AUTOSAR

Document Title

Explanatory Document for usage
of AUTOSAR RunTimelnterface

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 896
Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R20-11

Document change history Change History

Date Release | Changed by Description
AUTOSAR e Introduced chapter Example
2020-11-30 | R20-11 | Release Implementations
Management e Updated chapter Example
Configuration with ECUC changes
AUTOSAR
2019-11-28 | R19-11 Release e Initial release

Management

AUTOSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTOSAR

Table of Contents

1 Introduction

1.1 Who should read this document?
1.2 Objectives
1.3 Summaryofuse-cases e

2 Run-Time Interface

21 TraceTechniques
211 Hardware Tracing
21.2 Software Tracing
2.2 StaticDebugging
2.3 OSAWaAreness i e e
24 ARTlataglance
3 OS
3.1 StateModel
3.2 HOOKS e
3.3 ECUC
4 RTE

5 Example Configurations

5.1 StaticDebugging
52 OSTaskTracing. o i i e
6 Example Implementations
6.1 Standard Hook Implementation for Hardware Tracing
6.1.1 OS Instrumentation
6.1.2 RTE Instrumentation.
7 Outlook

8 Document Information

8.1 Related documentation o oL
8.1.1 Input documents & related standards and norms
8.1.2 Related specification

NNNoOoOo o bbb

—_
— 00

—_
WN =

—_
»

17

17
21

27

27
27
30

31

AUTOSAR

1 Introduction

1.1 Who should read this document?

This EXPlanatory document is intended to describe the steps which are necessary for
OS Vendors, RTE Vendors, Debugger Vendors and Timing Tool Vendors to implement
the necessary parts to support the AUTOSAR Run-Time Interface Software Specifica-
tion.

1.2 Obijectives

ARTI is a set of standards for debugging and tracing the run-time behavior of embed-
ded systems. Its origin is in the automotive sector, specifically as a concept document
developed for the AUTOSAR development partnership, but its scope is not limited to
purely automotive systems.

ARTI aims to make it possible for tools from multiple different vendors to collect and
exchange runtime data from embedded systems in a standardized way, and hence
promote competition and innovation.

ARTI describes interfaces needed to support (a) static debugging and (b) dynamic
tracing.

Static debugging typically involves having an in-circuit debugger connected to the
embedded system. Whenever the debugger halts the execution of the system, you
can inspect the system’s state (registers, stack and data). Decoding the meaning of
the state is not necessarily straightforward in any medium or large scale system. ARTI
allows the software be described in terms of its architectural concepts and components,
so that the debugger can display a much more meaningful representation of the system
state. One example is that the debugger could show a list of the tasks in the system
along with their state, priority and execution time. It could also show other parts of the
system, such as the inter-task messages and their values.

Dynamic tracing on the other hand operates with the embedded system running at
normal speed and without interruption. The system records the points in time at which
specific events occur and passes this information on to some analysis tool or viewer.
As before, ARTI allows these system events to be described so that the analysis tool
- viewer can interpret them in terms of architectural concepts and components. Views
can be constructed showing the execution pattern of tasks, and statistics based on re-
sponse times and execution times can be calculated. Dynamic tracing can be achieved
with minimal or zero instrumentation of the code where an ARTI compatible in-circuit
debugger is available.

The name ARTI was chosen as a nod to a previous automotive standard called ORTI.
Whereas ORTI was specified focusing just on debugging embedded operating system,
ARTI is intended to be capable of bringing debugging and tracing to all layers of the

AUTOSAR

software stack. This document first describes the motivation and reasoning for the
ARTI specifications without going into the technical details. These are added in later
sections.

1.3 Summary of use-cases

The following two use-cases should provide an idea of what is expected by the
AUTOSAR Run-Time Interface to enable AUTOSAR aware debugging.

Static debugging A typical use-case is the debugging and stepping through the code
execution during integration phase of an ECU. For the analysis of a failure in application
software code it is always helpful to understand the OS context, meaning in which task
has the error occurred.

Dynamic tracing Continuous testing ECUs on timing of the real time software is not
always the standard during software development. Most of the time resource consump-
tion is only measured statically (e.g. memory consumption). But typically some tests,
especially affected by stimulating the software with the car environment sporadically fail
without no obvious reason. If shifts in the scheduling and misses in timing deadlines
are not considered, this source of failure can not be determined. Tracing the dynamic
run-time behavior of the software architecture is therefore an important use-case for
the AUTOSAR AutosarRunTimelnterface.

AUTOSAR

2 Run-Time Interface

Capturing the software architecture’s dynamic run-time behavior in the field is not easy.
The effort to be spend to evaluate simple performance characteristics like CPU load or
timing metrics can be tremendously high, depending on the project. There are usually
many parts in the tool chain involved which need to work togehter very well in order to
provide meaningful and correct results.

In order to explain how the AUTOSAR Run-Time Interface is trying to overcome those
generally described problems it is necessary to have a look at the techniques which
need to be used to get to the intended result.

2.1 Trace Techniques

For tools to capture the software’s behavior at run-time, there are many ways to do
so. Each one of them has its advantages and disadvantages. But basically to capture
for a longer period the software’s dynamic aspects, resources are necessary. Either
ECU resources such as processing time or silicon resources such as trace interface
and processor pins or even bus resources. The following sub chapters should provide
a brief insight into the different trace techniques and therefore an understanding, why
ARTI is approached in the way it is introduced later on.

2.1.1 Hardware Tracing

In hardware tracing the main challenge is to lift the information from hardware to system
level. Meaning to interpret assembly and low level instructions as execution of an OS
Task or any other configuration and software architecture relevant artifacts. There are
generally speaking two ways of tracing techniques with some minor silicon vendor and
implementation specific differences. Program Flow Tracing (Instruction Trace) and Data
Tracing.

