
General Specification of Basic Software Modules
AUTOSAR CP R21-11

Document Title General Specification of Basic
Software Modules

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 578

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R21-11

Document Change History
Date Release Changed by Description

2021-11-25 R21-11
AUTOSAR
Release
Management

• Introduce C99 standard in AUTOSAR
• Minor corrections / clarifications /

editorial changes; For details please
refer to the ChangeDocumentation
• Changed Document Status from

Final to published

2020-11-30 R20-11
AUTOSAR
Release
Management

• Incorporation of Intrusion Detection
System Manager concept
• Minor corrections / clarifications /

editorial changes; For details please
refer to the ChangeDocumentation
• Changed Document Status from

Final to published

2019-11-28 R19-11
AUTOSAR
Release
Management

• Include guard for header files
• Minor corrections / clarifications /

editorial changes; For details please
refer to the ChangeDocumentation
• Changed Document Status from

Final to published

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation

2017-12-08 4.3.1
AUTOSAR
Release
Management

• Minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation

1 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

2016-11-30 4.3.0
AUTOSAR
Release
Management

• Meta Data handling
• Changed to MISRA C 2012 Standard
• Debugging support was removed
• Minor corrections / clarifications /

editorial changes; For details please
refer to the ChangeDocumentation

2015-07-31 4.2.2
AUTOSAR
Release
Management

• Debugging support marked as
obsolete
• Minor corrections / clarifications /

editorial changes; For details please
refer to the ChangeDocumentation

2014-10-31 4.2.1
AUTOSAR
Release
Management

• Update in error handling
classification
• Update in initialization function

requirements
• Updated due to SupportForPB-

LAndPBSECUConfiguration
concept
• Minor corrections / clarifications /

editorial changes; For details please
refer to the BWCStatement

2014-03-31 4.1.3
AUTOSAR
Release
Management

• Update of include file structure and
required header files requirement
specification
• Update of inter-module version

check: removed
REVISION/PATCH_VERSION from
the required check
• Formating and spelling corrections

2013-10-31 4.1.2
AUTOSAR
Release
Management

• Moved declarations of MainFunctions
and BswModuleClientServerEntrys
from the module header files to
RTE/BswScheduler
• Modified the Published Information

definitions
• Added the NULL pointer checking

mechanism description
• Removed the "Fixed cyclic", "Variable

cyclic" and "On pre condition" from
the Scheduled Functions description
• Editorial changes

2 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

2013-03-15 4.1.1
AUTOSAR
Release
Management

• Initial release

3 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

4 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

Table of Contents

1 Introduction and functional overview 8

1.1 Traceability . 8
1.2 Document conventions . 8

2 Acronyms and abbreviations 10

3 Related documentation 11

3.1 Input documents & related standards and norms 11

4 Constraints and assumptions 13

4.1 Limitations . 13
4.2 Applicability to car domains . 13

5 Dependencies to other modules 14

5.1 File structure . 14
5.1.1 Module implementation prefix 14
5.1.2 Module implementation files 15
5.1.3 Imported and exported information 16
5.1.4 BSW Module Description . 17
5.1.5 Module documentation . 17
5.1.6 Code file structure . 19

5.1.6.1 Implementation source 19
5.1.6.2 Link time configuration source 21
5.1.6.3 Post-build time configuration source 21
5.1.6.4 Interrupt frame implementation source 22

5.1.7 Header file structure . 22
5.1.7.1 Implementation header 22
5.1.7.2 Application Header File 25

5.1.8 Version check . 25

6 Requirements Tracing 27

7 Functional specification 34

7.1 General implementation specification 34
7.1.1 Conformance to MISRA C and C standard 34
7.1.2 Conformance to AUTOSAR Basic Software Requirements . 34
7.1.3 Conformance to AUTOSAR Methodology 35
7.1.4 Platform independency and compiler abstraction 35
7.1.5 Configurability . 37
7.1.6 Various naming conventions 38
7.1.7 Configuration parameters . 39
7.1.8 Shared code . 39
7.1.9 Global data . 40
7.1.10 Usage of macros and inline functions 40
7.1.11 Calling Scheduled functions (Main processing functions) . . 41

5 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

7.1.12 Exclusive areas . 41
7.1.13 Callouts . 41
7.1.14 AUTOSAR Interfaces . 42
7.1.15 Interrupt service routines . 43
7.1.16 Restricted OS functionality access 44
7.1.17 Access to hardware registers 46
7.1.18 Data types . 47

7.1.18.1 AUTOSAR Standard Types 47
7.1.18.2 Platform Specific Types 47

7.1.19 Distributed execution on multi-partitioned systems 49
7.2 Error Handling . 50

7.2.1 Classification . 50
7.2.2 Development errors . 51

7.2.2.1 Synopsis . 51
7.2.2.2 Documentation . 51
7.2.2.3 Configuration . 51
7.2.2.4 Reporting . 53

7.2.3 Runtime errors . 53
7.2.3.1 Synopsis . 53
7.2.3.2 Documentation . 54
7.2.3.3 Configuration . 54
7.2.3.4 Reporting . 54

7.2.4 Transient faults . 54
7.2.4.1 Synopsis . 54
7.2.4.2 Documentation . 55
7.2.4.3 Configuration . 55
7.2.4.4 Reporting . 55

7.2.5 Extended production errors and production errors 56
7.2.5.1 Synopsis Production errors 56
7.2.5.2 Synopsis Extended production errors 56
7.2.5.3 Documentation . 57
7.2.5.4 Configuration . 57
7.2.5.5 Reporting . 57
7.2.5.6 Example use case: Error is detected and notified . . 59

7.2.6 Security events . 59
7.2.6.1 Synopsis . 59
7.2.6.2 Documentation . 60
7.2.6.3 Configuration . 60
7.2.6.4 Reporting . 60

7.2.7 Specific topics . 61
7.2.7.1 Implementation specific errors 61
7.2.7.2 Handling of Symbolic Name Values 61

7.3 Meta Data Handling . 62

8 API specification 65

8.1 Imported types . 65

6 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

8.2 Type definitions . 65
8.3 Function definitions . 67

8.3.1 General specification on API functions 67
8.3.2 Initialization function . 69
8.3.3 De-Initialization function . 70
8.3.4 Get Version Information . 71

8.4 Callback notifications . 72
8.5 Scheduled functions . 73
8.6 Expected Interfaces . 74

8.6.1 Mandatory Interfaces . 74
8.6.2 Optional Interfaces . 75
8.6.3 Configurable interfaces . 75

8.7 Service Interfaces . 76

9 Sequence diagrams 77

10 Configuration specification 78

10.1 Introduction to configuration specification 78
10.1.1 Configuration and configuration parameters 78
10.1.2 Variants . 78
10.1.3 Containers . 79
10.1.4 Configuration parameter tables 79

10.1.4.1 General section: . 80
10.1.4.2 Configuration parameter section: 80
10.1.4.3 Section of included/referenced containers: 81

10.1.5 Configuration class labels . 81
10.2 General configuration specification . 82

10.2.1 Configuration files . 82
10.2.2 Implementation names for configuration parameters 82
10.2.3 Pre-compile time configuration 82
10.2.4 Link time configuration . 83
10.2.5 Post-build time configuration 83
10.2.6 Configuration variants . 84

10.3 Published Information . 86

7 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

1 Introduction and functional overview

This document is the general basic software specification on AUTOSAR Basic Soft-
ware modules. It complements the specification of BSW modules with as a common
specification, which is valid for various BSW modules.

1.1 Traceability

The Specification items from this document describe the work products from the BSW
Module implementation or their parts with regard to the Basic Software Requirements,
which are described in AUTOSAR General Requirements on Basic Software Modules
[1].

For every BSW Module, the traceability between Specification items and Basic Soft-
ware Requirements is in scope of this document and the according BSW Module Soft-
ware Specification. See also chapter 6 - Requirements traceability .

The BSW Module implementation must guarantee traceability to the corresponding
Specification items of this document and of the corresponding BSW Module specifica-
tion.

Some Specification items are not applicable to every BSW Module. In such a case,
its description explicitly mentions the condition for its applicability. If no condition is
mentioned, the Specification item is applicable for all BSW Modules.

Please refer to AUTOSAR Standardization Template [2], chapter "Support for traceabil-
ity" for further information.

1.2 Document conventions

Code examples, symbols and other technical terms in general are typeset in
monospace font, e.g. const.

Terms and expressions defined in AUTOSAR Glossary [3], within this specification (see
chapter 2 - Acronyms and abbreviations) or in related documentation are typeset in
italic font, e.g. Module implementation prefix.

The Basic Software Requirements are described in document SRS BSW General [1].
These are referenced using SRS_BSW_<n> where <n> is its requirement id. For in-
stance: SRS_BSW_00009.

Every Specification item starts with [SWS_BSW_<nr>], where <nr> is its unique iden-
tifier number of the Specification item. This number is followed by the Specification
item title. The scope of the Specification item description is marked with half brackets
and is followed by the list of related requirements from SRS BSW General, between
braces.

8 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

Example:

[SWS_BSW_<nr>] Specification item title

dSpecification item description.c(SRS_BSW_<nr1>, SRS_BSW_<nr2>)

References to Specification items from other AUTOSAR documents use the conven-
tions from the according document, for instance [SWS_CANIF_00001].

9 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

2 Acronyms and abbreviations

Abbreviation / Acronym: Description:

BSW driver For a list of BSW drivers see the List of Basic Software
Modules [4], column "AUTOSAR SW layer".

Camel case This document does not aim to specify rules for the camel
case notation. Definition of CamelCase according to
Wikipedia:

"Camel case (...) is the practice of writing phrases without
spaces or punctuation, indicating the separation of words
with a single capitalized letter, and the first word starting with
either case. (...)."

Example: GetVersionInfo

<Ie> Implementation specific file name extension, see
[SWS_BSW_00103].

<Ma> Module abbreviation, see [SWS_BSW_00101].

<MA> Capitalized module abbreviation. The Capitalized module
abbreviation <MA> is the Module abbreviation <Ma>
completely written in upper case.

MCAL The MCAL, Microcontroller Abstraction Layer, is defined in
AUTOSAR Layered Software Architecture [5]

<Mip> Module implementation prefix, see [SWS_BSW_00102].

<MIP> Capitalized module implementation prefix. The Capitalized
module implementation prefix <MIP> is the Module
implementation prefix <Mip> ([SWS_BSW_00102])
completely written in upper case.

Module implementation prefix Module implementation prefix, see [SWS_BSW_00102].

Module abbreviation Module abbreviation, see [SWS_BSW_00101].

WCET Worst case execution time.

BSWMD Basic Software Module Description

SWCD Software Component Description

10 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

3 Related documentation

3.1 Input documents & related standards and norms

[1] General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral

[2] Standardization Template
AUTOSAR_TPS_StandardizationTemplate

[3] Glossary
AUTOSAR_TR_Glossary

[4] List of Basic Software Modules
AUTOSAR_TR_BSWModuleList

[5] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture

[6] Basic Software Module Description Template
AUTOSAR_TPS_BSWModuleDescriptionTemplate

[7] Methodology for Classic Platform
AUTOSAR_TR_Methodology

[8] Specification of Memory Mapping
AUTOSAR_SWS_MemoryMapping

[9] Specification of RTE Software
AUTOSAR_SWS_RTE

[10] Guidelines for the use of the C language in critical systems, ISBN 978-1-906400-
10-1
MISRA_C_2012.pdf

[11] Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration

[12] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate

[13] Specification of Operating System
AUTOSAR_SWS_OS

[14] Specification of Platform Types
AUTOSAR_SWS_PlatformTypes

[15] Specification of Default Error Tracer
AUTOSAR_SWS_DefaultErrorTracer

[16] Specification of Diagnostic Event Manager
AUTOSAR_SWS_DiagnosticEventManager

11 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

[17] Requirements on Intrusion Detection System
AUTOSAR_RS_IntrusionDetectionSystem

12 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

4 Constraints and assumptions

4.1 Limitations

This specification is common to all AUTOSAR BSW Modules [4] and contains only
general Specification items on BSW Modules. Some of these specification items may
not be relevant to particular BSW Modules, whenever the conditions specified are not
fulfilled.

4.2 Applicability to car domains

This document can be used for all domain applications when AUTOSAR Basic Soft-
ware modules are used.

13 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

5 Dependencies to other modules

This specification is common to all AUTOSAR BSW Modules [4] and contains only gen-
eral Specification items, which complement every single BSW Module specification. It
shall not be used as a standalone specification.

Example: The CAN Interface module is specified by this specification (General Speci-
fication for BSW Modules) and by the document Specification on CAN Interface (SWS
CAN Interface).

5.1 File structure

This specification does not completely define the BSW Module file structure. Nev-
ertheless, names of implementation files not specified here must anyway follow
[SWS_BSW_00103].

5.1.1 Module implementation prefix

The BSW Module implementation prefix is used to form various identifiers used in
work products of the BSW Module implementation, e.g. API names, parameter names,
symbols and file names. This prefix is mainly formed by the Module abbreviation and,
when necessary, additional vendor specific information.

The list of Module abbreviations is available in the List of Basic Software Modules [4]
within the column "Module Abbreviation".

[SWS_BSW_00101] Module abbreviation dThe Module abbreviation <Ma> of a BSW
Module shall be the same as defined in the List of Basic Software Modules [4].c(SRS_-
BSW_00300)

The Capitalized module abbreviation <MA> is the Module abbreviation completely writ-
ten in upper case.

Examples of BSW Module abbreviations: EcuM, CanIf, OS, Com. The corresponding
Capitalized module abbreviations are ECUM, CANIF, OS, COM.

[SWS_BSW_00102] Module implementation prefix dThe Module implementation
prefix <Mip> shall be formed in the following way:

<Ma>[_<vi>_<ai>]

Where <Ma> is the Module abbreviation of the BSW Module ([SWS_BSW_00101]),
<vi> is its vendorId and <ai> is its vendorApiInfix. The sub part in square
brackets [_<vi>_<ai>] is omitted if no vendorApiInfix is defined for the BSW
Module. For Complex Drivers and transformers, the <Mip> is directly derived from the
apiServicePrefix.c(SRS_BSW_00300, SRS_BSW_00347)

14 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

The elements vendorId and vendorApiInfix are defined in BSW Module Descrip-
tion Template [6]. Their usage may be obligatory in some situations, like in case of
multiple instantiation of BSW Driver modules. These constraints are not in scope of
SWS BSW General.

The element apiServicePrefix is defined in BSW Module Description Template
[6].

The Capitalized module implementation prefix <MIP> is the Module implementation
prefix completely written in upper case.

In some situations, the Module implementation prefix is written in the same way as the
Module abbreviation. Nevertheless, their meanings are different: The usage of Module
implementation prefix is requested whenever a differentiation within the same module
type could be necessary, e.g. to differentiate symbols from different module instances.

Examples of Module implementation prefixes:

• FrIf: Prefix for FlexRay Interface module implementation, where no vendorId
and vendorApiInfix are defined.

• Eep_21_LDExt: Prefix for EEPROM driver implementation, where vendorApi-
Infix and vendorId are identified by "LDExt" and "21" respectively.

Examples of Module abbreviations:

• FrIf: FlexRay Interface module abbreviation

• Eep: EEPROM driver module abbreviation

5.1.2 Module implementation files

This specification defines the following file types. Some of these types are mandatory
for all BSW Modules, other depend on the according BSW Module specification:

File type, for all BSW Modules Classification Example: Com

Module documentation mandatory Not defined.

BSW Module description mandatory Not defined. See [6].

Implementation source mandatory Com.c

Implementation header mandatory Com.h

Pre-compile time configuration source conditional Com_Cfg.c

Link time configuration source conditional Com_Lcfg.c

Post-build time configuration source conditional Com_PBcfg.c

Interrupt frame implementation source conditional Gpt_Irq.c

Table 5.1: Module Implementation Files

Note that according to AUTOSAR Methodology [7] it is possible to deliver a BSW Mod-
ule with its object files and only part of the source code. See also [SWS_BSW_00117].

15 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

[SWS_BSW_00103] General file naming convention dThe name of all BSW Module
implementation files shall be formed in the following way:

<Mip>[_<Ie>]*.*

The sup-part in square brackets [<Ie>] is an optional implementation specific file
name extension. The wildcards * are replaced according to the different types of files
specified for the module.c(SRS_BSW_00300)

Example:

Implementation sources for Can Interface module with vendor specific file name exten-
sions added: CanIf_MainFncs.c, CanIf_Api.c.

[SWS_BSW_00170] File names are case sensitive dFile names shall be consid-
ered case sensitive regardless of the file system in which they are used.c(SRS_BSW_-
00464)

[SWS_BSW_00171] File names are non-ambiguous dIt shall not be allowed to name
any two files so that they only differ by the case of their letters.c(SRS_BSW_00465)

5.1.3 Imported and exported information

[SWS_BSW_00104] Restrict imported information dThe BSW Module shall import
only the necessary information (i.e. header files) that is required to fulfill its functional
requirements.c(SRS_BSW_00301)

Note that the availability of other modules in the basic software depends on the used
configuration. This has to be considered before including header files of these mod-
ules.

Example: The BSW module implementation is generated by an AUTOSAR toolchain.
The module generator has to check before including header files of other modules if
the respective module is available in the system according to the used configuration.

[SWS_BSW_00105] Restrict exported information dThe BSW Module shall export
only that kind of information in their corresponding header files that is explicitly needed
by other modules.c(SRS_BSW_00302)

This is necessary to avoid modules importing or exporting functionality that could be
misused. Also compile time might possibly be shortened through this restriction.

Example: The NVRAM Manager does not need to know all processor registers just be-
cause some implementation has included the processor register file in another header
file used by the NVRAM Manager.

16 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

Note:
After the module configuration, some imported or exported information may also be-
come unnecessary, as part of the implementation may be disabled.

