
Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

Document Title Application Design Patterns
Catalogue

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 672

Document Status Final

Part of AUTOSAR Standard Classic Platform

Part of Standard Release 4.4.0

Document Change History
Date Release Changed by Description

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Editorial changes

2017-12-08 4.3.1
AUTOSAR
Release
Management

• Editorial changes

2016-11-30 4.3.0
AUTOSAR
Release
Management

• generalization of arbitration pattern,
three examples: several setpoint
requesters, several providers of
estimated values, several providers
of consolidated values
• minor changes

2015-07-31 4.2.2
AUTOSAR
Release
Management

• reconsideration of signal definitions
and tailored pattern for smart
actuators and actuators with no
feedback loop
• specification items added
• minor changes

2014-10-31 4.2.1
AUTOSAR
Release
Management

• First Release of document. Patterns
covered:

– Sensor and Actuator Pattern
– Arbitration of Several Set-point

Requester Pattern
• Previously published as part of

EXP_AIPowertrain

1 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

Table of Contents

1 Introduction 6

1.1 Document conventions . 6
1.2 Requirements Tracing . 8

2 About Patterns 9

2.1 Types of Pattern . 9
2.2 Describing Patterns . 9

3 Sensor and Actuator Pattern 11

3.1 Problem . 11
3.2 Also Known As . 11
3.3 Applicability . 11
3.4 Solution . 12
3.5 Naming . 16
3.6 Example . 21

3.6.1 Throttle Valve . 21
3.6.2 Turbo Charger . 22
3.6.3 Turbo Charger with Stages and Banks 23
3.6.4 Actuator without Feedback Loop 24
3.6.5 Standard Sensor . 25
3.6.6 Standard Sensor for Environment Temperature 26
3.6.7 Distributing Device Abstraction 27

3.7 Sample Code and Model . 29
3.8 Known Uses . 31
3.9 Related Patterns . 31
3.10 Anti-Patterns One Should be Aware of 31
3.11 Further Readings . 31

4 Arbitration between several requesters or providers 32

4.1 Problem . 32
4.2 Applicability . 32
4.3 Solution . 32
4.4 Examples . 35

4.4.1 Several Setpoint Requesters 35
4.4.2 Several Providers of Consolidated Values 36
4.4.3 Several Providers of Estimated Values 38

4.5 Sample Code and Model . 40
4.6 Known Uses . 40
4.7 Related Patterns . 40

A Change History 41

A.1 Change History AUTOSAR R4.3.0 . 41
A.1.1 Added Constraints in R4.3.0 41
A.1.2 Changed Constraints in R4.3.0 41

3 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

A.1.3 Deleted Constraints in R4.3.0 41
A.1.4 Added Specification Items in R4.3.0 41
A.1.5 Changed Specification Items in R4.3.0 41
A.1.6 Deleted Specification Items in R4.3.0 41

A.2 Change History AUTOSAR R4.2.2 . 41
A.2.1 Added Constraints in R4.2.2 41
A.2.2 Changed Constraints in R4.2.2 42
A.2.3 Deleted Constraints in R4.2.2 42
A.2.4 Added Specification Items in R4.2.2 42
A.2.5 Changed Specification Items in R4.2.2 42
A.2.6 Deleted Specification Items in R4.2.2 42

A.3 Change History AUTOSAR R4.2.1 . 42
A.3.1 Added Constraints in R4.2.1 42
A.3.2 Added Specification Items in R4.2.1 42

B Mentioned Class Tables 43

4 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

References

[1] ANTLR parser generator V3

[2] Standardization Template
AUTOSAR_TPS_StandardizationTemplate

[3] SW-C and System Modeling Guide
AUTOSAR_TR_SWCModelingGuide

[4] XML Specification of Application Interfaces
AUTOSAR_MOD_AISpecification

[5] Main Requirements
AUTOSAR_RS_Main

[6] Architectural Pattern
http://en.wikipedia.org/wiki/Architectural_pattern

[7] Software Design Pattern
http://en.wikipedia.org/wiki/Software_design_pattern

[8] Design Pattern
http://en.wikipedia.org/wiki/Design_Pattern

[9] Anti Pattern
http://en.wikipedia.org/wiki/Anti-pattern

[10] Software Design Pattern Template
http://c2.com/cgi/wiki?DesignPatternTemplate

[11] Secure Design Patterns
http://www.sei.cmu.edu/reports/09tr010.pdf

[12] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate

[13] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture

5 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

http://en.wikipedia.org/wiki/Architectural_pattern
http://en.wikipedia.org/wiki/Software_design_pattern
http://en.wikipedia.org/wiki/Design_Pattern
http://en.wikipedia.org/wiki/Anti-pattern
http://c2.com/cgi/wiki?DesignPatternTemplate
http://www.sei.cmu.edu/reports/09tr010.pdf

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

1 Introduction

1.1 Document conventions

Technical terms (Class Names) are typeset in mono spaced font, e.g. FrameTrig-
gering.

When defining name patterns the syntax defined according to ANTLR is used [1]. The
grammar for name patterns as defined in [2], [TPS_STDT_00055], is used. In the
following we just list the most important placeholders that are used throughout the
document:

anyName This represents a string which is valid shortName according to Identi-
fier

anyNamePart This represents a string (([a-zA-Z0-9]|_[a-zA-Z0-9])*_?) which is valid
part of a shortName.

Hint: The place holder "anyNamePart" shall not be used at the beginning of a
shortName pattern to avoid invalid shortNames.

blueprintName This represents the shortName / shortLabel / symbol of the ap-
plied blueprint

componentName This represents the shortName of the BSW module resp.
ASW SwComponentType / ASW component prototype related to the derived ob-
ject. "Related" mainly could be both, aggregating or referencing.

The placeholder componentName in particular supports multiple derivation of
a PortPrototypeBlueprint in the context of different software component
types resp. modules [TPS_STDT_00036].

componentTypeName This represents the shortName of the dedicated SwCompo-
nentType.

componentPrototypeName This represents the shortName of the dedicated
SwComponentPrototype.

index This represents a numerical index applicable for example to arrays.

keyword This represents the abbrName of a keyword acting as a name part of the
short name [TPS_STDT_00004].

For a complete description see [2], [TPS_STDT_00055]. Additionally we assume that
the naming rules as defined in [3] are fulfilled. If applicable and available the keywords
used in names are those standardized in [4].

Additionally we extend the grammar using the following place holders:

anyLongName This represents a string which is a valid longName.

6 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

Additionally we assume that [TR_SWNR_0064] is fulfilled. This means that the
long name starts with a capital letter and that all words except articles (e.g. ”a”,
”the”), prepositions (e.g. ”at”, ”by”, ”to”) and conjunctions (e.g. ”and”, ”or”) start
with a capital letter as well.

anyLongNamePart This represents a string which is a valid part of a longName.

7 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

1.2 Requirements Tracing

Requirements against this document are stated in the requirements document [5].

The following table references the requirements specified in [5] and provides informa-
tion about individual specification items that fulfill a given requirement.

