
Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

Document Title
Integration of Franca IDL
Software Component
Descriptions

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 663

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R20-11

Document Change History
Date Release Changed by Description

2020-11-30 R20-11
AUTOSAR
Release
Management

• No content changes

2019-11-28 R19-11
AUTOSAR
Release
Management

• Editorial changes
• Changed Document Status from

Final to published

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Editorial changes

2017-12-08 4.3.1
AUTOSAR
Release
Management

• Editorial changes

2016-11-30 4.3.0
AUTOSAR
Release
Management

• Editorial changes

2015-07-31 4.2.2
AUTOSAR
Release
Management

• Editorial changes

2014-10-31 4.2.1
AUTOSAR
Release
Management

• Initial Release

1 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

Table of Contents

1 Introduction 6

1.1 Objective . 6
1.2 Goal . 6
1.3 Motivation . 8
1.4 Integration Method . 9

1.4.1 Integrated System Description as AUTOSAR SWC Description 11
1.4.2 Integrated System Description as Franca Model 13
1.4.3 Complete View . 13

1.5 Limitations and Extensions . 15
1.5.1 Dynamic Communication . 15
1.5.2 RTE Contract and RTE Generation 16

2 Franca Connector 17

2.1 Imports and Franca Instances . 17
2.2 Links . 17

2.2.1 AUTOSAR-to-Franca Client Server Link 20
2.2.2 AUTOSAR-to-Franca Sender Receiver Link 20
2.2.3 Franca-to-AUTOSAR Client Server Link 21
2.2.4 Franca-to-AUTOSAR Sender Receiver Link 21

2.3 Constraints . 21

3 Franca-to-AUTOSAR Translation 22

3.1 Notation . 22
3.2 Franca Models . 23
3.3 Franca Types . 24

3.3.1 Franca Type Collections . 25
3.3.2 Primitive Types . 26
3.3.3 Franca Inline Arrays . 29
3.3.4 User-defined Types . 30

3.3.4.1 Mapping to Application Data Types 30
3.3.4.2 Mapping to Implementation Data Types 32

3.3.5 Type Inheritance . 34
3.4 Franca Interfaces . 35

3.4.1 Franca Interfaces . 35
3.4.2 Franca Methods . 36
3.4.3 Franca Attributes . 38
3.4.4 Franca Broadcasts . 38
3.4.5 Interface Inheritance . 39

3.5 Franca Connector . 39
3.5.1 AUTOSAR-to-Franca Client Server Link 41
3.5.2 AUTOSAR-to-Franca Sender Receiver Link 42
3.5.3 AUTOSAR-to-Franca Sender Receiver Link for Fire-And-

Forget-Methods . 43
3.5.4 Franca-to-AUTOSAR Client Server Link 43

3 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

3.5.5 Franca-to-AUTOSAR Sender Receiver Link 44
3.5.6 Connecting Instances in Disjoint Containers 44

4 AUTOSAR-to-Franca Translation 46

4.1 Data Types . 46
4.1.1 Platform Types . 46
4.1.2 User-defined Types . 47

4.1.2.1 Application Data Types 47
4.1.2.2 Implementation Data Types 48

4.2 Port Interfaces . 49
4.3 Franca special data . 50

A Examples 52

B Mentioned Class Tables 58

4 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

References

[1] Franca User Guide
https://code.google.com/a/eclipselabs.org/p/franca/downloads/
detail?name=FrancaUserGuide-0.3.0.pdf

[2] Virtual Functional Bus
AUTOSAR_EXP_VFB

[3] Specification of RTE Software
AUTOSAR_SWS_RTE

[4] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate

[5] Methodology
AUTOSAR_TR_Methodology

[6] IPC CommonAPI C++
http://projects.genivi.org/commonapi/

[7] Specification of Platform Types
AUTOSAR_SWS_PlatformTypes

5 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

https://code.google.com/a/eclipselabs.org/p/franca/downloads/ detail?name=FrancaUserGuide-0.3.0.pdf
https://code.google.com/a/eclipselabs.org/p/franca/downloads/ detail?name=FrancaUserGuide-0.3.0.pdf
http://projects.genivi.org/commonapi/

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

1 Introduction

1.1 Objective

AUTOSAR covers different automotive application domains, but not necessarily all of
them. Instead of trying to ever extend AUTOSAR to make it easily applicable to do-
mains that are yet difficult to implement in AUTOSAR, it seems more reasonable to
open AUTOSAR for an integration with standards and technologies that are specifi-
cally designed fur such application domains. The open-source development platform
GENIVI (see www.genivi.org) for instance defines a standard and technology for in-
vehicle infotainment systems and is supported and employed by many companies.
The GENIVI architecture is similar to the one of AUTOSAR in that it distinguishes ap-
plication level, middleware, and basic software, which facilitates the integration. For
the description of the software components at the application level GENIVI uses the
Franca Interface Definition Language (Franca IDL, see [1]).

Also the processes of AUTOSAR and GENIVI are similar. Both strive for a generation of
middleware and basic software from a description of the application level components
and their distribution onto a network of ECUs. Therefore it is possible also to split
the integration of AUTOSAR and GENIVI systems into an application level part and a
communication level part.

The purpose of the Franca Integration is to support the integration of AUTOSAR and
GENIVI systems at the application level. That means that a virtual integration of func-
tions is addressed, corresponding to the Virtual Functional Bus view of AUTOSAR
(see [2]). The Franca Integration provides a notation for the specification of the con-
nections of the AUTOSAR and the GENIVI application components and a bidirectional
translation between the descriptions of these components. With these means the
Franca Integration makes it possible to interconnect the development and generation
processes of the AUTOSAR and the GENIVI parts of the overall system.

This application level integration has to be combined with a communication level in-
tegration that realizes the message exchange among the AUTOSAR and the GENIVI
systems on the wire. That means that common protocols and means for the generation
of basic software and middleware from software and system descriptions have to be
provided. This level is addressed in other AUTOSAR contributions, for instance by the
serialization protocol SOME/IP for the communication via Ethernet.

1.2 Goal

When an AUTOSAR system and a GENIVI system are developed, their application
level components are described using the formats defined by the two standards: an
AUTOSAR software component description for the AUTOSAR part and a Franca IDL
description for the GENIVI part. The AUTOSAR software component description is
given by one or several arxml-files that contain the XML-representation of the descrip-
tion; the Franca description is given by one or several fidl- and fdepl-files that contain

6 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

the textual representation of the description according to the textual grammar defined
by the Franca IDL. In this process state there is no complete description of the in-
tegrated system in either format yet, nor can the desired inter-operation of the two
systems be described in one of the formats. This is due to the fact that the names of
the methods, operations, attributes, etc. of the respective other part are not yet con-
tained in the description of the own part. These two features – (1) a description of the
interconnections for the inter-operation and (2) a complete system description – shall
be achieved by the Franca Integration. For that purpose it comprises three parts.

1. A new format for the specification of the application level interconnection of the
AUTOSAR and the GENIVI part, the Franca Connector.

2. A translation of Franca models with Franca Connectors to AUTOSAR software
component descriptions.

3. A translation of AUTOSAR software component descriptions to Franca models.

The Franca Connector shall be used to specify which GENIVI component calls which
AUTOSAR component and vice versa. Although the Franca IDL contains an exten-
sion mechanism – the deployment specification – that would allow the definition of
the desired interconnection within Franca IDL, the Franca Connector is defined as a
new format. The reason for that is to support an easy generalization of the integra-
tion approach to other component or interface description languages. Moreover, this
approach also leaves open the possibility to define the desired interconnection by a
Franca deployment definition, and then to generate the corresponding Franca Con-
nector from this deployment definition, or to generate the Franca deployment definition
from the Franca Connector.

Given a specification of the desired interconnection by a Franca Connector, the two
translations make it possible to obtain a description of the complete, integrated system
at the application level in either format: an AUTOSAR software component description
or a Franca model. It is important to note, however, that a Franca model only addresses
the type level – component types and data types – whereas an AUTOSAR description
in addition specifies component instances (called prototypes) and their connections.
Moreover, the AUTOSAR data types are much more detailed than the corresponding
data type definitions in Franca. For these reasons the complete integrated application
level Franca model and the complete integrated application level AUTOSAR description
will not be semantically equivalent. They will be consistent, but both the scope and the
detailing of the AUTOSAR description are larger.

Seen from the AUTOSAR perspective we state the achievement of the complete sys-
tem descriptions as the overall goal of the Franca Integration:

[TR_FRANCA_00000] Goal of the Franca Integration dThe goal of the Franca Inte-
gration is to obtain two consistent complete descriptions of the application level of a
system that consists of AUTOSAR parts and parts that are described with the Franca
IDL: one as an AUTOSAR software component description and one as a Franca model.
The completeness of the descriptions is thereby relative to the expression means of the
concerned description format.c()

7 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

1.3 Motivation

In order to motivate in more detail the need for the Franca Integration as part of an
integration of an AUTOSAR and a non-AUTOSAR system, we sketch as an overall use
case the development of an integrated system in which an automotive application com-
ponent AutoComp and an infotainment application component InfoComp inter-operate
(see Figure 1.1). Thereby the former is a part of an AUTOSAR system and the latter is
a part of a GENIVI system. The integrated system might include e.g. the following two
inter-operations.

• InfoComp requests a service from AutoComp, e.g. information on a vehicle state.

• AutoComp requests a service from InfoComp, e.g. information for diagnosis.

For sake of simplicity we assume that the two components run on different ECUs, an
AUTOSAR ECU and a GENIVI ECU, that are connected via Ethernet. The reason for
assuming this setting is that with SOME/IP there is already a fitting protocol that can
be implemented both within AUTOSAR and GENIVI. Other system configurations, e.g.
a connection via a slow bus like SPI or a solution where the two systems run on the
same processor, would require other protocols. In the considered setting the basic side
conditions of the overall AUTOSAR-GENIVI integration can be formulated as follows.

• AutoComp is realized as an AUTOSAR software component for an AUTOSAR
ECU, that means

1. AutoComp uses for the communication only the AUTOSAR communication
services provided via the software component API of the AUTOSAR Run
Time Environment (RTE, see [3]).

2. AutoComp has an AUTOSAR software component description (see [4]).

3. RTE and basic software of the AUTOSAR ECU are generated and config-
ured according to the AUTOSAR process (see [5]).

• InfoComp is realized as a GENIVI component for a GENIVI ECU, that means

1. InfoComp uses for the communication only the services provided by GENIVI
Inter Node Communication Middleware (INC MW) and Transport Protocol
(INC TP) via the Common API (see [6]).

2. InfoComp has a description of the interfaces it implements in Franca IDL.

3. The implementation of InfoComp depends only on the Common API stubs
and proxies generated from Franca IDL descriptions.

8 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

Figure 1.1: Inter-operation of GENIVI and AUTOSAR Application Components

According to these conditions, in order to be able to communicate with InfoComp the
AUTOSAR component AutoComp first needs an RTE API operation to call the desired
InfoComp method getDiagnosisInfo() at one of its ports. Secondly, it needs an Ethernet
communication stack that realizes the signal routing to the bus. RTE API and communi-
cation stack are only generated properly if the communication link between AutoComp
and InfoComp is contained in the AUTOSAR software component description as a con-
nector. This in turn is only possible if there is also a representation of InfoComp in the
AUTOSAR Software Component Description. In order to obtain that, the translation of
Franca Models to AUTOSAR software component descriptions is needed.

The same holds for the generation of the Common API for the GENIVI part of the sys-
tem: it needs information on the AUTOSAR components it wants to communicate with,
specified in Franca IDL. Given the translation from AUTOSAR software component
descriptions to Franca models this can also be achieved.

1.4 Integration Method

The AUTOSAR process as described in [5] starts with a description of the system
with the AUTOSAR notation. That means that the corresponding templates for the
description of the application components and their connections, the ECUs and their
connections, and the mapping of the application components to the ECUs are filled.
The Franca Integration addresses a methodological step that lies ahead of this starting
point. When it starts only incomplete descriptions are provided – in particular at the

9 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

application level – because the interconnection of the AUTOSAR and GENIVI applica-
tion components is not yet specified. The description of the integrated system is only
the goal of the Franca Integration.

The initial situation of a Franca Integration can be defined as follows.

• There is an AUTOSAR software component description of application compo-
nents that are connected among each other. Some ports may not be connected
and some ports may have no or incomplete interfaces. These represent either
operations offered to the GENIVI part (provided port not connected) or operations
required from the GENIVI part (no or incomplete required port interface).

• There is a Franca model that contains a set of interface and data type definitions.

• It is known – but not yet formally represented – which AUTOSAR component shall
inter-operate with which GENIVI component and vice versa. Inter-operation may
consist of a client server communication or a sender receiver communication.

The main methodical steps of the Franca Integration in this situation as seen from the
AUTOSAR perspective are:

1. Represent the knowledge on the inter-operation by a Franca Connector.

2. Apply the Franca-to-AUTOSAR translation to the Franca model and the Franca
Connector.

The result is an AUTOSAR software component description of the complete, integrated
application level of the system, i.e. a complete VFB view.

The GENIVI perspective is analogous. Due to the fact that instances and connections
are not represented in Franca IDL the Franca Connector is not relevant for the deriva-
tion of the complete Franca Model. Thus there is only one step.

1. Apply the AUTOSAR-to-Franca translation to the AUTOSAR software component
description.

The result is a Franca model of the complete, integrated application level of the system.
It consists of the complete set of interfaces of the system, the ones of the GENIVI part
and the ones of the AUTOSAR part.

As mentioned above, the two complete integrated application level descriptions are se-
mantically consistent, but not equivalent. First of all this is due to the fact that a Franca
model specifies types, but no instances or connections. Moreover, a Franca interface
defines only the methods and attributes a component offers (provides), not the ones
it requires. In Figure 1.2 the different aspects addressed by Franca models and AU-
TOSAR software component descriptions are depicted. Both specify data types and
interfaces. Component instances and intra-connections (i.e. connections among com-
ponent instances within either the GENIVI or the AUTOSAR part of the system) are
only specified in the AUTOSAR software component description. Interconnections (i.e.
connections between an AUTOSAR and a GENIVI component instance) are obviously
specified neither in a Franca model nor in an AUTOSAR software component descrip-
tion. This dissymmetry is captured by the Franca Connector. It offers the possibility to

10 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

define component instances that implement Franca interfaces and interconnections of
Franca and AUTOSAR component instances. This is defined in detail in chapter 2.

As a consequence, also the two translations have different results. The Franca-to-
AUTOSAR translation takes the information from the Franca model and the Franca
Connector and constructs an AUTOSAR software component description that contains
the Franca interfaces, component instances, and interconnections as port interfaces,
component prototypes, and connectors respectively. The AUTOSAR-to-Franca trans-
lation only considers the port interfaces and data types of the AUTOSAR software
component description and translates them to the Franca IDL. The instances and in-
terconnections cannot be represented in Franca IDL, anyway.