5.1.4 BSW Module Description

[SWS_BSW_00001] Provide BSW Module description dThe BSW Module descrip-
tion (.arxml) shall be provided for the module according to the AUTOSAR Specifica-
tion of BSW Module Description Template [6].c(SRS_BSW_00423, SRS_BSW_00426,
SRS_BSW_00427, SRS_BSW_00334)

This specification does not define any file of the package structure for the BSW Module
Description, as this delivery is specified in AUTOSAR Specification of BSW Module
Description Template [6].

5.1.5 Module documentation

[SWS_BSW_00002] Provide BSW Module documentation dThe BSW Module doc-
umentation shall be provided with the BSW Module implementation.

The following content shall be part of it:

• Cover sheet with title, version number, date, company, document status, docu-
ment name;

• Change history with version number, date, company, change description, docu-
ment status;

• Table of contents (navigable);

• Functional overview;

• Source file list and description;

• Deviations to specification

• Deviations to requirements;

• Used resources (interrupts, µC peripherals etc.);

• Integration description (OS, interface to other modules etc.);

• Configuration description with parameter, description, unit, valid range, default
value, relation to other parameters.

• Examples for:

– The correct usage of the API;

– The configuration of the module.

17 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

The following content may be part of it:

• Memory footprint (RAM, ROM, stack size) together with the module configuration,
platform information, compiler and compiler options, which were used for the
calculation.

c(SRS_BSW_00009, SRS_BSW_00010)

If possible the Memory footprint documentation may include a dependency formula
between configuration elements and used memory (e.g. each configured DTC addi-
tionally requires x bytes ROM and y bytes RAM).

[SWS_BSW_00003] Provide information on supported microcontroller and used
tool chain dIf the BSW Module implementation depends on microcontroller, then the
BSW Module documentation shall also contain the following information:

• Microcontroller vendor

• Microcontroller family

• Microcontroller derivative

• Microcontroller stepping (mask revision), if relevant

• Tool chain name and version

• Tool chain options which were used for development / qualification of module

c(SRS_BSW_00341)

The scheduling strategy that is built inside the BSW Modules shall be compatible with
the strategy used in the system. To achieve this, the scheduling strategy of module
implementation shall be accordingly documented:

[SWS_BSW_00054] Document calling sequence of Scheduled functions dThe
BSW Module documentation shall provide information about the execution order of
his Scheduled functions, i.e. for every one of these functions, if it has to be executed in
a specific order or sequence with respect to other BSW Scheduled function (or func-
tions).c(SRS_BSW_00428)

The BSW Module own specification provides further details on the intended sequence
order of its Scheduled functions. This information shall be considered in documentation
either.

[SWS_BSW_00061] Document configuration rules and constraints dThe BSW
Module implementation shall provide configuration rules and constraints in the Module
documentation to enable plausibility checks of configuration during ECU configuration
time where possible.c(SRS_BSW_00167)

18 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

5.1.6 Code file structure

The code file structure for the BSW Module implementation is provided in this chapter.
Note that the file structure delivered to user may be different.

Example:

Source code is not delivered; various post-build configuration sets are delivered.

5.1.6.1 Implementation source

The Implementation source provides the implementation for functionality of the BSW
Module.

[SWS_BSW_00004] Provide Implementation source files dThe code file structure
shall contain one or more files for the implementation of the provided BSW Module
functionality: the Implementation source files. The file names shall be formed in the
following way:

<Mip>[_<Ie>].cc(SRS_BSW_00346)

[SWS_BSW_00060] Declarations within Implementation source files are re-
stricted dThe Implementation source files of the BSW Module shall declare all con-
stants, global data types and functions that are only used by the module internally.
Pre-link time configuration parameters are an exception of this rule.c()

To allow the compiler to check for consistency between declaration and definition of
global variables and functions, the Implementation source shall include its own header
file.

[SWS_BSW_00005] Include Implementation header dThe module Implementation
source files of the BSW Module shall include its own Implementation header.c(SRS_-
BSW_00346)

The Memory mapping header is necessary to enable the BSW Module to access the
module specific functionality provided by the BSW Memory Mapping [8].

[SWS_BSW_00006] Include Memory mapping header dThe Implementation source
files of the BSW Module shall include the BSW Memory mapping header (<Mip>
_MemMap.h).c(SRS_BSW_00437)

The Module interlink header is necessary in order to access the module specific func-
tionality provided by the BSW Scheduler.

[SWS_BSW_00007] Include Module interlink header dIf the BSW Module uses BSW
Scheduler API or if it implements BswSchedulableEntitys, then the corresponding
Implementation source files shall include the Module interlink header file in order to ac-
cess the module specific functionality provided by the BSW Scheduler.c(SRS_BSW_-
00415)

19 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

The Module Interlink Header (SchM_<Mip>.h) defines the Basic Software Scheduler
API and any associated data structures that are required by the Basic Software Sched-
uler implementation [9]. BswSchedulableEntity0s are defined in BSW Module
Description Template [6].

Examples:

The CAN Driver Module implementation file Can_21_EXT.c includes the header file
SchM_Can_21_EXT.h.

The Fee Module implementation file Fee.c includes the header file SchM_Fee.h.

To retrieve Production error EventID symbols and their values the Implementation
header of Diagnostic Event Manager (Dem) is necessary:

[SWS_BSW_00008] Include Implementation header of Dem dIf the BSW Module
reports errors to Dem, then the corresponding Implementation source files of the BSW
Module shall include the Implementation header of Dem - Diagnostic Event Manager
(Dem.h).c(SRS_BSW_00409)

For further information, see chapter 7.2 - Error Handling.

[SWS_BSW_00009] Include own Callback header dIf the BSW Module implementa-
tion contains Callback functions, then its Implementation source files shall include the
BSW Modules’ own Callback header.c(SRS_BSW_00447)

To access callbacks from other modules, the according Callback headers must be
included either. It must be taken in consideration that some headers are not necessary
if the usage of the according callbacks is not part of implementation after configuration.
See also [SWS_BSW_00104].

[SWS_BSW_00010] Include Callback headers dIf the BSW Module implementation
calls Callback functions from other modules, then the Implementation source files of the
BSW Module shall include the Callback headers from all modules defining the called
Callback functions. In case the callback functions are located on application layer,
then the BSW module shall include the RTE exported application header file instead.c
(SRS_BSW_00447)

The inclusion of application header file is specified in [SWS_BSW_00023].

The implementation of Interrupt service routines called from Interrupt frames is done
in the Implementation source. See also [SWS_BSW_00021].

[SWS_BSW_00017] Implement ISRs dIf the BSW Module implements Interrupt Ser-
vice Routines, then these routines shall be implemented in one or more of its Imple-
mentation source files.c(SRS_BSW_00314)

[SWS_BSW_00181] Implement ISRs in a separate file dIf the BSW Module imple-
ments Interrupt Service Routines, then these routines should be implemented in a file
or in files separated from the remaining implementation.c(SRS_BSW_00314)

20 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

5.1.6.2 Link time configuration source

The Link time configuration source contains definitions of link time configuration pa-
rameters for the BSW Module.

[SWS_BSW_00013] Provide Link time configuration source files dIf the BSW Mod-
ule implementation contains link time configuration parameters defined as const, the
code file structure shall contain one or more files for their definition: the Link time
configuration source files. The file names shall be formed in the following way:

<Mip>[_<Ie>]_Lcfg.c or <Mip>[_<Ie>]_Cfg.cc(SRS_BSW_00346)

[SWS_BSW_00014] Define all Link time configuration parameters dThe Link time
configuration source shall contain definitions for all link time configuration parameters
specified for this module.c(SRS_BSW_00158, SRS_BSW_00380)

See also chapter 10.2.4 - Link time configuration.

5.1.6.3 Post-build time configuration source

The Post-build time configuration source contains definitions of post-build time config-
uration parameters for the BSW Module.

[SWS_BSW_00015] Provide Post-build time configuration source files dIf the
BSW Module implementation contains post-build time configuration parameters, then
the code file structure shall contain one or more files for their definition: the Post-build
time configuration source files. The file names shall be formed in the following way:

<Mip>[_<Ie>]_PBcfg.cc(SRS_BSW_00346)

[SWS_BSW_00063] Define all Post-build time configuration parameters dThe
Post-build time configuration source files shall contain definitions for all post-build time
configuration parameters specified for this module. Definitions of Precompile and Link-
time configuration parameters may as well be placed in Post-build time configuration
source files.c(SRS_BSW_00158, SRS_BSW_00380)

See also chapter 10.2.5 - Post-build time configuration.

Rationale for adding Precompile and Linktime configuration parameters in Post-build
time configuration source files:

Use Case 1: In case a new configuration container is introduced in Postbuild time all
the Precompile and Linktime which may exist in this configuration container may be
assigned a new value.

Use Case 2: In case a configuration container is implemented as one struct in c-code
that contains at least one postbuild configurable parameter the entire struct needs to
be placed in the Post-build time configuration source files.

21 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

5.1.6.4 Interrupt frame implementation source

The Interrupt frame implementation source contains implementation of Interrupt frame
routines of the BSW Module.

The implementation of Interrupt frames, done within the Interrupt frame implementation
source, is separated from the implementation of Interrupt service routines, which is
done within the Implementation source ([SWS_BSW_00017])

This separation enables flexibility in the usage of different compilers and or OS inte-
grations. For instance, the interrupt could be realized as ISR frame of the operating
system or implemented directly without changing the driver code. The service routine
can be called directly during module test without the need of causing an interrupt.

[SWS_BSW_00016] Provide Interrupt frame implementation source files dIf the
BSW Module implements Interrupt frames, then the code file structure shall contain
one or more files for their implementation: the Interrupt frame implementation source
files. The file names shall be formed in the following way:

<Mip>[_<Ie>]_Irq.cc(SRS_BSW_00314)

[SWS_BSW_00021] Implement Interrupt frame routines dThe Interrupt frame imple-
mentation source shall contain implementation of all Interrupt frame routines specified
for this BSW Module.c(SRS_BSW_00314)

The declaration of Interrupt frames routines is done in the Implementation header. See
also [SWS_BSW_00018].

[SWS_BSW_00019] Include Implementation Header to Interrupt frame implemen-
tation source dThe Interrupt frame implementation source files of a BSW Module shall
include the Implementation Header of this BSW Module.c(SRS_BSW_00314)

The implementation of Interrupt service routines called from Interrupt frames is done
in the Implementation source. See also [SWS_BSW_00017].

5.1.7 Header file structure

5.1.7.1 Implementation header

The Implementation header of the BSW Module provides the declaration of the mod-
ules’ API. This header file or files are included by other modules that use the BSW
Modules’ API.

[SWS_BSW_00020] Provide Implementation header file dThe header file structure
shall contain one or more files that provide the declaration of functions from the BSW
Module API: the Implementation header files. The file names shall be formed in the
following way:

<Mip>[_<Ie>].h

22 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

At least the file <Mip>.h shall be available.c(SRS_BSW_00346)

[SWS_BSW_00110] Content of Implementation header dThe Implementation
header files may contain extern declarations of constants, global data and services.
They shall at least contain those declarations of constants, global data and services
that are available to users of the BSW Module.c()

To avoid double and inconsistent definition of data types in both BSW Module and
Software Components, common data types are defined in the RTE Type header file.
This file is included in BSW Module indirectly through its Application Types Header File.

[SWS_BSW_00023] Include Application Types Header File to Implementation
header dIf the BSW Module implements AUTOSAR Services, then it shall include its
Application Types Header File in its Implementation header file or files.c(SRS_BSW_-
00447)

The Application Types Header File is named Rte_<swc>_Type.h, where <swc> is
the Short Name of the according Software Component Type. More information about
this file can be found in the Specification of RTE [9] - section "Application Types Header
File".

Example:

The same data Data Type NvM_RequestResultType is used in BSW C-API
NvM_GetErrorStatus and in the AUTOSAR Interface NvMService operation
GetErrorStatus (OUT NvM_RequestResultType RequestResultPtr). This
implies:

• The proper types shall be generated in Rte_Type.h.

• Rte_Type.h shall be included in Implementation header of BSW Module (NvM.-
h) via Rte_NvM_Type.h

• Rte_Type.h shall be included in the application types header file
(Rte_<swc>_Type.h) of SW-C modules that are using the service GetError
Status.

This header is included in the application header file (Rte_<swc>.h), which is used
by the SW-C implementation. These headers are generated by the RTE Generator.

[SWS_BSW_00024] Include AUTOSAR Standard Types Header to Implementa-
tion header dIf the BSW Module implementation uses AUTOSAR Standard Types,
then its Implementation header file or files shall include the AUTOSAR Standard Types
Header (Std_Types.h).c(SRS_BSW_00348)

The AUTOSAR Standard Types Header includes the following headers:

• Platform Specific Types Header (Platform_Types.h)

• Compiler Specific Language Extension Header (Compiler.h)

For more information on AUTOSAR Standard Types, see also chapter 7.1.18 - Data
types.

23 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

[SWS_BSW_00048] Declare API services in Implementation header dIf the BSW
Module implements API services, then their declaration shall be done in its Implemen-
tation header file or files.c()

See also 8.3.1 - General specification on API functions.

[SWS_BSW_00254] Provide Externals header file dIf there are callouts that are
specified or configured to be used in the BSW Module, then the declarations of these
APIs shall be provided in <Mip>_Externals.h. This header should be self con-
tained.c()

[SWS_BSW_00018] Declare Interrupt frame routines dIf the BSW Module imple-
ments Interrupt frame routines ([SWS_BSW_00021]), then their declaration shall be
done in its Implementation header file or files.c(SRS_BSW_00314)

[SWS_BSW_00043] Declare Interrupt Service Routines dIf the BSW Module im-
plements Interrupt Service Routines (ISR), then their declaration shall be done in its
Implementation header file or files.c(SRS_BSW_00439)

[SWS_BSW_00068] Support Interrupt Service Routines categories 1 and 2 dIf the
BSW Module implements Interrupt Service Routines (ISR) and provides declarations
for both interrupt categories CAT1 and CAT2, then the interrupt category shall be se-
lectable via configuration.c(SRS_BSW_00439)

See also chapter 7.1.15 - Interrupt service routines.

[SWS_BSW_00210] Exclusion of MainFunction and BswModuleClientServerEn-
trys from the Implementation header dThe module header files shall not include the
prototype declarations of MainFunctions and BswModuleClientServerEntrys
that are expected to be invoked by the RTE/BswScheduler.c()

[SWS_BSW_00249] Include guard dAll header files (except memory mapping header
files) shall protect themselves against multiple inclusions in the following way:

start of file
1 #ifndef identifier
2 #define identifier
3

4 /* content */
5

6 #endif

end of file

The identifer that is used shall be unique across all header files in the project. There
may be only comments outside of the #ifndef - #endif bracket.c()

Example: File header.h
1 #ifndef HEADER_H
2 #define HEADER_H
3

4 /* implementation of header.h */
5

24 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

6 ...
7

8 /* HEADER_H */
9 #endif

5.1.7.2 Application Header File

If the BSW Module implements AUTOSAR Services, the according Application Header
File is generated with the RTE. This file provides interfaces for the interaction of the
BSW Module with the RTE. The Application Header File is named Rte_<swc>.h,
where <swc> is the Short Name of the according Software Component Type.

[SWS_BSW_00025] Include Application Header File dIf the BSW Module imple-
ments AUTOSAR Services, then it shall include its Application Header File in module
files using RTE interfaces.c(SRS_BSW_00447)

[SWS_BSW_00069] Restrict inclusion for Application Header File dThe Applica-
tion Header File shall not be included in BSW Module files that are included directly or
indirectly by other modules.c(SRS_BSW_00447)

If the Application Header File is included in module files which are included directly
or indirectly by other modules, other Services or CDDs would also include several
Application Header Files and this is not supported by RTE. See Specification of RTE
[9] - section "File Contents", requirement [SWS_Rte_01006].

More information about the Application Header File can be found in the Specification
of RTE [9] - section "Application Header File".

Note that the application header file includes by its own the Application Types Header
File. See Specification of RTE [9], [SWS_Rte_07131], and [SWS_BSW_00023].

5.1.8 Version check

The integration of AUTOSAR BSW Modules is supported by the execution of Inter
Module Checks: Each BSW Module performs a pre-processor check of the versions of
all imported include files. During configuration, a methodology supporting tool checks
whether the version numbers of all integrated modules belong to the same AUTOSAR
major and minor release, i.e. if all modules are from the same AUTOSAR baseline. If
not, an error is reported.

The execution of Inter Module Checks is necessary to avoid integration of incompatible
modules. Version conflicts are then detected in early integration phase.

[SWS_BSW_00036] Perform Inter Module Checks dThe BSW Module shall perform
Inter Module Checks to avoid integration of incompatible files: For every included
header file that does not belong to this module, the following Published information
elements ([SWS_BSW_00059]) shall be verified through pre-processor checks:

25 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

• Major AUTOSAR Release Number (<MIP>_AR_RELEASE_MAJOR_VERSION)

• Minor AUTOSAR Release Number (<MIP>_AR_RELEASE_MINOR_VERSION)

If the values are not identical to the values expected by the implementation of this
module, an error shall be reported.c(SRS_BSW_00004)

Note: The intention of the AUTOSAR standard is to keep revisions of the same
AUTOSAR Major and Minor release compatible.

For some modules a general types header (e.g. Can_GeneralTypes.h) exists which
contain types which are shared between different modules and/or multiple instances of
one module (e.g. multiple Can drivers from different vendors). In systems with multiple
instances (e.g. multiple Can drivers from different vendors) it is the responsibility of
the project integrator to ensure that content of the general types headers fits to the
multiple drivers. This is realized by merging the different general types header files
into one. This merged header can then provide the version check macros (e.g. a
CAN_AR_RELEASE_MINOR_VERSION), the drivers will use the infixed macros for
their defines/checks.