Requirement Description Satisfied by
[RS_MAIN_00060] AUTOSAR shall provide a standardized software

interface for communication between Applications
[TR_AIDPC_00006]
[TR_AIDPC_00007]

[RS_MAIN_00080] AUTOSAR shall provide means to describe a
component model for Application Software

[TR_AIDPC_00001]
[TR_AIDPC_00002]

[RS_MAIN_00130] AUTOSAR shall provide an abstraction from
hardware

[TR_AIDPC_00001]
[TR_AIDPC_00002]

[RS_MAIN_00140] AUTOSAR shall provide network independent
communication mechanisms for applications

[TR_AIDPC_00001]
[TR_AIDPC_00002]
[TR_AIDPC_00003]

[RS_MAIN_00150] AUTOSAR shall support the deployment and
reallocation of AUTOSAR Application Software

[TR_AIDPC_00001]
[TR_AIDPC_00002]

[RS_MAIN_00400] AUTOSAR shall provide a layered software
architecture

[TR_AIDPC_00001]
[TR_AIDPC_00002]
[TR_AIDPC_00003]
[TR_AIDPC_00004]

[RS_MAIN_00410] AUTOSAR shall provide specifications for routines
commonly used by Application Software to support
sharing and optimization

[TR_AIDPC_00003]

[RS_MAIN_00500] AUTOSAR shall provide naming conventions [TR_AIDPC_00005]

8 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

2 About Patterns

This document gives an overview of the patterns defined in AUTOSAR for ease the
usage of AUTOSAR architecture, AUTOSAR application interfaces and the AUTOSAR
meta-model. The focus is on application software (ASW).

2.1 Types of Pattern

The following categories/classifications of patterns are distinguished:

Architectural Pattern An architectural pattern is a standard design in the field of soft-
ware architecture. The concept of an architectural pattern has a broader scope
than the concept of design pattern. The architectural patterns address various
issues in software engineering, such as computer hardware performance limita-
tions, high availability and minimization of a business risk [6].

Design Pattern In software engineering, a design pattern is a general reusable solu-
tion to a commonly occurring problem within a given context in software design.
A design pattern is not a finished design that can be transformed directly into
source or machine code. It is a description or template for how to solve a prob-
lem that can be used in many different situations. Patterns are formalized best
practices that the programmer must implement themselves in the application [7].

Solution Pattern A solution pattern describes a generic solution for a specific problem
like for example error handling or job scheduling [6].

An orthogonal classification of patterns is the following:

Design Patterns A design pattern in architecture and computer science is a formal
way of documenting a solution to a design problem in a particular field of expertise
[8].

Anti-Patterns In software engineering, an anti-pattern (or anti-pattern) is a pattern
used in social or business operations or software engineering that may be com-
monly used but is ineffective and/or counterproductive in practice [9].

2.2 Describing Patterns

The description of the patterns in this document follow a predefined structure. This
structure was created based on the contents of the documents [7], [10], [11], [1], and
[2].

A pattern is described in a separate section and the header of the particular pattern
contains the name of the pattern and the pattern identification (standardized name):
{pattern name} ({pattern identification})

9 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

At the very beginning of the section describing a specific pattern the classification is
given as shown below:

Classification {type of pattern} Pattern

The type of the pattern is one of the categories described in section 2.1.

Section Mandatory Instruction Additional Information
Problem Yes The problem solved by the

design pattern and its gen-
eral rationale and purpose.

None

Also Known As No Other names for the pattern,
if any are known.

None

Applicability Yes A general description of the
characteristics a system
must have for the pattern
to be useful in the design
or implementation of the
program.

Indications: something you no-
tice, hinting that this pattern may
be applicable Contraindications:
something that would indicate
that this pattern would not be ap-
plicable

Solution Yes A textual or graphical de-
scription of the pattern. This
provides a detailed specifica-
tion of the structural aspects
of the pattern, using appro-
priate notations.

Also think about Overdose Ef-
fect : what undesirable thing
happens if you keep applying
the suggested action over and
over and over and over.
Also think about Side Effects:
new problems that you might ex-
pect to crop up upon applying
the solution, or new issues that
come to the fore.

Naming No Describes naming pattern
that are usable or should be
used in the context of the pat-
tern.

Name pattern follow syntax de-
fined according to ANTLR like it
was decided to use in [2], e.g. in
[TPS_STDT_00055].

Example Yes Example how to apply the
pattern.

None

Sample Code and
Model

No Code or model providing an
example of how to implement
the pattern.

None

Known Uses No Examples of the use of the
pattern, taken from existing
systems or literature.

None

Related Patterns No Other patterns that have
some relationship with the
pattern; discussion of the dif-
ferences between the pattern
and similar patterns.

Other patterns that relate, ei-
ther superordinate, subordinate,
competitor, or neighboring pat-
terns, with references to where
they can be found.

Anti-Patterns No Anti-Patterns you should be
aware of.

None

Reading No Further material worthwhile
to know.

None

Table 2.1: Pattern Description Template

10 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

3 Sensor and Actuator Pattern

Classification Design Pattern

3.1 Problem

The Sensor/Actuator Design Pattern describes how to handle sensors or actuators that
are connected to an ECU in the context of an overall architecture. The Sensor/Actuator
Design Pattern focuses on aspects of:

• Independence of application software from concrete sensors and actuators con-
nected to a specific ECU.

• Reusable code between different sensors and actuators.

• Different code sharing cooperation models (software sharing), thus supporting
different business models.

• Deployment of functionality to different ECUs.

3.2 Also Known As

This pattern is also known as Device Abstraction.

3.3 Applicability

[TR_AIDPC_00001] Access to Hardware by PSnsrAct d

The Device Abstraction is located above the RTE. It is a set of software components
that abstracts from the sensors and actuators connected to a specific ECU. It uses
sensor actuator software components, the only components above RTE that are al-
lowed to access the ECU abstraction interface. c(RS_MAIN_00080, RS_MAIN_00130,
RS_MAIN_00140, RS_MAIN_00150, RS_MAIN_00400)

In case direct access to the Micro controller is required because specific interrupts
and/or complex Micro controller peripherals to fulfill the special functional and timing
requirements of the sensor evaluation or actuator control have to be implemented this
pattern cannot be applied. Instead a complex driver implementation shall be used.

[TR_AIDPC_00002] Collaboration supported by PSnsrAct d The Sensor/Actuator
Design Pattern supports software sharing (=collaboration between various partners) on
different levels: Development partner one might deliver the sensors together with the
basic electrical driver software (DrvrSnsrElec), development partner two might deliver
the sensor device driver software (DevDrvrSnsr) and the third partner might develop the
substitute models together with the virtual device drivers (DevSnsrVirt). There might be

11 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

different suppliers for the same Sensor/Actuator or there might be sensors/actuators
from different vendors used within one and the same system. c(RS_MAIN_00080,
RS_MAIN_00130, RS_MAIN_00140, RS_MAIN_00150, RS_MAIN_00400)

In case software sharing shall not be supported it is also possible to just implement
the interfaces of the composition of a single sensor or actuator but not following the
internal three-level-architecture.

[TR_AIDPC_00003] Deployment/Relocation supported by PSnsrAct d The
Sensor/Actuator-Pattern also supports different deployment scenarios to ECUs. One
ECU might provide the measured value of a sensor whereas another ECU is imple-
menting the model that calculates the estimated value that may substitute the mea-
sured sensor value. c(RS_MAIN_00140, RS_MAIN_00400, RS_MAIN_00410)

Note: In general a pattern is not applied without any changes but with extension by
combining several patterns to one solution. For example:

• The composition pattern (splitting of component if they are getting too large and
are not maintainable any longer) is combined with this pattern.

• The diagnosis pattern is combined with this pattern.

3.4 Solution

In Figure 3.1 that was taken from [12] an example of the signal flow for a lamp (actuator)
and a velocity sensor is shown. This signal flow pattern is refined by this sensor/actu-
ator pattern.

12 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

Figure 3.1: Sensor Actuator Signal Flow [12]

[TR_AIDPC_00004] Layers of PSnsrAct d The solution is proposing a three-level
layering within a composition representing a sensor or actuator:

• electrical device driver layer,

• sensor/actuator device driver layer,

• virtual device driver layer.

c(RS_MAIN_00400)

In Figure 3.2 the overall structure of the pattern is shown. Recursive elements are op-
tional. Closed loop controlled actuator and position feedback is included. The naming
is simplified and will be explained in more detail later.

