
 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

1 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

Document Title Macro Encapsulation of
Interpolation Calls

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 808

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R20-11

Document Change History
Date Release Changed by Change Description

2020-11-30 R20-11 AUTOSAR

Release

Management

 No content changes

2019-11-28 R19-11 AUTOSAR

Release

Management

 No content changes

 Changed Document Status from

Final to published

2018-10-31 4.4.0 AUTOSAR

Release

Management

 Editorial changes

2017-12-08 4.3.1 AUTOSAR

Release

Management

 Editorial changes

2016-11-30 4.3.0 AUTOSAR

Release

Management

 Initial Release

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

2 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

Disclaimer

This work (specification and/or software implementation) and the material contained
in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR
and the companies that have contributed to it shall not be liable for any use of the
work.
The material contained in this work is protected by copyright and other types of
intellectual property rights. The commercial exploitation of the material contained in
this work requires a license to such intellectual property rights.
This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the
work may be utilized or reproduced, in any form or by any means, without permission
in writing from the publisher.
The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.
The word AUTOSAR and the AUTOSAR logo are registered trademarks.

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

3 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

Table of Contents

1 Acronyms and abbreviations.. 4

2 Related documentation .. 5

2.1 Input documents ... 5

2.2 Related specification .. 5

3 Introduction ... 6

4 Motivation ... 7

5 Disclaimer ... 8

6 Use Cases .. 9

6.1 Generate Encapsulation Macros ... 9

6.2 Use Encapsulation Macros .. 11

7 Solution Proposal ... 12

7.1 Definition of Terminology ... 12

7.2 Architectural Components.. 12

7.2.1 Encapsulation Macros Header File ... 12

7.3 Functional Description ... 13

7.3.1 Basic Concept Description .. 13

7.3.2 Implementation of Macro Encapsulation Concept 26

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

4 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

1 Acronyms and abbreviations

Abbreviation /
Acronym:

Description:

DEM Diagnostic Event Manager

DET Default Error Tracer

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

5 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

2 Related documentation

2.1 Input documents

[1] AUTOSAR Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[2] AUTOSAR General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral.pdf

[3] AUTOSAR General Specification for Basic Software Modules
AUTOSAR_SWS_BSWGeneral.pdf

[4] AUTOSAR Methodology
AUTOSAR_TR_Methodology.pdf

[5] Requirements on Software Component Template
AUTOSAR_RS_SoftwareComponentTemplate.pdf

2.2 Related specification

[1] Specification of Fixed Point Interpolation Routines
 AUTOSAR_SWS_IFXLibrary.pdf

[2] Specification of Floating Point Interpolation Routines

AUTOSAR_SWS_IFLLibrary.pdf

[3] Specification of Run Time Environment
AUTOSAR_SWS_RTE.pdf

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

6 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

3 Introduction

Interpolation routines are used by the application software for calculating the
unknown points from the known points. The existing AUTOSAR interpolation routines
supports two categories curve (1D) and map (2D) interpolation functionalities both in
integer and floating point. It supports two methods per category interpolation and
lookup. Additionally special variants called group of curves/maps and fixed
curves/maps with two different calculation formulas are supported which can be
either interpolation (or) lookup.

Interpolation routines are very frequently used routines in the application software. As
a consequence, the design of interpolation routines has a significant impact on the
efforts of software development and will be first addressed by optimization. The
explanatory document "Macro Encapsulation of Interpolation Calls" is developed to
guide the Application Developer to perform the simplified invocation of the AUTOSAR
compatible and resource optimized interpolation routines.

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

7 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

4 Motivation

The motivation for the explanatory document
"MacroEncapsulationofInterpolationCalls " is to simplify the routine handling by
introducing a single source principle. This will reduce the maintenance efforts and
avoid false usage leading to bugs. They are the basis for the resulting cost reduction
and increase in quality.

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

8 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

5 Disclaimer

This explanatory document represents the macro encapsulation of library calls as
one of the possible methods to reduce the application overhead in calling the
mathematical interpolation functionalities. This document does not mandate that the
user shall use only macro encapsulation for making the interpolation calls.

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

9 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

6 Use Cases

6.1 Generate Encapsulation Macros

The document AUTOSAR_TR_Methodology R4.2 illustrates the general approach of
generation of atomic software component header files (Figure 1). The proposed
encapsulation macros shall be saved in an "Encapsulation Macros Header File"
similar to an "Application Header File".