Program Flow Tracing: with this approach assembly instructions such as jump, branch
or other (vendor dependent) set of instructions create an trace event which is multi-
plexed and stored on the on-chip buffer or directly streamed off the target. This tech-
nique provides a fine granular insight in the code executed on the target. This comes
of course at the cost of high bandwidth interfaces or limited measurement time in the
on chip case. Important for the ARTI approach is to know: with instruction trace the
OS internal state variables can not be seen to the trace unit and therefore the states of
Tasks and ISRs can not be derived.

Data Tracing: with the data trace approach data read and write access to most of the
memory areas can create a trace event message and export the operation without
run-time overhead to the on chip trace buffer or output stream. If the OS internal
variables are known, with this approach Task and ISR states can be exported. In a
modern AUTOSAR systems there is no state variable or other tracking mechanisms for

AUTOSAR

Runnables. Therefore, observing Runnables by means of data tracing write accesses
to global data object is not natively supported by the RTE. Adding manually a variable to
be used in the VFB Hooks for example, only for means of data tracing is often referred
to as instrumentation. With this approach trace events are created only by scheduling
behavior at run-time.

2.1.2 Software Tracing

Hardware tracing requires that the microcontroller is equipped with an on-chip trace
unit/logic. With software based tracing the events can be captured and stored on target
in the on-chip memory. Usually in CPU idle, the data can be send off the ECU via the
connected bus interfaces, like CAN or Ethernet. The approach is therefore quite similar
to data tracing with instrumentation with the difference, that the interface to send the
information off the chip is most probably a bus instead of a debug interface.

2.2 Static Debugging

One very important use-case for ECU development and integration is the debugging of
the embedded software. For users to debug the software, information about the current
running Task or ISR can be pretty helpful. Therefore, the ARTI file provides information
to the debugger about the relevant OS internal state variables.

2.3 0OS Awareness

One already successful attempt to standardize the access for tracing tools to the OS
internals for the OSEK platform is represented by the ORTI (OSEK Run-Time Interface)
standard. Information about the Task Stack, Current Running Task, Current Running
ISR and the knowledge to decode the Task State from the OS internals was stored
in an .ORTI file. For AUTOSAR and especially multi-core projects the standard is not
fitting anymore. With the merge from single-core OS to multi-core OS the tracking of
Task and ISR states became more complex. Expressions, Pointer handling and so
on are difficult to trace during the code execution. Additionally the ORTI standard is
not aware about RTE features. But most importantly: Software based tracing is not
standardized within ORTI.

The objective of ARTI is to extend this OS awarenss and make the debug, trace and
other run-time tools aware of additional AUTOSAR modules such as RTE and SchM.

AUTOSAR

2.4 ARTI at a glance

The general idea of ARTI is more than to achieve easy "OS Awareness" for debuggers.
Starting from a common understanding about scheduling state machines, with a com-
mon exchange format for debug and trace configuration. Additionally, exchanging run-
time measurements up to their interpretation affects the range of the AUTOSAR/ASAM
Run-Time Interface. One of the ARTI goals is to achieve a standard to configure, gather
and process as well as to evaluate vendor independent AUTOSAR projects run-time
behavior. To achieve this workflow and standardization aims, also a trace exchange
format has to be standardized as well as common timing parameters. The Timing
Parameters and the trace format is covered by the ARTI ASAM standard.

The following list describes the necessary steps to be taken for an ARTI workflow and
their artifact files.

ARTI Dataflow with ASAM

AUTOSAR-ARTI !

OS ARXML 1. Trace/Timing

yr— Analysis Tool

D¢ ARTIOS ASAM-ARTI !
confitiures e | gl .
r rea 3.+4
MDF
AUTOSAR Trace + Profiling Data
OS Generator 2. 1

creates

macros
::allouts

Build process

Hook-Generator
(by tool provider)
(pre-compile)

provides

creates

ARTI EcuC
Containers

AUTOSAR . ASAM

Figure 2.1: ARTI Dataflow

Debugging/Tracing
Tool

ccesses

ECU

Atich [l f=========c;ecccaimmememceeetecaaaa—aa-

AUTOSAR

1. ECU Configuration (ARXML) - AUTOSAR

The ARTI ECU Configuration Parameters containers fulfill rather two pur-
poses. For once they store the Trace/Debug Configuration of the AUTOSAR
project. Aside of that, the gathering of all ARTI containers replaces the informa-
tion provided by an ORTI file.

Currently there are four ARTI ECU Configuration Parameter Containers available
within the ARTI ECUC Module Definition: ArtiValues, ArtiGeneric, ArtiHardware
and ArtiOs. Depending on the use-case a different set of Parameter Container
needs to be configured.

ArtiValues The ARTI ECUC Container takes care about storing all actual trace
and debug information. It is necessary for all ARTI use-cases. It collects
the names of all ARTI relevant variables, f.e. the layout of the OS Hooks
with a TypeMap to map Task and ISR Ids to the names, or the task state
expressions for static debugging, which are referenced from ArtiHardware.

ArtiOs The ARTI OS container stores basically the OS configuration with a view
for tracing and debug tools. It describes mainly all available Tasks and ISRs.
Additionally it defines which debug or trace feature is enabled for the ref-
erenced OS configuration, while the ARTI container sums up which ARTI
hooks, variables and so on are available in the project in total.

ArtiHardware The ARTI Hardware container stores all references for the cur-
rently running Task and ISR OS variables for each core, while the actual
variable is stored in the ARTI component. This container is only necessary
for static debugging and establishes the connection between CurrentRun-
ningTask, CurrentRunninglsr and the ECU core.

ArtiGeneric The ARTI Generic container provides the possibility for ARTI OS
and RTE vendors to add additional information to the ARTI files, which is
not standardized. It can be used to store the start address of an Task for
example. The ArtiGeneric container is not mandatory to be used in any
use-case.

