
Requirements on Core Test
AUTOSAR CP R22-11

1 of 25 Document ID 258: AUTOSAR_SRS_CoreTest

Document Change History
Date Release Changed by Change Description

2022-11-24 R22-11 AUTOSAR

Release

Management

 No content changes

2021-11-25 R21-11 AUTOSAR

Release

Management

 No content changes

2020-11-30 R20-11 AUTOSAR

Release

Management

 No content changes

2019-11-28 R19-11 AUTOSAR

Release

Management

 No content changes

 Changed Document Status from

Final to published

2017-10-31 4.4.0 AUTOSAR

Release

Management

 Editorial changes

2017-12-08 4.3.1 AUTOSAR

Release

Management

 Editorial changes

2016-11-30 4.3.0 AUTOSAR

Release

Management

 Added Requirements Tracing

section

2014-10-31 4.2.1 AUTOSAR

Release

Management

 Editorial changes

2013-10-31 4.1.2 AUTOSAR

Release

Management

 Editorial changes

 Renamed

"RS_BSWAndRTEFeatures" into

"RS_Features"

2013-03-15 4.1.1 AUTOSAR

Administration

 Formal update of the document

template

 Add traceability to features

Document Title Requirements on Core Test
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 258

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R22-11

Requirements on Core Test
AUTOSAR CP R22-11

2 of 25 Document ID 258: AUTOSAR_SRS_CoreTest

Document Change History
Date Release Changed by Change Description

2013-03-15 4.1.1 AUTOSAR

Administration

 Clarification of one requirement

2011-12-22 4.0.3 AUTOSAR

Administration

 Added a new requirement for

foreground test

 Clarification of some requirements

2010-09-30 3.1.5 AUTOSAR

Administration

 Initial release

Requirements on Core Test
AUTOSAR CP R22-11

3 of 25 Document ID 258: AUTOSAR_SRS_CoreTest

Disclaimer

This work (specification and/or software implementation) and the material contained
in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and
the companies that have contributed to it shall not be liable for any use of the work.
The material contained in this work is protected by copyright and other types of
intellectual property rights. The commercial exploitation of the material contained in
this work requires a license to such intellectual property rights.
This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the
work may be utilized or reproduced, in any form or by any means, without permission
in writing from the publisher.
The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.
The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Requirements on Core Test
AUTOSAR CP R22-11

4 of 25 Document ID 258: AUTOSAR_SRS_CoreTest

Table of Contents

1 Scope of Document .. 5

2 Conventions to be Used ... 6

3 Acronyms and Abbreviations .. 7

4 Functional Overview ... 8

4.1.1 Definition of Core ... 8

4.1.2 Multicore Support .. 10

4.1.3 Architectural Prerequisites .. 11

5 Requirements Tracing .. 12

6 Requirements Specification .. 14

6.1 Functional Requirements .. 14

6.1.1 Configuration ... 14

6.1.2 Normal Operation .. 14

6.1.3 Initialisation .. 22

6.1.4 Shutdown Operation.. 22

6.2 Non-Functional Requirements .. 22

6.2.1 [SRS_CoreTst_14123] Shared Resources to Be Tested Shall Be
Made Exclusively Available to Test ... 22

7 References .. 25

7.1 Deliverables of AUTOSAR .. 25

7.2 Related standards and norms ... 25

Requirements on Core Test
AUTOSAR CP R22-11

5 of 25 Document ID 258: AUTOSAR_SRS_CoreTest

1 Scope of Document

This document defines general rules and requirements for Core Test specification in
AUTOSAR. It shall be used as a basis for each requirements document.

Care has been taken to insure consistency between the Core test, RAM test and
Flash test SRS documents.

Requirements on Core Test
AUTOSAR CP R22-11

6 of 25 Document ID 258: AUTOSAR_SRS_CoreTest

2 Conventions to be Used

 The representation of requirements in AUTOSAR documents follows the table
specified in [TPS_STDT_00078].

 In requirements, the following specific semantics shall be used (based on the
Internet Engineering Task Force IETF).

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as:

 SHALL: This word means that the definition is an absolute requirement
of the specification.

 SHALL NOT: This phrase means that the definition is an absolute
prohibition of the specification.

 MUST: This word means that the definition is an absolute requirement
of the specification due to legal issues.

 MUST NOT: This phrase means that the definition is an absolute
prohibition of the specification due to legal constraints.

 SHOULD: This word, or the adjective "RECOMMENDED", mean that
there may exist valid reasons in particular circumstances to ignore a
particular item, but the full implications must be understood and
carefully weighed before choosing a different course.

 SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED"
mean that there may exist valid reasons in particular circumstances
when the particular behavior is acceptable or even useful, but the full
implications should be understood and the case carefully weighed
before implementing any behavior described with this label.

