AUTOSAR

Document Title

Software Component Template

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 062
Document Status Final

Part of AUTOSAR Standard

Classic Platform

Part of Standard Release

44.0

Document Change History

Date Release | Changed by Description
e Support for optional elements in
structured data types
AUTOSAR e Improved description of service use
2018-10-31 | 4.4.0 Release cases
Management e minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation
AUTOSAR e minor corrections / clarifications /
2017-12-08 | 4.3.1 Release editorial changes; For details please
Management refer to the ChangeDocumentation
e Improved support for Unions
e Improved upstream mapping
AUTOSAR e Improved description of service use
2016-11-30 | 4.3.0 Release cases
Management e Minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation
AUTOSAR e Minor corrections / clarifications /
2015-07-31 | 4.2.2 Release editorial changes; For details please
Management refer to the ChangeDocumentation

AUTOSAR

¢ Efficient NV data handling
e Introduction of data transformation

Administration

AUTOSAR e Support for variable-size Arrays of
2014-10-31 | 4.2.1 Release arbitrary data types
Management e Support for ASIL/QM development
e Minor corrections / clarifications /
editorial changes; For details please
refer to the BWCStatement
AUTOSAR
2014-03-31 | 4.1.3 Release Various fixes and clarifications
Management
AUTOSAR
2013-10-31 | 4.1.2 Release Various fixes and clarifications
Management
e Introduction of PRPortPrototype
¢ Definition of implicit communication
behavior
Support for the formal analysis of
resource locking
Introduction of refined scheduling of
RunnableEntitySs
Get information about activating
RTEEvent
Connection of Mode Managers and
2013-03-15 | 4.1.1 AUTOSAR Mode Users with different number of

ModeDeclarationS

Support activation of
RunnableEntityS on remote
ECUs

e Support for ModeTransition
e Support for the definition of the

network representation of composite
data types

ServiceNeeds for diagnostics over
IP

Various fixes and clarifications

AUTOSAR

2011-12-22

4.0.3

AUTOSAR
Administration

Added CompuMethod categories
SCALE_LINEAR_AND_TEXTTABLE
and SCALE_RATIONAL _
AND_TEXTTABLE (table 5.76)
Clarification concerning the usage of
invalid values

e Revised support for data filters
e Support for partial networking
e Support for the specification of local

connections between
software-components

Improved description of service
needs

Change history of constraints and
specification items

Miscellaneous improvements and
clarifications

“Support for Standardization” moved
to Standardization Template [1]

2011-04-15

4.0.2

AUTOSAR
Administration

Remove restriction on data type of
inter-runnable variables

Rework end-to-end communication
protection

Add more constraints on the usage
of the meta-model

Various fixes and clarifications

AUTOSAR

2009-12-18

4.0.1

AUTOSAR
Administration

e New requirements tracing table
e Support for fixed data exchange
e Implementation of meta-model

cleanup
Fundamental revision of the data
type concept

e Support for variant handling
e Support for end-to-end

communication protection

e Support for documentation
e Support for stopping and restarting

of software-components

e Support for triggered events
e Support for explicit mapping of

interface elements

Revised concept of mode
management

Support for integrity and scaling at
ports

Support for standardization within
AUTOSAR

2008-08-13

3.1.1

AUTOSAR
Administration

Improved support for on-board
diagnostics
Small layout adaptations made

2007-12-21

3.0.1

AUTOSAR
Administration

Improved support for measurement
and calibration

Improved semantics of delegation
ports

Introduction of abstract memory
classes

Document meta information
extended

Small layout adaptations made

AUTOSAR

Harmonization of the document with
other specifications (e.g. RTE)
Introduction of a new concept to
support calibration and
measurement - harmonized with RTE
Description of needs of the Software

Administration

Component Template toward
2007-01-24 | 2.1.15 ﬁggﬁiﬁ:ﬁon AUTOSAR services and of the
interaction of the Software
Component Template and services
(on XML level)
e Legal disclaimer revised
¢ Release notes added
e “Advice for users” added
e “Revision information” added
AUTOSAR
2006-05-16 | 2.0.0 Administration | S€cond
2005-05-31 | 1.0.0 AUTOSAR Initial release

AUTO SAR

AUTOSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTO SAR

Table of Contents

1

Introduction 27
1.1 Overview. e e e 27
1.2 Scope e 27
1.3 Organization of the Meta-Model 28
1.4 Structure ofthe Template 30
1.4.1 Description of Software Components on VFB Level 30
1.4.2 Description of Software Components on RTE Level 30
1.4.3 Descriptions of Software Components on Implementation Level 31
1.5 Abbreviations 31
1.6 Document Conventions. 33
1.7 Requirements Tracing 34
Conceptual Aspects 44
2.1 Introduction 44
2.2 Measurement and Calibration 44
2.21 Basic Approach of Measurement and Calibration 44
2.2.2 Calibration Parameters Overview 44
2.2.3 Using Calibration Parameters 45
2.2.3.1 Sharing Calibration Parameters within Compositions 45

2232 Sharing Calibration Parameters between SwCompo-
nentPrototypes of the Same SwComponentType .. 48
2.2.3.3 Providing Instance Individual Characteristic Data . . 49
2.3 Runtime and Data Consistency Aspects 50
2.3.1 Background: thelssues 50
2.3.1.1 Mutual Exclusion with Semaphores 51
2.3.1.2 Interrupt Disabling 51
2.3.1.3 Priority Ceiling 52
2.3.1.4 Implicit Communication by Means of Variable Copies 52
2.3.2 Data Consistency at Runtime 53
2.3.3 Modeling Aspects of Data Consistency 53
2.4 Variant Handling in the Software Component Template 54
2.5 Communication Specification of Composition Component Types 56
2.5.1 Rationale, 56
2.6 PRPortPrototype 58
2.6.1 UseCasel1. 58
2.6.2 UseCase2. 58
2.6.3 UseCase3. 59
2.6.4 Solution 60
2.7 Pretended Networking 60
2.8 Variable-size Array Data Types 62
2.8.1 Overviewand Usecases 62
2.8.1.1 “Old-world” dynamic-size Arrays 62
2.8.1.2 “‘New-world” variable-size Arrays 63