2. Hook Generator - AUTOSAR

After configuration of the AUTOSAR project, the tracing tool vendor spe-
cific hook implementations needs to be generated. Intentionally the trace tool
reads therefore the used ARTI ECUC files (split ECUC or merged) and generates
out of them the C-code implementation of the ARTI hooks. After adding them
to the build process the project is able to be compiled. Background of that
workflow is mainly, that the hook macros can be expanded to void and therefore
be switched on and off after configuration.

AUTOSAR

3. Trace Format (MDF) - ASAM

After compilation of the whole project the AUTOSAR Run-Time Interface
part of standardization basically ends. The customer is now able to debug or
trace the project with a view on OS run-time parameters. During the recording
of the Task and ISR transitions signalized by the OS hooks, the tracing vendor
stores the timestamp and scheduling event which has taken place. The set of
scheduling transitions is defined by the OS hooks and signalize a state transition
in one of the state diagrams for the affected scheduling entity (Task, ISR).

The trace exchange format basically stores the scheduling events with a
timestamp and additionally stores the information which scheduling entity is
affected and which state diagram is to be used to calculate the possible timing
parameters. As exchange format itself the well known ASAM MDF (Measure-
ment Data Format) is used for many reasons: First of all, it can store huge data
amounts efficiently, it is well known in the industry as well as it stores data and
the description of the data at the same time.

4. Timing Parameters (MDF) - ASAM

After the tracing data is available, the information of interest can be de-
rived. The ASAM Run-Time Interface is therefore focusing on the topic of how
interpret the data a set of metrics. With such an workflow the standardization
approach should help to cover finding run-time issues in AUTOSAR projects.
The timing parameters are intended to be storable in the MDF file, along with the
trace data.

The artifact files and the dataflow for one ARTI aware project with both standardization
approaches can be seen in figure 2.1.

AUTOSAR

3 OS

To achieve a vendor independent interpretation of the run-time behavior of an
AUTOSAR ECU, ARTI defines state machines. The transitions between those states
signalize the OS scheduling at run-time. In other words the state transitions can be un-
derstood as the implementation of the OS Hooks. Each time an OS Task is preempted
by an ISR for example, the ARTI Hook macro signalizes the change in the OS Task’s
state transition. This has two advantages: Software based tracing can be used as well
as data tracing and the result is the same.

3.1 State Model

The OS State Model, described in the SWS OS is supported by ARTI. But for a proper
view with a timing tool, additional state information is necessary. Since there is no
distinction between a preempted, released and activated task state an enhanced state
machine is introduced. Depending on the features provided by the OS vendor, either
the standard OS model can be used or the enhanced one for detailed analysis. To
distinguish both state diagrams, the hook macro and therefore the available state
transitions shall go by a different state machine description (Class Name). The ARTI
Class name AR_CP_OS_TASK is to be used for the standard OS Task states and
AR _CP_OSARTI_TASK for the enhanced state machine.

) Waitin

Preempt

Preempted ,\

ﬂ:\inate
|

Activated Suspended

Activate
Figure 3.1: Enhanced Task State Diagram
AR CP_OSARTI_TASK

Wait

AUTOSAR

) Running
W‘B‘I/ wmate

/

/

.'
Preempt | Start Suspended
\

\
kY
Release ™ - — Activate
~ Ready

Figure 3.2: Standard Task State Diagram
AR _CP_OS_TASK

i

3.2 Hooks

The ARTI hook macros are intended to signalize the state transitions of an schedu-
lable entity. By intention they are designed to be macros, rather than functions to be
able to minimize the overhead added in computing. The usage of the ARTI Hook can
be switched off in the affected BSW Module. For example all OS ARTI macros are
switched on with the define 0s_USE_ARTI. With AUTOSAR release 4.4 the ARTI OS
switch is not implemented yet, but will follow with 19-11.

Listing 3.1: Enable or disable ARTI with one define
#ifdef OS_USE_ARTI

1

2 #include "arti.h"

3 felse

4 #define ARTI_TRACE (_contextName, _className, _instanceName, _eventName,
instanceParameter, eventParameter) ((void)O0)

5 #endif

The layout of the ARTI Macro is quite generic. The main idea therefore is that users
can also define their own macros. However, this approach is currently not fully stan-
dardized. For all standardized scheduling state machines, the _className maps the
macro to the state machine, while _eventName describes the state transistion. The
_contextName should describe whether Interrupts are disabled or not, during the
reading of the macro data while execution. Three different modes are possible, _ USER
which indicates that the hook implementer can not disable interrupts and needs to pro-
vide correcting postprocessing in case of an interruption. _NOSUSP indicates that the
macro will be executed in an context where interrupts are locked. _SPRVSR indicates
that the hook makro can disable the interrupts itself. The _instanceName should give
information to which OS (name) the Task belongs to.

Listing 3.2: Preprocessor conversion example for ARTI macros

1 #define ARTI_TRACE (_contextName, _className, _instanceName, _eventName,
instanceParameter, eventParameter) \
2 ARTI_TRACE___ ## _contextName ## __ ## _className ## __ ## _instanceName

_ ## _eventName ((instanceParameter), (eventParameter))

AUTOSAR

The instanceParameter and eventParameter are not literals such as all other
macro parts (_....Name). The instanceParameter is used to handle the Coreld
parameter, while the Taskld can be accessed via the eventParameter.

Listing 3.3: ARTI trace macro for OS Task Wait
1 ARTI_TRACE (NOSUSP, AR_CP_OSARTI_TASK, 0S, OsTask_Wait, CoreId, TaskId);

At compile time, the preprocessor will replace the generic macro with all specific ARTI
macros, if they have been implemented with an tracing vendor specific instrumentation.
The double underscore should help to parse the macros easier.