 MAY: This word, or the adjective „OPTIONAL“, means that an item is
truly optional. One vendor may choose to include the item because a
particular marketplace requires it or because the vendor feels that it
enhances the product while another vendor may omit the same item.
An implementation, which does not include a particular option, MUST
be prepared to interoperate with another implementation, which does
include the option, though perhaps with reduced functionality. In the
same vein an implementation, which does include a particular option,
MUST be prepared to interoperate with another implementation, which
does not include the option (except, of course, for the feature the option
provides.)

Requirements on Core Test
AUTOSAR CP R22-11

7 of 25 Document ID 258: AUTOSAR_SRS_CoreTest

3 Acronyms and Abbreviations

Acronym: Description:

CPU Central Processing Unit

MPU Memory Protection Unit

L1 1st level memory

L2 2nd level memory

MCU Microcontroller Unit

BIST Built in Self Test

IRQ Interrupt Request

Core A CPU plus closely located functional resources

Atomic sequence/
atomic part

Sequence of software code execution which must not be
interrupted at any time

Partial test A partial test is defined as the test of one or more ‘hardware
resources’. (A partial test is interruptible because it is executed
in background mode).

PCB Printed Circuit Board

External device A physical external entity; e.g. a second microcontroller

Resource A core internal unit which executes a unique functionality (e.g.
IRQ-controller)

Checksum/
signature

A numerical representation of the result of a test execution or
atomic sequence of a test execution.

Caller/calling entity The caller/calling entity is located on a higher AUTOSAR or ISO
layer. It is the user of the API call.

Term: Description:

Background test Background test is called periodically by a SW-scheduler.

Foreground test Foreground test is called via users call.

Golden (Ref.)
Value

Reference value used for comparison (e.g.
Checksum/Signature)

Good Case The execution finished without reporting an error

As this is a document from professionals for professionals, all other terms are
expected to be known.

Requirements on Core Test
AUTOSAR CP R22-11

8 of 25 Document ID 258: AUTOSAR_SRS_CoreTest

4 Functional Overview

This module describes the requirements for an API specifying test cases in
accordance with the automotive norm. It covers periodic as well as start-up tests.
This is meant to be integrated in the overall safety concept and will not give the
required diagnostic coverage on its own.

The test may be run in background or foreground mode.

 In background mode, the test is called periodically by a scheduler, and is
interruptible on completion of the current atomic sequence which is a part of
the core test. One complete test may consist of many atomic sequences which
test functionality of the core entities. This complete test is split up over many
atomic test parts to take care of real time operating system requirements in
case of scheduling of tasks.

 In foreground mode, the tests can be used to test the whole core functionality
or selected blocks, e.g. prior to running a critical task.

It shall be allowed to cancel the background mode and start a foreground mode. It
shall not be possible to have both modes being executed at the same time. If a
background task is running and a foreground task is requested, the background task
should be cancelled (e.g. at the end of an atomic sequence) before calling the
foreground task.

The complete test consists of 2 steps:

1. Run dedicated instruction sequences to stimulate gates and flops and
compute a checksum/signature as the result representation.

2. Provides compared checksum/signature - or - Compare computed checksum
with reference value (“Golden reference value”) and decides whether the test
is passed or failed – or – stores computed checksum and provide it on
demand to an external caller.

The test computes both steps and returns pass/fail status, or just computes the
checksum and provide a notification of completion to the calling entity. This is to allow
a higher degree of flexibility in the implementation of test and supervision concepts.

The caller can also be a software component running on a different CPU or an
external device.

This module covers Requirements on AUTOSAR features [RS_Features] as
developed from WP Architecture “Functional Safety”. Chapter “References” gives a
list of identified features by “MCAL”.

4.1.1 Definition of Core

The Core is defined as the central processing unit (CPU), all dedicated memory and
bus interfaces (TCM, L1, L2 cache, system bus, etc.) and all dedicated supporting
functionality (e.g. interrupt controller, debug, etc.). Throughout this document the
expression 'Core' is used for referencing to this definition. A very generic block

Requirements on Core Test
AUTOSAR CP R22-11

9 of 25 Document ID 258: AUTOSAR_SRS_CoreTest

diagram is shown below. Cores which implement more than one generic CPU should
have more than one core test entity.

CPU

MPU
Instruction

Cache
Data

Cache

System

Bus

Interface(s)

Tighty Coupled

Memory

Interface(s)

Interrupt

controller
Debug interface

CORE

The requirements are derived from the automotive standards. Busses have to be
tested including arbitration, MMU/MPU, caches, tightly coupled memories, general
purpose and dedicated registers, numerical execution units, including address
generation and interrupts plus exception handling.
The corresponding tests are listed in the automotive standard. APIs are foreseen for
techniques defined as test by the automotive standard, with exception of boundary
scan test which will not be in the scope of this document
Not covered are permanent monitoring techniques nor redundant hardware
techniques (e.g. lock-step CPU). If present and requiring software support, they may
have to be addressed by MCAL complex drivers.