26 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

6 Requirements Tracing

For every BSW Module, both the according BSW specification and this document
(SWS BSW General) satisfy requirements from AUTOSAR General Requirements on
Basic Software Modules [1]. The following situations are possible:

Requirement traceability from:

Module SWS SWS BSW General

Result for BSW Module
implementation:

1 "Not applicable." "See module’s SWS." Requirement is not applicable for
BSW Module.

2 "Not applicable." Specified Requirement is not applicable for
BSW Module. The module
implementation can ignore
specification items from SWS BSW
General that are tracing to this
requirement. Please attempt also to
comments in module’s own SWS
document.

3 Specified "See module’s SWS." Requirement is applicable to BSW
Module. The module specific SWS
satisfies this requirement.

4 "Satisfied by SWS BSW General" Specified Requirement is applicable to BSW
Module. SWS BSW General
satisfies this requirement.

5 Specified Specified Requirement is applicable to BSW
Module. Both general SWS and
module specific SWS are needed to
satisfy this requirement. I.e. module
specific specification items
complement general specification
items from SWS BSW General.

The following tables reference the requirements specified in [1] and links to the fulfill-
ment of these. Please note that if column “Satisfied by” is empty for a specific require-
ment this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by
[SRS_BSW_00003] All software modules shall

provide version and identification
information

[SWS_BSW_00059]

[SRS_BSW_00004] All Basic SW Modules shall
perform a pre-processor check
of the versions of all imported
include files

[SWS_BSW_00036]

[SRS_BSW_00006] The source code of software
modules above the µC
Abstraction Layer (MCAL) shall
not be processor and compiler
dependent.

[SWS_BSW_00119]

[SRS_BSW_00007] All Basic SW Modules written in
C language shall conform to the
MISRA C 2012 Standard.

[SWS_BSW_00115]

[SRS_BSW_00009] All Basic SW Modules shall be
documented according to a
common standard.

[SWS_BSW_00002]

27 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

Requirement Description Satisfied by
[SRS_BSW_00010] The memory consumption of all

Basic SW Modules shall be
documented for a defined
configuration for all supported
platforms.

[SWS_BSW_00002]

[SRS_BSW_00101] The Basic Software Module shall
be able to initialize variables and
hardware in a separate
initialization function

[SWS_BSW_00150]

[SRS_BSW_00158] No description [SWS_BSW_00014]
[SWS_BSW_00063]

[SRS_BSW_00159] All modules of the AUTOSAR
Basic Software shall support a
tool based configuration

[SWS_BSW_00116]

[SRS_BSW_00160] Configuration files of AUTOSAR
Basic SW module shall be
readable for human beings

[SWS_BSW_00157]

[SRS_BSW_00164] The Implementation of interrupt
service routines shall be done
by the Operating System,
complex drivers or modules

[SWS_BSW_00137]
[SWS_BSW_00182]

[SRS_BSW_00167] All AUTOSAR Basic Software
Modules shall provide
configuration rules and
constraints to enable plausibility
checks

[SWS_BSW_00061]

[SRS_BSW_00171] Optional functionality of a
Basic-SW component that is not
required in the ECU shall be
configurable at pre-compile-time

[SWS_BSW_00029]

[SRS_BSW_00300] All AUTOSAR Basic Software
Modules shall be identified by an
unambiguous name

[SWS_BSW_00101]
[SWS_BSW_00102]
[SWS_BSW_00103]

[SRS_BSW_00301] All AUTOSAR Basic Software
Modules shall only import the
necessary information

[SWS_BSW_00104]

[SRS_BSW_00302] All AUTOSAR Basic Software
Modules shall only export
information needed by other
modules

[SWS_BSW_00105]

[SRS_BSW_00304] All AUTOSAR Basic Software
Modules shall use only
AUTOSAR data types instead of
native C data types

[SWS_BSW_00120]

[SRS_BSW_00305] Data types naming convention [SWS_BSW_00146]
[SRS_BSW_00306] AUTOSAR Basic Software

Modules shall be compiler and
platform independent

[SWS_BSW_00121]

[SRS_BSW_00307] Global variables naming
convention

[SWS_BSW_00130]

[SRS_BSW_00308] AUTOSAR Basic Software
Modules shall not define global
data in their header files, but in
the C file

[SWS_BSW_00129]

28 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

Requirement Description Satisfied by
[SRS_BSW_00309] All AUTOSAR Basic Software

Modules shall indicate all global
data with read-only purposes by
explicitly assigning the const
keyword

[SWS_BSW_00131]

[SRS_BSW_00314] All internal driver modules shall
separate the interrupt frame
definition from the service
routine

[SWS_BSW_00016]
[SWS_BSW_00017]
[SWS_BSW_00018]
[SWS_BSW_00019]
[SWS_BSW_00021]
[SWS_BSW_00181]

[SRS_BSW_00318] Each AUTOSAR Basic Software
Module file shall provide version
numbers in the header file

[SWS_BSW_00059]

[SRS_BSW_00321] The version numbers of
AUTOSAR Basic Software
Modules shall be enumerated
according specific rules

[SWS_BSW_00162]

[SRS_BSW_00323] All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_BSW_00049]

[SRS_BSW_00325] The runtime of interrupt service
routines and functions that are
running in interrupt context shall
be kept short

[SWS_BSW_00167]

[SRS_BSW_00327] Error values naming convention [SWS_BSW_00125]
[SRS_BSW_00328] All AUTOSAR Basic Software

Modules shall avoid the
duplication of code

[SWS_BSW_00127]

[SRS_BSW_00330] It shall be allowed to use macros
instead of functions where
source code is used and runtime
is critical

[SWS_BSW_00132]

[SRS_BSW_00333] For each callback function it
shall be specified if it is called
from interrupt context or not

[SWS_BSW_00167]

[SRS_BSW_00334] All Basic Software Modules shall
provide an XML file that contains
the meta data

[SWS_BSW_00001]
[SWS_BSW_00238]

[SRS_BSW_00335] Status values naming
convention

[SWS_BSW_00124]

[SRS_BSW_00337] Classification of development
errors

[SWS_BSW_00042]
[SWS_BSW_00045]
[SWS_BSW_00073]

[SRS_BSW_00339] Reporting of production relevant
error status

[SWS_BSW_00046]
[SWS_BSW_00066]

[SRS_BSW_00341] Module documentation shall
contains all needed informations

[SWS_BSW_00003]

[SRS_BSW_00342] It shall be possible to create an
AUTOSAR ECU out of modules
provided as source code and
modules provided as object
code, even mixed

[SWS_BSW_00117]

29 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

Requirement Description Satisfied by
[SRS_BSW_00344] BSW Modules shall support

link-time configuration
[SWS_BSW_00056]

[SRS_BSW_00346] All AUTOSAR Basic Software
Modules shall provide at least a
basic set of module files

[SWS_BSW_00004]
[SWS_BSW_00005]
[SWS_BSW_00013]
[SWS_BSW_00015]
[SWS_BSW_00020]

[SRS_BSW_00347] A Naming seperation of different
instances of BSW drivers shall
be in place

[SWS_BSW_00102]
[SWS_BSW_00126]
[SWS_BSW_00153]

[SRS_BSW_00348] All AUTOSAR standard types
and constants shall be placed
and organized in a standard type
header file

[SWS_BSW_00024]

[SRS_BSW_00353] All integer type definitions of
target and compiler specific
scope shall be placed and
organized in a single type
header

[SWS_BSW_00120]

[SRS_BSW_00359] All AUTOSAR Basic Software
Modules callback functions shall
avoid return types other than
void if possible

[SWS_BSW_00172]

[SRS_BSW_00360] AUTOSAR Basic Software
Modules callback functions are
allowed to have parameters

[SWS_BSW_00173]

[SRS_BSW_00361] All mappings of not standardized
keywords of compiler specific
scope shall be placed and
organized in a compiler specific
type and keyword header

[SWS_BSW_00178]

[SRS_BSW_00373] The main processing function of
each AUTOSAR Basic Software
Module shall be named
according the defined
convention

[SWS_BSW_00153]
[SWS_BSW_00154]

[SRS_BSW_00374] All Basic Software Modules shall
provide a readable module
vendor identification

[SWS_BSW_00059]
[SWS_BSW_00161]

[SRS_BSW_00378] AUTOSAR shall provide a
boolean type

[SWS_BSW_00142]

[SRS_BSW_00379] All software modules shall
provide a module identifier in the
header file and in the module
XML description file.

[SWS_BSW_00059]

[SRS_BSW_00380] Configuration parameters being
stored in memory shall be
placed into separate c-files

[SWS_BSW_00014]
[SWS_BSW_00063]

[SRS_BSW_00397] The configuration parameters in
pre-compile time are fixed
before compilation starts

[SWS_BSW_00183]

30 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

Requirement Description Satisfied by
[SRS_BSW_00398] The link-time configuration is

achieved on object code basis in
the stage after compiling and
before linking

[SWS_BSW_00184]

[SRS_BSW_00400] Parameter shall be selected
from multiple sets of parameters
after code has been loaded and
started

[SWS_BSW_00050]
[SWS_BSW_00228]

[SRS_BSW_00402] Each module shall provide
version information

[SWS_BSW_00059]

[SRS_BSW_00404] BSW Modules shall support
post-build configuration

[SWS_BSW_00160]

[SRS_BSW_00405] BSW Modules shall support
multiple configuration sets

[SWS_BSW_00228]

[SRS_BSW_00407] Each BSW module shall provide
a function to read out the version
information of a dedicated
module implementation

[SWS_BSW_00052]
[SWS_BSW_00059]
[SWS_BSW_00064]
[SWS_BSW_00164]

[SRS_BSW_00408] All AUTOSAR Basic Software
Modules configuration
parameters shall be named
according to a specific naming
rule

[SWS_BSW_00126]

[SRS_BSW_00409] All production code error ID
symbols are defined by the Dem
module and shall be retrieved by
the other BSW modules from
Dem configuration

[SWS_BSW_00008]
[SWS_BSW_00143]

[SRS_BSW_00410] Compiler switches shall have
defined values

[SWS_BSW_00123]

[SRS_BSW_00411] All AUTOSAR Basic Software
Modules shall apply a naming
rule for enabling/disabling the
existence of the API

[SWS_BSW_00051]

[SRS_BSW_00414] Init functions shall have a pointer
to a configuration structure as
single parameter

[SWS_BSW_00049]
[SWS_BSW_00050]

[SRS_BSW_00415] Interfaces which are provided
exclusively for one module shall
be separated into a dedicated
header file

[SWS_BSW_00007]

[SRS_BSW_00423] BSW modules with AUTOSAR
interfaces shall be describable
with the means of the SW-C
Template

[SWS_BSW_00001]
[SWS_BSW_00040]

[SRS_BSW_00424] BSW module main processing
functions shall not be allowed to
enter a wait state

[SWS_BSW_00156]

[SRS_BSW_00426] BSW Modules shall ensure data
consistency of data which is
shared between BSW modules

[SWS_BSW_00001]
[SWS_BSW_00038]
[SWS_BSW_00134]

[SRS_BSW_00427] ISR functions shall be defined
and documented in the BSW
module description template

[SWS_BSW_00001]
[SWS_BSW_00041]
[SWS_BSW_00065]

31 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

Requirement Description Satisfied by
[SRS_BSW_00428] A BSW module shall state if its

main processing function(s) has
to be executed in a specific
order or sequence

[SWS_BSW_00054]

[SRS_BSW_00429] Access to OS is restricted [SWS_BSW_00138]
[SRS_BSW_00433] Main processing functions are

only allowed to be called from
task bodies provided by the
BSW Scheduler

[SWS_BSW_00133]

[SRS_BSW_00437] Memory mapping shall provide
the possibility to define RAM
segments which are not to be
initialized during startup

[SWS_BSW_00006]

[SRS_BSW_00438] Configuration data shall be
defined in a structure

[SWS_BSW_00050]
[SWS_BSW_00057]
[SWS_BSW_00158]

[SRS_BSW_00439] Enable BSW modules to handle
interrupts

[SWS_BSW_00043]
[SWS_BSW_00068]

[SRS_BSW_00440] The callback function invocation
by the BSW module shall follow
the signature provided by RTE to
invoke servers via Rte_Call API

[SWS_BSW_00180]

[SRS_BSW_00441] Naming convention for type,
macro and function

[SWS_BSW_00124]

[SRS_BSW_00447] Standardizing Include file
structure of BSW Modules
Implementing Autosar Service

[SWS_BSW_00009]
[SWS_BSW_00010]
[SWS_BSW_00023]
[SWS_BSW_00025]
[SWS_BSW_00069]
[SWS_BSW_00147]

[SRS_BSW_00450] A Main function of a
un-initialized module shall return
immediately

[SWS_BSW_00037]
[SWS_BSW_00071]
[SWS_BSW_00072]

[SRS_BSW_00451] Hardware registers shall be
protected if concurrent access to
these registers occur

[SWS_BSW_00179]

[SRS_BSW_00460] Reentrancy Levels [SWS_BSW_00039]
[SRS_BSW_00463] Naming convention of callout

prototypes
[SWS_BSW_00135]
[SWS_BSW_00136]

[SRS_BSW_00464] File names shall be considered
case sensitive regardless of the
filesystem in which they are
used

[SWS_BSW_00170]

[SRS_BSW_00465] It shall not be allowed to name
any two files so that they only
differ by the cases of their letters

[SWS_BSW_00171]

[SRS_BSW_00467] The init / deinit services shall
only be called by BswM or EcuM

[SWS_BSW_00150]
[SWS_BSW_00152]

[SRS_BSW_00477] The functional interfaces of
AUTOSAR BSW modules shall
be specified in C99

[SWS_BSW_00234]

[SRS_BSW_00488] Classification of security events [SWS_BSW_00244]
[SRS_BSW_00489] Reporting of security events [SWS_BSW_00250]

[SWS_BSW_00252]

32 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

Requirement Description Satisfied by
[SRS_BSW_00491] Specification of trigger

conditions and context data
[SWS_BSW_00253]

[SRS_BSW_00493] Definition of security event ID
symbols

[SWS_BSW_00251]

33 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

7 Functional specification

7.1 General implementation specification

7.1.1 Conformance to MISRA C and C standard

MISRA C describes programming rules for the C programming language and a process
to implement and follow these rules.

[SWS_BSW_00115] Conformance to MISRA C dIf the BSW Module implementation
is written in C language, then it shall conform to the MISRA C 2012 Standard [10].c
(SRS_BSW_00007)

Only in technically reasonable and exceptional cases, a MISRA violation is permissible.
Such violations against MISRA rules shall be clearly identified and documented within
comments in the C source code.

Example: MISRA violations could be commented next to the instruction causing the
violation saying /* MRYY RULE XX VIOLATION: This is the reason why the

MISRA rule could not be followed in this special case*/ while YY is two
digit year representation of the MISRA version and XX is the MISRA number. For
MISRA directives violation the following comment could be used: /* MR12 DIR

XX VIOLATION: This is the reason why the MISRA directive was not be

followed in this case*/

[SWS_BSW_00234] Service Interface Conformance to C standard dThe external
interface binding of the BSW Modules shall be conform to ISO/IEC 9899:1999 (C99)
standard. The number of significant characters allowed for external identifier can ex-
ceed the specified minimum (31 characters).c(SRS_BSW_00477)

7.1.2 Conformance to AUTOSAR Basic Software Requirements

The BSW Module implementation shall conform to all applicable Basic Software Re-
quirements, which are described in document SRS BSW General [1].

Note that some BSW Module specifications, in particular included code examples, may
ignore some General BSW requirement for sake of simplicity. Examples:

• Memory abstraction is not used within the BSW specification text because of
readability.

• The use of pre-processor directives (#defines) without "u" or "s" is widely
present in the specifications, but this violates MISRA.

However, the implementation shall not interpret this as a simplification, redefinition or
relaxation of general BSW requirements.

34 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

7.1.3 Conformance to AUTOSAR Methodology

The BSW Module implementation shall consider the AUTOSAR (see chapter 3.1):, e.g.
supporting the capability use cases Develop Basic Software and Integrate Software for
ECU.

[SWS_BSW_00116] Support to tool-based configuration dThe BSW Module imple-
mentation shall support a tool based configuration, as described in AUTOSAR Method-
ology [7].c(SRS_BSW_00159)

For more information about ECU configuration, see also AUTOSAR Specification of
ECU Configuration [11].

With the AUTOSAR Methodology it is possible to configure an AUTOSAR ECU out of
BSW Modules provided as source code and out of BSW Modules provided as object
code, or even mixed. This must be of course supported by the implementation, i.e. it
shall not require that the source code is always part of the delivery.

[SWS_BSW_00117] Support object code delivery and configuration dThe BSW
Module implementation shall support configuration of its link-time and post-build con-
figuration parameters even if only the object code and the corresponding header files
are available, i.e. even if the source code files are not available.c(SRS_BSW_00342)

7.1.4 Platform independency and compiler abstraction

According to their dependency on implementation platform, this specification classifies
BSW Modules in two distinct categories:

• Platform independent BSW Modules: All BSW Modules except Complex Drivers,
MCAL modules and the OS.

• Platform dependent BSW Modules: MCAL modules, Complex Drivers, OS.

The platform dependency comprises dependencies on used toolchain and hardware,
e.g. compiler and processor dependencies

Platform dependent BSW Modules have or may have direct access to microcontroller
hardware. Thus, their implementation is platform specific.

Platform independent BSW Modules can be developed once and then be compilable
for all platforms without any changes. Any necessary processor or compiler specific
instructions (e.g. memory locators, pragmas, use of atomic bit manipulations etc.) have
to be encapsulated by macros and imported through include files. This is necessary to
minimize number of variants and the according development effort.

The Microcontroller Abstraction Layer (MCAL) is defined in AUTOSAR Layered Soft-
ware Architecture [5]. The list of BSW Modules from MCAL is available in the List
of BSW Modules [4]: Microcontroller Drivers, I/O Drivers, Communication Drivers and
Memory Drivers.

