
 Virtual Functional Bus
AUTOSAR CP R21-11

1 of 107 Document ID 56: AUTOSAR_EXP_VFB

Document Title Virtual Functional Bus
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 56

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R21-11

Document Change History
Date Release Changed by Change Description

2021-11-25 R21-11 AUTOSAR

Release

Management

 No content changes

2020-11-30 R20-11 AUTOSAR

Release

Management

 Added docproperty

ConfidentialityInformation

 Fixed topmost table on frontpage

(removed additional column)

2019-11-28 R19-11 AUTOSAR

Release

Management

 No content changes

 Changed Document Status from

Final to published

2018-10-31 4.4.0 AUTOSAR

Release

Management

 Add product abbreviations e.g. CP

in page header

 Removed references to EcuMfixed

2017-12-08 4.3.1 AUTOSAR

Release

Management

 Minor corrections / clarifications /

editorial changes; For details please

refer to the ChangeDocumentation

2016-11-30 4.3.0 AUTOSAR

Release

Management

 Minor corrections / clarifications /

editorial changes; For details please

refer to the ChangeDocumentation

2015-07-31 4.2.2 AUTOSAR

Release

Management

 Reference to Application Interfaces

2014-10-31 4.2.1 AUTOSAR

Release

Management

 Introduction of PRPortPrototype

2014-03-31 4.1.3 AUTOSAR

Release

Management

 Improvement of the consistency to

the RTE specification for client-

server communication

 Introduction of requirements for the

graphical notation

 Virtual Functional Bus
AUTOSAR CP R21-11

2 of 107 Document ID 56: AUTOSAR_EXP_VFB

Document Change History
Date Release Changed by Change Description

2013-10-31 4.1.2 AUTOSAR

Release

Management

 Support of TEXTTABLE conversion

block

2013-03-15 4.1.1 AUTOSAR

Administration

 Introduction of Features and Profiles

2011-12-22 4.0.3 AUTOSAR

Administration

 Enhanced graphical notation (NV

data interface support)

 Introduction of a mixed conversion

block

 Clarification of the use of AUTOSAR

services within compositions

2010-09-30 3.1.5 AUTOSAR

Administration

 Improved description of port

compatibility and data conversion

scaling

 Improved consistency to other

AUTOSAR specifications

 Fixed outdated graphical notation in

images

 Reformulated description of timing

extension

2010-02-02 3.1.4 AUTOSAR

Administration

 Introduction of new concepts

(Variant Handling, Integrity and

scaling at port, Mode Management,

Triggers, Access to NVM, access to

parameters and calibrations)

 Synchronization with the current

AUTOSAR Meta-Model (new

interfaces and SwComponentTypes)

 Timing extension moved to the

AUTOSAR_TPS_TimingExtensions

document

 Legal disclaimer revised

2008-08-13 3.1.1 AUTOSAR

Administration

 Legal disclaimer revised

2007-12-21 3.0.1 AUTOSAR

Administration

 Initial Release

 Virtual Functional Bus
AUTOSAR CP R21-11

3 of 107 Document ID 56: AUTOSAR_EXP_VFB

Disclaimer

This work (specification and/or software implementation) and the material contained
in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR
and the companies that have contributed to it shall not be liable for any use of the
work.
The material contained in this work is protected by copyright and other types of
intellectual property rights. The commercial exploitation of the material contained in
this work requires a license to such intellectual property rights.
This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the
work may be utilized or reproduced, in any form or by any means, without permission
in writing from the publisher.
The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.
The word AUTOSAR and the AUTOSAR logo are registered trademarks.

 Virtual Functional Bus
AUTOSAR CP R21-11

4 of 107 Document ID 56: AUTOSAR_EXP_VFB

Table of Content

1 Introduction to this document ... 6

1.1 Contents ... 6

1.2 Prereads ... 6

1.3 Relationship to other AUTOSAR specifications ... 7

1.4 Structure and conventions of this document ... 8

1.4.1 Structure of this document ... 8

1.4.2 Specification Items ... 8

2 The Virtual Functional Bus ... 9

3 Overall mechanisms and concepts .. 12

3.1 Components ... 12

3.2 Port-Interfaces .. 14

3.3 Ports ... 17

3.3.1 Port Types .. 17

3.3.2 Port Compatibility ... 25

3.3.3 Data Type Policies .. 27

3.4 Connectors ... 27

3.4.1 Unconnected Ports ... 29

3.5 Compositions versus atomic components ... 30

3.6 Relationship between the VFB and the ECU Software Architecture 31

3.7 Kinds of software components ... 34

3.8 Resources for components and “runnables” ... 37

3.8.1 Background ... 37

3.8.2 The “runnable” concept .. 38

3.8.3 The implementation of a component and the role of the RTE 40

3.9 Interface Conversion Blocks .. 41

3.9.1 Supported Conversions and Mappings .. 41

3.10 Variant Handling ... 43

3.10.1 Binding Times ... 43

3.10.2 Choosing a Variant ... 43

3.10.3 Variability .. 44

4 Communication on the VFB ... 46

4.1 Introduction ... 46

4.2 Error types .. 46

4.3 Sender-Receiver communication ... 46

4.3.1 From the point of view of the sender .. 48

4.3.2 From the point of view of the receiver .. 50

4.3.3 Multiplicity of sender-receiver ... 53

4.3.4 Filtering between the sender and the receiver ... 55

4.3.5 Concurrency and ordering within a sender-receiver connector 55

4.4 Client-Server communication ... 56

4.4.1 From the point of view of the client .. 59

4.4.2 From the point of view of the server ... 60

4.4.3 Multiplicity of client-server .. 61

4.4.4 Ordering and concurrency within a client-server connector 61

4.5 Remarks regarding the identification of communication partners 63

5 Timing Extensions .. 64

5.1 Main Purpose of Timing Extensions for AUTOSAR .. 64

5.2 Timing in different phases of the AUTOSAR methodology 65

 Virtual Functional Bus
AUTOSAR CP R21-11

5 of 107 Document ID 56: AUTOSAR_EXP_VFB

6 Interaction with hardware ... 66

6.1 Introduction ... 66

6.2 Microcontroller Abstraction Layer (MCAL) ... 67

6.3 ECU Abstraction ... 68

6.4 Sensor-Actuator Software Component .. 68

6.5 Complex Driver Component ... 68

7 AUTOSAR Services ... 70

7.1 Introduction ... 70

7.2 VFB Representation ... 70

7.2.1 Selection of a communication mechanism ... 71

7.2.2 Location of a Service .. 71

7.2.3 Distribution of Requests to Remote Services .. 71

7.2.4 Platform dependent types .. 72

7.2.5 Configuration .. 73

7.3 List of Services ... 73

8 Mode Management .. 74

8.1 Introduction ... 74

8.2 Defining modes .. 74

8.3 Communicating modes .. 75

8.4 Mode-managers: components that control modes .. 76

8.5 Components that depend on modes .. 77

9 Port Groups .. 79

10 Measurement and Calibration .. 80

10.1 Calibration .. 80

10.1.1 Port-based calibration ... 80

10.1.2 Private calibration ... 83

10.2 Measurement ... 83

11 VFB Features and Profiles ... 85

11.1 Motivation and Introduction .. 85

11.2 Feature tables .. 85

11.2.1 Intra-ECU features .. 86

11.2.2 Inter-ECU features .. 98

12 Interaction with Non-AUTOSAR-ECUs .. 104

12.1 Introduction ... 104

12.2 Problems of interaction .. 104

12.3 Description of interaction ... 105

13 References ... 107

 Virtual Functional Bus
AUTOSAR CP R21-11

6 of 107 Document ID 56: AUTOSAR_EXP_VFB

1 Introduction to this document

1.1 Contents

This specification describes the AUTOSAR Virtual Functional Bus (VFB).

1.2 Prereads

This document is one of the high-level conceptual documents of AUTOSAR.
Useful pre-reads are the “Main Requirements” [3]. Documents that can be consulted
in parallel to this document include the “Methodology” [1] and the “Glossary” [2].

 Virtual Functional Bus
AUTOSAR CP R21-11

7 of 107 Document ID 56: AUTOSAR_EXP_VFB

1.3 Relationship to other AUTOSAR specifications

Figure 1.1: Relationship of the Specification of the “Virtual Functional Bus” to
other AUTOSAR specifications1

Figure 1.1 illustrates the relationship between the specification of the “Virtual
Functional Bus” and other major AUTOSAR specifications. The specification of the
“Virtual Functional Bus” is part of a set of specifications describing the overall concepts
of AUTOSAR. These documents give a conceptual overview of AUTOSAR and serve
as requirements to the more detailed specifications. The conceptual specifications
include:

 the “Methodology” [1] describes the method that is used when building systems
with AUTOSAR

 the specification of the “Virtual Functional Bus”

 the “Layered Software Architecture” [5]

 and the “List of Basic Software Modules” [4]

These conceptual documents are refined and made concrete into a large set of
AUTOSAR specifications, which can be grouped into:

1 The numbers in brackets refer to the Document Identification Number of the specification.

RTE and BSW SpecificationsMetamodel and Template
Specifications

Conceptual specifications

Methodology
(068)

Glossary
(055)

Main Requirements (054)

List of Basic Software
Modules (150)

Layered Software
Architecture (053)

Software Component
Template (062)

Specification of
RTE (084)

Virtual Functional Bus
(056)

BSW SWSBSW SWSBSW SWS

 Virtual Functional Bus
AUTOSAR CP R21-11

8 of 107 Document ID 56: AUTOSAR_EXP_VFB

 The specifications defining the AUTOSAR meta-model and templates: In this
group the “Software Component Template” [6] is directly influenced by the VFB
concepts.

 The specifications defining the AUTOSAR basic-software modules and the
RTE: In this group the “Specification of RTE” [7] is directly influenced by the
VFB concepts.

1.4 Structure and conventions of this document

1.4.1 Structure of this document

Figure 1.2 shows the structure of this document. The first chapters define the VFB
concepts generically and should be read in order. The last chapters define and clarify
specific issues, such as the interaction with hardware, mode-management,
AUTOSAR-Services or Measurement and Calibration. The chapter about the timing
model is for information purposes only and is not part of the standard. It is made
available to show the early conceptual work to model time aspects in the VFB.

Figure 1.2: Structure of the document

1.4.2 Specification Items

The requirements on the “Virtual Functional Bus” resulting from this document are
listed explicitly as numbered “specification items”. Each specification item has a
unique ID of the form “VFB-XXX” and has the following format:

VBF-XXX : Example of a specification Item

The Virtual Functional Bus

Overall mechanisms and concepts

Communication on the VFB

Generic Chapters

Timing Model for the VFB

Interaction with Hardware

Mode Management

AUTOSAR Services

Measurement and Calibration

Interaction with non-AUTOSAR ECU‘s

 Virtual Functional Bus
AUTOSAR CP R21-11

9 of 107 Document ID 56: AUTOSAR_EXP_VFB

2 The Virtual Functional Bus

Figure 2.1 shows an overview out of the “Methodology” specification [1]. Figure 2.2
illustrates the “Configure System” activity out of the methodology (top-left), which
focuses on the VFB.

Figure 2.1: Overview of the AUTOSAR Methodology [1]

ECU

Component

System

Configure

System

.XML.XML

System

Configuration

Input :

System

.XML.XML

System

Configuration

Description

:System

Extract

ECU-Specific

Information

.XML.XML

ECU

Extract of

System

Configuration

:System

Configure

ECU

.XML.XML

ECU

Configuration

Description

Generate

Executable

.exe.exe

ECU

Executable

Component

related

templates

.XML.XML

ECU

related

templates

Implemented

Component

Implement

Component

 Virtual Functional Bus
AUTOSAR CP R21-11

10 of 107 Document ID 56: AUTOSAR_EXP_VFB

Figure 2.2: Detailed view on the activity “Configure System”

In AUTOSAR, an application is modeled as a composition of interconnected
components. This is illustrated in the top half of Figure 2.2 (labeled “VFB view”). The
“virtual functional bus” is the communication mechanism that allows these components
to interact. In a design step called “Configure System”, the components are mapped
on specific system resources (ECUs). Thereby, the virtual connections between the
components are mapped onto local connections (within a single ECU) or on network-
technology specific communication mechanisms (such as CAN or FlexRay frames).
Finally, the individual ECUs in such a system can be configured. The concrete interface
between the individual components and between the components and the Basic
Software (BSW) [5][4] is called the Run-Time Environment (RTE) [7]
A component encapsulates complete or partial automotive functionality. Components
consist of an implementation and of an associated formal software-component
description (defined in the “Software Component Template” specification [6]). The
concept of the virtual functional bus allows for a strict separation between applications

ECU I

Virtual Functional Bus

AUTOSAR

SW-C 1

AUTOSAR

SW-C 2
AUTOSAR

SW-C 3

AUTOSAR

SW-C n...

ECU II

AUTOSAR

SW-C 1

AUTOSAR

SW-C3

AUTOSAR

SW-C 2

ECU n

AUTOSAR

SW-C n

RTE

Basic

Software

RTE

Basic

Software

RTE

Basic

Software

...

System Constraint

Description
ECU

Descriptions

Tool Supporting development

of SW components

Gateway

SW-C

Description

SW-C

Description

SW-C

Description

SW-C

Description

ECU

Description

ECU

Description

Flex Ray CAN

 Virtual Functional Bus
AUTOSAR CP R21-11

11 of 107 Document ID 56: AUTOSAR_EXP_VFB

and infrastructure. The software components implementing the application are largely
independent of the communication mechanisms through which the component
interacts with other components or with hardware (such as sensor or actuators). This
fulfills AUTOSAR’s goal of relocatability (see also AUTOSAR “Main Requirements”
[3]).
With this the complete communication of a system can be specified including all
communication sources and sinks. The VFB can therefore be used for plausibility
checks concerning the communication of software components. The communication
connections and the connected software components are saved in one description,
which will be used for the next process steps (mapping, software configuration, etc.).
The VFB specification needs to provide concepts for all infrastructure-services that are
needed by a component implementing an automotive application. These include:

 Communication to other components in the system

 Communication to sensors and actuators in the system (see Chapter 6,
Interaction with hardware)

 Access to standardized services, such as reading to or writing from non-volatile
ram (see Chapter 7, AUTOSAR Services)

 Responding to mode-changes, such as changes in the power-status of the local
ECU (see Chapter 8, Mode Management)

 Interacting with calibration and measurement systems (see Chapter 10)

 Virtual Functional Bus
AUTOSAR CP R21-11

12 of 107 Document ID 56: AUTOSAR_EXP_VFB

3 Overall mechanisms and concepts

3.1 Components

The central structural element used when building a system at the VFB-level is the
“component”. A component has well-defined “ports”, through which the component can
interact with other components. A port always belongs to exactly one component and
represents a point of interaction between a component and other components.

Figure 3.1 shows an example of the definition of a component-type called
“SeatHeatingControl”, which controls the heating element in a seat based on several
information sources.
In this example, the component-type requires the following information as input:

 whether a passenger is sitting on the seat (through the port “SeatSwitch”)

 the setting of the seat temperature dial (through the port “Setting”)

 and some information from a central power management system (through the
port “PowerManagement”), which could decide to disable seat heating in certain
conditions.

It controls

 the DialLED that is associated with the seat temperature dial (port “DialLED”)

 and the heating element (through the port “HeatingElement”).
Finally, the component can be calibrated (port “Calibration”), needs the status of the
ECU on which the component runs (port “ecuMode”) and requires access to local non-
volatile memory (port “nv”).

Figure 3.1: Example of the definition of the component-type
“SeatHeatingControl” with eight ports

SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting

nv

Calibration

ecuMode

 Virtual Functional Bus
AUTOSAR CP R21-11

13 of 107 Document ID 56: AUTOSAR_EXP_VFB

Figure 3.2 shows an example of the definition of a sensor-actuator component2 called
“SeatHeating”. This component inputs the desired setting of the heating element
(through the port “Setting”) and directly controls the seat heating hardware (through
the port “IO”).

Figure 3.2: Example of the definition of a component-type “SeatHeating” with
two ports

A single component can implement both very simple but also very complex
functionality. A component may have a small number of ports providing or requiring
simple pieces of information, but can also have a large number of ports providing or
requiring complex combinations of data and operations.
AUTOSAR supports multiple instantiation of components. This means that there can
be several instances3 of the same component in a vehicle system. Figure 3.3 shows
how two instances of the “SeatHeatingControl” component-type are used to control the
left front seat, respectively the right front seat. These components will typically have
their own separate internal state (stored in separate memory locations) but might for
example share the same code (in as far as the code is appropriately written to support
this).

Figure 3.3: Example showing the multiple instantiation of the component
“SeatHeatingControl” as “SHCFrontLeft” and “SHCFrontRight”

2 Chapter 6, Interaction with hardware, defines the exact purpose of the “sensor-actuator” components
3 Dynamic instantiation at runtime is not in scope of the present release of AUTOSAR.

SeatHeating

Setting
IO

SHCFrontLeft:

SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting

nv

Calibration

ecuMode

SHCFrontRight:

SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting

nv

Calibration

ecuMode

 Virtual Functional Bus
AUTOSAR CP R21-11

14 of 107 Document ID 56: AUTOSAR_EXP_VFB

[EXP_Vfb_00001] ⌈At configuration time, the component’s ports are known⌋()

[EXP_Vfb_00002] ⌈Components interact with each other through their ports only⌋()

[EXP_Vfb_00084] ⌈A component-type can be instantiated multiple times on the VFB⌋

()

3.2 Port-Interfaces

A port of a component is associated with a “port-interface”. The port-interface defines
the contract that must be fulfilled by the port providing or requiring that interface.

[EXP_Vfb_00003] ⌈At configuration time, each port is typed by exactly one port-

interface⌋()

Table 3.1 lists the port-interfaces supported by AUTOSAR.

 Virtual Functional Bus
AUTOSAR CP R21-11

15 of 107 Document ID 56: AUTOSAR_EXP_VFB

Kind of port-
interface

Comment Further reading

Client-server The server is provider of operations and
several clients can invoke those
operations.

this section and
Section 4.4

Sender-receiver A sender distributes information to one or
several receivers, or one receiver gets
information (events) from several
senders4. A mode manager can notify
mode switches to one or several receivers

this section and
Section 4.3

Parameter Interface A parameter interface allows software
components access to either constant
data, fixed data or calibration data. It
should be noted that depending on the
type of access (i.e. fixed, const or
standard respectively) that compatibility
rules apply. For example a parameter
interface which uses a fixed
implementation policy will not be allowed
to connect to a port of a Parameter SW
Component if the provider uses a variable
data implementation (i.e. standard). The
reason is plain and simple; The
application will use a #define (pre-compile
value optimization) and so will not take
actual values from the Parameter SW
component at runtime.

Chapter 10

Non volatile
Data Interface

Provide element level access (read only
or read/write) to non volatile data as
opposed to NV block access.

Section 4.3

Trigger Interface The trigger interface allows software
components to trigger the execution of
other software components. The purpose
of the trigger interface is to allow for fast
response times with regards to the
occurrence of a trigger which might occur
sporadic or at a variable cycle time.
Example: triggering based on the crank
shaft and cam shaft position.

Section 3.8

Mode Switch
Interface

The mode switch interface is used to
notify a software component of a mode.
The mode manager provides modes that
can be used by mode users to adjust the
behavior according to modes or
synchronize activities to mode switches.

Section 8

4 In the context of AUTOSAR, sending, receiving and distributing of events is seen as part of the sender-
receiver communication pattern.

 Virtual Functional Bus
AUTOSAR CP R21-11

16 of 107 Document ID 56: AUTOSAR_EXP_VFB

Table 3.1: The kinds of port-interfaces provided by AUTOSAR.

A client-server interface defines a set of operations that can be invoked by a client and
implemented by a server. Figure 3.4 shows an example of the definition of a simple
client-server interface. The interface “HeatingElementControl” defines a single
operation called “SetPower” with a single ingoing argument called “Power”. The
operation can return an application error called “HardwareProblem”.

Figure 3.4: Example of a client-server interface “HeatingElementControl” with
a single operation

A sender-receiver interface defines a set of data-elements that are sent and received
over the VFB. Figure 3.5 shows the definition of a simple sender-receiver interface
called “SeatSwitch” containing a single data-element called “PassengerDetected”.

Figure 3.5: Example of a Sender-Receiver Interface “SeatSwitch” with a single
data-element

[EXP_Vfb_00004] ⌈At configuration time it is known whether the port-interface is a

client-server interface or a sender-receiver interface⌋()

[EXP_Vfb_00005] ⌈At configuration time, it is known which operations a client-server

interface contains⌋()

[EXP_Vfb_00006] ⌈At configuration time, it is known which data-elements a sender-

receiver interface contains⌋()

AUTOSAR has standardized stable and widely accepted application interfaces to
ensure the interoperability of software components from different vendors. The
application interfaces aim to cover a wide range of automotive domains.

Body and Comfort [9]

<<ClientServerInterface>>

HeatingElementControl

ApplicationErrors:

HardwareProblem

Operations:
SetPower(

IN ARGUMENTint32 Power,

POSSIBLEERROR=HardwareProblem)

<<SenderReceiverInterface>>

SeatSwitch

DataElements:

boolean PassengerDetected

 Virtual Functional Bus
AUTOSAR CP R21-11

17 of 107 Document ID 56: AUTOSAR_EXP_VFB

Powertrain [10]
Chassis [11]
Occupant and Pedestrian Safety Systems [12]
HMI, Multimedia and Telematics [13]

The application interfaces make use of the concept of blueprint. A blueprint is a pre-
definition of a model element and can be used as a basis for further modeling. A user
guide [14] dedicated to application interfaces is available for more information.

3.3 Ports

As defined before, the ports of a component are the interaction points between
components.
A port of a component is either a “PPort”, a “RPort” or a “PRPort”. A “PPort” or a
“PRPort” provides the elements defined in a port-interface. A “RPort” or a “PRPort”
requires the elements defined in a port-interface. A port is thus typed by exactly one
port-interface5.

3.3.1 Port Types

A single port-interface can type several different ports.

[EXP_Vfb_00007] ⌈At configuration time, it is known whether a component’s port is a

PPort, a RPort or a PRPort⌋()

Table 3.2 shows the port-icons for the various combinations and summarizes the
semantics of those ports. Please note that PRPorts typed by a parameter interface are
not supported.

Kind of Port Kind of Interface Service
Port

Port-Icon and description

5 This implies that a port only provides one elementary communication pattern (either sender-receiver
or client-server). This is necessary because otherwise a reasonable connection of ports is not possible.
Additionally only in this way a reasonable modeling e.g. of data flow is possible.

