
Requirements on Debugging, Tracing and Profiling
support of AUTOSAR Components

AUTOSAR CP R20-11

Document Title
Requirements on Debugging,
Tracing and Profiling support of
AUTOSAR Components

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 916

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R20-11

Document Change History
Date Release Changed by Description

2020-11-30 R20-11
AUTOSAR
Release
Management

• Changed document status from draft
to valid

2019-11-28 R19-11
AUTOSAR
Release
Management

• No content changes
• Changed Document Status from

Final to published

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Initial release

1 of 21 Document ID 916: AUTOSAR_RS_ClassicPlatformDebugTraceProfile

Requirements on Debugging, Tracing and Profiling
support of AUTOSAR Components

AUTOSAR CP R20-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 21 Document ID 916: AUTOSAR_RS_ClassicPlatformDebugTraceProfile

Requirements on Debugging, Tracing and Profiling
support of AUTOSAR Components

AUTOSAR CP R20-11

Table of Contents

1 Scope of Document 4

2 Conventions to be used 4

2.1 Requirements Guidelines . 4
2.1.1 Requirements quality . 4
2.1.2 Requirements identification 4
2.1.3 Requirements status . 4

3 Acronyms and abbreviations 4

4 Requirements Specification 5

4.1 Functional Overview . 5
4.2 Functional Requirements on ARTI Template 5
4.3 Functional Requirements on ARTI Description 8
4.4 Functional Requirements regarding locating 14
4.5 Default Error Tracer (DET) . 15

5 Requirements Tracing 19

6 References 21

3 of 21 Document ID 916: AUTOSAR_RS_ClassicPlatformDebugTraceProfile

Requirements on Debugging, Tracing and Profiling
support of AUTOSAR Components

AUTOSAR CP R20-11

1 Scope of Document

This document refines the requirements specified in RS_ARTI_915. See chapter
Scope of RS_ARTI_915. It focuses on special requirements for the Classic Platform of
AUTOSAR.

2 Conventions to be used

The representation of requirements in AUTOSAR documents follows the table spec-
ified in [TPS_STDT_00078], see Standardization Template [1], chapter Support for
Traceability.

The verbal forms for the expression of obligation specified in [TPS_STDT_00053] shall
be used to indicate requirements, see Standardization Template [1], chapter Support
for Traceability.

2.1 Requirements Guidelines

Not applicable yet.

2.1.1 Requirements quality

2.1.2 Requirements identification

2.1.3 Requirements status

3 Acronyms and abbreviations

The glossary below includes acronyms and abbreviations relevant to RS_ARTI that are
not included in the AUTOSAR Glossary [2].

Abbreviation / Acronym: Description:
ARTI AUTOSAR Run Time Interface
OS Operating System
SWC Software Component

Table 3.1: Acronyms and Abbreviations

4 of 21 Document ID 916: AUTOSAR_RS_ClassicPlatformDebugTraceProfile

Requirements on Debugging, Tracing and Profiling
support of AUTOSAR Components

AUTOSAR CP R20-11

4 Requirements Specification

This chapter describes all requirements driving the work to define the ARTI extensions
in Classic Platform.

4.1 Functional Overview

This document refines the requirements specified in RS_ARTI_915. See chapter Func-
tional Overview of RS_ARTI_915. It focuses on special requirements for the Classic
Platform of AUTOSAR.

4.2 Functional Requirements on ARTI Template

The requirements in this section all concern how the ARTI template shall be defined.
This chapter refines the requirements of RS_ARTI_915 specifically for Classic Plat-
form.

[RS_ARTICP_00001] Support for core specific ARTI additions d

Type: Valid

Description: The ARTI template shall define a mechanism to allow core specific ARTI
parameters.

Rationale:

ARTI needs core specific evaluations. The Template shall define a “class” to
define additional parameters to cores as well as an “instance” to define values
of specific cores. The core instance shall include a reference to the
EcucCoreDefinition.

Dependencies: –

Use Case:
Debuggers and Tracing tools need specific core related information to display
and trace the core activity.