13 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

Figure 3.2: Sensor Actuator Pattern for Closed Loop

The application software can rely on the existence of the consolidated value. The
consolidated value can be calculated from the

• estimated value,

• setpoint value,

• measured and/or raw value.

The calculation of the consolidated value via the setpoint or estimated value is used
in case of actuators without feedback loop. In Figure 3.8 an example of an actuator
without feedback loop calculating the consolidated value from the setpoint value is
shown. Besides actuators with open loop control there are also smart actuators that
can directly deal with the setpoint value itself. In this case the device driver actuator
SW-C and the electrical driver actuator SW-C are only routing the setpoint value since

14 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

the controlling of the actuator and thus the calculating of the output value etc. is realized
within the smart actuator itself. However, the two layers, electrical device layer and
device driver layer, are additionally needed because of diagnosis etc.

The pattern can be tailored for a standard sensor. In this case the consolidated value
is provided (Consold) and the estimated value (Estimd) is requested, see Figure 3.9.

The signal flow is shown in Figure 3.3: The electrical raw value is requested from the
ECU Abstraction. After basic filtering the signal is converted to a physical value repre-
senting the measured value. If the measured value is not suitable for the application the
estimated value might be chosen to be the consolidated value, i.e. the value that can
be used by the rest of the application software. Some applications request to explicitly
know about the physical raw value. This is why this signal is also made available.

Figure 3.3: Signal Flow within Sensor and Actuator Pattern

Please be aware: SensorActuatorSwComponentTypes are the only components
that are allowed to access ECU Abstraction Software, namely EcuAbstraction-
SwComponentType. This is shown in Figure 3.4 taken from [13]. Access is denoted
by ”IO”.

15 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

Figure 3.4: Access to ECU Abstraction

3.5 Naming

[TR_AIDPC_00005] Naming within PSnsrAct d In the following the semantic port
prototype (blueprint) definition together with the name patterns are described.

The overall name pattern for port short names is described in grammar 3.1. In the fol-
lowing these port (prototype blueprint) names are also referred to as signal names.
In Table 3.1 additionally the pattern for the corresponding long names is given. c
(RS_MAIN_00500)

Listing 3.1: Name Pattern for Ports in Device Abstraction
grammar PSnsrActrPortNames;

portName
: {’sensorActuatorSignal’} ;

sensorActuatorSignal
: {anyName}{’sensorActuatorSignalType’} ;

sensorActuatorSignalType
: (ElecRaw | ElecBascFild | Raw | Measd | Consold | Estimd | Outp |

Sp | Reqd) ;

16 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

anyName
: (’keyword’)* ;

In case of a generic long name {anyLongNamePart} or {anyLongName}, resp., is
empty.

Generic Signal Name Long Name Pattern
of Concrete Sen-
sor/Actuator Signal
(EN)

Generic
Long Name
of Signal
(EN)

AUTOSAR Definition

ElecRaw Electrical Raw
Value of {anyLong-
NamePart}

Electrical
Raw Value

Electrical raw sensor value as provided by the
ECU Abstraction. Typically this value is unfil-
tered. However, there are for example smart
components doing some filtering themselves.
Electrical signals can only be represented in
voltage, current and time [12].

ElecBascFild Electrical Basic Fil-
tered Value of {any-
LongNamePart}

Electrical
Basic Fil-
tered Value

Basic filtered electrical raw sensor value (e.g.
maximum allowed phase shift is one schedul-
ing raster or maximum 360 degree crankshaft
rotation if exhaust gas pulsation dependent).
Electrical representation of a technical sig-
nal [12]. Electrical signals can only be rep-
resented in voltage, current and time.

Raw Raw Value of {any-
LongNamePart}

Raw Value Physical raw/base sensor value. Sim-
ple conversion of basic filtered electrical
(ElecBascFild) to physical value.

Measd {anyLongName}
(Measured)

Measured
Value

Final filtered and offset corrected physical
sensor value. Physical sensor value/standard
sensor value. The physical sensor value is
the linearized/filtered physical raw/base sen-
sor value including offset. At this step a (sig-
nificant) phase-shift could be possible.

Consold {anyLongName} Value Consolidated physical value, either a mea-
sured value (Measd) or a modeled value
(Estimd). Final filtered and offset corrected
consolidated actuator value/physical sensor
value. Virtual physical sensor value/fused
sensor value that comes as close as possi-
ble to the technical signal. In case of inability
to provide a physical sensor value (e.g. fail-
ure, implausibility or other reasons) a substi-
tute value/default value or a frozen value is
provided.

Estimd {anyLongName}
(Estimated)

Estimated
Value

Final filtered and offset corrected physical
sensor value replacement model value for
physical sensor value/standard sensor value.

17 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

Outp Output of {any-
LongNamePart}

Output
Value

Final controller output (closed loop or open
loop). It includes the necessary control ac-
tions to reach the requested setpoint in the
given system conditions.
For example for realizing the requested ac-
tuator position a precontrol impulse to over-
come the static friction is needed. In case of
a smart actuator the output value might add a
dedicated initialization duty cycle to wakeup
the actuator.
Typically expressed as percentage.

Sp Setpoint {anyLong-
NamePart}

Setpoint
Value

Final actuator setpoint. Typically expressed
as percentage.

Reqd Requested Set-
point {anyLong-
NamePart}

Requested
Setpoint

Final requested physical setpoint. Typically
expressed as percentage but could also be
expressed e.g. as factor.

Table 3.1: Signal Names and Semantics

Some examples of short and long names for sensor/actuator signals or ports, resp.,
are given in Table 3.2.

Short Name Class Long Name (EN)
TrboChrgrReqd PortPrototype Requested Setpoint for Turbo Charger
Consold PortPrototype Consolidated Value
TrboChrgrStg3AtBnk2 FlatInstanceDescriptor Value of Turbo Charger at Third Stage

at Second Bank
TrboChrgr PortPrototype Value of Turbo Charger

Table 3.2: Port Names Examples

In grammar 3.2 the pattern for component types and component prototypes for the
atomic components within a composition representing a sensor or an actuator is de-
scribed.

In some cases there might be parts of the implementation that can be reused for dif-
ferent sensors/actuators. Therefore the name pattern for the component type name is
more generic and does not necessarily contain the Sensor/Actuator name. In other
cases the Sensor/Actuator names are not sufficient to make the component type
names unique so an additional identifier can be added to the component type name.

Listing 3.2: Name Pattern for Atomic Software Component Types in Device Abstraction
grammar PSnsrActrAtomicSwcShortName;

sensorActuatorComponentTypeName
: sensorActuatorComponentName ;

sensorActuatorComponentPrototypeName
: sensorActuatorComponentName ;

sensorActuatorComponentName

18 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

: (Drv{Device}Elec | DevDrv{Device} | Dev{Device}Virt | DevCoorrVirt)(
’anyNamePart’) ;

Device
: (Snsr | Actr) ;

anyNamePart
: (’keyword’)* ;

In grammar 3.3 the pattern is more refined but still conforming to grammar 3.2 be-
cause ”For” is a standardized keyword. Note: the refined grammar is following
[TR_SWNR_0034] that requests that field blocks are concatenated by adding an ap-
propriate preposition.