Figure 1: Generate Atomic Software Component Contract Header Files

Figure 2 shows the generation process which is parallel to the generation process of
the application header file. The marked block suggests the new part. The Macro
Encapsulation Generator Tool can be implemented as add-on to the Component API
Generation Tool (RTE). Inputs of both tools are information from the VFB Atomic
Software Component and the Software Component Internal Behaviour.

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

10 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

The generated encapsulation macros need interfaces from the application header file
e.g. to get access to the curve and maps. Therefore the macro encapsulation
concept has to know the syntax and structure of the RTE generated interfaces.
The proposed encapsulation macros shall be saved in an "Encapsulation
Macros Header File" (see figure 2) similar to an "Application Header File

Figure 2: Generation Process of Encapsulation Macros Header File

Macro Encapsulation

Software Component Internal

Behavior

Generate Atomic Software

Component Contract Header Files

Application Header File

Component API Generator Tool

Encapsulation Macros Header File

Compile Atomic

Software

Component

Generate Encapsulation Macros

Macro Encapsulation Generator

Tool

VFB Atomic

Software

Component

«input»

«used tool»

«input»

1

«input»

«output»

«used tool»

+uses the RTE-Calls

«output»1

1

«input»

1
«input»

«input»

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

11 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

6.2 Use Encapsulation Macros

Following matrix show all types of interpolations services, provided by IFX Libraries,
which shall be handled by the macro encapsulation concept:

 Linear Lookup
Fix

(interval)
Fix

(shift)
Lookup Fix
(interval)

Lookup Fix
(shift)

Curve x x x x x x

Map x x x x x x

Grouped Curve x x

Grouped Map x x

Axis Search x

Following matrix show all types of interpolations services, provided by IFL Libraries,
which shall be handled by the macro encapsulation concept:

 Linear Lookup
Fix

(interval)
Fix

(shift)
Lookup Fix
(interval)

Lookup Fix
(shift)

Curve x

Map x

Grouped Curve x

Grouped Map x

Axis Search x

Interpolation methods:
Linear: Interpolates result considering two data points
Lookup: No interpolation, returns entry data point
Fix: No explicit axis available, distribution points are calculated via Offset and Shift or
Offset and Interval
Lookup Fix: Mixture of Lookup and Fix

Interpolation calculation:
Curve / Map: Integrated data point search and interpolation
Grouped Curve / Grouped Map: Distributed data point search and interpolation

For the grouped interpolation method the data point search is separated from the
interpolation calculation. The data point search results in a structure which contains
index and ratio information. This information can be used by curve interpolation,
curve look-up interpolation, map interpolation and map look-up interpolation.Currently
this document details on linear curve and map interpolations. The other types of
interpolations can be handled similar but are not specified in this document.

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

12 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

7 Solution Proposal

7.1 Definition of Terminology

This concept will provide an additional header file, the "Encapsulation Macros Header
File". It contains generated macros to encapsulate the call of curve and map
interpolation routines.

There are no other new terminologies provided.

7.2 Architectural Components

7.2.1 Encapsulation Macros Header File

Artifact Encapsulation Macros Header File

Package AUTOSAR Root::M2::Methodology::MethodologyLibrary::Component::
Work Products

Brief
Description

Header generated for an AtomicSoftwareComponentType from Macro
Encapsulation Generator Tool after the RTE contract phase.

Description Header generated for an AtomicSoftwareComponentType from Macro
Encapsulation Generator Tool after the RTE contract phase. It
represents the complete encapsulation macro interfaces between the
component code and the RTE (calls into the RTE as well as prototypes
called by the RTE). All calls of encapsulation interpolation routines are
routed through this header.

Kind Code

Relation Type Related Element Mul. Note

AggregatedBy Delivered Software
Component

1

ParameterOut Generate Atomic Software
Component Contract
Header Files

1 Meth.bindingTime =
CodeGenerationTime

ParameterIn Compile Atomic Software
Component

1 Meth.bindingTime =
CodeGenerationTime

The name of the header will have following form: "<component>_Elc.h" where
<component> is the name of the component for that the header is generated.