Supporting
Material:

-

c(RS_Main_01025, RS_Main_01026)

[RS_ARTICP_00002] Support for core specific current application parameter d

Type: Valid

Description: The ARTI template shall define a parameter that contains the evaluation for the
“current application” that is running on a specific core.

Rationale: ARTI needs to know which application is running at a core at a specific time.
5

5 of 21 Document ID 916: AUTOSAR_RS_ClassicPlatformDebugTraceProfile

Requirements on Debugging, Tracing and Profiling
support of AUTOSAR Components

AUTOSAR CP R20-11

4
Dependencies: Support for core specific ARTI additions

Use Case:
Debuggers and Tracing tools need to know the current application to display
and trace the core activity.

Supporting
Material:

-

c(RS_Main_01025, RS_Main_01026)

[RS_ARTICP_00003] Support for core specific current task parameter d

Type: Valid

Description: The ARTI template shall define a parameter that contains the evaluation for the
“current task” that is running on a specific core.

Rationale: ARTI needs to know which task is running at a core at a specific time.

Dependencies: Support for core specific ARTI additions

Use Case:
Debuggers and Tracing tools need to know the current task to display and trace
the core activity.

Supporting
Material:

-

c(RS_Main_01025, RS_Main_01026)

[RS_ARTICP_00004] Support for core specific last error parameter d

Type: Valid

Description: The ARTI template shall define a parameter that contains the evaluation for the
“last error” that happened on a specific core.

Rationale: ARTI needs to know which error happened at a core at a specific time.

Dependencies: Support for core specific ARTI additions

Use Case:
Debuggers and Tracing tools need to know the last error to display and trace
the core activity.

Supporting
Material:

-

c(RS_Main_01025, RS_Main_01026)

[RS_ARTICP_00005] Support for OS specific ARTI additions d

Type: Valid

Description: The ARTI template shall define a mechanism to allow OS specific ARTI
parameters.

5

6 of 21 Document ID 916: AUTOSAR_RS_ClassicPlatformDebugTraceProfile

Requirements on Debugging, Tracing and Profiling
support of AUTOSAR Components

AUTOSAR CP R20-11

4

Rationale:

ARTI needs OS specific evaluations. The Template shall define a “class” to
define additional parameters to an OS as well as an “instance” to define values
of the OS. The OS instance shall include a reference to the
EcucDefs/Os/OsOS.

Dependencies: –

Use Case:
Debuggers and Tracing tools need specific OS related information to display
and trace the OS activity.

Supporting
Material:

-

c(RS_Main_01025, RS_Main_01026)

[RS_ARTICP_00006] Support for OS specific application mode parameter d

Type: Valid

Description:
The ARTI template shall define a parameter that contains the evaluation for the
“application mode” of this OS. It shall include a reference to
EcucDefs/Os/OsAppMode.

Rationale: ARTI needs to know which application mode the OS is running at a specific
time.

Dependencies: Support for OS specific ARTI additions

Use Case:
Debuggers and Tracing tools need to know the application mode to display and
trace the OS activity.

Supporting
Material:

-

c(RS_Main_01025, RS_Main_01026)

[RS_ARTICP_00007] Support for task specific ARTI additions d

Type: Valid

Description: The ARTI template shall define a mechanism to allow task specific ARTI
parameters.

Rationale:

ARTI needs task specific evaluations. The Template shall define a “class” to
define additional parameters to a task as well as an “instance” to define values
of the task. The task instance shall include a reference to the
EcucDefs/Os/OsTask.

Dependencies: –

Use Case:
Debuggers and Tracing tools need specific task related information to display
and trace the task activity.

Supporting
Material:

-

c(RS_Main_01025, RS_Main_01026)

[RS_ARTICP_00008] Support for SWC specific ARTI additions d

7 of 21 Document ID 916: AUTOSAR_RS_ClassicPlatformDebugTraceProfile

Requirements on Debugging, Tracing and Profiling
support of AUTOSAR Components

AUTOSAR CP R20-11

Type: Valid

Description: The ARTI template shall define a mechanism to allow SWC specific ARTI
parameters.