Figure 1.2: Scopes of Franca Models and AUTOSAR Software Component Descriptions

1.4.1 Integrated System Description as AUTOSAR SWC Description

Figure 1.3 shows an example for the Franca-to-AUTOSAR translation in a scenario
where an AUTOSAR operation requests a GENIVI method. Initially the following spec-
ifications are given (depicted in black in Figure 1.3).

• The Franca model defines an interface F that contains a method m.

• The AUTOSAR software component description defines a component type A and
an instance a of A in a composition type AC.

• A has a required port p where the Franca method m shall be called. The interface
of this port is not yet defined since there is no representation within the AUTOSAR
software component description of m.

• The Franca Connector specifies

– that there is a component instance f that implements the interface F and

– that the required port p of the AUTOSAR component instance a is connected
with the interface F provided by the Franca instance f.

The Franca-to-AUTOSAR translation then adds the following parts to the AUTOSAR
software component description (depicted in blue in Figure 1.3).

11 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

• An interface that contains an operation m and a declaration that the required
AUTOSAR port p is typed by this interface.

• A component type F with a provided port that is also typed by this interface.

• An instance f of F in the composition type AC.

• A connector of the open AUTOSAR port p and the port of the new component
type F in the composition type AC.

Thus within the AUTOSAR software component description now the desired intercon-
nection of the AUTOSAR component instance a and the Franca component instance f
is represented.

Figure 1.3: Franca-to-AUTOSAR Translation

The opposite scenario – a GENIVI methods requests an AUTOSAR operation – is
of no further interest for the Franca-to-AUTOSAR translation, because a request is
not represented in a Franca interface. The Franca interface could be translated to an
AUTOSAR component type, but neither a new AUTOSAR instance would be generated
nor a connection.

Sender receiver communication instead of client server communication (operation call-
ing) is handled in the same way as the operation call scenario described above. The
provision of signals is expressed in Franca IDL by broadcasts. A Franca instance im-
plementing an interface that contains a broadcast is translated to an AUTOSAR com-
ponent that offers a data element of the same data type as the broadcast at a provided
port. The latter can be connected to a port of an AUTOSAR component that requires
the data element.

12 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

1.4.2 Integrated System Description as Franca Model

A scenario in which an AUTOSAR component offers an operation for a GENIVI com-
ponent is depicted in Figure 1.4. In this case the AUTOSAR Software Component
Description is complete, but there is no component instance that requests the opera-
tion op provided at port q of component B. The Franca model is yet empty because the
request for an operation cannot be expressed. The information that there is an instance
g that requests the AUTOSAR operation op is represented in the Franca Connector. In
this (artificial) example g is a Franca component instance that implements none of the
considered Franca interfaces. It is only introduced to define within the complete system
description who calls the operation at port q of the AUTOSAR component instance b.

The AUTOSAR-to-Franca translation adds an interface B with a method op to the
Franca Model that can now be used by other Franca components. Since instances
and connections are not represented in Franca IDL this is all the translation does.

Figure 1.4: AUTOSAR-to-Franca Translation

1.4.3 Complete View

Putting together the scenarios discussed above we obtain the two complete applica-
tion level system views that have been announced as goal of the Franca Integration.
Figure 1.5 shows the initial situation: descriptions of application components as Franca
models, descriptions of application components as AUTOSAR software component de-
scriptions, and a Franca Connector. The results of the Franca-to-AUTOSAR transla-
tion and the AUTOSAR-to-Franca translation are shown in Figure 1.6. The AUTOSAR
description is extended by component types (AtomicSwComponentTypes) and in-
stances (SwComponentPrototype) for the Franca interfaces and instances, an inter-
face that contains the method that is offered by a Franca component and requested

13 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

by an AUTOSAR component, and the two connections that correspond to the two con-
nection entries in the Franca Connector. The Franca Model is extended by interface
definitions for the AUTOSAR component types.

Figure 1.5: Initial State of the Franca Integration

14 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

Figure 1.6: Integrated System Views in Franca and AUTOSAR

1.5 Limitations and Extensions

1.5.1 Dynamic Communication

The AUTOSAR process requires that all inter-operations among application component
instances that may occur during run time are declared statically (before compile time)
in the AUTOSAR software component description. Inter-operation in an infotainment
system on the other hand is typically dynamic. GENIVI for instance uses sockets that
allow the dynamic discovery and connection with service providers at run time. Fu-
ture AUTOSAR releases may support dynamic communication, too, but in the present
state static declaration of communication links is mandatory. Thus at least the AU-
TOSAR and the GENIVI component instances that shall inter-operate must be known
and identified at design time. At the GENIVI side it may be possible to introduce these
component instances as place holders and establish the connection with the real com-
ponent instances at run time via a corresponding dynamic discovery and connection

15 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

service. At the AUTOSAR side the instances have to be declared at design time any-
way, so they are present and can be used for the specification of the interconnection.
With a solution of this kind the static interconnection declaration would be limited to
the AUTOSAR part that underlies this restriction anyway, whereas the GENIVI part
would not be constrained. A more detailed discussion of the integration of dynamic
communication with an AUTOSAR system is necessary, but not in the scope of this
report.

1.5.2 RTE Contract and RTE Generation

The Franca Integration aims at a Virtual Functional Bus View of the integrated system,
which is only the first step of an AUTOSAR development. In order to generate the
AUTOSAR RTE further information on the ECU network, the application components,
and the mapping of the application components to the ECU network is needed. This
information is defined in [3]. In the first step, the RTE Contract Phase, the behavior of
the components needs to be defined and implemented and the information on the data
types has to be refined. The second one, the RTE Generation Phase, also requires
information on the ECU resources and the mapping of the application components to
the resources. For a complete integration of an AUTOSAR and a GENIVI system these
phases and the corresponding description requirements have to be considered, too.
Since the Franca IDL has no fixed means to specify behavior, resources, or allocations
the Franca Integration cannot define corresponding translations. It would rather be
a task to define a Franca deployment specification for the AUTOSAR integration that
covers these aspects.

16 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

2 Franca Connector

The Franca connector is the new format that is introduced to specify the desired inter-
operation of the Franca and the AUTOSAR application components. It consists of three
major parts:

Imports References to the Franca models and the AUTOSAR software component
descriptions that define the Franca and the AUTOSAR application components
respectively.

Franca Instances Definitions of the Franca component instances that shall take part
in the desired inter-operations.

Links Definitions of the interconnections of AUTOSAR and Franca component in-
stances.

2.1 Imports and Franca Instances

An import is a string that indicates the location of a Franca model (fidl-file) or an AU-
TOSAR software component description (arxml-file). The imports define in particular
the Franca interfaces and AUTOSAR ports that can be referenced in the Franca Con-
nector.

A Franca instance is declared by its name and the list of Franca interfaces it imple-
ments. The Franca interfaces must be contained in the imported Franca models. The
list of implemented interfaces of an instance may be empty.

A possible concrete notation for a Franca instance definition in a Franca Connector is

franca_instance g implements F1, . . . , Fn

where g is the name of the defined Franca instance and F1, . . . , Fn are the names of
the implemented Franca interfaces.

2.2 Links

A link has an AUTOSAR side and a Franca side. The AUTOSAR side is always given
by a port instance reference, i.e. a SwComponentPrototype and a PortPrototype
that belongs to the SwComponentType of the SwComponentPrototype. A possible
concrete notation for the AUTOSAR side is autosar_port comp : p where comp is the
name of the SwComponentPrototype and p is the name of the PortPrototype.

The Franca side of a link is given either by a Franca instance alone or by a Franca
instance and one of the Franca interfaces it implements.

franca_instance g:F or franca_instance g

17 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

where g is the name of the Franca instance and F is the name of the Franca interface.

A link is directed in the sense of the intended communication flow. The left side of the
link defines the instance that emits the data element or the operation call; the right side
defines the instance that receives the data element or operation call.

Each AUTOSAR port is typed by an interface which may be a client server interface
or a sender receiver interface. In the first case it contains operations that are either
offered (provided, PPortPrototype) or required (RPortPrototype) at the port. In
the second case it contains data elements that are either sent (provided, PPortPro-
totype) or expected (required, RPortPrototype) at the port. The two kinds of AU-
TOSAR interfaces and two directions of Franca Connector links (AUTOSAR-to-Franca
and Franca-to-AUTOSAR) yield four types of links.

1. AUTOSAR-to-Franca Client Server Link

2. AUTOSAR-to-Franca Sender Receiver Link

3. Franca-to-AUTOSAR Client Server Link

4. Franca-to-AUTOSAR Sender Receiver Link

Figure 2.1 shows examples for the four possible types of links. It uses a mixed nota-
tion and is only intended to explain the Franca link types, their representation within
a Franca connector, and the result of the translation to AUTOSAR. Components and
ports are shown in an AUTOSAR style. The links are depicted, for sake of brevity,
at the type level; in a more faithful figure the connections of the port instance ref-
erences should be shown. The connectors are labeled using the concrete notation
for links introduced above, where for sake of brevity the labels autosar_port and
franca_instance are omitted. The names of the links (AF_CS, AF_SR, FA_CS, and
FA_SR) indicate the direction (AUTOSAR-to-Franca or Franca-to-AUTOSAR) and the
AUTOSAR port interface type (Client-Server or Sender-Receiver). The distinction of
the two Autosar-to-Franca sender receiver links AF_SRPull and AF_SRPull is due to
the possibility in Franca to declare methods as fire-and-forget methods. This will be
explained in more detail below and in subsection 3.4.2.

18 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

Figure 2.1: Links of AUTOSAR and Franca component instances

In the discussion below we assume that the following AUTOSAR and Franca elements
are given as starting point.

1. An AUTOSAR component A with ports as defined in Table 2.1.

2. An AUTOSAR component prototype a whose type is A.

3. A Franca Interface F1 with a method m1 and a broadcast b1, and a second
Franca Interface F2 with a fire-and-forget method m2.

4. A Franca instance g that implements F1 and F2.

port interface interface contents
reqPort_CS reqCS ∅
reqPort_SR reqSR ∅
provPort_CS provCS { op }
provPort_SRPush provSRPush { sig }
provPort_SRPull provSRPull ∅

Table 2.1: Ports of AUTOSAR component A

The translation of the Franca interfaces and the Franca instance to AUTOSAR – that is
discussed in the following chapter – yields the component type shown on the right side
of Figure 2.1. For each Franca interface (for example F1) there three three ports,

1. one that provides the methods of the Franca interface as AUTOSAR operations
(csProvPort_F1 typed by prov_operations_F1).

2. one that provides the broadcasts of the Franca interface as AUTOSAR data ele-
ments (srProvPort_F1 typed by prov_dataElements_F1).

3. one that requests the fire-and-forget methods of the Franca interface as AU-
TOSAR data elements (srReqPort_F1 typed by req_dataElements_F1).

19 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

The five connectors are generated by the five Franca links as discussed next.

2.2.1 AUTOSAR-to-Franca Client Server Link

An AUTOSAR-to-Franca client server link

autosar_port a : reqPort_CS → franca_instance g : F1

specifies that the AUTOSAR component prototype a requires (calls) at its port req-
Port_CS the operations (methods) defined in the Franca interface F1 from the Franca
instance g. The correctness condition for an AUTOSAR-to-Franca client server link is
that the AUTOSAR side of the link is a required port (RPortPrototype) typed by a
client server interface (ClientServerInterface) and that the Franca side has a
Franca interface.

2.2.2 AUTOSAR-to-Franca Sender Receiver Link

There are two kinds of AUTOSAR-to-Franca sender receiver links that are distin-
guished by their Franca sides. If the Franca side contains an interface it means that
the Franca instance that implements this interface offers a fire-and-forget method. The
link

autosar_port a : provPort_SRPull → franca_instance g : F2

states that the fire-and-forget method is called by the AUTOSAR component prototype
a. The fire-and-forget method that has not been known in the AUTOSAR description yet
is pulled via the link into the interface that types the AUTOSAR port provPort_SRPull.
(This is indicated by the blue m2 in the interface provSRPull.)

If the Franca side does not contain an interface the link

autosar_port a : provPort_SRPush→ franca_instance g

specifies that the AUTOSAR component prototype a sends the data elements declared
in the interface provSRPush that types the port provPort_SRPush to the Franca In-
stance g. Since the Franca model does not specify which data elements can be sent to
an instance the corresponding elements are now created. The port provPort_SRPush,
the interface provSRPush, and the data element sig provided at port provPort_SRPush
are pushed to the Franca side.

The correctness condition for an AUTOSAR-to-Franca Sender Receiver Link is that
the AUTOSAR side is a provided port (PPortPrototype) typed by a sender receiver
interface (SenderReceiverInterface) and that the Franca side either has a Franca
interface that contains at least one fire-and-forget method (pull link), or the Franca side
has no interface (push link).

20 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

2.2.3 Franca-to-AUTOSAR Client Server Link

A Franca-to-AUTOSAR client server link

franca_instance g → autosar_port a : provPort_CS

specifies that the Franca instance g requires (calls) AUTOSAR operations. The cor-
rectness condition for a Franca-to-AUTOSAR client server link is that the Franca side
does not have a Franca interface and that the AUTOSAR side is a provided port (
PPortPrototype) typed by a client server interface (ClientServerInterface).

2.2.4 Franca-to-AUTOSAR Sender Receiver Link

A Franca-to-AUTOSAR sender receiver link

franca_instance g : F1→ autosar_port a : reqPort_SR

specifies that the Franca instance g sends the broadcasts (and the notifications of the
attributes) of the Franca interface F1 to the AUTOSAR port reqPort_SR. The correct-
ness condition for a Franca-to-AUTOSAR sender receiver link is that that Franca side
must have a Franca interface and the AUTOSAR side is a required port (RPortPro-
totype) typed by a sender receiver interface (SenderReceiverInterface).

2.3 Constraints

The following constraints must be respected by the set of links contained in a Franca
connector.

The first constraint is a formal one; it prevents duplicate links.

[TR_FRANCA_CONSTR_00010] Franca connector has no duplicate links dThere
must not be two links with the same AUTOSAR and Franca sides in a Franca connec-
tor.c()

The second constraint prevents that a client is connected to more than one server.

[TR_FRANCA_CONSTR_00020] Franca connector has no client server fan out
dA required client server port of an AUTOSAR component prototype must not be con-
nected to more than one Franca instance.c()

21 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

3 Franca-to-AUTOSAR Translation

The input for a translation in either direction – Franca to AUTOSAR or AUTOSAR to
Franca – is always a Franca Connector. Via its imports the Franca Connector refer-
ences the Franca models and AUTOSAR software component descriptions that shall
be interconnected and translated. The target of a translation can be either an AU-
TOSAR software component description (Franca-to-AUTOSAR translation) or a Franca
model (AUTOSAR-to-Franca translation).

It is possible to define a Franca Connector that consists only of a Franca import; that
means that its AUTOSAR import is empty and it does not contain links. In this case the
Franca-to-AUTOSAR translation only translates a specification of interfaces and data
types in Franca IDL to a semantically equivalent representation of these interfaces and
data types as an AUTOSAR XML document.