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

13 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

7.3 Functional Description

7.3.1 Basic Concept Description

7.3.1.1 Principle of Encapsulation Concept

For illustration of the encapsulation macros, an example of the processing of a curve
interpolation is demonstrated as follows. (Given names are possibly not conforming
to naming conventions because the focus is set to the principle of the concept.)
Suggest the data specification (VFB Atomic Software Component description) of a
particular SWC component defines a data prototype, named "IgnitionCurve". This
data prototype is typed by an ApplicationDataType named "IgnitionCurveType"
inclusive their x- and y-axis. The ApplicationDataType corresponds to an
ImplementationDataType (e.g. "GenericCurve"). This ImplementationDataType
specifies the details of the resulting structure including their BaseTypes (e.g. data
type uint8 for curve values, sint16 for the x-axis used by following example).

The prototype of an interpolation service which looks like below:

uint8 Ifx_IntIpoCur_s16_u8(sint16 Xin, sint16 N, const sint16* X_Array,
 const uint8* Val_Array)
where,
 Xin: Input value
N: Number of axis points
X_Array: Pointer to X distribution
Val_Array: Pointer to Curve values

Without the encapsulation concept the interpolation service has to be called as given
below:
CurveValue =
 Ifx_IntIpoCur_s16_u8(X_input, Curve.N, Curve.Axis, Curve.Values);

The encapsulation concept now provides a macro to encapsulate the interpolation
service call:
CurveValue = Elc_Get_myRunnable_IgnitionCurve();

Because the encapsulation macro is generated as below:
#define Elc_Get_myRunnable_IgnitionCurve \
 Ifx_IntIpoCur_s16_u8(X_input, \
 Curve.N, \
 Curve.Axis, \
 Curve.Values);

The order of parameters is not implicit; an explicit behavior is needed via a semantic
mapping (details are defined in 7.3.2.3). To provide values and pointers for single
parameter of interpolation service, RTE accesses are used. Ex:Rte_CData()

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

14 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

7.3.1.2 Concept Decision

Generally there are two types of parameters:

 First type is the input values to the curve or map.

 Second type is the values and pointers to the respective curve or map.

The input values are normally derived from physical values which are represented as
ApplicationDataTypes. But it is possible that such input values are slightly
preprocessed before calling the interpolation routine. In this case the interpolation
routine is called with local variables which are not passed through RTE contract
phase. An explicit communication shall be needed but would be costly regarding
resources. This will make the complete encapsulation of Interpolation calls complex
and should be avoided.

The parameters for the values and pointers of the respective curve or map will make
no problem. These parameters have a more internal view because they are derived
from the memory representation of a curve or map which is described via
RecordLayouts.

To limit the complexity of the handling of the input values two alternatives are
possible:
1. The generated macro has parameter(s) for the input value(s)

CurveValue = Elc_Get_myRunnable_IgnitionCurve (local_input);
or
CurveValue = Elc_Get_myRunnable_IgnitionCurve (Rte_X_input);

2. Temporary variables are used in front of macro call without parameters
local_input = X_input;
or
local_input = Rte_X_input;

CurveValue = Elc_Get_myRunnable_IgnitionCurve ();

In solution 2 there must be specific knowledge of the name of the temporary variable
because this variable is fixed within the generated macro. This might be too complex
and hence solution 1 is chosen.

Note, these macros are SWC specific and therefore particular naming schemes shall
be applied. Only the input values of the curve or map has to be provided by the user.
The remaining parameters of an interpolation routine and the interpolation routine
itself are encapsulation from the generated macro. This information can be extracted
from the data specification. With this approach fault introduction by non consistent
definitions are eliminated. Additionally the software developer of a SWC component
is freed completely from storage assignment and routine assignment which are
performed automatically. As a consequence, the effort for software development
decreases significantly.

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

15 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

7.3.1.3 Needed Information for the Macro Generation

Based on the concept decision in chapter 7, the macro to be generated looks like
below.
(Example for a curve):
#define Elc_Get_{Runnable}_{Accesspoint} {RoutineName}((X), \
 {ImplTypeStruct}.{N}, \
 {ImplTypeStruct}.{Axis}, \
 {ImplTypeStruct}.{Values}

To generate this macro following information is needed:

 Name of the generated Macro: Elc_Get_myRunnable_{NameOfAccessPoint}
The generated macro is individual generated for each access point.