Listing 3.3: Refined Name Pattern for Atomic Software Component Types in Device Ab-
straction
grammar PSnsrActrAtomicSwcShortNameRefined;

sensorActuatorComponentTypeName
: sensorActuatorComponentName ;

sensorActuatorComponentPrototypeName
: sensorActuatorComponentName ;

sensorActuatorComponentName
: (Drv{deviceType}Elec | DevDrv{deviceType} | Dev{deviceType}Virt |

DevCoorrVirt) ({device}) ;

deviceType
: (Snsr | Actr) ;

device
: (For{sensor}(’anyNamePart’) | For{actuator}(’anyNamePart’)) ;

sensor
: ’anyName’ ;

actuator
: ’anyName’ ;

anyName
: (’keyword’)* ;

anyNamePart
: (’keyword’)* ;

In grammar 3.4 the pattern for the corresponding English long names of the compo-
nents is described.

Listing 3.4: Pattern for English Long Names Atomic Software Component Types in De-
vice Abstraction
grammar PSnsrActrAtomicSwcLongName;

sensorActuatorComponentLongName

19 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

: sensorActuatorComponentName ;

sensorActuatorComponentLongName
: (’anyLongName’) (Electrical Sensor Driver | Sensor Device Driver |

Virtual Device Drive | Electrical Actuator Driver | Actuator Device
Driver | Virtual Device Coordinator) (’anyLongNamePart’) ;

anyLongName
: (’keyword’)* ;

anyLongNamePart
: (’keyword’)* ;

In Table 3.3 the generic sensor and actuator component short and long names are
shown as pairs.

Generic Short Name Pattern Generic Long Name (EN)
DrvrSnsrElec Electrical Sensor Driver
DevDrvrSnsr Sensor Device Driver
DevSnsrVirt Virtual Device Driver
DrvrActrElec Electrical Actuator Driver
DevDrvrActr Actuator Device Driver
DevCoorrVirt Virtual Device Coordinator

Table 3.3: Sensor and Actuator Component Name Patterns

Short Name Class Long Name (EN)
DrvrActrElecForTle8209 SensorActuatorSwCompo-

nentType
TLE8209: Electrical Sensor Driver

DrvrActrElecForTrboChrgr SwComponentPrototype Turbo Charger: Electrical Sensor
Driver

DevSnsrVirtForAnyTSnsr ApplicationSwComponent-
Type

Virtual Device Driver for Any Tempera-
ture Sensor

DevSnsrVirtForTrboChrgr SwComponentPrototype Turbo Charger: Virtual Device Driver
TrboChrgrAcmeT064 CompositionSwComponent-

Type
Turbo Charger: ACME T064

TrboChrgrStg3AtBnk2 SwComponentPrototype Turbo Charger at Third Stage at First
Bank

Table 3.4: Examples for Sensor and Actuator Names

In grammar 3.5 a pattern is described how to refine ’anyNamePart’ as defined in gram-
mar 3.3 in case of a system with several banks and stages. In Table 3.5 corresponding
name examples are shown using this grammar part.

Listing 3.5: Name Pattern for Signals in Device Abstraction in Case of a System with
Several Banks
grammar PSnsrActrStgBnkShortNames;

stageBank
: (Stg{’indexStg’}(AtBnk{’indexBnk’}) ;

indexStg

20 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

: (1st | 2nd | 3rd) ;

indexBnk
: (1st | 2nd | 3rd) ;

Short Name Class Long Name (EN)
TrboChrgrStg3rdAtBnk1st PortPrototype Value of Turbo Charger at Third Stage

at First Bank
TrboChrgrStg3rdAtBnk2nd SwComponentPrototype Turbo Charger at Third Stage at Sec-

ond Bank

Table 3.5: Examples for Sensor and Actuator Names

3.6 Example

3.6.1 Throttle Valve

Figure 3.5 shows an example device abstraction for a throttle valve.

21 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

Figure 3.5: Device Abstraction for a Throttle Valve

3.6.2 Turbo Charger

In Figure 3.6 an example of a closed looped controlled device with position feedback
— a turbo charger — is shown.

22 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

Figure 3.6: Device Abstraction for a Turbo Charger

Hint: In most cases it is not recommended to use company names in model names
(like "AcmeXYZ" used in the Figures). Company names etc. are only used in the
examples to show the difference between type and prototype and what is the reason
for the difference. For general rules and recommendations how to deal with variants
in models, as for example expressed by the company names in the examples, please
refer to the modeling guides and templates.

3.6.3 Turbo Charger with Stages and Banks

In Figure 3.7 a project system configuration for turbo charger with several stages and
banks is shown.

23 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

Figure 3.7: Device Abstraction for a Turbo Charger with Banks and Stages

3.6.4 Actuator without Feedback Loop

In Figure 3.8 an open loop controlled actuator is shown that calculates the consolidated
value using the setpoint input as input. As described before there are alternatives how
to calculate the consolidated value.

24 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

Figure 3.8: Example Actuator without Feedback Loop (Setpoint Alternative)

3.6.5 Standard Sensor

In Figure 3.9 a design pattern of blueprint components for a standard sensor is shown.

25 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

Figure 3.9: Device Abstraction for Standard Sensor

3.6.6 Standard Sensor for Environment Temperature

In Figure 3.10 a standard sensor for environment temperature is shown.

26 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

Figure 3.10: Device Abstraction for a Sensor measuring the Environment Temperature

3.6.7 Distributing Device Abstraction

In Figure 3.12 the ECU view derived from the VFB view of a temperature sensor as
shown in Figure 3.11 is shown. Finally it is shown that it is possible to also deploy the
different SW-C to different ECUs. Of course timing constraints have to be considered
before distributing components to different ECUs.

27 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

Figure 3.11: VFB View of Temperature Sensor Example

Figure 3.12: ECU Views after Distribution of SW-Cs of Temperature Sensor to two ECUs

28 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

3.7 Sample Code and Model

In Listing 3.6 a blueprint for the components used in the Sensor/Actuator pattern is
provided. The blueprint code is not complete but just gives an idea how it is realized.
The composition component is not shown.

Please note that the AUTOSAR meta model requests that a sensor actuator component
type references a corresponding sensor or actuator, resp., using a HwDescriptio-
nEntity, [12]. In this case a HwElement is needed to be used. Since there is a
standardized HwCategory for sensors and actuators also a HwType is defined that is
referenced by the HwElement.

Listing 3.6: Sensor/Actuator Pattern
<AR-PACKAGE>

<SHORT-NAME>SwComponentTypes_Blueprint</SHORT-NAME>
<CATEGORY>BLUEPRINT</CATEGORY>
<REFERENCE-BASES>

<REFERENCE-BASE>
<SHORT-LABEL NAME-PATTERN="{anyName}">HwDescriptionEntitys</SHORT

-LABEL>
<IS-DEFAULT>false</IS-DEFAULT>
<IS-GLOBAL>false</IS-GLOBAL>
<BASE-IS-THIS-PACKAGE>false</BASE-IS-THIS-PACKAGE>
<PACKAGE-REF DEST="AR-PACKAGE"><?xm-replace_text {PACKAGE-REF}?><

/PACKAGE-REF><!--add
package path -->

</REFERENCE-BASE>
<REFERENCE-BASE>

<SHORT-LABEL NAME-PATTERN="{anyName}">PortInterfaces_Blueprint</
SHORT-LABEL>

<IS-DEFAULT>false</IS-DEFAULT>
<IS-GLOBAL>false</IS-GLOBAL>
<BASE-IS-THIS-PACKAGE>false</BASE-IS-THIS-PACKAGE>
<PACKAGE-REF DEST="AR-PACKAGE"><?xm-replace_text {PACKAGE-REF}?><

/PACKAGE-REF><!--add
package path -->

</REFERENCE-BASE>
</REFERENCE-BASES>
<ELEMENTS>

<SENSOR-ACTUATOR-SW-COMPONENT-TYPE>
<SHORT-NAME NAME-PATTERN="{anyName}DrvrSnsrElec{anyNamePart}">