The more general case is the one in which both Franca and AUTOSAR specifications
are imported and the two are connected. In this case the Franca-to-AUTOSAR trans-
lation yields an AUTOSAR software component description that contains

• the imported AUTOSAR software component description,

• the translation of the Franca model (interfaces and data types),

• a representation of the interconnections of the Franca and AUTOSAR instances.

A pure translation is thus a special case of the more general integration of Franca
models and AUTOSAR software component descriptions

3.1 Notation

The definition of the translation of Franca IDL elements to AUTOSAR elements follows
their presentation in [1]. For each Franca IDL metaclass we name a generic element
and define the AUTOSAR element or set of elements that this element is mapped to.
For that purpose we use a table – or a set of tables, in case the France IDL element is
mapped to a set of AUTOSAR elements – with the following meaning.

AR Element This entry defines the AUTOSAR metaclass the Franca metaclass is mapped to.
Moreover, a name for the target element is introduced in order to refer to the
result of the mapping in further entries or rules.

AR Container This entry specifies the AUTOSAR element that contains the target element de-
fined in the entry above by its name.

Attributes This entry defines the attributes and cross references of the target element.
Condition In this entry a condition for the mapping can be given. If the condition is false the

Franca element does not generate a target element in the AUTOSAR represen-
tation.

22 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

3.2 Franca Models

The translation of the top level element FModel of a Franca Model yields a structure of
AUTOSAR packages that are used later on as containers for the further elements. A
top package (the FrancaModelPackage) is generated that contains the complete result
of the translation. It is added to the root of the AUTOSAR XML.

[TR_FRANCA_00010] Franca model is mapped to AUTOSAR top level package
structure dAn FModel fModel is mapped to the set of ARPackages described in
Table 3.1, Table 3.2, Table 3.3, Table 3.4, Table 3.5, Table 3.6 and Table 3.7.c()

AR Element ARPackage FrancaModelPackage
AR Container AUTOSAR
Attributes shortName = fModel.name
Condition —

Table 3.1: FrancaModelPackage mapping

AR Element ARPackage FrancaApplicationDataTypes
AR Container FrancaModelPackage
Attributes shortName = "FrancaApplicationDataTypes"
Condition —

Table 3.2: FrancaApplicationDataTypes mapping

AR Element ARPackage FrancaImplementationDataTypes
AR Container FrancaModelPackage
Attributes shortName = "FrancaImplementationDataTypes"
Condition —

Table 3.3: FrancaImplementationDataTypes mapping

AR Element ARPackage FrancaBaseDataTypes
AR Container FrancaModelPackage
Attributes shortName = "FrancaBaseDataTypes"
Condition —

Table 3.4: FrancaBaseDataTypes mapping

AR Element ARPackage FrancaDataTypeMaps
AR Container FrancaModelPackage
Attributes shortName = "FrancaDataTypeMaps"
Condition —

Table 3.5: FrancaDataTypeMaps mapping

AR Element ARPackage FrancaPortInterfaces
AR Container FrancaModelPackage
Attributes shortName = "FrancaPortInterfaces"

23 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

Condition —

Table 3.6: FrancaPortInterfaces mapping

AR Element ARPackage FrancaSwComponentTypes
AR Container FrancaModelPackage
Attributes shortName = "FrancaSwComponentTypes"
Condition —

Table 3.7: FrancaSwComponentTypes mapping

Franca version information is mapped to the AUTOSAR document revision.

[TR_FRANCA_00011] Franca version is mapped to AUTOSAR document revision
dAn FVersion fVersion of a Franca element fElement is mapped to the document
revision

docRevision = fVersion.major + "." + fVersion.minor

of the AUTOSAR element to which fElement is mapped.c()

3.3 Franca Types

AUTOSAR distinguishes application data types and implementation data types. Ap-
plication data types allow to define all the data attributes which are needed from the
application point of view, in order to exchange data between software components or
between a software component and a measurement and calibration tool. Implementa-
tion data types correspond to the actual binary numbers handled by the programming
language on the CPU. They contain concepts like pointers and unions which relate
to the organization of data in memory and are not relevant for the application level.
Implementation data types are in particular the source for the generation of C code.
According to the goal of the Franca Integration stated in chapter 1 – to obtain an appli-
cation level view of the integrated system – application data types are the appropriate
target for the Franca-to-AUTOSAR translation. However, Franca IDL includes union
types and type definitions as data type constructors; and these are not covered by the
AUTOSAR application data type constructors.

AUTOSAR implementation data type constructors on the other hand comprise union
types and type definitions, as well as the other Franca type constructors.1 They could
thus be used as targets for the Franca-to-AUTOSAR translation of data types. Since
they are used for code generation, however, their specification requires many more
details than given in a Franca model. Moreover, if a Franca model shall be used also
for calibration or measurement purposes the expressiveness of AUTOSAR application
data types is needed again.

1The only exception are map types, that are beyond the expressiveness of AUTOSAR. They are not
translated.

24 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

For these reasons the Franca-to-AUTOSAR translation attempts to map a Franca data
type to

• an AUTOSAR application data type,

• an AUTOSAR implementation data type,

• and an AUTOSAR data type mapping that relates these two data types.

As mentioned above it may happen that no AUTOSAR application data type is gener-
ated for a Franca data type. An AUTOSAR implementation data type is always gener-
ated, except for Franca map types that are not translated at all. When both an appli-
cation data type and an implementation data type are generated they are related by a
data type map.

[TR_FRANCA_00015] Application and implementation data type of a Franca
data type are related dWhen a Franca data type is mapped to an AUTOSAR Ap-
plicationDataType appType and an AUTOSAR ImplementationDataType im-
plType then appType and implType are related by a DataTypeMap. The data type
maps that arise from the translation of a Franca model are collected in one global
DataTypeMappingSet that is contained in the package FrancaDataTypeMaps de-
fined in [TR_FRANCA_00010].c()

The translation of Franca data types to AUTOSAR data types induces a mapping
ARType that is defined as follows.

[TR_FRANCA_00016] Mapping from Franca data types to AUTOSAR data types
dLet fDataType be a Franca data type.

1. If fDataType can be translated to an AUTOSAR application data type arApp-
DataType then

ARType(fDataType) = arAppDataType.

2. If fDataType cannot be translated to an AUTOSAR application data type but to an
AUTOSAR implementation data type arImplDataType then

ARType(fDataType) = arImplDataType.

3. If fDataType can neither be translated to an AUTOSAR application data type nor
to an AUTOSAR implementation data type then

ARType(fDataType) is undefined.

c()

3.3.1 Franca Type Collections

A Franca type collection is a container for Franca data types, corresponding to an
AUTOSAR package. According to the discussion above, each type collection yields

25 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

two packages, one for the generated application data types and one for the generated
implementation data types.

[TR_FRANCA_00090] Franca type collection is mapped to AUTOSAR packages
dAn FTypeCollection fTypeCollection is mapped to a sub-package of the applica-
tion type package FrancaApplicationDataTypes and a sub-package of the implementa-
tion type package FrancaImplementationDataTypes defined in [TR_FRANCA_00010]
as described in Table 3.8 and Table 3.9c()

AR Element ARPackage applicationTypeCollectionPackage
AR Container FrancaApplicationDataTypes
Attributes shortName = fTypeCollection.name
Condition —

Table 3.8: fTypeCollection mapping to the application type package

AR Element ARPackage implementationTypeCollectionPackage
AR Container FrancaImplementationDataTypes
Attributes shortName = fTypeCollection.name
Condition —

Table 3.9: fTypeCollection mapping to the implementation type package

3.3.2 Primitive Types

Franca IDL has a set of predefined, so called primitive, data types: integers, floats,
Boolean values, and strings. Whereas integers, floats, and booleans are covered by
the AUTOSAR platform types, strings have to be encoded. In the following we define
the application and implementation data types that are generated by the Franca-to-
AUTOSAR translation to represent the primitive types of Franca IDL. Both application
and implementation types obtain the short names given in table 3.10.

26 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

[TR_FRANCA_00426] Franca primitive types and the corresponding AUTOSAR
platform types dTable 3.10 lists the supported Franca primitive types and the corre-
sponding AUTOSAR platform types.c()

Franca primitive type AUTOSAR short name
UInt8 uint8
Int8 sint8
UInt16 uint16
Int16 sint16
UInt32 uint32
Int32 sint32
UInt64 uint64
Int64 sint64
Boolean boolean
Float float32
Double float64

Table 3.10: Short names of AUTOSAR data types corresponding to Franca primitive
types

[TR_FRANCA_00100] Primitive Type is mapped to ApplicationPrimitive-
DataType dA Franca primitive type is mapped to an ApplicationPrimitive-
DataType with the categories and data properties as defined in Table 3.11.c()

27 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

Franca Type AR Category AR Property
UInt8 VALUE data constraint: lower limit = 0, upper limit = 255
Int8 VALUE data constraint: lower limit = -128, upper limit = 127
UInt16 VALUE data constraint: lower limit = 0, upper limit = 65535
Int16 VALUE data constraint: lower limit = -32768, upper limit = 32767
UInt32 VALUE data constraint: lower limit = 0, upper limit = 232

Int32 VALUE data constraint: lower limit = -(231), upper limit = 231-1
UInt64 VALUE data constraint: lower limit = 0, upper limit = 264

Int64 VALUE data constraint: lower limit = -(263), upper limit = 263-1
Boolean BOOLEAN data constraint: lower limit = 0, upper limit = 1
Float VALUE —
Double VALUE —
String STRING maximum text size default = 256,

can be redefined in the Franca deployment definition

Table 3.11: Categories and properties of AUTOSAR application data types correspond-
ing to Franca primitive types

Application primitive data types are defined directly by the metaclass Application-
PrimitiveDataType in AUTOSAR. To express that an implementation data type rep-
resents a primitive type in AUTOSAR its name must coincide with one of the AUTOSAR
platform types (see [7]) and it must be associated to a base type that does not have
a native declaration. This is reflected in the following definition of the translation of
Franca primitive data types to AUTOSAR implementation types.

[TR_FRANCA_00110] Primitive Type is mapped to ImplementationDataType
corresponding to AUTOSAR platform type dA Franca primitive type, except the prim-
itive type String, is mapped to an ImplementationDataType with the short name
defined in table described by [TR_FRANCA_00426]. The base type of each of these
implementation data types must not have a native declaration.c()

The primitive type String of Franca is interpreted as an array of characters. Franca
does not defined whether strings have a fixed or a variable size. This can be defined
in a Franca deployment definition. Strings of fixed size can represented directly as
fixed size arrays in AUTOSAR. Arrays of variable size are encoded in AUTOSAR as
structures with two elements: an integer field that defines the actual size of an array
and an array field that contains the array itself. The latter also contains the maximal
size of the array instances.

[TR_FRANCA_00120] Primitive type String of fixed size is mapped to AUTOSAR
array implementation data type dIf the property FixedStringLength of the Franca
primitive type String is set to true and the property MaxStringLength is n then the
type String is mapped to the ImplementationDataType stringImplType defined as
follows.

• stringImplType.shortName = String

• stringImplType.category = ARRAY

• stringImplType.subElement = subElement, with

28 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

• subElement.shortName = Char

• subElement.category = VALUE

• subElement.arraySize = n

• subElement.arraySizeSemantics = fixedSize

The default values of the two String properties are FixedStringLength = false and
MaxStringLength = 256.c()

[TR_FRANCA_00121] Primitive type String of variable size is mapped to AU-
TOSAR structure implementation data type dIf the property FixedStringLength of
the Franca primitive type String is not set (which means that is has the default value
false) and the property MaxStringLength is n then the type String is mapped to the
ImplementationDataType stringImplType defined as follows.

• stringImplType.shortName = String

• stringImplType.category = STRUCTURE

• stringImplType.subElements = {size, chars}

with the ImplementationDataTypeElements size and chars

• size.shortName = size

• size.category = TYPE_REFERENCE

• size.swDataDefProps.implementationDataType = uint8

• chars.shortName = chars

• chars.category = ARRAY

• chars.subElement = char, with

• char.shortName = char

• char.category = TYPE_REFERENCE

• char.arraySize = n

• char.arraySizeSemantics = variableSize

• char.swDataDefProps.implementationDataType = uint8

The default value MaxStringLength is 256.c()

3.3.3 Franca Inline Arrays

The types of method and broadcast arguments, attributes, and fields of union and
structure types can be defined in Franca as inline arrays. That means that instead of
an explicitly defined array type the inline notation

29 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

t[] element

can be used.

Since AUTOSAR does not support inline arrays the implicitly defined Franca array types
have to be translated to explicit AUTOSAR application and implementation array types.
This is achieved as specified in [TR_FRANCA_00200], [TR_FRANCA_00205], and
[TR_FRANCA_00206].

In order to recover the original Franca model when the AUTOSAR description is trans-
lated back to Franca these array types are annotated with special data in the Franca
special data group. Since this does not affect the semantics of the translation but only
the syntactical representation it is not further specified here.

In the following we do not explicitly indicate the treatment of inline arrays but take it for
granted that inline arrays are translated to explicitly defined AUTOSAR array types.

3.3.4 User-defined Types

Franca’s user defined types comprise compound types like arrays, structures, and
unions. The translation to AUTOSAR data types is defined in such a way that each
type is either translated completely or not at all. Consider for instance a Franca array
type whose elements are typed by a union type. A Franca array type can be translated
to an AUTOSAR application data type; a Franca union type, however, cannot be trans-
lated to an AUTOSAR application data type. Therefore the above mentioned example
of a Franca array of unions is not translated to an AUTOSAR application data type.

On the other hand, both array and union types can be translated to AUTOSAR imple-
mentation data types. Therefore also the Franca array of union type can be translated
to an AUTOSAR implementation data type.

The only Franca data type that cannot be translated to an AUTOSAR data type at all is
the map type. If this occurs in a compound type the whole compound type is also not
mapped to any AUTOSAR data type.

3.3.4.1 Mapping to Application Data Types

[TR_FRANCA_00200] Application Array Type dAn FArrayType fArrayType is
mapped to the AUTOSAR ApplicationArrayDataType arArrayType defined by

• arArrayType.shortName = fArrayType.name

• arArrayType.category = ARRAY

• arArrayType.element = element defined by

• element.shortName = fArrayType.name + "element"

30 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

• element.maxNumberOfElements = fArrayType.ArraySize

• element.arraySizeSemantics = fixedSize if fArrayType.ArrayFixedSize == true
element.arraySizeSemantics = variableSize if fArrayType.ArrayFixedSize == false

• element.type = ARType(fArrayType.elementType)

• element.category = ARType(fArrayType.elementType).category

The values fArrayType.ArraySize and fArrayType.ArrayFixedSize are defined in the de-
ployment definition of the Franca model that contains the data type.