2.8.2 Modeling Aspects regarding Application Data Types 66

AUTO SAR

2.8.3 Modeling Aspects regarding Implementation Data Types .. 67

2.9 Optional Elements in Structures 68

2.9.1 Background 68

3 Overview: Software Components, Ports, and Interfaces 70

3.1 Introduction 70

3.2 Software Component 70

3.2.1 Overview e 70

3.2.2 PortPrototype 72

3.2.3 AtomicSwComponentType 76

3.24 ParameterSwComponentType 79

3.2.5 Symbolic Name of a Software-Component 79

3.3 Composition 81

3.3.1 Overview e 81

3.3.2 SwComponentPrototype 82

3.3.3 Connectors 85

3.3.4 Instantiation-specific RTEEvents 90

3.4 Portinterface 92

4 Details: Software Components, Ports, and Interfaces 98

41 Introduction 98

42 Portinterface Details Lo 98

4.2.1 Introduction 98

422 Sender Receiver Communication. 99

423 Client Server Communication 103

4.2.3.1 Client Server Interface 103

42.3.2 Error Handling in Client/Server Communication . . . 108

424 External Trigger Event Communication 110

4.2.5 Communicationof Modes 113

4.2.6 Parameter Communication 119

4.3 Portinterface Mapping and Data Scaling 119

4.3.1 Portinterface Mapping oL 121
4.3.1.1 Mapping of Sender Receiver Interface, Parameter In-

terface and Non Volatile Data Interface Elements . . 123

4.3.1.2 Mapping of Client Server Interface Elements 125

4.3.1.3 Mapping of Mode Interface Elements 129

43.1.4 Mapping of Trigger Interface Elements 133

4.3.1.5 Mapping of Elements of a composite Data Type . . . 134

4.3.2 DataConversion 141

4.3.2.1 Linear DataScaling 142

4.3.2.2 Table Conversion 143

4.3.3 Relevance for Data Transformation. 148

44 Port Annotation 151

4.4.1 Introduction 151

442 SenderReceiverAnnotation oL 153

443 ClientServerAnnotation 157

444 Annotation for the I/O Hardware Abstraction Layer 158

AUTOSAR

4.4.5 Parameter Port Annotation 160

4.4.6 Mode Port Annotation 161

447 Trigger Port Annotation 162

4.4.8 Non Volatile Data Port Annotation 163

449 Delegated Port Annotations 164

4410 General Annotation o oL 166

4.5 Communication Specification 166
4.5.1 Communication Specification for Sender-Receiver Commu-

nication 170

45.2 Communication Specification for Client-Server Communication183

45.3 Communication Specification for Mode Switch Communication 185

454 Communication Specification for Parameters 188

455 Communication Specification for NV Data 190

4.5.6 Configuration of Data Transformation 193

4.6 Port Groups within Component Types 199

4.7 Endto End Protection 201

4.8 Partial Networking 211

4.8.1 VFC Control Ports 212

4.8.2 VFC StatusPorts 213

4.9 Formal Definition of implicit Communication Behavior 214

4.9.1 Consistency Needs on Receiver Side 218

49.2 Consistency Needs on Sender Side 219
49.3 Consistency Needs for Senders and receivers of the same

Data inside on RunnableEntityGroup 219

5 Data Description 220

5.1 Introduction 220

52 DataTypes 224

5.2.1 Overview e 224

5.2.2 Data Type Mappingo 226

5.2.3 Data Categories 230

524 ApplicationDataType 234

5.2.41 Application Primitive Data Types 237

5.2.4.2 Application Composite Data Types 254

5.2.5 Implementation Data Type 269
5.2.5.1 Modeling of Optional Element Structure with Imple-

mentationDataType 292

5.2.6 BaseType 294

5.2.7 Data Type Terminology 300

5.2.71 Primitive Type 300

5.2.7.2 Compound Primitive Data Type 301

5.2.7.3 Integral Primitive Type 301

5.2.7.4 Variable-Size Array Data Type 303

5.2.7.5 Wrapped Union Data Type 303

5.2.7.6 Optional Element Structure 306

53 DataPrototypes 306

AUTOSAR

5.4

5.5

5.6

5.3.1 Overview e 306
5.3.2 Data Constraints for DataPrototypes typed by Array DataTypes313
5.3.3 Reference to Data Prototypes 314
5.3.3.1 AUTOSAR Variable Ref 315
5.3.3.2 AUTOSAR ParameterRef 316
5.3.3.3 Modeling Approach 318
5.3.34 Access into VariableDataPrototype typed by an Im-
plementationDataType 320
5.3.3.5 Access into ParameterDataPrototype typed by an
ImplementationDataType 323
Properties of Data Definitions 325
5.4.1 Overview e 325
5.4.2 Invalid Value, 338
543 Properties for Measurement 345
544 Properties of CurvesandMaps 346
5.4.4.1 Specification of fix Axes 356
5.4.5 Setting an Axis Input Value 361
5.4.6 Settinga Group Axiso o 366
54.7 Specifying Data Dependencies 372
5.4.8 Precedence of data properties with respect to data elements,
axis elements, computation methods, units 374
Elements used in Properties of Data Definitions 380
5.5.1 Computation Methods 380
5.5.1.1 Category Values in the context of a CompuMethod . 391
5.5.1.2 Applicability of Attributes in the context of a Com-
puMethod 392
5.5.1.3 CompuMethod and AutosarDataType 394
5.5.1.4 Example for Enumeration 396
5.5.1.5 Example for Linear Conversion 397
5.5.1.6 Example for Linear Conversion with texttable 397
551.7 Example for conversion specified by a rational function398
5.5.1.8 Example for BITFIELD_TEXTTABLE 399
5.5.2 Physical Units, Physical Dimensions and Unit Groups 402
5.5.3 DataConstraints 409
5.5.3.1 Physical Limits 416
554 AddressingMethods oL 416
5.5.5 Record Layouts 425
5.5.5.1 Specifying Record Layouts 426
5.5.5.2 RecordLayouts and DataTypes 435
5.5.5.3 Record Layouts and Interpolation Routines 443
5.5.6 Display Presentation. 445
Specification of Constant Values 447
5.6.1 Overview e 447
5.6.2 Specification of Values basedonRules 454
5.6.2.1 Support for primitive Data Types 454

5.6.2.2 Support for composite Data Types 461

AUTOSAR

5.6.3 Referenceto Constant 466
5.6.4 Values for Compound Primitive Data Types 467
5.6.5 Examples L 475
5.6.5.1 Example for Constant Specification for CURVE . . . 475
5.6.5.2 Example for Constant Specification for MAP 476

5.6.5.3 Example for Constant Specification for MAP with two
STD_AXIS 477
5.6.5.4 Example for Constant Specification for COM_AXIS . 478
57 Initial Values 479
5.71 Overview e 479
5.7.2 Initial Value Representation 480
5.7.3 Constant Specification Mapping 481
5.7.4 Initial Values For CalibrationParameters 484
5.7.5 Initial Value for optional Element 485
5.7.5.1 Initial Value for optional ApplicationRecordElement . 485

5752 Initial Value for optional ImplementationDataType-
Element L. 486
6 Compatibility 487
6.1 Introduction 487
6.2 Compatibility of Data Types 487
6.2.1 ApplicationDataType 487
6.2.1.1 ApplicationPrimitiveDataType 487
6.2.1.2 ApplicationCompositeDataType 488
6.2.2 ImplementationDatalype 489
6.2.3 Compatibility of SwBaseType 491
6.2.4 Compatibility of SwDataDefProps 491
6.2.4.1 Compatibility of Units 492
6.2.4.2 Compatibility of PhysicalDimensions 493
6.2.4.3 Compatibility of Data Constraints 494
6.2.4.4 Compatibility in case of ImplementationDataType . . 494
6.2.4.5 Compatibility of CompuMethods 495
6.2.4.6 Compatibility of Record Layouts 497

6.2.5 Compatibility of ApplicationDataType and Implementation-
Datalype 498
6.3 Compatibility of Variable Data Prototypes and Parameter Data Prototypes501

6.4 Compatibility of Sender Receiver Interfaces, Parameter Interfaces and
Non Volatile Data Interfaces 503

6.4.1 Connection of Required and Provided Port via Assem-
blySwConnector oL 503

6.4.2 Connection of Inner and Outer Port via DelegationSwCon-
nector 504

6.4.3 Connection of Required and Provided Port via PassThrough-
SwConnector. 505

6.4.4 Compatibility of ParameterDataPrototype and VariableDat-
aPrototype depending on Portinterface Type 505

AUTO SAR

6.5 Compatibility of Mode Switch Interfaces
6.5.1 Connection of Required and Provided Port via Assem-
blySwConnector

6.5.2 Connection of Inner and Outer Port via DelegationSwCon-
nector

6.5.3 Connection of Outer and Outer Port via PassThroughSwCon-
nector e

6.6 Compatibility of Mode Declaration Group Prototypes
6.7 Compatibility of Mode Declaration Groups
6.8 Compatibility of Argument Prototypes
6.9 Compatibility of Application Errors
6.10 Compatibility of Client/Server Operations

6.11 Compatibility of Client Server Interfaces
6.11.1 Connection of Required and Provided Port via Assem-
blySwConnector oo

6.11.2 Connection of Inner and Outer Port via DelegationSwCon-
nector e

6.11.3 Connection of Outer and Outer Port via PassThroughSwCon-
NeCtOr e

6.12 Compatibility of Trigger Interfaces
6.12.1 Connection of Required and Provided Port via Assem-
blySwConnector

6.12.2 Connection of Inner and Outer Port via DelegationSwCon-
Nector e

6.12.3 Connection of Outer and Outer Port via PassThroughSwCon-
nector

6.13 Compatibility of Trigger
6.14 Entire Delegation of a Provided Port Prototype
6.14.1 Split and Merge of Portinterface Elements

6.15 Compatibility in Case of a Flat ECU Extract
6.16 Compatibility Examples Lo
6.16.1 Compatibility on Assembly Level
6.16.1.1 LegalUse

6.16.1.2 lllegalUse

6.16.2 Compatibility on Delegation Level
6.16.2.1 LegalUse

6.16.2.2 llegalUse

7 Internal Behavior

7.1 Introduction L
72 RunnableEntity
7.2.1 Concurrency and Reentrancy of a RunnableEntity that can-

not be Invoked Concurrently

7.2.2 Concurrency and Reentrancy of a RunnableEntity that can

be Invoked Concurrently

7.2.3 Timed Activation of Runnable Entities

AUTO SAR

7.3

7.4

7.5

7.6

7.2.4 Additional Remarks and Clarifications
7.2.41 Reentrancy and Multiple Instantiation
7.24.2 Reentrancy and “Library Functions”.
7.24.3 Compatibility of ClientServerOperations triggering

the same RunnableEntity
7.24.4 Categories of Runnable Entities
7.2.4.5 Arguments of a Runnable Entity

7.2.5 Activation Reason of a Runnable Entity

7.2.6 Runnable Entity for Initialization Purpose

RTEEvent
7.3.1 DefininganEvent
7.3.2 Defining how to RespondtoanEvent

Communication among Runnable Entities

7.4.1 Description Possibility 1: Exclusive Area.
7411 Entire Runnable Runs in the Exclusive Area
7.4.1.2 Runnable would Dynamically Enter and Leave the

Exclusive Area
7413 Configuration of APl Generation

7.4.2 Description Possibility 2: Inter-Runnable Variable

7.4.3 Inter Runnable Triggering,

Data Access of RunnableEntities

7.5.1 RunnableEntities and Sender Receiver Communication . . .
7.51.1 Terminology
7.51.2 DataAccess
7.5.1.3 Explicit Sending and Receiving
7.51.4 Implicit Sending and Receiving
7.5.1.5 DataSendCompletedEvent.
7.5.1.6 DataWriteCompletedEvent
7.51.7 DataReceivedEvent
7.5.1.8 DataReceiveErrorEvent

7.5.2 RunnableEntities and Client Server Communication
7.5.2.1 Invoking an Operation
7.5.2.2 Providing an Implementation of an Operation
7.5.2.3 Reacting on Data Transformation Errors

7.5.3 RunnableEntities and External Trigger Event Communication
7.5.3.1 TriggerSource
7.5.3.2 Trigger Sinko

7.5.4 RunnableEntities and Parameter Access
7.5.41 InstantiationDataDefProps

7.5.5 RunnableEntities and Mode Communication

Port API Options
7.6.1 Enableto Take Address
7.6.2 Indirect API Generation
7.6.3 Port Defined ArgumentValue
7.6.4 Supported Features

7.6.4.1 Buffer Locking

AUTOSAR

7.7 PerlnstanceMemory 606
7.7.1 PerinstanceMemory typed by “C” Data Types 607
7.7.2 PerlnstanceMemory typed by AUTOSAR Data Types 608