DrvrSnsrElec</SHORT-NAME>
<LONG-NAME>

<L-4 L="EN">Driver for Electrical Signals of Sensor</L-4>
</LONG-NAME>
<INTRODUCTION><!-- optional: add documentation -->
</INTRODUCTION>
<PORTS>

<P-PORT-PROTOTYPE>
<SHORT-NAME NAME-PATTERN="{anyName}ElecRaw{anyNamePart}">

ElecRaw</SHORT-NAME>
<LONG-NAME>

<L-4 L="EN">Electrical Raw Value</L-4>
</LONG-NAME>

29 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

<PROVIDED-INTERFACE-TREF DEST="SENDER-RECEIVER-INTERFACE"
BASE="PortInterfaces_Blueprint">ElecRaw1</PROVIDED-
INTERFACE-TREF>

</P-PORT-PROTOTYPE>
<P-PORT-PROTOTYPE>

<SHORT-NAME NAME-PATTERN="{anyName}ElecBascFild{anyNamePart}"
>ElecBascFild</SHORT-NAME>

<LONG-NAME>
<L-4 L="EN">Electrical Basic Filtered Value</L-4>

</LONG-NAME>
<PROVIDED-INTERFACE-TREF DEST="SENDER-RECEIVER-INTERFACE"

BASE="PortInterfaces_Blueprint">ElecBascFild1</PROVIDED-
INTERFACE-TREF>

</P-PORT-PROTOTYPE>
</PORTS>
<!-- add correct reference to sensor actuator type -->
<SENSOR-ACTUATOR-REF DEST="HW-DESCRIPTION-ENTITY" BASE="

HwDescriptionEntitys">SensorActuatorType</SENSOR-ACTUATOR-REF>
</SENSOR-ACTUATOR-SW-COMPONENT-TYPE>
<APPLICATION-SW-COMPONENT-TYPE>

<SHORT-NAME NAME-PATTERN="DevDrvrSnsr{anyNamePart}">DevDrvrSnsr</
SHORT-NAME>

<LONG-NAME>
<L-4 L="EN">Device Driver for Sensor</L-4>

</LONG-NAME>
<!-- Ports to be added -->

</APPLICATION-SW-COMPONENT-TYPE>
<APPLICATION-SW-COMPONENT-TYPE>

<SHORT-NAME NAME-PATTERN="DevSnsrVirt{anyNamePart}">DevSnsrVirt</
SHORT-NAME>

<LONG-NAME>
<L-4 L="EN">Virtual Device Driver for Sensor</L-4>

</LONG-NAME>
<!-- Ports to be added -->

</APPLICATION-SW-COMPONENT-TYPE>
</ELEMENTS>

</AR-PACKAGE>
<AR-PACKAGE>

<SHORT-NAME>HwTypes_Blueprint</SHORT-NAME>
<CATEGORY>BLUEPRINT</CATEGORY>
<ELEMENTS>

<HW-TYPE>
<SHORT-NAME NAME-PATTERN="{anyName}">SensorActuatorType</SHORT-

NAME>
<HW-CATEGORY-REFS>

<HW-CATEGORY-REF DEST="HW-CATEGORY" BASE="HwCategorys">
HwCategorys/SensorActuator</HW-CATEGORY-REF>

</HW-CATEGORY-REFS>
</HW-TYPE>

</ELEMENTS>
</AR-PACKAGE>
<AR-PACKAGE>

<SHORT-NAME>HwElements_Blueprint</SHORT-NAME>
<CATEGORY>BLUEPRINT</CATEGORY>
<ELEMENTS>

<HW-ELEMENT>

30 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

<SHORT-NAME NAME-PATTERN="{anyName}">mySensorActuatorElement</
SHORT-NAME>

<HW-TYPE-REF DEST="HW-TYPE" BASE="HwTypes">HwTypes/
SensorActuatorType</HW-TYPE-REF>

</HW-ELEMENT>
</ELEMENTS>

</AR-PACKAGE>

The HwCategorys should be provided centrally because they are standardized. Defi-
nition of HwCategory ”SensorActuator” is shown in Listing 3.7.

Listing 3.7: HW Categories as used in Sensor/Actuator Pattern
<AR-PACKAGE>

<SHORT-NAME>HwCategorys_Blueprint</SHORT-NAME>
<CATEGORY>BLUEPRINT</CATEGORY>
<ELEMENTS>

<HW-CATEGORY>
<SHORT-NAME NAME-PATTERN="blueprintName">SensorActuator</SHORT-

NAME>
</HW-CATEGORY>

3.8 Known Uses

None.

3.9 Related Patterns

Pattern Description
Arbitration Pattern
(see Chapter 4)

The sensor/actuator pattern is typically combined with the arbitration pattern
to allow several set point requesters, several providers of consolidated values
or several providers of estimated values. This is, arbitration is not done within
the sensor/actuator pattern but outside the device abstraction.

Table 3.6: Related Patterns

3.10 Anti-Patterns One Should be Aware of

None.

3.11 Further Readings

More information could be found in [12] and [13].

31 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

4 Arbitration between several requesters or providers

Classification Design Pattern

4.1 Problem

Arbitration between several different providers or requesters.

4.2 Applicability

The number of requesters or providers, resp., has to be known at pre-compile time.
The number of requesters or providers, resp., has to be known at implementation or
generation time of the arbiter component.

This pattern can be applied in the context of Sensor/Actuator Design Pattern, e.g.
for modeling several setpoint requesters, several providers of consolidated values or
several providers of estimated values.

4.3 Solution

A new component for managing all requests from different requesters or providers,
resp., is introduced. In Figure 4.1 the overall pattern for requesters is shown in case
sender receiver interfaces are used. In Figure 4.2 the overall pattern for providers is
shown in case sender receiver interfaces are used.

When using sender/receiver interfaces the arbitration component, also called ”arbiter”,
needs to have unique names for the different requests or providers. This is realized by
different request or provide ports, one per requester or provider, resp. The port inter-
face or at least the application data type is typically the same for all of these requesters
or providers, resp., and the resulting request or arbitrated value.

32 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

Figure 4.1: Pattern ”Arbitration between Several Requesters”

33 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

Figure 4.2: Pattern ”Arbitration between Several Providers”

[TR_AIDPC_00006] Arbitration of requesters d An arbitration component is intro-
duced to support several requesters of the same action but not necessarily of the same
value. c(RS_MAIN_00060)

[TR_AIDPC_00007] Arbitration of providers d An arbitration component is introduced
to support several providers of the same signal. c(RS_MAIN_00060)

34 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

4.4 Examples

4.4.1 Several Setpoint Requesters

In the context of the sensor/actuator pattern (see Chapter 3) there might be several
conflicting setpoint requesters. In this case a new component for managing all requests
from different setpoint requesters is introduced, see Figure 4.3.

When using sender/receiver interfaces the arbitration component, also called ”arbiter”,
needs to have unique names for the different requests. This is realized by different
request ports, one per requester. The port interface or at least the application data
type is typically the same for all of these requesters and the resulting request.

Figure 4.3: Pattern ”Arbitration between Several Set-point Requester”

35 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

In grammar 4.1 it is described how the provide ports of the requesters as well as
the request ports of the arbiter should be named: they all have the suffix ”Reqd” for
”Required”. So terms like ”desired”, ”wished” etc. should not be used to avoid that too
many terms with similar meanings are used without being able to distinguish them.