35 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

[SWS_BSW_00119] Platform independent BSW Modules dIf the BSW Module is
classified as Platform independent BSW Module, then its source code shall not be
processor dependent.c(SRS_BSW_00006)

The direct use of not standardized keywords like _near, _far, _pascal in the source
code would create compiler and platform dependencies, that must strictly be avoided.
If no precautions are made, portability and reusability of affected code is deteriorated
and effective release management is costly and hard to maintain.

[SWS_BSW_00121] Usage of platform or compile specific keywords is restricted
dThe BSW Module implementation shall not use compiler and platform specific key-
words directly.c(SRS_BSW_00306)

[SWS_BSW_00178] Mapping of compile specific keywords dIf the BSW Module
implementation needs compiler specific keywords, then these keywords shall be rede-
fined (mapped) in a separate file, the Compiler Specific Language Extension Header
(Compiler.h).c(SRS_BSW_00361)

Example: Compiler specific keywords can be mapped to compiler independent key-
words by defining macros in Compiler.h:

1 /* Compiler.h */
2

3 #define FAR(X) __far__ X

This enables the usage of this macro within source code in the following way:

FAR(void) function();

In this example, the compiler dependency is encapsulated in a separate file
(Compiler.h) which can be exchanged if a new compiler is used. This enables the
provision of a compiler specific header containing proprietary pre-processor directives
as well as wrapper macros for all specialized language extensions.

Note that different compilers can require extended keywords to be placed in different
places. Example:

Compiler 1 requires:

void __far__ function();

Compiler 2 requires:

__far__ void function();

In this case it is not possible to accommodate the different implementations with inline
macros, so a function-like macro style is adopted instead. This macro wraps the return
type of the function and therefore permits additions to be made, such as __far__,
either before or after the return type.

Example:

Compiler 1:
1 /* Compiler.h */

36 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

2

3 #define FAR(x) x __far__

Compiler 2:
1 /* Compiler.h */
2

3 #define FAR(x) __far__ x

The following usage can expand to the examples given above:

FAR(void) function();

Although this last example conflicts with the MISRA Rule 20.4, see [10], it is a reason-
able solution and this exception is acceptable when necessary.

7.1.5 Configurability

Plausibility checks on configuration parameters can be made by a configura-
tion tool during configuration or by the pre-processor during runtime. See also
[SWS_BSW_00061]

Detailed configuration rules and constraints may also be part of module’s own spec-
ification and the BSW Module’s documentation, which is delivered with the module
implementation.

Optional functionalities of a BSW Module shall not consume resources (RAM, ROM
and runtime). These functionalities can be enabled or disabled at pre-compile time
with suitable configuration parameters, like defined in chapter 10 of the respective BSW
Module specification.

[SWS_BSW_00029] Implement configuration of optional functionality dIf the BSW
Module contains optional functionality, then this functionality shall be enabled (STD_ON)
or disabled (STD_OFF) by a Pre-compile time configuration parameter.c(SRS_BSW_-
00171)

Disabled functionality will not become part of compiled code. If the code is automat-
ically generated, e.g. after configuration, the disabled functionality may even not be
part of source code. It may also never have been implemented, if the BSW software
provider does not support this configuration.

These symbols, STD_ON and STD_OFF, and their values are defined in Std_Types.h
[SWS_BSW_00024].

The module configuration shall be according to the AUTOSAR Methodology [7], see
[SWS_BSW_00024]. The module configuration parameters are defined in chapter 10
of the corresponding BSW Module specification.

[SWS_BSW_00123] Check compiler switches by comparison with defined val-
ues dCompiler switches shall be compared with defined values. Simply checking if a
compiler switch is defined shall not be used in implementation.c(SRS_BSW_00410)

37 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

Example:

#if (EEP_21_LDEXT_DEV_ERROR_DETECT == STD_ON)

...

Example of a wrong implementation:

#ifdef EEP_21_LDEXT_DEV_ERROR_DETECT

...

7.1.6 Various naming conventions

[SWS_BSW_00124] Naming convention for enumeration literals, status val-
ues and pre-processor directives dAll enumeration literals, status values and pre-
processor directives (#define) shall be labeled in the following way:

<MIP>_<SN>

Where here <MIP> is the Capitalized module implementation prefix of this BSW Mod-
ule [SWS_BSW_00102] and <SN> is the specific name. Only capital letters shall be
used. If <SN> consists of several words, they shall be separated by underscore.

The pre-processor directives E_OK and E_NOT_OK are exceptions to this rule.c(SRS_-
BSW_00441, SRS_BSW_00335)

Example: The Eeprom driver has the following status values:

EEP_21_LDEXT_UNINIT
EEP_21_LDEXT_IDLE
EEP_21_LDEXT_BUSY

Examples for pre-processor directives:
1 #define EEP_21_LDEXT_PARAM_CONFIG
2 #define EEP_21_LDEXT_SIZE

Example for enumeration literals:
1 typedef enum
2 {
3 EEP_21_LDEXT_PARAM_CONFIG = 0,
4 EEP_21_LDEXT_ARE = 1,
5 EEP_21_LDEXT_EV = 2
6 } Eep_21_LDExt_Notification_Type;

[SWS_BSW_00125] Naming convention for Error values dError values shall be
named in the following way:

<MIP_E_<EN>

Where here <MIP> is the Capitalized module implementation prefix of this BSW Mod-
ule [SWS_BSW_00102] <EN> is the error name. Only capital letters shall be used. If

38 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

<EN> consists of several words, they shall be separated by underscore.c(SRS_BSW_-
00327)

Example: The EEPROM driver has the following error values:

EEP_21_LDEXT_E_BUSY
EEP_21_LDEXT_E_PARAM_ADDRESS
EEP_21_LDEXT_E_PARAM_LENGTH
EEP_21_LDEXT_E_WRITE_FAILED

7.1.7 Configuration parameters

The BSW Module implementation must use Configuration parameter names. For fur-
ther information, see also chapter 10.2.2.

[SWS_BSW_00126] Naming conventions for Configuration parameters names
dConfiguration parameters shall be named in one of the following ways:

Camel case: <Ma><Pn>
Upper case: <MA><PN>

Where:

• <Pn> is the specific parameter name in camel case;

• <PN> is the specific parameter name in upper case;

The term <Pn> (or <PN>) may consist of several words which may or may not be
separated by underscore.c(SRS_BSW_00408, SRS_BSW_00347)

Example:

• CanIfTxConfirmation

7.1.8 Shared code

Duplicated code may result in bugs during code maintenance. This can be avoided
by sharing code whenever necessary. Shared code eases functional composition,
reusability, code size reduction and maintainability.

[SWS_BSW_00127] Avoid duplication of code dThe BSW Module implementation
shall avoid duplication of code.c(SRS_BSW_00328)

Note that if the BSW Module implements shared code, then the implementation may
need to ensure reentrancy for this code if it is exposed to preemptive environments.
Reentrancy support is part of the API specification. See also chapter 8.3.1.

39 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

7.1.9 Global data

To avoid multiple definition and uncontrolled spreading of global data, the visibility of
global variables must be limited.

[SWS_BSW_00129] Definition of global variables dIf the BSW Module defines
global variables, then their definition shall take place in the Implementation source
file.c(SRS_BSW_00308)

[SWS_BSW_00130] Naming convention for global variables dAll global variables
defined by the BSW Module shall be labeled according to the following:

<Mip>_<Vn>

Where <Mip> is the Module implementation prefix of the BSW Module
[SWS_BSW_00102] and <Vn> is the Variable name, which shall be written in camel
case.c(SRS_BSW_00307)

Example of global variable names:

• Can_21_Ext_MessageBuffer[CAN_21_EXT_BUFFER_LENGTH]

• Nm_RingData[NM_RINGDATA_LENGTH]

In principle, all global data shall be avoided due to extra blocking efforts when used
in preemptive runtime environments. Unforeseen effects may occur if no precautions
were made. If data is intended to serve as constant data, global exposure is permitted
only if data is explicitly declared read-only using the const qualifier.

[SWS_BSW_00131] Definition of constant global variables dIf the BSW Module
defines global variables with read-only purpose, this shall be formalized by assigning
the const qualifier to their definitions and declarations.c(SRS_BSW_00309)

7.1.10 Usage of macros and inline functions

The usage of macros and inline functions instead of functions is allowed to improve the
runtime behavior. Special attention has to be paid with regard to reentrant functions.

[SWS_BSW_00132] Usage of macros and inline functions dThe usage of macros
and inline functions is allowed, for instance, to improve runtime behavior. It is advised
to consider the MISRA-C 2012 rules with respect to INLINE functions and MACRO.c
(SRS_BSW_00330)

Macros can be used instead of functions where source code is used and runtime is
critical. Inline functions can be used for the same purpose. Inline functions have the
advantage (compared to macros) that the compiler can do type checking of function
parameters and return values.

40 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

7.1.11 Calling Scheduled functions (Main processing functions)

Main Processing Functions, also called Scheduled Functions, are defined in chapter
8.5.

To avoid indirect and non-transparent timing dependencies between BSW Modules,
the calling of Scheduled functions is restricted to task bodies provided by the BSW
Scheduler - see the Specification of RTE [9].

[SWS_BSW_00133] Calling Scheduled functions is restricted dThe BSW Module
implementation shall not contain calls to Scheduled functions (Main processing func-
tions).c(SRS_BSW_00433)

Calling Scheduled functions of an un-initialized BSW Module may result in undesired
and non-defined behavior.

[SWS_BSW_00037] Behavior of un-initialized Scheduled functions dIf a Sched-
uled functions (Main processing functions) of un-initialized BSW Module is called from
the BSW Scheduler, then it shall return immediately without performing any functional-
ity and without raising any errors.c(SRS_BSW_00450)

7.1.12 Exclusive areas

Exclusive areas are defined to allow priority determination for preventing simultaneous
access to shared resources. Every Exclusive area has a unique name. The descrip-
tion of Exclusive areas includes the accessing Scheduled functions (Main processing
functions), API services, Callback functions and ISR functions.

[SWS_BSW_00038] Define and document Exclusive areas dThe Exclusive areas of
the BSW Module shall be defined and documented as described in the specification
of BSW Module Description Template [6] within the BSW Module Description.c(SRS_-
BSW_00426)

[SWS_BSW_00134] Restriction to usage of Exclusive areas dThe Exclusive areas
of the BSW Module shall only protect module internal data.c(SRS_BSW_00426)

7.1.13 Callouts

[SWS_BSW_00039] Define prototypes of Callout functions dIf the BSW Module
uses Callout functions, then it shall define the prototype of the callouts in its own Im-
plementation header.c(SRS_BSW_00460)

The file containing the implementation of the Callout function can include this header
to check if declaration and definition of callout match.

Example: Operating System
1 /* File: Os.h */
2 ...

41 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

3 /* Callout declaration */
4 void ErrorHook (StatusType);
5 ...

[SWS_BSW_00135] Conventions for Callout functions prototype declaration
dThe following convention shall be used for declaration of Callout functions prototypes:

1 /* --- Start section definition: --- */
2

3 #define <MIP>_START_SEC_<CN>_CODE
4

5 /* --- Function prototype definition: --- */
6

7 FUNC(void, <MIP>_<CN>_CODE) <Cn> (void);
8

9 /* --- Stop section definition: --- */
10

11 #define <MIP>_STOP_SEC_<CN>_CODE

Where <MIP> is the Module implementation prefix of the calling module, <CN> is the
Callout name, which shall have the same spelling of the Callout name, including mod-
ule reference, but written in upper case and <Cn> is the Callout name, using the con-
ventional camel case notation for API names.c(SRS_BSW_00463)

The memory segment used for a Callout function is not known to the module devel-
oper. The integrator needs the freedom to map these functions independently from the
module design.

[SWS_BSW_00136] Memory section and memory class of Callout functions
dEach Callout function shall be mapped to its own memory section and memory class.
These memory classes will then be mapped to the actually implemented memory
classes at integration time.c(SRS_BSW_00463)

For example:
1 #define COM_START_SEC_SOMEMODULE_SOMECALLOUT_CODE
2 #include "Com_MemMap.h"
3

4 FUNC(void, COM_SOMEMODULE_SOMECALLOUT_CODE) Somemodule_Some_Callout (
void);

5

6 #define COM_STOP_SEC_SOMEMODULE_SOMECALLOUT_CODE
7 #include "Com_MemMap.h"

7.1.14 AUTOSAR Interfaces

AUTOSAR Services are located in the BSW, but have to interact with AUTOSAR
Software Components above the RTE via ports, which realize AUTOSAR Interfaces.
Therefore, the RTE generator shall be able to read the interface description to generate
the RTE properly.

42 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

[SWS_BSW_00040] Define and document implemented AUTOSAR Interfaces dIf
the BSW Module implements AUTOSAR Services, then the related AUTOSAR Inter-
faces shall be defined and documented as described in the specification of Software
Component Template [12] within the BSW Module Description.c(SRS_BSW_00423)

Note that the BSW Module Description Template inherits the description classes from
the Software Component Template.

7.1.15 Interrupt service routines

The implementation of Interrupt Service Routines (ISR) is highly microcontroller de-
pendent. See also chapter 7.1.4.

[SWS_BSW_00137] ISR implementation is platform dependent dIf the BSW Mod-
ule is classified as Platform independent BSW Module, it shall not implement interrupt
service routines.c(SRS_BSW_00164)

For more explanation on Platform independent BSW Modules, see section 7.1.4.

[SWS_BSW_00167] Keep runtime of ISR as short as possible dThe runtime of In-
terrupt Service Routines (ISR) and functions that are running in interrupt context should
be kept short. This affects also, for instance, Callback functions which are called from
ISRs.

Where an ISR is likely to take a long time, an Operating System task should be used
instead.c(SRS_BSW_00325, SRS_BSW_00333)

ISR functions are defined with a name and the category according to the AUTOSAR
OS, see [13].

[SWS_BSW_00041] Define and document ISR routines dIf the BSW Module im-
plements Interrupt service routines (ISR), then these functions shall be defined and
documented as described in the specification of BSW Module Description Template [6]
within the BSW Module Description.c(SRS_BSW_00427)

[SWS_BSW_00065] Support for interrupt category CAT2 dIf the BSW Module im-
plements Interrupt service routines (ISR), then the implementation shall at least sup-
port interrupt category CAT2.c(SRS_BSW_00427)

The AUTOSAR architecture does not allow execution in interrupt context on application
level. Considering this, special care is needed with nested functions called by interrupt
routines.

[SWS_BSW_00182] The transition from ISR to OS task is restricted dIf the BSW
Module has implementation of Interrupt Service Routines (ISR) and a transition from
an ISR to an OS task is needed, then this transition shall take place at the lowest level
possible of the Basic Software:

• In the case of CAT2 ISR this shall be at the latest in the RTE.

43 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

• In the case of CAT1 ISR this shall be at the latest in the MCAL layer.

c(SRS_BSW_00164)

The definition of ISR categories CAT1 and CAT2 is available in AUTOSAR General Re-
quirements on Basic Software Modules [1]. For more information see also the Specifi-
cation of RTE [9], chapter "Interrupt decoupling and notification".

A BSW Module that handles interrupts shall be delivered partially or completely as
source code so that it can be compiled to use CAT1 or CAT2 interrupts. See also
[SWS_BSW_00043].

Example: A BSW Module from MCAL layer is delivered as object code. The interrupt
handler could be written as a pair of small stubs (a CAT1 stub and a CAT2 stub) that
are delivered as source code. During the module integration the code is compiled as
necessary - the main handler is called.

7.1.16 Restricted OS functionality access

To avoid too much complexity in the OS integration of BSW Modules, some restrictions
in the usage of OS services are necessary.

[SWS_BSW_00138] Restriction to usage of OS services dThe BSW Module imple-
mentation is only allowed to use OS services according to the following table:

See Table 7.1 .c(SRS_BSW_00429)

OS Services RTE ,
BSW

Sched-
uler,

BswM,
CDD

EcuM MCAL StbM Other
BSW

Modules

Activate Task
√

Terminate Task
√

Chain Task
√

Schedule
√

GetTaskID
√

GetTaskState
√

DisableAllInterrupts
√ √

EnableAllInterrupts
√ √

SuspendAllInterrupts
√ √

ResumeAllInterrupts
√ √

SuspendOSInterrupts
√ √

ResumeOSInterrupts
√ √

GetResource
√ √

ReleaseResource
√ √

SetEvent
√

5

44 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

4
ClearEvent

√

GetEvent
√

WaitEvent
√

GetAlarmBase
√

GetAlarm
√

SetRelAlarm
√

SetAbsAlarm
√

CancelAlarm
√

GetActiveApplicationMode
√ √

StartOS
√

ShutdownOS
√

GetApplicationID
√

StartScheduleTableRel
√ √

StartScheduleTableAbs
√ √

StartScheduleTableSynchron
√ √

StopScheduleTable
√ √

NextScheduleTable
√ √

SyncScheduleTable
√ √ √

GetScheduleTableStatus
√ √ √

SetScheduleTableAsync
√ √

IncrementCounter
√

GetCounterValue
√ √ √ √ √

GetElapsedValue
√ √ √ √ √

TerminateApplication
√

AllowAccess
√

GetApplicationState
√

GetCurrentApplicationID
√ √ √ √ √

ControlIdle
√ √

GetNumberOfActivatedCores
√

GetCoreID
√ √ √ √ √

StartCore
√

StartNonAutosarCore
√

GetSpinlock
√ √ √

ReleaseSpinlock
√ √ √

TryToGetSpinlock
√ √ √

ShutdownAllCores
√

ReadPeripheral8
√ √

ReadPeripheral16
√ √

ReadPeripheral32
√ √

WritePeripheral8
√ √

WritePeripheral16
√ √

WritePeripheral32
√ √

ModifyPeripheral8
√ √

ModifyPeripheral16
√ √

5

45 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

4
ModifyPeripheral32

√ √

DisableInterruptSource
√ √

EnableInterruptSource
√ √

ClearPendingInterrupt
√ √

ActivateTaskAsyn
√

SetEventAsyn
√

GetISRID
√ √

CallTrustedFunction
√ √ √ √ √

CheckISRMemoryAccess
√ √ √ √ √

CheckTaskMemoryAccess
√ √ √ √ √

CheckObjectAccess
√ √ √ √ √

CheckObjectOwnership
√ √ √ √ √

Table 7.1: OS Services and associated permissions

The according services are described in AUTOSAR OS.