7.8 Static Memory and ConstantMemory 609

7.9 Included AUTOSARDataTypes 610

7.10 Included Mode Declaration Groups 611

711 Service Needs e 613
71141 Overview e 613
7.11.2 Assignment of Service Needs to Portsand Data 618

712 Variation Point Proxy 627

8 Implementation 634
9 Mode Management 638

9.1 Declarationof Modes 638

9.2 ModesandEvents o 643

9.3 Initialization / Finalization., 648

9.4 Mode ErrorBehavior 648

9.5 Summary Meta-Model Excerpt RelatedtoModes 652

10 ECU Abstraction and Complex Drivers 654

10.1 Introduction 654

10.2 High Level Hardware and Software Architecture 654

10.3 Interfacesand APIs Lo 657
10.3.1 ECU Abstraction and its AUTOSAR Interfaces 658

10.4 Sensors/Actuators 658

10.5 [|/O Hardware Abstraction 660

10.6 Complex Driver 662

11 Services 664

11.1 Overview: Generation of Service-related Model Elements 664

11.2 Extending the ECU Software Composition 667

11.3 Service Software Component Type 668

11.4 Service Proxy Component Type 671

11.5 Non Volatile Memory 674
11.5.1 Introduction 674
11.5.2 NvBlockComponent 674
11.5.3 Software-Components using NVRAM data of NvBlockCom-

ponents 676

11.5.4 Software-Components connected to NvBlockComponents . . 679
11.5.5 NvBlockDescriptor oL 682
11.5.5.1 Writing Strategies 686
11.5.5.2 NvBlockNeeds 690
11.5.5.3 RAM Blockand ROM Block 692
11.5.5.4 NvBlockDataMapping 693
11.5.5.5 Client ServerPorts 699

11.5.6 SweclnternalBehavior of an NvBlockSwComponentType . . . 701

AUTO SAR

12 Software Component Documentation

13 Service Dependencies and Service Use Cases

13.1 Overview e e
13.2 NvM Service Dependencies oL
13.2.1 Nvm Use Case: Permanent RAM Block
13.2.2 Nvm Use Case: Temporary RAM Block
13.2.3 Nvm Use Case: RAM Block with explicit synchronization us-

ing Mirror Interfaces oo oL

13.2.4 NVM Use Case: Software-Components using Nv Data pro-
vided by NvBlockSwComponentType (not ServiceSwCompo-

nentof NvVM) L

13.3 Watchdog Service Dependencies
13.3.1 Watchdog Service use Case: Local Supervision
13.3.2 Watchdog Service use Case: Global Supervision Status no-

tification

13.3.3 Watchdog Service use Case: Control global supervision or

get global supervisionstatus

13.4 COM Manager ServiceNeeds
13.4.1 ComM Use Case: read current ComM Mode
13.4.2 ComM Use Case: request ComMMode
13.4.3 ComM Use Case: Software-Component acts as a Mode
Manager that influences the ECU State

13.5 ECU State Manager Service Needs
13.5.1 EcuM Use Case: select Shutdown Target
13.5.2 EcuM Use Case: select Boot Target
13.5.3 EcuM Use Case: use AlarmClock

13.6 BswM
13.6.1 Partial Networking
13.6.2 Mode Manager
13.6.3 Mode User
13.6.4 Mode Requester

13.7 Crypto Service Dependencies
13.7.1 Overview e
13.7.2 Crypto ServiceUseCases
13.7.2.1 Crypto Service Use Case: Hash calculation

13.7.2.2 Crypto Service Use Case: MAC calculation

13.7.2.3 Crypto Service Use Case: MAC verification
13.7.2.4 Crypto Service Use Case: generation of random
numbers

13.7.2.5 Crypto Service Use Case: Encryption with Authenti-
cated Encryption with Associated Data (AEAD) . . .
13.7.2.6 Crypto Service Use Case: Decryption with Authenti-
cated Encryption with Associated Data (AEAD) . . .
13.7.2.7 Crypto Service Use Case: encryption
13.7.2.8 Crypto Service Use Case: decryption

AUTO SAR

13.7.2.9 Crypto Service Use Case: signature generation . . . 733
13.7.2.10 Crypto Service Use Case: signature verification . . . 734
13.7.2.11 Crypto Service Use Case: usage of key management 734
13.7.3 Crypto Service JobUseCases 735

13.7.3.1 Crypto Service Use Case: usage of job API to set
keyvalid 735

13.7.3.2 Crypto Service Use Case: usage of job APl to create
arandomseed 735

13.7.3.3 Crypto Service Use Case: usage of job API to gen-
erateakey 736

13.7.3.4 Crypto Service Use Case: usage of job API to derive
akey 736

13.7.3.5 Crypto Service Use Case: usage of job API to exe-

cute calculation of the public value for key exchange 737
13.7.3.6 Crypto Service Use Case: usage of job API to exe-

cute calculation of shared secret for key exchange . 738
13.7.3.7 Crypto Service Use Case: usage of job API to exe-

cute certificate parsing 738

13.7.3.8 Crypto Service Use Case: usage of job API to exe-
cute certificate verification 739
13.8 Diagnostic Service Dependency 739
13.8.1 Development Approach 740
13.8.2 Function InhibitionNeeds 741

13.8.2.1 Function Inhibition Manager Service use Case: read
functionpermission oL 743

13.8.2.2 Function Inhibition Manager Use Case: react on sup-
pressed or unavailableevents 743
13.8.3 DiagnosticEventNeeds 744

13.8.3.1 Dem Service Use Case: diagnostic monitor, de-
bouncingby Dem 754

13.8.3.2 Dem Service Use Case: diagnostic monitor, de-
bouncingby SWC 755

13.8.3.3 Dem Service Use Case: software-component pro-
vides information about operationcycles 755

13.8.3.4 Dem Service Use Case: software-component en-
ables reporting of DTCsingeneral 756

13.8.3.5 Dem Service Use Case: software-component en-
ables storage of subsequentDTCs 756

13.8.3.6 Dem Service Use Case: retrieve information of the
lampstatus L. 757

13.8.3.7 Dem Service Use Case: DEM provides information
that the fault storage overflows 758

13.8.3.8 Dem Service Use Case: software-component sup-
presses the storage of DTCs 758

13.8.3.9 Dem Service Use Case: software-component in-

forms that the PTOis active 759

AUTO SAR

13.8.3.10 Dem Service Use Case: software-component needs
information about any DTC status change 759

13.8.3.11 Dem Service Use Case: call operation if the data of
a given diagnostic event changes (I) 760

13.8.3.12 Dem Service Use Case: call operation if the data or
status of any diagnostic event changes (Il) 761

13.8.3.13 Dem Service Use Case: software-component pro-
vides data for diagnostic purposes 761

13.8.3.14 Dem Service Use Case: software-component gets
information about a specific DTC 762

13.8.3.15 Dem Service Use Case: Software-Component wants
to be triggered on Monitor Status Changes 763

13.8.3.16 Dem Service Use Case: write parameter identifier by
software-component 763

13.8.3.17 Dem Service Use Case: read parameter identifier by
software-component 764

13.8.3.18 Dem Service Use Case: diagnostic monitor provides
monitor data, debouncing by Dem 764

13.8.3.19 Dem Service Use Case: diagnostic monitor provides
monitor data, debouncing by software-component. . 765
13.8.4 Diagnostic CommunicationNeeds 766

13.8.4.1 Dcm Service Use Case: read/write current values by
Client Server Interface 770

13.8.4.2 Dcm Service Use Case: read/write current values of
specific DID by Client Server Interface 771

13.8.4.3 Dcm Service Use Case: read/write current values by
Sender Receiver Interface 771

13.8.4.4 Dcm Service Use Case: start/stop or request routine
results L 772

13.8.4.5 Dcm Service Use Case: 10 control by Client Server
Interface 773

13.8.4.6 Dcm Service Use Case: 10 control by Sender Re-
ceiverinterface 773

13.8.4.7 Dcm Service Use Case: Access to protocol, session
and security information 776

13.8.4.8 Dcm Service Use Case: Verify the access to security
level 776

13.8.4.9 Dcm Service Use Case: multiple testers access one
ECU 777
13.8.4.10 Dcm Service Use Case: Service Request Notification 777

13.8.4.11 Dcm Service Use Case: read/write and I0Ctrl cur-
rent values by Client Server Interface 778

13.8.4.12 Dcm Service Use Case: A software-component acts
as a "file server" to a diagnostictester 779

13.8.5 OBDrelated Needs 780

AUTO SAR

13.8.5.1

13.8.5.2

13.8.5.3

13.8.5.4
13.8.5.5

13.8.5.6

13.8.5.7

Dem Service Use Case: In-Use-Monitor Perfor-
mance Ratio calculation
Dcm Service Use Case: read parameter identifier via
diagnostic services by Client Server Interface
Dcm Service Use Case: read parameter identifier via
diagnostic services by Sender Receiver Interface . .
Dcm Service Use Case: Request vehicle information
Dem Service Use Case: Read DTR data from SW-C
for OBD Service$06
Dcm Service Use Case: request control of on-board
system, testorcomponent
Dem Service Use Case: In-Use-Monitoring Perfor-
mance Ratio Denominator interface

13.8.6 DiagnosticsoverIP

13.8.6.1

13.8.6.2

13.8.6.3

13.8.6.4

13.8.6.5

13.8.6.6

13.8.6.7

DolP Service Use Case: GID synchronization can
be necessary if the ECU is DolP Gid synchronization
master
DolP Service Use Case: Vehicle information is
broadcast or can be requested by the tester
DolP Service Use Case: Tester could also request
the power status with respect to diagnostics
DolP Service Use Case: Routing activation mech-
anism is used which can lead to additional impact
regarding authentication or confirmation
DolP Service Use Case: a DolP entity needs to be
informed when an external tester is attached or acti-
vated.
Service Use Case: Set and reset Warning Indicator
Requestbit
DolP Service Use Case: Atomic Software-
Component provides the further action byte to
the DolP Service Component

13.8.7 Miscellaneous Diagnostic Service Use-Cases

13.8.7.1
13.8.7.2
13.8.7.3

13.8.7.4
13.8.7.5
13.8.7.6

13.8.7.7
13.8.7.8

13.8.7.9

Dcm Service Use Case: DiagnosticSessionControl .
Dcm Service Use Case: EcuReset
Dcm Service Use Case: EcuReset ModeRapidPow-
erShutDown
Dcm Service Use Case: CommunicationControl . . .
Dcm Service Use Case: ControlDTCSetting
Dcm Service Use Case: Response On Event via di-
agnosticservices L oL,
Dcm Service Use Case: SecurityAccess
Service Use Case: Atomic Software-Component im-
plements a Hardware Shutdown
Service Use Case: Upload and download of data . .

