keySlot assignment.

persistency
Deployment
Element

PersistencyDeployment
Element

0..1 ref This reference represents the mapped Persistency
Deployment.

verificationHash String 0..1 attr This attribute defines the hash of the storage used in
case of verification.

Table A.7: PersistencyDeploymentElementToCryptoKeySlotMapping

Class PersistencyDeploymentToCryptoKeySlotMapping

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::CryptoDeployment

Note This meta-class represents the ability to define a mapping between the PersistencyDeployment and a
CryptoKeySlot.

Tags: atp.recommendedPackage=FCInteractions

Base ARElement , ARObject , CollectableElement , FunctionalClusterInteractsWithFunctionalClusterMapping,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, UploadableDeployment
Element , UploadablePackageElement

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

cryptoAlgorithm
String

String 0..1 attr This attribute defines the cryptographic algorithm used for
hashing, encryption, decryption, signature/MAC
verification, or MAC generation.

cryptoKeySlot CryptoKeySlot 0..1 ref This reference represents the mapped CryptoKeySlot.

keySlotUsage CryptoKeySlotUsage
Enum

0..1 attr This attribute defines the role of the keySlot assignment.

persistency
Deployment

PersistencyDeployment 0..1 ref This reference represents the mapped Persistency
Deployment.

verificationHash String 0..1 attr This attribute defines the hash of the storage used in
case of verification.

Table A.8: PersistencyDeploymentToCryptoKeySlotMapping

Class PersistencyRedundancyHandling (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This abstract base class represents a formal description of redundancy.

Base ARObject

Subclasses PersistencyRedundancyChecksum, PersistencyRedundancyMOutOfN

5

245 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Class PersistencyRedundancyHandling (abstract)

Aggregated by PersistencyDeployment .redundancyHandling, PersistencyInterface.redundancyHandling

Attribute Type Mult. Kind Note

scope PersistencyRedundancy
HandlingScopeEnum

0..1 attr This attribute controls the scope in which the redundancy
handling is applied.

Table A.9: PersistencyRedundancyHandling

Class PortPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Base class for the ports of an AUTOSAR software component.

The aggregation of PortPrototypes is subject to variability with the purpose to support the conditional
existence of ports.

Base ARObject , AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses AbstractProvidedPortPrototype, AbstractRequiredPortPrototype

Aggregated by AtpClassifier .atpFeature, SwComponentType.port

Attribute Type Mult. Kind Note

clientServer
Annotation

ClientServerAnnotation * aggr Annotation of this PortPrototype with respect to client/
server communication.

delegatedPort
Annotation

DelegatedPort
Annotation

0..1 aggr Annotations on this delegated port.

ioHwAbstraction
Server
Annotation

IoHwAbstractionServer
Annotation

* aggr Annotations on this IO Hardware Abstraction port.

modePort
Annotation

ModePortAnnotation * aggr Annotations on this mode port.

nvDataPort
Annotation

NvDataPortAnnotation * aggr Annotations on this non voilatile data port.

parameterPort
Annotation

ParameterPort
Annotation

* aggr Annotations on this parameter port.

portPrototype
Props

PortPrototypeProps 0..1 aggr This attribute allows for the definition of further
qualification of the semantics of a PortPrototype.

senderReceiver
Annotation

SenderReceiver
Annotation

* aggr Collection of annotations of this ports sender/receiver
communication.

triggerPort
Annotation

TriggerPortAnnotation * aggr Annotations on this trigger port.

Table A.10: PortPrototype

Class RPortPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Component port requiring a certain port interface.

Base ARObject , AbstractRequiredPortPrototype, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable,
MultilanguageReferrable, PortPrototype, Referrable

Aggregated by AtpClassifier .atpFeature, SwComponentType.port

Attribute Type Mult. Kind Note

required
Interface

PortInterface 0..1 tref The interface that this port requires.

Stereotypes: isOfType

Table A.11: RPortPrototype

246 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Class ServiceInterface
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This represents the ability to define a PortInterface that consists of a heterogeneous collection of
methods, events and fields.

