
Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

Document Title Modeling Guidelines of Basic
Software EA UML Model

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 117

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R22-11

Document Change History
Date Release Changed by Description

2022-11-24 R22-11
AUTOSAR
Release
Management

• described adapted package structure
in BSWUMLModel
• added appendix with all supported

stereotypes and tagged values
• clarified and simplified modeling of

bitrange in bitfields

2021-11-25 R21-11
AUTOSAR
Release
Management

• redesigned modeling of Generic
Interfaces
• redesigned modeling of Virtual

Interfaces
• described modeling of BSW Module

Extensions
• described modeling of union

datatypes and function pointer
datatypes

2020-11-30 R20-11
AUTOSAR
Release
Management

• described modeling of Generic
Std_ReturnType Extension

2019-11-28 R19-11
AUTOSAR
Release
Management

• described modeling of Development
Errors, Runtime Errors, and Transient
Faults
• Changed Document Status from

Final to published

2018-10-31 4.4.0
AUTOSAR
Release
Management

• minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation

1 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

2017-12-08 4.3.1
AUTOSAR
Release
Management

• minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation

2018-04-17 4.4.0 AUTOSAR
Technical Office • Removed obsolete elements.

2016-11-30 4.3.0
AUTOSAR
Release
Management

• Editorial changes

2014-10-31 4.2.1 AUTOSAR
Administration • Editorial changes

2013-03-15 4.1.1 AUTOSAR
Administration • Finalized for Release 4.1

2010-02-02 3.1.4 AUTOSAR
Administration

• Modeling of header files has been
revised
• Description of parameter modeling

has been reworked
• Legal disclaimer revised

2008-08-13 3.1.1 AUTOSAR
Administration • Legal disclaimer revised

2007-12-21 3.0.1 AUTOSAR
Administration

• Added description for range
stereotype
• Change Requirements for function

parameter and structure attributes
• Document meta information

extended
• Small layout adaptations made

2006-11-28 2.1.1 AUTOSAR
Administration

• Usage of packages clarified
• Sequence diagram modeling clarified
• Legal disclaimer revised

2006-05-16 2.0 AUTOSAR
Administration • Initial release

2 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

3 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

Contents

1 Introduction 7

1.1 Artifacts . 7
1.1.1 Header Files . 7
1.1.2 Imported Type Definitions . 7
1.1.3 Type Definitions . 7
1.1.4 Function Definitions . 7
1.1.5 Callback Notifications . 8
1.1.6 Scheduled Functions . 8
1.1.7 Mandatory Interfaces . 8
1.1.8 Optional Interfaces . 8
1.1.9 Configurable Interfaces . 8
1.1.10 Sequence Diagrams . 9
1.1.11 Various Diagrams . 9
1.1.12 Modeling of services . 9
1.1.13 Error classification . 9

2 Modeling Guide 10

2.1 Terminology . 10
2.2 Model Structure . 10
2.3 Common modeling mechanisms . 10

2.3.1 Modeling of element names 10
2.3.2 Modeling of Tagged Values 11

2.4 Modeling of BSW Modules . 12
2.4.1 Modules . 12

2.4.1.1 Packages . 12
2.4.1.2 Components . 12
2.4.1.3 Module Extensions 13
2.4.1.4 Component Diagrams 14
2.4.1.5 Type Diagrams . 14

2.4.2 Function interfaces . 15
2.4.3 API Functions . 16

2.4.3.1 Scheduled Functions 17
2.4.4 API Function Parameters . 17
2.4.5 Module Dependencies . 20

2.4.5.1 Virtual Interfaces . 20
2.4.5.2 Mandatory Interfaces 21
2.4.5.3 Optional Interfaces 22
2.4.5.4 Illustrative Dependencies 22

2.4.6 Generic Interfaces . 22
2.4.7 Callback Notifications . 24

2.4.7.1 Callback definition and usage (non Configurable
Callback) . 25

2.4.7.2 Configurable Callback definition and usage 26
2.4.7.3 Callback Generic Interfaces 28

4 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

2.4.8 Data Type Definitions . 29
2.4.8.1 Simple Types . 30
2.4.8.2 Enumerations . 31
2.4.8.3 Std_ReturnType Extensions 32
2.4.8.4 Structures . 34
2.4.8.5 Unions . 35
2.4.8.6 Function Pointers . 35
2.4.8.7 Bitfields . 35
2.4.8.8 Modeling of variability in data types 37

2.4.9 References to Data Types . 40
2.4.10 Modeling of services . 41

2.4.10.1 Modeling of Client Server Interfaces 41
2.4.10.2 Modeling of Mode Switch Interfaces 46
2.4.10.3 Modeling of Sender Receiver Interfaces 48
2.4.10.4 Modeling of special Types in Service Interfaces . . . 50
2.4.10.5 Modeling of variability of service interfaces 51
2.4.10.6 Modeling of PortAPIOptions and PortDefinedArgu-

mentValues . 54
2.4.11 Modeling of Error classification 56

2.5 Diagrams . 57
2.5.1 Header File Modeling . 57
2.5.2 Sequence Diagrams . 57
2.5.3 State Machine Diagrams . 57

2.6 Support for Life Cycle concept in BSW Model 58

A Stereotypes and Tagged Values defined for the BSWUMLModel 60

B History of Specification Items 65

B.1 Specification Item History of this Document according to AUTOSAR
R21-11 . 65

B.1.1 Added Traceables in R21-11 65
B.1.2 Changed Traceables in R21-11 65
B.1.3 Deleted Traceables in R21-11 66

B.2 Specification Item History of this Document according to AUTOSAR
R22-11 . 66

B.2.1 Added Traceables in R22-11 66
B.2.2 Changed Traceables in R22-11 67
B.2.3 Deleted Traceables in R22-11 67

5 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

References

[1] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture

[2] List of Basic Software Modules
AUTOSAR_TR_BSWModuleList

[3] Glossary
AUTOSAR_TR_Glossary

[4] Specification of Standard Types
AUTOSAR_SWS_StandardTypes

[5] Generic Structure Template
AUTOSAR_TPS_GenericStructureTemplate

[6] Standardized M1 Models used for the Definition of AUTOSAR
AUTOSAR_MOD_GeneralDefinitions

6 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

1 Introduction

This modeling guide describes the applied modeling techniques and rules, used to
specify the AUTOSAR Basic Software within a UML model.

The information contained in the BSW model is processed by the AUTOSAR Meta
Model Tool (MMT) and provides a major input of the several Software Specifications
(SWS) defined by AUTOSAR. In order to make the BSW model accessible by the MMT,
it is essential that the model observes the rules described in this document.

1.1 Artifacts

The main purpose of the AUTOSAR BSW UML model is keeping the 99+ documents
synchronous with respect to file structure, provided and required interfaces, sequence
diagrams, state machines etc. Therefore, all the relevant information is kept in the
BSW model according to the modeling rules specified in chapter 2, Modeling Guide.

The following artifacts are contributed to the SWS documents by the BSW UML model:

1.1.1 Header Files

Chapter 5.1 of each SWS document contains the BSW module’s file structure, in par-
ticular its file inclusion structure. Most modules’ include file relationships have a similar
structure, in fact some parts are actually identically modeled. Therefore, the Header
File structure is being modeled using a class diagram, with stereotyped classes repre-
senting the source code- and header files; see section 2.5.1.

1.1.2 Imported Type Definitions

SWS chapter 8.1 contains a tabular list of imported types. This table is automatically
generated from the module dependency as explained in section 2.4.5.

1.1.3 Type Definitions

SWS chapter 8.2 contains detailed descriptions of all types defined within a given BSW
module. For details on the modeling of type definitions refer to section 2.4.8.

1.1.4 Function Definitions

SWS chapter 8.3 contains a detailed description for each function provided by the
BSW module. The description is presented in form of a table with a specific layout.

7 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

The individual fields of the table are filled from the API function definitions according to
section 2.4.3.

1.1.5 Callback Notifications

Very similar to the Function Definitions, SWS chapter 8.4 contains the callback defi-
nitions the BSW module provides. These are callbacks which will be called by other
BSW modules, where the lower layer module is typically the caller. A table for each
callback notification will be generated for a module’s specified callbacks according to
section 2.4.7.

1.1.6 Scheduled Functions

Scheduled Functions are described in SWS chapter 8.5. The definition of scheduled
functions in the BSW UML model is described in section 2.4.3.1.

1.1.7 Mandatory Interfaces

SWS chapter 8.6.1 contains a list of “mandatory interfaces” expected by the module.
The list is generated from the BSW UML model according to the mandatory dependen-
cies as described in section 2.4.5.2.

1.1.8 Optional Interfaces

Similarly, the list of “optional interfaces” contained in SWS chapter 8.6.2 is generated
from the BSW UML model according to the optional dependencies as described in
section 2.4.5.3.

1.1.9 Configurable Interfaces

SWS Chapter 8.6.3 contains a BSW module’s “Configurable Interfaces”. These are
interfaces whose called function name can be configured using ECU configuration pa-
rameters. In AUTOSAR, these are typically used for issuing callback notifications, i.e.
the module owning the configurable interface uses it to notify a (configurable) upper
layer module’s callback. In other words the module defining a “Configurable Inter-
face” calls an other module that implements these interface definition. A table for each
callback notification will be generated for a module’s specified callbacks according to
section 2.4.7.2.

8 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

1.1.10 Sequence Diagrams

In order to visualize the interaction of a BSW module with other modules, SWS Chap-
ter 9 contains UML Sequence Diagrams for the module’s typical use cases. In or-
der to keep such Sequence Diagrams consistent between different modules within the
AUTOSAR BSW stack, they are also modeled within the BSW UML model. The dia-
grams are being exported to image files by the mmt tool; they are then being included
by the SWS document files. For the detailed modeling guidelines see section 2.5.2

1.1.11 Various Diagrams

The SWS documents of various BSW modules use additional UML diagrams e.g. for
either specifying core functionality, or for additionally illustrating dependencies between
modules. Some concrete examples are the various state machines used throughout
the AUTOSAR BSW stack, for example in the CAN State Manager or in COM manager.
Whenever possible, such diagrams should also be modeled in the BSW UML model.
This ensures that the sources of the document diagrams will not get lost, and also
facilitates their maintenance and keeping a uniform modeling style.

1.1.12 Modeling of services

BSW Modules belonging to the Service Layer of the AUTOSAR Basic Software Archi-
tecture may offer their services in the form of AUTOSAR Service Interfaces. AUTOSAR
Service Interfaces are described in terms of the Software Component Template rather
than C-language interfaces, and they come in different flavors, e.g. ClientServer-
Interface, SenderReceiverInterface, ModeSwitchInterface. Consequently, their prop-
erties require a different style of modeling than the standard BSW API functions. Mod-
eling of AUTOSAR services is described in section 2.4.10

1.1.13 Error classification

The SWS chapter "Error classification" (usually located within SWS chapter 7) contains
detailed descriptions of all error codes the module uses for

• Development Errors

• Runtime Errors

• Transient Faults

For details on the modeling of these errors refer to section 2.4.11.

9 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

2 Modeling Guide

This Chapter contains the modeling rules that shall be followed when modeling
AUTOSAR BSW artifacts within the BSW UML model. It is important that these rules
are used consistently throught the model for the following reasons: The model stays
readable, additions and modifications are done in a reproducible way preventing the
duplication of elements, and most importantly, the automated artifact generation using
the MMT tool depends on nonambiguous modeling conventions.

2.1 Terminology

The agreed tool for UML modeling in AUTOSAR is Enterprise Architect by Sparx Sys-
tems. Accordingly the BSW model is being maintained using Enterprise Architect ver-
sion 7.5 and above. This guide focusses on modeling techniques rather than tools,
therefore this document strives to describe the concepts in terms of UML. Neverthe-
less, in order to be precise, sometimes terms specific to Enterprise Architect are used.

2.2 Model Structure

The root structure of the BSW UML model consists of the following packages:

ReadMe: Contains diagrams providing version number, known limitations and dis-
claimer.

Interaction Views: Contains sequence charts for modeling interactions of different
modules. Only sequence diagrams shall be placed into this packages. The modules
are arranged by stack vertically.

SoftwarePackages: Contains the BSW modules definitions including interfaces and
type definitions. Moreover state and header diagrams are modelled here. The modules
are arranged by layer horizontally.

Document Drawings: Used for additional illustrations of the BSW modules and for
state diagrams to be included into SWS documents.

2.3 Common modeling mechanisms

2.3.1 Modeling of element names

Element names in the BSWUMLModel might be arbitrarily long, ambiguous, and con-
tain various special characters e.g. for expressing different variants of an element.

This might cause issues when

10 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

• exporting elements to files with the file name containing the element name

• exporting elements to Blueprint files in ARXML format and cross-referencing to
elements in Blueprints.

[TR_BSWMG_00031] Alternative Anchor Name dThe optional tagged value aName is
used to specify an alternative anchor name for BSWUML elements intended for further
processing by tools.

This alternative anchor name shall be used in cases where the element name is not
suitable because it is either ambiguous or contains special characters.

Hence, if the alternative anchor name is set it shall

• start with a letter, followed by only letters, numbers, and underscore characters

• be unique within its scope1

• not be too long2.

c()

2.3.2 Modeling of Tagged Values

Whenever a tagged value in the BSWUML has a long value (more than 255 characters)
or the value contains line breaks it cannot be entered in Enterprise Architect.

To mitigate this problem the following specification was introduced using tagged value
notes that can contain arbitrarily long text with line breaks:

[TR_BSWMG_00176] Modeling of tagged values as tagged value notes
dAlternatively to setting text into the value of a tagged value the desired text may be
put into the tagged value note.