Note:
The table above does not contain the IOC services of the OS as they are only used by
the Rte.

7.1.17 Access to hardware registers

[SWS_BSW_00179] Concurrent access to registers dAll BSW modules with direct
access to hardware registers shall tolerate concurrent access to these registers from
other modules, especially from Complex Drivers. This is required for the following
registers:

• registers which are currently not used due to configuration reasons, e.g. channel
or group not configured/enabled

• common registers with fields or bits which are used widely, e.g. interrupt mask,
memory protection bits

BSW modules shall tolerate concurrent access to HW registers using defensive behav-
ior and the techniques like:

• Protecting the read-modify-write access from interruption

• Using atomic (non-interruptible) instructions for read-modify-write access

• Protecting the access to set of registers, which have to be modified together, from
interruption

c(SRS_BSW_00451)

46 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

Note:
• Memory mapped hardware registers in multi-master systems (multi-core sys-

tems, systems with DMA) are assumed to be manipulated by one master only
• Memory mapped hardware registers are not assumed to be manipulated by the

non-maskable interrupt routines or non-maskable exception/trap routines

[SWS_BSW_00188] Access to "write-once" registers dIf a MCAL driver initializes
"write-once" registers, then the driver shall offer configuration options to disable the
functionalities that have access those register, or have dependencies to them.c()

Example:

In MCU, there should be a switch to disable the call to Mcu_InitClock(), if the clock
set-up is performed during the start-up code, before AUTOSAR platform is started and
the hardware does not allow reconfiguration.

7.1.18 Data types

7.1.18.1 AUTOSAR Standard Types

All AUTOSAR standard types and constants are placed and organized in the
AUTOSAR Standard Types Header (Std_Types.h). This header:

• includes the Platform Specific Types Header (Platform_Types.h)

• includes the Compiler Specific Language Extension Header (Compiler.h)

• defines the type Std_ReturnType

• defines E_OK and E_NOT_OK symbols and their values

• defines STD_ON and STD_OFF symbols and their values

See also [SWS_BSW_00024].

7.1.18.2 Platform Specific Types

Changing the microcontroller and or compiler shall only affect a limited number of files.
Thus in AUTOSAR all integer type definitions of target and compiler specific scope are
placed and organized in a single file, the Platform Specific type header (Platform_
Types.h).

See also the Specification of Platform Types [14].

47 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

7.1.18.2.1 AUTOSAR Integer Data Types

The usage of native C-data types (char, int, short, long) is in general not portable
and reusable throughout different platforms.

[SWS_BSW_00120] Do not use native C data types dThe BSW Module shall not use
native C data types. AUTOSAR Integer Data Types shall be used instead. These types
are defined in the Platform Specific Types Header (Platform_Types.h)c(SRS_-
BSW_00304, SRS_BSW_00353)

The Platform Specific Types Header (Platform_Types.h) is included through the
AUTOSAR Standard Types Header (Std_Types.h). See [SWS_BSW_00024].

The following AUTOSAR Integer Data Types are available:

• Fixed size guaranteed:

Data type Range

uint8 0..255
uint16 0..65535
uint32 0..4294967295
uint64 0..18446744073709551615
sint8 -128..127
sint16 -32768..32767
sint32 -2147483648..2147483647
sint64 -9223372036854775808..9223372036854775807

• Minimum size guaranteed, best type is chosen for specific platform (only allowed
for module internal use, not for API parameters)

Data type Range

uint8_least At least uint8

uint16_least At least uint16

uint32_least At least uint32

sint8_least At least sint8

sint16_least At least sint16

sint32_least At least sint32

The data types with suffix _least can be chosen if optimal performance is required
(e.g. for loop counters).

Example: Both uint8_least and uint32_least could be compiled as 32 bit on a
32 bit platform.

Hint: For integer variables without restricted value ranges the AUTOSAR integer types
defined in Platform_Types.h should be used.

48 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

7.1.18.2.2 Boolean type

For simple logical values, for their checks and for API return values the AUTOSAR type
boolean, defined in Platform_Types.h, can be used. For usage with this type, the
following values are also defined:

FALSE = 0
TRUE = 1

[SWS_BSW_00142] Allowed operations with boolean variables dThe only allowed
operations with variables from type boolean are: assignment, return and test for
equality, inequality and logical not with TRUE or FALSE.c(SRS_BSW_00378)

Note:
Compiler vendors that provide a boolean data type that cannot be disabled have to
change their compiler (i.e. make it ANSI C compliant).

Example: API returns boolean value
1 /* File Eep_21_LDExt.h: */
2 ...
3 /* this automatically includes Platform_Types.h: */
4

5 #include "Std_Types.h"
6 ...
7 boolean Eep_21_LDExt_Busy(void) {...}
8 ...

1 /* File: calling module */
2 ...
3 if (Eep_21_LDExt_Busy() == FALSE) {...}
4 ...

7.1.19 Distributed execution on multi-partitioned systems

The AUTOSAR architecture supports the execution of BSW modules functionality on
multiple partitions, possibly running on different cores. If a module provides services
on multiple partitions, then either

• the RTE transports the service call to the partition where the BSW module entity
that shall execute the call is located, or

• the BSW module entity receives the call on the partition where it has been called
and handles its execution autonomously (new in Release 4.1). That means, it
can execute the call on the same partition, forward it to another partition or do
a combination of both - depending on the implementation strategy of the BSW
vendor.

49 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

[SWS_BSW_00190] Same API on each partition dIf a BSW module entity shall be
accessible from multiple partitions (e.g. multiple cores), then it shall provide the same
API on each partition where the module entity shall be accessible.c()

[SWS_BSW_00191] Multi-core safety dIf a BSW module entity shall be executable
on multiple partitions (e.g. multiple cores), then the whole module entity code shall be
"concurrency safe".c()

Note:
"Concurrency safe" refers to the overall design of the BSW module entity that shall
be executable in multiple partitions on different cores in parallel. If, for example, the
module code in different partitions accesses the same data, then the shared data shall
be protected by exclusive areas.

[SWS_BSW_00192] Reentrant function code dIf a BSW module entity is provided to
SWCs and it shall be executable on multiple partitions (e.g. multiple cores), then the
module entity’s function code shall be implemented according to the level "concurrency
safe".c()

This allows the usage of the same entry point in the code for a module function called
from different partitions. The partition specific handling of the module function shall
then be implemented by partition dependent branching within the module.

7.2 Error Handling

Particular errors are specified in Chapter 7 of the respective BSW Module specifica-
tions.

The following section forms the foundation for this. Above all, it specifies a classification
scheme consisting of five error types that may occur in BSW modules during different
life cycles.

7.2.1 Classification

[SWS_BSW_00144] Error classification dAll errors, which may be detected and/or
reported by a BSW Module, are classified in six different types:

• development errors [SRS_BSW_00337]

• runtime errors [1, SRS_BSW_00452]

• transient faults [1, SRS_BSW_00473]

• production errors [1, SRS_BSW_00458]

• extended production errors [1, SRS_BSW_00466]

• security event [SRS_BSW_00488]

50 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

c()

7.2.2 Development errors

7.2.2.1 Synopsis

Development errorss are mainly specified as software bugs which occur during the
software development process, cf. [SRS_BSW_00337] for the detailed specification.

For instance, the attempt to use uninitialized software is a typical development error.

Development errors are reported to the BSW module Det (Default Error Tracer) through
the interface Det_ReportError, which also reflects the event-oriented character of
this type. Development errors eventually happen and corresponding error monitors will
immediately signal their occurrence.

Although the specification document of the module Det does not specify any particular
behavior or implementation, [SRS_BSW_00337] requires that development errors be-
have like assertions. Their appearance will abort the normal control flow of execution
by halting or resetting of the entire ECU.

7.2.2.2 Documentation

The SWS shall list the development errors in its chapter 7 in accordance with the
classification of [SRS_BSW_00337].

[SWS_BSW_00201] Development error type dDevelopment error values are of type
uint8.c()

7.2.2.3 Configuration

[SWS_BSW_00202] Activation of Development Errors dThe activation of develop-
ment errors is done via an C pre-processor switch. The switch <Ma>DevErrorDetect
shall activate or deactivate the detection of all development errors of a module.c()

[SWS_BSW_00203] API parameter checking dIf the <Ma>DevErrorDetect switch
is enabled API parameter checking is enabled. The detailed description of the detected
errors can be found in chapter 7.2 and chapter 8 of the respective module SWS.c()

[SWS_BSW_00042] Detection of Development errors dThe detection and report-
ing of Development errors shall be performed only if the configuration parameter for
detection of Development errors is set.c(SRS_BSW_00337)

The detection of development errors is configurable. It enables extended debugging
capabilities for the according BSW Module.

51 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

Example: The EEPROM driver provides internal checking of API parameters which is
only activated for the first software integration test ("development build") and disabled
afterwards ("deployment build").

[SWS_BSW_00235] Default configuration value of Development errors dThe de-
tection and reporting of Development errors shall be configurable and the default value
of the configuration shall be that those error type is disabled.c()

Example:

The implementation code is generated automatically by the supporting tool chain con-
sidering the configuration parameter for the detection of Development errors. If the
detection is not configured, the generated code does not contain error detection and
reporting implementation.

Example:

The implementation code contains compiler switches, which implement the configura-
tion of error detection:

1 /* File: Nm_Cfg.h */
2 /* Pre-compile configuration parameters for Network Manager */
3 ...
4 /* NM_DEV_ERROR_DETECT */
5 /* To activate (STD_ON) or deactivate (STD_OFF) detection of */
6 /* development errors. */
7 /* Satisfies BSW_SWS_042. */
8 #define NM_DEV_ERROR_DETECT STD_ON
9 ...

1 /* File: Nm.c */
2 /* Network Manager implementation */
3 ...
4 #include "Nm_Cfg.h"
5 ...
6 #if (NM_DEV_ERROR_DETECT == STD_ON)
7 ...
8 ... /* development errors to be detected */
9 ...

10 #endif /* NM_DEV_ERROR_DETECT */

Note that for switching this configuration through compiler switches the standard types
STD_ON and STD_OFF shall be used [SWS_BSW_00029].

The configuration parameter for detection of Development errors is listed in the Chapter
10 of the respective BSW Module specification.

If the detection of Development errors is active, then API parameter checking is en-
abled [SWS_BSW_00049]. The detailed description of the detected errors can be
found in chapter 7 and chapter 8 of the according BSW Module specification.

52 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

7.2.2.4 Reporting

If the detection of Development errors is configured (see [SWS_BSW_00042]) than
any detected error shall be reported:

[SWS_BSW_00045] Report detected Development errors to Det dThe BSW Mod-
ule shall report detected Development errors to the Default error tracer (Det) using
the service Det_ReportError with its assigned module identifier (see List of BSW
Modules [4]]) to identify itself.c(SRS_BSW_00337)

Note that the reported development error values must be of type uint8, in order to
comply with the signature of Det_ReportError.

See chapter 7.2.2 - Development errors for more information about activation and
deactivation of Development error detection. See the Specification of Det [15] for
more information about the service Det_ReportError.

[SWS_BSW_00243] dBSW Modules with enabled development error detection shall
raise the development error <MIP>_E_UNINIT when any function apart from the
<Mip>_GetVersionInfo, the <Mip>_Init, and the schedule functions (see
[SWS_BSW_00037]) are called for an un-initialized BSW Module.c()

7.2.3 Runtime errors

7.2.3.1 Synopsis

Runtime errors are specified as systematic faults that do not necessarily affect the
overall system behavior.

For instance, wrong post-build configurations or wrongly assigned PDU-IDs are typical
causes for runtime errors.

Like development errors, runtime errors are reported to the BSW module Det, in this
particular case through the interface Det_ReportRuntimeError. Just as develop-
ment errors, runtime errors also eventually happen and cause the corresponding error
monitors to signal their occurrence immediately.

Unlike development errors however, runtime errors shall not cause assertions, i.e., the
control flow of execution will continue. Instead of that, an occurrence of a runtime error
triggers the execution of a corresponding error handler. This error handler may be
implemented as callout within the Det by an integrator of a particular ECU and may
only include the storage of the corresponding error event to a memory, a call to the
module Dem or the execution of short and reasonable actions.

The Det module provides an optional callout interface to handle runtime errors. If it
is configured, the service Det_ReportRuntimeError shall call this callout function.
Independent from any particular implementation, the service Det_ReportRuntime
Error always returns E_OK to its caller.

53 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

Monitors dedicated to detect runtime errors may stay in the deployment build (produc-
tion code).

7.2.3.2 Documentation

The SWS shall list the runtime errors in its chapter 7 in accordance with the classifica-
tion of [1, SRS_BSW_00452].

[SWS_BSW_00219] Runtime error type dRuntime error values are of type uint8.c
()

7.2.3.3 Configuration

Runtime errors can not be switched off (like development errors) via a configuration
parameter.

If the Det implements the handling of runtime errors by a callout function, then the
particular callout function name of the Det must be configured by DetReportRuntime
ErrorCallout [15, ECUC_Det_00010].

7.2.3.4 Reporting

Any detected runtime error shall be reported:

[SWS_BSW_00222] Report detected Runtime errors to Det dThe BSW Module
shall report detected runtime errors to the Default error tracer (Det) using the service
Det_ReportRuntimeErrors.c()

Note that the reported runtime error values must be of type uint8, in order to comply
with the signature of Det_ReportRuntimeError.

See chapter 7.2.3 Runtime errors activation and deactivation of Development error
detection. See the Specification of Det [15] for more information about the service
Det_ReportRuntimeError.

7.2.4 Transient faults

7.2.4.1 Synopsis

Transient faults are caused by dysfunctional hardware. They occur if thermal noise or
particle radiation influences the functionality of the hardware and so the functionality
of the software connected with it. That also means that transient errors may heal,
because the cause for the fault may disappear, again.

54 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

For instance, a CAN controller could go off-line due to a bit-flip in its control registers,
induced by particle radiation.

Transient faults are reported to the module Det through the interface Det_Re-
portTransientFault. Although a certain implementation is not stipulated, [1,
SRS_BSW_00473] requires that transient faults will not cause to stop the control flow
of execution of the software.

The handling of those transient faults may require use case dependent actions. There-
fore, it is most likely that particular error handlers are implemented as callouts by an
integrator. In this case the service Det_ReportTransientFault returns the return
value of the callout function, otherwise it returns immediately with E_OK.

Monitors dedicated to detect transient faults must stay in the deployment build (produc-
tion code).

7.2.4.2 Documentation

The SWS shall list the transient faults in its chapter 7 in accordance with the classifica-
tion of [1, SRS_BSW_00473].

[SWS_BSW_00223] Transient faults type dTransient faults values are of Type
uint8.c()

7.2.4.3 Configuration

[SWS_BSW_00224] Detection of transient faults dThe detection of transient faults
cannot be switched off, unless the Module SWS describes configuration parameters or
other conditions, which define the activation of certain transient faults.c()

If the Det implements the handling of transient faults by a callout function, then the par-
ticular callout function name of the Det must be configured by DetReportTransient
FaultCallout [15, ECUC_Det_00011].

7.2.4.4 Reporting

[SWS_BSW_00225] Report detected Transient faults to Det dThe BSW Module
shall report detected transient faults to the Default error tracer (Det) using the service
Det_ReportTransientFaults.c()

Note that the reported runtime error values must be of type uint8, in order to comply
with the signature of Det_ReportTransientFaults.

See chapter 7.2.4 Transient faults activation and deactivation of Development error
detection. See the Specification of Det [15] for more information about the service
Det_ReportRuntimeError.

55 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

7.2.5 Extended production errors and production errors

7.2.5.1 Synopsis Production errors

According to [1, SRS_BSW_00458] production errors are caused by any hardware
problems, e.g., aging, deterioration, total hardware failure, bad production quality, in-
correct assembly, etc. These hardware problems qualify for being production errors, if
at least one of the following criteria is met (cf. [1, SRS_BSW_00458]):

• The error leads to an increase of emissions and must be detected to fulfill appli-
cable regulations.

• The error limits the capability of any other OBD relevant diagnostic monitor.

• The error requests limp-home reactions, e.g., to prevent further damage to the
hardware or customer perceivable properties.

• The garage shall be pointed to the failed component for repair actions.

In addition, [1, SRS_BSW_00458] and [1, SRS_BSW_00472] require to avoid dupli-
cate production errors which have the same root cause as failure. This means in first
place that the specification of particular production errors need some wider scope than
only the one of a specific BSW module.

A particular production error is reported to the module Dem and may utilize all available
features of it. In general, any ’fail’ of a corresponding error monitor will lead to an entry
into the primary event memory, a ’pass’ may revoke this entry.

It is generally possible to combine distinct options of the Dem for a single production
error. Thus, a particular production error may lead to an entry in the primary event
memory and may trigger a dedicated callout routine that utilizes its states for deduced
actions, at the same time.

7.2.5.2 Synopsis Extended production errors

Extended production errors indicate, like production errors, hardware problems or mis-
behavior of the environment (cf. [1, SRS_BSW_00466]).

Unlike production errors, however, extended production errors are not first-class citi-
zens which means either that they do not meet any criteria of [1, SRS_BSW_00458]
or that the error points to the same root cause as an already defined production error
[1, SRS_BSW_00472].

In this spirit, extended production errors may be utilized:

• to gain more information about the real cause of a corresponding production error

• to come to deduced entries into the event memories as a result of the combination
of various information representing a certain ECU state

56 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

Extended production errors are also reported to the module Dem.