If the ARType(fArrayType.elementType) is undefined then also the translation of fArray-
Type is not defined.c()

[TR_FRANCA_00210] Application Enumeration Type dAn FEnumerationType
fEnumerationType is translated to the ApplicationPrimitiveDataType arEnu-
merationType defined by

• arEnumerationType.shortName = fEnumerationType.name

• arEnumerationType.category = VALUE

The set of FEnumerators of fEnumerationType is mapped to a CompuMethod as
defined in [4] [TPS_SWCT_01562].c()

[TR_FRANCA_00220] Application Structure Type dAn FStructType fStructType is
mapped to the AUTOSAR ApplicationRecordDataType arStructType defined by

• arStructType.shortName = fStructType.name

• arStructType.category = STRUCTURE

and for each FField fField an ApplicationRecordElement recordElement de-
fined by

• recordElement.shortName = fField.name

• recordElement.type = ARType(fField.type)

c()

[TR_FRANCA_00230] Application Union Type dAn FUnionType fUnionType is not
mapped to an AUTOSAR application data type.c()

[TR_FRANCA_00240] Application Type Definition dAn FTypeDef fTypeDef is not
mapped to an AUTOSAR application data type.c()

[TR_FRANCA_00250] Application Map Type dAn FMapType fMapType is not
mapped to an AUTOSAR application data type.c()

31 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

3.3.4.2 Mapping to Implementation Data Types

Analogous to the distinction of fixed size strings ([TR_FRANCA_00120]) and variable
size strings ([TR_FRANCA_00121]) the translation of Franca array types to AUTOSAR
implementation data types distinguishes array types of fixed and variable size.

[TR_FRANCA_00205] Implementation Array Type of fixed size dAn FArrayType
fArrayType whose property ArrayFixedSize is set to true is mapped to the Implemen-
tationDataType arArrayType defined by

• arArrayType.shortName = fArrayType.name

• arArrayType.category = ARRAY

• arArrayType.subElement = subElement defined by

• subElement.shortName = fArrayType.name + "_elements"

• subElement.category = TYPE_REFERENCE

• subElement.arraySize = fArrayType.ArraySize

• subElement.arraySizeSemantics = fixedSize

• subElement.swDataDefProps.implementationDataType
= ARType(fArrayType.elementType)

where fArrayType.ArraySize and fArrayType.ArrayFixedSize are defined in the deploy-
ment definition of the Franca model. The default value of fArrayType.ArrayFixedSize is
false.

If ARType(fArrayType.elementType) is undefined fArrayType is not translated.c()

An arrays of variable size is represented in AUTOSAR at the implementation type level
as a structure whose first element is an integer that denotes the actual size of the array
and whose second element is the array itself.

[TR_FRANCA_00206] Implementation Array Type of variable size dAn FArray-
Type fArrayType whose property ArrayFixedSize is not set (which means that it has
the default value false) or is set to false is mapped to the ImplementationDataType
stringImplType defined as follows.

• stringImplType.shortName = fArrayType.name

• stringImplType.category = STRUCTURE

• stringImplType.subElements = {size, array }

with the ImplementationDataTypeElements size and array

• size.shortName = size

• size.category = TYPE_REFERENCE

• size.swDataDefProps.implementationDataType = uint8

32 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

• array.shortName = array

• array.category = ARRAY

• array.subElement = array_element, with

• array_element.shortName = array_element

• array_element.category = TYPE_REFERENCE

• array_element.arraySize = fArrayType.ArraySize

• array_element.arraySizeSemantics = variableSize

• array_element.swDataDefProps.implementationDataType
= ARType(fArrayType.type)

c()

[TR_FRANCA_00215] Implementation Enumeration Type dAn FEnumera-
tionType fEnumerationType is translated to the ImplementationDataType arEnu-
merationType defined by

• arEnumerationType.shortName = fEnumerationType.name

• arEnumerationType.category = VALUE

The set of FEnumerators of fEnumerationType is mapped to an CompuMethod as
defined in [4] [TPS_SWCT_01562].c()

[TR_FRANCA_00225] Implementation Structure Type dAn FStructType fStruct-
Type is mapped to the ImplementationDataType arStructType defined by

• arStructType.shortName = fStructType.name

• arStructType.category = STRUCTURE

and for each FField fField of fStructType an ImplementationDataTypeElement
subElement defined by

• subElement.shortName = fField.name

• subElement.category = TYPE_REFERENCE

• subElement.swDataDefProps.implementationDataType
= ARType(fField.type)

If ARType(fField.type) is undefined fStructType is not translated.c()

[TR_FRANCA_00235] Implementation Union Type dAn FUnionType fUnionType is
mapped to the ImplementationDataType arUnionType defined by

• arUnionType.shortName = fUnionType.name

• arUnionType.category = UNION

33 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

and for each FField fField of fUnionType an ImplementationDataTypeElement
subElement defined by

• subElement.shortName = fField.name

• subElement.category = TYPE_REFERENCE

• subElement.swDataDefProps.implementationDataType
= ARType(fField.type)

If ARType(fField.type) is undefined fUnionType is not translated.c()

[TR_FRANCA_00245] Implementation Type Definition dAn FTypeDef fTypeDef is
mapped to the ImplementationDataType arTypeDef defined by

• arTypeDef.shortName = fTypeDef.name

• arTypeDef.category = TYPE_REFERENCE

• arTypeDef.swDataDefProps.implementationDataType
= ARType(fTypeDef.actualType)

If ARType(fTypeDef.actualType) is not defined fTypeDef is not translated.c()

[TR_FRANCA_00255] Implementation Map Type dAn FMapType fMapType is not
mapped to an AUTOSAR implementation data type.c()

3.3.5 Type Inheritance

Franca IDL allows type inheritance for enumerations, structures, and unions. Since AU-
TOSAR does not support inheritance the Franca type definitions have to be resolved
when they are translated to AUTOSAR. That means that the resulting AUTOSAR type
of a Franca enumeration directly contains all literals that are directly or indirectly con-
tained in the Franca enumeration via its chain of base types. Analogously, the transla-
tion of a Franca structure or union type contains all fields that are directly or indirectly
defined for the type.

This resolution does not change the semantics of the data types; however, it affects
their syntactical representation. In order to be able to reconstruct the original Franca
data type definition as close as possible when inverting the translation to AUTOSAR,
the target AUTOSAR data types and their elements are annotated. The AUTOSAR
means for that purpose are special data. A specific special data group with the gid
Franca_Transformation is introduced that contains this annotation. None of the data
contained in this special data group affects the semantics of the AUTOSAR software
component description that results from the translation. Only information on the syn-
tactic structuring is represented by this special data.

34 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

3.4 Franca Interfaces

3.4.1 Franca Interfaces

A single Franca interface may contain methods, attributes, and broadcasts. The cor-
responding elements on the AUTOSAR side are operations and data elements. Since
an AUTOSAR operation can only be contained in a client server interface and an AU-
TOSAR data element can only be contained in a sender receiver interface, at least
two AUTOSAR interfaces must be generated for one Franca interface. Franca IDL
supports fire-and-forget methods that are mapped to data elements (sender receiver
communication) instead of operations (client server communication). A fire-and-forget
method offered by a Franca instance is called by an AUTOSAR component prototype
in that the latter sends the corresponding data element to the Franca instance. As
opposed to the methods and broadcasts, that are provided by a Franca instance that
implements the correpsonding interface, the fire-and-forget methods – interpreted as
data elements – are required by the Franca instance. This is reflected in the defini-
tion of the corresponding ports ([TR_FRANCA_00310]) and leads to the definition of
a third AUTOSAR port interface corresponding to a Franca interface to represent the
fire-and-forget methods.

The rules given below essentially define that

• a Franca method is mapped to an AUTOSAR operation, with the exception of a
Franca fire-and-forget method that is mapped to an AUTOSAR data element

• a Franca attribute is mapped to a getter operation, a setter operation, and a
notification data element,

• a Franca broadcast is mapped to an AUTOSAR data element.

The getter operation corresponding to a Franca attribute always exists. If the Franca
flags readonly or noSubscriptions are set, the generation of the setter operation and
the notification data elements respectively are prohibited. Thus if all attributes are
read-only and not-subscribable and there are no broadcasts, no data elements will be
generated. In this case also no provided sender receiver interface is generated. If there
are no fire-and-forget methods no required sender receiver interface is generated.

[TR_FRANCA_00020] Franca interface is mapped to AUTOSAR client server in-
terface and AUTOSAR sender receiver interfaces dAn FInterface fInterface is
mapped to AUTOSAR interfaces as described in Table 3.12, Table 3.13 and Table
3.14.c()

AR Element ClientServerInterface FrancaProvOperationsInterface
AR Container FrancaPortInterfaces
Attributes shortName = "prov_operations_" + fInterface.name
Condition —

Table 3.12: Franca Interface mapping to ClientServerInterface

AR Element SenderReceiverInterface FrancaProvDataElementsInterface

35 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

AR Container FrancaPortInterfaces
Attributes shortName = "prov_dataElements_" + fInterface.name
Condition fInterface has at least one subscribable attribute that is not read-only or at least

one broadcast.

Table 3.13: FrancaProvDataElementsInterface mapping to SenderReceiverInterface

AR Element SenderReceiverInterface FrancaReqDataElementsInterface
AR Container FrancaPortInterfaces
Attributes shortName = "req_dataElements_" + fInterface.name
Condition fInterface has at least one fire-and-forget method.

Table 3.14: FrancaReqDataElementsInterface mapping to SenderReceiverInterface

3.4.2 Franca Methods

A Franca method is mapped to an AUTOSAR client server operation. An exception
are fire-and-forget methods that are consumed when called but do not deliver a return
value. They are mapped to AUTOSAR data elements.

[TR_FRANCA_00030] Franca method is mapped to AUTOSAR client server op-
eration dAn FMethod fMethod that is not a fire-and-forget method is mapped to the
ClientServerOperation as described in Table 3.15.c()

AR Element ClientServerOperation csOperation
AR Container FrancaProvOperationsInterface
Attributes shortName = fMethod.name
Condition fMethod is not a fire-and-forget method.

Table 3.15: Franca method mapping

[TR_FRANCA_00031] Franca fire-and-forget method is mapped to AUTOSAR
variable data prototype dAn FMethod fMethod whose fireAndForget-flag is set to
true is mapped to the VariableDataPrototype as described in Table 3.16.c()

AR Element VariableDataPrototype srDataElement
AR Container FrancaReqDataElementsInterface
Attributes shortName = fMethod.name
Condition fMethod is a fire-and-forget method.

Table 3.16: Franca fire and forget method mapping

The type of the data element srDataElement is the structure type fMethod_type whose
elements correspond to the types of the input arguments of fMethod. Depending on
the types of the input arguments fMethod_type is either an ApplicationRecord-
DataType or an ImplementationDataType.

36 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

If ARType(inArg) is defined for each FArgument inArg contained in fMethod.inArgs
and yields an ApplicationDataType then fMethod_type is the Application-
RecordDataType defined as follows.

• fMethod_type.shortName = fMethod.name + "_type"

• fMethod_type.category = STRUCTURE

For each inArg contained in fMethod.inArgs the type fMethod_type contains an Ap-
plicationRecordElement recordElement defined by

• recordElement.shortName = inArg.name

• recordElement.type = ARType(inArg)

If ARType(inArg) is defined for each FArgument inArg of fMethod.inArgs and at least
one of them yields an ImplementationDataType then fMethod_type is the Imple-
mentationDataType defined as follows.

• fMethod_type.shortName = fMethod.name + "_type"

• fMethod_type.category = STRUCTURE

For each inArg contained in fMethod.inArgs the type fMethod_type contains an Im-
plementationDataTypeElement recordElement defined by

• recordElement.shortName = inArg.name

• recordElement.category = TYPE_REFERENCE

• recordElement.swDataDefProps.implementationDataType = ARType(inArg)

If ARType(inArg) is undefined for at least one FArgument inArg of fMethod.inArgs
then the the fire-and-forget method fMethod is not mapped.

A Franca argument of a method is mapped to an AUTOSAR argument data prototype.
The translation of Franca arguments of broadcasts is defined below.

[TR_FRANCA_00040] Franca argument of a method is mapped to AUTOSAR ar-
gument data prototype dAn FArgument fArgument is mapped to an ArgumentDat-
aPrototype if it is an argument of a method as described in Table 3.17.c()

AR Element ArgumentDataPrototype arg
AR Container csOperation
Attributes shortName = fArgument.name

direction = ArgumentDirectionEnum.IN if arg is an input argument
direction = ArgumentDirectionEnum.OUT if arg is an output argument

Condition The method that contains fArgument as an input or output argument is mapped
to the AUTOSAR client server operation csOperation.

Table 3.17: Franca argument of a method mapping

37 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

3.4.3 Franca Attributes

A Franca attribute is mapped to a getter operation, a setter operation, and a notification
data element. The generation of the setter operation and the notification data element
depends on the flags that are set for the attribute.

[TR_FRANCA_00050] Franca attribute is mapped to AUTOSAR client server op-
erations and data prototypes dAn FAttribute fAttribute is mapped to AUTOSAR
client server operations and data elements according to Table 3.18, Table 3.19, Table
3.20.c()

AR Element ClientServerOperation getter
AR Container FrancaProvOperationsInterface
Attributes shortName = "get_" + fAttribute.name
Condition —

Table 3.18: Getter mapping

AR Element ClientServerOperation setter
AR Container FrancaProvOperationsInterface
Attributes shortName = "set_" + fAttribute.name
Condition fAttribute is not read-only.

Table 3.19: Setter mapping

AR Element VariableDataPrototype notification
AR Container FrancaProvDataElementsInterface
Attributes shortName = "notify_" + fAttribute.name

type = ARType(fAttribute.type)
Condition fAttribute is subscribable.

Table 3.20: Notification mapping

3.4.4 Franca Broadcasts

A Franca broadcast is mapped to an AUTOSAR data element. The type of the data
element is a structure type whose elements are determined by the out-arguments of
the broadcast.

[TR_FRANCA_00070] Franca broadcast is mapped to AUTOSAR variable data
prototype dAn FBroadcast fBroadcast is mapped to the variable data prototype ac-
cording to Table 3.21.c()

38 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

AR Element VariableDataPrototype broadcast
AR Container FrancaProvDataElementsInterface
Attributes shortName = "broadcast_" + fBroadcast.name

type: AUTOSAR struct-type whose fields are given by the names and the Franca-
to-AUTOSAR type translations of the types of the out-arguments of fBroadcast.

Condition —

Table 3.21: Broadcast mapping

3.4.5 Interface Inheritance

Franca interface inheritance is handled in the same way as Franca data type in-
heritance. The translation generates target elements for all elements that are di-
rectly or indirectly contained in a Franca interface according to its inheritance hier-
archy. The elements that are indirectly contained are annotated by special data in the
Franca_Transformation special data group. Using this annotation they can be handled
appropriately by the inverse translation from AUTOSAR to Franca IDL.

3.5 Franca Connector

A Franca Connector declares Franca instances and connections between Franca in-
stances and AUTOSAR component prototypes. A Franca instance implements a set of
Franca interfaces. This set may also be empty, which can be used to declare Franca in-
stances that use AUTOSAR operations, but whose provided interfaces are not relevant
for the Franca Integration.