13.9 Diagnostic Log and Trace Dependency

783

784

784
785

786

787

787

788

791

792

792

793

793

794

795
796
796
796

797
797
798

798
799

800
800
801

AUTO SAR

13.9.1

DIt use Case:Application software component transmits de-
bug information L.

13.10 Synchronized Time-Base Manager Dependency

13.10.1

13.10.2

13.10.3

13.10.4

13.10.5

StbM Use Case: start timer and potentially get notified about
its expiration
StbM Use Case: Software-Components wants to get notifi-
cations of statuschanges,
StbM Use Case: Process time snapshot obtained from global
time slave for diagnostics purposes
StbM Use Case: Software-component represents a global
timemaster.
StbM Use Case: Software-component represents a global
timeslave

13.11 Secure On-Board Communication

13.11.1

13.11.2

13.11.3
13.11.4
13.11.5
13.11.6

SecOc Use Case: obtain the verification status of secure
communication
SecOc Use Case: software component retires from secure
communication for a given period
SecOc Use Case: deliver freshness to SecOC |
SecOc Use Case: deliver freshness to SecOC Il
SecOc Use Case: deliver freshness to SecOC Il
SecOc Use Case: enable the sending of Pdus even if com-
putation of the MAC isnotpossible.

13.12 J1939 Communication e

13.12.1

13.12.2

J1939RM Use Case: AtomicSwComponentType sends re-
queststothebus.
J1939RM Use Case: AtomicSwComponentType accepts re-
quests fromthebus L.

13.13 Error Tracer e

13.13.1

Error Tracer Use Case: Default Error Tracer Service use
Case: reportfailure

13.14 Vehicle-2-X Facilities

13.14.1

13.14.2

13.14.3

13.14.4

13.14.5

13.14.6

V2xFac Use Case: Application software component provides
Vehicle specific data to the V2X-Stack for CAM transmission
V2xFac Use Case: V2xFac notifies application software com-
ponent about received messages
V2xFac Use Case: Application software component triggers
transmission of DENM message
V2xFac Use Case: Application software component pro-
cesses the MAP (topology) Extended Message
V2xFac Use Case: Application software component pro-
cesses Infrastructure to Vehicle Information Message
V2xFac Use Case: Application software component pro-
cesses Signal Phase And Timing Extended Message

13.15 Vehicle-2-X Management

13.15.1

13.15.2

13.15.3

13.15.4

13.15.5

AUTO SAR

V2xM Use Case: Application software component provides
Vehicle specific data to the V2X-Stack for Position and Time
information L
V2xM Use Case: Application software component needs
V2X specific data from the V2X Manager
V2xM Use Case: Application software component has soft-
control over Pseudonym-Change within V2X Manager
V2xM Use Case: Application software component has the
ability to do Verification-on-Demand
V2xM Use Case: Application software component do loca-
tion based calculations 0oL

13.16 Hardware Test Manager

13.16.1

HtssM Service Use Case: Query results of hardware tests

14 Rapid Prototyping Scenarios

14.1 Definition of Rapid Prototyping Scenario
14.2 Usage of RptContainerson M1
14.3 Usage of atpSplitable for RptContainerson M1
14.4 Modifications of the Meta-Model for supporting the RPT scenario . . .
14.5 Extended Buffer Access Method

14.5.1 RP Preparation.
14.5.2 Service Points
14.5.2.1 Service Functions L.
A Glossary

B Supported Special Use Cases

B.1 Asymmetric Data Transformation between a Software-Component and
aComplex Driver

B.1.1
B.1.2

Overview e
Modeling Aspects

C History of Constraints and Specification ltems
C.1 Constraint History of this Document according to AUTOSAR R4.0.1 . .

C.1.1
C.1.2
C.1.3

Changed ConstraintsinR4.0.1
Added Constraintsin R4.0.1
Deleted Constraints

C.2 Constraint History of this Document according to AUTOSAR R4.0.2 . .

C.2.1
c.22
C.2.3

Changed ConstraintsinR4.0.2
Added Constraintsin R4.0.2
Deleted Constraintsin R4.0.2.

C.3 Constraint History of this Document according to AUTOSAR R4.0.3 . .

C.3.1
C.3.2
C.3.3
C.3.4
C.3.5

Changed ConstraintsinR4.0.3
Added ConstraintsinR4.0.3
Added Specification ItemsinR4.0.3
Deleted ConstraintsinR4.0.3.
Deleted Specificationltems

AUTO SAR

C.4

C.5

C.6

C.7

C.8

C.9

Constraint History of this Document according to AUTOSAR R4.1.1 . .
C.4A1 Changed ConstraintsinR4.1.1
C4.2 Added ConstraintsinR4.1.1
C.4.3 Changed Specification ltemsinR4.1.1
C44 Added Specification ItemsinR4.1.1
C45 Deleted ConstraintsinR4.1.1
C4.6 Deleted Specification ltemsinR4.1.1

Constraint History of this Document according to AUTOSAR R4.1.2 . .
C.5.1 Changed ConstraintsinR4.1.2
C5.2 Added ConstraintsinR4.1.2
C.5.3 Changed Specification ltemsinR4.1.2
C54 Added Specification ItemsinR4.1.2
C.5.5 Deleted ConstraintsinR4.1.2.
C.5.6 Deleted Specification ltemsinR4.1.2

Constraint History of this Document according to AUTOSAR R4.1.3 . .
C.6.1 Added TraceablesinR4.1.3
C.6.2 Changed TraceablesinR4.1.3
C.6.3 Deleted TraceablesinR4.1.3
C.6.4 Added ConstraintsinR4.1.3
C.6.5 Changed ConstraintsinR4.1.3
C.6.6 Deleted ConstraintsinR4.1.3.

Constraint History of this Document according to AUTOSAR R4.2.1 . .
C.71 Added TraceablesinR4.21
C.7.2 Changed TraceablesinR4.2.1
C.7.3 Deleted TraceablesinR4.2.1
C.74 Added ConstraintsinR4.21
C.7.5 Changed ConstraintsinR4.2.1
C.7.6 Deleted ConstraintsinR4.2.1

Constraint History of this Document according to AUTOSAR R4.2.2 . .
C.8.1 Added TraceablesinR4.22.
c.8.2 Changed TraceablesinR4.22
C.8.3 Deleted TraceablesinR4.22
C.84 Added ConstraintsinR4.22
C.8.5 Changed ConstraintsinR4.22
C.8.6 Deleted ConstraintsinR4.22.

Constraint History of this Document according to AUTOSAR R4.3.0 . .
C.91 Added TraceablesinR4.3.0.
C9.2 Changed TraceablesinR4.3.0
C.9.3 Deleted TraceablesinR4.3.0
Co4 Added ConstraintsinR4.3.0
C.95 Changed ConstraintsinR4.3.0
C.9.6 Deleted ConstraintsinR4.3.0.

C.10 Constraint History of this Document according to AUTOSAR R4.3.1 . .

C.101 Added Traceablesin4.3.1.
C.10.2 Changed Traceablesin4.3.1
C.10.3 Deleted Traceablesin4.3.1

AUTO SAR

C.10.4 Added Constraintsin4.3.1
C.10.5 Changed Constraintsin4.3.1
C.10.6 Deleted Constraintsin4.3.1
C.11 Constraint History of this Document according to AUTOSAR R4.4.0 . .
C.11.1 Added Traceablesin4.4.0.
C.11.2 Changed Traceablesin4.4.0
C.11.3 Deleted Traceablesin4.4.0
C11.4 Added Constraintsin4.4.0
C.11.5 Changed Constraintsin4.4.0
C.11.6 Deleted Constraintsin4.4.0
Modeling of InstanceRef
D.1 Introduction
D2 Modeling.
D.2.1 Components and Compositions
D.2.2 Definition of implicit Communication Behavior
D.2.3 Internal Behavior
Examples
E.1 Examples for the Definition of variable-size Arrays
Mentioned Class Tables
Upstream Mapping
G.1 Introduction
G.2 NVM . e
G.3 Com . ..
G4 WAgM e
G5 Dcem .. e
G.6 Dem e
G.7 BswM e
G.8 MemMap
G.9 RTE e
G.10 ECUC e
G.11 OS . . e