To mark that the desired value text is found in the tagged value note the value of the
tagged value shall be exactly the term “@note”.c()

1The scope is dependent of the UML type of the element. E.g. within a function, all parameters
shall have a unique name. The function itself, however, shall have a unique name within the entire
BSWUMLModel.

2E.g. the maximal shortName length in ARXML is 128 characters - there might be other tools that
restrict the length even more.

11 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

2.4 Modeling of BSW Modules

2.4.1 Modules

2.4.1.1 Packages

[TR_BSWMG_00001] BSW Module Packages dFor each basic software module a
UML package (the “module package”) shall be placed within the package structure
according to the module’s role in the Layered Software Architecture[1].c()

[TR_BSWMG_00002] Naming of BSW Module Packages dThe name of the module
package shall be the ‘module abbreviation’ as specified in the List of Basic Software
Modules[2].c()

Figure 2.1: Example of a module package

2.4.1.2 Components

[TR_BSWMG_00003] BSW Module Components dEach basic software module shall
be modeled as an UML component with stereotype�module� (the “module compo-
nent”).c()

12 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

[TR_BSWMG_00004] Naming of BSW Module components dThe name of the mod-
ule component shall be the ‘module abbreviation’[2].c()

[TR_BSWMG_00036] BSW Module ID dThe tagged value bsw.moduleId shall be
set to the module ID as specified in the List of Basic Software Modules[2].c()

[TR_BSWMG_00005] Location of BSW Module components dEach module com-
ponent shall be modeled as a top-level element of its containing module package.c
()

[TR_BSWMG_00094] SWS Item ID of the Mandatory Interfaces table of the mod-
ule dThe tagged value bsw.mandatory.swsItemId is used to specify the SWS Item
ID of a API function.c()

[TR_BSWMG_00095] Up-traces of the Mandatory Interfaces table of the module
dThe tagged value bsw.mandatory.traceRefs is used to specify up-traces to re-
quirements. Multiple requirement IDs have to be separated by a comma.c()

[TR_BSWMG_00096] SWS Item ID of the Optional Interfaces table of the module
dThe tagged value bsw.optional.swsItemId is used to specify the SWS Item ID
of a API function.c()

[TR_BSWMG_00097] Up-traces of the Optional Interfaces table of the module
dThe tagged value bsw.optional.traceRefs is used to specify up-traces to re-
quirements. Multiple requirement IDs have to be separated by a comma.c()

[TR_BSWMG_00098] SWS Item ID of the Imported Types table of the module dThe
tagged value bsw.importedTypes.swsItemId is used to specify the SWS Item ID
of a API function.c()

[TR_BSWMG_00099] Up-traces of the Imported Types table of the module dThe
tagged value bsw.importedTypes.traceRefs is used to specify up-traces to re-
quirements. Multiple requirement IDs have to be separated by a comma.c()

2.4.1.3 Module Extensions

Module extensions serve to provide additional interfaces for specific modules (e.g.
TtCan is a module extension to Can). They are particular in the way that on the one
hand they are needed to provide the same module ID to the outside world as they are
an optional part of the same module. On the other hand, they are decribed in a sepa-
rate document (e.g. SWS_TTCANDriver and SWS_CANDriver) and therefore are best
modeled in a separate module to make clear during the development of the AUTOSAR
Standard: which part belongs to which document.

It follows from the sections before (in particular [TR_BSWMG_00002] and
[TR_BSWMG_00004]) that BSW modules shall be modeled as a component named
equally to its parent package.

13 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

This rule cannot be applied here if the module and its extension shall be kept distin-
guishable. Clearly, the component of a module extension needs to be named as the
module to ensure that e.g. it is correctly in UML diagrams that are exported and vis-
ible to the outside world. Hence, the only place to distinguish the extension from the
module is the package name. The following shall be modelled:

[TR_BSWMG_00183] BSW Module Extensions dA BSW Module Extension shall be
modelled as BSW Module with the same name as the extended module. The module
package shall be named as the abbreviation of the BSW Module Extension according
to [TR_BSWMG_00002]. In particular, [TR_BSWMG_00004] does not apply to this
case.c()

[TR_BSWMG_00184] Explicit modeling of BSW Module Extensions dTo make ex-
plicit that a component is a BSW Module Extension it shall be tagged with the tagged
value bsw.extendsModule. The value of this tagged value shall be the name of
extended module.c()

To conclude the example, the modelling of TtCan is

package Can
component�module� Can

package TtCan
component�module� Can with tagged value bsw.extendsModule=Can

2.4.1.4 Component Diagrams

[TR_BSWMG_00006] Component Diagrams dThe module package shall contain a
“component diagram” (Enterprise Architect: UML Component Diagram).c()

[TR_BSWMG_00007] Naming of Component Diagrams dThe name of the compo-
nent diagram shall be identical to the name of the module component (module abbre-
viation).c()

[TR_BSWMG_00008] Content of Component Diagrams dThe component diagram
contains the module component as well as all of the module’s interface relationships.c
()

2.4.1.5 Type Diagrams

[TR_BSWMG_00009] Type Diagrams dIf a BSW module defines data types, its mod-
ule package shall contain a “types diagram” (Enterprise Architect: UML Class Dia-
gram).c()

[TR_BSWMG_00010] Naming of Types Diagrams dThe name of the types diagram
shall be the name of the module component followed by a space character followed by
Types, e.g. FrTp Types.c()

14 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

[TR_BSWMG_00011] Content of Types Diagrams dThe types diagram shall contain
all types defined by the BSW module.c()

2.4.2 Function interfaces

An AUTOSAR BSW modules provides services to other BSW modules in the form of C-
syntax functions. These functions are also the underlying implementation of AUTOSAR
Services accessed by Software Components over the RTE.

This section explains how each such function is modeled in the form of an UML opera-
tion. Each operation is placed in an UML interface owned by the BSW module realizing
the service. This UML interface is hereinafter called Function interface.

[TR_BSWMG_00012] Function interfaces dFor each function to be provided by a
BSW module, an UML interface (the “function interface”) shall be created in its module
package. The stereotype of the interface shall be�interface�.c()

[TR_BSWMG_00013] Naming of function interfaces dThe function interface shall
have the same name as the actual function (depends on TR_BSWMG_00017,
TR_BSWMG_00030).c()

Figure 2.2: Naming example of a function interface

[TR_BSWMG_00014] API functions in component diagrams dAPI functions shall
be visible in the providing BSW module’s component diagram.c()

Note: The easiest way to achieve this is to drag the new Interface directly into the
providing module’s component diagram when creating the interface.

[TR_BSWMG_00015] Realization relationships dThe BSW module providing the ser-
vice shall have a directed “Realization” association to the interface. The association
shall be stereotyped�realize�.c()

Note: To differ associations from explanatory diagrams from generation relevant as-
sociations the stereotype �realize� has to be added to each generation relevant
realize association.

15 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

Figure 2.3: Realization example of an interface

2.4.3 API Functions

[TR_BSWMG_00016] API Functions dThe function itself shall be modeled as an UML
operation (the “operation”) having one of the following stereotypes: �function�,
�scheduled_function�,�callout�,�callback�.c()

[TR_BSWMG_00017] Naming of API Functions dThe name of the operation shall be
the API function name.c()

[TR_BSWMG_00030] Name prefixes of API Functions dThe name of the operation
shall be prefixed with the name of the realizing module (module abbreviation) followed
by an underscore, i.e.: “<Ma>_<operation_name>” (Ma = Module Abbreviation)c()

[TR_BSWMG_00018] Model Location of API Functions dThe operation shall be
placed into its corresponding provider’s realized interface.c()

[TR_BSWMG_00019] API Function documentation dEach API function shall provide
a short description.c()

Note: EA provides a text-field called “Notes” to take the operation’s description.

[TR_BSWMG_00034] “Return Type” field in API Functions dThe operation’s “Re-
turn Type” field shall be left empty. See [TR_BSWMG_00023] for modeling return
parameters.c()

[TR_BSWMG_00024] Service ID of an API Function dThe tagged value ServiceID
shall contain a service identifier (the ‘Service ID’) which shall be unique within the
BSW module. The parameter is specified in hexadecimal notation using lowercase
characters and shall be padded to two hexadecimal digits, e.g. 0x0dc()

[TR_BSWMG_00025] Reentrancy value of an API Function dThe tagged value
Reentrant shall determine whether the function needs to be implemented as reen-
trant or not. Allowed values are “Reentrant”, “Non Reentrant”, “Conditionally Reen-
trant”. Reentrancy conditions shall not be in the scope of the BSW UML model; in-
stead, they shall be moved into individual SWS items (i.e.: “Non Reentrant for the
same device.”)c()

16 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

[TR_BSWMG_00026] Synchronicity value of an API Function dThe tagged value
Synchronous shall be set either to “Synchronous” or “Asynchronous”. Some modules
may specify additional clauses.c()

[TR_BSWMG_00906] Comment on synchronicity of an API Function dThe tagged
value Synchronous.comment may be set to give additional information to the syn-
chronicity (see [TR_BSWMG_00026]) of the API function.c()

[TR_BSWMG_00150] SWS Item ID of an API Function dThe tagged value
bsw.swsItemId is used to specify the SWS Item ID of a API function.c()

[TR_BSWMG_00151] Up-traces of an API Function dThe tagged value
bsw.traceRefs is used to specify up-traces to requirements. Multiple requirement
IDs have to be separated by a comma.c()

[TR_BSWMG_00140] Header File Reference of an API Function dThe tagged value
bsw.headerFile is used to specify the header file where the API function is pro-
vided.c()

Figure 2.4: TaggedValues example of a API function

2.4.3.1 Scheduled Functions

[TR_BSWMG_00037] Stereotype for Scheduled Functions dScheduled
Functions shall be modeled by setting the operation’s stereotype to
�scheduled_function�.c()

Note: The Schedule attribute of a Scheduled Function is not used in any artifact any
more.

2.4.4 API Function Parameters

[TR_BSWMG_00020] API Function Parameters dThe function parameters shall have
mandatory entries for “Name”, “Type”, “Direction” and “Notes”.c()

17 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

[TR_BSWMG_00032] API Function Parameter types dThe parameter “Type” shall be
one of the existing types defined in the BSW model.c()

[TR_BSWMG_00033] C-Style Pointers as API Function Parameters dParameters
may be modeled as C-Style pointers by appending * to the parameter type, e.g.
PduInfoType*c()

[TR_BSWMG_00027] Mandatory pointers for API Function Output Parameters
dParameters must be modeled as pointers if their “Direction” attribute is set to out or
inout.c()

[TR_BSWMG_00035] Mandatory constant types for pointers of API Function In-
put Parameters dPointer-type parameters of direction type “in", i.e. parameters that
represent read-only structures or arrays, may prepend the parameter type with the
const keyword. This enforces that the data pointed to by the parameter is read-only
and will not be altered by the function. Example: const FrIf_ConfigType*c()

[TR_BSWMG_00021] API Function Parameter Direction dThe parameter’s direction
type attribute shall be set to one of the values in, out, inout, return.c()

[TR_BSWMG_00022] API Function Parameter Description dEach parameter shall
provide a short description about its purpose.c()

Note: EA provides a textfield called ‘Notes’ to take the parameters description.

[TR_BSWMG_00023] API Function Return Parameter dIf the function’s return type
is not equal to void, the return value shall be modeled like an operation parameter
with the following exceptions: It shall be the first parameter in the list. Additionally, it
shall be the only parameter to have its “Direction” set to “return”. The notes field shall
concisely describe the possible return values.c()

Figure 2.5: Parameter example of a API function

18 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

[TR_BSWMG_00129] Optional Parameters of API Functions dThe existence of a
parameter may depend on the module configuration. In this case, the parameter shall
have the stereotype�optional�.c()

[TR_BSWMG_00130] Multiplicity of API Function Parameters dA parameter with a
given type may occur several times, where the multiplicity is specified by configuration.
In this case, the parameter shall have the stereotype�multiple�.c()

Hint: Don’t use the multiplicity button in the parameter edit mask to configure the mul-
tiplicity.

[TR_BSWMG_00131] Mutual Exclusive Variants of API Function Parameters dA
parameter may appear in different variants within the same position of the function
signature, where one specific variant will be selected by configuration. In this case, the
parameter shall be modeled several times in all its possible variants and each variant
of the parameter shall have the stereotype�mutualexcl�.c()

Example: The parameter “buffer” of the Xfrm function “<Mip>_<transformerId>” can
be configured either as “inout” or “out”. It therefore shall be modeled two times, one
time with Direction “inout” and the second time with Direction “out”. Since Enterprise
Architect requires parameter names to be unique, the first parameter variant may be
named “buffer{inout}” and the second one “buffer{out}”.

Hint: All variants of a mutual exclusive parameter shall have the same name; the name
without the curly brackets (including the text) have to be the same.

Figure 2.6: Mutual Exclusive Parameter example of a API function

19 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

2.4.5 Module Dependencies

2.4.5.1 Virtual Interfaces

In general AUTOSAR BSW modules require functions from the APIs of other BSW
modules in order to fulfill their own functionality. The general modeling pattern of de-
pendencies between one BSW module and another uses so called function interfaces:
Due to the fact that dependencies between APIs have to be expressed on a single API
level of detail, each API function requires a representation on module level. For this
purpose, the function interfaces have been introduced (see 2.4.2).

In order to further enhance the expressiveness of the BSW module in UML diagrams,
the concept of function interfaces is extended by virtual interfaces. Virtual interfaces
are derived from function interfaces to merge a certain set of API functions. Recursive
structures of virtual interfaces are also allowed, so a virtual interface is allowed to
be derived from other virtual interfaces. This concept basically allows to reduce the
number of visible module dependencies in diagrams, by e.g. providing a single virtual
interface per providing module, collecting all functions required by this module.