Listing 3.4: ARTI trace macro implementation for OS Task Wait

1 #define ARTI_TRACE_ NOSUSP__ AR _CP_OSARTI_TASK__0S_ OsTask_Wait (Coreld,
TaskId) {;}

3.3 ECUC

The following section focuses on the ECUC representation of ARTI for OS tracing
use-case. To configure and store the ARTI configuration for the hook based tracing
the following ECUC containers are necessary: ARTI and ArtiOs. The ARTI container
stores the Id mapping for Tasks and Cores as well as all available OS hook macros
(figure 3.3). The ArtiOs container stores all configured OS Tasks and references in
the ArtiOsInstance EcucParamConfContainer all enabled hook macros, see therefore
figure 3.4.

Atti: EcucModuleDef . ArtiValues:
+container | EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1 lowerMultiplicity = 0
upperMultiplicity = *

_ ArtiGeneric:
+container| gcycparamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

_ ArtiHardware:
+container| gcycparamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

ArtiOs:
EcucParamConfContainerDef

+container

lowerMultiplicity = 0
upperMultiplicity = 1

Figure 3.3: Arti Ecuc Module Definition Class Diagram

AUTOSAR

ArtiOs: EcucModuleDef

ArtiOsClass:

lowerMultiplicity = 0
upperMultiplicity = 1

+eontainer| - EcucparamConfContaineref

lowerMultiplicity = 0
upperMultiplicity = 1

) ArtiOsInstance:
+eontainer| EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

. ArtiOsT askClass:
+container| EcycParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

i ArtiOsTaskinstance:
+container| EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+container ArtiOslsrClass:
EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

Figure 3.4: ArtiOs EcucParamConfContainer Class Diagram

Examples for this use-case are available for the Arti EcucParamConfContainer in listing
5.4, as well as for the ArtiOs EcucParamConfContainer in listing 5.5.

class ArtiValues

ECUC Container Value Note
ArtiConstant
ArtiExpression Contains the OS expression string,
such as Task State expression
ArtiHook Model representation of the ARTI Hook macros

ArtiObjectClassParameter

Describes the properties of an ArtiObject,
such as the CurrentRunningTask needs to references
the TypeMap to evaluate the Id or Expression

ArtiObjectInstanceParameter

Instantiates an ArtiObject,
like CurrentRunningTask variable for Core 0

ArtiParameterTypeMap

TypeMap for translating Task Ids to Task Names for example

ArtiValues Class ECUC Container Values

class ArtiOs

ECUC Container Value Use-Case

ArtiOsClass

ArtiOsInstance OS Expressions, such as Task State
ArtiOsTaskClass Model representation of the ARTI Hook macros

ArtiOsTaskInstance

Instantiates a Task, with reference to the OS

ArtiOs Class ECUC Container Values

AUTOSAR

Current Limitations

The ECUC Container description will change with AUTOSAR Release 19-11. With the
class diagrams here AUTOSAR version 4.4 is described. In this version there are still
some shortcomings which are not modeled. There is currently no ARTI representation
of an ISR.

AUTOSAR

4 RTE

An ARTI compliant RTE specification is currently in development. Most probably ARTI
will use the VFB Tracing Hooks as an own trace client. The release of such an approach
is planned for AUTOSAR release 20-11.

AUTOSAR

5 Example Configurations

The following two examples are intended to provide an example ARTI ECUC configu-
ration for two use-cases.

5.1 Static Debugging

The ARTI ECU Configuration Parameter Container are intended to be configurable
in such way that not all container parameters are necessary to be configured. The
follwing listings show a minimal example how the three containers can be configured.

ARTI ECUConfiguration Parameters Container Arti

The ArtiValues container stores the available Os variables or expressions to track the
task states.

Listing 5.1: ARTI ECUC Container ARXML Listing for ArtiValues

<?xml version="1.0" encoding="UTF-8"?>
<AUTOSAR xmlns="http://autosar.org/schema/r4.0" xmlns:xsi="http://www.w3.
org/2001/XMLSchema—-instance" xsi:schemalLocation="http://autosar.org/
schema/r4.0_AUTOSAR_00046.xsd">
<AR-PACKAGES>
<AR-PACKAGE>
<SHORT-NAME>StaticDebugging_ ARTI_ECUC</SHORT-NAME>
<ELEMENTS>
<ECUC-MODULE-CONFIGURATION-VALUES>
<SHORT-NAME>Art i</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-MODULE-DEF">/AUTOSAR/EcucDefs/Arti</
DEFINITION-REF>
<CONTAINERS>
<ECUC-CONTAINER-VALUE S="">
<SHORT-NAME>ArtiValues</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR
/EcucDefs/Arti/Artivalues</DEFINITION-REF>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiExpression_Core(O_CurrentTask</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/
AUTOSAR/EcucDefs/Arti/ArtiValues/ArtiExpression</
DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR
/EcucDefs/Arti/ArtivValues/ArtiExpression/
ArtiExpressionString</DEFINITION-REF>
<VALUE>0sCfg_Trace_OsCore_Core(O_Dyn.CurrentTask</
VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>

AUTOSAR

</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>
ArtiObjectClassParameter_ArtiHwCore_CurrentTask</SHORT
—-NAME >
<DESC>
<L-2 L="EN">Current Running AUTOSAR Task.</L-2>
</DESC>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/
AUTOSAR/EcucDefs/Arti/Artivalues/
ArtiObjectClassParameter</DEFINITION-REF>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/
EcucDefs/Arti/ArtivValues/ArtiObjectClassParameter/
ArtiObjectClassParameterTypeMapRef</DEFINITION-REF
>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/
StaticDebugging ARTI_ECUC/Arti/
ArtiParameterTypeMap_TaskExpr</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiObjectInstanceParameter_Core(O_CurrentTask
</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/
AUTOSAR/EcucDefs/Arti/ArtivValues/
ArtiObjectInstanceParameter</DEFINITION-REF>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/
EcucDefs/Arti/Artivalues/
ArtiObjectInstanceParameter/
ArtiObjectInstanceParameterExpressionRef</
DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/
StaticDebugging_ ARTI_ECUC/Arti/ArtiValues/
ArtiExpression_Core(0_CurrentTask</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>

ARTI ECUConfiguration Parameters Container ArtiHardware
The ArtiHardware container is necessary to describe all availabe cores for debugging.