H Splitable Elements in the Scope of this Document

Variation Points in the Scope of this Document

AUTOSAR

References

[1] Standardization Template
AUTOSAR_TPS_StandardizationTemplate

[2] Specification of RTE Software
AUTOSAR_SWS_RTE

[3] Virtual Functional Bus
AUTOSAR_EXP_VFB

[4] Methodology
AUTOSAR_TR_Methodology

[5] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture

[6] Basic Software Module Description Template
AUTOSAR_TPS_BSWModuleDescriptionTemplate

[7] Specification of Timing Extensions
AUTOSAR_TPS_TimingExtensions

[8] Requirements on Timing Extensions
AUTOSAR_RS_TimingExtensions

[9] Specification of ECU Resource Template
AUTOSAR_TPS_ECUResourceTemplate

[10] System Template
AUTOSAR_TPS_SystemTemplate

[11] Generic Structure Template
AUTOSAR_TPS_GenericStructureTemplate

[12] Requirements on Software Component Template
AUTOSAR_RS_SoftwareComponentTemplate

[13] Supplementary material of general blueprints for AUTOSAR
AUTOSAR_TR_GeneralBlueprintsSupplement

[14] Specification of Basic Software Mode Manager
AUTOSAR_SWS_BSWModeManager

[15] Information technology — Universal Coded Character Set (UCS)
http://www.iso.org

[16] Specification of Manifest
AUTOSAR_TPS_ManifestSpecification

[17] Specification of I/O Hardware Abstraction
AUTOSAR_SWS |OHardwareAbstraction

http://www.iso.org

AUTOSAR

[18] ISO 17356-4: Road vehicles — Open interface for embedded automotive applica-
tions — Part 4: OSEK/VDX Communication (COM)

[19] Specification of SW-C End-to-End Communication Protection Library
AUTOSAR_SWS_ EZ2ELibrary

[20] Specification of Communication Manager
AUTOSAR_SWS_COMManager

[21] Specification of Communication
AUTOSAR_SWS_COM

[22] Specification of Platform Types
AUTOSAR_SWS_PlatformTypes

[23] ISO/IEC 9899:1990
http://www.iso.org

[24] ASAM MCD 2MC ASAP2 Interface Specification
http://www.asam.net
ASAP2-V1.51.pdf

[25] ASAM MCD 2 Harmonized Data Objects Version 1.1
harmonized-data-objects-V1.1.pdf

[26] Collection of blueprints for AUTOSAR M1 models
AUTOSAR_MOD_GeneralBlueprints

[27] ISO 26262 (Part 1-10) — Road vehicles — Functional Safety, First edition
http://www.iso.org

[28] ASAM AE Calibration Data Format V2.0.0
http://www.asam.net
ASAM-AE-CDF-V2_0_0-Users-Guide.pdf

[29] Specification of Operating System
AUTOSAR_SWS_OS

[30] ISO 17356-3: Road vehicles — Open interface for embedded automotive applica-
tions — Part 3: OSEK/VDX Operating System (OS)

[31] Specification of ECU Configuration Parameters (XML)
AUTOSAR_MOD_ECUConfigurationParameters

[32] Glossary
AUTOSAR_TR_Glossary

[33] Specification of NVRAM Manager
AUTOSAR_SWS_NVRAMManager

[34] ASAM AE Functional Specification Exchange Format V1.0.0
http://www.asam.net
AE-FSX_V1.0.0.pdf

http://www.iso.org
http://www.asam.net
http://www.iso.org
http://www.asam.net
http://www.asam.net

AUTOSAR

[35] Specification of Watchdog Manager
AUTOSAR_SWS_WatchdogManager

[36] Specification of ECU State Manager
AUTOSAR_SWS_ECUStateManager

[37] Diagnostic Extract Template
AUTOSAR_TPS_DiagnosticExtractTemplate

[38] Specification of Function Inhibition Manager
AUTOSAR_SWS_FunctionInhibitionManager

[39] Specification of Diagnostic Event Manager
AUTOSAR_SWS_DiagnosticEventManager

[40] Specification of Diagnostic Communication Manager
AUTOSAR_SWS_DiagnosticCommunicationManager

[41] Road vehicles — Diagnostic communication over Internet Protocol (DolP)
http://www.iso.org

[42] Specification of Diagnostic Log and Trace
AUTOSAR_SWS_DiagnosticLogAndTrace

[43] Specification of Synchronized Time-Base Manager
AUTOSAR_SWS_SynchronizedTimeBaseManager

[44] Specification of Secure Onboard Communication
AUTOSAR_SWS_ SecureOnboardCommunication

[45] Specification of a Request Manager for SAE J1939
AUTOSAR_SWS_SAEJ1939RequestManager

[46] Specification of Default Error Tracer
AUTOSAR_SWS_ DefaultErrorTracer

[47] Specification of Vehicle-2-X Facilities
AUTOSAR_SWS_V2XFacilities

[48] Specification of Vehicle-2-X Management
AUTOSAR_SWS_V2XManagement

[49] Software Process Engineering Meta-Model Specification
http://www.omg.org/spec/SPEM/2.0/

[50] Specification of SOME/IP Transformer
AUTOSAR_SWS SOMEIPTransformer

http://www.iso.org
http://www.omg.org/spec/SPEM/2.0/

AUTOSAR

1 Introduction

1.1 Overview

This document contains the specification of the AUTOSAR Software-Component
Template. Actually, it has been created as a supplement to the formal definition of
the Ssoftware-Component Template by means of the AUTOSAR meta-model. In
other words, this document in addition to the formal specification provides introductory
description and rationale for the part of the AUTOSAR meta-model relevant for the
definition of software-components.

In this context, the term software-component refers to a formally described piece of
software existing that needs the AUTOSAR RTE [2] for execution.

Please note that the general ideas behind the semantics of application software-
components have been described in the specification of the Vvirtual Functional
Bus [3]. The latter, however, represents conceptual work that strongly influences but
does not totally govern the formal definition of software-components.

Note further that this document does not provide any “best practice” recommendations
of software-component modeling nor does it require or enforce a certain methodol-
ogy. Note however, that the methodology aspect is covered by the specification of the
AUTOSAR methodology [4].

Although it is beyond any doubt reasonable to use a suitable AUTOSAR Authoring Tool
for dealing with AUTOSAR software-components, this specification does not make any
assumptions nor does it give recommendations regarding the tooling.

1.2 Scope

As already mentioned in chapter 1.1, the Scope of this document is the description of
AUTOSAR software-components. This work covers the following three aspects:

e A general description of SwComponentTypeS using PortPrototypesS and
PortInterfaces, i.e. this document defines the SwComponentType as an en-
tity which can be described through PortPrototypes which provide or require
PortInterfaces.

e A description of CompositionSwComponentTypeS Which are sub-systems
consisting out of connected instances of software-components, i.e. software-
components may be defined in the form of hierarchical subsystems which in turn
consist of software-components again. The description of such hierarchical struc-
tures is in scope of this document.

e A description of AtomicSwComponent Type which is implemented as a piece of
software that can be mapped to an AUTOSAR ECU.
An AtomicSwComponentType therefore shows up in the ECU Software Archi-

AUTO SAR

tecture depicted in Figure 1.1. In this figure, the green (vertically striped) and
blue (diagonally striped) borders show the aspects that are described by the
Software—-Component Template.

1catio ication

pplication ctua | App
Software Software Software AUTOSAR Software

Component

Component Component Component

Software
AUTOSAR

Interface

Standardized Slandayclees Standardized AUTOSAR AUTOSAR
Interf AR Interf: Interf: Interf:
nterface T nterface erface erface

Services Communication
Standardized Standardized Standardized
Interface Interface Interface

Complex
Device
Drivers

Operating
System

aoeyajU|
pazipiepuels
()

Standardized
Interface

Microcontroller
Abstraction

ECU-Hardware

—— The software component
template describes these

Of these software components
only the AUTOSAR Interface
LTNTTRN components completely = side can be fully described in the
software component template

S SSS

Figure 1.1: Scope of this document in the ECU SW Architecture [5]

Aspects of AUTOSAR Basic Software not relevant for the RTE are out of scope; these
are covered by the Basic Software Module Description Template [6].

Also, the document does not cover aspects of timing analysis with respect to the ex-
ecution of AUTOSAR software-components. This issue is explained in the Speci-
fication of Timing Extensions [7] as well as the corresponding requirements
specification [8].

1.3 Organization of the Meta-Model

Figure 1.2 sketches the overall structure of the meta-model which formally defines
the vocabulary required to describe AUTOSAR software-components. As the dia-
gram points out, other template specifications (e.g. ECU Resource Template [9]
and system Template [10]) also use the same modeling approach in order to define
an overall consistent model of AUTOSAR software description.

The dashed arrows in the diagram describe dependencies in terms of import-
relationships between the packages within the meta-model. For example, the package

AUTO SAR

SWComponentTemplate imports meta-classes defined in the packages Generic-
Structure [11] and ECUResourceTemplate [9].

Please note that this specification document will (with some well-defined exceptions)
mostly discuss meta-model elements defined in the package SWComponentTem-—
plate.