Note: The Core test initiates diagnostic events only. It shall be used to detect static
hardware errors at runtime. Transient faults and intermittent faults are not covered
and cannot be detected by dedicated test-software support.

Note: A Core test reports errors in all dedicated memory and bus interfaces (TCM,
L1, L2 cache, system bus, etc.) and all dedicated supporting functionality (e.g.
interrupt controller, debug, etc.) to the diagnostic event manager (DEM). For the CPU
(e.g. ALU, Prefetch queue) inside a core – only a successful execution of a test or an
atomic part of the test (“Good case”) can be reported. The errors cases for the CPU
inside the core cannot be reliably reported to DEM. Events at DEM have to be
defined accordingly. Results/errors are reported though the DEM API (BSW,
Dem_SetEventStatus()).
Note: The Core test implementation shall be focused to test the core itself with no
interference to the application implementation itself. Anyhow some performance and

Requirements on Core Test
AUTOSAR CP R22-11

10 of 25 Document ID 258: AUTOSAR_SRS_CoreTest

timing effort shall be considered due to core test computation needs. Anyhow, this
needs to be handled by upper entities/layers as seen relative to the Core test driver
executing on lower layers or any caller of MCAL core test driver and therefore is out
of scope of a driver implementation.

4.1.2 Multicore Support

It shall be possible to execute a Core test on every equal instance of a core inside a
silicon device. The Core test itself and the API do not have to be aware of the system
architecture itself due to its fact of being a driver located on lower AUTOSAR layers.

Additionally a Core test have not to be aware of the number of cores which co-exist in
the overall system architecture and is only focused on one single core entity (i.e. if
there are multi-cores, then the user-application has to schedule multiple entities of
the same test for each core).
Therefore there has to be a clear distinction between the expressions ‘Multi-
microcontroller’ and ‘multi-core’. Multi-Microcontroller system designs are out of
scope of a core test and its driver API due to the nature of being a driver and a driver
API.

Microcontroller/ECU

CPU

MPU
Instruction

Cache
Data

Cache

System
Bus

Interface (s)

Tighty Coupled

Memory

Interface(s)

Interrupt

controller
Debug interface

CORE

CPU

MPU
Instruction

Cache
Data

Cache

System
Bus

Interface (s)

Tighty Coupled

Memory

Interface(s)

Interrupt

controller
Debug interface

CORE

Peripheral & I/O Interfaces etc.

As a summary, the core test is a local MCAL driver and as such it has no horizontal
view to the system architecture design as well as to other microcontrollers or upper
layer services.

Requirements on Core Test
AUTOSAR CP R22-11

11 of 25 Document ID 258: AUTOSAR_SRS_CoreTest

4.1.3 Architectural Prerequisites

4.1.3.1 Resource Allocation

There is no resource managing entity available in AUTOSAR upper layers (e.g. ISO
7-layer model - session management). It is necessary to temporarily free a local core
resource (e.g. IRQ controller) from application usage to avoid unwanted behavior and
interference between test and application during runtime. There is no managing
entity available within AUTOSAR architecture to actively handle this requirement prior
starting to execute a core test (Feb/2008, R3.0). An MCAL driver cannot handle
resource management due to its state of being a driver located in lower AUTOSAR
layers. The ECU state manager might be extended to handle this as an additional
state or mode.

4.1.3.2 Test Concept

Today AUTOSAR does not support runtime testing; therefore no test managing entity
is available in AUTOSAR upper layers. Due to the intentionally missing ability of an
MCAL driver to directly access test results being executed on other cores (e.g. Multi-
microcontroller systems), a test managing entity is needed in upper AUTOSAR layers
architecture to handle test result processing (local, external) and related reactions of
the overall system architecture.

4.1.3.3 Limitations

Due to 4.1.3.1 and 4.1.3.2, a Core test implementation might be limited to be
executed during power-up/start-up time where core resources are not shared among
different active application tasks or entities (e.g. IRQ-controller, DMA) -OR- might be
limited to test resources with are not shared during runtime (e.g. CPU itself).

Requirements on Core Test
AUTOSAR CP R22-11

12 of 25 Document ID 258: AUTOSAR_SRS_CoreTest

5 Requirements Tracing

Requirement Description Satisfied by

RS_BRF_00129 AUTOSAR shall support
data corruption detection and
protection

SRS_CoreTst_14115, SRS_CoreTst_14116

RS_BRF_01048 AUTOSAR module design
shall support modules to
cooperate in a multitasking
environment

SRS_CoreTst_14111, SRS_CoreTst_14130

RS_BRF_01056 AUTOSAR BSW modules
shall provide standardized
interfaces

SRS_CoreTst_14112, SRS_CoreTst_14113,
SRS_CoreTst_14131

RS_BRF_01064 AUTOSAR BSW shall
provide callback functions in
order to access upper layer
modules