Rationale:
ARTI needs SWC specific evaluations. The Template shall define an “instance”
to define values of an SWC. The SWC instance shall include a reference to the
EcucDefs/Rte/RteSwComponentInstance.

Dependencies: –

Use Case:
Debuggers and Tracing tools need specific SWC related information to display
and trace the SWC activity.

Supporting
Material:

-

c(RS_Main_01025, RS_Main_01026)

4.3 Functional Requirements on ARTI Description

The requirements in this section all concern how the ARTI description shall be de-
fined. This chapter refines the requirements of RS_ARTI_915 specifically for Classic
Platform.

[RS_ARTICP_00009] The ARTI description shall include a core class definition. d

Type: Valid

Description: Additional parameters to a core are collected in a class definition, following the
ARTI Template.

Rationale:
An ARTI consuming tool needs to know the layout of a core class used by this
implementation.

Dependencies: –

Use Case: Evaluating the form of display for cores.

Supporting
Material:

-

c(RS_Main_01025, RS_Main_01026)

[RS_ARTICP_00010] The ARTI description for a core class shall include a “cur-
rent application” reference to the interpret the parameter value d

Type: Valid

Description: A core class shall include a reference to a parameter definition that defines how
a specific value of “current application” parameter should be interpreted.

5

8 of 21 Document ID 916: AUTOSAR_RS_ClassicPlatformDebugTraceProfile

Requirements on Debugging, Tracing and Profiling
support of AUTOSAR Components

AUTOSAR CP R20-11

4

Rationale:
An ARTI consuming tool needs to know how to interpret the values for a
“current application”, used by this implementation.

Dependencies: The ARTI description shall include a core class definition

Use Case: Defining the display for “current application”.

Supporting
Material:

-

c(RS_Main_01025, RS_Main_01026)

[RS_ARTICP_00011] The ARTI description for a core class shall include a “cur-
rent task” reference to the interpret the parameter value d

Type: Valid

Description: A core class shall include a reference to a parameter definition that defines how
a specific value of the “current task” parameter should be interpreted.

Rationale:
An ARTI consuming tool needs to know how to interpret the values for a
“current task”, used by this implementation.

Dependencies: The ARTI description shall include a core class definition

Use Case: Defining the display for “current task”.

Supporting
Material:

-

c(RS_Main_01025, RS_Main_01026)

[RS_ARTICP_00012] The ARTI description shall include instance definitions for
all cores of the ECU. d

Type: Valid

Description: Additional parameter values to a core are collected in an instance definition,
following the ARTI Template.

Rationale:
An ARTI consuming tool needs to know how to evaluate the parameter values
of a specific core used by this implementation.

Dependencies: The ARTI description shall include a core class definition

Use Case: Evaluating the parameter values of a core for debugging and tracing.

Supporting
Material:

-

c(RS_Main_01025, RS_Main_01026)

[RS_ARTICP_00013] The ARTI description for a core instance shall include a
“current application” reference to evaluate the parameter value d

9 of 21 Document ID 916: AUTOSAR_RS_ClassicPlatformDebugTraceProfile

Requirements on Debugging, Tracing and Profiling
support of AUTOSAR Components

AUTOSAR CP R20-11

Type: Valid

Description: A core instance shall include a reference to a parameter value that defines how
to evaluate value of the “current application” parameter.

Rationale:
An ARTI consuming tool needs to know how to evaluate the values for a
“current application”, used by this implementation.

Dependencies: The ARTI description shall include a core class definition

Use Case: Evaluating the parameter value of “current application” of a specific core.

Supporting
Material:

-

c(RS_Main_01025, RS_Main_01026)

[RS_ARTICP_00014] The ARTI description for a core instance shall include a
“current task” reference to evaluate the parameter value d

Type: Valid

Description: A core instance shall include a reference to a parameter value that defines how
to evaluate value of the “current task” parameter.

Rationale:
An ARTI consuming tool needs to know how to evaluate the values for a
“current task”, used by this implementation.

Dependencies: The ARTI description shall include a core class definition

Use Case: Evaluating the parameter value of “current task” of a specific core.