AutosarTopLevelStructure This package contains CommonStructure
AUTOSAR, the root of
______ an autosar model. It
aggregates metaclasses <<--------—-—------ 1
from the template | —&H# | ___________
packages. -7
-
P
- -
-~ - _- - | !
_- _ | |
- - |
- Prad : |
- - ! \
SWComponentTemplate | A{ | | EcuResourceTemplate
--------------------- el
|
S oo
= . ! 4/’57
~ -
NANA ~~. T A
| | ~. o | : |
| | ~ S~ | | |
! AdaptivePlatform _-" ~o ! | !
| - ~ | |
| ~o | |
| SystemTemplate
|
| F————————=>
|
|
|

N\

|
|
DiagnosticExtract e = S
|

e = ECUCDescriptionTemplate

€ —————————
A T
| |
| |
e ————————————— = —— = — BswModuleTemplate
<< -
_____ _I
b o>
StandardizationTemplate GenericStructure All other top-level FeatureModelTemplate

packages aggregate
meta-classes from
"Generic Structure”

Figure 1.2: Structure of the meta-model

For clarification, please note that the package GenericStructure contains some
fundamental infrastructure meta-classes and common patterns that are described
in [11]. As these are used by all other template specification the dependency asso-
ciations are not depicted in the diagram for the sake of clarity.

AUTOSAR

1.4 Structure of the Template

AUTOSAR software components are described on three distinctive levels, as shown in
Figure 1.3.

AtomicSwComponentType
Virtual Functional Bus (VFB) level

«atpVariation,atpSplitable»

+internalBehavior | 0..1

SwelnternalBehavior
Run-Time-Environment (RTE) level

+behavior 1

Swclmplementation
Implementation level Iﬁ

Figure 1.3: The description of a software component is done on three levels

1.4.1 Description of Software Components on VFB Level

The highest (most abstract) description level is the Virtual Functional Bus [3].
In this document swComponent Types are described with the means of DataTypes,
PortInterfaces, PortPrototypes, and connections between them. At this level,
the fundamental communication properties of components and their communication
relationships among each other are expressed.

In the diagram depicted in Figure 1.3, this aspect is expressed by means of the de-
scription of At omicSwComponent Type'.

1.4.2 Description of Software Components on RTE Level

The middle level allows for behavior description of a given AtomicSwCompo-
nentType. This so-called SwcInternalBehavior is expressed according to
AUTOSAR RTE concepts, e.g. RTEEvents and in terms of schedulable units, so-called
RunnableEntitys.

To avoid clutter and require additional up-front information about the meta model, Composition-
SwComponent Type$ have not been added to the diagram.

AUTOSAR

For instance, for a ClientServerOperation defined in the scope of a particular
ClientServerInterface on the VFB, the behavior specifies which RunnableEn-
tity is activated as a consequence of the invocation of the specific ClientServer-
Operation.

As sketched by Figure 1.3, there may be zero or one SwcInternalBehaviors ag-
gregated by a given AtomicSwComponentType. In response to the existence of the
stereotype <atpSplitable>> at the aggregation it is possible to distribute the ag-
gregation over several physical files.

1.4.3 Descriptions of Software Components on Implementation Level

The lowest level of description specifies the implementation (i.e. in terms of the
AUTOSAR meta-model: the SwcImplementation) of a given SwcInternalBe-
havior description. More precisely, the RunnableEntitys of such a behavior are
mapped to code (source code or object code).

There may be different SwcImplementations that reference a specific SwcInter-
nalBehavior description, e.g. in different programming languages, or with differently
optimized code.

Please note that Implementation has been described in previous versions of this
document. In response to the evolution of the AUTOSAR concept the description of the
Implementation aspect has been moved to the “CommonStructure” (see Figure 1.2)
because it is also used for creating the Basic Software Module Description
Template [6].

However, the SswcImplementation still remains in the scope of this document as it
exclusively covers aspects of software-components rather than basic software mod-
ules.

1.5 Abbreviations

The following table contains a list of abbreviations used in the scope of this document
along with the spelled-out meaning of each of the abbreviations.

Abbreviation Meaning

API Application Programming Interface
BOM Byte Order Mark

CAN Controller Area Network

CSE Codes for Scaling Units

DCM Diagnostics Communication Manager

V

AUTO SAR

JAN
Abbreviation Meaning
DCY Driving Cycle
DEM Diagnostics Event Manager
DID Diagnostic Identifier
DTC Diagnostic Trouble Code
Dolp Diagnostics over IP
ECU Electrical Control Unit
EPROM Erasable Programmable Read-Only Memory
EEPROM Electrically Erasable Programmable Read-Only Memory
FID Function Identifier
GID Group Identifier
ID Identifier
10 Input/Output
P Internet Protocol
IUMPR In-Use Monitor Performance Ratio
ISO International Standardization Organization
MAC Message Authentication Code
MCAL Micro-Controller Abstraction
LIN Local Interconnect Network
MCD Measurement, Calibration, Diagnostics
NM Network Management
NV Non-Volatile
OBD On-Board Diagnostic
OEM Original Equipment Manufacturer
oS Operating System
PDU Protocol Data Unit
PID Parameter Identifier
PTO Power Take Off
RA Routing Activation
RAM Random Access Memory
ROM Read-Only Memory
RPT Rapid Prototyping
RTE Runtime Environment
SWC Software Component
TID Test Identifier
ubs Unified Diagnostic Services
UML Unified Modeling Language
VFB Virtual Functional Bus
WWH-OBD World-Wide Harmonized On-Board Diagnostics
XML Extensible Markup Language
XSD XML Schema Definition

Table 1.1: Abbreviations used in the scope of this Document

AUTOSAR

1.6 Document Conventions

Technical terms are typeset in mono spaced font, e.g. PortPrototype. As a general
rule, plural forms of technical terms are created by adding "s" to the singular form, e.g.
PortPrototypes. By this means the document resembles terminology used in the
AUTOSAR XML Schema.

This document contains constraints in textual form that are distinguished from the rest
of the text by a unique numerical constraint ID, a headline, and the actual constraint
text starting after the | character and terminated by the | character.

The purpose of these constraints is to literally constrain the interpretation of the
AUTOSAR meta-model such that it is possible to detect violations of the standardized
behavior implemented in an instance of the meta-model (i.e. on M1 level).

Makers of AUTOSAR tools are encouraged to add the numerical ID of a constraint that
corresponds to an M1 modeling issue as part of the diagnostic message issued by the
tool.

The attributes of the classes introduced in this document are listed in form of class
tables. They have the form shown in the example of the top-level element AUTOSAR:

Class AUTOSAR

Package M2::AUTOSARTemplates::AutosarTopLevelStructure

Note Root element of an AUTOSAR description, also the root element in corresponding XML documents.

Tags: xml.globalElement=true

Base ARObject

Attribute Type Mul. Kind | Note

adminData AdminData 0..1 aggr | This represents the administrative data of an Autosar file.
Tags: xml.sequenceOffset=10

arPackage ARPackage * aggr | This is the top level package in an AUTOSAR model.
Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=30

filelnfo FilelInfoComment 0..1 aggr This represents a possibility to provide a structured

Comment comment in an AUTOSAR file.
Stereotypes: atpStructuredComment
Tags: xml.roleElement=true
xml.sequenceOffset=-10
xml.typeElement=false

introduction DocumentationBlock 0..1 aggr | This represents an introduction on the Autosar file. It is
intended for example to rpresent disclaimers and legal
notes.
Tags: xml.sequenceOffset=20

Table 1.2: AUTOSAR

The first rows in the table have the following meaning:

Class: The name of the class as defined in the UML model.

AUTOSAR

Package: The UML package the class is defined in. This is only listed to help locating
the class in the overall meta model.

Note: The comment the modeler gave for the class (class note). Stereotypes and UML
tags of the class are also denoted here.

Base Classes: If applicable, the list of direct base classes.
The headers in the table have the following meaning:

Attribute: The name of an attribute of the class. Note that AUTOSAR does not distin-
guish between class attributes and owned association ends.

Type: The type of an attribute of the class.

Mul.: The assigned multiplicity of the attribute, i.e. how many instances of the given
data type are associated with the attribute.

Kind: Specifies, whether the attribute is aggregated in the class (aggr aggregation),
an UML attribute in the class (attr primitive attribute), or just referenced by it (ref
reference). Instance references are also indicated (iref instance reference) in this
field.

Note: The comment the modeler gave for the class attribute (role note). Stereotypes
and UML tags of the class are also denoted here.

Please note that the chapters that start with a letter instead of a numerical value rep-
resent the appendix of the document. The purpose of the appendix is to support the
explanation of certain aspects of the document and does not represent binding con-
ventions of the standard.

The verbal forms for the expression of obligation specified in [TPS_STDT_00053] shall
be used to indicate requirements, see Standardization Template, chapter Support for
Traceability ([1]).

The representation of requirements in AUTOSAR documents follows the table specified
in[TPS_STDT_00078], see Standardization Template, chapter Support for Traceability

([11).

1.7 Requirements Tracing

Requirements against this document are exclusively stated in the corresponding re-
quirements document [12].