SRS_CoreTst_14119

RS_BRF_01096 AUTOSAR shall support
start-up and shutdown of
ECUs

SRS_CoreTst_14134

RS_BRF_01136 AUTOSAR shall support
variants of configured BSW
data resolved after system
start-up

SRS_CoreTst_14101, SRS_CoreTst_14102

RS_BRF_01232 AUTOSAR OS shall support
isolation and protection of
application software and
BSW

SRS_CoreTst_14123

RS_BRF_01296 AUTOSAR RTE shall
support and handle single
and multiple instantiation of
Software Components

SRS_CoreTst_14133

RS_BRF_01320 AUTOSAR RTE shall
schedule SWC and BSW
modules

SRS_CoreTst_14114

RS_BRF_01400 AUTOSAR RTE shall offer
configurable test hooks

SRS_CoreTst_14114

RS_BRF_01472 AUTOSAR shall support
modes

SRS_CoreTst_14123, SRS_CoreTst_14126,
SRS_CoreTst_14133, SRS_CoreTst_14134

RS_BRF_02024 AUTOSAR shall provide
mechanisms to protect the
system from unauthorized
use

SRS_CoreTst_14117

RS_BRF_02160 AUTOSAR diagnostic shall
allow external testers to
control active functionality of
the ECU

SRS_CoreTst_14130

RS_BRF_02168 AUTOSAR diagnostics shall
provide a central
classification and handling of
abnormal operative
conditions

SRS_CoreTst_14117

RS_BRF_02224 AUTOSAR shall support run- SRS_CoreTst_14104, SRS_CoreTst_14105,

Requirements on Core Test
AUTOSAR CP R22-11

13 of 25 Document ID 258: AUTOSAR_SRS_CoreTest

time hardware tests SRS_CoreTst_14106, SRS_CoreTst_14107,
SRS_CoreTst_14108, SRS_CoreTst_14109,
SRS_CoreTst_14110, SRS_CoreTst_14131,
SRS_CoreTst_14134

Requirements on Core Test
AUTOSAR CP R22-11

14 of 25 Document ID 258: AUTOSAR_SRS_CoreTest

6 Requirements Specification

6.1 Functional Requirements

6.1.1 Configuration

6.1.1.1 [SRS_CoreTst_14101] The Core Test Shall Be Configurable

⌈
Type: valid

Description: The Core functionality to be tested and the atomic tests to be run shall be
configurable.

Rationale: The new Cores are highly configurable at synthesis. Caches, MPU, Tightly
Coupled Memories/Internal Memories and other functionality is
implementation specific and optional/configurable. The tests need to reflect
the configuration of the Core on which they will be finally executed

Use Case: Reuse same test software with different versions of core and select
configuration.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01136)

6.1.1.2 [SRS_CoreTst_14102] Link Time Configuration Shall Be
Supported

⌈
Type: valid

Description: The Core functionality to be tested and the atomic tests to be run shall be
configured at link time by object libraries

Rationale: The core test shall be available as object library. No runtime (post build)
configuration is required as core functionality is fixed and not dependent on
software variants and use cases.

Use Case: Reuse same test software with different versions of core and select
configuration.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01136)

6.1.2 Normal Operation

6.1.2.1 [SRS_CoreTst_14104] Core Register Test Shall Be Available

⌈
Type: valid

Description: Shall support test according the automotive standard.

Rationale: The automotive standard requires testing of all critical Core components.

Use Case: Part of Core test strategy to detect failures of the Core.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_02224)

Requirements on Core Test
AUTOSAR CP R22-11

15 of 25 Document ID 258: AUTOSAR_SRS_CoreTest

6.1.2.2 [SRS_CoreTst_14105] Core Interrupt and Exception Detection
Tests Shall Be Available

⌈
Type: valid

Description: Shall support test according to the automotive standard.

Rationale: The automotive standard requires testing of all critical Core components

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_02224)

6.1.2.3 [SRS_CoreTst_14106] Core ALU Test Shall Be Available

⌈
Type: valid

Description: Shall support test of ‘coding and execution including flag registers’ as
suggested by the automotive standard.

Rationale: The automotive standard requires testing of all critical Core components.

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_02224)

6.1.2.4 [SRS_CoreTst_14107] Core Address Generator Test Shall Be
Available

⌈
Type: valid

Description: Shall support test of ‘address generation’ as suggested by the automotive
standard

Rationale: The automotive standard requires testing of all critical Core components

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_02224)

6.1.2.5 [SRS_CoreTst_14108] Core Memory Interfaces Test Shall Be
Available

⌈
Type: valid

Description: Shall support Bus test as suggested by the automotive standard

Rationale: The automotive standard requires testing of all critical Core components

Use Case: --

Dependencies: --

Supporting Material: --

Requirements on Core Test
AUTOSAR CP R22-11

16 of 25 Document ID 258: AUTOSAR_SRS_CoreTest

⌋(RS_BRF_02224)

6.1.2.6 [SRS_CoreTst_14109] Memory Management/Protection Unit
(MMU/MPU) Test Shall Be Available

⌈
Type: valid

Description: Shall support MMU/MPU test as suggested by the automotive standard.