Supporting
Material:

-

c(RS_Main_01025, RS_Main_01026)

[RS_ARTICP_00015] The ARTI description for a core instance shall include a
reference to an Ecuc core definition d

Type: Valid

Description: A core instance shall include a reference to the definition of the core in Ecuc.

Rationale: An ARTI consuming tool may need to evaluate the configuration of the core in
EcuC.

Dependencies: The ARTI description shall include a core class definition

Use Case: -
Supporting
Material:

-

c(RS_Main_01025, RS_Main_01026)

[RS_ARTICP_00016] The ARTI description shall include an OS class definition. d

10 of 21 Document ID 916: AUTOSAR_RS_ClassicPlatformDebugTraceProfile

Requirements on Debugging, Tracing and Profiling
support of AUTOSAR Components

AUTOSAR CP R20-11

Type: Valid

Description: Additional parameters to an OS are collected in a class definition, following the
ARTI Template.

Rationale:
An ARTI consuming tool needs to know the layout of an OS class used by this
implementation.

Dependencies: –

Use Case: Evaluating the form of display for cores.

Supporting
Material:

-

c(RS_Main_01025, RS_Main_01026)

[RS_ARTICP_00017] The ARTI description for an OS class shall include an appli-
cation mode reference to the interpret the parameter value d

Type: Valid

Description: An OS class shall include a reference to a parameter definition that defines
how a specific value of the application mode parameter should be interpreted.

Rationale:
An ARTI consuming tool needs to know how to interpret the values for the
application mode, used by this implementation.

Dependencies: The ARTI description shall include an OS class definition

Use Case: Defining the display for “application mode”.

Supporting
Material:

-

c(RS_Main_01025, RS_Main_01026)

[RS_ARTICP_00018] The ARTI description shall include an instance definitions
for the OS of the ECU. d

Type: Valid

Description: Additional parameter values to an OS are collected in an instance definition,
following the ARTI Template.

Rationale:
An ARTI consuming tool needs to know how to evaluate the parameter values
of a specific OS used by this implementation.

Dependencies: The ARTI description shall include an OS class definition

Use Case: Evaluating the parameter values of an OS for debugging and tracing.

Supporting
Material:

-

c(RS_Main_01025, RS_Main_01026)

[RS_ARTICP_00019] The ARTI description for an OS instance shall include an
application mode reference to evaluate the parameter value d

11 of 21 Document ID 916: AUTOSAR_RS_ClassicPlatformDebugTraceProfile

Requirements on Debugging, Tracing and Profiling
support of AUTOSAR Components

AUTOSAR CP R20-11

Type: Valid

Description: An OS instance shall include a reference to a parameter value that defines how
to evaluate value of the application mode parameter.

Rationale:
An ARTI consuming tool needs to know how to evaluate the values for the
application mode, used by this implementation.

Dependencies: The ARTI description shall include an OS class definition

Use Case: Evaluating the parameter value of the application mode of a specific OS.

Supporting
Material:

-

c(RS_Main_01025, RS_Main_01026)

[RS_ARTICP_00020] The ARTI description for an OS instance shall include a ref-
erence to an Ecuc AppMode definition d

Type: Valid

Description: An OS instance shall include a reference to the definition of the AppMode in
Ecuc.

Rationale:
An ARTI consuming tool may need to evaluate the configuration of the
AppMode in EcuC.

Dependencies: The ARTI description shall include an OS class definition

Use Case: -
Supporting
Material:

-

c(RS_Main_01025, RS_Main_01026)

[RS_ARTICP_00021] The ARTI description for an OS instance shall include a ref-
erence to an Ecuc OS definition d

Type: Valid

Description: An OS instance shall include a reference to the definition of the OS in Ecuc.

Rationale: An ARTI consuming tool may need to evaluate the configuration of the OS in
EcuC.