Tags: atp.recommendedPackage=ServiceInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

event VariableDataPrototype * aggr This represents the collection of events defined in the
context of a ServiceInterface.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=event.shortName, event.variationPoint.short
Label
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=30

field Field * aggr This represents the collection of fields defined in the
context of a ServiceInterface.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=field.shortName, field.variationPoint.short
Label
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=40

majorVersion PositiveInteger 0..1 attr Major version of the service contract.

Tags: xml.sequenceOffset=10

method ClientServerOperation * aggr This represents the collection of methods defined in the
context of a ServiceInterface.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=method.shortName, method.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=50

minorVersion PositiveInteger 0..1 attr Minor version of the service contract.

Tags: xml.sequenceOffset=20

trigger Trigger * aggr This represents the collection of triggers defined in the
context of a ServiceInterface.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=trigger.shortName, trigger.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=60

Table A.12: ServiceInterface

Class SoftwareCluster
Package M2::AUTOSARTemplates::AdaptivePlatform::SoftwareDistribution

Note This meta-class represents the ability to define an uploadable software-package, i.e. the SoftwareCluster
shall contain all software and configuration for a given purpose.

Tags: atp.recommendedPackage=SoftwareClusters

5

247 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Class SoftwareCluster
Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable

Element , Referrable, UploadableDeploymentElement , UploadablePackageElement

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

artifact
Checksum

ArtifactChecksum * aggr This aggregation carries the checksums for artifacts
contained in the enclosing SoftwareCluster. Please note
that the value of these checksums is only applicable at
the time of configuration.

Stereotypes: atpSplitable
Tags: atp.Splitkey=artifactChecksum.shortName, artifact
Checksum.uri

artifactLocator ArtifactLocator * aggr This aggregation represents the artifact locations that are
relevant in the context of the enclosing SoftwareCluster

claimed
FunctionGroup

ModeDeclarationGroup
Prototype

* ref Each SoftwareCluster can reserve the usage of a given
functionGroup such that no other SoftwareCluster is
allowed to use it

conflictsTo SoftwareCluster
DependencyFormula

0..1 aggr This aggregation handles conflicts. If it yields true then
the SoftwareCluster shall not be installed.

Stereotypes: atpSplitable
Tags: atp.Splitkey=conflictsTo

contained
ARElement

ARElement * ref This reference represents the collection of model
elements that cannot derive from UploadablePackage
Element and that contribute to the completeness of the
definition of the SoftwareCluster.

Stereotypes: atpSplitable
Tags: atp.Splitkey=containedARElement

containedFibex
Element

FibexElement * ref This allows for referencing FibexElements that need to be
considered in the context of a SoftwareCluster.

contained
Package
Element

UploadablePackage
Element

* ref This reference identifies model elements that are required
to complete the manifest content.

Stereotypes: atpSplitable
Tags: atp.Splitkey=containedPackageElement

contained
Process

Process * ref This reference represent the processes contained in the
enclosing SoftwareCluster.

dependsOn SoftwareCluster
DependencyFormula

0..1 aggr This aggregation can be taken to identify a dependency
for the enclosing SoftwareCluster.

Stereotypes: atpSplitable
Tags: atp.Splitkey=dependsOn

design SoftwareClusterDesign * ref This reference represents the identification of all Software
ClusterDesigns applicable for the enclosing Software
Cluster.

Stereotypes: atpUriDef

diagnostic
Deployment
Props

SoftwareCluster
DiagnosticDeployment
Props

0..1 ref This reference identifies the applicable SoftwareCluster
DiagnosticDeploymentProps that are applicable for the
referencing SoftwareCluster.

installation
Behavior

SoftwareCluster
InstallationBehavior
Enum

0..1 attr This attribute controls the behavior of the SoftwareCluster
in terms of installation.

license Documentation * ref This attribute allows for the inclusion of the full text of a
license of the enclosing SoftwareCluster. In many cases
open source licenses require the inclusion of the full
license text to any software that is released under the
respective license.