Rationale: the automotive standard requires testing of all critical Core components.

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_02224)

6.1.2.7 [SRS_CoreTst_14110] Cache Controller Test Shall Be Available

⌈
Type: valid

Description: Shall support Bus test as suggested by the automotive standard.

Rationale: The automotive standard requires testing of all critical Core components.
Cache controller, although not explicitly covered by the automotive standard
is a standard component of the Core.

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_02224)

6.1.2.8 [SRS_CoreTst_14111] The Core Test Shall Be Divided into Atomic
Sequences

⌈
Type: valid

Description: The Core test module shall be divided into a sequence of atomic tests. The
execution time as well as the code length of an atomic test shall be as short
as practically feasible. The implementer shall provide the runtime in number
of cycles.

Rationale: In order not to corrupt the state a Core test, it cannot be interrupted and
resumed and will have to run to completion of at least a single atomic
sequence. To avoid increasing the interrupt latency beyond acceptable
levels, the different building blocks of a Core shall be tested separately in
individual atomic tests.

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01048)

6.1.2.9 [SRS_CoreTst_14112] There Shall Be a Single API for the Core
Test Service

⌈

Requirements on Core Test
AUTOSAR CP R22-11

17 of 25 Document ID 258: AUTOSAR_SRS_CoreTest

Type: Valid

Description: There shall be a single API calling the atomic Core tests in sequence. The
implementer shall state the sequence and dependencies if required.

Rationale: Ease of implementation: single entry point for multiple tests (expected to be
to most common use)

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01056)

6.1.2.10 [SRS_CoreTst_14113] The API Shall Have a Parameter to Select
Which Component Shall Be Tested

⌈
Type: Valid

Description: There shall be a parameter to select which component of the core to test.
The following components shall be testable separately e.g.:

 CPU a as whole

 External and annex modules to the CPU like e.g. cache, MPU,
interrupt controller individually

Any kind of combination of tests can be selected, but a least one test have to
be selected as a minimum.

Rationale: --

Use Case: OS can test components individually prior to re-initialisation or mode change
or all available Core component tests in a one go sequence during start up
phase/time.

Dependencies: SRS_CoreTst_14112

Supporting Material: --

⌋(RS_BRF_01056)

6.1.2.11 [SRS_CoreTst_14114] A Main Function for the Core Test Shall Be
Available

⌈
Type: valid

Description: There shall be a main-processing function for the Core Test (which has a
different meaning compared to the main() function call in a C-language
representation). Though the main function the test sequence can be
executed without any handling overhead of the Core test execution internals
by the application.

Rationale: The Core test may be called by the BSW scheduler in background mode.

Use Case: Cyclic background core test.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01400,RS_BRF_01320)

6.1.2.12 [SRS_CoreTst_14115] Test Metrics Shall Be Available to Caller

⌈
Type: Valid

Requirements on Core Test
AUTOSAR CP R22-11

18 of 25 Document ID 258: AUTOSAR_SRS_CoreTest

Description: The checksum result of each partial test shall be stored in an internal
variable. This variable hold the last result for the call to read out, no history
buffer is foreseen.

Rationale: The caller will compare with 'a golden value' and decide whether the test is
passed or failed, The caller could be a SW component running on the tested,
a separate on chip CPU or an external device.

Use Case: Having the detailed results for each part of the core will allow a higher
flexibility in the implementation of recovery mechanisms. E.g. if the MPU is
detected to be faulted, the OS could run in an unprotected mode, if the
cache is faulty, the system could run with reduced performance and
functionality, etc.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_00129)

6.1.2.13 [SRS_CoreTst_14116] A Service shall be provided which returns
a checksum/signature as test result

⌈
Type: valid

Description: The test first computes a checksum/signature as test result representation.
The comparison with the golden reference value to decide whether it is
passed or failed is left over to an external/higher entity.

Rationale: This service is needed because the check of a pass or fail criteria shall be
done from a different entity.

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_00129)

6.1.2.14 [SRS_CoreTst_14131] A Service shall be provided which returns
a Pass/Fail Status Representation as a test result

⌈
Type: Valid

Description: The test first computes an algorithm to test the core module and then
compares the test result with the golden reference value to decide whether it
is passed or failed. The representation value for ‘pass’ or ‘fail’ is returned to
the calling entity.

Rationale: Provide a different reporting method for smaller ECU systems.

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_02224,RS_BRF_01056)

6.1.2.15 [SRS_CoreTst_14117] Faults Shall Be Treated as Production
Errors

⌈
Type: Valid

Requirements on Core Test
AUTOSAR CP R22-11

19 of 25 Document ID 258: AUTOSAR_SRS_CoreTest

Description: The Core test module shall report detected faults inside the core to the DEM
except faults detected inside the CPU itself (e.g. ALU, MAC, Registers etc.)
which cannot be reliably reported.