Dependencies: The ARTI description shall include an OS class definition

Use Case: -
Supporting
Material:

-

c(RS_Main_01025, RS_Main_01026)

[RS_ARTICP_00022] The ARTI description shall include a task class definition. d

12 of 21 Document ID 916: AUTOSAR_RS_ClassicPlatformDebugTraceProfile

Requirements on Debugging, Tracing and Profiling
support of AUTOSAR Components

AUTOSAR CP R20-11

Type: Valid

Description: Additional parameters to a task are collected in a class definition, following the
ARTI Template.

Rationale:
An ARTI consuming tool needs to know the layout of a task class used by this
implementation.

Dependencies: –

Use Case: Evaluating the form of display for task.

Supporting
Material:

-

c(RS_Main_01025, RS_Main_01026)

[RS_ARTICP_00023] The ARTI description shall include instance definitions for
all tasks of the ECU. d

Type: Valid

Description: Additional parameter values to a task are collected in an instance definition,
following the ARTI Template.

Rationale:
An ARTI consuming tool needs to know how to evaluate the parameter values
of a specific task used by this implementation.

Dependencies: The ARTI description shall include a task class definition

Use Case: Evaluating the parameter values of a task for debugging and tracing.

Supporting
Material:

-

c(RS_Main_01025, RS_Main_01026)

[RS_ARTICP_00024] The ARTI description for a task instance shall include a ref-
erence to an Ecuc task definition d

Type: Valid

Description: A task instance shall include a reference to the definition of the task in Ecuc.

Rationale: An ARTI consuming tool may need to evaluate the configuration of the task in
EcuC.

Dependencies: The ARTI description shall include a task class definition

Use Case: -
Supporting
Material:

-

c(RS_Main_01025, RS_Main_01026)

[RS_ARTICP_00025] The ARTI description shall include instance definitions for
all SWCs of the ECU. d

13 of 21 Document ID 916: AUTOSAR_RS_ClassicPlatformDebugTraceProfile

Requirements on Debugging, Tracing and Profiling
support of AUTOSAR Components

AUTOSAR CP R20-11

Type: Valid

Description: Additional parameter values to an SWC are collected in an instance definition,
following the ARTI Template.

Rationale:
An ARTI consuming tool needs to know how to evaluate the parameter values
of a specific SWC used by this implementation.

Dependencies: -

Use Case: Evaluating the parameter values of an SWC for debugging and tracing.

Supporting
Material:

-

c(RS_Main_01025, RS_Main_01026)

[RS_ARTICP_00026] The ARTI description for an SWC instance shall include a
reference to an Ecuc core definition d

Type: Valid

Description: An SWC instance shall include a reference to the definition of the core in Ecuc
that runs this SWC.

Rationale: An ARTI consuming tool may need to evaluate the configuration of the core in
EcuC.

Dependencies: -

Use Case: -
Supporting
Material:

-

c(RS_Main_01025, RS_Main_01026)

[RS_ARTICP_00027]{DRAFT} The ARTI description for an SWC instance shall
include a reference to an Ecuc SwcInstance definition d

Type: draft

Description: An SWC instance shall include a reference to the definition of the SwcInstance
in Ecuc.

Rationale: An ARTI consuming tool may need to evaluate the configuration of the
SwcInstance in EcuC.

Dependencies: -

Use Case: -
Supporting
Material:

-

c(RS_Main_01025, RS_Main_01026)

4.4 Functional Requirements regarding locating

The requirements in this section are related to how code is located in the ECU memory.

14 of 21 Document ID 916: AUTOSAR_RS_ClassicPlatformDebugTraceProfile

Requirements on Debugging, Tracing and Profiling
support of AUTOSAR Components

AUTOSAR CP R20-11

[RS_ARTICP_00028]{DRAFT} The locating process shall allow grouping of
“traceables” into separate memory regions. d

Type: draft

Description:

Many processors support instruction tracing (“flow-tracing”) which consumes
high band-width and also special versions of the processor (cf. Infineon AURIX
emulation device). When looking at e.g. the level of tasks or runnables,
instruction traces provide far more details than necessary. So for tracing tasks,
runnables, etc. instruction tracing is not the right method. More and more
processors allow efficient tracing (without any software instrumentation) on a
function level as long as the functions to trace are located in the same memory
region (in which no other function must be located). Runnables and typically
also tasks are implemented as functions so when AUTOSAR offered a way to
group all tasks and runnables into memory regions of their own, such efficient
non-intrusive tracing would be supported.