 Name of the Interpolation Routine: {RoutineName}
The name of an interpolation routine depends on the type of the interpolation
routine and the data types of the axis and output values. Each combination of
data types of axis and output of interpolation values has an individual
implementation and an individual name of the interpolation routine. To create the
name of the interpolation routine it the most complex part of this concept.
E.g. following curve interpolation routines has to be distinguished:
Ifx_IntIpoCur_U8_U8
Ifx_IntIpoCur_U8_U16
Ifx_IntIpoCur_U8_S8
Ifx_IntIpoCur_U8_S16
Ifx_IntIpoCur_U16_U8
Ifx_IntIpoCur_U16_U16
Ifx_IntIpoCur_U16_S8
Ifx_IntIpoCur_U16_S16
Ifx_IntIpoCur_S8_U8
Ifx_IntIpoCur_S8_U16
Ifx_IntIpoCur_S8_S8
Ifx_IntIpoCur_S8_S16
Ifx_IntIpoCur_S16_U8
Ifx_IntIpoCur_S16_U16
Ifx_IntIpoCur_S16_S8
Ifx_IntIpoCur_S16_S16

 Parameters of the Interpolation Routine: {ImplTypeStruct}.{N}, …
Provision of the parameter of the interpolation routine. RTE generates a structure
corresponding to an ImplementationDataType and based on a
SwRecordLayout. The macro encapsulation tool has to generate the accesses
to the number of axis points, the axis and the values of the curve or map. The
number of pointers needed from the interpolation routine differs from kind of
interpolation.
The data type of the number of axis points has a special relevance. This
information is not needed explicitly but must be defined strictly within the
ImplementationDataType. In chapter 7.3.1.9 rules are given to define the data
type of the number of distribution points.

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

16 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

7.3.1.4 Overview to get the Information for Macro Generation

Figure 3 illustrates a rough overview of the workflow of the Macro Encapsulation
Concept. The picture anticipates which information has to be prepared by the
concept and which information are still available within the MetaModel of AUTOSAR.

Figure 3: Overview of Workflow of Encapsulation Concept based on Meta Model

Starting from the DataAccessPoint all information has to be collected to generate a
macro which encapsulates the call of an interpolation routine. At the
DataAccessPoint it is known what interpolation routine will be used and which
values shall be the input and output of the interpolation routine. The name of the
access point can be chosen directly from the DataAccessPoint. The name of the
interpolation routine is taken from the BswModuleEntry. The BswModuleEntry is
related to the DataAccessPoint via InterpolationRoutineMapping, RecordLayout
and ApplicationDataTypes. RTE access macros and data types can be derived
from the ImplementationDataTypes which are linked to a DataAccessPoint over
DataTypeMap and ApplicationDataTypes.

Interpolation routines varies depending on data types of the input and output values.
Up to now no AUTOSAR SWS describes the complete mechanism to specify a
BswModuleEntry with an interpolation routine for corresponding to Application-
Datatypes, SwRecordlayouts and ImplementationDataTypes. In order that the

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

17 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

Macro Encapsulation Concept can use the content of the BswModuleEntry it has to
be defined. A concept how to do that is described in the next chapter.

7.3.1.5 Non-Ambiguous InterpolationRoutineMapping

There are scenarios where the InterpolationRoutineMapping is not ambiguous and
the same RecordLayout fits to more than one Interpolation function. In this scenario
from point of data specification it is not clear for the macro encapsulation tool to find
out which kind interpolation routine is used. A curve or map can be interpolated or
only the lookup behavior can be used. The reason here is the data of the curve or
map in memory are still identical in both cases. The user only specifies the data and
properties of the curve or map in ARXML and the kind of interpolation is than chosen
by the call of a related interpolation routine in code.

For example, Ifx_IntIpoCur_s16_s16 and Ifx_IntLkUpCur_s16_s16.

The possible solution for such a non-ambiguous scenario would be, the macro
encapsulation tool generates more than one macros for different interpolation
routines. In the case the macros shall have different names to distinguish the
different kinds of interpolation routines.