A Franca instance is translated to an AUTOSAR component prototype. The type of
this component prototype is determined by the list of interfaces that are implemented
by the Franca instance. For each list of implemented interfaces that appears in the
instance declaration part of the Franca Connector one AUTOSAR Application-
SwComponentType is generated. It contains, for each Franca interface in the list,
three ports. The first one is a provided port typed by a client server interface that
contains operations representing the methods and the getter and setter operations for
the attributes contained in the Franca interface. The second one is also a provided
port, typed by a sender receiver interface that contains data elements representing the
attribute change notifications and the broadcasts contained the Franca interface. The
third one is a required port, also typed by a sender receiver interface, which contains
data elements representing the fire-and-forget methods of the Franca interface.

[TR_FRANCA_00300] Franca instance is mapped to AUTOSAR component pro-
totype and AUTOSAR application component type dA Franca instance g that im-
plements the Franca Interfaces F1, ..., Fn is mapped to a SwComponentPrototype
componentInstance with shortName g.

Depending on the links of the Franca Connector in which the componentInstance g ap-
pears the CompositionSwComponentType that contains g is determined. If there is

39 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

a link that contains the g then the container of g is the container of the Composition-
SwComponentType that also contains the SwComponentPrototype at the other end
of the link. If none of the links contains the componentInstance then its container is a
newly created CompositionSwComponentType.c()

The type of g is given by the following ApplicationSwComponentType component-
Type.

AR Element ApplicationSwComponentType componentType
AR Container FrancaSwComponentTypes
Attributes shortName = "type_" + g
Condition The type for the list of Franca Interfaces implemented by g has not yet been

generated.

Table 3.22: Franca instance mapping

Each Franca interface that is implemented by a Franca instance induces ports for the
type componentType of the component instance defined above. There are two pro-
vided ports for the methods and broadcasts respectively of the Franca interface, and
one required port for the fire-and-forget methods. Recall that the latter are mapped to
data elements that are sent to the component instance.

[TR_FRANCA_00310] Franca interface implemented by a Franca instance yields
AUTOSAR ports of componentType dEach Franca interface F implemented by a
Franca instance g generates PortPrototypes described in Table 3.23, Table 3.24,
Table 3.25 for the componentType of g defined in [TR_FRANCA_00300].c()

AR Element PPortPrototype csProvPort
AR Container componentType
Attributes shortName = "csProvPort_" + fInterface.name,

providedInterface = FrancaProvOperations
Condition —

Table 3.23: Franca Interface mapping to a ClientServer PPortPrototype

AR Element PPortPrototype srProvPort
AR Container componentType
Attributes shortName = "srProvPort_" + fInterface.name,

providedInterface = FrancaProvDataElements
Condition FrancaProvDataElements exists.

Table 3.24: Franca Interface mapping to a SenderReceiver PPortPrototype

40 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

AR Element RPortPrototype srReqPort
AR Container componentType
Attributes shortName = "srReqPort_" + fInterface.name,

requiredInterface = FrancaReqDataElements
Condition srInterface exists.

Table 3.25: Franca Interface mapping to a SenderReceiver RPortPrototype

Figure 3.1: Translation of Franca links to AUTOSAR

Figure 3.1 indicates the translation of the links contained in a Franca Connector. Es-
sentially, a Franca link generates an AUTOSAR assembly software connector. The
direction of the link – AUTOSAR-to-Franca or Franca-to-AUTOSAR – and the type of
the AUTOSAR port of the link – client-server-interface or sender-receiver-interface –
determine the context components and the target ports of the assembly’s provider and
requester. The translation of the four kinds of links (see section 2.2) is discussed in the
following.

Throughout the discussion we use the names for ports, interfaces, and links introduced
in Figure 3.1. We first consider the case in which each Franca instance can be placed
into the same container (CompositionSwComponentType) as the AUTOSAR com-
ponent prototype it is linked to. This holds if all links that contain the Franca instance
have AUTOSAR component prototypes on the other side that are contained in one and
same container. This is then also the container of the AssemblySwConnectors that
are generated for the links. The more general case is discussed in subsection 3.5.6.

3.5.1 AUTOSAR-to-Franca Client Server Link

An AUTOSAR-to-Franca client server link

41 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

autosar_port a : reqPort_CS → franca_instance g : F1

is translated to an AssemblySwConnector assemblyConnector with the PPort-
InCompositionInstanceRef assemblyProvider and RPortInCompositionIn-
stanceRef assemblyRequester defined as follows.

provided context component the componentInstance g that is generated by the
translation of the Franca component instance g.

provided target port the port csProvPort_F1 that is generated by the translation of
the Franca Interface F1

requested context component the SwComponentPrototype a.

requested target port the RPortPrototype reqPort_CS.

The ClientServerInterface reqCS that types reqPort_CS is updated as follows.
For each ClientServerOperation op in the interface prov_operations_F1 that
types csProvPort_F1 a copy of op is added to reqCS. That means that reqCS con-
tains representations of all methods and getter/setter operations of F1.

An implementation of the transformation must ensure that the names of the client
server operations in the updated interface reqCS are unique. If reqCS already
contained an operation with the same name as an operation op carried over from
prov_operations_F1 then a new name – for instance the full qualified name of op – has
to be generated for the copy. In addition to that a ClientServerInterfaceMapping
that relates the two names has to be added and referenced by the assemblyConnector.

3.5.2 AUTOSAR-to-Franca Sender Receiver Link

An AUTOSAR-to-Franca sender receiver link

autosar_port a : provPort_SRPush→ franca_instance g

is translated to an AssemblySwConnector assemblyConnector with the PPort-
InCompositionInstanceRef assemblyProvider and RPortInCompositionIn-
stanceRef assemblyRequester defined as follows.

provided context component the SwComponentPrototype a.

provided target port the PPortPrototype provPort_SRPush.

requested context component the componentInstance g that is generated by the
translation of the Franca component instance g.

requested target port a copy of provPort_SRPush that is attached to the Appli-
cationSwComponentType componentType generated by the translation of the
Franca component instance g. If the componentType already contains a port with
the same name as provPort_SRPush a new name has to be generated for the
copy that is unique within the name space of componentType.

42 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

The type of the new RPortPrototype is the interface provSRPush that also types
provPort_SRPush.

3.5.3 AUTOSAR-to-Franca Sender Receiver Link for Fire-And-Forget-Methods

An AUTOSAR-to-Franca sender receiver link

autosar_port a : provPort_SRPull → franca_instance g : F2

is translated to an AssemblySwConnector assemblyConnector with the PPort-
InCompositionInstanceRef assemblyProvider and RPortInCompositionIn-
stanceRef assemblyRequester defined as follows.

provided context component the SwComponentPrototype a.

provided target port the PPortPrototype provPort_SRPull.

requested context component the componentInstance g that is generated by the
translation of the Franca component instance g.

requested target port the RPortPrototype srReqPort_F2.

The SenderReceiverInterface provSRPull that types provPort_SRPull is up-
dated as follows. For each VariableDataPrototype m in the interface
req_dataElements_F2 that types srReqPort_F2 a copy of m is added to provSRPull.
That means that provSRPull contains representations of all fire-and-forget methods
of F2. If the interface provSRPull already contained a data element with the same
name as m a new name has to be generated that is unique within the name space of
provSRPull.

3.5.4 Franca-to-AUTOSAR Client Server Link

A Franca-to-AUTOSAR Client Server Link

franca_instance g → autosar_port a : provPort_CS

is translated to an AssemblySwConnector assemblyConnector with the PPort-
InCompositionInstanceRef assemblyProvider and RPortInCompositionIn-
stanceRef assemblyRequester defined as follows.

provided context component the SwComponentPrototype a.

provided target port the PPortPrototype provPort_CS.

requested context component the componentInstance that is generated by the
translation of the Franca component instance g.

requested target port a copy of provPort_CS is attached to the Application-
SwComponentType componentType generated by the translation of the Franca
component instance g. If componentType already contains a port with the same

43 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

name as provPort_CS a new name has to be generated that is unique within the
name space of componentType.

The type of the new RPortPrototype is the interface provCS that also types prov-
Port_CS.

3.5.5 Franca-to-AUTOSAR Sender Receiver Link

A Franca-to-AUTOSAR Attribute Link

franca_instance g : F1→ autosar_port a : reqPort_SR

is translated to an AssemblySwConnector assemblyConnector with the PPort-
InCompositionInstanceRef assemblyProvider and RPortInCompositionIn-
stanceRef assemblyRequester defined as follows.

provided context component the componentInstance g that is generated by the
translation of the Franca component instance g.

provided target port the srProvPort_F1 that is generated by the translation of the
Franca Interface F1

requested context component the SwComponentPrototype a.

requested target port the RPortPrototype reqPort_SR.

The SenderReceiverInterface reqSR that types reqPort_SR is updated as fol-
lows. For each VariableDataPrototype b in the interface prov_dataElements_F1
that types srProvPort_F1 a copy of b is added to reqSR. That means that reqSR con-
tains representations of all attribute change notifications and broadcasts of F1. If re-
qSR already contains a data element with the same name as b two cases have to be
distinguished.

1. If b is already contained in reqSR due to the translation of another link with the
same Franca side franca_instance g : F1 as the currently considered link then
no new copy is generated.

2. Otherwise the copy is added an a new name is generated that is unique within
the name space of reqSR.

3.5.6 Connecting Instances in Disjoint Containers

The precondition for the definitions above has been that the Franca instance and the
AUTOSAR component prototype of a link are contained in the same container (Com-
positionSwComponentType). As soon as there are two links connecting a Franca
instance to two AUTOSAR component prototypes that are contained in different com-
position types this precondition no longer holds. In this case instead of a single assem-
bly connector a chain of delegation and assembly connectors has to be generated.

44 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

Let C0 be the least composition type that contains – via a chain of containment and
type relations – the Franca instance f and the AUTOSAR component prototype a.
Figure 3.2 shows a prototypical constellation. CompositionSwComponentType C2
contains the AUTOSAR SwComponentPrototype a; CompositionSwComponent-
Type C1 contains a SwComponentPrototype c2 whose type is C2, and C0 contains
a SwComponentPrototype c1 whose type is C1. An analogous hierarchy whose for
the containment of the Franca instance f is shown on the right side of the figure. In
order to connect a and f the DelegationSwConnectors del2_p and del1_p have to
added to the component types C2 and C1 respectively. In this step also new Port-
Prototypes have to be added to C2 and C1 as proxies of the start port p that shall
be connected. In this step name clashes have to be avoided concerning both the new
delegations and the new ports. Analogous delegations and ports have to be generated
on the other side. Finally within C0 the AssemblySwConnector assembly can be
generated.

Figure 3.2: Connection of component prototypes in different composition component
types.

45 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

4 AUTOSAR-to-Franca Translation

The AUTOSAR-to-Franca translation collects the data types and port interfaces from
an AUTOSAR xml-file and brings them into the Franca IDL format. It is thus rather a
filter than a translation.

4.1 Data Types

Franca does not distinguish application and implementation data types. Since all data
type attributes that are relevant for a Franca model are covered by the AUTOSAR
application data type attributes, in the first line application data types are considered.
Whenever an AUTOSAR implementation data type is related to an application data type
via a data type map the latter is considered as the representative of the implementation
data type. That means that only the application data type is translated to Franca IDL.
The implementation data type must be semantically compatible with the application
data type and therefore yields no further information for the translation.

If an implementation data type is not related to any application data type, however, it
will be translated. This will always be the case for union types and type definitions that
are not available at the AUTOSAR application type level. Since it might happen that
the AUTOSAR input does not contain data type maps the translation must be defined
for all kinds of both implementation and application data types.

The translation selects the data types from the AUTOSAR input that have a represen-
tation in Franca IDL. AUTOSAR data types that do not fit into any of the patterns that
are defined below are not translated.

[TR_FRANCA_00380] Mapping from AUTOSAR data types to Franca data types
dThe translation of AUTOSAR data types to Franca data types induces a mapping
FType that is defined as follows. Let arDataType be an AUTOSAR data type.

FType(arDataType) = fDataType

if arDataType is translated to the Franca data type fDataType;

FType(arDataType) is undefined

if arDataType cannot be translated to a Franca data type.c()

4.1.1 Platform Types

An AUTOSAR implementation data type is a platform type if its short name coincides
with the short name of one of the AUTOSAR platform types defined in [7] and its base
type has no native declaration. The name correspondence of Franca primitive types

46 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

and AUTOSAR platform types has been defined in table 3.10. Read from right to left
this yields the mapping of AUTOSAR implementation types to Franca primitive types.

[TR_FRANCA_00390] Implementation platform type is mapped to primitive type
dIf an AUTOSAR implementation type implDataType is a platform type it is mapped to
the Franca primitive type defined by the name correspondence according to the table
described in [TR_FRANCA_00426].c()

The corresponding mapping of application data types is also induced by the names.
In this case the data properties defined in TR_FRANCA_0100 are used to detect the
application data types that correspond to Franca primitive types.

[TR_FRANCA_00395] Application data type with appropriate propterties is
mapped to primitive type dAn AUTOSAR application type applDataType is mapped to
the Franca primitive type fPrimitiveType if the category and properties of applDataType
coincide with the ones stated in TR_FRANCA_0100 and the short name of appl-
DataType corresponds to the name of fPrimitiveType via the relation defined in table
described by [TR_FRANCA_00426].c()

4.1.2 User-defined Types

4.1.2.1 Application Data Types

[TR_FRANCA_00400] Application array data type is mapped to Franca array type
dAn ApplicationArrayDataType appArrayType is mapped to the FArrayType
fArrayType defined by

• fArrayType.name = appArrayType.shortName

• fArrayType.elementType = FType(arArrayType.element.type)

If FType(arArrayDataType.element.type) is not defined then appArrayType is not trans-
lated.c()

[TR_FRANCA_00410] Application value data type is mapped to Franca enumer-
ation type dAn ApplicationPrimitiveDataType applicationPrimitiveType of cat-
egory VALUE is translated to the FEnumerationType fEnumerationType with fEnu-
merationType.name = applicationPrimitiveType.shortName if the algorithm for the de-
tection of enumeration types defined in [3] can be applied. The latter also yields the
FEnumerators of fEnumerationType.c()

[TR_FRANCA_00420] Application record data type is mapped to Franca
struct type dAn ApplicationRecordDataType appRecordType is mapped to the
FStructType fStructType with fStructType.name = appStructType.shortName and for
each ApplicationRecordElement recordElement in arRecordType.elements an
FField fField with

• fField.name = recordElement.shortName

• fField.type = FType(recordElement.type)

47 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

If FType(recordElement.type) is not defined then appRecordType is not translated.c()

4.1.2.2 Implementation Data Types

[TR_FRANCA_00405] Array dAn ImplementationDataType implDataType of cat-
egory ARRAY is mapped to the FArrayType fArrayType defined by

• fArrayType.name = implArrayType.shortName

• fArrayType.elementType = FType(swDataDefProps.implementationDataType)

where swDataDefProps is the SwDataDefProps of the (unique) sub-element of impl-
DataType.