[TR_BSWMG_00028] Virtual Interfaces dA virtual interface shall be modeled as an
interface with the stereotype�interface� (just like a normal interface).c()

[TR_BSWMG_00041] Virtual Interface Contents dA virtual interface shall inherit its
functions from the realizer’s function interfaces.c()

[TR_BSWMG_00182] Illustrating purpose of Virtual Interfaces dVirtual interfaces
have illustrating purpose only and shall be ignored during the functional processing of
the model.c()

20 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

Figure 2.7: Virtual interfaces example for displaying optional interfaces

2.4.5.2 Mandatory Interfaces

[TR_BSWMG_00043] Stereotype for Mandatory Dependencies on Interfaces dThe
user module shall have dependencies with stereotype �mandatory� to all its
mandatory interfaces.c()

[TR_BSWMG_00044] Mandatory Dependencies dAll mandatory dependencies held
by a user module onto a provider module shall be modeled as exactly one virtual inter-
face.c()

[TR_BSWMG_00045] Naming of Mandatory Usage Collections dThe virtual inter-
face shall have the name <user_module>_<provider_module>_Mandatory.c()

21 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

2.4.5.3 Optional Interfaces

[TR_BSWMG_00046] Stereotypes for Optional Dependencies on Interfaces dThe
user module shall have dependencies with stereotype�optional� to all its optional
interfaces.c()

[TR_BSWMG_00047] Optional Dependencies dAll optional dependencies held by a
user module onto a provider module shall be modeled as exactly one virtual interface.c
()

[TR_BSWMG_00048] Naming of Optional Usage Collections dThe virtual interface
shall have the name <user_module>_<provider_module>_Optional.c()

2.4.5.4 Illustrative Dependencies

[TR_BSWMG_00921] Illustrating a module’s usage of an interface dIf a module has
a usage dependency to an interface, which has only illustrative purpose for diagrams,
the dependency shall be modeled with the stereotype�use�. This dependency shall
be ignored during the functional processing of the model.c()

2.4.6 Generic Interfaces

In some occasions the AUTOSAR BSW stack defines a number of interfaces which
have basically the same function signature but slightly differ with regards to a module-
specific naming. In these cases, redundant definitions of interfaces shall be prevented
by usage of only one interface definition, called a “Generic Interface”. To define a
specific realization and/or usage of such a “Generic Interface”, a “Derived Generic
Interface” shall be used. A “Derived Generic Interface” inherits from the generic in-
terface definition and sets the module specific properties, such as name, specitem-ID,
and headerfile.

The following modeling pattern shall be used for defining “Generic Interfaces” and “De-
rived Generic Interfaces”:

[TR_BSWMG_00061] Generic Interface Definition dThe function definition shall be
placed into an UML interface having the stereotype�generic_interface�.c()

[TR_BSWMG_00132] Generic Interface is abstract dThis “generic interface” defini-
tion shall be considered abstract and not directly be referenced by any module.c()

[TR_BSWMG_00133] Generic Interface Function Definition dA generic
interface definition shall contain exactly one operation with stereotype
�function_blueprint�.c()

[TR_BSWMG_00177] Generic Interface model location dThe generic interface defi-
nition shall be located within the package “GenericInterfaces” within the package path
“SoftwarePackages/GenericElements”.c()

22 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

[TR_BSWMG_00134] Derived Generic Interface dIn order to assign a de-
rived generic interface to a generic interface definition, an interface stereotyped
�derived_generic_interface� with a generalization association shall be mod-
eled (targeting the generic interface definition).c()

[TR_BSWMG_00156] Derived Generic Interface contains no function dA derived
generic interface shall not contain a function definition.c()

[TR_BSWMG_00062] Derived Generic Interface Name dIn order to assign a concrete
name to a function defined within a generic interface, the derived generic interface shall
be named with the desired name.c()

[TR_BSWMG_00178] Override the Derived Generic Interface Name dIf a mod-
ule uses a derived generic interface that is realized by another module, but requires
a name different from the derived generic interface, another interface stereotyped
�derived_generic_interface� with a generalization association shall be mod-
eled (targeting the derived generic interface definition). This new interface shall over-
ride the name as in [TR_BSWMG_00062] and shall be referenced by the module.c
()

[TR_BSWMG_00179] Override Generic Interface Properties dProperties of the
generic interface that are modeled as tagged values may be overridden on a derived
generic interface by applying those tagged values to the derived generic interface with
new values.c()

[TR_BSWMG_00180] Override Derived Generic Interface Properties dProperties of
the derived generic interface that are modeled as tagged values may be overridden on
an interface with generalization association to the interface by applying those tagged
values to the second interface with new values.c()

[TR_BSWMG_00181] Re-use existing interfaces as much as possible dOnly when
no derived generic interface with desired name and properties is already present in the
model, a new derived generic interface shall be created.c()

23 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

«generic_interface»
Transmit

«function_blueprint»
+ Transmit(Std_ReturnType, PduIdType, const PduInfoType*): void

«derived_generic_interface»

PduR_<User:Up>Transmit

«module»
PduR

«module»
CanTp

«module»
CanIf

«derived_generic_interface»

CanIf_Transmit

«derived_generic_interface»

CanTp_Transmit

«derived_generic_interface»

<Provider:LoTp>_Transmit

«derived_generic_interface»

<Provider:Lo>_Transmit

«realize»

«realize»

«optional»
«optional»

«realize»

«mandatory»

Figure 2.8: Generic Interface/Derived Generic Interface example

2.4.7 Callback Notifications

In AUTOSAR, a “callback” is defined as functionality in an upper-layer BSW module
that is called by a lower-layer module in order to provide notification as required[3].

24 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

Figure 2.9: Difference between a callback and a regular function call

2.4.7.1 Callback definition and usage (non Configurable Callback)

[TR_BSWMG_00157] Callback definition dCallback definitions shall be modeled as
UML operations and shall use the stereotype�callback�.c()

[TR_BSWMG_00158] Callback interface dFor each callback to be called by a BSW
module, an UML interface (the “function interface”) shall be created in its module pack-
age. The stereotype of the interface shall be�interface�.c()

[TR_BSWMG_00159] Naming of callback interfaces dThe callback interface shall
have the same name as the actual function (depends on [TR_BSWMG_00017],
[TR_BSWMG_00030]).c()

[TR_BSWMG_00161] Callback function definition dThe callback interface shall con-
tain one function with stereotype�callback�.c()

The modeling of the function from [TR_BSWMG_00161] is described in chapter 2.4.3.

[TR_BSWMG_00162] Callback function usage/call dFor all callbacks a lower mod-
ule can call, a dependency of stereotype �mandatory� or �optional� (target
callback interfaces) shall be modeled.c()

For details to [TR_BSWMG_00162] see also chapter 2.4.5.2 and 2.4.5.3.

[TR_BSWMG_00163] Callback function realization/implementation dFor all call-
backs a upper module implements, a realization of stereotype �realize� (target
callback interfaces) shall be modeled.c()

25 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

[TR_BSWMG_00164] Callback function realization/implementation dEach call-
back interface shall be referenced by exactly ONE dependency of stereotype
�mandatory� or �optional� or �configurable� (There is only one caller,
but multiple implementation can exit and will be assigned by configuration).c()

Figure 2.10: Example of a Callback definition and usage

2.4.7.2 Configurable Callback definition and usage

Lower-layer modules are caller of callbacks. Often, these modules can configure which
actual instance of a callback definition will be called, i.e. which upper layer will be called
in the callback situation. In the SWS the configurability of a callback is described in
two parts: An API table for the configurable callback function including details like
the callback signature and arguments, and the actual ECU configuration parameters
described in chapter 10.

26 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

Figure 2.11: Configurable Callback: The lower module have to be configured which im-
plementation of an upper module will be called.

[TR_BSWMG_00059] Configurable Dependency for Callback definitions dA lower-
layer module shall have dependencies with stereotype�configurable� to each of
its configurable callback definitions.c()

[TR_BSWMG_00060] Target of a Configurable Dependency is a Generic Defini-
tion dA lower-layer module shall have a generic callback definition as target of the
configurable dependency.c()

The naming of callback functions currently differs between BSW modules, and in par-
ticular between BSW stacks. Therefore, no definitive rules for naming patterns of call-
backs can be stated here. However, as a guideline for adding new callback functions,
either one of the following patterns should be followed:

(1) Module abbreviation, followed by an underscore, followed by the callback function
name.

(2) The literal string “User”, followed by an underscore, followed by the callback function
name. Additionally, the whole function name is put in angular brackets “<>” in order to
emphasize that this is just a placeholder for the real, configurable name.

[TR_BSWMG_00904] Overriding the entryKind of a Configurable Callback
dConfigurable Callbacks are by default exported as BswModuleEntry with entryKind =
“abstract”. This value may be overriden by adding the tagged value bsw.entryKind
at the �configurable� dependency from module to interface with the value “con-
crete”.c()

27 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

2.4.7.3 Callback Generic Interfaces

Similar to the definition of Generic Interfaces, it is possible to define Generic Interfaces
for Callbacks. The purpose of a Callback Generic Interface is to serve as a one-time
definition of a callback. The callback may then be referenced in different contexts, using
different names in the contexts of different modules, and also varying in attributes like
Service ID.

[TR_BSWMG_00049] Callback Generic Interface Definitions dCallback definitions
shall be modeled as UML operations and shall use the stereotype�callback� and
�function_blueprint�.c()

[TR_BSWMG_00050] Callback Generic Interface Name dThe Callback definition
name shall be set as in [TR_BSWMG_00062].c()

[TR_BSWMG_00051] Callback Blueprint Interface placement dEach callback
blueprint definition shall be placed inside an UML interface having the same name
as the contained operation with stereotype�generic_interface�.c()

Note that [TR_BSWMG_00177] also applies for Callback Generic Interfaces when de-
termining the package that shall contain the interfaces.

[TR_BSWMG_00903] Overriding the calltype of a Configurable Generic Interface
dThe calltype of a Generic Interface for a specific user module may be overridden
to “callout” by adding the tagged value bsw.calltype at the �configurable�
dependency from module to derived generic interface with the value “callout”.c()

28 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

«module»
CanIf

«generic_interface»
RxIndication

«function_blueprint, callback»
+ RxIndication(PduIdType, const PduInfoType*)

«derived_generic_interface»

PduR_<User:Lo>RxIndication

«module»
CanTp «derived_generic_interface»

CanTp_RxIndication

«derived_generic_interface»

CanNm_RxIndication

«module»
PduR

«module»
CanNm

«derived_generic_interface»

<User_RxIndication>

«derived_generic_interface»

PduR_CanIfRxIndication

«derived_generic_interface»

PduR_CanNmRxIndication

«optional»

«realize»

«optional»

«realize»

«realize»

«configurable»

«optional»
«optional»

Figure 2.12: Generic Interface/Derived Generic Interface callback example

2.4.8 Data Type Definitions

Datatypes in the BSWUMLModel are modelled as an UML Class with a specific stereo-
type are described in the sections below.

Common modelling patterns for all datatypes are the following:

[TR_BSWMG_00152] SWS Item ID of a Datatype dThe tagged value
bsw.swsItemId is used to specify the SWS Item ID of a datatype.c()

29 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

[TR_BSWMG_00153] Up-traces of a Datatype dThe tagged value bsw.traceRefs
is used to specify up-traces to requirements of a datatype. Multiple requirement IDs
have to be separated by a comma.c()

[TR_BSWMG_00141] Header File Reference of a Datatype dThe tagged value
bsw.headerFile is used to specify the header file where the type is provided.c()

2.4.8.1 Simple Types

[TR_BSWMG_00066] Simple Type Definition dEach simple type definition, i.e. a type
definition which is directly derived from another type or which defines a basic type like
‘int’ shall be modeled as an UML Class with stereotype�type�.c()

[TR_BSWMG_00067] Simple Types: Base Types vs. Derived Types dA simple
type definition shall either define a base type or be derived from another data type
definition.c()

[TR_BSWMG_00068] Simple Types: Base Types are not derived dA base type shall
not derive from another data type.c()

[TR_BSWMG_00069] Simple Types: Variability of Derived Types dNormally, a de-
rived type shall be derived from exactly only one other data type. However, if the type
depends on platform or is configuration specific, it may be derived from more than one
type.c()

[TR_BSWMG_00071] Range of Simple Types dIf a simple type has a restricted set of
ranges, an attribute with stereotype�range� has to be created for each such range.
The name of the attribute specifies the range label and the notes field describes the
range.c() Example: Name: “0..2^16-1”

Hint: “Name” is the name of the editing field in the EA edit mask.

Figure 2.13: Simple type example

The following tagged values may be used to tailor the export of a datatype for the
Blueprints (in ARXML format). They have no effect on the representation of the
datatypes in AUTOSAR SWS documents.