 Virtual Functional Bus
AUTOSAR CP R21-11

18 of 107 Document ID 56: AUTOSAR_EXP_VFB

RPort sender-receiver No

[EXP_Vfb_00096]

The component reads/consumes
values of data-elements

PPort sender-receiver No

[EXP_Vfb_00097]

The component provides values of
data-elements

PRPort sender-receiver No

[EXP_Vfb_00129]

The component provides and reads
values of data-elements

RPort sender-receiver Yes

[EXP_Vfb_00098]

The component reads/consumes
values of data-elements from an

AUTOSAR service

PPort sender-receiver Yes

[EXP_Vfb_00099]

The component provides values of
data-elements to an AUTOSAR

service

 Virtual Functional Bus
AUTOSAR CP R21-11

19 of 107 Document ID 56: AUTOSAR_EXP_VFB

PRPort sender-receiver Yes

[EXP_Vfb_00132]

The component provides and reads
values of data-elements to/from an

AUTOSAR service

RPort client-server No

[EXP_Vfb_00100]

The component requires (=uses or
invokes) the operations defined in

the interface

PPort client-server No

[EXP_Vfb_00101]

The component provides
(=implements) the operations

defined in the interface

PRPort client-server No

[EXP_Vfb_00133]

The component requires and
provides the operations defined in

the interface

RPort client-server Yes

[EXP_Vfb_00102]

The component requires (=uses or
invokes) the operations defined in
the interface from an AUTOSAR

service

 Virtual Functional Bus
AUTOSAR CP R21-11

20 of 107 Document ID 56: AUTOSAR_EXP_VFB

PPort client-server Yes

[EXP_Vfb_00103]

The component provides
(=implements) the operations
defined in the interface to an

AUTOSAR service

PRPort client-server Yes

[EXP_Vfb_00134]

The component provides and
requires the operations defined in
the interface to/from an AUTOSAR

service

RPort parameter (this
includes requiring
calibration data)

No

[EXP_Vfb_00104]

The component requires parameter
data (either fixed, const or variable)

PPort parameter (this
includes
providing
calibration data)

No

[EXP_Vfb_00105]

The component provides parameter
data (either fixed, const or variable)

RPort parameter (this
includes requiring
calibration data)

Yes

[EXP_Vfb_00106]

The component requires parameter
data (either fixed, const or variable)

from an AUTOSAR service

 Virtual Functional Bus
AUTOSAR CP R21-11

21 of 107 Document ID 56: AUTOSAR_EXP_VFB

PPort parameter (this
includes
providing
calibration data)

Yes

[EXP_Vfb_00107]

The component provides parameter
data (either fixed, const or variable)

to an AUTOSAR service

RPort Trigger No

[EXP_Vfb_00108]

Component with a trigger sink

PPort Trigger No

[EXP_Vfb_00109]

Component with a trigger source

PRPort Trigger No

[EXP_Vfb_00135]

Component with a trigger source
and sink

RPort Trigger Yes

[EXP_Vfb_00110]

Component with a trigger sink from
an AUTOSAR service

PPort Trigger Yes

[EXP_Vfb_00111]

Component with a trigger source to
an AUTOSAR service

 Virtual Functional Bus
AUTOSAR CP R21-11

22 of 107 Document ID 56: AUTOSAR_EXP_VFB

PRPort Trigger Yes

[EXP_Vfb_00136]

Component with a trigger source
and sink to/from an AUTOSAR

service

RPort mode switch No

[EXP_Vfb_00112]

Component with a mode switch user

PPort mode switch No

[EXP_Vfb_00113]

Component with a mode switch
manager

PRPort mode switch No

[EXP_Vfb_00130]

Component with a mode switch
manager and user

RPort mode switch Yes

[EXP_Vfb_00114]

Component with a mode switch user
with an AUTOSAR service

PPort mode switch Yes

[EXP_Vfb_00115]

Component with a mode switch
manager with an AUTOSAR service

 Virtual Functional Bus
AUTOSAR CP R21-11

23 of 107 Document ID 56: AUTOSAR_EXP_VFB

PRPort mode switch Yes

[EXP_Vfb_00137]

Component with a mode switch
manager and user with an

AUTOSAR service

RPort NV data No

[EXP_Vfb_00116]

The component requires access to
non volatile data provided by an NV

Block Component

PPort NV data No

[EXP_Vfb_00117]

The NV Block Component provides
access to non volatile data

PRPort NV data No

[EXP_Vfb_00131]

The component provides and
requires access to/from non volatile

data

RPort NV data Yes

[EXP_Vfb_00118]

The component requires access to
non volatile data provided by an

AUTOSAR service

 Virtual Functional Bus
AUTOSAR CP R21-11

24 of 107 Document ID 56: AUTOSAR_EXP_VFB

PPort NV data Yes

[EXP_Vfb_00119]

The component provides access to
non volatile data to an AUTOSAR

service

PRPort NV data Yes

[EXP_Vfb_00138]

The component provides and
requires access to/from non volatile

data of an AUTOSAR service

Table 3.2: Semantics of the port-icons

When a PPort of a component provides a client-server interface, the component to
which the port belongs provides an implementation of the operations defined in the
interface.
In the example of Figure 3.6, the component “SeatHeating” implements the operation
“SetPower” and makes it available to other components through the port “Setting”. The
component “SeatHeatingControl” uses the operation “SetPower” and expects such an
operation to be available through the port “HeatingElement”.

Figure 3.6: Example showing the use of the Client-Server Interface
“HeatingElementControl” to type the Port ”HeatingElement” of the component
“SeatHeatingControl” and the port “Setting” of the component “SeatHeating”

SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting

SeatHeating

nv

Setting
IO

<<Interface>>

HeatingElementControl

ApplicationErrors:

HardwareProblem

Operations:
SetPower(

IN ARGUMENTint32 Power,

POSSIBLEERROR=HardwareProblem)

Calibration

ecuMode

 Virtual Functional Bus
AUTOSAR CP R21-11

25 of 107 Document ID 56: AUTOSAR_EXP_VFB

A component providing a sender-receiver interface generates values for the data-
elements defined in the interface.
In the example of Figure 3.7, the component “SeatSwitch” generates values for the
Boolean value “PassengerDetected” through its port “Switch”. Similarly, the
component “SeatHeatingControl” can read the data-element “PassengerDetected”
through its port “SeatSwitch”.

Figure 3.7: Example showing the use of the Sender-Receiver Interface
“SeatSwitch” to type the Port “SeatSwitch” of the components

“SeatHeatingControl” and the port “Switch” of the component “SeatSwitch”

3.3.2 Port Compatibility

A receiver port can only be connected to a compatible provider port. Table 3.3 gives
an overview over the compatibility of ports. The following comments describe some
basic compatibility rules. Please note that this overview only contains some basic rules.
A more comprehensive and detailed description is given in the “Software Component
Template” [6].

(1) For each element in the interface of the require port there must be a compatible
element in the interface of the provide port. The mapping is realized implicitly
via the shortname of the element or explicitly via explicit mappings (see section
3.9.1).

(2) For mode switch ports all elements of the interface of the provide port must have
a corresponding element in the interface of the require port.

(3) Require and provide port are both service ports or are both not service ports.
(4) For connecting ports with Sender Receiver Interface, Parameter Interface or

Non Volatile Data Interface, corresponding elements must have compatible
implementation policies (see “Software Component Template” [6]).

(5) PRPorts typed by a parameter interface is not supported.

SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting

SeatSwitch

nv

IO

Calibration

<<Interface>>

SeatSwitch

DataElements:

boolean PassengerDetected
ecuMode

Switch

 Virtual Functional Bus
AUTOSAR CP R21-11

26 of 107 Document ID 56: AUTOSAR_EXP_VFB

For example, a Require Port that expects a fixed parameter can only be connected
to a Port that provides a fixed Parameter. This is because this fixed data may be
used in a compilation directive like #if and only macro #define (fixed data) can be
compiled in this case.

 Virtual Functional Bus
AUTOSAR CP R21-11

27 of 107 Document ID 56: AUTOSAR_EXP_VFB

Kind
of port

 RPort or PRPort

 Kind of
interface

Sender
Receiver

Parameter Non
Volatile
Data

Client
Server

Trigger Mode
Switch

PPort
or
PRPort

Sender
Receiver

yes
(1,3,4)

no yes
(1,3,4)

no no no

Parameter yes
(1,3,4,5)

yes
(1,3,4,5)

yes
(1,3,4,5)

no no no

Non
Volatile
Data

yes
(1,3,4)

no yes
(1,3,4)

no no no

Client
Server

no no no yes
(1,3)

no no

Trigger no no no no yes
(1,3)

no

Mode
Switch

no no no no no yes
(1,2,3)

Table 3.3: Compatibility of kinds of ports
(numbers in this table correspond to the compatibility rules described before)

3.3.3 Data Type Policies

Data elements on a port are typed properly as part of the port interface description of
a SWC. However it should be noted though that the data type of elements to be
communicated between two ports can be overridden by the integrator by overriding the
data type using a data type policy which allows for reducing the number of bits to be
transmitted over a physical network. The data type has to be compatible and usually
result in loss of precision and introduce quantization artifacts.

3.4 Connectors

During the design of an AUTOSAR system, ports between components that need to
communicate with each other are hooked up using assembly-connectors. Such an
assembly-connector connects one RPort or PRPort with one PPort or PRPort.

 Virtual Functional Bus
AUTOSAR CP R21-11

28 of 107 Document ID 56: AUTOSAR_EXP_VFB

Figure 3.8: Example of the use of eight assembly-connectors to connect the
ports of seven components

For the case of sender-receiver communication, the presence of an assembly-
connector represents the fact that the data generated by the PPort on the connector is
transmitted to the RPort. In the example of Figure 3.8 the data generated on the PPort
“DialLED” of the component “SHCFrontRight” (of component-type
“SeatHeatingControl”) is transmitted to the RPort “LED” of the component
“SHDialFrontRight” (of component-type “HeatingDial”).
For the case of client-server communication, an invocation of the operations provided
on a PPort is possible from the components that have an RPort connected to this
PPort. In the example of Figure 3.8: when the component “SHDialFrontLeft” invokes
an operation through the port “Position”, this operation will be invoked on the port
“Setting” of the component “SHCFrontLeft”.
Both for sender-receiver communication and for client-server communication, one
PPort can be connected to one or more RPorts (for multicast sending and multiple
clients connected to a server, respectively). In the example of Figure 3.8, the data
coming out of the port “SeatHeating” of the component “PM” is sent to both
components “SHCFrontLeft” and “SHCFrontRight”.
Furthermore, in sender-receiver communication one or more PPorts can be connected
to one RPort (e.g. for information collected from different senders in a single receiver).
The exact communication behavior that such a connector represents depends on the
kind of operations or data that is provided and/or required on the ports that the
connector connects.

SHCFrontLeft:

SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting

SHDialFrontLeft:

HeatingDial

Position

LED

SHCFrontRight:

SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElementDialLED

Setting

SHDialFrontRight:

HeatingDial

Position

LED

PM:

PowerManagement

SeatHeating

WindowDefrost

SHFrontLeft:

SeatHeating

SHFrontRight:

SeatHeating

PowerStatus

nv

IO

IO
IO

IO

Calibration

Calibration

nv

ecuMode

ecuMode

 Virtual Functional Bus
AUTOSAR CP R21-11

29 of 107 Document ID 56: AUTOSAR_EXP_VFB

[EXP_Vfb_00008] ⌈At configuration time, all components instantiated on the VFB are

known⌋()

[EXP_Vfb_00009] ⌈At configuration time, all communication possibilities between

components on the VFB are modeled through the presence of connectors.
Communication between ports not connected through such a connector is not

possible.6⌋()

[EXP_Vfb_00010] ⌈An assembly-connector connects exactly one PPort or PRPort with

exactly one RPort or PRPort⌋()

[EXP_Vfb_00113] ⌈An assembly-connector can connect one PPort or PRPort with one

RPort or PRPort only if their port types, interfaces and attributes, characterizing their

communication abilities, are compatible with each other7.⌋()

3.4.1 Unconnected Ports

The occurrence of an unconnected port is not per se a design mistake. It can be valid
when an application provider for the data element is absent and the default init value
is good enough to operate with or it could be that an end point was removed from the
system because it is subjected to variability (See section Variant Handling).

3.4.1.1 Unconnected PRPorts

A PRPort is never considered unconnected, even if there are no connectors actually
referring to it.

3.4.1.2 Unconnected Sender/Receiver Ports

If a PPort of a sender receiver communication is unconnected then the data being
published by the provider will not appear on the VFB and as such will not be accessible
by any other software component.
If an RPort of a sender receiver communication is unconnected then the RPort shall
provide the initial value and report of an unconnected RPort.

6 The AUTOSAR-Services are an exception to this rule. The connections related to AUTOSAR-Services
are made later in the AUTOSAR-method, namely during ECU-configuration. See AUTOSAR Services,
for a deeper explanation.
7 The exact meaning of “compatibility” is defined in the Software Component Template [6].

 Virtual Functional Bus
AUTOSAR CP R21-11

30 of 107 Document ID 56: AUTOSAR_EXP_VFB

3.4.1.3 Unconnected Client/Server Ports

If a PPort of a client server communication is not connected the server will not receive
any requests.
If an RPort of a client server communication is unconnected then the RPort shall report
of an unconnected RPort.

3.5 Compositions versus atomic components

A sub-system consisting of usages of components and connectors is packaged into a
“composition”. In AUTOSAR, the usage of a component-type within a composition is
called a “prototype”. A composition is itself a component-type and can have its own
ports. Compositions can be used as structuring elements to build up hierarchical
systems with an arbitrary number of hierarchies.
Figure 3.9 shows the definition of the composition “SeatHeatingControlAndDrivers”.
This composition contains three prototypes: the prototype “SHDial” (of component-type
“HeatingDial”), the prototype “SHC” (of component-type “SeatHeatingControl”) and the
prototype “SH” (of component-type “SeatHeating”). The composition itself is a
component-type and has seven ports.

Figure 3.9: Example of the definition of the Composition
“SeatHeatingControlAndDrivers”

Figure 3.10 shows the use of a composition as a component-type. Figure 3.10
essentially shows another composition containing three prototypes: the prototypes
“SHFrontLeft” and “SHFrontRight” (both of type “SeatHeatingControlAndDrivers”) and
the prototype “PM” of type “PowerManagement”.
A component-type in AUTOSAR is either a “composition” or “atomic”. A composition
is defined through interconnected prototypes (as in Figure 3.9). An atomic component
cannot be further decomposed into smaller components.

SHC:

SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting

SHDial:

HeatingDial

Position

LED

SH:

SeatHeating

SeatHeatingControlAndDrivers

SeatSwitch

PowerManagement

IO

IO

nvIODial IOHeatingCalibration

ecuMode

 Virtual Functional Bus
AUTOSAR CP R21-11

31 of 107 Document ID 56: AUTOSAR_EXP_VFB

When designing a composition, service ports have to be specially handled. The
configuration of AUTOSAR services takes place in the ECU configuration phase by
adding the necessary service components and connecting them to the flattened set of
atomic software components which require access to the services. As a consequence,
compositions are not allowed to have ports for use with services. For more details
about services, see AUTOSAR Services.

Figure 3.10: Example of the use of the Composition
“SeatHeatingControlAndDrivers”

3.6 Relationship between the VFB and the ECU Software
Architecture

When a sub-system consisting of atomic components and assembly-connectors is
deployed on a network of ECUs, all atomic components are mapped on an ECU. The
corresponding connectors between the components are implemented by intra- or inter-
ECU communication mechanisms.
In the example of Figure 3.11, atomic components “SHDialFrontLeft” and
“SHCFrontLeft” are mapped onto “ECU1”, whereas the atomic component “PM” is
mapped onto “ECU3”. This implies that the connectors between the first two
components are handled within ECU1, whereas the connection between the
component “SHCFrontLeft” and the component “PM” will run through a network
connection between ECU1 and ECU3.

SHFrontLeft:

SeatHeatingControlAndDrivers

SeatSwitch PowerManagement

PM:

PowerManagement

SeatHeating

WindowDefrost

PowerStatus

SHFrontRight:

SeatHeatingControlAndDrivers

SeatSwitch PowerManagement

IODial

IODial

nv

nv

IOHeating

IOHeating

Calibration

Calibration

 Virtual Functional Bus
AUTOSAR CP R21-11

32 of 107 Document ID 56: AUTOSAR_EXP_VFB

Figure 3.11: Example illustrating the mapping of a composition of components on
three ECUs.

Figure 3.12 shows the standard component-view on the AUTOSAR layered software
architecture, which is the architecture of a single AUTOSAR ECU. The “AUTOSAR
Interface” of a component refers to the full set of ports of a component (as defined
before, a port-interface characterizes a single port of a component). A “Standardized
AUTOSAR Interface” is an AUTOSAR Interface which is standardized by AUTOSAR.
Typically, an AUTOSAR service will have such a “Standardized AUTOSAR Interface”.
For a formal definition of the term AUTOSAR Interface and Standardized AUTOSAR
Interface see specification “Layered Software Architecture” [5].

VFB

PM:

PowerManag

ement

RTE1

BSW1

RTE3

BSW3

ECU1 ECU3

SHDialFrontL

eft:

HeatingDial

SHCFrontLeft:

SeatHeatingControl

SHDialFront

Right:

HeatingDial

SHCFrontRight:

SeatHeatingControl

HFront

Left:

SeatHe

ating

HFront

Right:

SeatHe

ating

PM:

PowerManag

ement

SHDialFrontL

eft:

HeatingDial

ECU2

…
…

…

…

IO IO IOIO

IO

…

SHCFrontLeft: SeatHeatingControl

n
v e
c
u
M

o
d

e

C
a
lib

ra
ti
o

n

…

…

P
o

w
e

r
M

a
n

a
g

e
m

e
n

t

 Virtual Functional Bus
AUTOSAR CP R21-11

33 of 107 Document ID 56: AUTOSAR_EXP_VFB

Figure 3.12: Component-View on the AUTOSAR layered software architecture

Figure 3.13 shows what a possible concrete architecture of ECU1 out of the example
of Figure 3.11 might look like. The atomic software components that are mapped on
ECU1 are hooked into the Run-Time Environment that is generated for ECU1. This
Run-Time Environment will typically implement the local connections between the local
components “SHCFrontLeft” and “SHDialFrontLeft”.
In addition, the Run-Time Environment has the responsibility to route information that
is coming from or going to remote components. In the example, the port “Power
Management” is routed to the communication stack in the underlying basic software.
The RTE also hooks up the component “SHCFrontLeft” to local standardized
AUTOSAR services, such as the local non-volatile memory (through the port “nv”) and
information on the local state of the ECU (“through the port “ecuMode”).

ECU-Hardware

AUTOSAR Runtime Environment (RTE)

Actuator
Software

Component

AUTOSAR
Interface

Application
Software

Component

Sensor
Software

Component

Application
Software

Component

..............

AUTOSAR
Software

Basic Software

Standardized
Interface

AUTOSAR
Interface

AUTOSAR
Interface

AUTOSAR
Interface

Microcontroller
Abstraction

AUTOSAR
Software

Component

Standard
Software

Standardized
AUTOSAR
Interface

Services

Standardized
Interface

ECU
Abstraction

AUTOSAR
Interface

Standardized
Interface

Complex
Drivers

AUTOSAR
Interface

VFB & RTE
relevant

Standardized
Interface

Communication

Standardized
Interface

Standardized
Interface

Operating
System

RTE
relevant

BSW
relevant

S
ta

n
d

a
rd

iz
e

d
In

te
rfa

c
e

Possible interfaces
inside

Basic Software
(which are

not specified
within AUTOSAR)

Note: This figure is incomplete with respect to the possible interactions between the layers.

Interface

 Virtual Functional Bus
AUTOSAR CP R21-11

34 of 107 Document ID 56: AUTOSAR_EXP_VFB

Figure 3.13: Example showing the relationship between the components mapped
on an ECU and the ECU Software Architecture

3.7 Kinds of software components

This section gives a final overview of the various kinds of components that are relevant
to AUTOSAR.

Kind Description Illustration

ECU-Hardware

RTE

AUTOSAR
Software

Basic Software

Standardized
Interface

Microcontroller
Abstraction

Standardized
Interface

Communication

Standardized
Interface

Standardized
Interface

Operating
System

S
ta

n
d

a
rd

iz
e

d
In

te
rfa

c
e

SHDialFrontLeft:

HeatingDial

SHCFrontLeft: SeatHeatingControl

n
v

e
c
u
M

o
d

e

C
a
lib

ra
ti
o

n
IOP

o
w

e
r

M
a
n

a
g

e
m

e
n

t

N
v
R

a
m

M
a
n

a
g

e
r

E
C

U
 S

ta
te

M
a
n

a
g

e
r

ECU Abstraction

Component

IO

NvBlockSw

Component

 Virtual Functional Bus
AUTOSAR CP R21-11

35 of 107 Document ID 56: AUTOSAR_EXP_VFB

Application
software
component

The Application Software
Component is an Atomic Software
Component that implements (part of)
an application. It can use all
AUTOSAR communication
mechanisms and services. The
Application Software Component
interacts with sensors or actuators
through a Sensor-Actuator Software
Component.

[EXP_Vfb_00120]

Sensor-
actuator
software
component

The Sensor-Actuator Software
Component is an Atomic Software
Component that handles the
specifics of a sensor and/or actuator.
It directly interacts with the ECU-
Abstraction (this is illustrated by a
port called “IO”). See Chapter 6,
Interaction with hardware.

[EXP_Vfb_00121]

Parameter
software
component

A Parameter Software Component
provides parameter values. These
can be fixed data, const or variable.
This Software Component allows for
data access to either fixed data or
calibration data. See chapter 10.
.

[EXP_Vfb_00122]

<<ApplicationSw

ComponentType>>

<<SensorActuatorSw

ComponentType>>

IO

<<ParameterSw
ComponentType>>

 Virtual Functional Bus
AUTOSAR CP R21-11

36 of 107 Document ID 56: AUTOSAR_EXP_VFB

Composition
software
component

A Composition Software Component
encapsulates a collaboration of
Software Components, thereby
hiding detail and allowing the
creation of higher abstraction levels.
Through delegation connectors a
composition software component
explicitly specifies, which ports of the
internal components are visible from
the outside.
Composition Software Components
are a specialized type of Software
Components, e.g. they can be part of
further Composition Software
Components.

[EXP_Vfb_00123]

Service
Proxy
software
component

The Service Proxy SW Component is
responsible for distribution of modes
throughout the system. Once
deployed each ECU should have a
copy of every instance of this
software component type. However
at the VFB level only one is
necessary.