Rationale: React and reconfigure system according to resource availability.

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_02024,RS_BRF_02168)

6.1.2.16 [SRS_CoreTst_14118] The results of the Core test module shall
be provided to the user

⌈
Type: Valid

Description: The results of the Core test module shall be provided to the user. User shall
have the possibility to get the status of the Core test at any time. This shall
be implemented as a get-status-interface and shall be configurable during
compile time. This function shall be optional.

Rationale: Consistency with RAM test

Use Case: --

Dependencies: --

Supporting Material: --

⌋()

6.1.2.17 [SRS_CoreTst_14119] A Notification of Completion Shall Be
Provided

⌈
Type: valid

Description: The system or caller shall be notified the test has run to completion.

Rationale: See description of core test usage in section 5.1

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01064)

6.1.2.18 [SRS_CoreTst_14126] It Shall Be Possible to Cancel a Running
Test

⌈
Type: valid

Description: It shall be possible to stop the test after completion of current atomic
sequence.

Rationale: Requirement for stopping the service from running due to change running
mode. If you change the ECU mode it should be possible to stop the running
coretest by software.

Use Case: It shall be allowed to cancel the background mode and start a foreground
mode. It shall not be possible to have both modes being executed at the
same time. If a background task is running and a foreground task is
requested, the background task should be cancelled (e.g. at the end of an

Requirements on Core Test
AUTOSAR CP R22-11

20 of 25 Document ID 258: AUTOSAR_SRS_CoreTest

atomic sequence) before calling the foreground task.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01472)

6.1.2.19 [SRS_CoreTst_14130] Destructive Test Shall Restore Original
State of tested Entity

⌈
Type: valid

Description: A core test shall restore the state of the tested entity as it was before the test
execution was started.

Rationale: In case of destructive tests, values will be modified during core test and this
will cause interference with the application.

Use Case: E.g. test of core register set or interrupt controller configuration

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01048,RS_BRF_02160)

6.1.2.20 [SRS_CoreTst_14133] Each Core Test interval shall have an
identifier

⌈
Type: Valid

Description: Each Core Test interval shall have an identifier which shall be incremented
by each start of a new test interval in background mode. This value of the
Core Test interval shall be provided to upper layers. The end value of the
identifier shall be configurable.

Rationale: Assign test result or test signature to a test interval on order to monitor test
flow from upper software layers.

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01472,RS_BRF_01296)

6.1.2.21 [SRS_CoreTst_14134] A Foreground Core Test Shall be Available
(open)

⌈
Type: Valid

Description: A service shall be available to test a core entity in foreground mode.

Rationale: Test core entity during start-up phase.
Test core entity before critical operations or core-mode changes

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_02224, RS_BRF_01472,RS_BRF_01096)

Requirements on Core Test
AUTOSAR CP R22-11

21 of 25 Document ID 258: AUTOSAR_SRS_CoreTest

6.1.2.22 [SRS_CoreTst_14128] Core Test shall Not Interfere With the
Application (rejected)

⌈
Type: new

Description: A core test shall be independently implemented from the application running
on the core. The Core test implementation shall be focused to test the Core
itself with no modification to the application task. Timing influences to the
application shall be considered due to core test computation effort and
scheduling.

Rationale: The core test shall be transparent to the application. A core test has to be
provided by the core designer due to very specific test algorithms and
complex core structures.

Use Case: Testing of the core functionality during run time operation in foreground or
background mode.

Dependencies: SRS_CoreTst_14121, SRS_CoreTst_14123

Supporting Material: --

⌋()

6.1.2.23 [SRS_CoreTst_14129] Multimicrocontroller Support (rejected)

⌈
Type: Valid

Description: Both ECUs supervise each other either themselves or by a third external
decision-making unit.
If there is more than one Core implemented on an ECU, the calling
application or the calling OS shall be able to assign core test to a certain
core within the ECU. Core test explicitly does no core assignment.

Rationale: Applications which require enhanced safety and/or high data throughput.

Use Case: Testing of ECUs during run time operation.

Dependencies: --

Supporting Material: --

⌋()

6.1.2.24 [SRS_CoreTst_14127] The Test Shall Have the Ability to Request
a Checksum From An External Entity (rejected)

⌈
Type: Valid

Description: The checksum result of an atomic test executed on an external entity shall
be requested. This received checksum shall be compared to the internally
processed checksum. There is no history buffer foreseen for received
checksums.

Rationale: The core will compare a received checksum with its own final core test result
and therefore will be able to decide whether its own test is passed or failed.
The external checksum providing entity could be a SW component running
on a separate CPU, a monitoring MCU or just an external storage device.