[TR_BSWMG_00913] Tailoring the export of a Datatype dIf a datatype shall not be
exported to the Blueprints the tagged value xml.ignore shall be added – with an
arbitrary value. This holds for all Datypes and is not restricted to Simple Types (see
[TR_BSWMG_00066]).c()

30 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

[TR_BSWMG_00914] Tailoring the category of a Simple Type dTo override the cal-
culated category of a simple type in the Blueprints the tagged value xml.category
shall be added with the desired category as value.c()

[TR_BSWMG_00915] Tailoring the export of a SwBaseType for a Simple Type dTo
control the export of a simple type as SwBaseType in the Blueprints the tagged value
xml.generateBaseType shall be added with one of these values:

no export the datatype as ImplementationDataType only (this is the default case)

yes export the datatype as ImplementationDataType and additionally as SwBaseType
with the ImplementationDataType referencing the SwBaseType

exclusively export the datatype as SwBaseType only.

c()

[TR_BSWMG_00909] Tailoring the baseType category of a Simple Type dTo
set the category of the SwBaseType for a simple type in the Blueprints the
tagged value xml.baseTypeCategory shall be added with the desired category as
value. This tagged value has no effect if no SwBaseType is exported according to
[TR_BSWMG_00915].c()

[TR_BSWMG_00910] Tailoring the baseTypeEncoding of a Simple Type dTo set
the baseTypeEncoding of the SwBaseType for a simple type in the Blueprints the
tagged value xml.baseTypeEncoding shall be added with the desired category as
value. This tagged value has no effect if no SwBaseType is exported according to
[TR_BSWMG_00915].c()

[TR_BSWMG_00911] Tailoring the baseType nativeDeclaration of a Simple Type
dTo set the nativeDeclaration of the SwBaseType for a simple type in the Blueprints the
tagged value xml.baseTypeNativeDeclaration shall be added with the desired
category as value. This tagged value has no effect if no SwBaseType is exported
according to [TR_BSWMG_00915].c()

[TR_BSWMG_00912] Tailoring the baseTypeSize of a Simple Type dTo set the
baseTypeSize of the SwBaseType for a simple type in the Blueprints the tagged value
xml.baseTypeSize shall be added with the desired category as value. This tagged
value has no effect if no SwBaseType is exported according to [TR_BSWMG_00915].c
()

2.4.8.2 Enumerations

[TR_BSWMG_00072] Enumeration Definition dEach type definition representing an
enumeration shall be modeled as UML Class with stereotype �enumeration�. It
shall be placed inside the interface specifying it.c()

31 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

[TR_BSWMG_00073] Enumeration Literal Definition dAll possible literals of the enu-
meration shall be modeled as attributes of this class. The order of the attributes from
top to bottom shall represent the order of the enumeration specified.c()

[TR_BSWMG_00074] Enumeration Literal Details dThe following shall be respected
for attributes:

• The Name field shall contain the literal name.

• The field “Type” shall be empty.

• The field “Stereotype” shall be empty.

• The field “Scope” shall be “Public”.

• The flag “Is Literal” shall be set.

• The field “Notes” shall contain the literal description.

c()

[TR_BSWMG_00075] Enumeration Literal Value dLiterals may have a specified
value; in this case it shall be placed in the field “Initial Value”.c()

Figure 2.14: Enumeration example

2.4.8.3 Std_ReturnType Extensions

AUTOSAR defines a standard API return type that is being used throughout the BSW
stack. It is also the only return type that can be used in ClientServer type Service
Interface Operations.

“Std_ReturnType” is being defined in the SWS Standard Types [4] ([SRS_BSW_-
00377]). Additionally, two standard values E_OK and E_NOT_OK are defined which
should normally be used with Std_ReturnType.

If these two return values are not sufficient, a BSW module is allowed to define addi-
tional return values to be used with Std_ReturnType. Such user defined values shall
be prefixed with the module prefix and can be in the range 0x02–0x3f.

[TR_BSWMG_00089] Std_ReturnType Extension Definition dThe definition of a
BSW module specific Std_ReturnType extension shall be modeled as an UML Class
with stereotype�extra_literals�.c()

32 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

[TR_BSWMG_00090] Std_ReturnType Extension Name dThe UML Class containing
the Std_ReturnType extensions shall be named “<Ma>_ReturnType” (Ma = Module
Abbreviation).c()

[TR_BSWMG_00091] Std_ReturnType Extension Literal Definition dAll BSW mod-
ule specific possible return type extension literals shall be modeled as attributes of this
class. The order of the attributes from top to bottom shall represent the order of the
enumeration specified.c()

[TR_BSWMG_00092] Std_ReturnType Extension Literal Details dThe following
fields shall be used for specifying the return type extension literals:

• The “Name” field shall contain the Std_ReturnType extension literal name.

• The field “Type” shall be empty.

• The field “Stereotype” shall be empty.

• The field “Scope” shall be “Public”.

• The flag “Is Literal” shall be set.

• The field “Notes” shall contain the description of the custom return value.

c()

[TR_BSWMG_00093] Std_ReturnType Extension Literal Value dCustom
Std_ReturnType values shall always be defined with a specified unsigned inte-
ger value larger than 1 (i.e. E_NOT_OK). The integral value shall be placed in the field
“Initial Value”.c()

Figure 2.15: Std_ReturnType Extensions example

In case multiple modules of a stack need to extend Std_ReturnType in the same way,
there is no need to define the extension separately for each module of the stack. The
following modeling shall be applied:

33 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

[TR_BSWMG_00173] Generic Std_ReturnType Extension dThe generic definition of
a Std_ReturnType extension specific to multiple modules shall be modeled as an UML
Class with stereotypes�extra_literals� and�generic_type�.c()

[TR_BSWMG_00174] Generic Std_ReturnType Extension is no Std_ReturnType
Extension dThe generic definition of a Std_ReturnType extension is no extension to be
used by BSW modules directly. Therefore it shall not be in an realization relationship
to any BSW module.c()

[TR_BSWMG_00175] Users of Generic Std_ReturnType Extension dThe definition
of a BSW module specific Std_ReturnType extension that has the literals as defined
by Generic Std_ReturnType Extension shall be modeled as an UML Class with stereo-
type �extra_literals� and derived from that Generic Std_ReturnType Exten-
sion. Apart from that it shall be modeled as a usual Std_ReturnType Extension.c()

Note that Std_ReturnType Extensions derived from a Generic Std_ReturnType Exten-
sion may define their own literals as well, in addition to the literals they derive from the
Generic Std_ReturnType Extension.

2.4.8.4 Structures

[TR_BSWMG_00076] Structure Type Definition dEach type definition represent-
ing a structure declaration shall be modeled as a UML Class with the stereotype
�structure�.c()

[TR_BSWMG_00077] Structure Member Definition dAll members of a structure shall
be defined as attributes of this class. The ordering of the attributes shall be the same
as expected in the generated table.c()

[TR_BSWMG_00078] Structure Member Details dThe following shall be respected
for attributes:

• The “Name” field shall contain the name of the attribute.

• The field “Type” shall select the existing type.

• The field “Scope” shall be “Public”.

• The “Containtment” shall be “Not Specified”.

c()

Figure 2.16: Structure example

34 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

2.4.8.5 Unions

[TR_BSWMG_00185] Union Type Definition dEach type definition representing a
union declaration shall be modeled as a UML Class with the stereotype�union�.c()

[TR_BSWMG_00186] Union Member Definition dAll members of a union shall be
defined as attributes of this class. The ordering of the attributes shall be the same as
expected in the generated table.c()

[TR_BSWMG_00187] Union Member Details dThe following shall be respected for
attributes:

• The “Name” field shall contain the name of the attribute.

• The field “Type” shall select the existing type.

• The field “Scope” shall be “Public”.

• The “Containtment” shall be “Not Specified”.

c()

2.4.8.6 Function Pointers

[TR_BSWMG_00188] Function Pointer Type Definition dEach type definition rep-
resenting a function pointer declaration shall be modeled as a UML Class with the
stereotype�functionpointer�.c()

[TR_BSWMG_00189] Function Pointer Function Definition dThe signature of the
anonymous function for the function pointer shall be modeled as operation within the
UML Class representing the type definition. It shall be named equally to the UML Class
name.c()

[TR_BSWMG_00190] Function Pointer Parameter Definition dFunction parame-
ters and return value for Function Pointers are optional and shall be modeled as
for API Functions i.e. according to [TR_BSWMG_00020], [TR_BSWMG_00032],
[TR_BSWMG_00033], [TR_BSWMG_00021], [TR_BSWMG_00023].c()

2.4.8.7 Bitfields

Bitfield types represent an efficient way of encoding a number of independent variables
within one type. This is done by breaking down the bitfield type into compartments of
individual bit flags or bit ranges containing a series of bits.

One typical application is the implementation of independent boolean variables or “bit
flags” (i.e. binary flags); each of these flags takes up one bit in the bitfield, and can be
set to true or false independently of all other flags contained in the type.

35 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

However, Bitfields are not limited to bit flags: They can also contain one or more
groups of bits that can be interpreted as a small-range enumeration type per group
(“bit range”).

Both use cases can be mixed and implemented in several instances within the same
bitfield type. The definition of the bitfield compartments is done using bitmasks.

The bitfield type can additionally define value literals in order to assign concrete mean-
ing to the masked values.

[TR_BSWMG_00079] Bitfield Type Definition dEach type definition represent-
ing a bitfield declaration shall be modeled as a UML Class with the stereotype
�bitfield�.c()

[TR_BSWMG_00080] Bitfield: Bit Flag Definitions dBinary “bit flags” shall be mod-
eled as attributes of the bitfield type using the stereotype�bitflag�.c()

[TR_BSWMG_00081] Bitfield: Bit Flag Value interpretation dThe two possible val-
ues of “bit flags” shall always be interpreted as “TRUE” and “FALSE”. In case a binary
value shall be interpreted differently, it shall be modeled as a Bit Range (see below).c()

[TR_BSWMG_00082] Bitfield: Bit Flag Details dThe following shall be respected for
Bit Flag attributes:

• The “Name” field shall contain the name of the bit flag. (ARXML: Short-Label of
CompuScale)

• The field “Type” shall be empty.

• The field “Initial Value” shall contain the bit flag value either in hexadecimal (e.g.
0x10) or in binary (e.g. 0b00010000) representation.

• The field “Stereotype” shall be�bitflag�.

• The field “Alias” shall be empty.

• The field “Scope” shall be “Public”.

• The flag “Is Literal” shall not be set.

• The field “Notes” shall describe the meaning of the bit flag.

c()

Figure 2.17: Bitfield bitflag example

36 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

[TR_BSWMG_00083] Bitfield: Bit Range Definitions dBit Ranges are continuous bit
regions containing one or more bits. Bit Ranges shall be modeled as attributes of the
bitfield type using the stereotype�bitrange�.c()

[TR_BSWMG_00084] Bitfield: Bit Range Details dThe following shall be respected
for Bit Range attributes:

• The “Name” field shall contain the name of the bit range. (ARXML: Short-Label)

• The field “Type” shall be empty.

• The field “Initial Value” shall contain a bit mask representing the bit range, see
below.

• The field “Stereotype” shall be�bitrange�.

• The field “Alias” shall be empty.

• The field “Scope” shall be “Public”.

• The flag “Is Literal” shall not be set.

• The field “Notes” shall describe the meaning of the bit range.

c()

[TR_BSWMG_00085] Bitfield: Bit Range Mask Value dThe size and location of the
bits used for the bit range shall be specified as a bitmask using either hexadecimal
(e.g. 0x1c) or GCC binary notation, e.g. 0b00011100. This mask value shall be placed
in the field “Initial Value”.c()

[TR_BSWMG_00087] Bitfield: Bit Range Value Definition dA bit range can assume
a number of different values. The meaning of these values shall be specified by corre-
sponding�bitflag� attributes that match the mask from the Bit Range Mask Value
([TR_BSWMG_00085]).c()

Figure 2.18: Bitfield Bitflag and Bitrange combined example

2.4.8.8 Modeling of variability in data types

Many data types are configurable since they depend on the configuration of the basis
software. Therefore so called “blueprint conditions” have been introduced into BSW
model to express e.g. configurable inheritance.

37 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

[TR_BSWMG_00070] Blueprint Conditions for Derived Datatypes dIf a type is de-
rived from more than one other data type, the generalization dependency shall have a
tagged value Vh.BlueprintCondition which specifies the exact conditions for se-
lecting the associated data type. (e.g., Vh.BlueprintCondition=platform de-
pendent)c()

[TR_BSWMG_00503] Blueprint Policies for Datatype CompuMethods
dTo define blueprint policies for a type’s compu method the tagged value
Vh.compuMethod.BlueprintPolicy with the legal values “not-modifiable”,
“list”, or “single” shall be used.

The blueprint derivation guide shall be described by the tagged value
Vh.compuMethod.BlueprintPolicy.DerivationGuide or for multi-line guides
by

• “Vh.compuMethod.BlueprintPolicy.DerivationGuide.1”

• “Vh.compuMethod.BlueprintPolicy.DerivationGuide.2”

• ...

It is not applicable for blueprint policy not-modifiable.