[EXP_Vfb_00124]

Service
software
component

A Service Software Component
provides standardized services
through standardized interfaces. To
provide these services, this
component may interact directly with
certain other basic-software modules
(this is represented by the double
arrow). See Chapter 7.

[EXP_Vfb_00125]

ECU-
abstraction
software
component

The ECU-Abstraction Software
Component provides access to the
ECU’s specific IO capabilities.
These services are typically provided
through client-server PPorts and are
used by the sensor-actuator software
components. The ECU-abstraction
may directly interact with certain
other basic-software modules (this is
represented by the double arrow).
See Chapter 6, Interaction with
hardware.

[EXP_Vfb_00126]

<<CompositionSw

ComponentType>>

<<ServiceProxySw
ComponentType>>

<<ServiceSw
ComponentType>>

<<EcuAbstractionSw
ComponentType>>

IO

 Virtual Functional Bus
AUTOSAR CP R21-11

37 of 107 Document ID 56: AUTOSAR_EXP_VFB

Complex
driver
software
component

The Complex Driver Software
Component generalizes the “ECU-
abstraction component”. It can
define ports to interact with other
components in specific ways and can
also interact directly with other basic-
software modules. The purpose of
the Complex Driver Software
Component is described further in
Section 6.5 Complex Driver.

[EXP_Vfb_00127]

NVBlock
software
component

The NV Block Software Component
allows SWC-S access to non volatile
data. Specifically this block allows for
the modeling of the NV data at the
VFB level. It is the responsibility of
the NV Block to map individual NV
data elements to NV Blocks and to
interact with the NV Manager in the
BSW. The behavior of this
component is to be generated based
on the port services in the RTE.

[EXP_Vfb_00128]

Table 3.4: Kinds of software components

3.8 Resources for components and “runnables”

3.8.1 Background

The VFB is a system modeling and communication concept, which allows components
to be distributed in a network of ECUs. The interaction possibilities between a
component and other components are described through the component's ports and
their associated interfaces, which define the operations, data-elements, mode-groups
or calibration parameters that are provided or required by the component. Through
the same communication mechanisms, the component can interact with standardized
AUTOSAR services (available on each properly configured AUTOSAR ECU) or the
ECU-specific IO capabilities (available on the specific ECU on which the appropriate
hardware is present and to which the correct devices are connected).
However, implementations of components need access to additional resources, mainly
memory (the component’s implementation typically needs memory to maintain its
internal state) and CPU-power (the component’s implementation contains code that
must be executed according to a certain timing schedule or in response to certain
events).

<<ComplexDeviceDriverSw
ComponentType>>

<<NvBlockSw
ComponentType>>

 Virtual Functional Bus
AUTOSAR CP R21-11

38 of 107 Document ID 56: AUTOSAR_EXP_VFB

As these scheduling issues are closely linked to the communication needs of the
component, the RTE must provide both aspects. Therefore, the RTE must provide a
complete environment for the component, including:

 Appropriate mechanisms through which the component’s implementation (for
example in a programming language like “C”) can:

o Provide values for data-elements in the component’s PPorts
o Read/Consume values for data-elements in the component’s RPorts
o Access the component’s calibration parameters
o Provide implementations for the operations in the component’s PPorts
o Invoke operations provided by other components through the

component’s RPorts
o Etc.

 Appropriate mechanisms through which the component’s implementation (for
example “C” functions) is invoked in response to:

o Fixed-time schedules (for example: many components need to run
“cyclically”)

o Events related to the communication mechanisms (for example some
components might want to be notified upon the reception of data from
other components)

o Events related to physical occurrences (i.e. a triggered event).

 Appropriate mechanisms through which the component’s implementation can
access other common resources, such as instance-specific memory

 As an AUTOSAR ECU typically is a multi-threaded environment, the RTE must
also provide all common synchronization mechanisms

This section introduces the AUTOSAR construct that addresses these various needs:
the “runnable”. Note that there are use cases where a SoftwareComponentType might
be defined with no InternalBehavior resp. Runnable. For example,
NvBlockSoftwareComponent does not require any RunnableEntity if there is no need
to proxy any NvMService port or NvMAdmin port.

3.8.2 The “runnable” concept

The “atomicity” of an atomic software-component refers to the fact that the component
cannot be divided in smaller components and must therefore be mapped onto a single
ECU.
For example, Figure 3.14 shows a logical component view of the mapped application-
software component “SHCFrontLeft” on a specific ECU. Through its ports, the
component expresses which information it requires from and provides to other
components.

 Virtual Functional Bus
AUTOSAR CP R21-11

39 of 107 Document ID 56: AUTOSAR_EXP_VFB

Figure 3.14: Component-view on the interaction between an atomic software
component and the RTE on an ECU

However, the actual implementation of a component consists of a set of “runnable
entities”8 (also more simply called “runnables”). A “runnable entity” is a sequence of
instructions (provided by the component) that can be started by the Run-Time
Environment9.

8 The usage of the word “runnable” is for example consistent with the “Runnable” Interface in Java: “the
Runnable Interface should be implemented by any class whose instances are intended to be executed
by a thread”.
9 In certain cases, optimization of the RTE could cause a runnable entity to be started directly from
another software-component without real intervention of the RTE. For example a synchronous call to a
component that runs on the same ECU and can execute within the context (task) of the caller could be
implemented as a direct function-call into the calling component.

RTE

SHCFrontLeft: SeatHeatingControl

n
v

e
c
u
M

o
d

e

C
a
lib

ra
ti
o

n

P
o

w
e

r
M

a
n

a
g

e
m

e
n

t

S
e
a
tS

w
it
c
h

S
e
tt

in
g

SHCFrontLeft: SeatHeatingControl

RTE

Implementation

M
a
in

C
y
c
lic

S
e
tt

in
g

n
v

e
c
u
M

o
d

e

C
a
lib

ra
ti
o

n

P
o

w
e
r

M
a
n
a
g

e
m

e
n
t

S
e
a
tS

w
it
c
h

S
e
tt

in
g

Rte_Read_SeatSwitch_PassengerDetected()

 Virtual Functional Bus
AUTOSAR CP R21-11

40 of 107 Document ID 56: AUTOSAR_EXP_VFB

Figure 3.15: Implementation-view on the interaction between an atomic software
component and the RTE on an ECU

Figure 3.15 shows an example of this. Logically, the component-type
“SeatHeatingControl” has defined six ports, through which it wants to interact with other
components or services. The implementation of the component on the other hand
contains two runnables: “MainCyclic” and “Setting”. The component requires the
runnable “MainCyclic” to be invoked cyclically (at a specific rate) by the RTE. The
component requires that the second runnable “Setting” is invoked whenever another
component invokes an operation on the PPort “Setting”. The implementation of the
runnables will use the operations provided by the RTE to actually for communication
via the ports of the component. E.g. to access the information “PassengerDetected”
provided to the component through the RPort “SeatSwitch” the runnable “Setting” will
invoke the operation “Rte_Read_SeatSwitch_PassengerDetected()”.
In general, an atomic software-component can provide just one runnable or it can
contain a large number of runnables. A runnable can be a very simple piece of code
that executes a simple algorithm or a complex program.

[EXP_Vfb_00043] ⌈At configuration time, the runnables of a component must be

known⌋()

A “runnable entity” runs in the context of a "task"10. The task provides the common
resources to the “runnable entities” such as a context and stack-space. Typically the
operating-system scheduler has the responsibility to decide during run-time when
which “task” can run on the CPU (or multiple CPUs) of the ECU. There are many
standard strategies that schedulers can use (e.g. priority-based preemptive, round-
robin, time-triggered…).

3.8.3 The implementation of a component and the role of the RTE

In conclusion, the implementation of an atomic software-component essentially
consists of three aspects:
A model of the component (using the concept of ports and port-interfaces) that is used
to hook up the component with other components at the VFB-level
An implementation (“code”). The implementation of the component is structured in
“runnables” which are pieces of code that can be executed by the RTE
A software-component description [6] in which the component describes requirements
on the RTE. These include:

 Which runnables need to be called cyclically

 Which runnables need to be called in response to events related to
communication or other sources

 How the component would like to access the information in its ports or invoke
the operations that it requires from other components

10 Within this discussion, it is not necessary to make a distinction between “processes” (heavy-weight
tasks which are often protected from other processes through memory-management) and “threads”
(light-weight tasks running inside a process). The “task” refers to both.

 Virtual Functional Bus
AUTOSAR CP R21-11

41 of 107 Document ID 56: AUTOSAR_EXP_VFB

 Any other resources the component requires, such as AUTOSAR services or
local memory

In a properly configured AUTOSAR ECU, the RTE (in cooperation with a properly
configured basic software), will satisfy the component’s requirements. The RTE will
for example:

 Ensure that the runnables are invoked at the correct times

 Provide the functions that the component needs to access data or invoke
operations

 Provide all other resources the component needs

3.9 Interface Conversion Blocks

When software components are developed by different organizations (e.g. two distinct
suppliers delivering code to an OEM who integrates the SWCs) it may happen that two
or more SWCs have the same engineering semantics but are represented with
different data types. Instead of requiring the integrator to develop specific SWC
conversion software the VFB will add a conversion block to a connector connecting
Sender Receiver ports with mismatched interface definitions at the VFB level. The
addition of this conversion block allows the designer to add which elements of the
provided port map to the elements of the required port as well as provide the
conversion semantics. In the RTE these mappings will be described with the
PortInterfaceMappings. This construct maps an interface pair to the connection.

[EXP_Vfb_00140] ⌈If a P-port specified by a Sender Receiver Interface is connected

to an R-port with an incompatible interface then a conversion block must be added for
the connector to allow the designer to describe the conversion. Incomplete conversion

will not be allowed⌋()

3.9.1 Supported Conversions and Mappings

3.9.1.1 Interface Element Mapping

In case two interfaces only differentiate in the shortnames of their elements, then a
mapping can be provided which maps the elements of the one interface to the elements
of the other interface.

3.9.1.2 Linear Data Conversion

If the elements of two interfaces are logically equivalent but the range and resolution
are different, then the linear conversion factor can be calculated out of the semantical
information of the elements. In this case the data semantics is described using a
CompuMethod with category IDENTICAL, LINEAR, SCALE_LINEAR or
SCALE_LINEAR_AND_TEXTTABLE, where the

 Virtual Functional Bus
AUTOSAR CP R21-11

42 of 107 Document ID 56: AUTOSAR_EXP_VFB

 IDENTICAL category means that the value of the physical representation is
equal to the internal representation and the

 LINEAR, SCALE_LINEAR or SCALE_LINEAR_AND_TEXTTABLE categories
mean that the internal representation is calculated out of the physical
representation by means of a linear formula (factor * external value + offset) per
range in one or more ranges (SCALE_LINEAR only).

[EXP_Vfb_00141] ⌈A conversion block involving either IDENTICAL, LINEAR,

TEXTTABLE, SCALE_LINEAR or SCALE_LINEAR_AND_TEXTTABLE data types
shall use the COMPU-METHODS for the respective data types to determine the

conversion function.⌋()

The following examples show the conversion of data that is described using
CompuMethods with category LINEAR and IDENTICAL:

1) A software component (A) that provides the vehicle speed in m/s with resolution
0,1 m/s can be connected with a component (B) that requires the vehicle speed
in m/s with a resolution of 0,01 m/s if both components assume a linear relation
between physical representation and internal representation. The foll
internal (A) = 10 * physical as m/s
internal (B) = 100 * physical as m/s

internal (B) = 100 * physical as m/s
 = 100 * (internal (A) / 10)
 = 10 * internal (A)
Example: Component A provides the value 100 (internal representation for 10
m/s). Multiplying the value with 10 we get the value 1000 as input for component
B (internal representation of 1000 in component B corresponds to 10 m/s)

2) A special case of data scaling is the conversion of units: Software component
(A) that provides the vehicle speed in m/s can be connected with a component
(B) that requires the vehicle speed in km/h if both components assume a linear
or identical relation between physical representation and internal
representation.
internal (A) = physical as m/s
internal (B) = physical as km/h

internal (B) = physical as km/h
 = 3,6 * physical as m/s
 = 3,6 * internal (A)
Example: Component A provides the value 10 (internal representation for 10
m/s). Multiplying the value with 3,6 we get the value 36 as input for component
B (internal representation of 36 corresponds to 36 km/h which is equivalent to
10 m/s)

 Virtual Functional Bus
AUTOSAR CP R21-11

43 of 107 Document ID 56: AUTOSAR_EXP_VFB

3.9.1.3 Data Mapping

In case the data semantics is described using a list of values (CompuMethod with
category TEXTTABLE) or partially described using a list of values (CompuMethod with
category SCALE_LINEAR_AND_TEXTTABLE), then an explicit mapping needs to be
given for each individual value.

[EXP_Vfb_00142] ⌈A conversion block involving TEXTTABLE or

SCALE_LINEAR_AND_TEXTTABLE data types shall use explicit mapping of each

RPort table element to a PPort table element.⌋()

3.9.1.4 Mixed Conversion

It is possible in a conversion block to mix both linear conversion and texttable mappings
(SCALE_LINEAR_AND_TEXTTABLE).
An example would be a conversion block consisting of an input value of type uint8
which is linearly converted in the range 0..200 and has 2 texttable mappings for the
values 254 “SensorNotAvailable” and 255 “SensorFault”.

3.10 Variant Handling

To support variation in automotive applications AUTOSAR has a mechanism referred
to as variant handling. This allows designers at many levels to put together a super set
of functionality and choose which actual pieces of this functionality will be enabled in a
specific variant. The place in the design where a choice is given between 2 or more
variants is called a variation point. The time at which a choice must be made is called
the latest binding time. Binding earlier is always allowed.

3.10.1 Binding Times

AUTOSAR supports several discreet binding times:

 System Design

 Code Generation

 Pre Compile

 Link Time

 Post Build

Although variability could exist at function design time and run-time AUTOSAR
explicitly prohibits the later and does not provide support for the function design time.

3.10.2 Choosing a Variant

To choose a variant the AUTOSAR designer must assign no later than the required
binding time one of a predefined set of values to a Software System Constant or to a
Post Build Variant Criterion. The Post Build Variant Criterion is used for enabling Post

 Virtual Functional Bus
AUTOSAR CP R21-11

44 of 107 Document ID 56: AUTOSAR_EXP_VFB

Build binding times while the Software System Constant can be used for everything
that has a latest binding time of Link Time.

By assigning a value to either a Software System Constant or Post Build Variant
Criterion the AUTOSAR system can determine which variant is enabled for each
Variation Point in the design by evaluating either a Software System Dependant
Formula (uses System Constants to determine if a Variation Point is enabled or
disabled) or by evaluating one or more a Post Build Variant Conditions (uses Post Build
Variant Criterions to determine if a Variation Point is enabled or disabled). If the
Variation Points Formula or Condition evaluates to true then the element in the design
which was conditional upon the Variation Point will exist in the design.

Typically designers will define collections of validated assignments for Software
System Constants and Post Build Variant Criterions. These collections of value
assignments are also known as Predefined Variants. Predefined Variant Sets are
typically defined at a composition level like a subsystem or system design. A complete
variant for a system therefore typically exists of a collection of Predefined Variants
binding every Variation Point in the system.

3.10.3 Variability

Although variability exists within the internal behavior of Software Components from a
VFB perspective only three elements of variability are of interest:

 Software Component Variability

 Port Variability

 Connector Variability.

3.10.3.1 Software Component Variability

The existence of a Software Component either Atomic or Composition can be
subjected to the existence of a Variation Point. If a Variation Point exists and its
conditions (see section choosing a Variant) evaluate to true then the Software
Component exists and its behavior will be scheduled and its ports produce output. If
the Component however is removed from a composition (I.e. application or system
design) then all Software components which are connected to the removed Software
Component will have ports which will be considered unconnected and will behave as
unconnected ports (see section Unconnected Ports for more details) and non of the
behavior of the removed component will execute. Software Components variability in
a Composition can be bound as late as Post Build.

3.10.3.2 Port Variability

Ports on a Software Component can also be subjected to variability. However their
latest binding time is Pre Compile time and as such their variability can only be
constrained using Software System Constants. If a Port is removed from the design
then any connecting port must behave as an unconnected port. In a properly
configured system if a Port is “disabled” the connector connecting to this port should
also be subjected to the same variability conditions.

 Virtual Functional Bus
AUTOSAR CP R21-11

45 of 107 Document ID 56: AUTOSAR_EXP_VFB

3.10.3.3 Connector Variability

A connection between two ports can be subjected to variability with a binding time of
Post Build. If a connector is “disabled” then the two ports at either end of the connector
must behave as unconnected ports.

 Virtual Functional Bus
AUTOSAR CP R21-11

46 of 107 Document ID 56: AUTOSAR_EXP_VFB

4 Communication on the VFB

4.1 Introduction

This section specifies the communication mechanisms of the VFB, which atomic
software components can use to communicate with each other.
Section 4.2, Error types, defines the types of errors that can appear in both Sender-
Receiver and Client-Server communication models.
Section 4.3, Sender-Receiver communication, defines the functional semantics of
sender-receiver communication in more detail. This section also defines the
communication attributes that define the exact characteristics of the communication
patterns provided by AUTOSAR. Some details related to mode-switches are covered
in Chapter 8, Mode Management.
Section 4.4, Client-Server communication, does the same for client-server.

4.2 Error types

Errors are divided into two simple classes: infrastructure errors and application errors.
Infrastructure errors are returned when the infrastructure between the sender and the
receiver, for sender-receiver communication, or between the client and the server, for
client-server communication, failed. A typical example of an infrastructure error is a
timeout. In case the client does not receive a response from the server within a certain
amount of time (because the communication channel between client and server is not
available or a message was lost) a “time-out” infrastructure error is returned to the
client. The possible infrastructure errors are standardized by AUTOSAR.
Application errors are application-specific and must be defined as part of the sender-
receiver interface, for sender-receiver communication, or client-server interface, for
client-server communication.

4.3 Sender-Receiver communication

The sender-receiver pattern enables the distribution of information where a sender
distributes information to one or several receivers or a receiver receives information
from several senders. Figure 4.1 gives an example how sender-receiver
communication is modeled in the AUTOSAR VFB View.

 Virtual Functional Bus
AUTOSAR CP R21-11

47 of 107 Document ID 56: AUTOSAR_EXP_VFB

Figure 4.1: Example of sender-receiver communication at VFB level

In this example there are two assembly-connectors connecting the PPort of the
component “Sender” with the RPort of “Receiver 1” (respectively “Receiver 2”).
The sender-receiver interface associated with those ports consists of data-elements
that define the data that is sent by the sender and received by the receivers.
The type of a data-element can be something very simple (like an "integer") or can be
a complex (potentially large) data type (e.g. an array or a string). The transfer of a
value, even of a complex data type, is always logically atomic.

[EXP_Vfb_00011] ⌈At configuration time, the data-type of each data-element in a

sender-receiver interface is known⌋()

A sender can provide a new value for each data-element defined in the Sender-
Receiver Interface. The precise semantics depend on whether the data-element is
defined to be of type “last-is-best” or whether the data-element is “queued”.

[EXP_Vfb_00012] ⌈At configuration time, each data-element in a sender-receiver

interface must be defined to have either “queued” or “last-is-best” semantics⌋()

Each data-element with “last-is-best” semantics can be configured to support
invalidation. If the “last-is-best” data-element supports invalidation, the sending
component can indicate the receivers that the data-element is “invalid” (see attributes
RECEIVE_INVALID and CAN_INVALIDATE in Table 4.1 and Table 4.2).

[EXP_Vfb_00101] ⌈At configuration time, it must be known for each “last-is-best” data-

element in a sender-receiver interface, whether the data-element supports the ability

to be “invalid” or not⌋()

Sender

Receiver 1

Receiver 2

 Virtual Functional Bus
AUTOSAR CP R21-11

48 of 107 Document ID 56: AUTOSAR_EXP_VFB

4.3.1 From the point of view of the sender

Each data-element with “last-is-best”-semantics in a PPort of a sender-component
always has a current value. The initial current value of such a data-element can be
defined through configuration of the VFB (see attribute “INIT_VALUE” in Table 4.1 and
in Table 4.2). The sending component can change the current value of the data-
element, thereby overwriting the previous value of the data-element.
When a data-element has “queued” semantics, the consecutive values produced by
the sender are stored in a queue. The initial queue has length zero (no values are
available). Each time the sender produces a new value, this value is added to the
queue, until an arbitrary and configurable number of entries has been reached.
A sending component does not know the identity and the number of receivers. Its
behavior is independent of the presence or absence of receivers. Sender-receiver
communication allows for a strong decoupling between sender and receiver. The
sender just provides the information and the receivers decide autonomously when and
how to use this information. It is the responsibility of the communication infrastructure
to distribute the information. In certain cases, however, the sending application wants
to be notified when the expected quality-of-service of the communication system
between the sender and its receivers is known to be violated (see attribute
“TRANSMISSION_ACKNOWLEDGEMENT” in Table 4.1).

[EXP_Vfb_00103] ⌈At configuration time, it must be known for each data-element in a

PPort or PRPort of a component, whether the component wants to be informed on

successful transmission or timed-out transmission⌋()

Table 4.1 gives an overview of the communication attributes that a sender can use to
control the behavior of the sender-receiver communication pattern. These attributes
are defined at the level of a single data-element or mode-group.