Additionally each core can reference the core dependend CurrentRunningTask
variable.

Listing 5.2: ARTI ECUC Container ARXML Listing for ArtiHardware

AUTOSAR

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>Art iHardware</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR
/EcucDefs/Arti/ArtiHardware</DEFINITION-REF>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>VectorArtiHardwareCoreClass</SHORT-NAME>
<DESC>
<L-2>Description</L-2>
</DESC>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/
AUTOSAR/EcucDefs/Arti/ArtiHardware/
ArtiHardwareCoreClass</DEFINITION-REF>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiHardware/ArtiHardwareCoreClass/
ArtiHardwareCoreClassCurrentTaskRef</DEFINITION-
REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/
StaticDebugging ARTI_ECUC/Arti/ArtiValues/
ArtiObjectClassParameter_ArtiHwCore_CurrentTask</
VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>VectorArtiHwCore_0</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/
AUTOSAR/EcucDefs/Arti/ArtiHardware/
ArtiHardwareCorelInstance</DEFINITION-REF>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiHardware/
ArtiHardwareCoreInstance/
ArtiHardwareCoreInstanceCurrentTaskRef</DEFINITION
—REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/
StaticDebugging_ARTI_ECUC/Arti/ArtiValues/
ArtiObjectInstanceParameter_Core(O_CurrentTask</
VALUE-REF>
</ECUC-REFERENCE-VALUE>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiHardware/
ArtiHardwareCoreInstance/
ArtiHardwareCoreInstanceEcucCoreRef</DEFINITION-
REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/ActiveEcuC/
EcuC/EcucHardware/EcucCoreDefinition_C0</VALUE-REF
>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>

AUTOSAR

</ECUC-CONTAINER-VALUE>

ARTI ECUConfiguration Parameters Container ArtiOs

The ArtiOs container in this simple example is just necessary to describe which task
should be tracked for Os debugging in this example and references the task in the
Os container. This is basically a duplication of information, but used to substitute the
ORTI file.

Listing 5.3: ARTI ECUC Container ARXML Listing for ArtiOs

<ECUC-CONTAINER-VALUE S="">
<SHORT-NAME>Art iOs</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR
/EcucDefs/Arti/ArtiOs</DEFINITION-REF>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>VendorArtiOsTaskInstance_IdleTask_C0</SHORT-
NAME>
<DESC>
<L-2 L="EN">ARTI representation of EcuC Task "
IdleTask_COs" .</L-2>
</DESC>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/
AUTOSAR/EcucDefs/Arti/ArtiOs/ArtiOsTaskInstance</
DEFINITION-REF>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiOs/ArtiOsTaskInstance/
ArtiOsTaskInstanceEcucRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/ActiveEcuC/0Os
/IdleTask_CO0</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>
</CONTAINERS>
</ECUC-MODULE—-CONFIGURATION-VALUES>
</ELEMENTS>
</AR-PACKAGE>
</AR-PACKAGES>
</AUTOSAR>

AUTOSAR

5.2 OS Task Tracing

ARTI ECUConfiguration Parameters Container Arti

The Arti container stores the TypeMaps for Taskld and Coreld, as well as the available
OS Hooks and their layout.

Listing 5.4: ARTI ECUC Container ARXML Listing for ArtiValues

<?xml version="1.0" encoding="UTEF-8"?>
<AUTOSAR xmlns="http://autosar.org/schema/r4.0" xmlns:xsi="http://www.w3.
org/2001/XMLSchema—-instance" xsi:schemalLocation="http://autosar.org/
schema/r4.0_AUTOSAR_00046.xsd">
<AR-PACKAGES>
<AR-PACKAGE>
<SHORT-NAME>OsTaskTracing_ARTI_ECUC</SHORT-NAME>
<ELEMENTS>
<ECUC-MODULE-CONFIGURATION-VALUES>
<SHORT-NAME>Art i</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-MODULE-DEF">/AUTOSAR/EcucDefs/Arti</
DEFINITION-REF>
<CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiValues</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR
/EcucDefs/Arti/Artivalues</DEFINITION-REF>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>Art iHook_ArtiOs_TaskRelease</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/
AUTOSAR/EcucDefs/Arti/ArtivValues/ArtiHook</DEFINITION-
REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR
/EcucDefs/Arti/Artivalues/ArtiHook/ArtiHookContext
</DEFINITION-REF>
<VALUE>NOSUSP</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR
/EcucDefs/Arti/ArtivValues/ArtiHook/ArtiHookClass</
DEFINITION-REF>
<VALUE>AR_CP_0OS_TASKSCHEDULER</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR
/EcucDefs/Arti/ArtiValues/ArtiHook/
ArtiHookEventName</DEFINITION-REF>
<VALUE>OsTask_Release</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>