To explicitly set the maximal and minimal number of elements for a blueprint pol-
icy list the tagged values Vh.compuMethod.BlueprintPolicy.maxElements and
Vh.compuMethod.BlueprintPolicy.minElements shall be used.c()

1 Vh.compuMethod.BlueprintPolicy:
2 list
3 Vh.compuMethod.BlueprintPolicy.maxElements:
4 3
5 Vh.compuMethod.BlueprintPolicy.minElements:
6 1
7 Vh.compuMethod.BlueprintPolicy.DerivationGuide.1:
8 0x00 is locked
9 Vh.compuMethod.BlueprintPolicy.DerivationGuide.2:

10 0x01...0x3F is configuration dependent
11 Vh.compuMethod.BlueprintPolicy.DerivationGuide.3:
12 0x40...0xFF is Reserved by Document

[TR_BSWMG_00504] Blueprint Policies for Datatype DataContraints dTo define
blueprint policies for a type’s data constr the tagged value Vh.dataConstr.lower-
Limit.BlueprintPolicy.DerivationGuide for the lower limit and the tagged
value Vh.dataConstr.upperLimit.BlueprintPolicy.DerivationGuide for
the upper limit shall be used.c()

[TR_BSWMG_00505] Blueprint Policies for Datatype Data-
Contraints explicit limits dTo explicitly set the lower and upper
limit the tagged values Vh.dataConstr.lowerLimit.value and
Vh.dataConstr.upperLimit.value shall be used.c()

[TR_BSWMG_00506] Blueprint Policies for Datatype DataContraints ex-
plicit blueprintValues dTo explicitly set the lower and upper blueprintValue

38 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

the tagged values Vh.dataConstr.lowerLimit.blueprintValue and
Vh.dataConstr.upperLimit.blueprintValue shall be used.c()

1 Vh.dataConstr.lowerLimit.BlueprintPolicy.DerivationGuide:
2 For each user, a unique value must be defined at system generation

time. Maximum number of users is 255. Legal user IDs are in the
range 0 .. 254;

3 Vh.dataConstr.lowerLimit.blueprintValue:
4 min 0
5 Vh.dataConstr.lowerLimit.value:
6 undefined
7

8 Vh.dataConstr.upperLimit.BlueprintPolicy.DerivationGuide:
9 For each user, a unique value must be defined at system generation

time. Maximum number of users is 255. Legal user IDs are in the
range 0 .. 254;

10 Vh.dataConstr.upperLimit.blueprintValue:
11 max 254
12 Vh.dataConstr.upperLimit.value:
13 undefined

[TR_BSWMG_00411] Configurable literals for Enumeration Types dFor each
BlueprintCondition delivering names of literals an attribute have to be defined. The
name of the attribute has to be the namepattern e.g. “ResetMode”.c()

[TR_BSWMG_00412] Configurable literals for Enumeration Types dThe Blueprint-
Condition delivering names of literals an attribute have to be defined on the attribute
using the tagged value Vh.BlueprintCondition.c()

[TR_BSWMG_00413] Configurable literals for Enumeration Types dThe value
of configurable literals shall be defined on the attribute using the tagged value
Vh.BlueprintValue. The value field shall be set to the variable used in tagged
value Vh.BlueprintValue.c()

Example of configurable literals for an enumeration type (EcuM_ShutdownModeType):
The literals of this data type is a union of configured EcuMResetModes and EcuM-
SleepModes. Therefor two attribute have to be modeled containing the condition to get
the literals names and the condition to get the IDs for the literals.

1 Attribute name: {ResetMode}
2 Attribute value: {ResetModeId}
3

4 Vh.BlueprintCondition:
5 ResetMode = {ecuc(EcuM/EcuMConfiguration/EcuMFlexConfiguration/

EcuMResetMode.SHORT-NAME)}
6 Vh.BlueprintValue:
7 ResetModeId = {256 + ecuc(EcuM/EcuMConfiguration/

EcuMFlexConfiguration/EcuMResetMode.EcuMResetModeId)}

1 Attribute name: {SleepMode}
2 Attribute value : {SleepModeId}
3

4 Vh.BlueprintCondition:
5 SleepMode = {ecuc(EcuM/EcuMConfiguration/EcuMCommonConfiguration/

EcuMSleepMode.SHORT-NAME)}

39 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

6 Vh.BlueprintValue:
7 SleepModeId = {ecuc(EcuM/EcuMConfiguration/EcuMCommonConfiguration/

EcuMSleepMode.EcuMSleepModeId)}

[TR_BSWMG_00907] Variable Bitflags in Bitfields dBitflags in Bitfields might be
subject to variability. In this case the stereotype �variablebitflag� shall be
applied to the attribute representing the bitflag instead of �bitflag�. The vari-
able name and value of this bitflag may be set via the respective tagged values
Vh.AttributeName and Vh.AttributeValue.c()

2.4.9 References to Data Types

Parameters of API functions as well as datatype members (e.g. structure elements)
may reference data types. Usually, those references to datatypes are straight forward
cross-references by setting the type (see [TR_BSWMG_00032]).

However, there is need to support cases where the simple reference by type name is
not sufficient:

[TR_BSWMG_00905] References to equally named Datatypes dIn case a API func-
tion parameter or datatype member has a type that cannot be uniquely determined by
name (e.g. a datatype that exists in different equally named variants) the reference to
the datatype shall be supported by adding the tagged value bsw.typeRef.aName at
the parameter/type member. The value shall be the aName of the referenced datatype,
which will uniquely determine the datatype as of [TR_BSWMG_00031].c()

[TR_BSWMG_00918] References to Datatypes that are not modelled dIn case
a API function parameter or datatype member has a type that is not part of the
BSWUMLModel (e.g. a placeholder for an implementation-defined type) this shall
be marked by setting the stereotype �bswNoModeledType� at the parameter/type
member.c()

Rationale for [TR_BSWMG_00918]: Only by setting the stereotpye
�bswNoModeledType� it can be clearly distinguished between explicitly set-
ting a datatype that is not modelled or a typographical error.

There is a similar use case to model a datatype derived from a datatype that does not
exist in the model. In this case a generalization and a parent datatype as target of that
generalization have to be modeled anyway. But the parent datatype shall be marked
as being no BSWUML datatype in order to be able to suppress export of that datatype:

[TR_BSWMG_00919] Parent Datatypes that are not modelled dIn case a datatype
is derived from a parent type that is not part of the BSWUMLModel (e.g. a placeholder
for an implementation-defined type) this shall be modelled by creating a class for the
parent type with the stereotype �generic_type� and a generalization from the
derived datatype to the parent datatype.c()

40 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

2.4.10 Modeling of services

Services are provided through ports. A port implements a port interface. A
port interface can be a ClientServerInterface, a SenderReceiverInterface or a
ModeSwitchInterface.

A ClientServerInterface defines the available service operations. A service operation
defines return, input and output parameters. Each service operation has a relation-
ship to an existing api function (c function). Blueprints allow to configure things like
parameters, services, ...

A SenderReceiverInterface defines DataElements. Each data element have to be
linked to a data type.

A ModeSwitchInterface defines modes within a ModeDeclarationGroup.

Note: To get a better understanding of the modeling, listing examples of the informal
textual definition of service interfaces in AUTOSAR R4.0.3 SWS documents are used.
If you are not familiar with this old definition, please ignore these listings.

2.4.10.1 Modeling of Client Server Interfaces

The following listing shows the old syntax of modeling / defining ClientServerInterface
in AUTOSAR R4.0.3 SWS documents.

1 ClientServerInterface Csm_Hash {
2

3 // errors assisioated with the ProtInterface
4 PossibleErrors {
5 CSM_E_NOT_OK = 1
6 CSM_E_BUSY = 2
7 CSM_E_SMALL_BUFFER = 3
8 };
9

10

11 //containing operations
12

13 //parameter kinds can be IN, OUT and INOUT
14 //
15 //ERR is not a parameter
16 // -> should be a associated error to an operation
17 HashStart (
18 ERR(CSM_E_NOT_OK, CSM_E_BUSY)
19);
20

21 HashUpdate (
22 IN HashDataBuffer dataBuffer,
23 IN uint32 dataLength,
24 ERR(CSM_E_NOT_OK, CSM_E_BUSY)
25);
26

27 HashFinish (

41 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

28 OUT HashResultBuffer resultBuffer,
29 INOUT HashLengthBuffer resultLength,
30 IN boolean TruncationIsAllowed,
31 ERR(CSM_E_NOT_OK, CSM_E_BUSY, CSM_E_SMALL_BUFFER)
32);
33 };

Figure 2.19: Schematic overview of Client Server Interfaces

[TR_BSWMG_00160] Model location of Service Interfaces dAll additional elements
of service modeling shall be placed in a package “ARInterfaces”. This packages shall
be a child package of the module package.c()

[TR_BSWMG_00100] Modeling of Ports dA port shall be modeled as
an UML port having one of the following stereotype �RPortPrototype�,
�PPortPrototype�, �PRPortPrototype�. The port shall be provided by the
module component.c()

[TR_BSWMG_00101] Dependency from Port to Port Interface dThe port in-
terface, that the port implements, shall be modeled as a dependency of stereo-
type �abswRequires� to a ClientServerInterface, a SenderReceiverInterface or a
ModeSwitchInterface.c()

[TR_BSWMG_00102] Port Interfaces dA port interface shall be modeled as a class
of stereotype�ClientServerInterface�, a�SenderReceiverInterface�
or a �ModeSwitchInterface�. The stereotype �ClientServerInterface�
shall be used to model a Client Server Interface. The stereotype
�SenderReceiverInterface� shall be used to model a Sender Receiver

42 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

Interface. The stereotype �ModeSwitchInterface� shall be used to model a
Mode Switch Interface.c()

[TR_BSWMG_00154] Port Interface isService attribute dThe value of the isService
attribute of an interface is true by default. To set the attribute to false the tagged value
bsw.isService shall be used. The value of the tagged value shall be “false”.c()

[TR_BSWMG_00103] Modeling of ClientServerOperations dThe operations de-
fined through a Client Server Interface shall be modeled as a class of stereotype
�ClientServerOperation� per operation (for each operation a separate class).c
()

[TR_BSWMG_00104] Dependency from ClientServerInterface to
ClientServerOperation dThe relationship between ClientServerInterface and
ClientServerOperation shall be modeled as an aggregation of stereotype
�abswOperation� (target ClientServerOperation).c()

[TR_BSWMG_00105] UML operation within ClientServerOperation dEach class of
stereotype�ClientServerOperation� shall contain one operation with the same
name as the class.c()

[TR_BSWMG_00106] Modeling of ClientServerOperation Parameters dThe pa-
rameters of an operation shall be modeled as parameters of the UML operation.
�ClientServerOperation� Class -> Operation -> Parameterc()

[TR_BSWMG_00107] ClientServerOperation Parameter Direction dThe parame-
ter’s “Kind” attribute shall be set to one of the values ‘in’, ‘out’, ‘inout’.c()

[TR_BSWMG_00108] Modeling of ApplicationErrors dFor each possible error a
class of stereotype�ApplicationError� shall be created. The name of the class
shall be the error abbreviation (e.g. E_FORCE_RCRRP). The error code shall be mod-
eled as a public attribute. The name shall be ErrorCode and the error code shall be
modeled as initial value.c()

[TR_BSWMG_00109] ApplicationErrors of an ClientServerInterface dAll possible
errors of a Client Server Interface shall be referenced by an aggregation of stereotype
�abswPossibleError� (target ApplicationError).c()

[TR_BSWMG_00110] ApplicationErrors of an ClientServerOperation dAll possible
errors of a Client Server Interface Operation shall be referenced by a dependency of
stereotype�abswPossibleErrorRef� (target ApplicationError).c()

[TR_BSWMG_00111] Mapping ClientServerOperations on API Functions dEach
ClientServerOperation shall have a relationship to the corresponding bsw api function.
So the relationship between ClientServerOperation and bsw api function (interface of
the function) shall be modeled as a dependency of stereotype�abswMapping� (tar-
get bsw api function).c()

43 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

Figure 2.20: Example ClientServerInterface diagamm (CSI diagram)

[TR_BSWMG_00112] Naming of ClientServerInterface Diagrams dFor each Client
Server Interface a class diagram (CSI diagram) shall be created. The name of the
diagramm shall be the name of the Client Server Interface.c()

[TR_BSWMG_00113] Content of ClientServerInterface Diagrams dA CSI diagram
shall contain the module, the ClientServerInterface, the Application Errors of the
ClientServerInterface and the ClientServerOperations of the ClientServerInterface.c()

44 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

Figure 2.21: Example ClientServerInterface errors diagram (CSI errors diagram)

[TR_BSWMG_00114] Naming of ClientServerInterface Error Diagrams dFor each
Client Server Interface a class diagram (CSI errors diagram) shall be created. The
name of the diagram shall be the name of the Client Server Interface concatenated
with “_Error”.c()

[TR_BSWMG_00115] Content of ClientServerInterface Error Diagrams dA CSI er-
rors diagram shall contain the Application Errors of the ClientServerInterface and the
ClientServerOperations of the ClientServerInterface.c()

Figure 2.22: Example ClientServerInterface BSW mapping diagamm (CSI bsw mapping
diagram)

[TR_BSWMG_00116] Naming of ClientServerInterface Mapping Diagrams dFor
each Client Server Interface a class diagram (CSI mapping diagram) shall be created.
The name of the diagram shall be the name of the Client Server Interface concatenated
with “_BSWMapping”.c()

[TR_BSWMG_00117] Content of ClientServerInterface Mapping Diagrams dA CSI
errors diagram shall contain the ClientServerOperations of the ClientServerInterface
and the corresponding bsw api interfaces.c()

45 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

2.4.10.2 Modeling of Mode Switch Interfaces

The following listing shows the old syntax of modeling / defining ModeSwitchInterfaces
in AUTOSAR R4.0.3 SWS documents.