However, the appearance of a ’fail’ state of a specific extended production error must
not lead to an immediate entry into the primary event memory. Thus, extended pro-
duction errors may utilze all features of the Dem, except the one to bind an error to an
entry of the primary event memory directly.

It may be good practice to attach extended production errors to callback routines. It
is then the responsibility of an ECU integrator to provide reasonable implementations.
In this respect, the integrator still has every freedom, even to trigger an entry into the
primary event memory.

7.2.5.3 Documentation

[SWS_BSW_00204] Documentation of (extended) production errors dFor each
production error and extended production error, appropriate documentation shall be
provided according to the AUTOSAR SWS template.c()

7.2.5.4 Configuration

[SWS_BSW_00205] Detection of (extended) production errors dThe detection of
production code errors and extended production errors cannot be switched off, unless
the Module SWS describes configuration parameters or other conditions, which define
the activation of certain (extended) production errors.c()

7.2.5.5 Reporting

Event IDs of (extended) production errors are provided as symbolic name values by
Dem through Dem.h.

The EventId symbols of production errors are the short name of the ServiceNeeds
of the BSW module (through the Dem ECUC) prefixed with DemConf_DemEventPa-
rameter_.

See TPS_ECUC_02108 from AUTOSAR Specification of ECU Configuration [11].

[SWS_BSW_00143] Values for Event IDs of production errors and extended pro-
duction errors are imported dValues for Event IDs of (extended) production errors
are assigned externally by the configuration of the Dem module.c(SRS_BSW_00409)

For reporting production errors and extended production errors, the Dem interface
Dem_SetEventStatus is used:

[SWS_BSW_00046] Report production errors and extended production errors to
Dem dThe BSW Module shall report all detected production errors and extended pro-
duction errors to the Diagnostic Event Manager (Dem) using the service Dem_Set

57 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

EventStatus if this specific production error or extended production error has been
configured for this BSW Module.c(SRS_BSW_00339)

Note that the configuration of production errors and extended production errors is op-
tional in the ECU Configuration of the BSW Modules.

[SWS_BSW_00066] Report EventStatus to Dem dFor reporting an (extended) pro-
duction error state the following BSW specific interface of Dem shall be called:

Std_ReturnType Dem_SetEventStatus (
Dem_EventIdType EventId,
Dem_EventStatusType EventStatus

)

If an error event occurred EventStatus shall be equal to: ’DEM_EVENT_STATUS_
FAILED’.

If an error event is not detected with sufficient precision and requires maturing by pre-
debouncing EventStatus shall be equal to: ’DEM_EVENT_STATUS_PREFAILED’.

If the BSW modules has explicitly detected that the error is not present EventStatus
shall be equal to: ’DEM_EVENT_STATUS_PASSED’.

If a failure free detection is not possible with sufficient precision and requires further
maturing by pre-debouncing EventStatus shall be equal to: ’DEM_EVENT_STATUS_
PREPASSED’.

If a check is not possible (e.g., requires specific operating mode), no result shall be
reported.c(SRS_BSW_00339)

Note:
The return value of Dem_SetEventStatus shall be ignored by the BSW modules.

The error state information could be reported either by a state change or when the
state is checked (event or cyclic) depending upon the configuration of the error event.
Checks are not required to be cyclic.

Pre-de-bouncing is handled inside the Diagnostic event manager using AUTOSAR pre-
defined generic signal de-bouncing algorithms.

Note:
The callback service <Mip>_DemInitMonitorFor<EventName> is principally spec-
ified by the specification [SWS_Dem_00256] within Section 8.4.3.1.1 of the specifica-
tion document for the module Diagnostic Event Manager (Dem) [16]. This document
only specifies extensions which matter for the correct functionality of error monitors.

[SWS_BSW_00206] dOnly event-based error monitors shall implement the callback
service <Mip>_DemInitMonitorFor<EventName>.c()

58 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

Note:
The BSW module Dem calls an implemented callback service <Mip>_DemInitMon-
itorFor<EventName> to trigger the re-initialization of an event-based error mon-
itor depending on the EnableConditions or ControlDTCSettings. The re-
initialization reason is passed by the parameter InitMonitorReason.

[SWS_BSW_00207] dOn each trigger of the callback service <Mip>_DemInitMoni-
torFor<EventName>, the particular BSW module shall re-initialize the monitor func-
tionality and report a new error status to the BSW module Dem immediately, if the error
status could be evaluated anytime, otherwise at the next opportunity.c()

[SWS_BSW_00208] dIf a particular BSW module implements a callback service
<Mip>_DemInitMonitorFor<EventName>, then the BSWMD shall specify a cor-
responding ServiceNeeds.c()

7.2.5.6 Example use case: Error is detected and notified

Figure 7.1

The timer function shall be provided (in this example) in the pre-de-bouncing library of
the Diagnostic event manager.

7.2.6 Security events

7.2.6.1 Synopsis

Onboard security events are reported by security related BSW modules or SWCs as
defined in Requirements on Intrusion Detection System [17]. They shall be reported to
the Intrusion Detection System Manager (IdsM).

Events are regarded as security events, if at least one of the following criteria are met:

59 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

• The event indicates a successful execution of a security related function which
shall be captured for later analysis. An example of such an event is the successful
installation of a certificate.

• The event indicates a failed security check which shall be recorded for later anal-
ysis. An example for such an event is the failed MAC verification of a secured
PDU.

7.2.6.2 Documentation

[SWS_BSW_00244] Documentation of security events dFor each security event,
appropriate documentation shall be provided according to the AUTOSAR SWS tem-
plate.c(SRS_BSW_00488)

7.2.6.3 Configuration

[SWS_BSW_00250] Enabling and disabling reporting of security events dThe
BSW module shall provide a configuration switch to enable reporting of security events
from the BSW module to the IdsM. The switch shall be located in the General container
of the module.

Shortname: <ModuleName>EnableSecurityEventReporting

Longname: Enable Security Event Reporting

The default setting of the switch shall be Off.c(SRS_BSW_00489)

7.2.6.4 Reporting

Event IDs of security events are provided as symbolic name values by IdsM through
IdsM.h.

The EventId symbols of security events are the short name of the SwcServiceDe-
pendency of the BSW module (through the IdsM ECUC) prefixed with IdsmConf_
IdsmEventParameter_.

See TPS_ECUC_02108 (AUTOSAR Specification of ECU Configuration [11] "2.4.5.2
Representation of Symbolic Names").

[SWS_BSW_00251] Values for Event IDs of security events are imported dValues
for Event IDs of security events are assigned externally by the configuration of the IdsM
module.c(SRS_BSW_00493)

[SWS_BSW_00252] Report security events to IdsM dThe BSW Module shall report
the detected security events to the Intrusion Detection System Manager (IdsM) using

60 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

the service IdsM_SetSecurityEvent if this specific security event has been config-
ured for this BSW Module.

Std_ReturnType IdsM_SetSecurityEvent (
IdsM_SecurityEventIdType securityEventId)

c(SRS_BSW_00489)

Note that the configuration of security events is optional in the ECU Configuration of
the BSW Modules.

[SWS_BSW_00253] Report security event context data to IdsM dFor reporting se-
curity events with additional context data the following BSW specific interface of IdsM
shall be called:

IdsM_SetSecurityEventWithContextData (
IdsM_SecurityEventIdType securityEventId,
const uint8* contextData,
uint16 contextDataSize)

.c(SRS_BSW_00491)

7.2.7 Specific topics

7.2.7.1 Implementation specific errors

[SWS_BSW_00073] Implementation specific errors dIf the BSW Module implemen-
tation defines additional errors, then these shall be described in the BSW module doc-
umentation. The error classification table shall be extended by implementation specific
errors.c(SRS_BSW_00337)

7.2.7.2 Handling of Symbolic Name Values

[SWS_BSW_00200] Symbolic Name values dSymbolic Name Values shall be im-
ported through the header of the BSW module that provides the value.c()

Symbolic Name Values in the implementation are using the short name of the Con-
tainer in the ECUC prefixed with <ModuleAbbreviation>Conf_ (of the producing
module) and the short name of the EcucParamConfContainerDef container [TPS_
ECUC_02108].

Example: For production errors, which are provided by the Dem, and are configured as
DemEventParameter within the ECUC of the Dem, the #define provided through
Dem.h is DemConf_DemEventParameter_<short-name>.

The following two code integration examples show the utilization of a production code
event ID (14) and its symbol (DemConf_DemEventParameter_EEP_21_LDEXT_E_
COM_FAILURE) for the module Eep:

61 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

• Example for source code integration:
1 /* File: Dem_Cfg.h */
2 ...
3 /* DEM specifies the production code error ID: */
4 #define DemConf_DemEventParameter_EEP_21_LDEXT_E_COM_FAILURE ((

Dem_EventIdType) 14u)
5 ...

1 /* File: Eep_21_LDExt.c */
2 #include "Dem.h"
3 ...
4 (void)Dem_SetEventStatus (

DemConf_DemEventParameter_EEP_21_LDEXT_E_COM_FAILURE,
DEM_EVENT_STATUS_PREFAILED);

• Example for object code integration:
1 /* File: Dem_Cfg.h */
2 ...
3 /* DEM specifies the production code error ID: */
4 #define DemConf_DemEventParameter_EEP_21_LDEXT_E_COM_FAILURE ((

Dem_EventIdType) 14u)

1 /* File: Eep_21_LDExt_Lcfg.c
2 Link-time configuration source
3 This file needs to be compiled and linked with the
4 object code delivery: */
5 #include "Dem.h"
6 #include "Eep_21_LDExt_Lcfg.h"
7 ...
8 const Dem_EventIdType Eep_21_LDExt_E_Com_Failure =

DemConf_DemEventParameter_EEP_21_LDEXT_E_COM_FAILURE;
9 ...

1 /* File: Eep_21_LDExt_Lcfg.h
2 This file needs to be compiled and linked with the
3 object code delivery: */
4 ...
5 extern const Dem_EventIdType Eep_21_LDExt_E_Com_Failure;
6 ...

1 /* File: Eep_21_LDExt.c
2 This file is delivered as object file. */
3 #include "Dem.h"
4 #include "Eep_21_LDExt_Lcfg.h"
5 ...
6 (void)Dem_SetEventStatus (Eep_21_LDExt_E_Com_Failure,

DEM_EVENT_STATUS_PREFAILED);

7.3 Meta Data Handling

Meta data of PDUs is supported by a large number of modules of the communication
stack. It serves to transport information through the layers, that is in general abstracted

62 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

by the layered architecture. The first supported meta data was the CAN ID of PDUs
related to CanIf.

The meta data is transported by the PduInfoType structure via a separate pointer to a
byte array alongside the length of and a pointer to the payload of the PDU. The content
of the meta data is defined by the EcuC description of the global PDU (/EcuC/-
EcucConfigSet/EcucPduCollection/Pdu), which gives types (MetaDataItem
Type), lengths (MetaDataItemLength) and the ordering of meta data items (Meta
DataItem) contained in the meta data of a certain PDU.

[SWS_BSW_00239] Order and Position of Meta Data Items dThe sequence and
position of meta data items within the byte array containing the meta data is given by
the configuration of the meta data items and their length (MetaDataItemLength) in
the EcuC. The ordering by length (MetaDataItemLength) ensures that no padding
is required within the meta data (i.e., between different meta data items) allowing the
meta data items to be densely packed within the meta data array.c()

A PDU has always an originating (producing) module, and a final (consuming) module,
and possibly a number of intermediate (forwarding) modules. The layout of the meta
data is fixed for a PDU. Therefore the originating module allocates the space for the
complete meta data (i.e., for all meta data items), but each module along the chain
of modules accessing the same PDU will only access the meta data items known to
them.

[SWS_BSW_00240] Allocation of Meta Data dThe first module that references a
global PDU (/EcuC/EcucConfigSet/EcucPduCollection/Pdu) in a certain di-
rection (the producing module) assembles the data of the PDU. It shall allocate space
for the entire meta data defined for the PDU, even when it supports only a subset of
the contained meta data items. Only the known subset of meta data items shall be
initialized by the producing module.c()

For example, meta data might by created by the CanIf as a CAN ID attached to an
N-PDU. This meta data is then consumed by the CanTp, which creates a SOURCE_
ADDRESS_16, a TARGET_ADDRESS_16, and an ADDRESS_EXTENSION_8 from
the CAN ID, and attaches them to an N-SDU, which is then forwarded (untouched) by
the PduR and consumed by the DCM. When (due to wrong configuration) an ETHER-
NET_MAC_64 was attached to the N-PDU, it would have been allocated by the CanIf,
but neither initialized by CanIf, nor accessed by CanTp.

[SWS_BSW_00241] Alignment of Meta Data dTo be able to access meta data items
by casting to the proper base type (according to MetaDataItemType), the whole
meta data array allocated by the producing module needs to be aligned according to
the most stringent alignment requirements of all the contained meta data items.c()

For example, the meta data array for meta data consisting of meta data items
of type SOURCE_ADDRESS_16, ADDRESS_EXTENSION_8, and ETHERNET_
MAC_64 has to be 64 bit aligned.

63 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

[SWS_BSW_00242] Access to Meta Data dEach module that references a global
PDU including meta data shall only access (read and/or write) the meta data items
that it knows. Unknown meta data items shall be left untouched.c()

64 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

8 API specification

8.1 Imported types

A list with imported types and the according included header files is specified in chapter
8 of the according BSW Module specification. Imported type definitions are defined
using the following template:

Module Available via Imported Type

Module name Name of the imported type1

Name of the imported type2

Header which defines these types.

...
Another Module name Header which defines this type. Name of the imported type.

...

8.2 Type definitions

[SWS_BSW_00146] Naming conventions for data types dAll data types defined by
the BSW Module, except ConfigType, shall be labelled according to the following con-
vention:

<Ma>_<Tn>Type

Where <Ma> is the Module abbreviation ([SWS_BSW_00101]) and <Tn> is the Type
name, which shall be written in camel case.c(SRS_BSW_00305)

Examples:

• Eep_LengthType

• Dio_SignalType

• Nm_StateType

Note that Basic AUTOSAR types [SRS_BSW_00304] do not need to support the nam-
ing convention defined in [SWS_BSW_00146].

The BSW Module type definitions are specified in chapter 8 of the according BSW
Module specification. Type definitions are defined using the following template:

[SWS_BSW_00209] d

Name: Name of type

Type: Allowed entries: ’enumeration’, ’structure’, ’reference to’ (pointer) a type, allowed
AUTOSAR integer data types (SRS_BSW_00304)

Range: Range of legal values Meanings, units, etc..

5

65 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

4
Description: Informal description of the use of this type.

Constants of this type: (optional) Predefined names of this type.

Available via: Header which defines this type.

c()

To avoid double and inconsistent definition of data types in both BSW Module and
Software Components, common data types are defined in RTE Types header files.
See also [SWS_BSW_00023].

The types from the service interface chapter are provided by Rte, and other module
types are provided by the module itself.

[SWS_BSW_00147] Definition of data types used in Standardized Interfaces and
Standardized AUTOSAR Interfaces dData types used in Standardized Interface and
Standardized AUTOSAR Interface shall only be defined in RTE Types header file
(Rte_Type.h).c(SRS_BSW_00447)

66 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

8.3 Function definitions

8.3.1 General specification on API functions

The function definitions for this module are specified in chapter 8 of the according BSW
Module specification. These functions are defined using the following template:

Service name: Name of API call

Syntax: Syntax of call including return type and parameters.

Service ID [hex]: This is the ID of service. Numbering starts for each BSW Module at 0x00. This ID
is used as parameter for the error report API of Default Error Tracer

Sync/Async: Behavior of this service. One of these values: "Synchronous" or "Asynchronous"
or "Depends on configuration"

Reentrancy: Reentrant / Non Reentrant

Parameter 1 Description of parameter 1Parameters (in):

Parameter 2 Description of parameter 2

Parameters (inout): Parameter 3 Description of parameter 3

Parameters (out): Parameter 4 Description of parameter 4

Return value: Range of legal values Description and the circumstances
under which that value is returned, and
the values of configuration attributes in
which the value can be returned

Description: Short description of the API call

Available via: Header which makes the prototype of the API available.

Reentrancy terms and definitions:

• Concurrency safe: Unlimited concurrent execution of this interface is possible,
including preemption and parallel execution on multi core systems.

• Reentrant: Pseudo-concurrent execution (i.e. preemption) of this interface is
possible on single core systems.

• Not reentrant: Concurrent execution of this interface is not possible.

• Conditionally reentrant: Concurrent execution of this interface may be possible
under certain conditions. These conditions are part of API specification.

Please note that the implementation of a module entity shall be concurrency safe when-
ever its implemented entry is reentrant and the function is supposed to be executed on
a multi-partitioned system.

The following reentrancy techniques are suggested:

• Avoid use of static and global variables

• Guard static and global variables using blocking mechanisms

• Use dynamic stack variables

To avoid name clashes, all modules API functions have unique names. The Module
implementation prefix is part of API functions name, what also eases the code reading,
as every API shows to which module it belongs.

67 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

Note that the Module implementation prefix includes additional information from BSW
Module provider in case of BSW Driver modules. This information is also part of the
modules API names [SWS_BSW_00102].

For instance, the following API names are defined:

• Eep_21_LDExt_Init() /* BSW Driver API */

• Can_21_Ext_TransmitFrame()

• Com_DeInit()

[SWS_BSW_00186] Input Pointer Parameters dAll input parameters which are
passed as pointers shall use the type qualifier "const". The compiler abstraction
macro P2CONST must be use.c()

For example:
Std_ReturnType <Mip>_DoWithInputBuffer (void* Buffer)

Shall be changed to
Std_ReturnType <Mip>_DoWithInputBuffer (

P2CONST(void,AUTOMATIC,<MIP>_APPL_DATA))

[SWS_BSW_00187] Input-Output Pointer parameters dAll INOUT/OUT parameters
which are passed as pointers shall use the compiler abstraction macro P2VAR.c()

For example:
Std_ReturnType <Mip>_DoWithInOutBuffer (uint8* Buffer)

Shall be changed to
Std_ReturnType <Mip>_DoWithInOutBuffer (

P2VAR(uint8,AUTOMATIC,<MIP>_APPL_DATA))

[SWS_BSW_00049] Implement API parameter checking dIf the detection of Devel-
opment errors is active for this BSW Module (see [SWS_BSW_00042]), then param-
eter checking for all API services shall be enabled.c(SRS_BSW_00323, SRS_BSW_-
00414)

Details about API parameter checking and which results to a development error (e.g.
NULL_PTR) and which to a runtime error (e.g. PduId range) are available in the ac-
cording BSW Module specifications.