AUTOSAR

<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR
/EcucDefs/Arti/ArtiValues/ArtiHook/
ArtiHookInstance</DEFINITION-REF>
<VALUE>VectorOsOs</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiHook/
ArtiHookEventParameterTypeRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/
OsTaskTracing_ARTI_ECUC/Arti/ArtiValues/
ArtiParameterTypeMap_TaskId</VALUE-REF>
</ECUC-REFERENCE-VALUE>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiHook/
ArtiHookInstanceParameterTypeRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/
OsTaskTracing_ARTI_ECUC/Arti/ArtivValues/
ArtiParameterTypeMap_CoreId</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiHook_ArtiOs_TaskRelease</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">
/AUTOSAR/EcucDefs/Arti/ArtiValues/ArtiHook</
DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/
AUTOSAR/EcucDefs/Arti/ArtiValues/ArtiHook/
ArtiHookContext</DEFINITION-REF>
<VALUE>NOSUSP</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/
AUTOSAR/EcucDefs/Arti/ArtivValues/ArtiHook/
ArtiHookClass</DEFINITION-REF>
<VALUE>AR_CP_0OS_TASKSCHEDULER</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/
AUTOSAR/Ecucbhefs/Arti/ArtivValues/ArtiHook/
ArtiHookEventName</DEFINITION-REF>
<VALUE>OsTask_Release</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/
AUTOSAR/EcucDefs/Arti/ArtivValues/ArtiHook/
ArtiHookInstance</DEFINITION-REF>
<VALUE>VectorOsOs</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>

AUTOSAR

<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/
AUTOSAR/EcucDefs/Arti/ArtiValues/ArtiHook/
ArtiHookEventParameterTypeRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/
OsTaskTracing_ARTI_ECUC/Arti/ArtiValues/
ArtiParameterTypeMap_TaskId</VALUE-REF>
</ECUC-REFERENCE-VALUE>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/
AUTOSAR/EcucDefs/Arti/ArtiValues/ArtiHook/
ArtiHookInstanceParameterTypeRef</DEFINITION-
REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/
OsTaskTracing_ARTI_ECUC/Arti/ArtivValues/
ArtiParameterTypeMap_Coreld</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiParameterTypeMap_CoreId</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/
AUTOSAR/EcucDefs/Arti/ArtiValues/ArtiParameterTypeMap<
/DEFINITION-REF>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>Core(0</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">
/AUTOSAR/EcucDefs/Arti/ArtivValues/
ArtiParameterTypeMap/ArtiParameterTypeMapPair</
DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/
AUTOSAR/EcucDefs/Arti/ArtivValues/
ArtiParameterTypeMap/ArtiParameterTypeMapPair/
ArtiParameterTypeMapPairInput</DEFINITION-REF>
<VALUE>0</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/
AUTOSAR/EcucDefs/Arti/Artivalues/
ArtiParameterTypeMap/ArtiParameterTypeMapPair/
ArtiParameterTypeMapPairOutput</DEFINITION-REF
>
<VALUE>OsCore_Core(O</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiParameterTypeMap_TaskId</SHORT-NAME>

AUTOSAR

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/
AUTOSAR/EcucDefs/Arti/ArtiValues/ArtiParameterTypeMap<
/DEFINITION-REF>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>INVALID_ TASK</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">
/AUTOSAR/EcucDefs/Arti/Artivalues/
ArtiParameterTypeMap/ArtiParameterTypeMapPair</
DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/
AUTOSAR/EcucDefs/Arti/ArtivValues/
ArtiParameterTypeMap/ArtiParameterTypeMapPair/
ArtiParameterTypeMapPairInput</DEFINITION-REF>
<VALUE>22</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/
AUTOSAR/EcucDefs/Arti/Artivalues/
ArtiParameterTypeMap/ArtiParameterTypeMapPair/

ArtiParameterTypeMapPairOutput</DEFINITION-REF
>

<VALUE>INVALID TASK</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>IdleTask_C0</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">
/AUTOSAR/EcucDefs/Arti/ArtivValues/
ArtiParameterTypeMap/ArtiParameterTypeMapPair</
DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/
AUTOSAR/EcucDefs/Arti/Artivalues/
ArtiParameterTypeMap/ArtiParameterTypeMapPair/
ArtiParameterTypeMapPairInput</DEFINITION-REF>
<VALUE>10</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/
AUTOSAR/EcucDefs/Arti/Artivalues/
ArtiParameterTypeMap/ArtiParameterTypeMapPair/
ArtiParameterTypeMapPairOutput</DEFINITION-REF
>
<VALUE>IdleTask_C0</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/
AUTOSAR/EcucDefs/Arti/ArtiOs/

AUTOSAR

ArtiOsTaskInstance/ArtiOsTaskInstanceEcucRef</
DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/
OsTaskTracing_ARTI_ECUC/Arti/ArtiOs/
VendorArtiOsTaskInstance_IdleTask_C0</VALUE-
REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>notask</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">
/AUTOSAR/EcucDefs/Arti/Artivalues/
ArtiParameterTypeMap/ArtiParameterTypeMapPair</
DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/
AUTOSAR/EcucDefs/Arti/Artivalues/
ArtiParameterTypeMap/ArtiParameterTypeMapPair/
ArtiParameterTypeMapPairInput</DEFINITION-REF>
<VALUE>(0xf f</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/
AUTOSAR/EcucDefs/Arti/Artivalues/
ArtiParameterTypeMap/ArtiParameterTypeMapPair/
ArtiParameterTypeMapPairOutput</DEFINITION-REF
>
<VALUE>NO_TASK</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>

ARTI ECUConfiguration Parameters Container ArtiOs

The ArtiOs container in this simple example is just necessary to describe which task
should be tracked for OS tracing in this example and references the task in the OS con-
tainer. This is basically a duplication of information, but used to substitute the ORTI file.