Rationale:
Processors which support non-intrusive high-level tracing need objects to trace
(“traceables”) such as tasks, runnables, etc. to be located “together” in a
memory-region.

Dependencies: –

Use Case: Highly efficient tracing of tasks, runnables, functions belonging to dedicated
SW-Cs etc.

Supporting
Material:

-

c(RS_Main_01026)

4.5 Default Error Tracer (DET)

[RS_ARTICP_04090] A configurable list of error report receivers shall be pro-
vided d

Type: Valid

Description: The Default Error Tracer shall support a configurable list of functions for fan-out
of received error reports. This list can be empty.

Rationale: This implements the debugging concept in R4.0 (DocumentId 298).

Use Case:
Even development errors shall be captured by the Log and Trace functionality.
Error Handling shall be enabled to react on development errors

AppliesTo: CP

Dependencies: –

Supporting
Material:

–

c(RS_Main_00011)

[RS_ARTICP_04086] Report errors shall contain a dedicated set of information d

15 of 21 Document ID 916: AUTOSAR_RS_ClassicPlatformDebugTraceProfile

Requirements on Debugging, Tracing and Profiling
support of AUTOSAR Components

AUTOSAR CP R20-11

Type: Valid

Description:
Error reports, which the Default Error Tracer receives, shall consist of the ID of
the reporting module, the ID of reporting instance, the ID of the API service in
which the error has been detected and the error ID itself.

Rationale: For optimal support of the error tracing some tracing information is necessary.

Use Case:
During software development phase a BSW module has been called using
wrong parameters. Due to communication of some tracing information the
location of the error source will be supported.

AppliesTo: CP

Dependencies: –

Supporting
Material:

–

c(RS_Main_00011)

[RS_ARTICP_04087] The Default Error Tracer shall provide a development error
report reception service d

Type: Valid

Description: The Default Error Tracer shall be accessible by applications to report
development error.

Rationale: It shall be possible to perform error tracing during development of applications.

Use Case:
During software development phase a applictaion has received an unexpected
response by a BSW module. By generating a development error and reporting
it to the DET, configuration errors can be detected.

AppliesTo: CP

Dependencies: –

Supporting
Material:

–

c(RS_Main_00011)

[RS_ARTICP_04089] The DET module shall support fan-out of received error re-
ports d

Type: Valid

Description: The Default Error Tracer shall forward each received error report by calling
each element of a configurable list of functions.

Rationale: This implements the debugging concept in R4.0 (DocumentId 298)

Use Case:
Even development errors shall be captured by the Log and Trace functionality.
Error Handling shall be enabled to react on development errors

AppliesTo: CP

Dependencies: –
5

16 of 21 Document ID 916: AUTOSAR_RS_ClassicPlatformDebugTraceProfile

Requirements on Debugging, Tracing and Profiling
support of AUTOSAR Components

AUTOSAR CP R20-11

4
Supporting
Material:

–

c(RS_Main_00011)

[RS_ARTICP_04085] The Default Error Tracer shall provide an interface to receive
error reports d

Type: Valid

Description: The Default Error Tracer shall provide an interface to get a development error
report.

Rationale: An interface will be needed to enable handling of development errors

Use Case:
During software development phase a BSW module has been called using
wrong parameters. By generating a development error and reporting it to the
DET, configuration errors can be detected.

AppliesTo: CP

Dependencies: –

Supporting
Material:

–

c(RS_Main_00011, RS_Main_00100)

[RS_ARTICP_04101] The DET module shall forward its trace events to the DLT d

Type: Valid

Description:
The DET receives trace events from errors from the BSW and application
during debugging time. If a DLT module exists, these events should be
forwarded to the DLT to collect logs and traces only in one instance.

Rationale:

To have an overview of all log, trace and error messages and to set all of them
in the correct context, it is important to have all these messages and events in
one list (context). Also it is not practicable to use more than one mechanism to
report errors, logs and traces to a debugging interface. So all these sources
should be routed to the DLT.