If FType(swDataDefProp.implementationDataType) is not defined then implArrayType
is not translated.c()

[TR_FRANCA_00415] Value dAn ImplementationDataType implDataType of cat-
egory VALUE is mapped to the FEnumerationType fEnumerationType with fEnumer-
ationType.name = implDataType.shortName if the algorithm for the detection of enu-
meration types defined in [3] can be applied. The latter also yields the FEnumerators
of fEnumerationType.c()

[TR_FRANCA_00424] Struct representing an array dLet implDataType be an Im-
plementationDataType of category STRUCTURE that matches the pattern defined
in [TR_FRANCA_00206]. That means that implDataType contains exactly two subEle-
ments

• size which is an ImplementationDataTypeElement of category
TYPE_REFERENCE that references the ImplementationDataType uint8,
and

• array which is an ImplementationDataTypeElement of category ARRAY.

implDataType is mapped to the FArrayType that is obtained by the application of rule
[TR_FRANCA_00405] to the ImplementationDataTypeElement array.c()

[TR_FRANCA_00425] Struct dAn ImplementationDataType implDataType of cat-
egory STRUCTURE that does not match the pattern defined in [TR_FRANCA_00424]
is mapped to the FStructType fStructType with fStructType.name = impl-
DataType.shortName and for each ImplementationDataTypeElement element in
implDataType.subElements an FField fField with

• fField.name = element.shortName

• fField.type = FType(element.swDataDefProps.implementationDataType)

If FType(element.swDataDefProps.implementationDataType) is not defined then impl-
DataType is not translated.c()

48 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

[TR_FRANCA_00435] Union dAn ImplementationDataType implDataType of cat-
egory UNION is mapped to the FStructType fStructType with fStructType.name = im-
plDataType.shortName and for each ImplementationDataTypeElement element
in implDataType.subElements an FField fField with

• fField.name = element.shortName

• fField.type = FType(element.swDataDefProps.implementationDataType)

If FType(element.swDataDefProps.implementationDataType) is not defined then impl-
DataType is not translated.

c()

[TR_FRANCA_00445] Type Definition dAn ImplementationDataType impl-
DataType of category TYPE_REFERENCE is mapped to the FTypeDef fTypeDef de-
fined by

• fTypeDef.name = implDataType.shortName

• fTypeDef.actualType = FType(implDataType.swDataDefProps.implementationDataType)

If FType(implDataType.swDataDefProps.implementationDataType) is not defined then
implDataType is not translated.c()

4.2 Port Interfaces

AUTOSAR port interfaces are mapped to Franca interfaces. In general an AUTOSAR
operation is mapped to a Franca method and an AUTOSAR data element is mapped to
a Franca broadcast. Only if the AUTOSAR input contains Franca special data Franca
attributes will be recovered from the getter methods and fire-and-forget methods will
be recovered from data elements. In the first case the corresponding setter methods
and notifications will be ignored since they all represent the same Franca attribute that
has already been derived from the getter method. In the second case a method is
generated instead of a broadcast.

Franca special data is also used to identify AUTOSAR sender receiver interfaces that
represents the same Franca interfaces as a client server interface. As defined in
chapter 3 a Franca interface is translated to three interfaces: a client server interface
for the methods, a sender receiver interface for the attribute change notifications and
the broadcasts, and a sender receiver interface for the fire-and-forget methods. These
AUTOSAR interfaces are accordingly mapped back to one Franca interface.

[TR_FRANCA_00500] Port Interface dA PortInterface arPortInterface is mapped
to an FInterface fInterface with the contents defined in the following rules.c()

[TR_FRANCA_00510] Client Server Operation dA ClientServerOperation
csOperation that is not tagged as Franca getter or setter method is mapped to the
FMethod fMethod defined by

49 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

• fMethod.name = csOperation.shortName

• fMethod.inArgs is given by the translation of the csOperation.arguments that have
the direction IN

• fMethod.outArgs is given by the translation of the csOperation.arguments that
have the direction OUT

An ArgumentDataPrototype arArgument of csOperation.arguments is mapped to
an FArgument fArgument of fMethod defined by

• fArgument.name = arArgument.shortName

• fArgument.type = FType(arArgument.type)

If FType(arArgument.type) is not defined csOperation is not translated.c()

[TR_FRANCA_00520] Variable Data Prototype dA VariableDataPrototype
dataElement that is not tagged as a Franca fire-and-forget methods is mapped to the
FBroadcast fBroadcast defined by

• fBroadcast.name = "broadcast_" + dataElement.shortName

• fBroadcast.outArgs = (fArgument), the singleton list defined by

• fArgument.name = dataElement.shortName

• fArgument.type = FType(dataElement.type)

If FType(dataElement.type) is not defined dataElement is not translated.

If dataElement that tagged as a Franca fire-and-forget method it is mapped to the
FMethod fMethod with fMethod.name = dataElement.shortName and the following
FArguments fArgument as inputs. For each ApplicationRecordElement or Im-
plementationDataTypeElement recordElement contained in the type of dataEle-
ment as defined in [TR_FRANCA_00031]

• fArgument.name = recordElement.shortName

• fArgument.type = FType(recordElement.type)

c()

4.3 Franca special data

As discussed in subsection 3.3.5 and subsection 3.4.5 inherited elements of Franca
Models are annotated using Franca special data. During the Franca-to-AUTOSAR
translation inherited elements are resolved and the completed models are translated
to AUTOSAR. In order to receive a Franca Model that resembles the original as close
as possible, in particular the inheritance structure has to be recovered. The two special
data elements that are used for this purpose are the derived-tag that indicates that a
Franca element is derived and the base-reference-tag that points to the base of a

50 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

Franca element. These two tags are evaluated in the AUTOSAR-to-Franca translation.
When an AUTOSAR element has a derived-tag it is ignored. When an AUTOSAR
element has a base-reference-tag the referenced element is added as base-attribute
to the Franca element. This is done for all Franca elements that have a base-attribute.

51 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

A Examples

The following listings show the major parts of the Franca Integration example indicated
in Figure 2.1. Listing A.1 shows the Franca model of the Franca interfaces F1 and F2.
The AUTOSAR XML-file that defines the component prototype a is shown in listing
A.2. Listing A.3 shows the Franca Connector that defines the Franca instanceg that
implements the Franca interfaces F1 and F2 and its links to the AUTOSAR component
prototype a.

Example A.1

interface F1 {
method m1 {}
broadcast b1 {

out{
UInt8 mb1
UInt8 mb2

}
}

}

interface F2 {
method m2 fireAndForget {}

}

Example A.2

<?xml version="1.0" encoding="UTF-8"?>
<AUTOSAR xmlns="http://autosar.org/schema/r4.0" xmlns:xsi="http://www.w3.

org/2001/XMLSchema-instance" xsi:schemaLocation="http://autosar.org/
schema/r4.0 autosar_4-1-1.xsd">

<AR-PACKAGES>
<AR-PACKAGE>

<SHORT-NAME>autosar</SHORT-NAME>
<ELEMENTS>

<APPLICATION-PRIMITIVE-DATA-TYPE UUID="d2cf9cc2-9c01-3324-971d-738
afdfabf20">

<SHORT-NAME>UInt8</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>

</APPLICATION-PRIMITIVE-DATA-TYPE>
<IMPLEMENTATION-DATA-TYPE UUID="45007175-9d62-360a-98a2-7054

be84318d">
<SHORT-NAME>UInt8Impl</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL/>

</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>

</IMPLEMENTATION-DATA-TYPE>
<DATA-TYPE-MAPPING-SET UUID="9293a76d-8ea6-3fff-9035-1afc9c97f086">

<SHORT-NAME>dataTypeMappingSet</SHORT-NAME>
<DATA-TYPE-MAPS>

52 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

<DATA-TYPE-MAP>
<APPLICATION-DATA-TYPE-REF DEST="APPLICATION-PRIMITIVE-DATA-

TYPE">/autosar/UInt8</APPLICATION-DATA-TYPE-REF>
<IMPLEMENTATION-DATA-TYPE-REF DEST="IMPLEMENTATION-DATA-TYPE"

>/autosar/UInt8Impl</IMPLEMENTATION-DATA-TYPE-REF>
</DATA-TYPE-MAP>

</DATA-TYPE-MAPS>
</DATA-TYPE-MAPPING-SET>
<CLIENT-SERVER-INTERFACE UUID="3734d142-7bb9-36d8-91b4-09bb0b575d42

">
<SHORT-NAME>reqCS</SHORT-NAME>
<IS-SERVICE>false</IS-SERVICE>

</CLIENT-SERVER-INTERFACE>
<SENDER-RECEIVER-INTERFACE UUID="04b5ab3e-601f-3386-9f7d-63

a6f55e11c8">
<SHORT-NAME>reqSR</SHORT-NAME>
<IS-SERVICE>false</IS-SERVICE>

</SENDER-RECEIVER-INTERFACE>
<SENDER-RECEIVER-INTERFACE UUID="755e8152-0c87-3427-94dd-

da407ab39759">
<SHORT-NAME>provSRPull</SHORT-NAME>
<IS-SERVICE>false</IS-SERVICE>

</SENDER-RECEIVER-INTERFACE>
<SENDER-RECEIVER-INTERFACE UUID="f9b76c74-bb67-30c1-bff7-2

fe79bef5106">
<SHORT-NAME>provSRPush</SHORT-NAME>
<IS-SERVICE>false</IS-SERVICE>
<DATA-ELEMENTS>

<VARIABLE-DATA-PROTOTYPE UUID="693ee17a-86f2-34a6-bd36-
d70148e3da35">

<SHORT-NAME>sig</SHORT-NAME>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<SW-IMPL-POLICY>STANDARD</SW-IMPL-POLICY>
</SW-DATA-DEF-PROPS-CONDITIONAL>

</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>
<TYPE-TREF DEST="APPLICATION-PRIMITIVE-DATA-TYPE">/autosar/

UInt8</TYPE-TREF>
</VARIABLE-DATA-PROTOTYPE>

</DATA-ELEMENTS>
</SENDER-RECEIVER-INTERFACE>
<CLIENT-SERVER-INTERFACE UUID="56dc14c0-6550-30e5-9e62-a7d7e03e9150

">
<SHORT-NAME>provCS</SHORT-NAME>
<IS-SERVICE>false</IS-SERVICE>
<OPERATIONS>

<CLIENT-SERVER-OPERATION UUID="e877d6a3-1f83-3dec-b9b1-
addef11e3ca8">

<SHORT-NAME>op</SHORT-NAME>
</CLIENT-SERVER-OPERATION>

</OPERATIONS>
</CLIENT-SERVER-INTERFACE>
<APPLICATION-SW-COMPONENT-TYPE UUID="ded260d5-532f-3250-9227-

ccdc1d0d0a2f">

53 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

<SHORT-NAME>A</SHORT-NAME>
<PORTS>

<R-PORT-PROTOTYPE UUID="5cd37e72-4682-3fda-92fa-95a810de29c7">
<SHORT-NAME>reqPort_CS</SHORT-NAME>
<REQUIRED-INTERFACE-TREF DEST="CLIENT-SERVER-INTERFACE">/

autosar/reqCS</REQUIRED-INTERFACE-TREF>
</R-PORT-PROTOTYPE>
<R-PORT-PROTOTYPE UUID="6330886b-e7e5-30ef-ada6-32324ce4d5a6">
<SHORT-NAME>reqPort_SR</SHORT-NAME>
<REQUIRED-INTERFACE-TREF DEST="SENDER-RECEIVER-INTERFACE">/

autosar/reqSR</REQUIRED-INTERFACE-TREF>
</R-PORT-PROTOTYPE>
<P-PORT-PROTOTYPE UUID="b55ce023-9a76-37a1-a941-80f27a10f72e">
<SHORT-NAME>provPort_SRPull</SHORT-NAME>
<PROVIDED-INTERFACE-TREF DEST="SENDER-RECEIVER-INTERFACE">/

autosar/provSRPull</PROVIDED-INTERFACE-TREF>
</P-PORT-PROTOTYPE>
<P-PORT-PROTOTYPE UUID="0673841e-a393-32d6-ad0b-d6dad901310c">
<SHORT-NAME>provPort_SRPush</SHORT-NAME>
<PROVIDED-INTERFACE-TREF DEST="SENDER-RECEIVER-INTERFACE">/

autosar/provSRPush</PROVIDED-INTERFACE-TREF>
</P-PORT-PROTOTYPE>
<P-PORT-PROTOTYPE UUID="b009abfe-1538-3c83-b2cc-d596b65d8d11">
<SHORT-NAME>provPort_CS</SHORT-NAME>
<PROVIDED-INTERFACE-TREF DEST="CLIENT-SERVER-INTERFACE">/

autosar/provCS</PROVIDED-INTERFACE-TREF>
</P-PORT-PROTOTYPE>

</PORTS>
</APPLICATION-SW-COMPONENT-TYPE>
<COMPOSITION-SW-COMPONENT-TYPE UUID="acb0061a-b365-32d4-b0e4-9

fea3427044d">
<SHORT-NAME>C</SHORT-NAME>
<COMPONENTS>

<SW-COMPONENT-PROTOTYPE UUID="2dcf4e8f-1ca0-3270-b247-9278
f627d8ee">

<SHORT-NAME>a</SHORT-NAME>
<TYPE-TREF DEST="APPLICATION-SW-COMPONENT-TYPE">/autosar/A</

TYPE-TREF>
</SW-COMPONENT-PROTOTYPE>

</COMPONENTS>
</COMPOSITION-SW-COMPONENT-TYPE>

</ELEMENTS>
</AR-PACKAGE>

</AR-PACKAGES>
</AUTOSAR>

Example A.3
connector FA_Connection {

import_franca "../franca/componentF.fidl";
import_autosar "../autosar/componentA.arxml"

instances {
franca_instance g implements franca.F1, franca.F2

54 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

}

connections {
AF_CS autosar_port autosar.C : a : autosar.A.reqPort_CS ->

franca_instance g : F1
AF_SRPull autosar_port autosar.C : a : autosar.A.provPort_SRPull ->

franca_instance g : F2
AF_SRPush autosar_port autosar.C : a : autosar.A.provPort_SRPush ->

franca_instance g

FA_SR franca_instance g : F1 -> autosar_port autosar.C : a : autosar.A.
reqPort_SR

FA_CS franca_instance g -> autosar_port autosar.C : a : autosar.A.
provPort_CS

}
}

The result of the translation of the Franca Connector (A.3) is indicated in listing A.4.
Only the composition software component type C is shown that contains the two com-
ponent prototypes a and g, and the five assembly connectors AF_CS, AF_SRPull,
AF_SRPush, FA_SR, and FA_CS.