Listing 5.5: ARTI ECUC Container ARXML Listing for ArtiOs

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>Art i0Os</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR
/EcucDefs/Arti/ArtiOs</DEFINITION-REF>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>

AUTOSAR

<SHORT-NAME>VendorArtiOsInstance</SHORT-NAME>
<DESC>
<L-2 L="EN">Actual values of the Vector 0S</L-2>
</DESC>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/
AUTOSAR/EcucDefs/Arti/ArtiOs/ArtiOsInstance</
DEFINITION-REF>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiOs/ArtiOsInstance/
ArtiOsInstanceEcucRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/ActiveEcuC/Os
/0s0S</VALUE-REF>
</ECUC-REFERENCE-VALUE>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiOs/ArtiOsInstance/
ArtiOsInstanceHookRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/
OsTaskTracing_ARTI_ECUC/Arti/ArtivValues/
ArtiHook_ArtiOs_TaskRelease</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>VendorArtiOsTaskInstance_IdleTask_C0</SHORT-
NAME >
<DESC>
<L-2 L="EN">ARTI representation of EcuC Task "
IdleTask_CO" .</L-2>
</DESC>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/
AUTOSAR/EcucDefs/Arti/ArtiOs/ArtiOsTaskInstance</
DEFINITION-REF>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiOs/ArtiOsTaskInstance/
ArtiOsTaskInstanceEcucRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/ActiveEcuC/Os
/IdleTask_CO</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>
</CONTAINERS>
</ECUC-MODULE-CONFIGURATION-VALUES>
</ELEMENTS>
</AR-PACKAGE>
</AR-PACKAGES>
</AUTOSAR>

AUTOSAR

6 Example Implementations

This chapter contains sample implementations of ARTI hook macros for typical
scheduling tracing techniques or use-cases.

The ARTI hook macros provide the possibility to add tracing instrumentation to the
AUTOSAR project with preserving freedom of implementation for tracing vendors. In
addition to that the AUTOSAR Run-Time Interface proposes also an standardized im-
plementation for tracing vendors and users to lean on.

6.1 Standard Hook Implementation for Hardware Tracing

The following ARTI hook implementation focuses on the hardware tracing use-case.
This way, an AUTOSAR stack vendor can provide the possibility to generate the com-
plete executable, including ARTI macros and implementations, without the need of
incorporating ARTI implementations of tracing vendors manually. Generally this im-
plementation example is designed to overcome certain obstacles for hardware trace
users:

1. Microcontroller specific limitation on traceable amount of cores

2. Minimize runtime impact on the AUTOSAR project

3. Minimize impact on the hardware trace interface

4. Ease hardware tracing setup

5. Maximum guaranteed freedom of interference to the appication code

The data trace instrumentation is therefore an microcontroller atomic variable in order
to guarantee minimum overhead while writing to it without any data stability mechanism
being necessary. Each write access to it signalizes a state transition in one of the
scheduling objects. It captures therefore the Coreld, scheduling entity Id and the state
transition. While the ARTI trace macro ensures the injection at the correct places into
the BSW without adding additional runtime overhead. In order to guarantee freedom of
interference to the AUTOSAR project it is recommended to link the arti trace variables
to a global accessible memory which is intended for measurement techniques such as
the Infineon AURIX TriCore OLDA (Online Data Acquistion) memory or instrumentation
data trace memory.

6.1.1 OS Instrumentation

The ARTI hook macros can be enabled or disabled by the global parameter
O0S_USE_ARTI. This allows to switch off the OS feature also after code generation
without any remaining impact on the AUTOSAR project.

AUTOSAR

The arti_os_trace variable layout encodes the Threadld, which is the umbrella
term in this case for OS Tasks and Category 2 ISRs, the microcontroller Coreld, as
well as the ARTI state transition to which the scheduling entity transits to. With that
approach the same tracing variable can be used for Task and ISR scheduling trace
events. To ensure that the variable is in use, a validation bit is added. This helps to
detect wether memory intialization accesses to the trace variable have triggered trace
messages, to be determined as no valid state transition at startup measurements.

To identify the trace event and the respective hook called in the OS, the state transition
enumerations for the trace variable are proposed to be kept in the following manor:

Enhanced Task State Diagram Standard Task State Diagram | Define
ARTI_OSARTITASK ACTIVATE | ARTI_OSTASK ACTIVATE 0
ARTI_OSARTITASK_ START ARTI_OSTASK_ START 1
ARTI_OSARTITASK_WAIT ARTI_OSTASK WAIT 2
ARTI_OSARTITASK RELEASE ARTI_OSTASK RELEASE 3
ARTI_OSARTITASK_PREEMPT ARTI_OSTASK_PREEMPT 4
ARTI_OSARTITASK TERMINATE | ARTI_OSTASK TERMINATE 5
ARTI_OSARTITASK_ RESUME 6
ARTI_OSARTITASK CONTINUE 7

Task State Transition Defines for the Enhanced (Figure 3.1) and Standard State Model
(Figure 3.2)

Enhanced Cat2Isr State Diagram Standard Cat2lsr State Diagram | Define
ARTI_OSARTICAT2ISR_START ARTI_OSCAT2ISR_START 16
ARTI_OSARTICAT2ISR_STOP ARTI_OSCAT2ISR_STOP 17
ARTI_OSARTICAT2ISR_ACTIVATE 18
ARTI_OSARTICAT2ISR_PREEMPT 19
ARTI_OSARTICAT2ISR_RESUME 20

Category 2 ISR State Transition Defines

Listing 6.1 below shows an example ARTI header file to be included or implemented
by the OS. It lists a subset of all necessary and available hooks to illustrate the instru-
mentation concept.

Listing 6.1: ARTI Macros Example OS Header for Hardware Trace Instrumentation

/***
*

* AUTOSAR example implementation of ARTI Hooks for H/W trace.