Use Case:

• A debugging scenario, an application or BSW Module uses the DET
interface to trace an error

• This error is forwarded by the DET to the DLT

• The DLT turns these events in the DLT format and sends it over the
debugging interface, together with all the other logs and traces

AppliesTo: CP

Dependencies: –

Supporting
Material:

–

c(RS_Main_00011)

17 of 21 Document ID 916: AUTOSAR_RS_ClassicPlatformDebugTraceProfile

Requirements on Debugging, Tracing and Profiling
support of AUTOSAR Components

AUTOSAR CP R20-11

[RS_ARTICP_04143] The Default Error Tracer shall provide an interface to receive
runtime error reports d

Type: Valid

Description:
The Default Error Tracer shall provide an interface to get a runtime error report,
issued by BSW modules. The Default Error Tracer returns to the caller in order
to allow continuation of intended program flow.

Rationale:
An interface will be needed to enable handling of runtime errors, caused by
seldom occurring systematic faults. The caller will handle the error and
continue appropriate in a deterministic manner.

Use Case: CANNM_E_NET_START_IND: Reception of NM PDUs in Bus-Sleep Mode

AppliesTo: CP

Dependencies: –

Supporting
Material:

–

c(RS_Main_00011, RS_Main_00100)

[RS_ARTICP_04144] The Default Error Tracer shall provide an interface to receive
transient fault reports d

Type: Valid

Description:
The Default Error Tracer shall provide an interface to get a transient fault report,
issued by BSW modules. The Default Error Tracer returns to the caller in order
to allow continuation of intended program flow.

Rationale:
An interface will be needed to enable handling of transient faults, caused by
seldom occurring transient hardware faults.

Use Case:
• CAN controller goes offline due to bit-flip in its control register

• Peripheral action lasts accidentally longer than expected (and specified)

AppliesTo: CP

Dependencies: –

Supporting
Material:

–

c(RS_Main_00011, RS_Main_00100)

[RS_ARTICP_04145] The Default Error Tracer shall forward received runtime er-
ror reports to configured integrator code d

Type: Valid
5

18 of 21 Document ID 916: AUTOSAR_RS_ClassicPlatformDebugTraceProfile

Requirements on Debugging, Tracing and Profiling
support of AUTOSAR Components

AUTOSAR CP R20-11

4

Description:

The Default Error Tracer shall propagate all received runtime error reports
using configurable callout. The received callout return value shall be returned
to the reporter of the runtime error. If no callout has been configured, a default
return value shall be provided. The Default Error Tracer returns to the caller in
order to allow continuation of intended program flow.

Rationale:
Integrator shall be able to recognize runtime errors and to handle in an
appropriate manner.

Use Case: CANNM_E_NET_START_IND: Reception of NM PDUs in Bus-Sleep Mode

AppliesTo: CP

Dependencies: –

Supporting
Material:

–

c(RS_Main_00011, RS_Main_00100)

[RS_ARTICP_04146] The Default Error Tracer shall forward received transient
fault reports to configured integrator code d

Type: Valid

Description:

The Default Error Tracer shall propagate all received transient fault report using
configurable callout. The received callout return value shall be returned to the
reporter of the transient fault. If no callout has been configured, a default return
value shall be provided. The Default Error Tracer returns to the caller in order to
allow continuation of intended program flow.

Rationale:
Integrator shall be able to recognize transient faults and to handle in an
appropriate manner and to advice the reporter.

Use Case:

• CAN controller goes offline due to bit-flip in its control register. Integrator
decides that reporting CAN driver shall re-initialize the CAN controller.

• CAN controller goes offline due to bit-flip in its control register. Integrator
decides that reporting CAN driver shall treat offline state of CAN
controller as intended.

AppliesTo: CP

Dependencies: –

Supporting
Material:

–

c(RS_Main_00011, RS_Main_00100)

5 Requirements Tracing

The following table references the features specified in [3] and links to the fulfillments
of these.