Attribute/Feature
Name

Realization in
software component
template [6]

 Description

Kind of data-
element or
modeGroup

d
a
ta

e
v
e
n

t

m
o
d
e

INIT_VALUE
attribute “initValue” of
“UnqueuedSenderCo
mpSpec”

This attribute defines the
initial value of the data-
element, seen by all
receivers of this data-
element. This initial value
can be overwritten by the
attribute INIT_VALUE on
the receiver side. re

q
u
ir

e
d

n
o
t

a
v
a
ila

b
le

1
1

n
o

t
a
v
a
ila

b
le

1
2

11 The initial condition of a queued data-element is the empty queue
12 The initial mode is defined as part of the ModeDeclarationGroup

 Virtual Functional Bus
AUTOSAR CP R21-11

49 of 107 Document ID 56: AUTOSAR_EXP_VFB

CAN_INVALIDAT
E

attribute
“canInvalidate” of
“NonqueuedSenderC
omSpec”

In case this feature is
used, the sender can
invalidate a data-element.

o
p

ti
o
n
a

l

n
o

t

a
v
a
ila

b
le

n
o

t

a
v
a
ila

b
le

MODE_QUEUE_L
ENGTH

“queueLength” of
ModeSwitchSenderC
omSpec

This attribute defines the
size of the input queue of
the of mode switch
notifications to a mode
machine. n

o
t
a
v
a
ila

b
le

n
o
t
a
v
a
ila

b
le

re
q

u
ir

e
d

IMPLICIT_SEND “DataWriteAccess”

Normally, a sender must
make an explicit function-
call to send a data-element
or change the current
mode. “Implicit sending”
means that a runnable can
modify a data-element
while it is running. After
the runnable
terminates, the RTE will
make the latest value
available to receivers of
the
data-element. o

p
ti
o
n
a

l

n
o
t
a
v
a
ila

b
le

n
o
t
a
v
a
ila

b
le

TRANSMISSION_
ACKNOWLEDGE
MENT

 “TransmissionAckno
wledgementRequest”
with attribute
“timeout” or
“ModeSwitchedAckR
equest” with attribute
“timeout”

The sending component is
informed when the data
has been sent correctly
OR when the mode switch
has been executed by the
RTE. If the timeout occurs
before this
acknowledgement, the
sender is informed of an
infrastructure error. o
p

ti
o
n
a

l

o
p

ti
o
n
a

l

o
p

ti
o
n
a

l

IS_QUEUED
“isQueued” in
“VariableDataPrototy
pe”

When this parameter is
TRUE, the data-element is
queued (=used for
“events”). When this
parameter is false, the
data-element has “last-is-
best” semantics. F

A
L
S

E

T
R

U
E

n
o

t
a
v
a
ila

b
le

Table 4.1: Communication Attributes for a Sender

Details can be found in the “Software Component Template” [6] and the “SWS RTE”
[7].

 Virtual Functional Bus
AUTOSAR CP R21-11

50 of 107 Document ID 56: AUTOSAR_EXP_VFB

4.3.2 From the point of view of the receiver

A receiver can access the value of each data-element defined in the Sender-Receiver
Interface associated with the RPort of the receiving component.
For a data-element that has “last-is-best” semantics, the receiver has access to the
latest value of that data-element. Alternatively, the receiver is informed that the data-
element is “invalid” (in case the data-element supports this feature). The receiver may
have access to the livelihood of the data-element, whether its value is valid or outdated.
The livelihood is defined by configuring the VFB (see attributes “TIME_FOR_RESYNC”
and “ALIVE_TIMEOUT” in Table 4.2).

[EXP_Vfb_00014] ⌈At configuration time, the initial value of each last-is-best data-

element in a RPort or a PRPort of a component must be defined⌋()

[EXP_Vfb_00015] ⌈The current value of a data-element seen by a receiving

component, when a sending-component has not provided a value, is the configured

initial value of the RPort or PRPort⌋()

[EXP_Vfb_00017] ⌈The initial value of the receiving component can be “invalid” if the

data-element supports this⌋()

[EXP_Vfb_00094] ⌈At configuration time, it must be known for each last-is-best data-

element in a RPort or a PRPort of a component whether the component wants to get

informed of the livelihood of the data-element⌋()

[EXP_Vfb_00095] ⌈A receiver that gets informed of the livelihood of a data-element

must configure the period of time between receptions. This threshold determines the

livelihood of the data-element: actual or outdated⌋()

For a data-element that has “queued” semantics, the receiver has essentially one
operation: to obtain the next data-element from the queue. In case the queue is empty,
this fact is returned to the receiver. Otherwise, the next data-element value is read
and taken from the queue (in other words, this is a “consuming read”). The capacity of
the queue is defined by configuring the VFB (see attribute
“RECEIVER_QUEUE_LENGTH” in Table 4.2).

[EXP_Vfb_00019] ⌈The queue associated with a data-element with “queued”

semantics is initially (before a sender has added values to the queue) empty⌋()

[EXP_Vfb_00020] ⌈Logically, the queue is located on the receiver’s side⌋()

[EXP_Vfb_00021] ⌈At configuration time, the size of the receiver’s queue must be

known⌋()

 Virtual Functional Bus
AUTOSAR CP R21-11

51 of 107 Document ID 56: AUTOSAR_EXP_VFB

[EXP_Vfb_00022] ⌈The receiver’s queue has first-in first-out semantics⌋()

[EXP_Vfb_00023] ⌈When the receiver’s queue is full and a new value arrives, this

value is dropped (“queue overflow”)⌋()

[EXP_Vfb_00024] ⌈The receiver can be notified of “queue overflow” if it indicates that

it desires this notification at configuration time⌋()

Table 4.2 gives an overview of the communication attributes that a receiver can use to
control the behavior of the sender-receiver communication pattern. These attributes
are defined at the level of a single data-element or mode-group.

Attribute Name
Attribute
Value

 Description

Kind of data-
element or
modeGroup

d
a

ta

e
v
e
n

t

m
o

d
e

INIT_VALUE

“ initValue” of
“NonqueuedR
eceiverComS
pec”

A receiver can optionally
specify its own initial value,
which overrides the initial value
of the sender. o

p
ti
o
n
a

l

n
o
t

a
v
a
ila

b
le

1
3

n
o

t

a
v
a
ila

b
le

1
4

RECEIVE_INVALID

“handleInvalid
” in
“NonqueuedR
eceiverComS
pec”

The receiver can specify how it
wants to respond when an
invalid value for a data-
element is received.

o
p

ti
o
n
a

l

n
o

t
a
v
a
ila

b
le

n
o

t
a
v
a
ila

b
le

TIME_FOR_RESYN
C

“ resyncTime”
of
“NonqueuedR
eceiverComS
pec”

Time allowed for
resynchronization of data
values after current data is lost,
e.g. after an ECU reset.

o
p

ti
o
n
a

l

n
o
t
a
v
a
ila

b
le

n
o
t
a
v
a
ila

b
le

ALIVE_TIMEOUT

“aliveTimeout”
of
“UnqueudRec
eiverComSpe
c”

The receiver specifies the
maximum period of time it may
take to receive a data-element
If the data-element is not
received within the defined
period, the data-element is
"outdated" o

p
ti
o
n
a

l

n
o

t
a
v
a
ila

b
le

n
o

t
a
v
a
ila

b
le

13 The initial condition of a queued data-element is the empty queue
14 The initial mode is defined as part of the ModeDeclarationGroup

 Virtual Functional Bus
AUTOSAR CP R21-11

52 of 107 Document ID 56: AUTOSAR_EXP_VFB

IMPLICIT_RECEIVE
“dataReadAcc
ess”

Normally, a runnable wishing
to read a data-element needs
to do this through an explicit
call to the RTE. The
“IMPLICIT_RECEIVE” means
that the runnable has access to
the value of the data-element
that was available at the time of
the start of the runnable. It
does not need to invoke an
explicit API to fetch the latest
data. o

p
ti
o
n
a

l

n
o

t
a
v
a
ila

b
le

n
o

t
a
v
a
ila

b
le

RECEIVE_EVENT

“DataReceive
dEvent” and
“SwcModeSwi
tchEvent”

This implies that the receiving
applications is notified by the
RTE when a new value of a
data-element or a mode-switch
is received. This implies that
the receiving component does
not need to poll but can wait for
new data-elements or mode-
changes. o

p
ti
o
n
a

l

o
p

ti
o
n
a

l

o
p

ti
o
n
a

l

IS_QUEUED
“isQueued” in
“VariableData
Prototype”

When this parameter is TRUE,
the data-element is queued
(=used for “events”). When
this parameter is false, the
data-element has “last-is-best”
semantics. F

A
L
S

E

T
R

U
E

n
o

t
a
v
a
ila

b
le

RECEIVER_QUEUE
_LENGTH

 queueLength
of
QueuedRecei
verComSpec

Received values are added to
the end of the queue and
values are read (consuming)
from the front of the queue (i.e.
the queue is first-in-first-out). If
the queue is full and another
data-item arrives this data
item is discarded and the
receiver is informed by error-
handling mechanisms. n

o
t
a
v
a
ila

b
le

re
q

u
ir

e
d

n
o

t
a
v
a
ila

b
le

 Virtual Functional Bus
AUTOSAR CP R21-11

53 of 107 Document ID 56: AUTOSAR_EXP_VFB

FILTER

Attribute
“ DataFilter”
of
“ReceiverCom
Spec”

A data-element is only passed
to the application if the value of
the data-element passes the
conditions of the filter. If a
newly received value for a
data-element does not pass
the conditions of the filter, the
value is
discarded (not added to queue
for a queued receiver OR the
current value of the data-
element is not updated for a
last-is-best receiver). The VFB
provides the same filters as
defined in ISO 17356-4 [15].
These filters can only be
applied to data-elements that
are of a primitive type. o

p
ti
o
n
a

l

o
p

ti
o
n
a

l

n
o

t
a
v
a
ila

b
le

SW_IMPLEMENTATI
ON_POLICY

“swImplPolicy
”

When using a parameter
interface one can type the
mechanism for access of the
parameters. This will allow for
precompile time and compile
time optimization when dealing
with fixed data exchange o

p
ti
o
n
a

l

n
o

t
a
v
a
ila

b
le

n
o

t
a
v
a
ila

b
le

Table 4.2: Communication Attributes for a Receiver

Details can be found in the “Software Component Template” [6] and the “SWS RTE”
[7].

4.3.3 Multiplicity of sender-receiver

The term multiplicity discussed in the following two sections applies to the connection
multiplicity of a specific port to one or more other ports; it does not concern two distinct
ports of a software component that are connected separately to two distinct ports of
another software component.
Both types of sender receiver semantics (i.e. an interface with data-elements of “last-
is-best” semantics or queued semantics), support either 1:n communication (1 sender

and n receivers, with n 0) or n:1 communication (n senders and 1 receiver). The
sender(s) own(s) the current value of the data-element. With last-is-best semantics
the receiver(s) of the data always want(s) to have only the most recent value of the
data. It is the responsibility of the communication system to ensure the availability of
the correct value of the data-element on the receiver side. This is illustrated in Figure
4.2.

 Virtual Functional Bus
AUTOSAR CP R21-11

54 of 107 Document ID 56: AUTOSAR_EXP_VFB

Figure 4.2: ”last-is-best” semantics. The upper part of this figure shows the
model view of ”last-is-best” semantics. The lower part shows the implementation

view of this pattern.

From an implementation point of view, this could for example be realized by having the
sender periodically broadcast the latest value of the data-element to its receivers. A
second implementation could only communicate actual changes to the receivers.
With “queued” semantics and n:1 communication the queue is on the receiving side
and several senders can add values for the data-element to the single receiver’s
queue. To avoid a further increase of the complexity of the VFB mechanisms all other
communication scenarios like n:m (n, m > 1) are not possible.

[EXP_Vfb_00025] ⌈For sender-receiver with data-elements with “last-is-best”

semantics, both 1:n as well as n:1 communication (1 sender to multiple receivers) is

possible⌋()

[EXP_Vfb_00026] ⌈For sender-receiver with data-elements with “queued” semantics,

both 1:n (1 sender to multiple receivers) and n:1 communication (multiple senders to 1

receiver) is possible⌋()

[EXP_Vfb_00120] ⌈For sender-receiver with ModeDeclarationGroups, only 1:n (1

sender to multiple receivers) is possible⌋()

As a component can have an arbitrary number of ports, a single component can
assume the role of sender and/or receiver.

use A

SW Component 2

publish A

SW Component 1

A

SW Component 1

AA AA

AA

SW Component 1

AA

Model View

Implementation View

publish A

SW Component 2
Communication System

..
.

use A

AA

AA
transport A

SW Component n

AA

SW Component n

..
.

read value
of A from

communication
system

 Virtual Functional Bus
AUTOSAR CP R21-11

55 of 107 Document ID 56: AUTOSAR_EXP_VFB

4.3.4 Filtering between the sender and the receiver

The VFB supports the definition of an additional filter that sits between the sender and
the receiver.
A new value for a data-element is only passed to the application if the value passes
the conditions of the filter. If a newly received value for a data-element does not pass
the conditions of the filter, the value is rejected (not added to queue for a queued data-
element) or the current value of the data-element is not updated (for a last-is-best data-
element).
The filters supported by AUTOSAR are the same as the filters, defined in OSEK-COM
V3.0.3. These filters can only be applied to data-elements that are of a primitive type.

[EXP_Vfb_00027] ⌈At configuration time, the optional filter on the receiver’s side must

be defined⌋()

[EXP_Vfb_00028] ⌈The filter has the capabilities of the ISO 17356-4 [15] filter⌋()

In the VFB-model, such a filter can only be specified on the receiving side. This
however, does not imply that the filtering should be implemented in the RTE on the
receiving side. For example, consider the case that a receiving filter indicates that the
receiver only wants to receive data-elements above a certain value, and that this is the
only receiver hooked up to the sender over a network-connection. In that case a good
implementation might decide to filter out the unnecessary values before they are sent
onto the network (on the sending side).

4.3.5 Concurrency and ordering within a sender-receiver connector

Within the scope of a single connector between a sender’s PPort and a receiver’s
RPort, the VFB preserves the order of the consecutive changes to the value of a
specific data-element.

 Virtual Functional Bus
AUTOSAR CP R21-11

56 of 107 Document ID 56: AUTOSAR_EXP_VFB

Figure 4. 3: concurrency and ordering within a sender-receiver connector

In the case of a queued data-element, the receiver must see the consecutive queued
values of the data-element in the same order as the order in which they were produced
by one specific sender.
In the case of “last-is-best” semantics, the semantics directly imply that “older” values
should never overwrite “newer” values.
However, the VFB does not guarantee any ordering between changes to different data-
elements (even not within the same interface) or between different connectors.
The VFB does not guarantee any ordering between mode switches of different
ModeDeclarationGroups (even not within the same interface) or between different
connectors.

[EXP_Vfb_00029] ⌈Within an individual sender-receiver connector, the VFB

guarantees ordering in the changes made to an individual data-element⌋()

4.4 Client-Server communication

A widely used communication pattern in distributed systems is the client-server pattern,
in which the server is a provider of a service15 and the client is a user of a service. One
simple example is the decoding of encrypted wireless key data (immobilizer, see
Figure 4.4).

15 Service in this chapter is a functionality which is offered by a certain AUTOSAR SW-component, the
server, and which can be used by other AUTOSAR SW-component, the clients. It is not to be mixed up
with an AUTOSAR service, defined more precisely in section 7, AUTOSAR Services.

sender VFB receiv er

data-element d1 changed

data-element d1 changed 2nd time

data-element d2 changed

data-element d1 changed

data-element d2 changed

data-element d1 changed 2nd time

 Virtual Functional Bus
AUTOSAR CP R21-11

57 of 107 Document ID 56: AUTOSAR_EXP_VFB

Figure 4.4: Example of a synchronous client-server communication: decoding of
encrypted wireless-key data (immobilizer).

AUTOSAR defines a very simple, static n:1 client-server mechanism (n clients and 1

server, with n 0)16. Figure 4.5 gives an example how client-server communication
for a composition of three components and two connections is visualized in the VFB
View.

Figure 4.5: Client-server communication in the VFB View

In this example, there are 2 assembly-connectors. They hook up the RPort of “Client
1” (respectively “Client 2”) with the PPort of the server. Each port is associated with a
client-server interface, which defines the operations that are made available by the
server and used by the client.
Each operation in such a client-server interface is associated with arguments, which
are transported between the client and the server. These arguments are typed. The

16 More complex client-server architectures might involve brokers that register services provided by
servers and clients subscribing dynamically to certain services. To support the realization of such
mechanisms, AUTOSAR could be extended by defining additional AUTOSAR Services (see section 7,
AUTOSAR Services).

«client»

wirelessKeyHandling

«server»

cryptology

Communication
System

uint16:= decodeCryptedSignal(uint16 encryptedSignal)

decodeCryptedSignal

decryptedSignal

decryptedSignal

Client 1

Server

Client 2

 Virtual Functional Bus
AUTOSAR CP R21-11

58 of 107 Document ID 56: AUTOSAR_EXP_VFB

type of an argument in an operation could be a simple elementary data-type (like an
integer in a certain range or a boolean) or complex structures or arrays.17

[EXP_Vfb_00031] ⌈At configuration time, for each operation in a client-server interface,

the ingoing arguments, the returning arguments and their data-types must be known⌋

()

Figure 4.6 illustrates the client-server mechanism through the VFB.

Figure 4.6: Client-server on the VFB (synchronous and asynchronous)

17 Details about the data-types supported by AUTOSAR in arguments can be found in [SW-C Template]
.

client :RPort VFB serv er :PPort

alt operation reaches serv er

[no]

[yes]

alt serv er returns error

[no]

[yes]

alt transmission of response to client

[error]

[successful]

alt transmission of response to client

[error]

[successful]

invoke operation with outgoing arguments

return operation with infrastructure error

invoke operation with outgoing arguments

return operation with return-arguments

return operation with infrastructure-error

return operation with return-arguments

return operation with application-error

return operation with infrastructure-error

return operation with application-error

 Virtual Functional Bus
AUTOSAR CP R21-11

59 of 107 Document ID 56: AUTOSAR_EXP_VFB

4.4.1 From the point of view of the client

The client initiates the client-server mechanism by requesting that the server performs
a specific operation defined in the interface. The client thereby provides a value for
each of the outgoing arguments defined for that operation in the Client-Server
Interface.
Eventually, the client will either receive a valid response for the invocation or it will
receive an error in response to the invocation of the operation. A valid response means
that the server has executed the operation. In this case, the client receives a value for
each return argument defined for the operation in the interface.
In case the operations change the state of the server, they should be designed
carefully, so that the client can put the server easily in a known state or can simply
repeat the operation in case of an infrastructure error. A good rule is to make the
operation "idempotent", which means that an operation (with specific arguments) can
be repeated an arbitrary number of times.

[EXP_Vfb_00032] ⌈A client can invoke an operation defined in a client-server interface

of one of its RPorts⌋()

[EXP_Vfb_00033] ⌈When invoking an operation, the client must provide a value for

each outgoing argument defined for that operation⌋()

[EXP_Vfb_00034] ⌈A client will receive exactly one response for each operation

invocation⌋()

[EXP_Vfb_00035] ⌈The response which the client receives can be an infrastructure-

error, an application-error or a valid server-response⌋()

[EXP_Vfb_00036] ⌈When the client receives a valid server-response, it obtains a value

for each return-argument of the operation⌋()

[EXP_Vfb_00037] ⌈At configuration time, the possible application-errors that can be

returned by the server to the client for the operation must be known⌋()

[EXP_Vfb_00038] ⌈The possible infrastructure-errors provided to the client as a

possible response to a client invocation are standardized by AUTOSAR⌋()

Table 4.3 shows the communication attributes of a client.

Attribute
Name

Realization in software
component template
[6]

 Description

 Virtual Functional Bus
AUTOSAR CP R21-11

60 of 107 Document ID 56: AUTOSAR_EXP_VFB

CLIENT_MO
DE

 Covered indirectly by
the
“SynchronousServerC
allpoint”, the
“AsynchronousServer
Callpoint” and the
“AsynchronousServer
CallReturnsEvent”

The developer of a client can choose how to
interact with the server.
In case the CLIENT_MODE is “synchronous”,
the runnable invoking the operation is blocked
until either a response has been received from
the server, an infrastructure error is returned
or the configured maximal blocking time
expires.
In case the CLIENT_MODE is “asynchronous
- wakeup_of_wait_point” the runnable
invoking the operation is not blocked. A
runnable can wait for the response (from the
server or because of an infrastructure error) in
a wait-point.
In case the CLIENT-MODE is “asynchronous
- activation_of_runnable entity”, the runnable
invoking the operation is not blocked. When
the response (from the server or an
infrastructure error) is available, a runnable is
started which can process the response of the
server

TIMEOUT
Attribute “timeout” of
ServerCallPoint

Time in seconds before the server call times
out and returns with an error message. How
this infrastructure-error is reported depends
on the call type (synchronous or
asynchronous).

Table 4.3: Communication Attributes for a Client

4.4.2 From the point of view of the server

A server waits for incoming invocations of operations from its clients. It performs the
requested operation using the argument-values provided by the client. On finishing
the execution of the requested operation, the server provides a value for each of the
return-arguments to the client. In case the server encountered an error, it can
alternatively return an application-error to the client instead of a set of values for the
return-arguments.
Table 4.4 shows the communication attributes of a server.

Attribute
Name

Realization in
software component
template [6]

 Description

QUEUELEN
GTH

 Attribute
“queuelength” of
ServerCompSpec

On server side, there is a queue with length n,
consuming reading and first-in-first-out
strategy. If the queue is full, and another
request arrives, the new request is discarded
and the client will receive a “time-out”
infrastructure error.

 Virtual Functional Bus
AUTOSAR CP R21-11

61 of 107 Document ID 56: AUTOSAR_EXP_VFB

Table 4.4: Communication Attributes for Server

4.4.3 Multiplicity of client-server

For client-server communication only “n:1”-communication (n clients, n>=0, 1 server)
is supported.

[EXP_Vfb_00039] ⌈For client-server communication, only n:1-communication (n

clients, 1 server) is supported⌋()

Each client RPort must be hooked up to exactly one connector, which links that RPort
to exactly one PPort of a server. A PPort of a server on the other hand can be hooked
up to an arbitrary number of client RPorts, i.e. none or more clients can invoke
operations from the same server. The implementation of the client-server
communication has to ensure, that the result of the invocation of an operation is
dispatched to the correct client.
As a component can have an arbitrary number of ports, a single component can
assume the role of both client and server.

4.4.4 Ordering and concurrency within a client-server connector

A client is not allowed to invoke a specific operation on an RPort before the previous
invocation of the same operation in the same RPort has returned (with either a valid
response from the server or with an error). This is illustrated in Figure 4.7.

Figure 4.7: Concurrent invocation of the same operation is not allowed

 Virtual Functional Bus
AUTOSAR CP R21-11

62 of 107 Document ID 56: AUTOSAR_EXP_VFB

The client is however allowed to make an invocation of a different operation on the
same RPort before the invocation of a first operation has returned. However, in this
case, the VFB does not make any guarantees on the ordering of those invocations.
More specifically, it does not guarantee that the server sees the invocation of
operations in the same order, as the order in which the client made those invocations.
Similarly, there is no guarantee that the responses are made available to the client in
any specific order (for example, in the order in which the client invoked those
operations).
Although ordering is not guaranteed, the implementation of the VFB must make it
possible for a client to associate a response from a server (or from the infrastructure
in case an infrastructure-error is returned) with the correct corresponding invocation
made by the client.