* arti.h

*******************~k~)<*********~k~)<*********~k~)<************************/

#if !defined(___ARTI_H_)

1
2
3
4
5 *
6
7
8
9 f#define _ ARTI_H

11 #include "Std_Types.h

13 #ifdef OS_USE_ARTI

AUTOSAR

14 # define ARTI_TRACE (_contextName, _className, _instanceName,

instanceParameter, _eventName, eventParameter) \\

15 ARTI_TRACE_ _ ## _contextName ## _ ## _className ## __ ##
_instanceName ## _ ## _eventName ((instanceParameter), (
eventParameter))

16 #else

17 # define ARTI_TRACE (_contextName, _className, _instanceName,

instanceParameter, _eventName, eventParameter) ((void)O0)

18 #endif

19

20 extern volatile uint32 arti_os_trace = 0;

22 /** arti_os_trace encoding:

24 0000 80 00

- —

CorelId

\

\

\

|\ StateId

\ Bit 16 always written to 1 ("ValidOsWriteFlag)
ThreadId (l16-bit)

w
=
s — — — —

32 xx/

34 /x%x ARTI OS Task/ISR state transitions for AR CP_OSARTI TASK xx*/

35 /** The state transition for the standard state diagram uses the same
defines *x/

36 /x%x AR _CP_OSARTI_ TASK xx/

37 #define ARTI_OSARTITASK_ACTIVATE

38 #define ARTI_OSARTITASK_START

39 #define ARTI_OSARTITASK_WAIT

40 #define ARTI_OSARTITASK_RELEASE

41 #define ARTI_OSARTITASK_PREEMPT

42 #define ARTI_OSARTITASK_TERMINATE

43 #define ARTI_OSARTITASK_RESUME

44 H#define ARTI_OSARTITASK_CONTINUE

45 /%% AR_CP_OSARTI_CAT2ISR %/

46 H#define ARTI_OSARTICAT2ISR_START 16

47 #define ARTI_OSARTICAT2ISR_STOP 17

48 H#define ARTI_OSARTICAT2ISR_ACTIVATE 18

49 #define ARTI_OSARTICAT2ISR_PREEMPT 19

50 #define ARTI_OSARTICAT2ISR_RESUME 20

51

52 /%% Bit 16 of art_os_trace is always written to 1 in order to identify a
valid write of the OS

53 * (not by e.g. data init routine of C-startup). xx/

54 H#define ARTI_VALID_OS_SIGNALING 0x80

55

56

57 /** ARTI OS Hooks example implementations #*x*/

58 f#define ARTI_TRACE__NOSUSP__AR_CP_OSARTI_TASK__0s0OS__0OsTask_Preempt (
CoreId, TaskId) \

59 {arti_os_trace = (TaskId<<16) | (ARTI_VALID_OS_SIGNALING<<8) | (
ARTI_OSARTITASK_PREEMPT<<8) | CoreId ; }

N o U1 W NP O

60

AUTOSAR

61 #define ARTI_TRACE__ _NOSUSP__ AR CP_OSARTI_TASK__ 0sOS__OsTask_Start (Coreld,

TaskId) \
62 {arti_os_trace = (TaskId<<1l6) | (ARTI_VALID_OS_SIGNALING<<8) | (
ARTI_OSARTITASK_START<<8) | CoreId ; }

63
64 #define ARTI_TRACE__NOSUSP__ AR CP_OSARTI_TASK__0sOS_ OsIsr2_Stop(Coreld,

Isr2Id) \
65 {arti_os_trace = (Isr2Id<<1l6) | (ARTI_VALID_OS_SIGNALING<<8) | (
ARTI_OSCAT2ISR_STOP<<8) | CoreId ; }

66
67 #endif /+ _ ARTI H «/

The actual implementation C-File in listing 6.2 is therefore only instanciating the data
trace variable. It is important to mention that the variable should be volatile to en-
sure that it is not going to be removed during compiler optimization since there is no
consumer actually reading the variable. Additionally the compiler pragma locating the
variable at the project dependend trace memory shall illustrate this step to be consid-
ered for the project’s linking phase.

Listing 6.2: ARTI Macros Example OS Implementation for Hardware Trace Instrumenta-
tion
/***

*

1
2

3 * AUTOSAR example implementation of ARTI Hooks for H/W trace.

4 * arti.c

5 *

6 ********************~)<**********~)<***********************************/
7

8

volatile unsigned int arti_os_trace __at (TRACE_MEMORY_ADDRESS) ;

6.1.2 RTE Instrumentation

An ARTI compliant RTE specification is currently in development. Most probably ARTI
will use the VFB Tracing Hooks as an own trace client. The release of such an approach
is planned for AUTOSAR release 20-11.

AUTOSAR

7 Outlook

With ongoing development, ARTI shall provide more and more features for users to
understand their AUTOSAR project’s run-time behavior. Besides OS and RTE, ARTI is
aiming to support in future OS protection Hooks and other fault recognition interfaces.

Apart from that, Adaptive Platform will also be addressed.

AUTOSAR

8 Document Information

Known Limitations

e Initial Version, no known limitations yet.

8.1 Related documentation
8.1.1 Input documents & related standards and norms

[1] Specification of AUTOSAR Run-Time Interface
AUTOSAR_SWS ClassicPlatformARTI

[2] Specification of Operating System
AUTOSAR_SWS_OS

[3] Specification of RTE Software
AUTOSAR_SWS RTE

8.1.2 Related specification

This document should explain the standard addressed in [1, SWS ClassicPlatfor-
mARTI]. ARTI focuses heavily on scheduling and run-time analysis and therefore af-
fects [2, SWS OS] and [3, SWS RTE].

	1 Introduction
	1.1 Who should read this document?
	1.2 Objectives
	1.3 Summary of use-cases

	2 Run-Time Interface
	2.1 Trace Techniques
	2.1.1 Hardware Tracing
	2.1.2 Software Tracing

	2.2 Static Debugging
	2.3 OS Awareness
	2.4 ARTI at a glance

	3 OS
	3.1 State Model
	3.2 Hooks
	3.3 ECUC

	4 RTE
	5 Example Configurations
	5.1 Static Debugging
	5.2 OS Task Tracing

	6 Example Implementations
	6.1 Standard Hook Implementation for Hardware Tracing
	6.1.1 OS Instrumentation
	6.1.2 RTE Instrumentation

	7 Outlook
	8 Document Information
	8.1 Related documentation
	8.1.1 Input documents & related standards and norms
	8.1.2 Related specification