[SWS_BSW_00212] NULL pointer checking dIf the detection of development errors
is active for this BSW Module (see [SWS_BSW_00042]), then pointer parameters shall
be checked against NULL_PTR unless NULL_PTR is explicitly allowed as a valid pointer
address value in the API parameter specification. The same also applies in case a
structure address is passed for the structure’s field(s).If such a violation is detected a
development error shall be raised.c()

Examples for legal NULL_PTR parameters are the configuration pointers for pre-
compile variants in the <Mip>_Init functions, PduInfoPtr->SduDataPtr in Copy

68 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

RxData and CopyTxData with SduLength set to zero, or the RetryInfoPtr in Copy
TxData if retry is not supported.

The BSW Module API is further specified in chapter 8 of the according BSW Module
specification.

8.3.2 Initialization function

When the BSW Module needs to initialize variables and hardware resources, this is
done in a separate Initialization function. This section contains general requirements
valid for all module specific implementations of an Initialization function service.

The Initialization function API name follows [1, SRS_BSW_00310] and has Init as
Service name.

Examples:

• CanIf_Init()

• Eep_21_LDExt_Init()

Not all BSW Module have an Initialization function. Refer to chapter 7 and 8 of the
according BSW Module specification for further details.

To protect the system against faulty initialization of the ECU or parts of the BSW, the
usage of the Initialization function of a BSW Module is restricted.

[SWS_BSW_00150] Call to Initialization functions is restricted dOnly the ECU
State Manager and Basic Software Mode Manager are allowed to call Initialization
functions.c(SRS_BSW_00101, SRS_BSW_00467)

The Initialization function is responsible to set the selection of configuration param-
eters for the module. This selection is passed as argument to the function by ECU
State Manager (EcuM) or by the Basic Software Mode Manager (BswM). See also
[SWS_BSW_00050].

[SWS_BSW_00050] Check parameters passed to Initialization functions dIf the
parameter checking for the Initialization function is enabled [SWS_BSW_00049], the
Configuration pointer argument shall be checked. The Initialization function needs a
valid pointer (different from NULL_PTR) if either:

• The configuration can be loaded (EcucModuleConfigurationValues.Im-
plementationConfigVariant is VariantPostBuild)

or

• Different configuration sets can be selected (EcucModuleConfiguration
Values.postBuildVariantUsed is true).

69 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

If these conditions are not satisfied and development error checking is enabled, a De-
velopment error with type "Invalid configuration set selection" shall be reported to De-
fault Error Tracer (Det).c(SRS_BSW_00414, SRS_BSW_00400, SRS_BSW_00438)

See chapter 7, Error classification, of the according BSW Module specification for ad-
ditional information about this error - for instance, the Error ID.

[SWS_BSW_00071] Module state after Initialization function dThe state of a BSW
Module shall be set accordingly at the end of Initialization function.c(SRS_BSW_-
00450)

Note:
This is used for Development errors detection

[SWS_BSW_00230] Call to Initialization functions dAfter a reset/reboot the module
initialization function shall be called before any other module function. There are some
module specific exceptions, e.g. pre-Init in Dem or <Mip>_GetVerisonInfo() is
always possible.c()

[SWS_BSW_00231] Multiple calls to Initialization functions dThe module initializa-
tion function shall not be called more than one time. The initialization function shall be
called only after a reset/reboot or after a call of the modules De-Initialization function.c
()

8.3.3 De-Initialization function

When the BSW Module needs to perform functionality during ECU shutdown, change
to sleep and similar phases, this is in general done in a separate De-initialization func-
tion. This section contains general requirements valid for all module specific imple-
mentations of a De-initialization function service.

The De-initialization function API name follows [1, SRS_BSW_00310] and has DeInit
as Service name.

Example:

The AUTOSAR COM modules function Com_DeInit() stops all started I-PDU
groups.

To protect the system against faulty de-initialization of the ECU or parts of the BSW,
the usage of the De-Initialization function of a BSW Module is restricted.

[SWS_BSW_00152] Call to De-Initialization functions is restricted dOnly the ECU
State Manager and Basic Software Mode Manager are allowed to call De-Initialization
functions.c(SRS_BSW_00467)

[SWS_BSW_00072] Module state after De-Initialization function dThe state of a
BSW Module shall be set accordingly at the beginning of the De-Initialization function.c
(SRS_BSW_00450)

70 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

Note:
This is used for Development errors detection

[SWS_BSW_00232] Call to De-Initialization functions dThe module De-Initialization
function shall be called only if the module was initialized before (initialization function
was called).c()

[SWS_BSW_00233] Multiple calls to De-Initialization functions dThe module De-
Initialization function shall not be called more than one time after the module initializa-
tion function was called.c()

Not all BSW Module have a De-Initialization function. Refer to chapter 7 and 8 of the
according BSW Module specification for further details.

8.3.4 Get Version Information

This section contains general requirements valid for all module specific implementa-
tions of the Get Version Information service.

[SWS_BSW_00064] Execution behavior of Get Version Information dGet Version
Information function shall be executed synchronously to its call and shall be reentrant.c
(SRS_BSW_00407)

[SWS_BSW_00052] Return result from Get Version Information dGet Version Infor-
mation function shall have only one parameter. This parameter shall return the version
information of this BSW Module with type Std_VersionInfoType, imported from
Standard Types header (Std_Types.h).c(SRS_BSW_00407)

Note that the parameter name is part of each BSW Module specification.

The returned version information has type Std_VersionInfoType, which includes
Published information from this module (see also [SWS_BSW_00059] and AUTOSAR
Specification of Standard Types [14]):

• Vendor Id

• Module Id

• Vendor specific version number

[SWS_BSW_00051] Configuration parameter for enabling Get Version Informa-
tion service dThe availability of the Get Version Information API is configurable at
Pre-compile time for every single BSW Module. The configuration parameter name
shall be formed in the following way:

<Ma>VersionInfoApic(SRS_BSW_00411)

Example:
1 /* File: Eep_21_LDExt_Cfg.h */
2

71 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

3 #define EEP_21_LDEXT_VERSION_INFO_API STD_ON /* API is enabled */

Notes:
For switching this configuration, the standard types STD_ON and STD_OFF shall be
used [SWS_BSW_00029].
If source code for both caller and callee of Get Version Information service are avail-
able, the Implementation source of the BSW Module may realize <Mip>_GetVersion
Info as a macro, defined in its Implementation header file.
If <Mip>_GetVersionInfo is provided as a macro and a function is required, the
provided macro could additionally be wrapped by a function definition.

[SWS_BSW_00236] Default configuration value of Get Version Information dThe
availability of an API to Get Version Information from a BSW Module shall be config-
urable and the default value of the configuration shall be that this API is not available.c
()

[SWS_BSW_00164] No restriction to Get Version Information calling context dIt
shall be possible to call Get Version Information function at any time (e.g. before the
Initialization function is called).c(SRS_BSW_00407)

API configuration:

• The configuration of Published information [SWS_BSW_00059] of this BSW Mod-
ule affects the API return values.

Please refer to the according BSW Module specification for further implementation
details.

8.4 Callback notifications

Callbacks are functions, which are used for notifications to other modules.

Callbacks, which are AUTOSAR Services, follow the signature expected by the RTE.
In this case, the return value of these functions has the type Std_ReturnType and
the caller can assume, that always E_OK is returned. Callback functions should never
fail, but this can happen, e.g. in partitioned systems

[SWS_BSW_00180] Signature of Callback functions of AUTOSAR Services dIf the
BSW Module provides Callback functions which are AUTOSAR Services, i.e. the func-
tion invocation is routed via RTE, then the signature of these functions shall follow the
signature provided by the RTE to invoke servers via RTE_Call API.c(SRS_BSW_-
00440)

[SWS_BSW_00172] Avoid return types other than void in Callback functions dIf
the BSW Module provides Callback functions which are not AUTOSAR Services, then
the return type of these functions shall avoid types other than void.c(SRS_BSW_-
00359)

72 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

If Callback functions do serve as simple triggers, no parameter is necessary to be
passed. If additional data is to be passed to the caller within the callback scope, it must
be possible to forward the content of that data using a parameter.

[SWS_BSW_00173] Callback parameters dCallback functions are allowed to have
parameters.c(SRS_BSW_00360)

Some Callback functions are called in interrupt context. According to
[SRS_BSW_00333] the BSW Module specification contains the information, for each
Callback function, if it is called in interrupt context or not. The implementation of Call-
back functions called in interrupt context must be kept as short as possible, as specified
in [SWS_BSW_00167].

Example: A callback from CAN Interface could be called from an ISR of the CAN driver.
In this case, this information is part of the callback specification within the SWS for the
CAN Interface module.

The list of callbacks is specific for every BSW Module. Please refer to the respective
BSW Module specification for further details.

[SWS_BSW_00218] Usage of Callback functions of AUTOSAR Services dA BSW
Module shall not call RTE interfaces (e.g. Rte_Call) before the first invocation of the
own MainFunction.c()

8.5 Scheduled functions

Many BSW Modules have one or more Scheduled Functions (also called Main pro-
cessing functions) that have to be called cyclically or upon an event (e.g. within an OS
Task) and that do the main work of the module.

Scheduled functions are directly called by Basic Software Scheduler. They have no
return value and no parameter. Calling of Scheduled functions is restricted to the BSW
Scheduler, see chapter 7.1.11.

The according BSW Module specification either defines one Scheduled function and
handles all the processing internally or defines multiple Scheduled functions with ap-
propriate module specific extensions. This depends on specific BSW Module require-
ments.

Scheduled functions are specified in chapter 8 of the corresponding BSW Module
specification. These functions are defined using the following template:

Service name: Name of API call

Syntax: Syntax of call including return type and parameters.

Service ID[hex]: Number of service ID. This ID is used as parameter for the error report API of Default Error
Tracer.

Description: Short description of the scheduled function

73 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

[SWS_BSW_00153] Naming convention for Scheduled functions dScheduled func-
tions of a BSW Module shall be named according to the following:

<Mip>_MainFunction[_<Sd>]

Where <Mip> is the Module implementation prefix [SWS_BSW_00102]. The content
between brackets shall be used only if the module defines more than one Scheduled
function, where <Sd> is a module specific name extension given to every function.c
(SRS_BSW_00373, SRS_BSW_00347)

Examples (for illustration only):

• Possible main processing function of EEPROM driver:

void Eep_21_LDExt_MainFunction(void)

• Possible main processing functions of Communication module:

void Com_MainFunctionRx(void)
void Com_MainFunctionTx(void)
void Com_MainFunctionRouteSignals(void)

[SWS_BSW_00154] Scheduled functions have no parameters dScheduled func-
tions shall have no parameters and no return value. Their return type is always void.c
(SRS_BSW_00373)

Note:
Scheduled functions are typically not reentrant.

Scheduled functions must be able to be allocated to a basic task. Because of this, they
are not allowed to enter any wait state.

[SWS_BSW_00156] Scheduled functions do not enter a wait state dScheduled
functions shall not enter any wait state.c(SRS_BSW_00424)

Typically, basic tasks are more efficient then extended tasks. Extended and basic task
are classified in the Specification of Operating System [13].

The scheduling strategy that is built inside the BSW Modules must be properly docu-
mented, see also [SWS_BSW_00054].

8.6 Expected Interfaces

8.6.1 Mandatory Interfaces

The list of mandatory interfaces is specific for every BSW Module. Please refer to
the corresponding BSW Module specification. These interfaces are defined using the
following template:

74 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

API function Available via Description

Mip_APIname Header which makes the prototype of
the mandatory interface available.

Description of the API

...

8.6.2 Optional Interfaces

The list of optional interfaces is specific for every BSW Module. Please refer to the
corresponding BSW Module specification. These interfaces are defined using the fol-
lowing template:

API function Available via Description

Mip_APIname Header which makes the prototype of
the optional interface available.

Description of the API

...

8.6.3 Configurable interfaces

Please refer to the corresponding BSW Module specification. In this chapter, all inter-
faces are listed where the target function could be configured. The target function is
usually a callback function. The name of this kind of interfaces is not fixed because
they are configurable. These interfaces are defined using the following template:

Service name: Name of API call

Syntax: Syntax of call including return type and parameters.

Service ID [hex]: This is the ID of service. Numbering starts for each BSW Module at 0x00. This ID
is used as parameter for the error report API of Default Error Tracer

Sync/Async: Behavior of this service. One of these values: "Synchronous" or "Asynchronous"
or "Depends on configuration"

Reentrancy: Reentrant / Non Reentrant

Parameter 1 Description of parameter 1Parameters (in):

Parameter 2 Description of parameter 2

Parameters (inout): Parameter 3 Description of parameter 3

Parameters (out): Parameter 4 Description of parameter 4

Return value: Range of legal values Description and the circumstances
under which that value is returned, and
the values of configuration attributes in
which the value can be returned

Description: Short description of the API call

Available via: Header which makes the prototype of the API available.

75 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

8.7 Service Interfaces

[SWS_BSW_00238] ModeDeclarationGroups definition in BSWMD dAUTOSAR
Service, ECU Abstraction and Complex Driver Components that define a ModeDec-
larationGroupPrototype as a providedModeGroup in their BSWMD shall define a syn-
chronizedModeGroup in their SwcBswMapping referencing:

• The ModeDeclarationGroupPrototype of the providedModeGroup

• The corresponding ModeDeclarationGroupPrototype of the ModeSwitchInferface
defined in its SWCD

c(SRS_BSW_00334)

76 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

9 Sequence diagrams

Please refer to according BSW Module specification.

77 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

10 Configuration specification

This chapter complements chapter 10 of according BSW Module specification.

10.1 Introduction to configuration specification

In addition to this section, it is highly recommended to read the documents:

• AUTOSAR Layered Software Architecture [5]

• AUTOSAR ECU Configuration Specification [11]

• This document describes the AUTOSAR configuration methodology and the
AUTOSAR configuration metamodel in detail.

The following is only a short survey of the topic and it will not replace the ECU Config-
uration Specification document.

10.1.1 Configuration and configuration parameters

Configuration parameters define the variability of the generic parts of an implementa-
tion of a BSW Module. This means that only generic or configurable module imple-
mentation can be adapted to the environment (software and hardware) in use during
system and ECU configuration.

The configuration of parameters can be achieved at different times during the software
process: before compile time, before link time or after build time. In the following,
the term "configuration class" of a parameter is used in order to refer to a specific
configuration point in time.

Different configuration classes will result in different implementations and design pro-
cesses, as specified in this document and in the BSW Module own specification.

10.1.2 Variants

Variants describe sets of configuration parameters.

In one variant, a parameter can only be of one configuration class.

[SWS_BSW_00237] Configuration variants dDifferent use cases require different
kinds of configurability. Therefore, the following configuration variants are provided:

• VARIANT-PRE-COMPILE: Allows individual configuration parameters to be real-
ized at "Pre-compile time" only.

• VARIANT-LINK-TIME: Allows individual configuration parameters to be realized
at either "Pre-compile time" or "Link time".

78 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

• VARIANT-POST-BUILD: Allows individual configuration parameters to be realized
at either "Pre-compile time", "Link time" or "Post-build time".

c()

10.1.3 Containers

Containers hold a set of configuration parameters. This means:

• All configuration parameters are kept in containers.

• (sub-) containers can reference (sub-) containers. It is possible to assign a mul-
tiplicity to these references. The multiplicity then defines the possible number of
instances of the contained parameters.

Configuration parameters are clustered into a container whenever:

• The configuration parameters logically belong together (e.g., general parameters
which are valid for the entire module NVRAM manager)

• The configuration parameters need to be instantiated (e.g., parameters of the
memory block specification of the NVRAM manager - those parameters must be
instantiated for each memory block)

10.1.4 Configuration parameter tables

The tables for configuration parameters are divided in three sections:

• General section

• Configuration parameter section

• Section of included/referenced containers

79 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

10.1.4.1 General section:

SWS Item Requirement ID

Container Name Identifies the container by a name, e.g.,

CanDriverConfiguration

Description Explains the intention and the content of the container .

Post-Build Variant
Multiplicity

• True: This container may have different number of instances in different post-build
variants (previously known as post-build selectable configuration sets).

• False: This container may NOT have different number of instances in different
post-build variants (previously known as post-build selectable configuration sets).

Configuration Parameters

10.1.4.2 Configuration parameter section:

Name Identifies the parameter by name.

Description Explains the intention of the configuration parameter.

Type Specifies the type of the parameter (e.g., uint8..uint32) if possible or mark it "–".

Unit Specifies the unit of the parameter (e.g., ms) if possible or mark it "–"

Range Specifies the range (or
possible values) of the
parameter (e.g., [1..15],
ON,OFF) if possible or mark
it "–".

Describes the value(s) or ranges.

Post-Build Variant
Multiplicity

• True: This parameter may have different number of instances in different post-build
variants (previously known as post-build selectable configuration sets).

• False: This parameter may NOT have different number of instances in different
post-build variants (previously known as post-build selectable configuration sets).

Post-Build Variant Value • True: This parameter may have different value in different post-build variants
(previously known as post-build selectable configuration sets).

• False: This parameter may NOT have different value in different post-build variants
(previously known as post-build selectable configuration sets).

Pre-compile see1 Reference to (a) variant(s).

Link time see2 Reference to (a) variant(s).

Multiplicity Configuration
Class

Post Build see3 Reference to (a) variant(s).