Example, consider Ifx_IntIpoCur_s16_s16 and Ifx_IntLkUpCur_s16_s16,

#define Elc_Get_myRunnable_IgnitionCurve_Ipo \
 Ifx_IntIpoCur_s16_s16(X_input, \
 Curve.N, \
 Curve.Axis, \
 Curve.Values);

#define Elc_Get_myRunnable_IgnitionCurve_Lkup \
 Ifx_IntLkUpCur_s16_s16(X_input, \
 Curve.N, \
 Curve.Axis, \
 Curve.Values);

The user can now invoke,

CurveValue = Elc_Get_myRunnable_IgnitionCurve_Ipo(); // for Interpolation
method
(or)
CurveValue = Elc_Get_myRunnable_IgnitionCurve_Lkup(); // for Lookup
method

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

18 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

7.3.1.6 General Information to BswModuleEntry

The BswModuleEntry represents a single API entry (C-function prototype) into the
BSW module or cluster. For IFX and IFL the BswModuleEntry is the reference to the
interpolation routine and derived from the APIs of the interpolation defined from
AUTOSAR in the SWS documents.
For Example, the IntIpoCur_u16_u16 corresponds to the API Ifx_IntIpoCur_u16_u16.
More information is available in the AUTOSAR blueprint files in
“AUTOSAR_MOD_GeneralBlueprints.zip” in below files.
AUTOSAR_MOD_BswModuleEntrys_Blueprint.arxml
AUTOSAR_MOD_IFX_RecordLayout_Blueprint.arxml
AUTOSAR_MOD_IFL_RecordLayout_Blueprint.arxml

Figure 4 and Figure 5 describes the complete overview with different focus.

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

19 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

Figure 4: Complete MetaModel Overview to Find the Correct BswModuleEntry

Identifiable

ParameterAccess

AutosarParameterRef

AtpPrototype

DataPrototype

AutosarDataPrototype

ARElement

AtpType

AutosarDataType
ApplicationDataType

DataTypeMap

ExecutableEntity

RunnableEntity

ImplementationDataType

ApplicationPrimitiv eDataType

IsSyscond

«atpVariation»

SwDataDefProps

ARElement

SwRecordLayout

InterpolationRoutineMapping InterpolationRoutine

ARElement

BswModuleEntry

shortLabel corresponds to

swInterpolationMethod in

SwDataDefProps.

Identifiable

ImplementationDataTypeElement

SwRecordLayoutGroup

«atpMixed»

SwRecordLayoutGroupContent SwRecordLayoutV

shortLabel of RecordLayout shall be the

same as the shortName of the

ImplementationDataTypeElement.

This give the current mapping of the

semantic. as specified by

swRecordLayoutVProp.

Identifiable

SwServ iceArg

ServiceArgument refers

to

ImplementationDataty

pe

+swDataDefProps 0..1

+swDataDefProps 0..1

+/swDataDefProps

0..1

+valueAxisDataType 0..1

«atpVariation»

+parameterAccess 0..*

+implementationDataType

1

«isOfType»

+type
1

{redefines atpType}

«instanceRef»

+arParameter 0..1

+accessedParameter

1

+applicationDataType 1

«atpVariation»

+subElement

0..* {ordered}

+argument

0..* {ordered}

+swRecordLayoutV

1

+swRecordLayoutGroupContentType

0..1

+swRecordLayoutGroup
1

+swRecordLayout 0..1

+interpolationRoutine 1

+interpolationRoutine

1..*

+swRecordLayout 1

+swRecordLayoutGroup

1

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

20 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

Figure 5: Complete MetaModel Overview to Find the Correct BSWModuleEntry with
Focus SwCalprms

Identifiable

ParameterAccess

ARElement

AtpType

AutosarDataType

ExecutableEntity

RunnableEntity

ImplementationDataType

IsSyscond

«atpVariation»

SwDataDefProps

+ swInterpolationMethod: Identifier [0..1]

ARElement

SwRecordLayout

InterpolationRoutineMapping InterpolationRoutine

+ shortLabel: Identifier

ARElement

BswModuleEntry

shortLabel corresponds to

swInterpolationMethod in

SwDataDefProps.

Identifiable

ImplementationDataTypeElement

SwRecordLayoutGroup

«atpMixed»

SwRecordLayoutGroupContent SwRecordLayoutV

shortLabel of RecordLayout shall be the

same as the shortName of the

ImplementationDataTypeElement.

This give the current mapping of the

semantic. as specified by

swRecordLayoutVProp.