Listing 4.1: Name Pattern for Ports of Arbiter and Requesters
grammar PArbSpReqPortNames;

portName
: ({anyName}){’Reqd’} ;

anyName
: (’keyword’)* ;

Figure 4.4 shows the pattern in the context of the RTE. The Device Abstraction is
designed as one large composition but this is not requested by the Sensor/Actuator
pattern.

Figure 4.4: Arbitration between Several Requesters via RTE

4.4.2 Several Providers of Consolidated Values

In the context of the sensor/actuator pattern (3) there might be several sensors provid-
ing the same physical information. This is, there are several component all providing a
consolidated values for a specific physical signal.

A new component for managing all consolidated values from different providers is in-
troduced, see Figure 4.5.

When using sender/receiver interfaces the arbitration component, also called ”arbiter”,
needs to have unique names for the different providers. This is realized by different

36 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

request ports, one per provider. The port interface or at least the application data type
is typically the same for all of these providers and the resulting consolidated value.

Figure 4.5: Pattern ”Arbitration between Several Providers of Consolidated Values”

In grammar 4.2 it is described how the provide ports of the providers as well as the
provide port of the arbiter should be named: they all have the suffix ”Consold” for
”Consolidated”. So terms like ”modeled” etc. should not be used to avoid that too
many terms with similar meanings are used without being able to distinguish them.

Listing 4.2: Name Pattern for Ports of Arbiter and Providers of Consolidated Values
grammar PArbrConsoldPortNames;

portName
: ({anyName}){’Consold’} ;

37 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

anyName
: (’keyword’)* ;

4.4.3 Several Providers of Estimated Values

In the context of the sensor/actuator pattern (3) there might be several model for calcu-
lating an estimation value. However, in the end only one of the estimated values should
be input to the sensor/actuator pattern. Therefore, a new component for managing all
estimated values from different providers is introduced, see Figure 4.6.

When using sender/receiver interfaces the arbitration component, also called ”arbiter”,
needs to have unique names for the different providers. This is realized by different
request ports, one per provider. The port interface or at least the application data type
is typically the same for all of these providers and the resulting estimated value.

38 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

Figure 4.6: Pattern ”Arbitration between Several Providers of Estimated Values”

In grammar 4.3 it is described how the provide ports of the providers as well as the
provide port of the arbiter should be named: they all have the suffix ”Estimd” for ”Esti-
mated”. So terms like ”modeled” etc. should not be used to avoid that too many terms
with similar meanings are used without being able to distinguish them.

Listing 4.3: Name Pattern for Ports of Arbiter and Providers of Estimated Values
grammar PArbEstimdPortNames;

portName
: ({anyName}){’Estimd’} ;

anyName
: (’keyword’)* ;

39 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

4.5 Sample Code and Model

None.

4.6 Known Uses

This pattern is typically applied in the context of usage of the Sensor/Actuator Design
Pattern.

4.7 Related Patterns

Pattern Description
Sensor Actua-
tor Pattern (see
Chapter 3)

The sensor/actuator pattern is typically combined with the arbitration pattern
to allow several set point requesters, several providers of consolidated values
or several providers of estimated values. This is, arbitration is not done within
the sensor/actuator pattern but outside the device abstraction.

Table 4.1: Related Patterns

40 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

A Change History

A.1 Change History AUTOSAR R4.3.0

A.1.1 Added Constraints in R4.3.0

No constraints were added in this release.

A.1.2 Changed Constraints in R4.3.0

No constraints were changed in this release.

A.1.3 Deleted Constraints in R4.3.0

No constraints were deleted in this release.

A.1.4 Added Specification Items in R4.3.0

Number Heading
[TR_AIDPC_00006] Arbitration of requesters
[TR_AIDPC_00007] Arbitration of providers

Table A.1: Added Specification Items in 4.3.0

A.1.5 Changed Specification Items in R4.3.0

No specification items were changed in this release.

A.1.6 Deleted Specification Items in R4.3.0

No specification items were deleted in this release.

A.2 Change History AUTOSAR R4.2.2

A.2.1 Added Constraints in R4.2.2

No constraints were added in this release.

41 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

A.2.2 Changed Constraints in R4.2.2

No constraints were changed in this release.

A.2.3 Deleted Constraints in R4.2.2

No constraints were deleted in this release.

A.2.4 Added Specification Items in R4.2.2

Number Heading
[TR_AIDPC_00001] Access to Hardware by PSnsrAct
[TR_AIDPC_00002] Collaboration supported by PSnsrAct
[TR_AIDPC_00003] Deployment/Relocation supported by PSnsrAct
[TR_AIDPC_00004] Layers of PSnsrAct
[TR_AIDPC_00005] Naming within PSnsrAct

Table A.2: Added Specification Items in 4.2.2

A.2.5 Changed Specification Items in R4.2.2

No specification items were changed in this release.

A.2.6 Deleted Specification Items in R4.2.2

No specification items were deleted in this release.

A.3 Change History AUTOSAR R4.2.1

A.3.1 Added Constraints in R4.2.1

No constraints were added in this initial release.

A.3.2 Added Specification Items in R4.2.1

No specification items were added in this initial release.

42 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

B Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Class ApplicationSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note The ApplicationSwComponentType is used to represent the application software.

Tags: atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtomicSwComponentType, AtpBlueprint , AtpBlueprintable, AtpClassifier , Atp
Type, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable, Sw
ComponentType

Attribute Type Mul. Kind Note
– – – – –

Table B.1: ApplicationSwComponentType

Class CompositionSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Note A CompositionSwComponentType aggregates SwComponentPrototypes (that in turn are typed by Sw
ComponentTypes) as well as SwConnectors for primarily connecting SwComponentPrototypes among
each others and towards the surface of the CompositionSwComponentType. By this means hierarchical
structures of software-components can be created.

Tags: atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, SwComponentType

Attribute Type Mul. Kind Note

component SwComponent
Prototype

* aggr The instantiated components that are part of this
composition.
The aggregation of SwComponentPrototype is subject to
variability with the purpose to support the conditional
existence of a SwComponentPrototype. Please be aware:
if the conditional existence of SwComponentPrototypes is
resolved post-build the deselected SwComponent
Prototypes are still contained in the ECUs build but the
instances are inactive in in that they are not scheduled by
the RTE.

The aggregation is marked as atpSplitable in order to
allow the addition of service components to the ECU
extract during the ECU integration.

The use case for having 0 components owned by the
CompositionSwComponentType could be to deliver an
empty CompositionSwComponentType to e.g. a supplier
for filling the internal structure.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=postBuild

5

43 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

4
Class CompositionSwComponentType

connector SwConnector * aggr SwConnectors have the principal ability to establish a
connection among PortPrototypes. They can have many
roles in the context of a CompositionSwComponentType.
Details are refined by subclasses.

The aggregation of SwConnectors is subject to variability
with the purpose to support variant data flow.

The aggregation is marked as atpSplitable in order to
allow the extension of the ECU extract with AssemblySw
Connectors between ApplicationSwComponentTypes and
ServiceSwComponentTypes during the ECU integration.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=postBuild

constantValue
Mapping

ConstantSpecification
MappingSet

* ref Reference to the ConstantSpecificationMapping to be
applied for initValues of PPortComSpecs and RPortCom
Spec.

Stereotypes: atpSplitable
Tags: atp.Splitkey=constantValueMapping

dataType
Mapping

DataTypeMappingSet * ref Reference to the DataTypeMapping to be applied for the
used ApplicationDataTypes in PortInterfaces.

Background: when developing subsystems it may happen
that ApplicationDataTypes are used on the surface of
CompositionSwComponentTypes. In this case it would be
reasonable to be able to also provide the intended
mapping to the ImplementationDataTypes. However, this
mapping shall be informal and not technically binding for
the implementers mainly because the RTE generator is
not concerned about the CompositionSwComponent
Types.