1 ModeSwitchInterface WdgM_IndividualMode {
2 isService = true;
3 WdgMMode currentMode;
4 };

Corresponding ModeDeclarationGroup:
1 ModeDeclarationGroup WdgMMode {
2 { SUPERVISION_OK,
3 SUPERVISION_FAILED,
4 SUPERVISION_EXPIRED,
5 SUPERVISION_STOPPED,
6 SUPERVISION_DEACTIVATED
7 }
8 initialMode = SUPERVISION_OK
9 };

Figure 2.23: Schematic overview of a Mode Switch Interfaces

[TR_BSWMG_00203] Modeling of ModeDeclarationGroups dFor each
ModeDeclarationGroup a class of stereotype �ModeDeclarationGroup� shall be
created.c()

[TR_BSWMG_00209] ModeDeclarationGroup initialMode attribute dThe initial
mode of the ModeDeclarationGroup shall be modeled as a public attribute of the
ModeDeclarationGroup class. The attribute’s name shall be “initialMode”, its initial
value shall be set to one of the ModeDeclarationGroup’s defined modes.c()

46 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

[TR_BSWMG_00210] ModeDeclarationGroup onTransitionValue attribute dA
ModeDeclarationGroup’s optional “onTransitionValue" shall be modeled as a public
attribute of the ModeDeclarationGroup class. The attribute’s name shall be “onTran-
sitionValue”, its initial value shall be set to a positive integer.c()

[TR_BSWMG_00204] ModeDeclarationGroup Mode declarations dThe modes of a
ModeDeclarationGroup (e.g. SUPERVISION_OK, SUPERVISION_FAILED, ...) shall
be modeled as a UML class of stereotype�ModeDeclaration�. Each mode shall
be the name of a public attribute.c()

[TR_BSWMG_00211] ModeDeclarationGroup Mode declaration integers dIt is pos-
sible to assign concrete integer values to ModeDeclarations. In this case, the mode
attribute’s initial value shall be set to a positive integer.c()

[TR_BSWMG_00212] ModeDeclarationGroup category dThe category of the
ModeDeclarationGroup shall be inferred from the existing information in the following
way:

• EXPLICIT_ORDER if all of its associated ModeDeclaration attributes have a nu-
merical value assigned to them.

• ALPHABETIC_ORDER otherwise.

c()

[TR_BSWMG_00205] Modeling of ModeSwitchInterfaces dThe relationship be-
tween ModeDeclarationGroup and the enumeration of modes shall be modeled as
aggregation of stereotype�abswModeType� (target enumeration).c()

[TR_BSWMG_00206] ModeSwitchInterface relation to ModeDeclarationGroup
dThe ModeSwitchInterface class shall be containing a public attribute with a reference
name to the current ModeDeclarationGroup (e.g. currentMode). The type of the at-
tribute shall be the ModeDeclarationGroup.c()

47 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

Figure 2.24: Example of a Mode Switch Interface

[TR_BSWMG_00207] Naming of ModeSwitchInterface Diagrams dFor each Mode
Switch Interface a class diagram shall be created. The name of the diagramm shall be
the name of the Mode Switch Interface.c()

[TR_BSWMG_00208] Content of ModeSwitchInterface Diagrams dA Mode
Switch Interface diagram shall contain the module, the ModeSwitchInterface, the
ModeDeclarationGroup and the enumeration of the modes.c()

2.4.10.3 Modeling of Sender Receiver Interfaces

The following listing shows the old syntax of modeling / defining
SenderReceiverInterface in AUTOSAR R4.0.3 SWS documents.

1 SenderReceiverInterface AppModeRequestInterface {
2 isService = true;
3 AppModeRequestType requestedMode;
4 };

Corresponding Type:
1 ImplementationDataType AppModeRequestType {
2 lowerLimit = 0;
3 upperLimit = 2;

48 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

4 };

Figure 2.25: Schematic overview of a Sender Receiver Interfaces

[TR_BSWMG_00301] Modeling of SenderReceiverInterfaces dType of the send-
ing/receiving data shall be modeled as a bsw api type or as a MoS type.c() See also
chapter 2.4.8.

[TR_BSWMG_00302] SenderReceiverInterface Data Element dThe
SenderReceiverInterface class shall contain a public attribute with a reference
name to the current sending/receiving Type (e.g. data). The type of the attribute shall
be a valid type, see [TR_BSWMG_00301].c()

Figure 2.26: Example of a Sender Receiver Interface

[TR_BSWMG_00307] Naming of SenderReceiverInterface Diagrams dFor each
Sender Receiver Interface a class diagram shall be created. The name of the diagram
shall be the name of the Mode Switch Interface.c()

49 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

[TR_BSWMG_00308] Content of SenderReceiverInterface Diagrams dA Sender
Receiver Interface diagram shall contain the module, the SenderReceiverInterface and
the Type of the sending/receiving data.c()

2.4.10.4 Modeling of special Types in Service Interfaces

The following listing shows examples of type definitions in the old syntax of modeling /
defining types in AUTOSAR R4.0.3 SWS documents.

Definition of arrays on arguments of ClientServerOperations:
1 ClientServerInterface Dcm_RequestControlServices
2 {
3 PossibleErrors {
4 E_NOT_OK = 1,
5 };
6 RequestControl(
7 OUT uint8 OutBuffer[<DcmDspRequestControlOutBufferSize>],
8 IN uint8 InBuffer[<DcmDspRequestControlInBufferSize>],
9 ERR{E_NOT_OK });

10 }

Definition of pointer types:
1 //The data type DataPtr refers to an address and is defined as follows:
2 uint32* DataLengthPtr;

Definition of DataConstraints for simple types:
1 ImplementationDataType Dem_DTCStatusMaskType {
2 LOWER-LIMIT = 0;
3 UPPER-LIMIT = 255;
4 }

[TR_BSWMG_00400] Modeling of Service Datatypes dValid stereotypes of types are
�type�,�array�,�pointer�,�structure� and�enumeration�.c()

A simple type shall be modeled as described in chapter 2.4.8.1.

[TR_BSWMG_00403] Array Type Definition dAn array type shall be modeled as a
class of stereotype�array�. To define the type of the array elements, a generaliza-
tion relationship to the type shall be created.c()

[TR_BSWMG_00409] Array Size Definition dThe array size shall optionally be speci-
fied using the tagged value Vh.ArraySize.c()

[TR_BSWMG_00404] Pointer Type Definition dA pointer type shall be modeled as a
class of stereotype�pointer�. To define the type of the referenced data, a gener-
alization relationship to the type shall be created.c()

[TR_BSWMG_00916] Const Pointer Type Definition dA const pointer type shall be
modeled exactly as pointer type ([TR_BSWMG_00404]) with the exception that the
stereotye�constpointer� shall be applied.c()

50 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

A structure type shall be modeled as described in chapter 2.4.8.4.

An enumeration type shall be modeled as described in chapter 2.4.8.2.

Figure 2.27: Schematic overview of type definitions

2.4.10.5 Modeling of variability of service interfaces

Many service interfaces are configurable since they depend on the configuration of the
basis software. Therefore so called “blueprint conditions” have been introduced into
BSW model to express e.g. that the existence of ports depends on the existence of
specific EcuC parameters.

51 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

2.4.10.5.1 Examples of defining of variability in AUTOSAR R4.0.3 SWS docu-
ments

The following listing shows examples of the old syntax of modeling / defining of vari-
ability in AUTOSAR R4.0.3 SWS documents. The variability was defined informal as
comments.

Variability in Ports:
1 Service ComM
2 {
3 ...
4 // port present for each channel
5 // if ComMModeLimitationEnabled (see ECUC_ComM_00560);
6 // there are NC channels;
7 ProvidePort ComM_ChannelLimitation CL000;
8 ...
9 ProvidePort ComM_ChannelLimitation CL<NC-1>;

10 ...
11 }

Variability in provided client server operations:
1 ClientServerInterface Dcm_SecurityAccess
2 {
3 ...
4 //Request to application for synchronous comparing key
5 //(DcmDspSecurityUsePort = USE_SYNCH_CLIENT_SERVER)
6 CompareKey(IN uint8 Key[<DcmDspSecurityKeySize>],
7 ERR{E_NOT_OK, E_COMPARE_KEY_FAILED});
8

9 //Request to application for asynchronous comparing key
10 //(DcmDspSecurityUsePort = USE_ASYNCH_CLIENT_SERVER)
11 CompareKey(IN uint8 Key[<DcmDspSecurityKeySize>],
12 IN Dcm_OpStatusType OpStatus,
13 ERR{E_NOT_OK, E_PENDING, E_COMPARE_KEY_FAILED});
14 }

Variability in provided client server operations parameters and types:
1 // ProtInterface type and name
2 ClientServerInterface Dcm_RoutineServices {
3 ...
4 // <datatype> dataIn1,..., defines multiple parameters of
5 // a parameterized type
6 // uint8* dataInN for the last parameter is a concrete
7 // type defined (not parameterized)
8

9 StartFlex(
10 IN <datatype> dataIn1,..., IN uint8 dataInN[(<

DcmDspRoutineSignalLength of DcmDspStartRoutineInSignal>
+7)/8],

11 IN Dcm_OpStatusType OpStatus,
12 OUT <datatype> dataOut1,..., OUT uint8 dataOutN[(<

DcmDspRoutineSignalLength of DcmDspStartRoutineOutSignal>
+7)/8],

52 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

13 INOUT uint16 currentDataLength,
14 OUT Dcm_NegativeResponseCodeType ErrorCode,
15 ERR{E_NOT_OK, DCM_E_PENDING, E_FORCE_RCRRP });
16 ...
17 };

Variability in provided interface type:
1 ClientServerInterface DataServices:
2

3 Using the concepts of the SW-C template, the interface is defined as
follows if ClientServer interface is used (DcmDspDataUsePort set to
USE_DATA_SYNCH_CLIENT_SERVER or USE_DATA_ASYNCH_CLIENT_SERVER):

1 SenderReceiver DataServices:
2

3 Using the concepts of the SW-C template, the interface is defined as
follows if SenderReceiver interface is used (DcmDspDataUsePort set
to USE_DATA_SENDER_RECEIVER):

2.4.10.5.2 Modeling of variability in BSW UML model

[TR_BSWMG_00500] Variability: NamePatterns dIf the number of occurrences of
e.g. a port is depending on a the occurrences of EcuC containers, the condition shall
defined in tagged value Vh.NamePattern.BlueprintPolicy.DerivationGuide
and the Namepattern shall be defined in tagged value Vh.NamePattern.c()

[TR_BSWMG_00501] Variability: Blueprint Conditions dTo define variability of e.g.
a port the tagged value Vh.BlueprintCondition shall be used.c()

[TR_BSWMG_00502] Variability: Multiple Conditions dTo define multiple condi-
tions on e.g. a port, ’.’ + number shall be append to the tagged value name e.g.
“Vh.BlueprintCondition.1”.c()

Variability example of a port:
1 Vh.BlueprintCondition:
2 {ecuc(ComM/ComMGeneral.ComMModeLimitationEnabled)} == true
3 Vh.NamePattern.BlueprintPolicy.DerivationGuide:
4 Name = {ecuc(ComM/ComMConfigSet/ComMChannel)}
5 Vh.NamePattern:
6 CL_{Name}

[TR_BSWMG_00507] Variability: Configurable reference to Port Interface
dIf the reference to a port interface is configurable by EcuC the tagged value
Vh.InterfaceRef.BlueprintPolicy.DerivationGuide shall be used.c()

Configurable interface reference of a port (BswM modeNotificationPort):
1 Vh.InterfaceRef.BlueprintPolicy.DerivationGuide:
2 {ecuc(BswM/BswMConfig/BswMArbitration/BswMModeRequestPort/

BswMModeRequestSource/BswMSwcModeNotification.
BswMSwcModeNotificationModeDeclarationGroupPrototypeRef)}.parent

53 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

[TR_BSWMG_00155] Variability: Port Interface with configurable isService at-
tribute dIf the value of the isService attribute depends on a EcuC parameter the tagged
value Vh.isService.BlueprintPolicy.DerivationGuide shall be used. The
value of the tagged value shall be set to the blueprint condition referencing the EcuC
parameter.c()

[TR_BSWMG_00917] Variability: Port Interface with configurable class dIf
the class of a port interface (ClientServerInterface, ModeSwitchInterface, or
SenderReceiverInterface) is dependent on EcuC parameters, this shall be modelled
by an interface with stereotype �AbstractInterface� which is referenced by
the port. The possible classes of the interface shall be modelled by two or more
interfaces with their respective stereotype that are derived from the abstract inter-
face. The applicability of the interface class shall be modelled with the tagged value
Vh.blueprintCondition at the generalizations to the abstract interface.c()

[TR_BSWMG_00908] Variability: SenderReceiverInterface with con-
figurable data element type dIf the datatype of a data element of a
SenderReceiverInterface depends on EcuC parameters the tagged value
Vh.TypeRef.BueprintPolicy.DerivationGuide shall be used to express
the dependency.c()

2.4.10.6 Modeling of PortAPIOptions and PortDefinedArgumentValues

[TR_BSWMG_00118] Modeling of PortAPIOptions dA PortAPIOption shall be mod-
eled as an UML class of stereotype �PortAPIOption�. The class shall be placed
in the package <module>/ARInterfaces/<affected interfaces>.c()

[TR_BSWMG_00119] PortAPIOption Name dThe name of the PortAPIOption class
shall be composed of the port name followed by underscore followed by literal string
“PortAPIOption”, e.g. “Func_PortAPIOption” for a port named “Func”.c()

[TR_BSWMG_00120] PortAPIOption reference to Port dThe �PortAPIOption�
class shall reference its affected port using a dependency with stereotype
�abswPortRef�.c()

[TR_BSWMG_00121] Modeling of PortDefinedArgumentValues dPort Defined Ar-
gument Values shall be modeled as attributes of a�PortAPIOption� class.c()

[TR_BSWMG_00122] Stereotype of PortDefinedArgumentValues dThe attribute
representing the Port Defined Argument Value shall have the stereotype�PDAV�.c()

[TR_BSWMG_00123] Order of PortDefinedArgumentValues dIf a port uses
more than one Port Defined Argument Values, the attribute order within the
�PortAPIOption� class shall reflect the argument order in the BSW functions as-
sociated with the port’s provided ClientServerInterface operations.c()

[TR_BSWMG_00124] Naming of PortDefinedArgumentValues dThe Port Defined
Argument Value attribute’s ‘Name’ field shall match the corresponding BSW-functions’
parameter name.c()