Identifiable

SwServ iceArg

ServiceArgument refers

to

ImplementationDataty

pe

SwCalprmAxisSet

SwCalprmAxis

+ category: CalprmAxisCategoryEnum [0..1]

+ displayFormat: DisplayFormatString [0..1]

+ swAxisIndex: AxisIndexType [0..1]

+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

SwCalprmAxisTypeProps

SwAxisIndiv idual

«atpVariation»

+ swMaxAxisPoints: Integer

+ swMinAxisPoints: Integer

SwVariableRefProxy

AutosarVariableRef

VariableDataPrototype

DataPrototype

AutosarDataPrototype

ApplicationDataType

ApplicationPrimitiv eDataType

+swRecordLayoutV

1

«atpVariation»

+parameterAccess 0..*

+argument

0..* {ordered}

+swRecordLayoutGroupContentType

0..1

+swRecordLayoutGroup

1

+swRecordLayoutGroup
1

«atpVariation»

+subElement

0..* {ordered}

+interpolationRoutine

1..*

+swRecordLayout 0..1

+swRecordLayout 1

+swDataDefProps 0..1

+interpolationRoutine 1

+swCalprmAxisSet 0..1

+swCalprmAxis 0..*

+swCalprmAxisTypeProps 1

+swVariableRef

0..*

+autosarVariable 0..1

+localVariable 0..1

+valueAxisDataType

0..1 +inputVariableType

0..1

«isOfType»+type

1

{redefines atpType}

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

21 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

7.3.1.7 Interpolation Routine and Record layouts

The relationship between record layouts and interpolation routines is specified in
InterpolationRoutineMappingSet. The interpolation routine is represented as
BswModuleEntry and implements a particular interpolation method which is denoted
in shortLabel of InterpolationRoutine. The intended interpolation method is
denoted in InterpolationMethod of SwDataDefProps.
Figure 6 shows the MetaModel of mapping a Record Layout to a specific interpolation
routine (Note: This picture is taken from
AUTOSAR_TPS_SoftwareComponentTemplate Description, 5.53).

Figure 6: Mapping of Record Layouts and Interpolation Routines

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

22 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

Figure 7: Curve implemented as two consecutive arrays

The structure and memory representation of a curve or map is described on data
specification level via RecordLayout. Figure 7 is taken from the
AUTOSAR_TPS_SoftwareComponentTemplate, figure 5.48.

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

23 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

7.3.1.8 Structure of the Name of a Interpolation Routine

The name of the interpolation routine has a defined build convention based on an
inherent semantic.

Examples:
Ifx_IntIpoCur_u8_s8
Ifl_IntIpoMap_f32f32_f32

The structure of a name looks as follows:
{ModuleID}_{Method}{Type}_{InputDataType(s)}_{OutputDataType}

The single naming parts are described as follows:

 {ModuleID}
Only two module IDs are possible:
"Ifx" for integer interpolations and
"Ifl" for float interpolations.
A mix of integer and float interpolations is not intended.

 {Method}
There are different methods available. A translation map is suggested to get a
mapping between a specific method and the method part of the name of the
interpolation routine. The method is described within ApplicationDataType.
interpolationMethod.
E.g. Linear IntIpo, Lookup IntLkUp

 {Type}
If the interpolation has to be done for a curve or map can be chosen via category
of the ApplicationDataType.category.
Category CURVE Cur, MAP Map

 {InputDataType(s)}
With the help of the ImplementationDataTypeElements the data types for the
inputs are identified. Additionally the types of the axis can be derived via
DataTypeMap from the DataTypes of the ApplicationDataTypes.
valueAxisDataType.
Figure 8 visualizes the dependency between DataTypes and SwRecordLayouts
and is taken from AUTOSAR_TPS_SoftwareComponentTemplate figure 5.33.

Hint: The data type of the axis values may be different from the data type of the
input value of the curve.

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

24 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

Figure 8: Dependency of DataTypes and SwRecordLayouts

 {OutputDataType}
The output data type depends on the data type of the access point.

 With that principle the BswModuleEntry can be filled inside the
InterpolationRoutineMapping. The macro encapsulation generator tool can
assume that a name of an interpolation routine exists inside the
BswModuleEntry.

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

25 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

7.3.1.9 Data Type of the Number of Axis Points

The macro encapsulation concept does not need this data type explicitly but the
interpolation routine applies a special data type for the parameter for the number of
axis points. Additionally the number of axis point is an element which is located in
memory as well as the axis and values of a curve or map. Therefore the data type for
the number of axis points has to be defined when the ImplementationDataType is
derived from an ApplicationDataType.
The rule to determine the data type for the number of axis points is quite easy:
The number of axis points gets the same data type as the first axis.