Use Case: WPII-1.3 “Multi-Microcontroller Support” document proposes a flexible
architecture approach where all scales of external monitoring from a simple
watchdog until dual core MCU architectures are covered.

Dependencies: --

Supporting Material: WPII-1.3, “Multi-Microcontroller Support” document, V1.0, sept/26/2007

⌋()

Requirements on Core Test
AUTOSAR CP R22-11

22 of 25 Document ID 258: AUTOSAR_SRS_CoreTest

6.1.3 Initialisation

6.1.3.1 [SRS_CoreTst_14103] An init Function for the Core Test Shall Be
Available (rejected)

⌈
Type: Valid

Description: Shall support test according to the automotive standard.
- Select a dedicated test coverage level
- Activate dedicated diagnostic hardware (if available)
- Activate Core internal test and diagnostic modes (if available)

Rationale: For high coverage levels a hardware support is likely to be needed to
achieve related test coverage requirements. An API is needed to initialise
the dedicated diagnostic hardware (if available)

Use Case:

Dependencies: --

Supporting Material: --

⌋()

6.1.4 Shutdown Operation

6.1.4.1 [SRS_CoreTst_14120] A DeInit Function for the Core Test Shall
Be Available (rejected)

⌈
Type: Valid

Description: -Stop dedicated diagnostic hardware (if available)
- Disable Core internal test and diagnostic modes (if available)

Rationale: For the automotive standard additional hardware support is likely to be
needed. An API is needed to reset the dedicated diagnostic hardware.

Use Case: --

Dependencies: --

Supporting Material: --

⌋()

6.2 Non-Functional Requirements

6.2.1 [SRS_CoreTst_14123] Shared Resources to Be Tested Shall Be Made
Exclusively Available to Test

⌈
Type: Valid

Description: A mechanism for requesting and releasing shared resources in multi master
systems shall be available. The caller has to handle the state of the shared
resource. Saving/restoring the state prior to the call to API in NOT handled
by the test itself, but rather a task of the caller.

Rationale: In Cores some resources such as tightly coupled memory interfaces are
shared with external masters, e.g. DMA. These shared resources need to be
made exclusively available for testing purposes. The test can then freely
manipulate them, e.g. change to test mode if supported, etc. without
conflicting with the rest of the application.

Use Case: --

Dependencies: --

Supporting Material: --

Requirements on Core Test
AUTOSAR CP R22-11

23 of 25 Document ID 258: AUTOSAR_SRS_CoreTest

⌋(RS_BRF_01472,RS_BRF_01232)

[SRS_CoreTst_14121] Timing Requirements (rejected)
⌈
Type: Valid

Description: Test duration of a Core test software

Rationale: Run time execution of a Core test is identified a vital requirement and
therefore will be a debug event during development phase.
Maximum execution time shall not be exceeded to avoid conflicts with OS
and/or application software as well as Core performance requirements.

Use Case: --

Dependencies: --

Supporting Material: --

⌋()

[SRS_CoreTst_14122] An Interface to the DET shall be Available (rejected)
⌈
Type: valid

Description: The Core test shall provide an interface to the DET for monitoring critical
parameters during development.

Rationale: Critical parameter such as timing budget overrun, or test in progress, should
be monitored during development.

Use Case: --

Dependencies: --

Supporting Material: --

⌋()

[SRS_CoreTst_14125] Diagnostic Coverage (rejected)
⌈
Type: valid

Description: Diagnostic coverage of 60%, 90% and 99% shall be proven; the diagnostic
coverage refers to the Core. In addition, transient and intermittent errors will
have to be detected.
It is questionable whether coverage levels higher than 60% can be achieved
in SW only, without support of dedicated additional Core test hardware; a
software test would not catch the faults as required by the fault model for
90% and 99%.

Rationale: Mandated by the automotive standard

Use Case: --

Dependencies: --

Supporting Material: --

⌋()

[SRS_CoreTst_14124] The implementation of the Core test shall have to comply with
the IEC61508 (rejected)
⌈
Type: valid

Description: The implementation of the Core test will have to comply with the IEC61508
Software Requirements to achieve certification. This affects both the
development process and the programming techniques.

Rationale: Mandated by IEC61508

Use Case: --

Dependencies: --

Supporting Material: BRF 00001 - 00100 (ID)

Requirements on Core Test
AUTOSAR CP R22-11

24 of 25 Document ID 258: AUTOSAR_SRS_CoreTest

⌋()

Note: Questionable whether sufficient test coverage levels can be achieved in SW
only, without support of dedicated additional Core test hardware; a software test
would not catch the all faults as required by common fault models (e.g. transient
faults).