[EXP_Vfb_00040] ⌈A client is not allowed to invoke a specific operation on an RPort

before the previous invocation of the same operation has returned⌋()

[EXP_Vfb_00042] ⌈It must be possible for a client to associate a response with the

correct corresponding invocation made by the client⌋()

Figure 4.8: The VFB does not support ordering between different operations

Client VFB Serv er

invoke operation o1

invoke operation o2

invoke operation o2

operation o2 returns

operation o2 returns

invoke operation o1

operation o1 returns

operation o1 returns

 Virtual Functional Bus
AUTOSAR CP R21-11

63 of 107 Document ID 56: AUTOSAR_EXP_VFB

4.5 Remarks regarding the identification of communication partners

One of the main goals of AUTOSAR is the transferability of AUTOSAR software-
components and the possibility to integrate the same component in different systems.
Therefore, the basic communication mechanisms must not depend on the identity of
the communication partners. Which component communicates by which port to which
other port of another component is specified by connectors in the VFB View and is not
visible to a software-component. If a software-component does need to know the
identity of a communication partner for specific communication scenarios the
identification has to be done by the components itself on application level by using the
general AUTOSAR communication patterns18.
By contrast, the unambiguous identification of communication partners, i.e. instances
of components and their ports/interface elements, is necessary for the implementation
of the RTE and maybe for the basic software19.

18 For future extensions like “dynamic components” and “dynamic communication” communication
partners have to provide means to be identified on application level.
19 For example, in client-server communication the result of the invocation of an operation has to be
dispatched to the correct client, i.e. the client that invoked the service. Therefore, the identity of the
client, i.e. AUTOSAR SW-component and the port, has to be known - at least at runtime - to the RTE
and the basic software.

 Virtual Functional Bus
AUTOSAR CP R21-11

64 of 107 Document ID 56: AUTOSAR_EXP_VFB

5 Timing Extensions

The research field of real time systems offers a variety of timing models and
specification techniques. This section just serves as a high level introduction to the
“AUTOSAR Specification of Timing Extensions” [8] and only has the intent to make the
reader aware of a different and more detailed document which addresses the concerns
of modeling time.

5.1 Main Purpose of Timing Extensions for AUTOSAR

Compared to the specification of a system's functional behavior, the specification of its
timing behavior requires additional information to be captured. Not only the eventual
occurrence of events but also their exact timing or the concurrency of various events
become important. Therefore, in the specification of timing extensions for AUTOSAR,
the event is the basic entity. It is used to refer to an observable behavior within a system
(e.g. the activation of a RunnableEntity, the transmission of a frame etc.) at a certain
point in time.

Having to deal with different abstraction levels and views, and in order to avoid
semantic confusion with existing concepts, a new abstract type
TimingDescriptionEvent is introduced as a formal basis for the timing extensions.
Depending on the concrete model entity and the associated observable behavior,
specific timing events are defined and linked to the different views.

For the analysis of a system's timing behavior usually not only single events but also
the correlation of different events is of interest. To relate timing events to each other,
a further concept called TimingDescriptionEventChain is introduced. Hereby, it is
important to note that for the events referred to within an event chain a functional
dependency is implicitly assumed. This means that an event of a chain somehow
causes subsequent chain events.

Based on events and event chains, it is possible to express various specific timing
constraints derived from the abstract type TimingConstraint. These timing constraints
specify the expected timing behavior. As timing constraints shall be valid independently
from implementation details, they are also expressed on a abstract level by referencing
the above introduced formal basis of TimingDescriptionEvents and
TimingDescriptionEventChains.

Thus, by means of events, event chains and timing constraints defined on top of these,
a separate central timing specification can be provided, decoupling the expected timing
behavior from the actually implemented behavior. This approach supports timing
contracts for AUTOSAR systems in a top-down as well as bottom-up approach.

 Virtual Functional Bus
AUTOSAR CP R21-11

65 of 107 Document ID 56: AUTOSAR_EXP_VFB

5.2 Timing in different phases of the AUTOSAR methodology

Several timing views can be applied in the different phases of the AUTOSAR
methodology which provides several well defined process steps, and furthermore
artifacts that are provided or needed by these steps. Five different timing views can
be identified:

 VfbTiming – this view deals with timing information related to the interaction
of SwComponentTypes at VFB level.

 SwcTiming – this view deals with timing information related to the
SwcInternalBehavior of AtomicSwComponentTypes.

 SystemTiming – this view deals with timing information related to a System,
utilizing information about topology, software deployment, and signal mapping.

 BswModuleTiming – this view deals with timing information related to the
BswInternalBehavior of a single BswModuleDescription.

 EcuTiming - this view deals with timing information related to the
EcucValueCollection, particularly with the EcucModuleConfigurationValues.

For each of these views a special focus of timing specification can be applied,
depending on the availability of necessary information, the role a certain artifact is
playing and the development phase, which is associated with the view.

The “AUTOSAR Specification of Timing Extensions” [8] provides a concept for the
description of timing relevant information in AUTOSAR.

 Virtual Functional Bus
AUTOSAR CP R21-11

66 of 107 Document ID 56: AUTOSAR_EXP_VFB

6 Interaction with hardware

6.1 Introduction

The goal of this section is to focus on standardized interaction between application
software-components and hardware via the Virtual Functional Bus. Hardware
interaction means access to the following three kinds of hardware (see also Figure
6.1):

 Microcontroller peripherals

 ECU electronics

 Sensors and Actuators

Actuator and sensor hardware typically needs specialized software to provide an
interface towards application software. This interface typically includes a software
interface to read sensor values, functions to set an actuator, diagnostic interfaces etc.
The integrator needs the flexibility to connect the sensors and actuators of his system
to a suitable ECU of his choice.
In some cases, even specialized hardware on the ECU is needed, and an interaction
with that hardware is not possible over the standardized basic software. In those cases,
complex drivers may be used to interact with this specific hardware. Complex drivers
are supplier specific.
Figure 6.1 shows the typical conversion process from physical signals to software
signals (e.g. car velocity) and back (e.g. car light). This interface architecture is taken
because of 2 reasons:

The best reuse potential (when all other integration requirements like performance
requirements are fulfilled):

o if the µC changes, it is possible to reuse the ECU Abstraction, the sensor-
actuator software-component and the application software-component

o if the ECU changes, it is possible to reuse the sensor-actuator software-
component and the application software-component

o if the sensor or actuator changes, it is still possible to reuse the application
software-component

The various modules can be developed by different experts and/or companies (µC, ECU,
Sensor/Actuator, Application)

 Virtual Functional Bus
AUTOSAR CP R21-11

67 of 107 Document ID 56: AUTOSAR_EXP_VFB

Figure 6.1: Signal conversions between physical signals and software signals

6.2 Microcontroller Abstraction Layer (MCAL)

Access to the hardware is routed through the Microcontroller Abstraction Layer (MCAL)
to avoid direct access to microcontroller registers from higher-level software.
MCAL is a hardware specific layer that ensures a standard interface to the components
of the basic software. It manages the microcontroller peripherals and provides the
components of the basic software with microcontroller independent values. MCAL
implements notification mechanisms to support the distribution of commands,
responses and information to different processes.
Among others it can include20:

 Digital Input/Output

 Analog/Digital Converter

 Pulse Width (De)Modulator

 EEPROM

 FLASH

 Capture Compare Unit

 Watchdog Timer

 Serial Peripheral Interface

 I²C Bus

The MCAL is available on each standard microcontroller.

20 Please consult [List of BSW Modules] for the actual hardware supported by AUTOSAR.

Sensor

IO

Application 1

Application 2 Actuator

IO

ECU
Abstraction

MCAL

Sensor

Actuator ECU

Electronics

ECU

Electronics

mC

Peripherals

mC

Peripherals

Electrical/Physical signal

e.g.

Car Velocity

e.g.

Car light

API 0 (standardized interface)

software

hardware

hardware

HW/SW Transition

 Virtual Functional Bus
AUTOSAR CP R21-11

68 of 107 Document ID 56: AUTOSAR_EXP_VFB

6.3 ECU Abstraction

The ECU Abstraction provides a software interface to the electrical values of any
specific ECU in order to decouple higher-level software from all underlying hardware
dependencies.
Figure 6.2 shows a typical example for the ECU abstraction. In this case the service
“ECU_Set_I” is provided in 3 different ways on the ECU, but the SW-Interface is always
the same.

Figure 6.2: example “ECU_Set_I” for the ECU abstraction

6.4 Sensor-Actuator Software Component

A sensor-actuator software-component is an atomic software-component that makes
the functionality of a sensor or actuator usable for other SW-components. That means
that the sensor-actuator software-component provides the application software-
components an interface for the physical values of the sensors and actuators. A
sensor-actuator software-component is written for a concrete sensor or actuator and
uses the ECU abstraction interface.

6.5 Complex Driver Component

The Complex Driver (CDD) allows direct access to the hardware in particular for
resource critical applications.
The Complex Driver is a loosely coupled container, where specific software
implementations can be placed. The only requirement to the software parts is that the
interface to the AUTOSAR world has to be implemented according to the AUTOSAR
port and interface specifications.

ECU

Abstraction MCAL

POWER

IC
X

mC

Peripherals

PWM

software hardware

ECU

Abstraction MCAL

POWER

IC
Y

mC

Peripherals

ECU

Abstraction MCAL

ASICmC

Peripherals

ADC

DIO current

current

current

DIO_Set()

DIO_Get()

SPI_Write()

SPI_Read()

PWM_Set()

ADC_Get()

ECU_Set_I()

ECU_Set_I()

ECU_Set_I()

Electrical/Physical signal

API 0 (standardized interface) HW/SW Transition

 Virtual Functional Bus
AUTOSAR CP R21-11

69 of 107 Document ID 56: AUTOSAR_EXP_VFB

The main task of the complex drivers is to implement complex sensor evaluation and
actuator control with direct access to the μC using specific interrupts and/or complex
μC peripherals (like PCP, TPU), e.g.

 injection control

 electric valve control

 incremental position detection

Further on the Complex Drivers will be used to implement drivers for hardware which
is not supported by AUTOSAR.
If for example a new communication system will be introduced in general no AUTOSAR
driver will be available controlling the communication controller. To enable the
communication via this medium, the driver will be implemented proprietarily inside the
Complex Drivers. In case of a communication request via that medium the
communication services will call the Complex Driver instead of the communication
hardware abstraction to communicate.
Another example where non-standard drivers are needed is to support ASICs that
implement a non-standardized functionality.
Last but not least the Complex Drivers are to some extend intended as a migration
mechanism. Due to the fact that direct hardware access is possible within the Complex
Drivers already existing applications can be defined as Complex Drivers. If interfaces
for extensions are defined according to the AUTOSAR standards new extensions can
be implemented according to the AUTOSAR standards, which will not force the OEM
or the supplier to reengineer all existing applications.

 Virtual Functional Bus
AUTOSAR CP R21-11

70 of 107 Document ID 56: AUTOSAR_EXP_VFB

7 AUTOSAR Services

7.1 Introduction

This section describes the handling of AUTOSAR services in the VFB view and defines
how they can be represented graphically.
AUTOSAR services depict a hybrid concept composed of Basic Software Modules as
well as of AUTOSAR Software Components. They provide standardized functionality
of the particular ECU infrastructure (AUTOSAR BSW) for Application Software
Components mapped onto it.
For the sake of simplicity sometimes the term “service” is used instead of the full term
“AUTOSAR service”. However, it has nothing to do with the service part of a client-
server interface.

Figure 7.1 A software component accesses services of the Os

Figure 7.1 shows an example for requiring a service: the software component type
ApplicationMonitor has a port typed with the interface OsService. Since this client-
server interface contains operations like GetActiveApplicationMode or
GetApplicationState, the software component ApplicationMonitor is able to query the
Os about the OsApplication states or the Os start mode.
Figure 8.4 shows another example: here, the software component has access to the
ECU state manager of the ECU Basic Software and its capabilities.

7.2 VFB Representation

When it comes to model and configure AUTOSAR services main challenges are:

 the selection of appropriate communication paradigm,

 the fulfillment of prerequisites defined by RTE (see [7])

 the platform dependent types

 the configuration

ApplicationMonitor

os

<<Interface>>

OsService
…
GetActiveApplicationMode(OUT AppModeType CurrentMode)

GetApplicationState(IN ApplicationType Application, OUT
ApplicationStateType Value, ERR{E_OS_ID})
…

 Virtual Functional Bus
AUTOSAR CP R21-11

71 of 107 Document ID 56: AUTOSAR_EXP_VFB

7.2.1 Selection of a communication mechanism

In general AUTOSAR services communicate via Standardized AUTOSAR Interfaces.
On the VFB they are only visible at the software components requesting the services.
The corresponding counterparts in the Basic Software are not visible on the VFB, but
inherently present.
Depending on the nature of the service, all kinds of ports are possible:
The most natural way is a service offered to an AUTOSAR component via a provide
port typed by a client-server interface: This acts just like a library call returning some
data. The corresponding software component would then have a require port like in
the example shown in Figure 7.1.
A require port typed by a sender-receiver interface may be used instead, if a service
has to be activated but no immediate answer is needed.
A service may also use a require port typed by a client-server interface in order to
communicate with an AUTOSAR component. An example is a state manager, which
may need an acknowledgement of an AUTOSAR component before it can change a
state.
Instead of the previous case, a service may use the provide port typed by a sender-
receiver interface to inform AUTOSAR components about e.g. state changes, if no
immediate answer is needed.
In general, the selection of the appropriate communication paradigm is use-case
dependent. No general concept except the already defined rules is required. However,
note that many services are already predefined by the module specifications of the
AUTOSAR Basic Software service layer.
In the VFB view the usage of services by AUTOSAR components is modeled by using
a specific graphical notation (see Table 3.2) for ports.
The SWC-Template provides means to attribute the associated interfaces as well as
the software components: interfaces mark the attribute isService as true, software
components set the attribute ServiceNeeds to an appropriate value.

7.2.2 Location of a Service

The examples shown in Figure 7.1 and Figure 8.4 point to a characteristic property of
software components accessing specific AUTOSAR services. They can only be
integrated onto those ECUs which provide the binding counterparts within the
AUTOSAR Basic Software.
This means that the implementation of a service must be located on the same ECU as
the AUTOSAR component instance, which is using the service. This is required for
good performance and reliability as well as for technical reasons. For example, a timer
service is much easier to use locally on the same CPU. For that kind of services we
will have instances on different ECUs.

7.2.3 Distribution of Requests to Remote Services

A direct communication from an application software component to a remote ECU’s
AUTOSAR service is not possible. On the other hand, the concept of application and
vehicle mode management requires the distribution of mode requests from one mode

 Virtual Functional Bus
AUTOSAR CP R21-11

72 of 107 Document ID 56: AUTOSAR_EXP_VFB

requestor to the service of a Basic Software Mode Manager (BswM) on every ECU. To
distribute the requests, service proxy SW components are used.

The service proxy SW component is similar to an application SW component. But, the
same service proxy SW component instance is copied during the system design to
several ECUs while an application SW component instance is mapped to exactly one
ECU in the system.

As a consequence, a connection between an application software component and a
service proxy SW component that is shown as 1:1 connection in the VFB will be a 1:n
connection in the system. This allows the distribution of a request to several ECUs.

Figure 7.2: Example for distributing a mode request from a
VehicleClampControl to the BswM of several ECUs

7.2.4 Platform dependent types

Many data types within the Basic software are platform dependent to gain efficiency.
For example: the type of IDs can depend on the entities to be handled within a specific
ECU, which would restrict the reusability of application software components.

VFB

RTE1

BSW1

ECU1

VCC:

VehicleClampControl

VCP:

VehicleClampProxy

VCC:

VehicleClampControl

VCP:

VehicleClampProxy

BswM Service

RTE2

BSW2

ECU2

VCP:

VehicleClampProxy

BswM Service

App1:

Application1

App2:

Application2

App1:

Application1

App2:

Application2

 Virtual Functional Bus
AUTOSAR CP R21-11

73 of 107 Document ID 56: AUTOSAR_EXP_VFB

For source code integrated SW-C no problem occurs, because the type will be known
at compile time. For SW-C integrated as object code a problem might occur, because
the assumed type during compilation of the SW-C might differ from the type assumed
by the basic software modules during their compilation.
The solution to this problem is currently that at least parts of SW-C’s have to be
recompiled after the contract phase although they should be integrated as object code.
The integrator in this case has to define the appropriate types and provide the
appropriate header file to the suppliers of basic software and application software
components.
This results in the restriction that code optimizations within the SW-C and the basic
software shall not rely on specific platform dependent types, e.g., the size of data types
may vary between different platforms.

7.2.5 Configuration

As most parts of the Basic Software, a service may offer static configuration
parameters (i.e. configuration parameters to be defined prior to compile time) in order
to be implemented efficiently, e.g. by keeping memory usage low. In many cases these
configuration parameters will depend on the number and type of AUTOSAR
components by which the service will be used. In these cases at least parts of the
software for AUTOSAR services on a specific ECU have to be recompiled at system
integration time. Appropriate processes and tools for this have to be specified.
However, this configuration is not part of the VFB view. A good overview of the
necessary configuration process needed for AUTOSAR services is given in the
“Software Component Template” specification [6].

7.3 List of Services

AUTOSAR services of the following BSW modules are available:
1. Basic Software Mode Manager - BswM
2. Communication Manager - ComM
3. Crypto Service Manager - Csm
4. Default Error Tracer - Det
5. Diagnostic Communication Manager - Dcm
6. Diagnostic Communication Manager for SAE J1939 - J1939Dcm
7. Diagnostic Event Manager - Dem
8. Diagnostic Log and Trace - Dlt
9. Diagnostic over IP - DoIP
10. ECU State Manager - EcuM
11. Secure Onboard Communication - SecOC
12. NVRAM Manager - NvM
13. Operating System - Os
14. Request Manager for SAE J1939 - J1939Rm
15. Synchronized Time-Base Manager - StbM
16. Watchdog Manager - WdgM

 Virtual Functional Bus
AUTOSAR CP R21-11

74 of 107 Document ID 56: AUTOSAR_EXP_VFB

8 Mode Management

8.1 Introduction

Most software components possess specific runnables for initialization, for finalization
and for an operational or run mode. The behavior of certain software components might
depend in even more complex ways on some system modes. As these components
typically do not change their modes themselves, they need to react to mode changes
triggered by other components.
Ergo, AUTOSAR needs to support

 The definition of modes

 Communication mechanisms that allow components (including AUTOSAR
services) to exchange information about modes and mode-changes

 Scheduling mechanisms that allow components to specify how they behave in
different modes

This section briefly describes the generic mechanisms provided by AUTOSAR to
support this. These generic mechanisms can then be applied to typical automotive
use-cases, such as changes in the ECU’s power-state or in the mode of the
communication bus.

8.2 Defining modes

In AUTOSAR the mode switch notification mechanism is used to exchange modes
between components. A mode switch interface includes a so called
“ModeDeclarationGroup”.
Figure 8.1 shows an example of the definition of the mode switch interface
“ECUMCurrentMode” containing a single reference to the ModeDeclarationGroup
“ECUMMode”.

Figure 8.1: Example of a Sender-Receiver Interface “ECUMCurrentMode” with
a single ModeDeclarationGroup

The ModeDeclarationGroup is a set of ModeDeclarations. Within the definition of the
group, one ModeDeclaration describes the initial mode that is assumed at startup. For
example, for the case of the ECU power state, the ModeDeclarationGroup
“ECUMMode” could define the group of modes named { STARTUP_SHUTDOWN,
RUN, POST_RUN, SLEEP, WAKE_SLEEP }, with STARTUP_SHUTDOWN as the
initial mode.
The modes are mutually exclusive: at run-time, there is always one active mode in a
ModeDeclarationGroup. The initial mode of a ModeDeclarationGroup is active before
any mode switches occurred.

<< ModeSwitchInterface >>
EcuMCurrentMode

ModeDeclarationGroups :
ECUMMode currentMode

 Virtual Functional Bus
AUTOSAR CP R21-11

75 of 107 Document ID 56: AUTOSAR_EXP_VFB

[EXP_Vfb_00115] ⌈There shall be exactly one active mode for each

ModeDeclarationGroup in a mode PPort of a component⌋()

[EXP_Vfb_00116] ⌈At configuration time, the initial mode of each

ModeDeclarationGroup in a mode switch interface is known⌋()

[EXP_Vfb_00112] ⌈At configuration time, it is known which ModeDeclarationGroup a

mode switch interface contains⌋()

[EXP_Vfb_00114] ⌈At configuration time, the modes of each ModeDeclarationGroup

in a mode switch interface are known⌋()

8.3 Communicating modes

Modes are transmitted via the mode switch notification mechanism.
There will be software-components that have PPorts typed by mode switch interfaces.
The components that provide these interfaces set the current mode within the group
and are therefore called “mode-managers”.
The counterparts of the “mode-managers” are components whose behavior depends
on the current mode. These modules have RPorts typed by the same interface. If the
corresponding PPorts and RPorts are connected via a connector, these components
are informed about mode-switches and the current mode set by the mode-manager.
Figure 8.2 shows an example of this for the case that the mode-manager is an
AUTOSAR Service. This figure is an extract out of the example of Figure 3.13.

Figure 8.2: Example of a the communication of a mode from the “ECU State
Manager” Service-component to an application software-component

BSW

RTE

SHCFrontLeft: SeatHeatingControl

n
v

e
c
u
M

o
d

e

C
a
lib

ra
ti
o

n

P
o

w
e

r
M

a
n

a
g

e
m

e
n

t

E
C

U
 S

ta
te

M
a
n

a
g

e
r

 Virtual Functional Bus
AUTOSAR CP R21-11

76 of 107 Document ID 56: AUTOSAR_EXP_VFB

For mode switch interfaces, only 1:n communication (1 mode manager and n mode

users, with n 0) is possible. The single mode manager owns the current mode of the
ModeDeclarationGroup. The users are informed of any mode switch of the manager.
For the mode managers of the AUTOSAR basic software, there is typically for each
mode switch based service also a sender receiver based service to request a mode.
E.g., for each ComM user one mode switch interface indicates the currently available
communication mode and a sender receiver interface is used to request the desired
communication mode. In this pattern there is usually one mode requestor that is at the
same time a mode user. Figure 8.3 shows this pattern for the ComM.

Figure 8.3: Example of a the communication of a mode from the “ECU State
Manager” Service-component to an application software-component

Due to the strong synchronization between a mode manager and the mode users,
mode switch communication is only supported in ECU local communication. For a
mode management that spans several ECUs, a communication pattern including
service software proxy components for the distribution of mode requests and the BswM
for the switching of modes on each ECU is recommended (see section 7.2.3).

8.4 Mode-managers: components that control modes

Entering and leaving modes is initiated by a mode manager. A mode manager might
for example be the Communication Manager, the ECU State Manager, or an
application mode manager. An application mode manager is a software-component
that provides the service of switching modes.
Such a mode manager contains a PPort typed by a mode switch interface which
references the appropriate ModeDeclarationGroup. The state of the mode managers
will be sent to other component using sender-receiver communication.