Feature Description Satisfied by

19 of 21 Document ID 916: AUTOSAR_RS_ClassicPlatformDebugTraceProfile

Requirements on Debugging, Tracing and Profiling
support of AUTOSAR Components

AUTOSAR CP R20-11

[RS_Main_00011] AUTOSAR shall support the development of
reliable systems

[RS_ARTICP_04085]
[RS_ARTICP_04086]
[RS_ARTICP_04087]
[RS_ARTICP_04089]
[RS_ARTICP_04090]
[RS_ARTICP_04101]
[RS_ARTICP_04143]
[RS_ARTICP_04144]
[RS_ARTICP_04145]
[RS_ARTICP_04146]

[RS_Main_00100] AUTOSAR shall provide standardized Basic
Software

[RS_ARTICP_04085]
[RS_ARTICP_04143]
[RS_ARTICP_04144]
[RS_ARTICP_04145]
[RS_ARTICP_04146]

[RS_Main_01025] AUTOSAR shall support debugging of software on
the target and onboard

[RS_ARTICP_00001]
[RS_ARTICP_00002]
[RS_ARTICP_00003]
[RS_ARTICP_00004]
[RS_ARTICP_00005]
[RS_ARTICP_00006]
[RS_ARTICP_00007]
[RS_ARTICP_00008]
[RS_ARTICP_00009]
[RS_ARTICP_00010]
[RS_ARTICP_00011]
[RS_ARTICP_00012]
[RS_ARTICP_00013]
[RS_ARTICP_00014]
[RS_ARTICP_00015]
[RS_ARTICP_00016]
[RS_ARTICP_00017]
[RS_ARTICP_00018]
[RS_ARTICP_00019]
[RS_ARTICP_00020]
[RS_ARTICP_00021]
[RS_ARTICP_00022]
[RS_ARTICP_00023]
[RS_ARTICP_00024]
[RS_ARTICP_00025]
[RS_ARTICP_00026]
[RS_ARTICP_00027]

20 of 21 Document ID 916: AUTOSAR_RS_ClassicPlatformDebugTraceProfile

Requirements on Debugging, Tracing and Profiling
support of AUTOSAR Components

AUTOSAR CP R20-11

[RS_Main_01026] AUTOSAR shall support tracing and profiling on
the target and onboard

[RS_ARTICP_00001]
[RS_ARTICP_00002]
[RS_ARTICP_00003]
[RS_ARTICP_00004]
[RS_ARTICP_00005]
[RS_ARTICP_00006]
[RS_ARTICP_00007]
[RS_ARTICP_00008]
[RS_ARTICP_00009]
[RS_ARTICP_00010]
[RS_ARTICP_00011]
[RS_ARTICP_00012]
[RS_ARTICP_00013]
[RS_ARTICP_00014]
[RS_ARTICP_00015]
[RS_ARTICP_00016]
[RS_ARTICP_00017]
[RS_ARTICP_00018]
[RS_ARTICP_00019]
[RS_ARTICP_00020]
[RS_ARTICP_00021]
[RS_ARTICP_00022]
[RS_ARTICP_00023]
[RS_ARTICP_00024]
[RS_ARTICP_00025]
[RS_ARTICP_00026]
[RS_ARTICP_00027]
[RS_ARTICP_00028]

6 References

[1] System Template
AUTOSAR_TPS_SystemTemplate

[2] Glossary
AUTOSAR_TR_Glossary

[3] Main Requirements
AUTOSAR_RS_Main

21 of 21 Document ID 916: AUTOSAR_RS_ClassicPlatformDebugTraceProfile

	1 Scope of Document
	2 Conventions to be used
	2.1 Requirements Guidelines
	2.1.1 Requirements quality
	2.1.2 Requirements identification
	2.1.3 Requirements status

	3 Acronyms and abbreviations
	4 Requirements Specification
	4.1 Functional Overview
	4.2 Functional Requirements on ARTI Template
	4.3 Functional Requirements on ARTI Description
	4.4 Functional Requirements regarding locating
	4.5 Default Error Tracer (DET)

	5 Requirements Tracing
	6 References