54 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

[TR_BSWMG_00125] PortDefinedArgumentValue with fixed Type (non-
configurable) dIf the Port Defined Argument Value is of a fixed type, i.e. it is not
configurable by an EcuC parameter, the attribute’s ‘Type’ field shall reference a valid
type that is either modeled as a BSW API type or as an MoS type.c()

[TR_BSWMG_00126] PortDefinedArgumentValue with configurable Type dIf the
Port Defined Argument Value’s type is configurable by an EcuC parameter, the ‘Type’
field shall be set to the literal string {DataType}. The curly braces indicate that
“DataType” is treated as a place holder for the EcuC-configured type rather than a
valid data type itself.c()

[TR_BSWMG_00127] PortDefinedArgumentValue with Type Configuration
by EcuC dIf the Port Defined Argument Value’s type is configurable by an
EcuC parameter, the EcuC configuration dependency shall be expressed by a
tagged value attached to the attribute: Tag “TypeRef”, Value: “DataType =
{ecuc(some/ecuc/param/dataTypeRef)}”c()

[TR_BSWMG_00128] PortDefinedArgumentValue with Value Configuration by
EcuC dIf the Port Defined Argument Value’s value is configurable by an EcuC pa-
rameter, the EcuC configuration dependency shall be expressed by the tagged value
Vh.Value.BlueprintPolicy.DerivationGuide attached to the attribute.c()

Figure 2.28: PortAPIOption example for module Fim ClientServerInterface ControlFunc-
tionAvailable

55 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

2.4.11 Modeling of Error classification

[TR_BSWMG_00165] ErrorClassification model location dAll additional elements
of error classification modeling shall be placed in a package "ErrorClassification". This
packages shall be a child package of the module package.c()

[TR_BSWMG_00166] Modeling of ErrorSets dFor each kind of errors a module uses
a class stereotyped �ErrorSet� shall be created and aggregated by the module
component. The classes shall be named after the kind of errors they represent:

• Development Errors

• Runtime Errors

• Transient Faults

c()

Note: Only the error sets that are actually used by the module shall be modeled.

[TR_BSWMG_00167] SWS Item ID of an ErrorSet dThe tagged value
bsw.swsItemId is used to specify the SWS Item ID of an error set.c()

[TR_BSWMG_00168] Up-traces of an ErrorSet dThe tagged value bsw.traceRefs
is used to specify up-traces to requirements for an error set. Multiple requirement IDs
have to be separated by a comma.c()

[TR_BSWMG_00169] Modeling of DevelopmentErrors dA Development Error
shall be modeled as class stereotyped �DevelopmentError� aggregated at the
�ErrorSet� named "DevelopmentErrors" (see [TR_BSWMG_00166]).c()

[TR_BSWMG_00170] Modeling of RuntimeErrors dA Runtime Error shall be mod-
eled as class stereotyped �RuntimeError� aggregated at the �ErrorSet�
named "RuntimeErrors" (see [TR_BSWMG_00166]).c()

[TR_BSWMG_00171] Modeling of TransientFaults dA Transient Fault shall be mod-
eled as class stereotyped �TransientFault� aggregated at the �ErrorSet�
named "TransientFaults" (see [TR_BSWMG_00166]).c()

[TR_BSWMG_00172] Specific Modeling of Errors in ErrorSets dAny Error mod-
eled as in [TR_BSWMG_00169], [TR_BSWMG_00170], [TR_BSWMG_00171] shall
be named after the desired error name. It shall contain an attribute ErrorCode, which
shall have the initial value set to the desired error value. The description of the class
shall be the desired error description.c()

56 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

2.5 Diagrams

2.5.1 Header File Modeling

[TR_BSWMG_00600] Header File Diagram dThe module package shall contain a
header file diagram (Enterprise Architect: UML Component Diagram).c()

[TR_BSWMG_00601] Naming of Header File Diagram dThe name of the header
file diagram shall be the name of the module component followed by “_header”, e.g.
“FrTp_header”.c()

[TR_BSWMG_00602] Header and Source Code Artifacts dDocument artifacts shall
be declared either as header or source file using the stereotypes �header� and
�source�.c()

[TR_BSWMG_00603] Document Artifact Location dDocument artifacts shall be
placed in the module package of the defining BSW module.c()

[TR_BSWMG_00604] Include Dependency of Document Artifacts dDocument ar-
tifacts can include other artifacts using a dependency with stereotype �include�.
With the additional stereotype�optional�, optional inclusion can be expressed.c()

[TR_BSWMG_00605] Optional Include Dependency of Document Artifacts
dOptional inclusion can be expressed by specifying the additional stereotype
�optional� on an include dependency.c()

2.5.2 Sequence Diagrams

[TR_BSWMG_00901] Usage of Sequence Diagrams dFor modeling interactions of
different modules, sequence diagrams shall be used.c()

[TR_BSWMG_00902] Location of Sequence Diagrams dAll sequence diagrams shall
be placed within the “Interaction Views” package.c()

2.5.3 State Machine Diagrams

[TR_BSWMG_00801] Usage of State Machine Diagrams dFor modeling state de-
pendencies within and between elements, state machine diagrams shall be used.c()

[TR_BSWMG_00920] Location of State Machine Diagrams dAll state machine dia-
grams shall be placed within the “Documentation Drawings” package.c()

57 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

2.6 Support for Life Cycle concept in BSW Model

AUTOSAR introduced the possibility to attach life-cycle-related information to all
(Referrable) specification elements with the Life Cycle Concept in R4.1.1. In a nut-
shell, a LifeCycleInfo element can be created for a specification element to document
its life cycle state - see [5], chapter 11.3.2.

[TR_BSWMG_00700] Model elements that support life cycle information dIn the
BSW model the following modeling elements shall be able to have life cycle information:

• API Functions

• datatypes

• ports

• port interfaces

• ModeDeclarationGroups

• imported-types-lists

• mandatory-interfaces-lists

• optional-interfaces-lists

• error-classification-sets

c()

[TR_BSWMG_00701] LifeCycleInfo information in model elements dLife cycle in-
formation is represented by tagged values on the model element.c()

[TR_BSWMG_00702] Valid tagged values for life cycle information on model ele-
ments dThe following tagged values can be used to document life cycle information:

atp.Status A value from the official AUTOSAR lifecycle definitions [6]

atp.StatusComment (optional) Explanatory comment

atp.StatusRevisionBegin Beginning of applicability of LifeCycleInfo

atp.StatusRevisionEnd (optional) End of applicability of LifeCycleInfo

atp.StatusUseInstead (optional) The element that replaces an “obsolete” or a
“removed” model element

c()

Imported-types-lists, mandatory-interfaces-lists, and optional-interfaces-lists do not
have a corresponding model element where to add tagged values representing
lifecycle-information to. This is mitigated by modified tagged values:

[TR_BSWMG_00703] Valid tagged values for life cycle information on Im-
ported Types of a module dThe following tagged values can be used to document

58 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

life cycle information on Imported Types of a module: All tagged values listed in
[TR_BSWMG_00702] prefixed by bsw.importedTypes..c()

[TR_BSWMG_00704] Valid tagged values for life cycle information on Mandatory
Interfaces of a module dThe following tagged values can be used to document life
cycle information on Mandatory Interfaces of a module: All tagged values listed in
[TR_BSWMG_00702] prefixed by bsw.mandatory..c()

[TR_BSWMG_00705] Valid tagged values for life cycle information on Optional
Interfaces of a module dThe following tagged values can be used to document
life cycle information on Optional Interfaces of a module: All tagged values listed in
[TR_BSWMG_00702] prefixed by bsw.optional..c()

59 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

A Stereotypes and Tagged Values defined for the
BSWUMLModel

Stereotype Applicable to [UML model element] Specified in

AbstractInterface class [TR_BSWMG_00917]

abswMapping dependency [TR_BSWMG_00111]

abswModeType composition [TR_BSWMG_00205]

abswOperation composition [TR_BSWMG_00104]

abswPortRef dependency [TR_BSWMG_00120]

abswPossibleError composition [TR_BSWMG_00109]

abswPossibleErrorRef dependency [TR_BSWMG_00110]

abswRequires dependency [TR_BSWMG_00101]

ApplicationError class [TR_BSWMG_00108]

array class [TR_BSWMG_00403]

bitfield class [TR_BSWMG_00079]

bitflag attribute [TR_BSWMG_00080]

bitrange attribute [TR_BSWMG_00083]

bswNoModeledType parameter, attribute [TR_BSWMG_00918]

callback operation [TR_BSWMG_00157]

callout operation [TR_BSWMG_00016]

ClientServerInterface class [TR_BSWMG_00102]

ClientServerOperation class [TR_BSWMG_00103]

configurable dependency [TR_BSWMG_00059]

constpointer class [TR_BSWMG_00916]

derived_generic_interface interface [TR_BSWMG_00134]

DevelopmentError class [TR_BSWMG_00169]

enumeration class [TR_BSWMG_00072]

ErrorSet class [TR_BSWMG_00166]

extra_literals class [TR_BSWMG_00089]

function operation [TR_BSWMG_00016]

function_blueprint operation [TR_BSWMG_00133]

functionpointer class [TR_BSWMG_00188]

generic_interface interface [TR_BSWMG_00061]

generic_type class [TR_BSWMG_00919]

header artifact [TR_BSWMG_00602]

interface interface [TR_BSWMG_00012]

mandatory dependency [TR_BSWMG_00043]

ModeDeclaration class [TR_BSWMG_00204]

ModeDeclarationGroup class [TR_BSWMG_00203]

ModeSwitchInterface class [TR_BSWMG_00102]

module component [TR_BSWMG_00003]

multiple parameter [TR_BSWMG_00130]

mutualexcl parameter [TR_BSWMG_00131]

optional dependency, parameter [TR_BSWMG_00046],
[TR_BSWMG_00129]

PDAV attribute [TR_BSWMG_00122]

5

60 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

4
Stereotype Applicable to [UML model element] Specified in

pointer class [TR_BSWMG_00404]

PortAPIOption class [TR_BSWMG_00118]

PPortPrototype port [TR_BSWMG_00100]

PRPortPrototype port [TR_BSWMG_00100]

range attribute [TR_BSWMG_00071]

realize realization [TR_BSWMG_00015]

RPortPrototype port [TR_BSWMG_00100]

RuntimeError class [TR_BSWMG_00170]

scheduled_function operation [TR_BSWMG_00037]

SenderReceiverInterface class [TR_BSWMG_00102]

source artifact [TR_BSWMG_00602]

structure class [TR_BSWMG_00076]

TransientFault class [TR_BSWMG_00171]

type class [TR_BSWMG_00066]

union class [TR_BSWMG_00185]

use dependency [TR_BSWMG_00921]

variablebitflag attribute [TR_BSWMG_00907]

Table A.1: Stereotypes used in the BSWUMLModel

Tagged Value Applicable to [BSWUML
model element]2

Specified in

aName named bsw element [TR_BSWMG_00031]

atp.Status specification element [TR_BSWMG_00702]

atp.StatusComment specification element [TR_BSWMG_00702]

atp.StatusRevisionBegin specification element [TR_BSWMG_00702]

atp.StatusRevisionEnd specification element [TR_BSWMG_00702]

atp.StatusUseInstead specification element [TR_BSWMG_00702]

bsw.calltype configurable-dependency [TR_BSWMG_00903]

bsw.entryKind configurable-dependency [TR_BSWMG_00904]

bsw.extendsModule module [TR_BSWMG_00184]

bsw.headerFile API function, datatype [TR_BSWMG_00140],
[TR_BSWMG_00141]

bsw.importedTypes.atp.Status module [TR_BSWMG_00703]

bsw.importedTypes.atp.StatusComment module [TR_BSWMG_00703]

bsw.importedTypes.atp.StatusRevisionBegin module [TR_BSWMG_00703]

bsw.importedTypes.atp.StatusRevisionEnd module [TR_BSWMG_00703]

bsw.importedTypes.atp.StatusUseInstead module [TR_BSWMG_00703]

bsw.importedTypes.swsItemId module [TR_BSWMG_00098]

bsw.importedTypes.traceRefs module [TR_BSWMG_00099]

bsw.isService port interface [TR_BSWMG_00154]

bsw.mandatory.atp.Status module [TR_BSWMG_00704]

5

2For the definition of the terms used here, please see Table Table A.3.