5

248 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

4
Class SoftwareCluster
module
Instantiation

AdaptiveModule
Instantiation

* ref This reference identifies AdaptiveModuleInstantiations
that need to be included with the SoftwareCluster in order
to establish infrastructure required for the installation of
the SoftwareCluster.

Stereotypes: atpSplitable
Tags: atp.Splitkey=moduleInstantiation

releaseNotes Documentation 0..1 ref This attribute allows for the explanations of changes since
the previous version. The list of changes might require
the creation of multiple paragraphs of test.

typeApproval String 0..1 attr This attribute carries the homologation information that
may be specific for a given country.

vendorId PositiveInteger 0..1 attr Vendor ID of this Implementation according to the
AUTOSAR vendor list.

vendor
Signature

CryptoService
Certificate

0..1 ref This reference identifies the certificate that represents the
vendor’s signature.

version StrongRevisionLabel
String

0..1 attr This attribute can be used to describe a version
information for the enclosing SoftwareCluster.

Table A.13: SoftwareCluster

Class StartupConfig

Package M2::AUTOSARTemplates::AdaptivePlatform::ExecutionManifest

Note This meta-class represents a reusable startup configuration for processes..

Tags: atp.recommendedPackage=StartupConfigs

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadableDeploymentElement , UploadablePackageElement

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

environment
Variable

TagWithOptionalValue * aggr This aggregation represents the collection of environment
variables that shall be added to the respective Process’s
environment prior to launch.

executionError ProcessExecutionError 0..1 ref this reference is used to identify the applicable execution
error

permissionTo
CreateChild
Process

Boolean 0..1 attr This attribute defines if Process is permitted to create
child Processes. When setting this parameter to true two
things should be kept in mind: 1) safety and security
implication of this configuration, 2) the fact that Process
will assume management responsibilities for child
Processes (i.e. it will be responsible for terminating
Processes that it creates).

process
Argument
(ordered)

ProcessArgument * aggr This aggregation represents the collection of
command-line arguments applicable to the enclosing
StartupConfig.

scheduling
Policy

String 0..1 attr This attribute represents the ability to define the
scheduling policy for the initial thread of the application.

scheduling
Priority

Integer 0..1 attr This is the scheduling priority requested by the
application itself.

termination
Behavior

TerminationBehavior
Enum

0..1 attr This attribute defines the termination behavior of the
Process.

timeout EnterExitTimeout 0..1 aggr This aggregation can be used to specify the timeouts for
launching and terminating the process depending on the
StartupConfig.

Table A.14: StartupConfig

249 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R24-11

Class StateDependentStartupConfig

Package M2::AUTOSARTemplates::AdaptivePlatform::ExecutionManifest

Note This meta-class defines the startup configuration for the process depending on a collection of machine
states.

Base ARObject

Aggregated by Process.stateDependentStartupConfig

Attribute Type Mult. Kind Note

execution
Dependency

ExecutionDependency * aggr This attribute defines that all processes that are
referenced via the ExecutionDependency shall be
launched and shall reach a certain ProcessState before
the referencing process is started.

functionGroup
State

ModeDeclaration * iref This represent the applicable functionGroupMode.

InstanceRef implemented by: FunctionGroupStateIn
FunctionGroupSetInstanceRef

resource
Consumption

ResourceConsumption 0..1 aggr This aggregation provides the ability to define resource
consumption boundaries on a per-process-startup-config
basis.

resourceGroup ResourceGroup 0..1 ref Reference to an applicable resource group.

startupConfig StartupConfig 0..1 ref Reference to a reusable startup configuration with startup
parameters.