Impacts for curves:

A curve has only one axis. Therefore the number of axis points gets the
same data type as the x axis. If the x axis is a sint8 axis the number of axis points will
be of data type sint8 too. It is clear that negative numbers of axis points makes no
sense but 127 axis points should be sufficient. If the axis is from uint8, sint16 or
uin16 type the number of axis points use the same data types too.

Impacts for maps:

A map has two axes. Here the number of axis points of the x and y
axes gets the data type of the x axis. The reason for this is to avoid fill bytes within
definition of ImplementationDataType. To understand this point further a definition
has to be made. The order of elements within an ImplementationDataType has a
well defined sequence. First the elements with the number of axis points have to be
defined, than the axis/axes and finally the values of the curve or map are defined.
The implementation of an ImplementationDataType can be done as structure or
array. As example:
Struct
{
 uint8 Nx;
 uint8 Ny;
 uint8 AxisX[];
 uint16 AxisY[];
 sint8 Values[];
} Map;

Assuming a processor with natural alignment ("naturally aligned" means that any
element is aligned to at least a multiple of its own size. For example, a 4-byte object
is aligned to an address that's a multiple of 4, an 8-byte object is aligned to an
address that's a multiple of 8, etc.) of memory elements no gap byte is needed
between Nx and Ny. If Ny has the same type as the Y axis between Nx and Ny is a
fill byte.

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

26 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

7.3.2 Implementation of Macro Encapsulation Concept

This chapter describes how the encapsulation macros will be generated and the
needed information is picked up. This chapter refers to chapter 7.3.1.3 where the
needed information for the macro encapsulations is described.
Three parts have to be generated:

 Name of the encapsulation macro

 Name of the interpolation routine

 Parameters of the interpolation routine

Abstract form of the generated macro:
#define {NameOfMacro} {RoutineName}((X),{Parameters})

Details of the generated macro (Example using a curve):
#define Elc_Get_{Runnable}_{NameOfAcessPoint} {RoutineName}(X)((X), \
 {RteAccess}.{N}, \
 {RteAccess}.{Axis}, \
 {RteAccess}.{Values}

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

27 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

7.3.2.1 Generation of the Name of the Encapsulation Macro

The name of the encapsulation macro is derived from the name of the access point
and a suffix according to the pattern:

 Elc_Get_{NameOfRunnable}_{NameOfAcessPoint}

In this context Figure 9 shows the runnable access to a calibration port. This picture is
taken from AUTOSAR_TPS_SoftwareComponentTemplate, 7.29.

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

28 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

Figure 9: Runnable Access to a Calibration Port

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

29 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

7.3.2.2 Generation of the Name of the Interpolation Routine

The name of the interpolation routine is defined in the MetaModel as BSWModule-
Entry. The Macro Encapsulation Generator Tool has to parse the MetaModel in
following sequence to get the name of the interpolation routine:

1. Start at DataAccess RunnableEntity ParameterAccess
2. Via AutosarParameterRef the DataPrototype can be found
3. Via AutosarDataPrototype the AutosarDataType can be found
4. The AutosarDataType has a relation to SwDataDefProps
5. Via SwDataDefProps a SwRecordLayout is chosen
6. Via SwRecordLayout and InterpolationRoutineMapping and

InterpolationRoutine the needed interpolation routine candidate’s call can be
found in BSWModuleEntry.

7. Finally the appropriate InterpolationRoutine is then determined by matching the
data types of the ImplementationDataType.

The structure of a name looks as follows:

{ModuleID}_{Method}{Type}_{InputDataType(s)}_{OutputDataType}
 --------------- 6 ------------- ---------------------------------- 7 -----------------

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

30 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

7.3.2.3 Generation of the Parameters of the Interpolation Routine for
ImplementationDataType of Category STRUCTURE

As decided in the concept decision in chapter 7.3.1.2 input variables for the curve or
map interpolation are not encapsulated. In general they are available over
DataAccess.dataDefProperties.swCalprmAxisSet.variableRef.
Only the parameters for the number of axis points, pointer to the axis and pointer to
the curve or map values are generated. To get these parameters RTE generated
information is used.

The RTE generates typedefs and structures depending on ImplementationData-
Types which are the based on SwRecordLayouts of the corresponding curves or
maps. The Macro Encapsulation Generator Tool has to know the same methods like
the RTE to derive a typedef and structure from an ImplementationDataType to be
able to use that information.