MR:ModeRequestor

RTE

BSW

ComM Service

re
q

u
e
s
t

c
o

m
m

u
n
ic

a
ti
o

n

c
o

m
m

u
n
ic

a
ti
o

n

m
o

d
e

MU:ModeUser

c
o

m
m

u
n
ic

a
ti
o

n

m
o

d
e

 Virtual Functional Bus
AUTOSAR CP R21-11

77 of 107 Document ID 56: AUTOSAR_EXP_VFB

Optionally, a mode manager can have an RPort typed by a sender receiver interface
with a data element that is mapped to the same ModeDeclarationGroup to receive
mode requests from a mode requestor.

8.5 Components that depend on modes

Some software components need to be capable of reacting to state changes issued by
mode managers and adapt their behavior to the new situation. Such software-
components include an RPort typed by a mode switch interface which references the
appropriate ModeDeclarationGroup.
Figure 8.4 shows an example whereby the mode switch interface “EcuMCurrentMode”
is used to type the RPort “ecuMode” of the component “SeatHeatingControl”. As the
interface contains the ModeDeclarationGroup “ECUMMode”, this indicates that the
component “SeatHeatingControl” wants to be notified through its port “ecuMode”
whenever there is a change in the “ECUMMode” (this could for example be the current
mode of the ECU on which the component runs). The component could disable the
execution of certain runnables during the mode STARTUP_SHUTDOWN and start
initialization runnables on the transition to the mode RUN.

Figure 8.4: Example showing the use of the mode switch Interface
“ECUMCurrentMode” to type the Port “ecuMode” of the component

“SeatHeatingControl”

SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting

nv

Calibration

ecuMode

<<ModeSwitchInterface>>

EcuMCurrentMode

ModeDeclarationGroup:

ECUMMode currentMode

 Virtual Functional Bus
AUTOSAR CP R21-11

78 of 107 Document ID 56: AUTOSAR_EXP_VFB

[EXP_Vfb_00117] ⌈At configuration time, it must be known which mode switches, the

receiver of a ModeDeclarationGroup in a mode switch interface wants to be informed

of⌋()

[EXP_Vfb_00119] ⌈The transition of modes received from the same

ModeDeclarationGroup instance of a mode manager shall be perceived synchronously

by all mode users⌋()

Since the behavior of an atomic software component is mainly determined by its set of
runnables, the component can specify its reaction to mode changes at the level of
runnables: the component can specify that certain runnables are called when mode-
switches occur or that certain runnables only run in specific modes.

 Virtual Functional Bus
AUTOSAR CP R21-11

79 of 107 Document ID 56: AUTOSAR_EXP_VFB

9 Port Groups

There is a natural hierarchical grouping of ports given by the aggregation of port
prototypes in software components. In addition, AUTOSAR supports alternative
grouping of ports according to other aspects of the vehicle system software. This is
expressed by port groups. The main use case for port groups is to express the required
communication resources during a certain mode of operation like a limp home mode
or a diagnostic mode. These modes are usually orthogonal to the decomposition in
components and sub-components.

A port group has the following features:

 aggregated to a software component type

 list of require and provide port prototypes of the software component

 reference to the sub component port groups that are merged into the port group.

As a practical use case, a port group can reflect a ComM user in the VFB. The
configuration of communication channels associated with a ComM user can be
extracted from the VFB model automatically.

There can be independent mode managers for terminal clamp control, for power
saving, for diagnostic mode, etc. Each of these mode mangers can also have
independent partially overlapping port groups.

Figure 9.1: Example of the use of port groups ‘PowerSave’ that denote ports
that are required during a PowerSave mode. Not required communication

resources could be deactivated during PowerSave mode.

PowerSave

PowerSave

PowerSave

 Virtual Functional Bus
AUTOSAR CP R21-11

80 of 107 Document ID 56: AUTOSAR_EXP_VFB

10 Measurement and Calibration

In embedded automotive software design, measurement means "monitoring" of ECU
internal signals, state variables and intermediate data. It's realized by reading content
of memory cells of a running ECU. In AUTOSAR such data is referred to as
measurable.
“Calibration” means the manipulation of particular calibration parameters. In general,
a calibration parameter characterizes the dynamics of a control algorithm. From a
software implementation point of view it is a variable with read-only access during the
normal operation of an ECU. Since the calibration parameter can be set by the
calibration system, it is possible to manipulate and readjust the determining factors of
closed or open control loop algorithms. Thus, calibration plays an important role during
the development process until near completion.

10.1 Calibration

AUTOSAR provides two mechanisms for calibration:

 Port-based calibration (based on the Parameter Software Components): this
mechanism is explicitly visible on the VFB and reuses the already described
port- and connector-mechanisms

 Private calibration parameters: these reside within an atomic software-
component.

10.1.1 Port-based calibration

This mechanism builds upon the common VFB patterns in the following way:
A component requiring calibration parameters defines an RPort typed by a parameter
interface.
The components that contain the actual values of the calibration parameters are called
“parameter software components”. In contrast to normal software-components,
parameter software components do not possess an internal behavior but are simple
containers that provide (calibration) parameters. They do this through a PPort typed
by a compatible parameter interface. Note that the parameter interface as well as the
parameter software components are also used for fixed data exchange and not just
used for calibration. The “implementation policy” of the elements on the port interface
determines if it is fixed, const or variable data that is being accessed from the
parameter software component.
The fact that a component is calibrated by a specific parameter software component is
expressed through a connector between the corresponding ports. The calibration data
is made available via the provide port of the parameter software component to a
corresponding require port of any software component (compatibility rules do apply).
Since in this model the parameters are visible on the virtual bus, parameter software
components are the way to express public calibration parameters.
Depending on whether the corresponding components are instantiated or not, several
different cases can be distinguished, described in the following sections.

 Virtual Functional Bus
AUTOSAR CP R21-11

81 of 107 Document ID 56: AUTOSAR_EXP_VFB

10.1.1.1 Pure single instantiation

Figure 10.1 shows the simplest case, where a software component has access to a
particular set of calibration parameters by ‘receiving’ them via a connection from a
providing parameter software component.

Figure 10.1 A software component has access to a calibration parameter
encapsulated in a parameter software component

It should be noted here that the parameter software components and software
components connected are residing per se on the same ECU. Actually, the parameter
software components are only representing memory containing the encapsulated
(calibration) parameter.

10.1.1.2 Multiple instantiation of the involved software components

Figure 10.2 and Figure 10.3 depict the case, where several software components
(instances) of the same or of different component-type have access to the same set of
(calibration) parameters.

Context of a ECU

<<ParameterSw

ComponentType>>

: Prm

<<SoftwareComponentType>>

: SWC

Context of a particular ECU

<<ParameterSw

ComponentType>>

: Prm

<<SoftwareComponentType>>

A : SWC 1

<<SoftwareComponentType>>

B : SWC 1

<<SoftwareComponentType>>

: SWC 2

 Virtual Functional Bus
AUTOSAR CP R21-11

82 of 107 Document ID 56: AUTOSAR_EXP_VFB

Figure 10.2 Two software components of the same type access the same
calibration parameter encapsulated in a parameter software component

Since the (calibration) parameters need to reside on the same ECU as the software
component accessing them, the parameter software component needs to be
duplicated if the different software component instances are mapped onto different
ECUs (see Figure 10.3).

Figure 10.3 Like in Figure 10.1, but the software components are mapped onto different ECUs

10.1.1.3 Multiple instantiation of the involved calibration components

Figure 10.4 shows a configuration, where different software component instances need
to access different sets of the same type of calibration parameter.
Here, it is only required – as explained above – that connected instances of calibration
and software components are integrated on the same ECU. Beyond it, the different
instances can reside on a single or different ECUs.

Context of ECU B

Context of ECU A

<<ParameterSw

ComponentType>>

: Prm

<<SoftwareComponentType>>

B : SWC

<<ParameterSw

ComponentType>>

: Prm

<<SoftwareComponentType>>

A : SWC

 Virtual Functional Bus
AUTOSAR CP R21-11

83 of 107 Document ID 56: AUTOSAR_EXP_VFB

Figure 10.4 Two software components of the same type have been assigned different instances
of the same Parameter Software Component Type.

10.1.2 Private calibration

The private calibration mechanism is based on parameters that are private and internal
to a software component. From the software component implementation point of view
a calibration parameter is a variable with only read-access during the normal operation
of the ECU. A calibration parameter can be defined per instance of a software
component (perInstanceParameter) or can be shared between all instances of a
software component (sharedParameter).

Calibration parameters are not visible per se on the virtual functional bus, since it is
considered an element associated to an internal behaviour of a software component.

Unlike the structure of software components and compositions which is considered to
be specified during system design, the internal behaviour can be defined later in time
when particular software components are supplied. With this respect the visibility of
the private calibration parameters is rather a function of time, depending on who
assigns them when.

10.2 Measurement

In AUTOSAR systems, only actual instances of the following prototypes if marked as
measurable can be monitored:

Communication between AUTOSAR SW-Components:

 VariableDataPrototypes enclosed in a sender-receiver interface

 Arguments of ClientServerOperations enclosed in a client-server interface

Context of ECU B

Context of ECU A

<<ParameterSw

ComponentType>>

B: Prm

<<SoftwareComponentType>>

B : SWC

<<ParameterSw

ComponentType>>

A: Prm

<<SoftwareComponentType>>

A : SWC

 Virtual Functional Bus
AUTOSAR CP R21-11

84 of 107 Document ID 56: AUTOSAR_EXP_VFB

AUTOSAR SW-Component internal:

 Content of InterrunnableVariables which are used for communication
between Runnables of one AUTOSAR SW-Component.

 Virtual Functional Bus
AUTOSAR CP R21-11

85 of 107 Document ID 56: AUTOSAR_EXP_VFB

11 VFB Features and Profiles

11.1 Motivation and Introduction

The idea of identifying features and profiles on VFB level came from the fact that there
are many mechanisms on the RTE and communication paradigms between SW-Cs.
The resulting tables of RTE/VFB features enhance the documentation of RTE/VFB
mechanisms to have a high level means to characterize SW-Cs, ECU platform or even
tool capabilities.

The integration effort of SW-Cs into given platforms depends on which features are
used. In case SW-Cs have to be integrated into a given system where design decisions
like scheduling are already made and implemented in CDDs or other SW-Cs,
integrating SW-Cs that use certain RTE features might even lead to a contradiction.

These tables can support discussions of integration projects in supplier - OEM
collaboration in an early project stage. Here they characterize the bundle of SW-Cs
that have to be integrated into an ECU or to identify the integration capability of a given
system. This means which features on VFB level a given ECU can support.

On the other hand, SW-C code generators and other tools supporting AUTOSAR
methodology might support only a subset of VFB and RTE features. The supported
features may be even configurable to be or not to be used in project context. Also these
subsets of features are worth to be characterized with this approach to simplify
software sharing and integration.

The tables provided also serve to define reduced feature sets (so called VFB/RTE
profiles), which can also be applied in different projects or SW-C integration scenarios.
The definition of these profiles as reduced feature sets is up to the different partners
and not part of the standard. These profiles will probably be OEM, supplier and even
domain specific.

Note that this approach is intentionally different and more fine-grained than the
“Feature Specification of the BSW Architecture and the RTE” document, but focuses
on VFB only."

11.2 Feature tables

The features are described in the tables below. They result from real project experience
and forecast of application SW-Cs to be shared. Thus, they can serve as a basis and
can be extended by partners in a feature/profile based technical discussion.
A table entry i.e. a VFB feature is a single aspect of functionality on VFB/RTE level
relevant from a single ECU’s perspective that have major influence on

 SW-C complexity,

 integration effort,

 architectural effort, and

 compatibility with decisions taken in ECU design.

 Virtual Functional Bus
AUTOSAR CP R21-11

86 of 107 Document ID 56: AUTOSAR_EXP_VFB

The tables distinguish between INTRA-ECU (number R) and INTER-ECU (number E)
aspects. The separation of inter-ECU communication (RTE with COM Stack) from the
other RTE features was found to be useful due to their different nature in technical
realisation. Inter-Partition aspects are also covered in the partition part of the Intra-
ECU table.
Note that features can be used to describe single SW-Cs but mainly have the focus to
describe the whole “subsystem” mapped to a particular ECU in a SW sharing project.

11.2.1 Intra-ECU features

R 1 SENDER-REICEIVER IMPLEMENTATION DATA TYPE

 Informal
"Category"

CATEGORY Refinements of the feature description
in SWC terms

R 1.1 PRIMITIVE VALUE,
DATA_REFERENCE,
FUNCTION_REFEREN
CE

category "VALUE", "DATA_REFERENCE"
or "FUNCTION_REFERENCE" for
ImplementationDataType for Sender-
Receiver Communication is used

R 1.2 COMPLEX STRUCTURE, ARRAY,
UNION

Structures, Unions or arrays are used as
category for ImplementationDataType for
Sender-Receiver Communication

R 1.3 DYNAMIC VARIABLE_LENGTH SwBaseType with category =
VARIABLE_LENGTH are used for Sender-
Receiver Communication.

R 2 SENDER-RECEIVER COMMUNICATION

 Semantics Feature Refinements of the feature description
in SWC terms

R 2.1 Data (Last-is-
best)

 VariableDataPrototypes configured with
swImplPolicy = Standard are used in S/R
PortPrototypes' SenderReceiverInterface

R 2.2 Data (Last-is-
best)

INIT value PPortPrototype/RPortPrototypes
configured with InitValue attribute in the
NonqueuedSenderComSpec,
NonqueuedReceiverComSpec or at
corresponding VariableDataPrototypes
are used.

R 2.3 Data (Last-is-
best)

Invalidation SenderReceiverInterfaces used by
PortPrototype are configured with
handleInvalid attribute of the
InvalidationPolicy is set to keep or
replace.

R 2.4 Data (Last-is-
best)

Filter RPortPrototypes configured with Filter
attributes in
NonqueuedReceiverComSpec are used.

R 2.5 Data (Last-is-
best)

Alive Timeout One or more RPortPrototype configured
with AliveTimeOut attribute greater than 0
in NonqueuedReceiverComSpec

R 2.6 Data (Last-is-
best)

Acknowledgement One or more PPortPrototype configured
with Attribute
TransmissionAcknowledgmentRequest
in SenderComSpec.

R 2.7 Data (Last-is-
best)

NeverReceived
indication (RcvSide)

One or more RPortPrototype configured
with Attribute HandleNeverReceived =
true in NonqueuedReceiverComSpec.

 Virtual Functional Bus
AUTOSAR CP R21-11

87 of 107 Document ID 56: AUTOSAR_EXP_VFB

R 2.8 Data (Last-is-
best)

Enableupdate indication
(RcvSide)

One or more RPortPrototype configured
with Attribute enableUpdate = true in
NonqueuedReceiverComSpec.

R 2.9 Data (Last-is-
best)

Explicit access
(Read/Write API)

DataReceivePoint / DataSendPoint exist
at least in one RunnableEntity.

R 2.10 Data (Last-is-
best)

Implicit access
(IRead/Iwrite)

DataReadAccess / DataWriteAccess exist
at least in one RunnableEntity.

R 2.11 Data (Last-is-
best)

Implicit access with
special semantics:
coherency groups

DataReadAccess / DataWriteAccess exist
at least in one RunnableEntity.
RteImplicitCommunication containers are
defined with with RteCoherentAccess set
to "TRUE" (i.e. Coherency groups are
defined)

R 2.12 Data (Last-is-
best)

Implicit access with
special semantics:
Immediate buffer update

DataReadAccess / DataWriteAccess exist
at least in one RunnableEntity.
RteImplicitCommunication containers are
defined with with
RteImmediateBufferUpdate set to "TRUE"
(i.e. specific buffer update handling is
required for some implicit read/write
access)

R 2.13 Data (Last-is-
best)

Handle out of range One or more RPortPrototype /
PPortPrototype configured with Attribute
handleOutOfRange (value must be
different that NONE) of the respective
SenderComSpec or ReceiverComSpec.

R 2.14 Data (Last-is-
best)

End to end protection One or more RPortPrototype /
PPortPrototype configured with Attribute
usesEndToEndProtection = TRUE in the
ReceiverComSpec and/or
SenderComSpec.

R 2.15 Event (queued) VariableDataPrototype in
SenderReceiverInterface is configured
with swImplPolicy = Queued

R 2.16 Event (queued) Blocking Receive Attribute WaitPoint in a RunnableEntity
with TriggerRef to a DataReceivedEvent
is used.

R 2.17 Event (queued) Handle out of range One or more PPortPrototype /
RPortPrototype configured with Attribute
handleOutOfRange attribute in the
respective SenderComSpec or
ReceiverComSpec.

R 2.18 Event (queued) End to end protection One or more PPortPrototype /
RPortPrototype configured with Attribute
usesEndToEndProtection = TRUE in the
ReceiverComSpec and/or
SenderComSpec.

R 3 INTER-RUNNABLE VARIABLE

 Access Feature Refinements of the feature description
in SWC terms

R 3.1 EXPLICIT PRIMITIVE DATA A explicitInterRunnableVariable is
declared as primitive (implementation data
type of category "value")
VariableDataPrototype and used in a
SwcInternalBehavior.

R 3.2 EXPLICIT COMPLEX DATA A explicitInterRunnableVariable is
declared as complex (implementation data

 Virtual Functional Bus
AUTOSAR CP R21-11

88 of 107 Document ID 56: AUTOSAR_EXP_VFB

type of category "array", "structure" or
"union") VariableDataPrototype and used
in a SwcInternalBehavior.

R 3.3 IMPLICIT PRIMITIVE DATA A implicitInterRunnableVariable is
declared as primitive (implementation data
type of category "value")
VariableDataPrototype and used in a
SwcInternalBehavior.

R 3.4 IMPLICIT COMPLEX DATA A implicitInterRunnableVariable is
declared as complex (implementation data
type of category "array", "structure" or
"union") VariableDataPrototype and used
in a SwcInternalBehavior.

R 4 CLIENT-SERVER COMMUNICATION

 Semantics Feature Refinements of the feature description in
SWC terms

R 4.1 Synchronous Reentrant server A SynchronousServerCallPoint exists
and the corresponding
ServerRunnableEntity is configured with
attribute "canBeInvokedConcurrently =
true"

R 4.2 Synchronous Non-reentrant server A SynchronousServerCallPoint exists

and the corresponding
ServerRunnableEntity is configured with
attribute "canBeInvokedConcurrently =
false"

R 4.3 Synchronous Exclusive areas A SynchronousServerCallPoint exists
and the corresponding
ServerRunnableEntity applies
ExclusiveAreas (runsInsideExclusiveArea
or canEnterExclusiveArea)

R 4.4 Synchronous Cross Partition A SynchronousServerCallPoint exists
and the corresponding
ServerRunnableEntity is not in the same
RTE partition.

R 4.5 Synchronous With timeout A SynchronousServerCallPoint with
attribute TimeOut > 0 exists.

R 4.6 Asynchronous Clients uses Rte_Result
API to poll (no
ASYNCHRONOUS_SER
VER CALL_RETURNS
EVENT Re)

An AsynchronousServerCallPoint and
corresponding
AsynchronousServerCallResultPoint
exists but no correspnding
AsynchronousServerCallReturnEvent
exists.

R 4.7 Asynchronous Clients uses Rte_Result
API to poll (with
ASYNCHRONOUS_SER
VER CALL_RETURNS
EVENT Re)

An AsynchronousServerCallPoint and
corresponding
AsynchronousServerCallResultPoint
exists and a corresponding
AsynchronousServerCallReturnEvent
triggers a runnbable but no WaitPoint
references it

R 4.8 Asynchronous with WaitPoint i.e.
blocking Rte_Result

An AsynchronousServerCallReturnEvent
exists and a WaitPoint references it.

R 4.9 Asynchronous with Timeout (also
without Waitpoint)

An AsynchronousServerCallPoint with
attribute TimeOut > 0 exists.

R 4.10 PORT-DEFINED
ARGUMENT
VALUES

 A PortAPIOption is configured with
attribute portArgValue in a
SwcInternalBehavior.

 Virtual Functional Bus
AUTOSAR CP R21-11

89 of 107 Document ID 56: AUTOSAR_EXP_VFB

R 5 TRIGGER COMMUNICATION

 Semantics Feature Refinements of the feature description in
SWC terms

R 5.1 External Trigger Non Queued Portinterface typed by TriggerInterface
with triggers configured with swImplPolicy
= Standard referenced by an
ExternalTriggeringPoint are used

R 5.2 External Trigger Queued Portinterface typed by TriggerInterface
with triggers configured with swImplPolicy
= Queued referenced by an
ExternalTriggeringPoint are used

R 5.3 Inter runnable
Trigger

Non Queued InternalTriggeringPoint configured with
swImplPolicy = Standard are used

R 5.4 Inter runnable
Trigger

Queued InternalTriggeringPoint configured with
swImplPolicy = Queued are used

R 6 RTE EVENTS

 Reaction Event Type Refinements of the feature description in
SWC terms

R 6.1 RE Activation TIMING_EVENT A TimingEvent references a
RunnableEntity.

R 6.2 RE Activation DATA_RECEIVED_EVE
NT

A DataReceivedEvent references a
RunnableEntity, a required
VariableDataPrototype but no WaitPoint
references the DataReceivedEvent.

R 6.3 RE Activation DATA_RECEIVED_ERR
OR_EVENT

A DataReceivedErrorEvent references a
RunnableEntity, a required
VariableDataPrototype but no WaitPoint
references the DataReceivedErrorEvent.

R 6.4 RE Activation DATA_SEND_COMPLE
TED_EVENT

A DataSendCompletedEvent references a
RunnableEntity, a required
VariableDataPrototype but no WaitPoint
references the DataSendCompletedEvent.

R 6.5 RE Activation OPERATION_INVOKED
_EVENT

An OperationInvokedEvent references a
RunnableEntity.

R 6.6 RE Activation MODE_SWITCH_EVEN
T

A ModeSwitchEvent references a
RunnableEntity.

R 6.7 RE Activation MODE SWITCH ACK
EVENT with Timeout

A ModeSwitchAckEvent references a
RunnableEntity, a
ModeDeclarationGroupPrototype and the
Attribute ModeSwitchedAckRequest is not
configured in
NonqueuedSenderComSpec.

R 6.8 RE Activation MODE SWITCH ACK
EVENT without Timeout

A ModeSwitchAckEvent references a
RunnableEntity, a
ModeDeclarationGroupPrototype and the
Attribute TimeOut in
ModeSwitchedAckRequest is configured
in NonqueuedSenderComSpec.