Rationale: if the mapping of ApplicationDataTypes on the
delegated and inner
PortPrototype matches then the mapping to
ImplementationDataTypes is not impacting compatibility.

Stereotypes: atpSplitable
Tags: atp.Splitkey=dataTypeMapping

instantiation
RTEEventProps

InstantiationRTEEvent
Props

* aggr This allows to define instantiation specific properties for
RTE Events, in particular for instance specific scheduling.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortLabel, variationPoint.shortLabel
vh.latestBindingTime=codeGenerationTime

Table B.2: CompositionSwComponentType

Class EcuAbstractionSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note The ECUAbstraction is a special AtomicSwComponentType that resides between a software-component
that wants to access ECU periphery and the Microcontroller Abstraction. The EcuAbstractionSw
ComponentType introduces the possibility to link from the software representation to its hardware
description provided by the ECU Resource Template.

Tags: atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtomicSwComponentType, AtpBlueprint , AtpBlueprintable, AtpClassifier , Atp
Type, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable, Sw
ComponentType

5

44 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

4
Class EcuAbstractionSwComponentType

Attribute Type Mul. Kind Note

hardware
Element

HwDescriptionEntity * ref Reference from the EcuAbstractionComponentType to the
description of the used HwElements.

Table B.3: EcuAbstractionSwComponentType

Class FlatInstanceDescriptor

Package M2::AUTOSARTemplates::CommonStructure::FlatMap

Note Represents exactly one node (e.g. a component instance or data element) of the instance tree of a
software system. The purpose of this element is to map the various nested representations of this
instance to a flat representation and assign a unique name (shortName) to it.

Use cases:

• Specify unique names of measurable data to be used by MCD tools

• Specify unique names of calibration data to be used by MCD tool

• Specify a unique name for an instance of a component prototype in the ECU extract of the
system description

Note that in addition it is possible to assign alias names via AliasNameAssignment.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

ecuExtract
Reference

AtpFeature 0..1 iref Refers to the instance in the ECU extract. This is valid
only, if the FlatMap is used in the context of an ECU
extract.

The reference shall be such that it uniquely defines the
object instance. For example, if a data prototype is
declared as a role within an SwcInternalBehavior, it is not
enough to state the SwcInternalBehavior as context and
the aggregated data prototype as target. In addition, the
reference shall also include the complete path identifying
instance of the component prototype and the Atomic
SoftwareComponentType, which is refered by the
particular SwcInternalBehavior.

Tags: xml.sequenceOffset=40

role Identifier 0..1 attr The role denotes the particular role of the downstream
memory location described by this FlatInstanceDescriptor.

It applies to use case where one upstream object results
in multiple downstream objects, e.g. ModeDeclaration
GroupPrototypes which are measurable. In this case the
RTE will provide locations for current mode, previous
mode and next mode.

rtePluginProps RtePluginProps 0..1 aggr The properties of a communication graph with respect to
the utilization of RTE Implementation Plug-in.

Stereotypes: atpSplitable
Tags: atp.Splitkey=rtePluginProps

swDataDef
Props

SwDataDefProps 0..1 aggr The properties of this FlatInstanceDescriptor.

5

45 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

4
Class FlatInstanceDescriptor

upstream
Reference

AtpFeature 0..1 iref Refers to the instance in the context of an "upstream"
descriptions, wich could be the system or system extract
description, the basic software module description or (if a
flat map is used in preliminary context) a description of an
atomic component or composition. This reference is
optional in case the flat map is used in ECU context.

The reference shall be such that it uniquely defines the
object instance in the given context. For example, if a
data prototype is declared as a role within an SwcInternal
Behavior, it is not enough to state the SwcInternal
Behavior as context and the aggregated data prototype
as target. In addition, the reference shall also include the
complete path identifying the instance of the component
prototype that contains the particular instance of Swc
InternalBehavior.

Tags: xml.sequenceOffset=20

Table B.4: FlatInstanceDescriptor

Class HwCategory

Package M2::AUTOSARTemplates::EcuResourceTemplate::HwElementCategory

Note This metaclass represents the ability to declare hardware categories and its particular attributes.

Tags: atp.recommendedPackage=HwCategorys

Base ARElement , ARObject , AtpDefinition, CollectableElement , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable

Attribute Type Mul. Kind Note

hwAttributeDef HwAttributeDef * aggr This aggregation describes particular hardware attribute
definition.

Table B.5: HwCategory

Class HwDescriptionEntity (abstract)

Package M2::AUTOSARTemplates::EcuResourceTemplate

Note This meta-class represents the ability to describe a hardware entity.

Base ARObject , Referrable

Subclasses HwElement, HwPin, HwPinGroup, HwType

Attribute Type Mul. Kind Note

hwAttribute
Value

HwAttributeValue * aggr This aggregation represents a particular hardware
attribute value.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=50

hwCategory HwCategory * ref One of the associations representing one particular
category of the hardware entity.

Tags: xml.sequenceOffset=30

5

46 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

4
Class HwDescriptionEntity (abstract)

hwType HwType 0..1 ref This association is used to assign an optional HwType
which contains the common attribute values for all
occurences of this HwDescriptionEntity.
Note that HwTypes can not be redefined and therefore
shall not have a hwType reference.

Table B.6: HwDescriptionEntity

Class HwElement
Package M2::AUTOSARTemplates::EcuResourceTemplate

Note This represents the ability to describe Hardware Elements on an instance level. The particular types of
hardware are distinguished by the category. This category determines the applicable attributes. The
possible categories and attributes are defined in HwCategory.

Tags: atp.recommendedPackage=HwElements

Base ARElement , ARObject , CollectableElement , HwDescriptionEntity , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable

Attribute Type Mul. Kind Note

hwElement
Connection

HwElementConnector * aggr This represents one particular connection between two
hardware elements.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=110

hwPinGroup HwPinGroup * aggr This aggregation is used to describe the connection
facilities of a hardware element. Note that hardware
element has no pins but only pingroups.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=90

nestedElement HwElement * ref This association is used to establish hierarchies of hw
elements. Note that one particular HwElement can be
target of this association only once. I.e. multiple
instantiation of the same HwElement is not supported (at
any hierarchy level).

Stereotypes: atpVariation
Tags: vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=70

Table B.7: HwElement

Class HwType

Package M2::AUTOSARTemplates::EcuResourceTemplate::HwElementCategory

Note This represents the ability to describe Hardware types on an abstract level. The particular types of
hardware are distinguished by the category. This category determines the applicable attributes. The
possible categories and attributes are defined in HwCategory.

Tags: atp.recommendedPackage=HwTypes

Base ARElement , ARObject , CollectableElement , HwDescriptionEntity , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable

Attribute Type Mul. Kind Note
– – – – –

Table B.8: HwType

47 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

Primitive Identifier
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::PrimitiveTypes

Note An Identifier is a string with a number of constraints on its appearance, satisfying the requirements typical
programming languages define for their Identifiers.

This datatype represents a string, that can be used as a c-Identifier.

It shall start with a letter, may consist of letters, digits and underscores.

Tags: xml.xsd.customType=IDENTIFIER
xml.xsd.maxLength=128
xml.xsd.pattern=[a-zA-Z][a-zA-Z0-9_]*
xml.xsd.type=string

Attribute Datatype Mul. Kind Note

blueprintValue String 0..1 attr This represents a description that documents how the
value shall be defined when deriving objects from the
blueprint.

Tags: atp.Status=draft
xml.attribute=true

namePattern String 0..1 attr This attribute represents a pattern which shall be used to
define the value of the identifier if the identifier in question
is part of a blueprint.