By default the RTE generates for each ImplementationDataType with category
attribute set to "STRUCTURE" following typedef in the RTE Data Type header file
"Rte_Type.h". This is done in the "RTE Contract" and "RTE Generation" phase.

typedef struct { <elements> } <name>;

where <elements> is the record element specification and <name> is the
shortName of the Structure Implementation Data Type. For each record element
defined by one ImplementationDataTypeElement one record element specification
<elements> is defined. The record element specifications are ordered according the
order of the related ImplementationDataTypeElements in the input configuration.
Sequent record elements are separated with a semicolon. It is ensured by RTE that
the names of the structure and their elements are unique. The prefix Rte_ is not used
because the type names representing AUTOSAR Data Types.

Based on such a typedef a located structure is generated in the Rte.c file. Standard
RTE access is used to address the elements of the structure.

One point to clarify is the issue how to map the elements of the Implementation-
DataType to the associated parameter of interpolation routine. On the one hand the
elements of the ImplementationDataType could be defined in an arbitrary order and
on the other hand the sequence of parameters of the interpolation routines is fixed.
There must be a mapping that the element of the ImplementationDataType fits to
the correct parameter of the interpolation routine. E.g. the element which describes
the number of axis points must fit to the parameter of the interpolation routine with
same denotation.

To handle this relation two proceedings are possible:

 Either a new map in MetaModel is needed to define the parameter sequence
order regarding the corresponding elements of the ImplementationDataTypes

 Or a naming convention has to be defined to have well defined names for specific
element behaviours.

The naming convention will be chosen because it is easier to define and to
implement and the MetaModel need not be expanded. The below table shows the

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=arbitrary&trestr=0x8004

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

31 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

naming convention for the concatenation of ImplementationDataTypes and
parameters of interpolation routines.

Parameter Defined name

Number of x axis points Nx

Number of y axis points Ny

X axis AxisX

Y axis AxisY

Values of the curve or map Values

 Macro Encapsulation of Interpolation Calls
AUTOSAR CP R20-11

32 of 32 Document ID 808: AUTOSAR_EXP_MacroEncapsulationofInterpolationCalls

7.3.2.4 Generation of the Parameters of the Interpolation Routine for
ImplementationDataType of Category ARRAY

There are approaches where the ImplementationDataType for e.g. a Curve is not a
STRUCTURE but an ARRAY. Obviously this requires that the same primitive data
types are used for number of Axispoints, Axis points, Values.

Nevertheless, in this case the naming convention described in chapter 7.3.2.3 is not
fully applicable. Therefore the required positions in the implementation array need to
be determined by a kind of “address calculation” based on the SwRecordLayout and
the current size of the corresponding curve / map. The location of the size element
can be found according to the naming conventions in chapter 7.3.2.3 and the record
layout.

	1 Acronyms and abbreviations
	2 Related documentation
	2.1 Input documents
	2.2 Related specification

	3 Introduction
	4 Motivation
	5 Disclaimer
	6 Use Cases
	6.1 Generate Encapsulation Macros
	6.2 Use Encapsulation Macros

	7 Solution Proposal
	7.1 Definition of Terminology
	7.2 Architectural Components
	7.2.1 Encapsulation Macros Header File

	7.3 Functional Description
	7.3.1 Basic Concept Description
	7.3.1.1 Principle of Encapsulation Concept
	7.3.1.2 Concept Decision
	7.3.1.3 Needed Information for the Macro Generation
	7.3.1.4 Overview to get the Information for Macro Generation
	7.3.1.5 Non-Ambiguous InterpolationRoutineMapping
	7.3.1.6 General Information to BswModuleEntry
	7.3.1.7 Interpolation Routine and Record layouts
	7.3.1.8 Structure of the Name of a Interpolation Routine
	7.3.1.9 Data Type of the Number of Axis Points

	7.3.2 Implementation of Macro Encapsulation Concept
	7.3.2.1 Generation of the Name of the Encapsulation Macro
	7.3.2.2 Generation of the Name of the Interpolation Routine
	7.3.2.3 Generation of the Parameters of the Interpolation Routine for ImplementationDataType of Category STRUCTURE
	7.3.2.4 Generation of the Parameters of the Interpolation Routine for ImplementationDataType of Category ARRAY