The following table references the requirements specified in [12] and provides informa-
tion about individual specification items that fulfill a given requirement.

| Requirement | Description | Satisfied by \

AUTO SAR

[RS_SWCT_00010]

AUTOSAR shall support inter-
and intra-ECU-communication
mechanisms with high
reliability

[TPS_SWCT 01025] [TPS_SWCT _01026]
[TPS_SWCT 01027] [TPS_SWCT _01069]
[TPS_SWCT _01070] [TPS_SWCT _01111]
[TPS_SWCT _01516] [TPS_SWCT_01573]

[RS_SWCT_00020]

AUTOSAR shall provide open
and standardized software
interfaces for intra-ECU and
inter-ECU communication

[TPS_SWCT_01002]

[RS_SWCT_00030]

AUTOSAR shall provide
complete interfaces to
application software and basic
software modules

[TPS_SWCT 01002]

[RS_SWCT_00070]

AUTOSAR shall provide an
abstraction of the application
software from hardware

[TPS_SWCT 01030] [TPS_SWCT 01097]
[TPS_SWCT 01098]

[RS_SWCT_00080]

AUTOSAR shall provide an
independence of application
software from in-vehicle
communication technologies

[TPS_SWCT 01025] [TPS_SWCT_01026]
[TPS_SWCT_01027] [TPS_SWCT_01069]
[TPS_SWCT_01070] [TPS_SWCT _01516]

[RS_SWCT_00090]

AUTOSAR should provide an
independence of application
software from operating
systems

[TPS_SWCT 01030] [TPS_SWCT 01097]
[TPS_SWCT 01098]

[RS_SWCT _00110]

AUTOSAR shall provide a
functional interface view of
the entire system

[TPS_SWCT_01025] [TPS_SWCT_01026]
[TPS_SWCT_01027] [TPS_SWCT_01069]
[TPS_SWCT_01070] [TPS_SWCT 01516]

[RS_SWCT_00120]

AUTOSAR shall provide
protection/unlock
mechanisms for software
through appropriate services
in the infrastructure

[TPS_SWCT 01031] [TPS_SWCT _01049]
[TPS_SWCT 01050] [TPS_SWCT 01051]
[TPS_SWCT 01052] [TPS_SWCT 01053]
[TPS_SWCT 01054] [TPS_SWCT 01055]
[TPS_SWCT 01321] [TPS_SWCT 01592]
[TPS_SWCT 01713] [TPS_SWCT 01714]

[RS_SWCT_00150]

AUTOSAR shall provide
means to protect
SW-Components from
malicious SW-Components

[TPS_SWCT_01002]

[RS_SWCT_00160]

AUTOSAR shall provide
means to achieve
compositionality

[TPS_SWCT 01002]

[RS_SWCT_00170]

AUTOSAR shall provide
diagnostics means during
runtime, for production and
services purposes

[TPS_SWCT_01028] [TPS_SWCT_01029]
[TPS_SWCT 01129] [TPS_SWCT 01132]
[TPS_SWCT _01134] [TPS_SWCT _01135]
[TPS_SWCT 01136] [TPS_SWCT 01137]
[TPS_SWCT_01138] [TPS_SWCT_01139]
[TPS_SWCT_01140] [TPS_SWCT_01425]
[TPS_SWCT_01426] [TPS_SWCT_01427]
[TPS_SWCT 01453] [TPS_SWCT _01582]
[TPS_SWCT 01591] [TPS_SWCT 01627]
[TPS_SWCT_01628] [TPS_SWCT_01629]
[TPS_SWCT 01630] [TPS_SWCT 01631]
[TPS_SWCT 01632] [TPS_SWCT 01633]

AUTO SAR

[TPS_SWCT 01634] [TPS_SWCT 01639]
[TPS_SWCT 01640] [TPS_SWCT _01654]
[TPS_SWCT 01655] [TPS_SWCT 01656]
[TPS_SWCT 01657] [TPS_SWCT 01690]
[TPS_SWCT 01691] [TPS_SWCT _01697]
[TPS_SWCT 01698] [TPS_SWCT 017086]
[TPS_SWCT 01707] [TPS_SWCT 01708]
[TPS_SWCT 01709] [TPS_SWCT 01711]
[TPS_SWCT 01712] [TPS_SWCT _01715]
[TPS_SWCT _01739] [TPS_SWCT_01765]
[TPS_SWCT 01766] [TPS_SWCT _01767]
[TPS_SWCT _01789] [TPS_SWCT_01790]
[TPS_SWCT 01791] [TPS_SWCT _02002]
[TPS_SWCT _02003] [TPS_SWCT 02004]
[TPS_SWCT 02005] [TPS_SWCT 02007]
[TPS_SWCT 02008] [TPS_SWCT 02009]
[TPS_SWCT 02010] [TPS_SWCT _02011]
[TPS_SWCT 02012] [TPS_SWCT 02013]
[TPS_SWCT 02014] [TPS_SWCT 02015]
[TPS_SWCT 02016] [TPS_SWCT _02505]

[RS_SWCT_00190]

AUTOSAR shall support
hierarchical design methods

[TPS_SWCT 01032] [TPS_SWCT 01033]
[TPS_SWCT 01034] [TPS_SWCT 01035]
[TPS_SWCT 01036] [TPS_SWCT 01037]
[TPS_SWCT 01697] [TPS_SWCT 01698]

[RS_SWCT_00200]

Definitions of relations
between SW components are
exhaustive and formal

[TPS_SWCT 01002] [TPS_SWCT _01322]
[TPS_SWCT 01323] [TPS_SWCT 01325]
[TPS_SWCT _01326] [TPS_SWCT _01328]
[TPS_SWCT 01329] [TPS_SWCT 01330]
[TPS_SWCT 01331] [TPS_SWCT 01333]
[TPS_SWCT 01334] [TPS_SWCT 01335]
[TPS_SWCT 01336] [TPS_SWCT 01337]
[TPS_SWCT 01338] [TPS_SWCT 01339]
[TPS_SWCT _01340] [TPS_SWCT _01341]
[TPS_SWCT 01342] [TPS_SWCT _01343]
[TPS_SWCT 01344] [TPS_SWCT _01345]
[TPS_SWCT 01346] [TPS_SWCT 01347]
[TPS_SWCT _01348] [TPS_SWCT_01349]
[TPS_SWCT 01350] [TPS_SWCT 01351]
[TPS_SWCT 01352] [TPS_SWCT 01353]
[TPS_SWCT 01557] [TPS_SWCT 01558]
[TPS_SWCT 01567] [TPS_SWCT 01663]

[RS_SWCT _00210]

SW components are
protected from illegal access

[TPS_SWCT_01002]

[RS_SWCT_00220]

Management of vehicle
diversity is supported by
AUTOSAR

[TPS_SWCT 01038] [TPS_SWCT 01039]
[TPS_SWCT_01040] [TPS_SWCT_01041]
[TPS_SWCT_01042] [TPS_SWCT _01447]

[RS_SWCT_00230]

The Software Component
Template shall provide the
ability to define naming
conventions for public
symbols

[TPS_SWCT_01635]

[RS_SWCT_02000]

AUTOSAR shall support a
top-down hierarchical design

[TPS SWCT 01032] [TPS_SWCT 01033]
[TPS_SWCT 01034] [TPS_SWCT 01035]
[TPS_SWCT _01036] [TPS_SWCT _01037]

AUTO SAR

[RS_SWCT_02010]

Interfaces of atomic
software-components shall be
supported

[TPS_SWCT 01002]

[RS_SWCT_02020]

Bottom-up design of
CompositionTypes shall be
supported

[TPS_SWCT 01032] [TPS_SWCT 01033]
[TPS_SWCT 01034] [TPS_SWCT 01035]
[TPS_SWCT 01036] [TPS_SWCT 01037]

[RS_SWCT_02030]

Specification of
Communications shall be
supported

[TPS_SWCT 01002] [TPS_SWCT _01025]
[TPS_SWCT 01026] [TPS_SWCT 01027]
[TPS_SWCT 01516]

[RS_SWCT_02060]

Interaction with basic software
shall be considered

[TPS_SWCT 01043] [TPS_SWCT _01044]
[TPS_SWCT 01045] [TPS_SWCT _010486]
[TPS_SWCT 01693]

[RS_SWCT_02080]

Designing a Sensor Actuator
Component shall be
supported

[TPS_SWCT _01047] [TPS_SWCT_01048]

[RS_SWCT_02090]

Data-consistency for
communication among
RunnableEntities shall be
supported

[TPS_SWCT 01031] [TPS_SWCT 01049]
[TPS_SWCT 01050] [TPS_SWCT 01051]
[TPS_SWCT 01052] [TPS_SWCT 01053]
[TPS_SWCT 01054] [TPS_SWCT 01055]
[TPS_SWCT 01637] [TPS_SWCT 01713]
[TPS_SWCT 01714]

[RS_SWCT_02100]

Definition of physical units
shall be supported

[TPS_SWCT 01056] [TPS_SWCT 01057]
[TPS_SWCT 01058] [TPS_SWCT 01059]
[TPS_SWCT 01060] [TPS_SWCT 01061]
[TPS_SWCT 01068] [TPS_SWCT 01736]
[TPS_SWCT 01737]

[RS_SWCT _02110]

Definition of comments shall
be supported

[TPS_SWCT 01062]

[RS_SWCT_03000]

The SW-Component template
shall support compositions

[TPS_SWCT 01032] [TPS_SWCT 01033]
[TPS_SWCT 01034] [TPS_SWCT 01035]
[TPS_SWCT 01036] [TPS_SWCT 01037]

[RS_SWCT_03010]

The SW-Component template
shall support interfaces

[TPS_SWCT 01025] [TPS_SWCT _01026]
[TPS_SWCT 01069] [TPS_SWCT 01070]
[TPS_SWCT 01516]

[RS_SWCT_03040]

The SW-Component template
shall support description of
the behavior

[TPS_SWCT _01075] [TPS_SWCT _01108]

[RS_SWCT_03045]

The SW-Component template
shall allow enabling of
RTE-Feature to get the
activating RTE-Event of
Runnable Entity

[TPS_SWCT_01469]

[RS_SWCT_03046]

The SW-Component template
shall support instance specific
RTE-Events

[TPS_SWCT 02507]

[RS_SWCT_03050]

The SW-Component template
shall support the definition of
schedulability

[TPS_SWCT 01030] [TPS_SWCT 01097]
[TPS_SWCT 01098]

[RS_SWCT_03055]