For more details refer to TPS_StandardizationTemplate.

Tags: xml.attribute=true

Table B.9: Identifier

Class Keyword

Package M2::AUTOSARTemplates::StandardizationTemplate::Keyword

Note This meta-class represents the ability to predefine keywords which may subsequently be used to
construct names following a given naming convention, e.g. the AUTOSAR naming conventions.

Note that such names is not only shortName. It could be symbol, or even longName. Application of
keywords is not limited to particular names.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

abbrName NameToken 1 attr This attribute specifies an abbreviated name of a
keyword. This abbreviation may e.g. be used for
constructing valid shortNames according to the
AUTOSAR naming conventions.

Unlike shortName, it may contain any name token. E.g. it
may consist of digits only.

classification NameToken * attr This attribute allows to attach classification to the
Keyword such as MEAN, ACTION, CONDITION, INDEX,
PREPOSITION

Table B.10: Keyword

Class PortPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Base class for the ports of an AUTOSAR software component.

The aggregation of PortPrototypes is subject to variability with the purpose to support the conditional
existence of ports.

Base ARObject , AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

5

48 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

4
Class PortPrototype (abstract)

Subclasses AbstractProvidedPortPrototype, AbstractRequiredPortPrototype

Attribute Type Mul. Kind Note

clientServer
Annotation

ClientServerAnnotation * aggr Annotation of this PortPrototype with respect to
client/server communication.

delegatedPort
Annotation

DelegatedPort
Annotation

0..1 aggr Annotations on this delegated port.

ioHwAbstraction
Server
Annotation

IoHwAbstractionServer
Annotation

* aggr Annotations on this IO Hardware Abstraction port.

modePort
Annotation

ModePortAnnotation * aggr Annotations on this mode port.

nvDataPort
Annotation

NvDataPortAnnotation * aggr Annotations on this non voilatile data port.

parameterPort
Annotation

ParameterPort
Annotation

* aggr Annotations on this parameter port.

senderReceiver
Annotation

SenderReceiver
Annotation

* aggr Collection of annotations of this ports sender/receiver
communication.

triggerPort
Annotation

TriggerPortAnnotation * aggr Annotations on this trigger port.

Table B.11: PortPrototype

Class PortPrototypeBlueprint

Package M2::AUTOSARTemplates::StandardizationTemplate::BlueprintDedicated::PortProtoypeBlueprint

Note This meta-class represents the ability to express a blueprint of a PortPrototype by referring to a particular
PortInterface. This blueprint can then be used as a guidance to create particular PortPrototypes which
are defined according to this blueprint. By this it is possible to standardize application interfaces without
the need to also standardize software-components with PortPrototypes typed by the standardized Port
Interfaces.

Tags: atp.recommendedPackage=PortPrototypeBlueprints

Base ARElement , ARObject , AtpBlueprint , AtpClassifier , AtpFeature, AtpStructureElement , Collectable
Element , Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note

initValue PortPrototypeBlueprint
InitValue

* aggr This specifies the init values for the dataElements in the
particular PortPrototypeBlueprint.

interface PortInterface 1 ref This is the interface for which the blueprint is defined. It
may be a blueprint itself or a standardized PortInterface

providedCom
Spec

PPortComSpec * aggr Provided communication attributes per interface element
(data element or operation).

requiredCom
Spec

RPortComSpec * aggr Required communication attributes, one for each
interface element.

Table B.12: PortPrototypeBlueprint

Class SensorActuatorSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note The SensorActuatorSwComponentType introduces the possibility to link from the software representation
of a sensor/actuator to its hardware description provided by the ECU Resource Template.

Tags: atp.recommendedPackage=SwComponentTypes

5

49 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

4
Class SensorActuatorSwComponentType

Base ARElement , ARObject , AtomicSwComponentType, AtpBlueprint , AtpBlueprintable, AtpClassifier , Atp
Type, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable, Sw
ComponentType

Attribute Type Mul. Kind Note

sensorActuator HwDescriptionEntity 1 ref Reference from the Sensor Actuator Software Component
Type to the description of the actual hardware.

Table B.13: SensorActuatorSwComponentType

Class SwComponentPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Note Role of a software component within a composition.

Base ARObject , AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

type SwComponentType 1 tref Type of the instance.

Stereotypes: isOfType

Table B.14: SwComponentPrototype

Class SwComponentType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Base class for AUTOSAR software components.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses AtomicSwComponentType, CompositionSwComponentType, ParameterSwComponentType

Attribute Type Mul. Kind Note

consistency
Needs

ConsistencyNeeds * aggr This represents the collection of ConsistencyNeeds
owned by the enclosing SwComponentType.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

port PortPrototype * aggr The PortPrototypes through which this SwComponent
Type can communicate.

The aggregation of PortPrototype is subject to variability
with the purpose to support the conditional existence of
PortPrototypes.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

portGroup PortGroup * aggr A port group being part of this component.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

swComponent
Documentation

SwComponent
Documentation

0..1 aggr This adds a documentation to the SwComponentType.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=swComponentDocumentation,
variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=-10

5

50 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

Application Design Patterns Catalogue
AUTOSAR CP Release 4.4.0

4
Class SwComponentType (abstract)

unitGroup UnitGroup * ref This allows for the specification of which UnitGroups are
relevant in the context of referencing SwComponentType.

Table B.15: SwComponentType

51 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 672: AUTOSAR_TR_AIDesignPatternsCatalogue

	1 Introduction
	1.1 Document conventions
	1.2 Requirements Tracing

	2 About Patterns
	2.1 Types of Pattern
	2.2 Describing Patterns

	3 Sensor and Actuator Pattern
	3.1 Problem
	3.2 Also Known As
	3.3 Applicability
	3.4 Solution
	3.5 Naming
	3.6 Example
	3.6.1 Throttle Valve
	3.6.2 Turbo Charger
	3.6.3 Turbo Charger with Stages and Banks
	3.6.4 Actuator without Feedback Loop
	3.6.5 Standard Sensor
	3.6.6 Standard Sensor for Environment Temperature
	3.6.7 Distributing Device Abstraction

	3.7 Sample Code and Model
	3.8 Known Uses
	3.9 Related Patterns
	3.10 Anti-Patterns One Should be Aware of
	3.11 Further Readings

	4 Arbitration between several requesters or providers
	4.1 Problem
	4.2 Applicability
	4.3 Solution
	4.4 Examples
	4.4.1 Several Setpoint Requesters
	4.4.2 Several Providers of Consolidated Values
	4.4.3 Several Providers of Estimated Values

	4.5 Sample Code and Model
	4.6 Known Uses
	4.7 Related Patterns

	A Change History
	A.1 Change History AUTOSAR R4.3.0
	A.1.1 Added Constraints in R4.3.0
	A.1.2 Changed Constraints in R4.3.0
	A.1.3 Deleted Constraints in R4.3.0
	A.1.4 Added Specification Items in R4.3.0
	A.1.5 Changed Specification Items in R4.3.0
	A.1.6 Deleted Specification Items in R4.3.0

	A.2 Change History AUTOSAR R4.2.2
	A.2.1 Added Constraints in R4.2.2
	A.2.2 Changed Constraints in R4.2.2
	A.2.3 Deleted Constraints in R4.2.2
	A.2.4 Added Specification Items in R4.2.2
	A.2.5 Changed Specification Items in R4.2.2
	A.2.6 Deleted Specification Items in R4.2.2

	A.3 Change History AUTOSAR R4.2.1
	A.3.1 Added Constraints in R4.2.1
	A.3.2 Added Specification Items in R4.2.1

	B Mentioned Class Tables