R 6.9 RE Activation ASYNCHRONOUS_SER
VER CALL_RETURNS
EVENT

An
AsynchronousServerCallReturnsEvent
references a RunnableEntity.

R 6.10 RE Activation BACKGROUND_EVENT An BackGroundEvent references a
RunnableEntity.

 Virtual Functional Bus
AUTOSAR CP R21-11

90 of 107 Document ID 56: AUTOSAR_EXP_VFB

R 6.11 RE Activation DATA_WRITE_COMPL
ETED_EVENT

A DataWriteCompletedEvent references a
RunnableEntity, a provided
VariableDataPrototype but no WaitPoint
references the
DataWriteCompletedEvent.

R 6.12 RE Activation EXTERNAL_TRIGGER_
OCCURED_EVENT

An ExternalTriggerOccurredEvent
references a RunnableEntity.

R 6.13 RE Activation INTERNAL_TRIGGER_
OCCURED_EVENT

An InternalTriggerOccurredEvent
references a RunnableEntity.

R 6.14 RE Activation INIT_EVENT An InitEvent references a RunnableEntity.

R 6.15 RE Activation SWC_MODE_MANAGE
R_ERROR_EVENT

An SwcModeManagerErrorEvent
references a RunnableEntity.

R 6.16 Wakeup of
Waitpoints

DATA_RECEIVED_EVE
NT

A DataReceivedEvent references a
RunnableEntity and a required
VariableDataPrototype. A WaitPoint
references the DataReceivedEvent.

R 6.17 Wakeup of
Waitpoints

DATA_SEND_COMPLE
TED_EVENT

A DataSendCompletedEvent references a
RunnableEntity and a provided
VariableDataPrototype. A WaitPoint
references the DataSendCompletedEvent.

R 6.18 Wakeup of
Waitpoints

ASYNCHRONOUS_SER
VER CALL_RETURNS
EVENT

An
AsynchronousServerCallReturnsEvent
references a RunnableEntity and a
WaitPoint references the
AsynchronousServerCallReturnsEvent

R 6.19 Wakeup of
Waitpoints

MODE_SWITCH_ACK_
EVENT

A ModeSwitchAckEvent references a
RunnableEntity, a
ModeDeclarationGroupPrototype and the
Attribute TransmissionAcknowledge is
configured in
NonqueuedSenderComSpec. One
WaitPoint references the
ModeSwitchAckEvent.

R 6.20 Wakeup of
Waitpoints with
timeout

 A timout attribute > 0 is specified for at least
one WaitPoint

R 7 MEASUREMENT & CALIBRATION

 Feature Sub-feature Refinements of the feature description in
SWC terms

R 7.1 Measurement Port-to-Port S/R
communication

A swCalibrationAccess exists for a
VariableDataPrototype used in an
interface of a sender-receiver port and is
set to readOnly or readWrite.

R 7.2 Measurement IRV One swCalibrationAccess exists for a
VariableDataPrototype in the role
implicitInterRunnableVariable or
explicitInterRunnableVariable and is set
to readOnly or readWrite.

R 7.3 Measurement Port-to-Port C/S
communication

A swCalibrationAccess exists for an
ArgumentDataPrototype used in an
interface of a client-server port and is set
to readOnly.

R 7.4 Measurement Non-volatile data
communication

One swCalibrationAccess exists for a
VariableDataPrototype used in an
NvDataInterface of a non volatile port of a
SwComponentPrototype is set to
readOnly or readWrite.

 Virtual Functional Bus
AUTOSAR CP R21-11

91 of 107 Document ID 56: AUTOSAR_EXP_VFB

R 7.5 Measurement PIM One swCalibrationAccess exists for a
VariableDataPrototype in the role
arTypedPerInstanceMemory and is set to
readOnly or readWrite.

R 7.6 Measurement RAM Block of a NV
Block SW-C Type

One swCalibrationAccess exists for a
VariableDataPrototype in the role
ramBlock of a
NvBlockSwComponentType's
NvBlockDescriptor and is set to readOnly
or readWrite.

R 7.7 Calibration SWC internal: CData API
(Shared Calibration
Parameters)

A ParameterDataPrototype is attached to
a SwcInternalBehavior in
sharedParameter role.

R 7.8 Calibration SWC internal: CData API A ParameterDataPrototype is attached to
a SwcInternalBehavior in
PerInstanceParameter role.

R 7.9 Calibration ParameterSwComponen
t

A ParameterSwComponentPrototype is
used as a SwComponentPrototype within
a CompositionSwComponentType.

R 7.10 Calibration Non-volatile data
communication

A swCalibrationAccess of a
VariableDataPrototype is used in an
NvDataInterface of a non volatile data port
of a SwComponentPrototype and is set to
readWrite.

R 7.11 Calibration ROM Block of a NV
Block SW-C Type

A swCalibrationAccess of a
VariableDataPrototype in the role
romBlock of a
NvBlockSwComponentTypes's
NvBlockDescriptor is set to readWrite.

R 7.12 Calibration Data emulation without
SW support

The attribute RteCalibrationSupport ís
configured with value NONE.

R 7.13 Calibration Data emulation with SW
support, single-pointed
method

The attribute RteCalibrationSupport ís
configured with value
SINGLE_POINTERED.

R 7.14 Calibration Data emulation with SW
support, double-pointed
method

The attribute RteCalibrationSupport is
configured with value
DOUBLE_POINTERED.

R 7.15 Calibration Data emulation with SW
support, init-RAM
parameter method

The attribute RteCalibrationSupport is
configured with value INITIALIZED_RAM.

R 8 MODES

 Feature Sub-feature Refinements of the feature description in
SWC terms

R 8.1 Mode
Dependency

 One RTEEvent is configured with attribute
ModeDisablingDependency.

R 8.2 Mode Access
(reading of
current mode)

 A ModeAccessPoint exists in at least one
RunnableEntity

R 8.3 ModeSwitchAck
nowledgement

 ModeSwitchedAckrequest attribute exists
in the ModeSwitchSenderComSpec.

R 8.4 Synchonous
mode switches

 The attribute
supportsAsynchronousModeSwitch is
not configured to TRUE in
ModeSwitchReceiverComSpec (for
software components) or
BswModeReceiverPolicy (for BSW
modules) of at least one ModeUser of a

 Virtual Functional Bus
AUTOSAR CP R21-11

92 of 107 Document ID 56: AUTOSAR_EXP_VFB

mode manager => mode machine instance
uses synchronous mode switch behavior

R 8.5 Asynchonous
mode switches

 The attribute
supportsAsynchronousModeSwitch is
configured with TRUE in all
ModeSwitchReceiverComSpec (for
software components) or
BswModeReceiverPolicy (for BSW
modules) of all mode users for a mode
manager (same
ModeDeclarationGroupPrototype). => mode
machine instance can use asynchronous
mode switch behavior.

R 9 EXCLUSIVE AREA

 Feature Sub-feature Refinements of the feature description in
SWC terms

R 9.1 RunnableCanEn
terExclusiveArea

 An ExclusiveArea exists in
SwcInternalBehavior and is used in the
role "canEnterExclusiveArea" in the
RunnableEntity.

R 9.2 RunnableRunsIn
ExclusiveArea

 An ExclusiveArea exists in
SwcInternalBehavior and is used in the
role "runsInsideExclusiveArea" in the
RunnableEntity.

R 10 Partitions

 Feature Sub-feature Refinements of the feature description in
SWC terms

R 10.1 More than one
Partiton

 The SwcToEcuMapping element in the
SystemTemplate references more than one
EcuPartitions for the given ECU.

R 10.2 More than one
Partiton

Partition used for
Memory Protection

Partitions are used to separate memory
area for SWC.

R 10.3 More than one
Partiton

Partition used for Timing
Protection

Partitions are used to separate Timing
budget for SWC.

R 10.4 More than one
Partiton

Partitions used on
MultiCores

Partitions are used to place SWC on
diiferent cores.

R 10.5 Partition Restart A Restart of a stopped Partition is
required.

R 10.6 Inter Partition
Communication

SenderReceiver (Last-is-
best)

PortPrototypes connections with
SenderReceiverInterfaces of SWCs
mapped to different partitions are used
(corresponding swImplPolicy = Standard)

R 10.7 Inter Partition
Communication

SenderReceiver (Event
semantics)

PortPrototypes connections with
SenderReceiverInterfaces of SWCs
mapped to different partitions are used
(corresponding swImplPolicy = Queued)

R 10.8 Inter Partition
Communication

ModeSwitch PortPrototypes connections with
ModeSwitchInterfaces of SWCs mapped
to different partitions are used

R 10.9 Inter Partition
Communication

ClientServer (Sync) PortPrototypes connections with
ClientServerInterfaces of SWCs mapped
to different partitions are used.
SynchronousServerCallPoint is used

 Virtual Functional Bus
AUTOSAR CP R21-11

93 of 107 Document ID 56: AUTOSAR_EXP_VFB

R 10.10 Inter Partition
Communication

ClientServer (Async) PortPrototypes connections with
ClientServerInterfaces of SWCs mapped
to different partitions are used.
AsynchronousServerCallPoint is used

R 11 PortInterface Mapping & Data Scaling

 Feature Sub-feature Refinements of the feature description in
SWC terms

R 11.1 Connections
with
DataInterfaces

Port connection with
DataInterface with port
element name mapping

Connections between PortInterfaces of
SenderReceiverInterface,
NvDataInterface, or ParameterInterface
exist and a
VariableAndParameterInterfaceMapping
is associated with the connection. The
DataProtoTypeMapping are used to
connect compatible DataPrototypes which
different shortnames (element name
mapping).

R 11.2 Connections
with
DataInterfaces

Port connection with
DataInterface with
TEXTTABLE data
conversion

Connections between PortInterfaces of
SenderReceiverInterface,
NvDataInterface, or ParameterInterface

exist and a
VariableAndParameterInterfaceMapping
is associated with the connection. The
DataProtoTypeMapping uses a
TextTableMapping to connect
DataPrototypes with CompuMethods of
category TEXTTABLE (i.e. to make the
RTE generating a remapping between table
elements).

R 11.3 Connections
with
DataInterfaces

Port connection with
DataInterface with
LINEAR conversion

Connections between PortInterfaces of
SenderReceiverInterface,
NvDataInterface, or ParameterInterface
exist and a
VariableAndParameterInterfaceMapping
is associated with the connection. The
DataProtoTypeMapping connects
DataPrototypes with CompuMethods of
category LINEAR or IDENTICAL (with
compatible Units or identical
PhysicalRepresentation) to rescale the
elements (i.e. to make the RTE generating
a linear conversion between port elements).

R 11.4 Client/Server
connections

ClientServer mapping
with port element name
mapping

Connections between PortInterfaces of
ClientServerInterface exist and a
ClientServerInterfaceMapping is
associated with the connection to connect
compatible operations which different
shortnames (just name mapping).

R 11.5 Client/Server
connections

ClientServer mapping
with argument mapping

Connections between PortInterfaces of
ClientServerInterface exist and a
ClientServerInterfaceMapping is
associated with the connection including a
DataPrototypeMapping (role

argumentMapping) to map arguments with
different names (just name mapping of
arguments).

 Virtual Functional Bus
AUTOSAR CP R21-11

94 of 107 Document ID 56: AUTOSAR_EXP_VFB

R 11.6 Client/Server
connections

ClientServer mapping
with argument
TEXTTABLE data
conversion

Connections between PortInterfaces of
ClientServerInterface exist and a
ClientServerInterfaceMapping is
associated with the connection including a
DataPrototypeMapping (role
argumentMapping) + TextTableMapping

to map arguments of types with
CompuMethods of category TEXTTABLE
(i.e. to make the RTE generating a
remapping between operation argument
values).

R 11.7 Client/Server
connections

ClientServer mapping
with argument LINEAR
data conversion

Connections between PortInterfaces of
ClientServerInterface exist and a
ClientServerInterfaceMapping is
associated with the connection including a
DataPrototypeMapping (role
argumentMapping) to map arguments of
types with CompuMethods of category
LINEAR or IDENTICAL to rescale the
arguments (i.e. to make the RTE generating
a linear conversion between operation
arguments) .

R 11.8 Mode Switch
connections

Mode Switch mapping,
compatiple mode
declarations

Connections between PortInterfaces of
ModeSwitchInterfaceexist and a
ModeInterfaceMapping is associated with
the connection (the referred
ModeDeclarationGroupPrototypes are
compatible)

R 11.9 Mode Switch
connections

Mode Switch mapping,
different number of
ModeDeclarations

Connections between PortInterfaces of
ModeSwitchInterfaceexist and a
ModeInterfaceMapping is associated with
the connection (the referred
ModeDeclarationGroupPrototypes have
different number of ModeDeclarations on
mode
manager and mode user side)

R 11.10 Trigger
connections

Trigger Interface
mapping

Connections between PortInterfaces of
TriggerInterfaces exist and a
TriggerInterfaceMapping is associated
with the connection.

R 11.11 Element
mapping for
composite data
types used

for
ImplementationsDataTyp
es (category ARRAY,
STRUCTURE)

DataProtoTypeMapping is used for
DataInterfaces with SubElementMapping

to map elements of
ImplementationDataTypes category
ARRAY, STRUCTURE or to map/select a
composite data type to a primitive element
(n:1) mapping.

R 11.12 Element
mapping for
composite data
types used

for
ApplicationCompositeDa
taTypes

DataProtoTypeMapping is used for
DataInterfaces with SubElementMapping
to map elements of
ApplicationCompositeDataTypes or to
map/select a single element for a n:1
mapping.

R 11.13 Element
mapping for
composite data
types used

Mix between
ImplementationsDataTyp
es and
ApplicationCompositeDa
taTypes

DataProtoTypeMapping is used for
DataInterfaces with SubElementMapping
to map elements of
ApplicationCompositeDataTypes against
ImplementationsDataTypes (ARRAY,
STRUCTURE) or vice versa

 Virtual Functional Bus
AUTOSAR CP R21-11

95 of 107 Document ID 56: AUTOSAR_EXP_VFB

R 12 RUNNABLE ACTIVATION OPTIONS

 Feature Sub-feature Refinements of the feature description in
SWC terms

R 12.1 Runnable
activation offset
(Load balancing)

 The RteActivationOffset attribute is
configured in RteEventToTaskMapping.

R 12.2 Runnable
minimum start
interval

 The attribute minimumStartInterval is
configured for a RunnableEntity.

R 12.3 Wake up of wait
point

 Please refer to wake of waitpoints section
RTEEVENTS.

R 13 Others

 Feature Sub-feature Refinements of the feature description in
SWC terms

R 13.1 SWCs as
Source code

 A Code element of SwcImplementation is
configured with attribute Category =
SWSRC.

R 13.2 SWCs as Object
code

 A Code element of SwcImplementation is
configured with attribute Category =
SWOBJ.

R 13.3 Multiple
Instantiation

 The attribute
supportsMultipleInstantiation is set to
TRUE for one AtomicSwComponentType.

R 13.4 Per Instance
Memory

c typed A PerInstanceMemory is defined in a
SwcInternalBehavior

R 13.5 Per Instance
Memory

AR typed A VariableDataPrototype is referenced in
the role arTypedPerInstanceMemory in a
SwcInternalBehavior.

R 13.6 Indirect API The attribute IndirectAPI is set to TRUE in
one PortApiOption Element.

R 13.7 Enable take
address

 Referrable C-functions are enforced for at
least one port/function. The attribute
enableTakeAddress is set to TRUE in one
PortApiOption Element

R 13.8 Activating Rte
Event

 An ExecutableEntity aggregates an
ExecutableEntityActivationReason to
retrieve the activating event via RTE API

R 13.9 Variant handling Variant handling via VariationPoints is

used in the model.

R 13.10 Variant handling PreCompileTime
Variability

Variability defined with VariantionPoint or
AttributeValueVariationPoint with latest
bindingTime PreCompileTime is applied to
VFB/RTE relevant model elements

R 13.11 Variant handling PostBuild Variability Variability defined with VariantionPoint
with postBuildVariantCriterion is applied
to VFB/RTE relevant model elements

R 13.12 FlatMap A FlatMap is defined (and referenced in the
RootSwCompositionPrototype) for
EcuExtract or SystemExtract (this is mainly
used to refer to elements in the flat ECU
extract) for measurement and calibration

R 13.13 Combined
Require and
Provide Ports

 SwComponentPrototype with
PRPortPrototype as Ports are used

 Virtual Functional Bus
AUTOSAR CP R21-11

96 of 107 Document ID 56: AUTOSAR_EXP_VFB

R 14 Runnable Category

 Feature Sub-feature Refinements of the feature description in
SWC terms

R 14.1 Cat 1A RunnableEntitys without WaitPoints,
using only implicit S/R API's are used

R 14.2 Cat 1B RunnableEntitys without WaitPoints,
using implicit and explicit API's are used

R 14.3 Cat 2 RunnableEntitys with at least one
WaitPoint are used

R 15 Component Types

 Feature Sub-feature Refinements of the feature description in
SWC terms

R 15.1 ApplicationSwCo
mponent

 A ComponentPrototype of type
ApplicationSwComponentType exists.

R 15.2 EcuAbstractionS
wComponent

 A ComponentPrototype of type
EcuAbstractionSwComponentType
exists.

R 15.3 NvBlockSwCom
ponent

 A ComponentPrototype of type
NvBlockSwComponenType exists.

R 15.4 ComplexDevice
DriverSwCompo
nent

 A ComponentPrototype of type
ComplexDeviceDriverSwComponentTyp
e exists.

R 15.5 SensorActuatorS
wComponent

 A ComponentPrototype of type
SensorActuatorSwComponentType
exists.

R 15.6 ServiceSwComp
onent

 A ComponentPrototype of type
ServiceSwComponentType exists.

R 15.7 ServiceProxySw
Component

 A componentPrototype of type
ServiceProxySwComponentType exists.

R 15.8 ParameterSwCo
mponent

 A ComponentPrototype of type
ParameterSwComponentType exists.

R 16 System Configuration

 Feature Refinements of the feature description in
SWC terms

R 16.1 System
Description
exchanged

 Systems with category
SYSTEM_DESCRIPTION are exchanged in
the cooperation

R 16.2 System Extract
exchanged

 Systems with category
SYSTEM_EXTRACT are exchanged in the
cooperation

R 16.3 Ecu Extract
exchanged

 Systems with category ECU_EXTRACT
are exchanged in the cooperation

R 17 Interfaces to BSW Services

 BSW Module Sub-feature Refinements of the feature description in
SWC terms

R 17.1 NVRAM
Manager – NvM

with
NvBlockSwComponenTy
pe.

A ComponentPrototype is requiring some
NvM Interfaces (example:
ClientServerInterface NvMService) and
NvBlockSwComponenType.

R 17.2 without
NvBlockSwComponenTy
pe (old style).

A ComponentPrototype is requiring some
NvM Interfaces (example:
ClientServerInterface NvMService) and

 Virtual Functional Bus
AUTOSAR CP R21-11

97 of 107 Document ID 56: AUTOSAR_EXP_VFB

ServiceSwComponent is used. Data is
represented and accessed as Per Instance
Memory.

R 17.3 Communication
Manager –
ComM

 A ComponentPrototype is requiring some
ComM Interfaces (example:
ClientServerInterface
ComM_UserRequest,
ComM_ECUModeLimitation,
ComM_ChannelWakeUp,
ComM_ChannelLimitation or
SenderReceiverInterface
ComM_CurrentMode).

R 17.4 Diagnostic
Communication
Manager – Dcm

 A ComponentPrototype is requiring some
Dcm Interfaces (example:
ClientServerInterface DcmServices,
DCM_Roe, PidDataServices_<PIDData>,
etc...).

R 17.5 Diagnostic Event
Manager – Dem

 A ComponentPrototype is requiring some
Dem Interfaces (example:
ClientServerInterface DiagnosticMonitor,
DiagnosticInfo, GeneralDiagnosticInfo).

R 17.6 Function
Inhibition
Manager – Fim

 A ComponentPrototype is requiring some
Fim Interfaces (example:
ClientServerInterface FunctionInhibition).

R 17.7 ECU State
Manager –
EcuM

 A ComponentPrototype is requiring some
EcuM Interfaces (example:
ClientServerInterface
EcuM_ShutdownTarget, EcuM_BootTarget,
EcuM_AlarmClock, etc...).

R 17.8 Basic Software
Mode Manager –
BswM

 A ComponentPrototype is requiring some
BswM Interfaces (example:
ModeSwitchInterface
modeRequestPort<number>,
modeSwitchPort<number>,
modeNotificationPort<number> etc...).

R 17.9 Watchdog
Manager –
WdgM

 A ComponentPrototype is requiring some
WdgM Interfaces (example:
ClientServerInterface
WdgM_AliveSupervision).

R 17.10 Default Error
Tracer – DET

 A ComponentPrototype is requiring some
DET Interfaces (example:
ClientServerInterface DETService).

R 17.11 Operating
System - OS

 A ComponentPrototype is requiring some
OS Interfaces (example:
ClientServerInterface OsService).

R 17.12 Crypto Service
Manager – Csm

 A ComponentPrototype is requiring some
Csm Interfaces (example:
ClientServerInterface Csm<Service>,

CsmHash, CsmMacGenerate, etc...).

R 17.13 Diagnostic Log
and Trace - Dlt

 A ComponentPrototype is requiring some
DLT Interfaces (example:
ClientServerInterface DLTService,
LogTraceSessionControl,
VerboseModeControl, etc...).

R 17.14 Synchronized
Time-Base
Manager - StbM

 A ComponentPrototype is requiring some
StbM Interfaces (example:
ClientServerInterface StartTimer or
SenderReceiverInterface
StatusNotification).

 Virtual Functional Bus
AUTOSAR CP R21-11

98 of 107 Document ID 56: AUTOSAR_EXP_VFB

R 17.15 Diagnostic over
IP - DoIP

 A ComponentPrototype is requiring some
DoIP Interfaces (example:
ClientServerInterface
RoutingActivation>_RoutingActivation or
CallbackTriggerGIDSynchronization or
CallbackGetPowerMode)

R 18 RTE Integration features

 Feature Sub-feature Refinements of the feature description in
SWC terms

R 18.1 VFB Tracing The RTE Generator RteVfbTrace is set to
TRUE.

R 18.2 Report RTE
development
errors to DET

 The Attribute RteDevErrorDetect is set to
TRUE.