Pre-compile see4 Reference to (a) variant(s).

Link time see5 Reference to (a) variant(s).

Value Configuration Class

Post Build see6 Reference to (a) variant(s).

Scope • LOCAL: The parameter is applicable only for the module it is defined in

• ECU: The parameter may be shared with other modules (i.e. exported)

Dependency Describe the dependencies with respect to the scope if known ot mark it as "- -".

1see the explanation for configuration class label: Pre-compile time
2see the explanation for configuration class label: Link time
3see the explanation for configuration class label: Post Build time
4see the explanation for configuration class label: Pre-compile time
5see the explanation for configuration class label: Link time
6see the explanation for configuration class label: Post Build time

80 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

10.1.4.3 Section of included/referenced containers:

Included Containers
Container Name Multiplicity Scope / Dependency

Reference to a valid (sub)container by
its name, e.g. CanController

Specifies the possible number of
instances of the referenced container
and its contained configuration
parameters.

Possible values:

<multiplicity>

<min_multiplicity..max_multiplicity>

Describes the scope of the referenced
sub-container if known or mark it as "-
-".

The scope describes the impact of the
configuration parameter: Does the
setting affect only one instance of the
module (instance), all instances of this
module (module), the ECU or a
network.

Possible values of scope :

instance, module, ECU, network>

Describes the dependencies with
respect to the scope if known or mark it
as "- -".

10.1.5 Configuration class labels

The configuration parameter section is complemented by a label with additional speci-
fication for each type of configuration class:

Pre-compile time: Specifies whether the configuration parameter shall be of configu-
ration class Pre-compile time or not.

Label Description

x The configuration parameter shall be of configuration class Pre-compile time.

– The configuration parameter shall never be of configuration class Pre-compile time.

Link time: Specifies whether the configuration parameter shall be of configuration
class Link time or not.

Label Description

x The configuration parameter shall be of configuration class Link time.

– The configuration parameter shall never be of configuration class Link time.

Post Build: Specifies whether the configuration parameter shall be of configuration
class Post Build or not.

Label Description

x The configuration parameter shall be of configuration class Post Build and no specific implementation is
required.

– The configuration parameter shall never be of configuration class Post Build.

81 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

10.2 General configuration specification

10.2.1 Configuration files

See chapter 5.1 for more information about the configuration file structure.

[SWS_BSW_00157] Configuration files shall be human-readable dFiles holding
configuration data for the BSW Module shall have a format that is readable and un-
derstandable by human beings.c(SRS_BSW_00160)

10.2.2 Implementation names for configuration parameters

Configuration parameters’ names are specified in chapter 10 of the according BSW
Module specification.

Example:

Name EepNormalWriteBlockSize {EEP_NORMAL_WRITE_BLOCK_SIZE}

Description Number of bytes written within one job processing cycle in normal mode. Implementation
Type: Eep_LengthType.

Configuration parameter name specification: It specifies the Configuration parameter
name of this configuration parameter object in the AUTOSAR Model, for instance: Eep
NormalWriteBlockSize.

The same principles used for defining the names of implementation files and API func-
tions also apply for the naming of parameters.

Note that according to [SWS_BSW_00126] all Configuration parameter names shall
start with the Module abbreviation or its capitalized form.

10.2.3 Pre-compile time configuration

[SWS_BSW_00183] Pre-Compile time configuration dThe configuration parameters
in pre-compile time are set before compilation starts. Thus, the related configuration
must be done at source code level. Pre-compile time configuration allows decoupling
of the static configuration from implementation.c(SRS_BSW_00397)

Example:
1 /* File: CanTp_Cfg.h */
2 /* Pre-compile time configuration */
3 ...
4 #define CANTP_USE_NORMAL_ADDRESSING STD_OFF
5 #define CANTP_USE_NORMAL_FIXED_ADDRESSING STD_OFF
6 #define CANTP_USE_EXTENDED_ADDRESSING STD_ON
7 ...

1 /* File: CanTp.c */

82 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

2 ...
3 #include "CanTp_Cfg.h"
4 ...
5 #if (CANTP_USE_NORMAL_ADDRESSING == STD_OFF)
6 ...
7 #endif

The separation of configuration dependent data at compile time furthermore enhances
flexibility, readability and reduces efforts for version management, as no source code
is affected.

10.2.4 Link time configuration

The usage of link time parameters allows configurable functionality in BSW Modules
that are delivered as object code. This is common, for instance, for BSW drivers.

[SWS_BSW_00184] Link time configuration dThe configuration of BSW Modules
with link time parameters is achieved on object code basis in the stage after compiling
and before linking.c(SRS_BSW_00398)

See also [SWS_BSW_00117].

[SWS_BSW_00056] Configuration pointer to link-time configurable data dIf the
BSW Module depends on link-time configurable data at runtime, then it shall use a read
only reference (Configuration pointer) to an external configuration instance.c(SRS_-
BSW_00344)

10.2.5 Post-build time configuration

Post-build time configuration mechanism allows configurable functionality of BSW Mod-
ules that are deployed as object code.

[SWS_BSW_00057] Implement Post-build configuration data structure dIf the
BSW Module has Post-build time configuration parameters, the post-build configura-
tion data shall be defined in a structure: the Post-build configuration data structure.c
(SRS_BSW_00438)

[SWS_BSW_00158] Use of Configuration pointers to Post-build configuration
data structure is restricted dThe Post-build configuration data structure of each BSW
module shall be pointed to by Configuration pointers. Only EcuM contains Configu-
ration pointers to the Post-build configuration data structure of post-build configurable
modules which need to be initialized before the initialization of BswM. The rest of the
BSW modules are initialized via configuration pointers by BswM.c(SRS_BSW_00438)

Post-build configuration data is located in a separate segment and can be loaded in-
dependently of the actual code [3]. This is the case, for instance, for loadable CAN
configuration. To enable this independent loading of the configuration, the memory
layout of these parameters must be known:

83 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

[SWS_BSW_00160] Reference pointer to Post-build time configurable data dIf the
BSW Module operates on post-build configuration data, then it shall use a reference
(pointer) to an external configuration instance. This reference shall be provided via
the BSW module’s initialization function (i.e., <Mip>_Init()) via a const-qualified
function parameter.c(SRS_BSW_00404)

Example:
1 /* File: ComM_PBcfg.h */
2 ...
3 /* Type declaration of the Configuration Type */
4 struct ComM_ConfigType_Tag {
5 ...
6 };
7 ...

1 /* File: ComM_PBcfg.c */
2 #include <ComM.h>
3 ...
4 /* post-build time configurable data */
5 const ComM_ConfigType ComM_Config =
6 {
7 ...
8 };
9 ...

1 /* File: ComM.h */
2 #include <ComM_PBcfg.h>
3 ...
4 /* Forward declaration: */
5 typedef struct ComM_ConfigType_Tag ComM_ConfigType;
6 extern void ComM_Init(const ComM_ConfigType * ComMConfigPtr);
7 ...

If the Post-build configuration is placed at a fixed memory location and if there are no
BSW modules with a configuration using variations points which shall be resolved at
post-build time (see section 10.3) the references can be resolved as constant pointers.
In that case a fixed pointer will be passed to the BSW module’s initialization function.
Any indirections shall be kept as simple as possible.

10.2.6 Configuration variants

Independent from the configuration classes (pre-compile, link, and post-build time),
configuration variants enable the reuse of ECUs in different roles within the vehicle,
depending on the selected configuration variant.

[SWS_BSW_00226] Handling of different configuration variants dRegardless of
the chosen pre-compile time, link time or post-build time configuration of a BSW mod-
ule, multiple configuration variants may exist in the same configuration which is in-
dicated by different variation points. These variation points may either be bound at
pre-compile time, link time or post-build time.c()

84 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

[SWS_BSW_00227] Generation of multiple configuration variants dIn case of vari-
ation points that are bound at post-build time the selection of a particular variant is
possible without reprogramming the ECU. To this end several post-build time configu-
ration sets (i.e., one for each configuration variant) are generated and loaded into the
ECU.c()

[SWS_BSW_00228] Selection/binding of the configuration variant dThe EcuM
will determine (via a call to EcuM_DeterminePbConfiguration()) which of these
post-build time configuration variants shall be used. Based on the used config-
uration variant, the EcuM will then call the BSW modules’ initialization functions
([SWS_BSW_00050], [SWS_BSW_00150]) with a pointer to the appropriate post-build
configuration variant for the particular BSW module.c(SRS_BSW_00400, SRS_BSW_-
00405)

Example:
1 /* File: ComM_PBcfg.h */
2 ...
3 /* Type declaration of the Configuration Type */
4 typedef struct ComM_ConfigType_Tag {
5 ...
6 };
7 ...

1 /* File: ComM_PBcfg.c */
2 #include <ComM.h>
3 ...
4 /* post-build time configurable data for predefined variant "VariantA"

*/
5 const ComM_ConfigType ComM_Config_VariantA =
6 {
7 ...
8 };
9 /* post-build time configurable data for predefined variant "VariantB"

*/
10 const ComM_ConfigType ComM_Config_VariantB =
11 {
12 ...
13 };
14 ...

1 /* File: ComM.h */
2 #include <ComM_Cfg.h>
3 ...
4 /* Forward declaration: */
5 typedef struct ComM_ConfigType_Tag ComM_ConfigType;
6 extern void ComM_Init(const ComM_ConfigType * ComMConfigPtr);
7 ...

85 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

10.3 Published Information

Published information contains data defined by the implementer of the BSW Module
that does not change when the module is adapted (i.e. configured) to the actual hard-
ware and software environment. It contains version and manufacturer information.

This is necessary to provide unambiguous version identification for each BSW Module
and enable version cross check as well as basic version retrieval facilities. Thus, the
module compatibility is always visible.

[SWS_BSW_00059] Define Published information elements dThe Published infor-
mation of the BSW Module shall be provided within all header files by defining pre-
processor directives (#define) and protect them against multiple definition. The pre-
processor identifier is formed in the following way:

<MIP>_<PI>

Where <PI> is the according Published information element name. The module shall
provide definitions for the Published information elements listed in the table below.
These definitions shall have values with range as specified in this table:

See Table 10.1.

The Published information is configured in the BSW Module Description [6] for this
module.c(SRS_BSW_00402, SRS_BSW_00003, SRS_BSW_00379, SRS_BSW_-
00374, SRS_BSW_00318, SRS_BSW_00407)

Published information elements
Information element Type / Range Information element description

<MIP>_VENDOR_ID #define/uint16 Vendor ID (vendorId) of the dedicated
implementation of this module according to the
AUTOSAR vendor list.

<MIP>_MODULE_ID #define/uint16 Module ID of this module, as defined in the BSW
Module List [4].

<MIP>_AR_RELEASE_MAJOR_VERSION #define/uint8 Major version number of AUTOSAR release on
which the appropriate implementation is based
on.

<MIP>_AR_RELEASE_MINOR_VERSION #define/uint8 Minor version number of AUTOSAR release on
which the appropriate implementation is based
on.

<MIP>_AR_RELEASE_REVISION_VERSION #define/uint8 Revision version number of AUTOSAR release
on which the appropriate implementation is
based on.

<MIP>_SW_MAJOR_VERSION #define/uint8 Major version number of the vendor specific
implementation of the module. The numbering is
vendor specific.

<MIP>_SW_MINOR_VERSION #define/uint8 Minor version number of the vendor specific
implementation of the module. The numbering is
vendor specific.

<MIP>_SW_PATCH_VERSION #define/uint8 Patch level version number of the vendor specific
implementation of the module. The numbering is
vendor specific.

Table 10.1: Published information

86 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

[SWS_BSW_00161] Restriction to declaration of vendor identification dThe ven-
dor identification shall be declared only in the following way, without any cast, to allow
verification in a pre-processor.

#define <MIP>_VENDOR_ID <vi>

Where <vi> is the corresponding Vendor Id, as required in [SWS_BSW_00059].c
(SRS_BSW_00374)

The following example shows the declaration of Published information for the CAN
module implementation version 1.2.3 of vendor 43 developed according to AUTOSAR
Release 4.0.3. The module ID is obtained from BSW Modules List [4].

Example:
1 /* File: CanIf.h */
2 ...
3 /* Published information */
4 #define CANIF_MODULE_ID 0x003Cu
5 #define CANIF_VENDOR_ID 0x002Bu
6 #define CANIF_AR_RELEASE_MAJOR_VERSION 0x04u
7 #define CANIF_AR_RELEASE_MINOR_VERSION 0x00u
8 #define CANIF_AR_RELEASE_REVISION_VERSION 0x03u
9 #define CANIF_SW_MAJOR_VERSION 0x01u

10 #define CANIF_SW_MINOR_VERSION 0x02u
11 #define CANIF_SW_PATCH_VERSION 0x03u

Note that the Published information elements <MIP>_SW_MAJOR_VERSION, <MIP>_
SW_MINOR_VERSION and <MIP>_SW_PATCH_VERSION are defined by software ven-
dor.

[SWS_BSW_00162] Convention for version numbers dThe version numbers of suc-
cessive BSW Module implementations shall be enumerated according to the following
rules:

• Increasing a more significant digit of a version number resets all less significant
digits.

• The <MIP>_SW_PATCH_VERSION is incremented if the module is still upwards
and downwards compatible (e.g. bug fixed)

• The <MIP>_SW_MINOR_VERSION is incremented if the module is still downwards
compatible (e.g. new functionality added)

• The <MIP>_SW_MAJOR_VERSION is incremented if the module is not compatible
any more (e.g. existing API changed)

The digit <MIP>_SW_MAJOR_VERSION is more significant than <MIP>_SW_MINOR_
VERSION, which is more significant than <MIP>_SW_PATCH_VERSION.c(SRS_BSW_-
00321)

Example:

Take an ADC module implementation with version 1.14.2. Then:

87 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

General Specification of Basic Software Modules
AUTOSAR CP R21-11

• Versions 1.14.2 and 1.14.9 are exchangeable.

• Version 1.14.2 may contain bugs which are corrected in 1.14.9

• Version 1.14.2 can be used instead of 1.12.0, but not vice versa

• Version 1.14.2 cannot be used instead of 1.15.4 or 2.0.0

88 of 88 Document ID 578: AUTOSAR_SWS_BSWGeneral

	1 Introduction and functional overview
	1.1 Traceability
	1.2 Document conventions

	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Module implementation prefix
	5.1.2 Module implementation files
	5.1.3 Imported and exported information
	5.1.4 BSW Module Description
	5.1.5 Module documentation
	5.1.6 Code file structure
	5.1.6.1 Implementation source
	5.1.6.2 Link time configuration source
	5.1.6.3 Post-build time configuration source
	5.1.6.4 Interrupt frame implementation source

	5.1.7 Header file structure
	5.1.7.1 Implementation header
	5.1.7.2 Application Header File

	5.1.8 Version check

	6 Requirements Tracing
	7 Functional specification
	7.1 General implementation specification
	7.1.1 Conformance to MISRA C and C standard
	7.1.2 Conformance to AUTOSAR Basic Software Requirements
	7.1.3 Conformance to AUTOSAR Methodology
	7.1.4 Platform independency and compiler abstraction
	7.1.5 Configurability
	7.1.6 Various naming conventions
	7.1.7 Configuration parameters
	7.1.8 Shared code
	7.1.9 Global data
	7.1.10 Usage of macros and inline functions
	7.1.11 Calling Scheduled functions (Main processing functions)
	7.1.12 Exclusive areas
	7.1.13 Callouts
	7.1.14 AUTOSAR Interfaces
	7.1.15 Interrupt service routines
	7.1.16 Restricted OS functionality access
	7.1.17 Access to hardware registers
	7.1.18 Data types
	7.1.18.1 AUTOSAR Standard Types
	7.1.18.2 Platform Specific Types

	7.1.19 Distributed execution on multi-partitioned systems

	7.2 Error Handling
	7.2.1 Classification
	7.2.2 Development errors
	7.2.2.1 Synopsis
	7.2.2.2 Documentation
	7.2.2.3 Configuration
	7.2.2.4 Reporting

	7.2.3 Runtime errors
	7.2.3.1 Synopsis
	7.2.3.2 Documentation
	7.2.3.3 Configuration
	7.2.3.4 Reporting

	7.2.4 Transient faults
	7.2.4.1 Synopsis
	7.2.4.2 Documentation
	7.2.4.3 Configuration
	7.2.4.4 Reporting

	7.2.5 Extended production errors and production errors
	7.2.5.1 Synopsis Production errors
	7.2.5.2 Synopsis Extended production errors
	7.2.5.3 Documentation
	7.2.5.4 Configuration
	7.2.5.5 Reporting
	7.2.5.6 Example use case: Error is detected and notified

	7.2.6 Security events
	7.2.6.1 Synopsis
	7.2.6.2 Documentation
	7.2.6.3 Configuration
	7.2.6.4 Reporting

	7.2.7 Specific topics
	7.2.7.1 Implementation specific errors
	7.2.7.2 Handling of Symbolic Name Values

	7.3 Meta Data Handling

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Function definitions
	8.3.1 General specification on API functions
	8.3.2 Initialization function
	8.3.3 De-Initialization function
	8.3.4 Get Version Information

	8.4 Callback notifications
	8.5 Scheduled functions
	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	8.7 Service Interfaces

	9 Sequence diagrams
	10 Configuration specification
	10.1 Introduction to configuration specification
	10.1.1 Configuration and configuration parameters
	10.1.2 Variants
	10.1.3 Containers
	10.1.4 Configuration parameter tables
	10.1.4.1 General section:
	10.1.4.2 Configuration parameter section:
	10.1.4.3 Section of included/referenced containers:

	10.1.5 Configuration class labels

	10.2 General configuration specification
	10.2.1 Configuration files
	10.2.2 Implementation names for configuration parameters
	10.2.3 Pre-compile time configuration
	10.2.4 Link time configuration
	10.2.5 Post-build time configuration
	10.2.6 Configuration variants

	10.3 Published Information