Example A.4

<COMPOSITION-SW-COMPONENT-TYPE UUID="acb0061a-b365-32d4-b0e4-9fea3427044d">
<SHORT-NAME>C</SHORT-NAME>
<COMPONENTS>

<SW-COMPONENT-PROTOTYPE UUID="2dcf4e8f-1ca0-3270-b247-9278f627d8ee">
<SHORT-NAME>a</SHORT-NAME>
<TYPE-TREF DEST="APPLICATION-SW-COMPONENT-TYPE">/autosar/A</TYPE-TREF

>
</SW-COMPONENT-PROTOTYPE>
<SW-COMPONENT-PROTOTYPE UUID="269da27d-413f-4969-a931-0fa13019360c">

<SHORT-NAME>g</SHORT-NAME>
<TYPE-TREF DEST="APPLICATION-SW-COMPONENT-TYPE">/SwComponentTypes/

type_g</TYPE-TREF>
</SW-COMPONENT-PROTOTYPE>

</COMPONENTS>
<CONNECTORS>

<ASSEMBLY-SW-CONNECTOR UUID="b33c857a-681f-44c2-a622-2f97d1548e30">
<SHORT-NAME>AF_CS</SHORT-NAME>
<PROVIDER-IREF>

<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">/autosar/C/g</
CONTEXT-COMPONENT-REF>

<TARGET-P-PORT-REF DEST="P-PORT-PROTOTYPE">/SwComponentTypes/type_g
/csPPort_F1</TARGET-P-PORT-REF>

</PROVIDER-IREF>
<REQUESTER-IREF>

<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">/autosar/C/a</
CONTEXT-COMPONENT-REF>

<TARGET-R-PORT-REF DEST="R-PORT-PROTOTYPE">/autosar/A/reqPort_CS</
TARGET-R-PORT-REF>

</REQUESTER-IREF>
</ASSEMBLY-SW-CONNECTOR>

55 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

<ASSEMBLY-SW-CONNECTOR UUID="6644e6ab-b794-4547-bf01-f6d5b158bb86">
<SHORT-NAME>AF_SRPull</SHORT-NAME>
<PROVIDER-IREF>

<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">/autosar/C/a</
CONTEXT-COMPONENT-REF>

<TARGET-P-PORT-REF DEST="P-PORT-PROTOTYPE">/autosar/A/
provPort_SRPull</TARGET-P-PORT-REF>

</PROVIDER-IREF>
<REQUESTER-IREF>

<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">/autosar/C/g</
CONTEXT-COMPONENT-REF>

<TARGET-R-PORT-REF DEST="R-PORT-PROTOTYPE">/SwComponentTypes/type_g
/srRPort_F2</TARGET-R-PORT-REF>

</REQUESTER-IREF>
</ASSEMBLY-SW-CONNECTOR>
<ASSEMBLY-SW-CONNECTOR UUID="cca795d9-1e42-4842-b65b-15805f37d04f">
<SHORT-NAME>AF_SRPush</SHORT-NAME>
<PROVIDER-IREF>

<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">/autosar/C/a</
CONTEXT-COMPONENT-REF>

<TARGET-P-PORT-REF DEST="P-PORT-PROTOTYPE">/autosar/A/
provPort_SRPush</TARGET-P-PORT-REF>

</PROVIDER-IREF>
<REQUESTER-IREF>

<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">/autosar/C/g</
CONTEXT-COMPONENT-REF>

<TARGET-R-PORT-REF DEST="R-PORT-PROTOTYPE">/SwComponentTypes/type_g
/provPort_SRPush</TARGET-R-PORT-REF>

</REQUESTER-IREF>
</ASSEMBLY-SW-CONNECTOR>
<ASSEMBLY-SW-CONNECTOR UUID="ce3b9a48-65ec-43bd-af47-61c27615e42c">
<SHORT-NAME>FA_SR</SHORT-NAME>
<PROVIDER-IREF>

<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">/autosar/C/g</
CONTEXT-COMPONENT-REF>

<TARGET-P-PORT-REF DEST="P-PORT-PROTOTYPE">/SwComponentTypes/type_g
/srPPort_F1</TARGET-P-PORT-REF>

</PROVIDER-IREF>
<REQUESTER-IREF>

<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">/autosar/C/a</
CONTEXT-COMPONENT-REF>

<TARGET-R-PORT-REF DEST="R-PORT-PROTOTYPE">/autosar/A/reqPort_SR</
TARGET-R-PORT-REF>

</REQUESTER-IREF>
</ASSEMBLY-SW-CONNECTOR>
<ASSEMBLY-SW-CONNECTOR UUID="8d417245-bd8d-4dde-bfd8-ae01370ce907">
<SHORT-NAME>FA_CS</SHORT-NAME>
<PROVIDER-IREF>

<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">/autosar/C/a</
CONTEXT-COMPONENT-REF>

<TARGET-P-PORT-REF DEST="P-PORT-PROTOTYPE">/autosar/A/provPort_CS</
TARGET-P-PORT-REF>

</PROVIDER-IREF>
<REQUESTER-IREF>

<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">/autosar/C/g</
CONTEXT-COMPONENT-REF>

56 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

<TARGET-R-PORT-REF DEST="R-PORT-PROTOTYPE">/SwComponentTypes/type_g
/provPort_CS</TARGET-R-PORT-REF>

</REQUESTER-IREF>
</ASSEMBLY-SW-CONNECTOR>

</CONNECTORS>
</COMPOSITION-SW-COMPONENT-TYPE>

57 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

B Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Class ARPackage

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::ARPackage

Note AUTOSAR package, allowing to create top level packages to structure the contained ARElements.

ARPackages are open sets. This means that in a file based description system multiple files can be used
to partially describe the contents of a package.

This is an extended version of MSR’s SW-SYSTEM.
Base ARObject , AtpBlueprint , AtpBlueprintable, CollectableElement , Identifiable, MultilanguageReferrable,

Referrable

Attribute Type Mult. Kind Note

arPackage ARPackage * aggr This represents a sub package within an ARPackage,
thus allowing for an unlimited package hierarchy.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=arPackage.shortName, arPackage.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=30

element PackageableElement * aggr Elements that are part of this package

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=element.shortName, element.variation
Point.shortLabel
vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=20

referenceBase ReferenceBase * aggr This denotes the reference bases for the package. This is
the basis for all relative references within the package.
The base needs to be selected according to the base
attribute within the references.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=referenceBase.shortLabel
xml.sequenceOffset=10

Table B.1: ARPackage

Class ApplicationArrayDataType

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note An application data type which is an array, each element is of the same application data type.

Tags:atp.recommendedPackage=ApplicationDataTypes

Base ARElement , ARObject , ApplicationCompositeDataType, ApplicationDataType, AtpBlueprint , Atp
Blueprintable, AtpClassifier , AtpType, AutosarDataType, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

dynamicArray
SizeProfile

String 0..1 attr Specifies the profile which the array will follow if it is a
variable size array.

5

58 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

4
Class ApplicationArrayDataType

element ApplicationArray
Element

0..1 aggr This association implements the concept of an array
element. That is, in some cases it is necessary to be able
to identify single array elements, e.g. as input values for
an interpolation routine.

Table B.2: ApplicationArrayDataType

Class ApplicationDataType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note ApplicationDataType defines a data type from the application point of view. Especially it should be used
whenever something "physical" is at stake.

An ApplicationDataType represents a set of values as seen in the application model, such as
measurement units. It does not consider implementation details such as bit-size, endianess, etc.

It should be possible to model the application level aspects of a VFB system by using ApplicationData
Types only.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, AutosarDataType,
CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses ApplicationCompositeDataType, ApplicationPrimitiveDataType

Attribute Type Mult. Kind Note

– – – – –

Table B.3: ApplicationDataType

Class ApplicationPrimitiveDataType

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note A primitive data type defines a set of allowed values.

Tags:atp.recommendedPackage=ApplicationDataTypes

Base ARElement , ARObject , ApplicationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType,
AutosarDataType, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement ,
Referrable

Attribute Type Mult. Kind Note

– – – – –

Table B.4: ApplicationPrimitiveDataType

Class ApplicationRecordDataType

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note An application data type which can be decomposed into prototypes of other application data types.

Tags:atp.recommendedPackage=ApplicationDataTypes

Base ARElement , ARObject , ApplicationCompositeDataType, ApplicationDataType, AtpBlueprint , Atp
Blueprintable, AtpClassifier , AtpType, AutosarDataType, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

5

59 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

4
Class ApplicationRecordDataType

element
(ordered)

ApplicationRecord
Element

* aggr Specifies an element of a record.

The aggregation of ApplicationRecordElement is subject
to variability with the purpose to support the conditional
existence of elements inside a ApplicationrecordData
Type.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

Table B.5: ApplicationRecordDataType

Class ApplicationRecordElement

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note Describes the properties of one particular element of an application record data type.

Base ARObject , ApplicationCompositeElementDataPrototype, AtpFeature, AtpPrototype, DataPrototype,
Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

isOptional Boolean 0..1 attr This attribute represents the ability to declare the
enclosing ApplicationRecordElement as optional. This
means the that, at runtime, the ApplicationRecord
Element may or may not have a valid value and shall
therefore be ignored.

The underlying runtime software provides means to set
the ApplicationRecordElement as not valid at the sending
end of a communication and determine its validity at the
receiving end.

Table B.6: ApplicationRecordElement

Class ApplicationSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note The ApplicationSwComponentType is used to represent the application software.

Tags:atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtomicSwComponentType, AtpBlueprint , AtpBlueprintable, AtpClassifier , Atp
Type, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable, Sw
ComponentType

Attribute Type Mult. Kind Note

– – – – –

Table B.7: ApplicationSwComponentType

Class ArgumentDataPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note An argument of an operation, much like a data element, but also carries direction information and is
owned by a particular ClientServerOperation.

Base ARObject , AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable

Attribute Type Mult. Kind Note

5

60 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

4
Class ArgumentDataPrototype

direction ArgumentDirection
Enum

0..1 attr This attribute specifies the direction of the argument
prototype.

serverArgument
ImplPolicy

ServerArgumentImpl
PolicyEnum

0..1 attr This defines how the argument type of the servers
RunnableEntity is implemented.

If the attribute is not defined this has the same semantics
as if the attribute is set to the value useArgumentType for
primitive arguments and structures.

Table B.8: ArgumentDataPrototype

Class AssemblySwConnector

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Note AssemblySwConnectors are exclusively used to connect SwComponentPrototypes in the context of a
CompositionSwComponentType.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable, SwConnector

Attribute Type Mult. Kind Note

provider AbstractProvidedPort
Prototype

0..1 iref Instance of providing port.

InstanceRef implemented by:PPortInComposition
InstanceRef

requester AbstractRequiredPort
Prototype

0..1 iref Instance of requiring port.

InstanceRef implemented by:RPortInComposition
InstanceRef

Table B.9: AssemblySwConnector

Class AtomicSwComponentType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note An atomic software component is atomic in the sense that it cannot be further decomposed and
distributed across multiple ECUs.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, SwComponentType

Subclasses ApplicationSwComponentType, ComplexDeviceDriverSwComponentType, EcuAbstractionSwComponent
Type, NvBlockSwComponentType, SensorActuatorSwComponentType, ServiceProxySwComponent
Type, ServiceSwComponentType

Attribute Type Mult. Kind Note

internalBehavior SwcInternalBehavior 0..1 aggr The SwcInternalBehaviors owned by an AtomicSw
ComponentType can be located in a different physical file.
Therefore the aggregation is <<atpSplitable>>.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=internalBehavior.shortName, internal
Behavior.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

symbolProps SymbolProps 0..1 aggr This represents the SymbolProps for the AtomicSw
ComponentType.

Stereotypes: atpSplitable
Tags:atp.Splitkey=symbolProps.shortName

Table B.10: AtomicSwComponentType

61 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

Class ClientServerInterface
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note A client/server interface declares a number of operations that can be invoked on a server by a client.

Tags:atp.recommendedPackage=PortInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Attribute Type Mult. Kind Note

operation ClientServerOperation * aggr ClientServerOperation(s) of this ClientServerInterface.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=blueprintDerivationTime

possibleError ApplicationError * aggr Application errors that are defined as part of this interface.

Table B.11: ClientServerInterface

Class ClientServerInterfaceMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note Defines the mapping of ClientServerOperations in context of two different ClientServerInterfaces.

Base ARObject , AtpBlueprint , AtpBlueprintable, Identifiable, MultilanguageReferrable, PortInterfaceMapping,
Referrable

Attribute Type Mult. Kind Note

errorMapping ClientServerApplication
ErrorMapping

* aggr Map two different ApplicationErrors defined in the context
of two different ClientServerInterfaces.

operation
Mapping

ClientServerOperation
Mapping

* aggr Mapping of two ClientServerOperations in two different
ClientServerInterfaces

Table B.12: ClientServerInterfaceMapping

Class ClientServerOperation

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note An operation declared within the scope of a client/server interface.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mult. Kind Note

argument
(ordered)

ArgumentDataPrototype * aggr An argument of this ClientServerOperation

Stereotypes: atpVariation
Tags:vh.latestBindingTime=blueprintDerivationTime

diagArgIntegrity Boolean 0..1 attr This attribute shall only be used in the implementation of
diagnostic routines to support the case where input and
output arguments are allocated in a shared buffer and
might unintentionally overwrite input arguments by
tentative write operations to output arguments.

This situation can happen during sliced execution or while
output parameters are arrays (call by reference). The
value true means that the ClientServerOperation is aware
of the usage of a shared buffer and takes precautions to
avoid unintentional overwrite of input arguments.

If the attribute does not exist or is set to false the Client
ServerOperation does not have to consider the usage of a
shared buffer.

5

62 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

4
Class ClientServerOperation

possibleError ApplicationError * ref Possible errors that may by raised by the referring
operation.

Table B.13: ClientServerOperation

Class CompositionSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Note A CompositionSwComponentType aggregates SwComponentPrototypes (that in turn are typed by Sw
ComponentTypes) as well as SwConnectors for primarily connecting SwComponentPrototypes among
each others and towards the surface of the CompositionSwComponentType. By this means hierarchical
structures of software-components can be created.

Tags:atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, SwComponentType

Attribute Type Mult. Kind Note

component SwComponent
Prototype

* aggr The instantiated components that are part of this
composition. The aggregation of SwComponentPrototype
is subject to variability with the purpose to support the
conditional existence of a SwComponentPrototype.
Please be aware: if the conditional existence of Sw
ComponentPrototypes is resolved post-build the
deselected SwComponentPrototypes are still contained in
the ECUs build but the instances are inactive in in that
they are not scheduled by the RTE.

The aggregation is marked as atpSplitable in order to
allow the addition of service components to the ECU
extract during the ECU integration.

The use case for having 0 components owned by the
CompositionSwComponentType could be to deliver an
empty CompositionSwComponentType to e.g. a supplier
for filling the internal structure.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=component.shortName, component.variation
Point.shortLabel
vh.latestBindingTime=postBuild

connector SwConnector * aggr SwConnectors have the principal ability to establish a
connection among PortPrototypes. They can have many
roles in the context of a CompositionSwComponentType.
Details are refined by subclasses.

The aggregation of SwConnectors is subject to variability
with the purpose to support variant data flow.

The aggregation is marked as atpSplitable in order to
allow the extension of the ECU extract with AssemblySw
Connectors between ApplicationSwComponentTypes and
ServiceSwComponentTypes during the ECU integration.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=connector.shortName, connector.variation
Point.shortLabel
vh.latestBindingTime=postBuild

5

63 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

4
Class CompositionSwComponentType

constantValue
Mapping

ConstantSpecification
MappingSet

* ref Reference to the ConstantSpecificationMapping to be
applied for initValues of PPortComSpecs and RPortCom
Spec.