R 18.3 Bypass Support Component wrapper
method

Parameter RteBypassSupport is set to
COMPONENT_WRAPPER and
RteBypassSupportEnabled is set to true
for a software component type

R 18.4 Bypass Support Direct buffer access
method

Parameter RteBypassSupportEnabled is
set to true for a software component type

Table 11.1: Intra-ECU VFB/RTE features for profile definition

11.2.2 Inter-ECU features

These are features that might be relevant for interaction between ECUs. Their
technical realization and impact might be different in comparison to intra ECU.

E 1 SENDER-REICEIVER IMPLEMENTATION DATA TYPE

 Informal
"Category"

CATEGORY Refinements of the feature
description in SWC terms

E 1.1 PRIMITIVE VALUE,
DATA_REFER
ENCE,
FUNCTION_RE
FERENCE

 category "VALUE",
"DATA_REFERENCE" or
"FUNCTION_REFERENCE" for
ImplementationDataType for
Sender-Receiver Communication is
used

E 1.2 COMPLEX STRUCTURE,
ARRAY,
UNION

 Structures, Unions or arrays are
used as category for
ImplementationDataType for
Sender-Receiver Communication

E 1.3 DYNAMIC VARIABLE_LE
NGTH

 SwBaseType with category
VARIABLE_LENGHT are in use for
SenderReceiver Communication.

E 2 SENDER-RECEIVER COMMUNICATION

 Inter ECU
Role

Semantics Feature Refinements of the feature
description in SWC terms

 Virtual Functional Bus
AUTOSAR CP R21-11

99 of 107 Document ID 56: AUTOSAR_EXP_VFB

E 2.1 As Sender Data (Last-is-
best)

 VariableDataPrototypes
configured with swImplPolicy =
Standard are used in S/R
PortPrototypes'
SenderReceiverInterface as
PPorts

E 2.2 As Sender Data (Last-is-
best)

INIT value PPortPrototype configured with
InitValue attribute in the
NonqueuedSenderComSpec or at
corresponding
VariableDataPrototypes are used.

E 2.3 As Sender Data (Last-is-
best)

Invalidation SenderReceiverInterfaces used
by PortPrototype are configured
with handleInvalid attribute of the
InvalidationPolicy is set to keep or
replace.

E 2.4 As Sender Data (Last-is-
best)

Acknowledgement One or more PPortPrototype
configured with Attribute
TransmissionAcknowledgmentR
equest in SenderComSpec.

E 2.5 As Sender Data (Last-is-
best)

Explicit access
(Write API)

DataSendPoint exist at least in
one RunnableEntity.

E 2.6 As Sender Data (Last-is-
best)

Implicit access
(Iwrite API)

DataWriteAccess exist at least in
one RunnableEntity.

E 2.7 As Sender Data (Last-is-
best)

Implicit access
with special
semantics:
coherency groups

DataReadAccess /
DataWriteAccess exist at least in
one RunnableEntity.
RteImplicitCommunication
containers are defined with with
RteCoherentAccess set to "TRUE"
(i.e. Coherency groups are defined)

E 2.8 As Sender Data (Last-is-
best)

Implicit access
with special
semantics:
Immediate buffer
update

DataReadAccess /
DataWriteAccess exist at least in
one RunnableEntity.
RteImplicitCommunication
containers are defined with with
RteImmediateBufferUpdate set to
"TRUE" (i.e. specific buffer update
handling is required for some
implicit read/write access)

E 2.9 As Sender Data (Last-is-
best)

Handle out of
range

One or more PPortPrototype
configured with Attribute
handleOutOfRange (value must be
different that NONE) of the
respective SenderComSpec.

E 2.10 As Sender Data (Last-is-
best)

End to end
protection

One or more PPortPrototype
configured with Attribute
usesEndToEndProtection =
TRUE in the SenderComSpec.

E 2.11 As Sender Event (queued) One or more
VariableDataPrototype used in
SenderReceiverInterface
configured with swImplPolicy =
Queued

E 2.12 As Receiver Data (Last-is-
best)

 VariableDataPrototypes
configured with swImplPolicy =
Standard are used in S/R
PortPrototypes'

 Virtual Functional Bus
AUTOSAR CP R21-11

100 of 107 Document ID 56: AUTOSAR_EXP_VFB

SenderReceiverInterface as
RPorts

E 2.13 As Receiver Data (Last-is-
best)

INIT value RPortPrototypes configured with
InitValue attribute in the
NonqueuedReceiverComSpec or
at corresponding
VariableDataPrototypes are used.

E 2.14 As Receiver Data (Last-is-
best)

Invalidation SenderReceiverInterfaces used
by PortPrototype are configured
with handleInvalid attribute of the
InvalidationPolicy is set to keep or
replace.

E 2.15 As Receiver Data (Last-is-
best)

Filter RPortPrototypes configured with
Filter attributes in
NonqueuedReceiverComSpec

are used.

E 2.16 As Receiver Data (Last-is-
best)

Alive Timeout One or more RPortPrototype
configured with AliveTimeOut
attribute greater than 0 in
NonqueuedReceiverComSpec

E 2.17 As Receiver Data (Last-is-
best)

NeverReceived
indication
(RcvSide)

One or more RPortPrototype
configured with Attribute
HandleNeverReceived = true in
NonqueuedReceiverComSpec.

E 2.18 As Receiver Data (Last-is-
best)

Enableupdate
indication
(RcvSide)

One or more RPortPrototype
configured with Attribute
enableUpdate = true in
NonqueuedReceiverComSpec.

E 2.19 As Receiver Data (Last-is-
best)

Explicit access
(Read API)

DataReceivePoint exist at least in
one RunnableEntity.

E 2.20 As Receiver Data (Last-is-
best)

Implicit access
(Iread API)

DataReadAccess exist at least in
one RunnableEntity.

E 2.21 As Receiver Data (Last-is-
best)

Implicit access
with special
semantics:
coherency groups

DataReadAccess /
DataWriteAccess exist at least in
one RunnableEntity.
RteImplicitCommunication
containers are defined with with
RteCoherentAccess set to "TRUE"
(i.e. Coherency groups are defined)

E 2.22 As Receiver Data (Last-is-
best)

Implicit access
with special
semantics:
Immediate buffer
update

DataReadAccess /
DataWriteAccess exist at least in
one RunnableEntity.
RteImplicitCommunication
containers are defined with with
RteImmediateBufferUpdate set to
"TRUE" (i.e. specific buffer update
handling is required for some
implicit read/write access)

E 2.23 As Receiver Data (Last-is-
best)

Handle out of
range

One or more RPortPrototype
configured with Attribute
handleOutOfRange (value must be
different that NONE) of the
respective ReceiverComSpec.

E 2.24 As Receiver Data (Last-is-
best)

End to end
protection

One or more
RPortPrototypeconfigured with
Attribute
usesEndToEndProtection =
TRUE in the ReceiverComSpec

E 2.25 As Receiver Event (queued) VariableDataPrototype in
SenderReceiverInterface is

 Virtual Functional Bus
AUTOSAR CP R21-11

101 of 107 Document ID 56: AUTOSAR_EXP_VFB

configured with swImplPolicy =
Queued

E 2.26 As Receiver Event (queued) Blocking Receive Attribute WaitPoint in a
RunnableEntity with TriggerRef to
a DataReceivedEvent is used.

E 3 CLIENT-SERVER COMMUNICATION

 Inter ECU
Role

Semantics Feature Refinements of the feature
description in SWC terms

E 3.1 As Client Synchronous A SynchronousServerCallPoint
exists (the client is located on
another ECU)

E 3.2 As Client Synchronous With timeout A SynchronousServerCallPoint
with attribute TimeOut > 0 exists.

E 3.3 As Client Asynchronous Clients uses
Rte_Result API to
poll (no
ASYNCHRONOU
S_SERVER
CALL_RETURNS
EVENT Re)

An AsynchronousServerCallPoint
and corresponding
AsynchronousServerCallResultP
oint exists but no corresponding
AsynchronousServerCallReturnE
vent exists.

E 3.4 As Client Asynchronous Clients uses
Rte_Result API to
poll (with
ASYNCHRONOU
S_SERVER
CALL_RETURNS
EVENT Re)

An AsynchronousServerCallPoint
and corresponding
AsynchronousServerCallResultP
oint exists and a corresponding
AsynchronousServerCallReturnE
vent triggers a runnbable but no
WaitPoint references it

E 3.5 As Client Asynchronous with WaitPoint i.e.
blocking
Rte_Result

An
AsynchronousServerCallReturnE
vent exists and a WaitPoint
references it.

E 3.6 As Client Asynchronous with Timeout (also
without Waitpoint)

AsynchronousServerCallPoint
with attribute TimeOut > 0

E 3.7 As Server Synchronous/A
synchronous

reentrant Server runnable attribute
"canBeInvokedConcurrently =
tue"

E 3.8 As Server Synchronous/A
synchronous

not invokeable
concurrently

Server runnable attribute
"canBeInvokedConcurrently =
false"

E 4 TRIGGER COMMUNICATION

 Inter ECU
Role

Semantics Refinements of the feature
description in SWC terms

E 4.1 As trigger
source

Non Queued Portinterface typed by
TriggerInterface with triggers
configured with swImplPolicy =
Standard referenced by an
ExternalTriggeringPoint are used

E 4.2 As trigger
sink

Non Queued Portinterface typed by
TriggerInterface with triggers
configured with swImplPolicy =
Standard and runnables
referenced by an

 Virtual Functional Bus
AUTOSAR CP R21-11

102 of 107 Document ID 56: AUTOSAR_EXP_VFB

ExternalTriggerOccurredEvent
are used

E 5 RTE EVENTS

 Reaction Event Type Refinements of the feature
description in SWC terms

E 5.1 RE Activation DATA_RECEIV
ED_EVENT

 A DataReceivedEvent references
a RunnableEntity, a required
VariableDataPrototype but no
WaitPoint references the
DataReceivedEvent.

E 5.2 RE Activation DATA_RECEIV
ED_ERROR_E
VENT

 Triggers a RunnableEntity used to
collect the error status of a
dataelement with data semantics
on the receiver side like
AliveTimeOut attribute greater
than 0.

E 5.3 RE Activation DATA_SEND_
COMPLETED_
EVENT

 A DataSendCompletedEvent
references a RunnableEntity, a
required VariableDataPrototype
but no WaitPoint references the
DataSendCompletedEvent.

E 5.4 RE Activation OPERATION_I
NVOKED_EVE
NT

 An OperationInvokedEvent
references a RunnableEntity.

E 5.5 RE Activation ASYNCHRONO
US_SERVER
CALL_RETUR
NS EVENT

 An
AsynchronousServerCallReturns
Event references a
RunnableEntity.

E 5.7 RE Activation DATA_WRITE_
COMPLETED_
EVENT

 A DataWriteCompletedEvent
references a RunnableEntity, a
provided VariableDataPrototype
but no WaitPoint references the
DataWriteCompletedEvent.

E 5.8 RE Activation EXTERNAL_TR
IGGER_OCCU
RED_EVENT

 An
ExternalTriggerOccurredEvent
references a RunnableEntity.

E 5.9 Wakeup of
Waitpoints

DATA_RECEIV
ED_EVENT

 A DataReceivedEvent references
a RunnableEntity and a required
VariableDataPrototype. One
WaitPoint references the
DataReceivedEvent.

E 5.10 Wakeup of
Waitpoints

DATA_SEND_
COMPLETED_
EVENT

 A DataSendCompletedEvent
references a RunnableEntity and
a provided
VariableDataPrototype. One
WaitPoint references the
DataSendCompletedEvent

E 5.11 Wakeup of
Waitpoints

ASYNCHRONO
US_SERVER
CALL_RETUR
NS EVENT

 An
AsynchronousServerCallReturns
Event references a
RunnableEntity and a WaitPoint
references the
AsynchronousServerCallReturns
Event

 Virtual Functional Bus
AUTOSAR CP R21-11

103 of 107 Document ID 56: AUTOSAR_EXP_VFB

E 6 PortInterfaceElementMapping & Data Scaling over network

 Feature Sub-feature Refinements of the feature
description in SWC terms

 See Intra
ECU
PortInterface
ElementMap
ping and
Data Scaling
(transfer
similar to
InterECU
communicati
on)

E 6.1 Conversion
to network
representatio
n

 The RTE has to convert data to the
relevant network representation.
A SwDataDefProps is attached to
SenderComSpec or
ReceiverComSpec of a S/R port
as "networkRepresentation" or to
corresponding ISignal as
"networkRepresentationProps".

Table 11.2: Inter-ECU VFB/RTE features for profile definition

 Virtual Functional Bus
AUTOSAR CP R21-11

104 of 107 Document ID 56: AUTOSAR_EXP_VFB

12 Interaction with Non-AUTOSAR-ECUs

12.1 Introduction

This section describes the interaction with Non-AUTOSAR-ECUs on VFB level. This
kind of interaction is e.g. necessary to provide a migration path.
Non-AUTOSAR-ECUs are:

ECUs that have not been developed according to AUTOSAR mechanisms. This is useful
for e.g.:

o Integration of an AUTOSAR ECU into an already existing system of ECUs
o Connect system of AUTOSAR ECUs to already existing system of ECUs
o Re-use already existing ECU in system of AUTOSAR ECUs

ECUs that have been developed according to AUTOSAR mechanisms once, but stay
unchanged now. This is useful for e.g.:

o Reuse strategies (taking over of complete unchangeable AUTOSAR (!!!)
ECUs)

Intelligent ('Smart') Sensors/Actuators with an ECU which do not implement the AUTOSAR
VFB / AUTOSAR RTE. This is useful for e.g.:

o Using Commercial of the shelf LIN nodes.
Interaction of AUTOSAR SW-C with non AUTOSAR software within one ECU is not
analyzed in this document.

12.2 Problems of interaction

The following problems will arise from the interaction with Non-AUTOSAR-ECUs:

Interaction with interfaces of applications on Non-AUTOSAR-ECUs:

 Ports/Interfaces have to be mapped to pre-defined communication messages
(possible to be routed through gateway)

 Non-AUTOSAR-SW-Components are currently not modeled at VFB level

o Unconnected ports of AUTOSAR-SW-Components
o Hidden communication load

 Client-Server not supported in old systems.

Interaction/support of services implemented on Non-AUTOSAR ECUs

 Old services/protocols have to be supported in parallel, to enable interoperability, e.g.
Network Management.

 Additional services supported by communication system (e.g. bus sleep/bus
wake-up).

 LIN nodes inherently are not affected because it is using the master slave paradigm

o services/protocols have to be managed and implemented in any case
by master node (in this case AUTOSAR ECU)

o Required configuration data available in node capability file (NCF)

Problem of support of enhanced services/protocols (e.g. Network Management,
Diagnosis (connection to AUTOSAR SW-C), Transport Protocol Layer, ...)

 Virtual Functional Bus
AUTOSAR CP R21-11

105 of 107 Document ID 56: AUTOSAR_EXP_VFB

Whether the non-AUTOSAR ECUs are connected to the same or a different
communication system is not relevant for VFB, because no hardware is considered on
VFB level. For the same reason gateway configuration is not relevant for the VFB.

12.3 Description of interaction

The modeling of the interaction with non-AUTOSAR-ECUs is done the same for all
kinds of non-AUTOSAR-ECUs.

 Non-AUTOSAR ECUs are modeled as separate ECUs with separate AUTOSAR
SW-C (with AUTOSAR SW-C Description), which will not be implemented. To
enable communication with the non-AUTOSAR ECU the RTE on the AUTOSAR
ECU must implement wrapper code for the non-AUTOSAR communication

 Communication messages, configuration and load is defined by System Constraint
Template (for LIN Nodes the information contained within the node capability files
(NCF) has to be integrated into the System Constraint Template)

The following figure (Figure 12.1: Interaction with non-AUTOSAR ECUs) shall clarify
the interaction by giving an example of non-AUTOSAR-ECU(s) interacting with an
AUTOSAR ECU. A Port type converter (adapting client server/sender receiver
communication) is shown in the example. The port type converter has to be situated
on an AUTOSAR-ECU; it doesn’t necessarily need to be on the same ECU the final
communication partner is on. Since the converter is here from the class 'AUTOSAR
SW-C' it has to be implemented as a separate component. In later solutions it might
be part of an automatically generated RTE.

For the sender-receiver communication no adaption is shown. But even when using
the same communication paradigm an adaption might be required due to different
communication attributes. This would be done the same way like the port type
conversion. The adaption has to be implemented as a separate AUTOSAR SW-C; in
later solutions it might be done within an automatically generated RTE.
The way between the communication system signals (e.g. signals on CAN) and the
RTE layer is the same for AUTOSAR and non-AUTOSAR signals.

 Virtual Functional Bus
AUTOSAR CP R21-11

106 of 107 Document ID 56: AUTOSAR_EXP_VFB

Figure 12.1: Interaction with non-AUTOSAR ECUs

The support of enhanced services/protocols (e.g. Network Management, Diagnosis
(connection to AUTOSAR SW-C), Transport Protocol Layer ...) may be handled by
Complex Drivers or 'special' implementations of the corresponding basic-software
module(s).

Non-AUTOSAR ECU

A
U

T
O

S
A

R

S
W

-C

AUTOSAR

SW-C

Description

Non-AUTOSAR ECU

A
U

T
O

S
A

R

S
W

-C

AUTOSAR

SW-C

Description

AUTOSAR ECU Non-AUTOSAR ECU

A
U

T
O

S
A

R

S
W

-C

System

Constraint

Description

AUTOSAR

SW-C

Description

n
o

n
A

U
T

O
S

A
R

C
o

m
p

o
n

e
n

t

AUTOSAR

SW-C

Description

 Virtual Functional Bus
AUTOSAR CP R21-11

107 of 107 Document ID 56: AUTOSAR_EXP_VFB

13 References

[1] Methodology

AUTOSAR_TR_Methodology.pdf

[2] Glossary
AUTOSAR_TR_Glossary.pdf

[3] Main Requirements
AUTOSAR_RS_Main.pdf

[4] List of Basic Software Modules
AUTOSAR_TR_BSWModuleList.pdf

[5] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[6] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate.pdf

[7] Specification of RTE
AUTOSAR_SWS_RTE.pdf

[8] Specification of Timing Extensions
AUTOSAR_TPS_TimingExtensions.pdf

[9] Explanation of Application Interfaces of the Body and Comfort Domain
AUTOSAR_EXP_AIBodyAndComfort.pdf

[10] Explanation of Application Interfaces of the Powertrain Domain
AUTOSAR_EXP_AIPowertrain.pdf

[11] Explanation of Application Interfaces of the Chassis Domain
AUTOSAR_EXP_AIChassis.pdf

[12] Explanation of Application Interfaces of Occupant and Pedestrian Safety
Systems Domain
AUTOSAR_EXP_AIOccupantAndPedestrianSafety.pdf

[13] Explanation of Application Interfaces of the HMI, Multimedia and Telematics
Domain
AUTOSAR_EXP_AIHMIMultimediaAndTelematics.pdf

[14] Application Interfaces User Guide
AUTOSAR_EXP_AIUserGuide.pdf

[15] ISO 17356-4
OSEK/VDX Communication (COM)
www.iso.org

	1 Introduction to this document
	1.1 Contents
	1.2 Prereads
	1.3 Relationship to other AUTOSAR specifications
	1.4 Structure and conventions of this document
	1.4.1 Structure of this document
	1.4.2 Specification Items

	2 The Virtual Functional Bus
	3 Overall mechanisms and concepts
	3.1 Components
	3.2 Port-Interfaces
	3.3 Ports
	3.3.1 Port Types
	3.3.2 Port Compatibility
	3.3.3 Data Type Policies

	3.4 Connectors
	3.4.1 Unconnected Ports
	3.4.1.1 Unconnected PRPorts
	3.4.1.2 Unconnected Sender/Receiver Ports
	3.4.1.3 Unconnected Client/Server Ports

	3.5 Compositions versus atomic components
	3.6 Relationship between the VFB and the ECU Software Architecture
	3.7 Kinds of software components
	3.8 Resources for components and “runnables”
	3.8.1 Background
	3.8.2 The “runnable” concept
	3.8.3 The implementation of a component and the role of the RTE

	3.9 Interface Conversion Blocks
	3.9.1 Supported Conversions and Mappings
	3.9.1.1 Interface Element Mapping
	3.9.1.2 Linear Data Conversion
	3.9.1.3 Data Mapping
	3.9.1.4 Mixed Conversion

	3.10 Variant Handling
	3.10.1 Binding Times
	3.10.2 Choosing a Variant
	3.10.3 Variability
	3.10.3.1 Software Component Variability
	3.10.3.2 Port Variability
	3.10.3.3 Connector Variability

	4 Communication on the VFB
	4.1 Introduction
	4.2 Error types
	4.3 Sender-Receiver communication
	4.3.1 From the point of view of the sender
	4.3.2 From the point of view of the receiver
	4.3.3 Multiplicity of sender-receiver
	4.3.4 Filtering between the sender and the receiver
	4.3.5 Concurrency and ordering within a sender-receiver connector

	4.4 Client-Server communication
	4.4.1 From the point of view of the client
	4.4.2 From the point of view of the server
	4.4.3 Multiplicity of client-server
	4.4.4 Ordering and concurrency within a client-server connector

	4.5 Remarks regarding the identification of communication partners

	5 Timing Extensions
	5.1 Main Purpose of Timing Extensions for AUTOSAR
	5.2 Timing in different phases of the AUTOSAR methodology

	6 Interaction with hardware
	6.1 Introduction
	6.2 Microcontroller Abstraction Layer (MCAL)
	6.3 ECU Abstraction
	6.4 Sensor-Actuator Software Component
	6.5 Complex Driver Component

	7 AUTOSAR Services
	7.1 Introduction
	7.2 VFB Representation
	7.2.1 Selection of a communication mechanism
	7.2.2 Location of a Service
	7.2.3 Distribution of Requests to Remote Services
	7.2.4 Platform dependent types
	7.2.5 Configuration

	7.3 List of Services

	8 Mode Management
	8.1 Introduction
	8.2 Defining modes
	8.3 Communicating modes
	8.4 Mode-managers: components that control modes
	8.5 Components that depend on modes

	9 Port Groups
	10 Measurement and Calibration
	10.1 Calibration
	10.1.1 Port-based calibration
	10.1.1.1 Pure single instantiation
	10.1.1.2 Multiple instantiation of the involved software components
	10.1.1.3 Multiple instantiation of the involved calibration components

	10.1.2 Private calibration

	10.2 Measurement

	11 VFB Features and Profiles
	11.1 Motivation and Introduction
	11.2 Feature tables
	11.2.1 Intra-ECU features
	11.2.2 Inter-ECU features

	12 Interaction with Non-AUTOSAR-ECUs
	12.1 Introduction
	12.2 Problems of interaction
	12.3 Description of interaction

	13 References