61 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

4
Tagged Value Applicable to [BSWUML

model element]1
Specified in

bsw.mandatory.atp.StatusComment module [TR_BSWMG_00704]

bsw.mandatory.atp.StatusRevisionBegin module [TR_BSWMG_00704]

bsw.mandatory.atp.StatusRevisionEnd module [TR_BSWMG_00704]

bsw.mandatory.atp.StatusUseInstead module [TR_BSWMG_00704]

bsw.mandatory.swsItemId module [TR_BSWMG_00094]

bsw.mandatory.traceRefs module [TR_BSWMG_00095]

bsw.optional.atp.Status module [TR_BSWMG_00705]

bsw.optional.atp.StatusComment module [TR_BSWMG_00705]

bsw.optional.atp.StatusRevisionBegin module [TR_BSWMG_00705]

bsw.optional.atp.StatusRevisionEnd module [TR_BSWMG_00705]

bsw.optional.atp.StatusUseInstead module [TR_BSWMG_00705]

bsw.optional.swsItemId module [TR_BSWMG_00096]

bsw.optional.traceRefs module [TR_BSWMG_00097]

bsw.swsItemId specification element [TR_BSWMG_00150],
[TR_BSWMG_00152],
[TR_BSWMG_00167]

bsw.traceRefs specification element [TR_BSWMG_00151],
[TR_BSWMG_00153],
[TR_BSWMG_00168]

bsw.typeRef.aName operation parameter,
datatype member

[TR_BSWMG_00905]

Reentrant API function [TR_BSWMG_00025]

ServiceID API function [TR_BSWMG_00024]

Synchronous API function [TR_BSWMG_00026]

Synchronous.comment API function [TR_BSWMG_00906]

Vh.ArraySize datatype [TR_BSWMG_00409]

Vh.AttributeName bitfield flag [TR_BSWMG_00907]

Vh.AttributeValue bitfield flag [TR_BSWMG_00907]

Vh.BlueprintCondition named bsw element [TR_BSWMG_00501]

Vh.BlueprintValue datatype member [TR_BSWMG_00413]

Vh.compuMethod.BlueprintPolicy datatype [TR_BSWMG_00503]

Vh.compuMethod.BlueprintPolicy.DerivationGuide datatype [TR_BSWMG_00503]

Vh.compuMethod.BlueprintPolicy.maxElements datatype [TR_BSWMG_00503]

Vh.compuMethod.BlueprintPolicy.minElements datatype [TR_BSWMG_00503]

Vh.dataConstr.lowerLimit.BlueprintPolicy.DerivationGuide datatype [TR_BSWMG_00504]

Vh.dataConstr.lowerLimit.blueprintValue datatype [TR_BSWMG_00506]

Vh.dataConstr.lowerLimit.value datatype [TR_BSWMG_00505]

Vh.dataConstr.upperLimit.BlueprintPolicy.DerivationGuide datatype [TR_BSWMG_00504]

Vh.dataConstr.upperLimit.blueprintValue datatype [TR_BSWMG_00506]

Vh.dataConstr.upperLimit.value datatype [TR_BSWMG_00505]

Vh.InterfaceRef.BlueprintPolicy.DerivationGuide port [TR_BSWMG_00507]

Vh.isService.BlueprintPolicy.DerivationGuide port interface [TR_BSWMG_00155]

Vh.NamePattern named bsw element [TR_BSWMG_00500]

Vh.NamePattern.BlueprintPolicy.DerivationGuide named bsw element [TR_BSWMG_00500]

Vh.TypeRef.BueprintPolicy.DerivationGuide sender receiver data element [TR_BSWMG_00908]

5
1For the definition of the terms used here, please see Table Table A.3.

62 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

4
Tagged Value Applicable to [BSWUML

model element]1
Specified in

Vh.Value.BlueprintPolicy.DerivationGuide named bsw element [TR_BSWMG_00128]

xml.baseTypeCategory datatype [TR_BSWMG_00909]

xml.baseTypeEncoding datatype [TR_BSWMG_00910]

xml.baseTypeNativeDeclaration datatype [TR_BSWMG_00911]

xml.baseTypeSize datatype [TR_BSWMG_00912]

xml.category datatype [TR_BSWMG_00914]

xml.generateBaseType datatype [TR_BSWMG_00915]

xml.ignore named bsw element [TR_BSWMG_00913]

Table A.2: Tagged Values used in the BSWUMLModel

The following table (Table A.3 “Definitions of terms for BSWUML model elements”)
serves as legend for the second column in Table A.2 “Tagged Values used in the
BSWUMLModel”.

63 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

Term for BSWUML model
elements

Actual UML model elements

module component with stereotype �module�, see [TR_BSWMG_00003]

API function operation of an interface, see [TR_BSWMG_00016]

operation parameter parameter within an operation

configurable-dependency dependency from a module to an interface with stereotype �configurable�, see
[TR_BSWMG_00059]

datatype class representing a BSW datatype of either stereotype:

• �array� ([TR_BSWMG_00403])

• �bitfield� ([TR_BSWMG_00079])

• �constpointer� ([TR_BSWMG_00916])

• �enumeration� ([TR_BSWMG_00072])

• �extra_literals� ([TR_BSWMG_00089])

• �functionpointer� ([TR_BSWMG_00188])

• �pointer� ([TR_BSWMG_00404])

• �structure� ([TR_BSWMG_00076])

• �type� ([TR_BSWMG_00066])

• �union� ([TR_BSWMG_00185])

datatype member attribute within a datatype

bitfield flag attribute with stereotype �bitflag� with a datatype with stereotype �bitfield�,
see [TR_BSWMG_00080]

port port of a module, see [TR_BSWMG_00100]

port interface class representing a ClientServerInterface, SenderReceiverInterface, or
ModeSwitchInterface, see [TR_BSWMG_00102]

sender receiver data element attribute within a SenderReceiverInterface, see [TR_BSWMG_00302]

specification element any BSWUML model element that corresponds to a specification item:

• API functions

• datatypes

• ports

• port interfaces

• ModeDeclarationGroups ([TR_BSWMG_00203])

• imported-types-lists ([TR_BSWMG_00098])

• mandatory-interfaces-lists ([TR_BSWMG_00094])

• optional-interfaces-lists ([TR_BSWMG_00096])

• error-classification-sets ([TR_BSWMG_00166])

named BSWUML element any named model element dependent on modules with the exception of error classification
elements

Table A.3: Definitions of terms for BSWUML model elements

64 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

B History of Specification Items

B.1 Specification Item History of this Document according to
AUTOSAR R21-11

B.1.1 Added Traceables in R21-11

Number Heading

[TR_BSWMG_00176] Modeling of tagged values as tagged value notes

[TR_BSWMG_00177] Generic Interface model location
[TR_BSWMG_00178] Override the Derived Generic Interface Name
[TR_BSWMG_00179] Override Generic Interface Properties

[TR_BSWMG_00180] Override Derived Generic Interface Properties

[TR_BSWMG_00181] Re-use existing interfaces as much as possible

[TR_BSWMG_00182] Illustrating purpose of Virtual Interfaces

[TR_BSWMG_00183] BSW Module Extensions
[TR_BSWMG_00184] Explicit modeling of BSW Module Extensions

[TR_BSWMG_00185] Union Type Definition

[TR_BSWMG_00186] Union Member Definition
[TR_BSWMG_00187] Union Member Details
[TR_BSWMG_00188] Function Pointer Type Definition

[TR_BSWMG_00189] Function Pointer Function Definition
[TR_BSWMG_00190] Function Pointer Parameter Definition
[TR_BSWMG_00308] MoS SenderReceiverInterface

Table B.1: Added Traceables in R21-11

B.1.2 Changed Traceables in R21-11

Number Heading

[TR_BSWMG_00050] Callback Generic Interface Name
[TR_BSWMG_00062] Derived Generic Interface Name
[TR_BSWMG_00132] Generic Interface is abstract
[TR_BSWMG_00133] Generic Interface Function Definition
[TR_BSWMG_00134] Derived Generic Interface
[TR_BSWMG_00156] Derived Generic Interface contains no function

Table B.2: Changed Traceables in R21-11

65 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

B.1.3 Deleted Traceables in R21-11

Number Heading

[TR_BSWMG_00029] Naming of Virtual Interface

[TR_BSWMG_00039] Virtual Interface Multiplicity

[TR_BSWMG_00040] Virtual Interface Location
[TR_BSWMG_00042] No Mixed Usage of Function Interfaces and Virtual Interfaces

[TR_BSWMG_00052] Callback Blueprint interface model location

[TR_BSWMG_00063] Provider Naming Scheme

[TR_BSWMG_00064] User Naming Scheme

[TR_BSWMG_00065] User-Configurable Naming Scheme

[TR_BSWMG_0308] MoS SenderReceiverInterface

Table B.3: Deleted Traceables in R21-11

B.2 Specification Item History of this Document according to
AUTOSAR R22-11

B.2.1 Added Traceables in R22-11

Number Heading

[TR_BSWMG_00703] Valid tagged values for life cycle information on Imported Types of a module

[TR_BSWMG_00704] Valid tagged values for life cycle information on Mandatory Interfaces of a
module

[TR_BSWMG_00705] Valid tagged values for life cycle information on Optional Interfaces of a
module

[TR_BSWMG_00903] Overriding the calltype of a Configurable Generic Interface

[TR_BSWMG_00904] Overriding the entryKind of a Configurable Callback

[TR_BSWMG_00905] References to equally named Datatypes

[TR_BSWMG_00906] Comment on synchronicity of an API Function

[TR_BSWMG_00907] Variable Bitflags in Bitfields

[TR_BSWMG_00908] Variability: SenderReceiverInterface with configurable data element type

[TR_BSWMG_00909] Tailoring the baseType category of a Simple Type

[TR_BSWMG_00910] Tailoring the baseTypeEncoding of a Simple Type

[TR_BSWMG_00911] Tailoring the baseType nativeDeclaration of a Simple Type

[TR_BSWMG_00912] Tailoring the baseTypeSize of a Simple Type

[TR_BSWMG_00913] Tailoring the export of a Datatype

[TR_BSWMG_00914] Tailoring the category of a Simple Type

[TR_BSWMG_00915] Tailoring the export of a SwBaseType for a Simple Type
5

66 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

Modeling Guidelines of Basic Software EA UML
Model

AUTOSAR CP R22-11

4
Number Heading

[TR_BSWMG_00916] Const Pointer Type Definition

[TR_BSWMG_00917] Variability: Port Interface with configurable class

[TR_BSWMG_00918] References to Datatypes that are not modelled

[TR_BSWMG_00919] Parent Datatypes that are not modelled

[TR_BSWMG_00920] Location of State Machine Diagrams

[TR_BSWMG_00921] Illustrating a module’s usage of an interface

Table B.4: Added Traceables in R22-11

B.2.2 Changed Traceables in R22-11

Number Heading

[TR_BSWMG_00031] Alternative Anchor Name
[TR_BSWMG_00087] Bitfield: Bit Range Value Definition

[TR_BSWMG_00700] Model elements that support life cycle information

[TR_BSWMG_00702] Valid tagged values for life cycle information on model elements

[TR_BSWMG_00902] Location of Sequence Diagrams

Table B.5: Changed Traceables in R22-11

B.2.3 Deleted Traceables in R22-11

Number Heading

[TR_BSWMG_00053] Callback Blueprint interface subpackage location

[TR_BSWMG_00086] Bitfield: Bit Mask and Bit Range Order

[TR_BSWMG_00088] Bitfield: Bit Range Value Details

Table B.6: Deleted Traceables in R22-11

67 of 67 Document ID 117: AUTOSAR_TR_BSWUMLModelModelingGuide

	1 Introduction
	1.1 Artifacts
	1.1.1 Header Files
	1.1.2 Imported Type Definitions
	1.1.3 Type Definitions
	1.1.4 Function Definitions
	1.1.5 Callback Notifications
	1.1.6 Scheduled Functions
	1.1.7 Mandatory Interfaces
	1.1.8 Optional Interfaces
	1.1.9 Configurable Interfaces
	1.1.10 Sequence Diagrams
	1.1.11 Various Diagrams
	1.1.12 Modeling of services
	1.1.13 Error classification

	2 Modeling Guide
	2.1 Terminology
	2.2 Model Structure
	2.3 Common modeling mechanisms
	2.3.1 Modeling of element names
	2.3.2 Modeling of Tagged Values

	2.4 Modeling of BSW Modules
	2.4.1 Modules
	2.4.1.1 Packages
	2.4.1.2 Components
	2.4.1.3 Module Extensions
	2.4.1.4 Component Diagrams
	2.4.1.5 Type Diagrams

	2.4.2 Function interfaces
	2.4.3 API Functions
	2.4.3.1 Scheduled Functions

	2.4.4 API Function Parameters
	2.4.5 Module Dependencies
	2.4.5.1 Virtual Interfaces
	2.4.5.2 Mandatory Interfaces
	2.4.5.3 Optional Interfaces
	2.4.5.4 Illustrative Dependencies

	2.4.6 Generic Interfaces
	2.4.7 Callback Notifications
	2.4.7.1 Callback definition and usage (non Configurable Callback)
	2.4.7.2 Configurable Callback definition and usage
	2.4.7.3 Callback Generic Interfaces

	2.4.8 Data Type Definitions
	2.4.8.1 Simple Types
	2.4.8.2 Enumerations
	2.4.8.3 Std_ReturnType Extensions
	2.4.8.4 Structures
	2.4.8.5 Unions
	2.4.8.6 Function Pointers
	2.4.8.7 Bitfields
	2.4.8.8 Modeling of variability in data types

	2.4.9 References to Data Types
	2.4.10 Modeling of services
	2.4.10.1 Modeling of Client Server Interfaces
	2.4.10.2 Modeling of Mode Switch Interfaces
	2.4.10.3 Modeling of Sender Receiver Interfaces
	2.4.10.4 Modeling of special Types in Service Interfaces
	2.4.10.5 Modeling of variability of service interfaces
	2.4.10.6 Modeling of PortAPIOptions and PortDefinedArgumentValues

	2.4.11 Modeling of Error classification

	2.5 Diagrams
	2.5.1 Header File Modeling
	2.5.2 Sequence Diagrams
	2.5.3 State Machine Diagrams

	2.6 Support for Life Cycle concept in BSW Model

	A Stereotypes and Tagged Values defined for the BSWUMLModel
	B History of Specification Items
	B.1 Specification Item History of this Document according to AUTOSAR R21-11
	B.1.1 Added Traceables in R21-11
	B.1.2 Changed Traceables in R21-11
	B.1.3 Deleted Traceables in R21-11

	B.2 Specification Item History of this Document according to AUTOSAR R22-11
	B.2.1 Added Traceables in R22-11
	B.2.2 Changed Traceables in R22-11
	B.2.3 Deleted Traceables in R22-11