Table A.15: StateDependentStartupConfig

250 of 250 Document ID 982: AUTOSAR_AP_EXP_SWArchitecture

	1 Introduction
	1.1 Objectives
	1.2 Scope
	1.3 Document Structure

	2 Definition of Terms and Acronyms
	2.1 Acronyms and Abbreviations
	2.2 Definition of Terms

	3 Related Documentation
	3.1 References

	4 Overview and Goals
	4.1 Requirements Overview
	4.2 Quality Goals
	4.3 Stakeholders

	5 Architecture Constraints
	5.1 Internal Interfaces
	5.2 Distributed Work

	6 Quality Requirements
	6.1 Quality Attributes
	6.1.1 AUTOSAR Adaptive Platform Standard
	6.1.2 AUTOSAR Adaptive Platform Stack
	6.1.3 AUTOSAR Adaptive Application

	6.2 Quality Scenarios

	7 System Scope and Context
	7.1 Adaptive Application
	7.2 Dependencies
	7.2.1 Crypto Provider
	7.2.2 Operating System
	7.2.3 Watchdog

	7.3 External Systems
	7.3.1 Diagnostic Tester
	7.3.2 Backend
	7.3.3 AdHoc Endpoint
	7.3.4 AUTOSAR Adaptive Platform
	7.3.5 AUTOSAR Classic Platform
	7.3.6 Third-party Platform
	7.3.7 Data Repository

	8 Solution Strategy
	8.1 Architectural Approach
	8.2 Decomposition Strategy
	8.3 UML Profile
	8.4 Technology
	8.4.1 Implementation Language
	8.4.2 Parallel Processing

	8.5 Design Principles
	8.5.1 Leveraging existing standards
	8.5.2 SOLID principles
	8.5.3 Acyclic Dependencies Principle
	8.5.4 Versioning of the Service Interface API
	8.5.5 Platform Extensions
	8.5.6 Offer/StopOffer Pattern

	8.6 Deployment
	8.7 Verification and Validation

	9 Building Block View
	9.1 Overview
	9.2 Runtime
	9.2.1 Execution Management
	9.2.2 State Management
	9.2.3 Log and Trace
	9.2.4 Core
	9.2.5 Operating System Interface

	9.3 Communication
	9.3.1 Communication Management
	9.3.2 Raw Data Stream
	9.3.3 Network Management
	9.3.4 Time Synchronization
	9.3.5 Automotive API Gateway

	9.4 Storage
	9.4.1 Persistency

	9.5 Security
	9.5.1 Cryptography
	9.5.2 Intrusion Detection System Manager
	9.5.3 Firewall

	9.6 Safety
	9.6.1 Platform Health Management

	9.7 Configuration
	9.7.1 Update and Configuration Management
	9.7.2 Vehicle Update and Configuration Management
	9.7.3 Registry

	9.8 Diagnostics
	9.8.1 Diagnostic Management

	10 Use-Case View
	10.1 Runtime
	10.1.1 Execution Management
	10.1.2 State Management

	10.2 Communication
	10.2.1 Raw Data Stream
	10.2.2 Time Synchronization
	10.2.3 Automotive API Gateway

	10.3 Storage
	10.3.1 Persistency

	10.4 Security
	10.4.1 Firewall

	10.5 Safety
	10.5.1 Platform Health Management

	10.6 Configuration
	10.6.1 Update and Configuration Management
	10.6.2 Vehicle Update and Configuration Management

	11 Runtime View
	11.1 Runtime
	11.1.1 Execution Management
	11.1.2 State Management

	11.2 Communication
	11.2.1 Raw Data Stream
	11.2.2 Time Synchronization

	11.3 Storage
	11.3.1 Persistency

	11.4 Security
	11.4.1 Firewall

	11.5 Safety
	11.5.1 Platform Health Management

	12 Deployment View
	12.1 Vehicle Software Deployment
	12.2 Deployment of Software Packages on a Machine

	13 Cross-cutting Concepts
	13.1 Overview of Platform Entities
	13.2 Function Group
	13.3 Function Group State
	13.4 Software Cluster
	13.5 Machine
	13.6 Manifest
	13.7 Application Design
	13.8 Execution Manifest
	13.9 Service Instance Manifest
	13.10 Machine Manifest
	13.11 Diagnostics deployment
	13.12 Error Handling
	13.13 Trusted Platform
	13.14 Communication Mechanisms
	13.14.1 Lower Layer Protocols
	13.14.2 Network and Transport Layer Protocols
	13.14.3 Application Layer Protocols
	13.14.4 Communication APIs

	13.15 Service-Oriented Communication

	A Mentioned Class Tables