Stereotypes: atpSplitable
Tags:atp.Splitkey=constantValueMapping

dataType
Mapping

DataTypeMappingSet * ref Reference to the DataTypeMapping to be applied for the
used ApplicationDataTypes in PortInterfaces.

Background: when developing subsystems it may happen
that ApplicationDataTypes are used on the surface of
CompositionSwComponentTypes. In this case it would be
reasonable to be able to also provide the intended
mapping to the ImplementationDataTypes. However, this
mapping shall be informal and not technically binding for
the implementors mainly because the RTE generator is
not concerned about the CompositionSwComponent
Types.

Rationale: if the mapping of ApplicationDataTypes on the
delegated and inner PortPrototype matches then the
mapping to ImplementationDataTypes is not impacting
compatibility.

Stereotypes: atpSplitable
Tags:atp.Splitkey=dataTypeMapping

instantiation
RTEEventProps

InstantiationRTEEvent
Props

* aggr This allows to define instantiation specific properties for
RTE Events, in particular for instance specific scheduling.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=instantiationRTEEventProps.shortLabel,
instantiationRTEEventProps.variationPoint.shortLabel
vh.latestBindingTime=codeGenerationTime

Table B.14: CompositionSwComponentType

Class CompuMethod

Package M2::MSR::AsamHdo::ComputationMethod

Note This meta-class represents the ability to express the relationship between a physical value and the
mathematical representation.

Note that this is still independent of the technical implementation in data types. It only specifies the
formula how the internal value corresponds to its physical pendant.

Tags:atp.recommendedPackage=CompuMethods

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

compuInternal
ToPhys

Compu 0..1 aggr This specifies the computation from internal values to
physical values.

Tags:xml.sequenceOffset=80

compuPhysTo
Internal

Compu 0..1 aggr This represents the computation from physical values to
the internal values.

Tags:xml.sequenceOffset=90

5

64 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

4
Class CompuMethod

displayFormat DisplayFormatString 0..1 attr This property specifies, how the physical value shall be
displayed e.g. in documents or measurement and
calibration tools.

Tags:xml.sequenceOffset=20

unit Unit 0..1 ref This is the physical unit of the Physical values for which
the CompuMethod applies.

Tags:xml.sequenceOffset=30

Table B.15: CompuMethod

Class DataTypeMap

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note This class represents the relationship between ApplicationDataType and its implementing Abstract
ImplementationDataType.

Base ARObject

Attribute Type Mult. Kind Note

applicationData
Type

ApplicationDataType 0..1 ref This is the corresponding ApplicationDataType

implementation
DataType

AbstractImplementation
DataType

0..1 ref This is the corresponding AbstractImplementationData
Type.

Table B.16: DataTypeMap

Class DataTypeMappingSet

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note This class represents a list of mappings between ApplicationDataTypes and ImplementationDataTypes.
In addition, it can contain mappings between ImplementationDataTypes and ModeDeclarationGroups.

Tags:atp.recommendedPackage=DataTypeMappingSets

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

dataTypeMap DataTypeMap * aggr This is one particular association between an Application
DataType and its AbstractImplementationDataType.

modeRequest
TypeMap

ModeRequestTypeMap * aggr This is one particular association between an Mode
DeclarationGroup and its AbstractImplementationData
Type.

Table B.17: DataTypeMappingSet

Class DelegationSwConnector

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Note A delegation connector delegates one inner PortPrototype (a port of a component that is used inside the
composition) to a outer PortPrototype of compatible type that belongs directly to the composition (a port
that is owned by the composition).

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable, SwConnector

Attribute Type Mult. Kind Note

5

65 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

4
Class DelegationSwConnector

innerPort PortPrototype 0..1 iref The port that belongs to the ComponentPrototype in the
composition

Tags:xml.typeElement=true
InstanceRef implemented by:PortInCompositionType
InstanceRef

outerPort PortPrototype 0..1 ref The port that is located on the outside of the Composition
Type

Table B.18: DelegationSwConnector

Class ImplementationDataType

Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes

Note Describes a reusable data type on the implementation level. This will typically correspond to a typedef in
C-code.

Tags:atp.recommendedPackage=ImplementationDataTypes

Base ARElement , ARObject , AbstractImplementationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier ,
AtpType, AutosarDataType, CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

dynamicArray
SizeProfile

String 0..1 attr Specifies the profile which the array will follow in case this
data type is a variable size array.

isStructWith
Optional
Element

Boolean 0..1 attr This attribute is only valid if the attribute category is set to
STRUCTURE.

If set to True, this attribute indicates that the
ImplementationDataType has been created with the
intention to define at least one element of the structure as
optional.

subElement
(ordered)

ImplementationData
TypeElement

* aggr Specifies an element of an array, struct, or union data
type.

The aggregation of ImplementionDataTypeElement is
subject to variability with the purpose to support the
conditional existence of elements inside a Implementation
DataType representing a structure.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

symbolProps SymbolProps 0..1 aggr This represents the SymbolProps for the Implementation
DataType.

Stereotypes: atpSplitable
Tags:atp.Splitkey=symbolProps.shortName

typeEmitter NameToken 0..1 attr This attribute is used to control which part of the
AUTOSAR toolchain is supposed to trigger data type
definitions.

Table B.19: ImplementationDataType

Class ImplementationDataTypeElement

Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes

5

66 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

4
Class ImplementationDataTypeElement

Note Declares a data object which is locally aggregated. Such an element can only be used within the scope
where it is aggregated.

This element either consists of further subElements or it is further defined via its swDataDefProps.

There are several use cases within the system of ImplementationDataTypes fur such a local declaration:

• It can represent the elements of an array, defining the element type and array size

• It can represent an element of a struct, defining its type

• It can be the local declaration of a debug element.

Base ARObject , AbstractImplementationDataTypeElement , AtpClassifier , AtpFeature, AtpStructureElement ,
Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

arrayImplPolicy ArrayImplPolicyEnum 0..1 attr This attribute controls the implementation of the payload
of an array. It shall only be used if the enclosing
ImplementationDataType constitutes an array.

arraySize PositiveInteger 0..1 attr The existence of this attributes (if bigger than 0) defines
the size of an array and declares that this Implementation
DataTypeElement represents the type of each single
array element.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

arraySize
Handling

ArraySizeHandling
Enum

0..1 attr The way how the size of the array is handled in case of a
variable size array.

arraySize
Semantics

ArraySizeSemantics
Enum

0..1 attr This attribute controls the meaning of the value of the
array size.

isOptional Boolean 0..1 attr This attribute represents the ability to declare the
enclosing ImplementationDataTypeElement as optional.
This means that, at runtime, the ImplementationDataType
Element may or may not have a valid value and shall
therefore be ignored.

The underlying runtime software provides means to set
the CppImplementationDataTypeElement as not valid at
the sending end of a communication and determine its
validity at the receiving end.

subElement
(ordered)

ImplementationData
TypeElement

* aggr Element of an array, struct, or union in case of a nested
declaration (i.e. without using "typedefs").

The aggregation of ImplementionDataTypeElement is
subject to variability with the purpose to support the
conditional existence of elements inside a Implementation
DataType representing a structure.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

swDataDef
Props

SwDataDefProps 0..1 aggr The properties of this ImplementationDataTypeElement.

Table B.20: ImplementationDataTypeElement

Class PPortInCompositionInstanceRef

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition::InstanceRefs

Note
Base ARObject , AtpInstanceRef , PortInCompositionTypeInstanceRef

5

67 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

4
Class PPortInCompositionInstanceRef

Attribute Type Mult. Kind Note

context
Component

SwComponent
Prototype

0..1 ref Tags:xml.sequenceOffset=20

targetPPort AbstractProvidedPort
Prototype

0..1 ref Tags:xml.sequenceOffset=30

Table B.21: PPortInCompositionInstanceRef

Class PPortPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Component port providing a certain port interface.

Base ARObject , AbstractProvidedPortPrototype, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable,
MultilanguageReferrable, PortPrototype, Referrable

Attribute Type Mult. Kind Note

provided
Interface

PortInterface 0..1 tref The interface that this port provides.

Stereotypes: isOfType

Table B.22: PPortPrototype

Class PortPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Base class for the ports of an AUTOSAR software component.

The aggregation of PortPrototypes is subject to variability with the purpose to support the conditional
existence of ports.

Base ARObject , AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses AbstractProvidedPortPrototype, AbstractRequiredPortPrototype

Attribute Type Mult. Kind Note

clientServer
Annotation

ClientServerAnnotation * aggr Annotation of this PortPrototype with respect to client/
server communication.

delegatedPort
Annotation

DelegatedPort
Annotation

0..1 aggr Annotations on this delegated port.

ioHwAbstraction
Server
Annotation

IoHwAbstractionServer
Annotation

* aggr Annotations on this IO Hardware Abstraction port.

modePort
Annotation

ModePortAnnotation * aggr Annotations on this mode port.

nvDataPort
Annotation

NvDataPortAnnotation * aggr Annotations on this non voilatile data port.

parameterPort
Annotation

ParameterPort
Annotation

* aggr Annotations on this parameter port.

senderReceiver
Annotation

SenderReceiver
Annotation

* aggr Collection of annotations of this ports sender/receiver
communication.

triggerPort
Annotation

TriggerPortAnnotation * aggr Annotations on this trigger port.

Table B.23: PortPrototype

68 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

Class RPortInCompositionInstanceRef

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition::InstanceRefs

Note
Base ARObject , AtpInstanceRef , PortInCompositionTypeInstanceRef

Attribute Type Mult. Kind Note

context
Component

SwComponent
Prototype

0..1 ref Tags:xml.sequenceOffset=20

targetRPort AbstractRequiredPort
Prototype

0..1 ref Tags:xml.sequenceOffset=30

Table B.24: RPortInCompositionInstanceRef

Class RPortPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Component port requiring a certain port interface.

Base ARObject , AbstractRequiredPortPrototype, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable,
MultilanguageReferrable, PortPrototype, Referrable

Attribute Type Mult. Kind Note

required
Interface

PortInterface 0..1 tref The interface that this port requires.

Stereotypes: isOfType

Table B.25: RPortPrototype

Class SenderReceiverInterface
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note A sender/receiver interface declares a number of data elements to be sent and received.

Tags:atp.recommendedPackage=PortInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
DataInterface, Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Attribute Type Mult. Kind Note

dataElement VariableDataPrototype * aggr The data elements of this SenderReceiverInterface.

invalidation
Policy

InvalidationPolicy * aggr InvalidationPolicy for a particular dataElement

metaDataItem
Set

MetaDataItemSet * aggr This aggregation defines fixed sets of meta-data items
associated with dataElements of the enclosing Sender
ReceiverInterface

Table B.26: SenderReceiverInterface

Class SwComponentPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Note Role of a software component within a composition.

Base ARObject , AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

type SwComponentType 0..1 tref Type of the instance.

Stereotypes: isOfType

Table B.27: SwComponentPrototype

69 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

Integration of Franca IDL Software Component
Descriptions

AUTOSAR CP R20-11

Class SwComponentType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Base class for AUTOSAR software components.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses AtomicSwComponentType, CompositionSwComponentType, ParameterSwComponentType

Attribute Type Mult. Kind Note

consistency
Needs

ConsistencyNeeds * aggr This represents the collection of ConsistencyNeeds
owned by the enclosing SwComponentType.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=consistencyNeeds.shortName, consistency
Needs.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

port PortPrototype * aggr The PortPrototypes through which this SwComponent
Type can communicate.

The aggregation of PortPrototype is subject to variability
with the purpose to support the conditional existence of
PortPrototypes.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=port.shortName, port.variationPoint.short
Label
vh.latestBindingTime=preCompileTime

portGroup PortGroup * aggr A port group being part of this component.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

swComponent
Documentation

SwComponent
Documentation

0..1 aggr This adds a documentation to the SwComponentType.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=swComponentDocumentation, sw
ComponentDocumentation.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=-10

unitGroup UnitGroup * ref This allows for the specification of which UnitGroups are
relevant in the context of referencing SwComponentType.

Table B.28: SwComponentType

Class VariableDataPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note A VariableDataPrototype is used to contain values in an ECU application. This means that most likely a
VariableDataPrototype allocates "static" memory on the ECU. In some cases optimization strategies
might lead to a situation where the memory allocation can be avoided.

In particular, the value of a VariableDataPrototype is likely to change as the ECU on which it is used
executes.

Base ARObject , AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable

Attribute Type Mult. Kind Note

initValue ValueSpecification 0..1 aggr Specifies initial value(s) of the VariableDataPrototype

Table B.29: VariableDataPrototype

70 of 70 Document ID 663: AUTOSAR_TR_FrancaIntegration

	1 Introduction
	1.1 Objective
	1.2 Goal
	1.3 Motivation
	1.4 Integration Method
	1.4.1 Integrated System Description as AUTOSAR SWC Description
	1.4.2 Integrated System Description as Franca Model
	1.4.3 Complete View

	1.5 Limitations and Extensions
	1.5.1 Dynamic Communication
	1.5.2 RTE Contract and RTE Generation

	2 Franca Connector
	2.1 Imports and Franca Instances
	2.2 Links
	2.2.1 AUTOSAR-to-Franca Client Server Link
	2.2.2 AUTOSAR-to-Franca Sender Receiver Link
	2.2.3 Franca-to-AUTOSAR Client Server Link
	2.2.4 Franca-to-AUTOSAR Sender Receiver Link

	2.3 Constraints

	3 Franca-to-AUTOSAR Translation
	3.1 Notation
	3.2 Franca Models
	3.3 Franca Types
	3.3.1 Franca Type Collections
	3.3.2 Primitive Types
	3.3.3 Franca Inline Arrays
	3.3.4 User-defined Types
	3.3.4.1 Mapping to Application Data Types
	3.3.4.2 Mapping to Implementation Data Types

	3.3.5 Type Inheritance

	3.4 Franca Interfaces
	3.4.1 Franca Interfaces
	3.4.2 Franca Methods
	3.4.3 Franca Attributes
	3.4.4 Franca Broadcasts
	3.4.5 Interface Inheritance

	3.5 Franca Connector
	3.5.1 AUTOSAR-to-Franca Client Server Link
	3.5.2 AUTOSAR-to-Franca Sender Receiver Link
	3.5.3 AUTOSAR-to-Franca Sender Receiver Link for Fire-And-Forget-Methods
	3.5.4 Franca-to-AUTOSAR Client Server Link
	3.5.5 Franca-to-AUTOSAR Sender Receiver Link
	3.5.6 Connecting Instances in Disjoint Containers

	4 AUTOSAR-to-Franca Translation
	4.1 Data Types
	4.1.1 Platform Types
	4.1.2 User-defined Types
	4.1.2.1 Application Data Types
	4.1.2.2 Implementation Data Types

	4.2 Port Interfaces
	4.3 Franca special data

	A Examples
	B Mentioned Class Tables