Requirements on Core Test
AUTOSAR CP R22-11

25 of 25 Document ID 258: AUTOSAR_SRS_CoreTest

7 References

7.1 Deliverables of AUTOSAR

[DOC_LAYERED_ARCH] Layered Software Architecture,
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[AUTOSAR_GLOSSARY] Glossary,
AUTOSAR_TR_Glossary.pdf

[SRS_BSW_GENERAL] General Requirements on Basic Software Modules,
AUTOSAR_SRS_BSWGeneral.pdf

[SRS_BSW_SPAL] General Requirements on SPAL,
AUTOSAR_SRS_SPALGeneral.pdf

[SWS_BSW_DEM] Specification of Diagnostic Event Manager,
AUTOSAR_SWS_DiagnosticEventManager.pdf

[SWS_BSW_ECU] Specification of ECU state manager,
AUTOSAR_SWS_ECUStateManager.pdf

[RS_Features] Requirements on AUTOSAR Features,
AUTOSAR_RS_Features.pdf

[TPS_STDT_0078] Standardization Template
AUTOSAR_TPS_StandardizationTemplate.pdf

7.2 Related standards and norms

ISO 26262:2018 (all parts) - Road vehicles - Functional Safety
http://www.iso.org

http://www.iso.org/

	1 Scope of Document
	2 Conventions to be Used
	3 Acronyms and Abbreviations
	4 Functional Overview
	4.1.1 Definition of Core
	4.1.2 Multicore Support
	4.1.3 Architectural Prerequisites
	4.1.3.1 Resource Allocation
	4.1.3.2 Test Concept
	4.1.3.3 Limitations

	5 Requirements Tracing
	6 Requirements Specification
	6.1 Functional Requirements
	6.1.1 Configuration
	6.1.1.1 [SRS_CoreTst_14101] The Core Test Shall Be Configurable
	6.1.1.2 [SRS_CoreTst_14102] Link Time Configuration Shall Be Supported

	6.1.2 Normal Operation
	6.1.2.1 [SRS_CoreTst_14104] Core Register Test Shall Be Available
	6.1.2.2 [SRS_CoreTst_14105] Core Interrupt and Exception Detection Tests Shall Be Available
	6.1.2.3 [SRS_CoreTst_14106] Core ALU Test Shall Be Available
	6.1.2.4 [SRS_CoreTst_14107] Core Address Generator Test Shall Be Available
	6.1.2.5 [SRS_CoreTst_14108] Core Memory Interfaces Test Shall Be Available
	6.1.2.6 [SRS_CoreTst_14109] Memory Management/Protection Unit (MMU/MPU) Test Shall Be Available
	6.1.2.7 [SRS_CoreTst_14110] Cache Controller Test Shall Be Available
	6.1.2.8 [SRS_CoreTst_14111] The Core Test Shall Be Divided into Atomic Sequences
	6.1.2.9 [SRS_CoreTst_14112] There Shall Be a Single API for the Core Test Service
	6.1.2.10 [SRS_CoreTst_14113] The API Shall Have a Parameter to Select Which Component Shall Be Tested
	6.1.2.11 [SRS_CoreTst_14114] A Main Function for the Core Test Shall Be Available
	6.1.2.12 [SRS_CoreTst_14115] Test Metrics Shall Be Available to Caller
	6.1.2.13 [SRS_CoreTst_14116] A Service shall be provided which returns a checksum/signature as test result
	6.1.2.14 [SRS_CoreTst_14131] A Service shall be provided which returns a Pass/Fail Status Representation as a test result
	6.1.2.15 [SRS_CoreTst_14117] Faults Shall Be Treated as Production Errors
	6.1.2.16 [SRS_CoreTst_14118] The results of the Core test module shall be provided to the user
	6.1.2.17 [SRS_CoreTst_14119] A Notification of Completion Shall Be Provided
	6.1.2.18 [SRS_CoreTst_14126] It Shall Be Possible to Cancel a Running Test
	6.1.2.19 [SRS_CoreTst_14130] Destructive Test Shall Restore Original State of tested Entity
	6.1.2.20 [SRS_CoreTst_14133] Each Core Test interval shall have an identifier
	6.1.2.21 [SRS_CoreTst_14134] A Foreground Core Test Shall be Available (open)
	6.1.2.22 [SRS_CoreTst_14128] Core Test shall Not Interfere With the Application (rejected)
	6.1.2.23 [SRS_CoreTst_14129] Multimicrocontroller Support (rejected)
	6.1.2.24 [SRS_CoreTst_14127] The Test Shall Have the Ability to Request a Checksum From An External Entity (rejected)

	6.1.3 Initialisation
	6.1.3.1 [SRS_CoreTst_14103] An init Function for the Core Test Shall Be Available (rejected)

	6.1.4 Shutdown Operation
	6.1.4.1 [SRS_CoreTst_14120] A DeInit Function for the Core Test Shall Be Available (rejected)

	6.2 Non-Functional Requirements
	6.2.1 [SRS_CoreTst_14123] Shared Resources to Be Tested Shall Be Made Exclusively Available to Test

	7 References
	7.1 Deliverables of AUTOSAR
	7.2 Related standards and norms