The SW-Component template
shall support optional

configuration of ExclusiveArea
usage within RunnableEntities

[TPS_SWCT 01457] [TPS_SWCT_01458]
[TPS_SWCT_01459] [TPS_SWCT _01460]

AUTO SAR

[RS_SWCT_03065]

The SW-Component template
shall support the definition of
implicit communication
behavior

[TPS_SWCT 01466] [TPS_SWCT 01470]
[TPS_SWCT 01471] [TPS_SWCT 01472]
[TPS_SWCT _01473] [TPS_SWCT_01475]
[TPS_SWCT _01476] [TPS_SWCT_01479]
[TPS_SWCT 01481] [TPS_SWCT _01482]
[TPS_SWCT 01509] [TPS_SWCT 01625]

[RS_SWCT_03090]

The SW-Component template
shall support the definition of
needed and usable sensors
and actuators

[TPS_SWCT _01047] [TPS_SWCT_01048]

[RS_SWCT _03100]

The SW-Component template
shall support variant handling

[TPS _SWCT 01038] [TPS_SWCT _01040]
[TPS_SWCT _01041] [TPS_SWCT_01042]
[TPS_SWCT_01370] [TPS_SWCT _01371]
[TPS_SWCT 01372] [TPS_SWCT 01373]
[TPS_SWCT_01448]

[RS_SWCT_03110]

The SW-Component template
shall support modes

[TPS_SWCT 01071] [TPS_SWCT 01190]
[TPS_SWCT 01376] [TPS_SWCT 01377]
[TPS_SWCT 01378] [TPS_SWCT 01379]
[TPS_SWCT 01380] [TPS_SWCT 01381]
[TPS_SWCT 01382] [TPS_SWCT 01383]
[TPS_SWCT 01384] [TPS_SWCT 01385]
[TPS_SWCT 01388] [TPS_SWCT 01511]
[TPS_SWCT 01512] [TPS_SWCT 01513]
[TPS_SWCT 01530] [TPS_SWCT 01531]
[TPS_SWCT 01532] [TPS_SWCT 01533]
[TPS_SWCT 01534] [TPS_SWCT 01535]
[TPS_SWCT 01536] [TPS_SWCT 01541]
[TPS_SWCT 01542] [TPS_SWCT _01552]
[TPS_SWCT 01553] [TPS_SWCT 01554]
[TPS_SWCT 01555] [TPS_SWCT 01581]
[TPS_SWCT _01664]

[RS_SWCT_03115]

The SW-Component template
shall support mapping of
mode declarations

[TPS_SWCT 01464] [TPS_SWCT_01465]
[TPS_SWCT_01545]

[RS_SWCT_03120]

The SW-Component template
shall support dependency on
modes

[TPS_SWCT 01077]

[RS_SWCT_03130]

The SW-Component template
shall support connections
between PortInterfaces

[TPS_SWCT 01079] [TPS_SWCT 01080]
[TPS_SWCT 01081] [TPS_SWCT 01082]
[TPS_SWCT 01083] [TPS_SWCT 01084]
[TPS_SWCT _01113] [TPS_SWCT_01573]

[RS_SWCT_03135]

The SW-Component template
shall support record type
subsetting

[TPS_SWCT 01023] [TPS_SWCT _01024]
[TPS_SWCT 01551]

[RS_SWCT_03136]

The SW-Component template
shall support record type
subsetting with primitive types

[TPS_SWCT 01195]

[RS_SWCT_03140]

The SW-Component template
shall support conditional
existence of PortPrototypes

[TPS_SWCT 01038]

AUTOSAR

[RS_SWCT_03141]

The SW-Component template
shall support the conditional
existence of data element
prototypes, operation
prototypes, parameter
prototypes in an interface

[TPS_SWCT 01106]

[RS_SWCT _03142]

The SW-Component template
shall support the conditional
existence of Component
Prototypes

[TPS _SWCT 01038]

[RS_SWCT 03143]

The SW-Component template
shall support the conditional
existence of Connector
Prototypes

[TPS_SWCT_01040]

[RS_SWCT_03144]

The SW-Component template
shall support a configurable
size of arrays

[TPS_SWCT _01076] [TPS_SWCT_01078]
[TPS_SWCT 01752]

[RS_SWCT 03148]

Attributes swMinAxisPoints
and swMaxAxisPoints shall be
adjustable by an System
Constant Definition

[TPS_SWCT _01107] [TPS_SWCT _01181]

[RS_SWCT_03149]

The SW-Component template
shall support the conditional
existence of RunnableEntitys

[TPS_SWCT 01085]

[RS_SWCT _03150]

The SW-Component template
shall support the conditional
existence of RTEEvents

[TPS_SWCT 01085]

[RS_SWCT 03151]

The SW-Component template
shall support the conditional
existence of InterRunnable
Variables

[TPS_SWCT 01085]

[RS_SWCT 03152]

The SW-Component template
shall support the conditional
accessibility for measurement

[TPS_SWCT_01130]

[RS_SWCT 03153]

The SW-Component template
shall support the conditional
existence of parameter
prototypes

[TPS_SWCT 01085]

[RS_SWCT 03154]

The SW-Component template
shall support conditional ports
for software components

[TPS _SWCT 01038]

[RS_SWCT _03155]

The SW-Component template
shall support interfaces with
different resolutions

[TPS _SWCT 01099] [TPS_SWCT 01100]
[TPS_SWCT _01101] [TPS_SWCT_01102]
[TPS_SWCT _01103] [TPS_SWCT_01104]
[TPS_SWCT 01105]

[RS_SWCT _03170]

The SW-Component template
shall support fixed data
exchange

[TPS_SWCT 01102] [TPS_SWCT_01103]
[TPS_SWCT_01104]

[RS_SWCT 03175]

The SW-Component template
shall support the definition of
calibration datasets

[TPS_SWCT 01177] [TPS_SWCT_01178]
[TPS_SWCT_01188]

[RS_SWCT _03180]

The SW-Component template
shall support SAE J1939
Protocol Features

[TPS_SWCT_01076] [TPS_SWCT_01673]
[TPS_SWCT_01674] [TPS_SWCT _01752]

AUTO SAR

[RS_SWCT_03181]

The SW-Component template
shall support arrays of
variable number of elements
within the maximum size

[TPS_SWCT _01076] [TPS_SWCT 01127]
[TPS_SWCT 01495] [TPS_SWCT 01601]
[TPS_SWCT_01602] [TPS_SWCT_01604]
[TPS_SWCT 01605] [TPS_SWCT _01606]
[TPS_SWCT 01607] [TPS_SWCT _01608]
[TPS_SWCT _01610] [TPS_SWCT _01612]
[TPS_SWCT 01613] [TPS_SWCT _01614]
[TPS_SWCT_01615] [TPS_SWCT_01617]
[TPS_SWCT _01618] [TPS_SWCT_01619]
[TPS_SWCT_01620] [TPS_SWCT_01621]
[TPS_SWCT 01622] [TPS_SWCT _01623]
[TPS_SWCT _01636] [TPS_SWCT_01641]
[TPS_SWCT 01642] [TPS_SWCT 01644]
[TPS_SWCT_01645] [TPS_SWCT_01647]
[TPS_SWCT_01648] [TPS_SWCT_01649]
[TPS_SWCT 01650] [TPS_SWCT _01752]

[RS_SWCT 03182]

The SW-Component template
shall support byte arrays of
variable number of elements

[TPS_SWCT 01127]

[RS_SWCT _03190]

The SW-Component template
shall support the ability to
publish/specify the diagnostic
capabilities and its resources
of an SWC

[TPS _SWCT 01028] [TPS_SWCT 01029]
[TPS_SWCT_01129] [TPS_SWCT_01132]
[TPS_SWCT _01134] [TPS_SWCT_01135]
[TPS_SWCT _01136] [TPS_SWCT_01137]
[TPS_SWCT 01138] [TPS_SWCT _01139]
[TPS_SWCT 01140] [TPS_SWCT 01425]
[TPS_SWCT _01426] [TPS_SWCT _01427]
[TPS_SWCT_01453] [TPS_SWCT_01537]
[TPS_SWCT 01538] [TPS_SWCT 01539]
[TPS_SWCT_01540] [TPS_SWCT_01544]
[TPS_SWCT 01546] [TPS_SWCT 01547]
[TPS_SWCT_01577] [TPS_SWCT_01578]
[TPS_SWCT_01582] [TPS_SWCT_01591]
[TPS_SWCT_01627] [TPS_SWCT_01628]
[TPS_SWCT 01629] [TPS_SWCT _01630]
[TPS_SWCT 01631] [TPS_SWCT _01632]
[TPS_SWCT 01633] [TPS_SWCT 01634]
[TPS_SWCT 01639] [TPS_SWCT 01640]
[TPS_SWCT 01654] [TPS_SWCT 01655]
[TPS_SWCT 01656] [TPS_SWCT _01657]
[TPS_SWCT _01680] [TPS_SWCT _01690]
[TPS_SWCT 01691] [TPS_SWCT 01706]
[TPS_SWCT_01707] [TPS_SWCT_01708]
[TPS_SWCT_01709] [TPS_SWCT _01711]
[TPS_SWCT 01712] [TPS_SWCT _01715]
[TPS_SWCT _01739] [TPS_SWCT_01746]
[TPS_SWCT 01765] [TPS_SWCT _01766]
[TPS_SWCT_01767] [TPS_SWCT_01769]
[TPS_SWCT_01789] [TPS_SWCT_01790]
[TPS_SWCT_01791] [TPS_SWCT_02002]
[TPS_SWCT _02003] [TPS_SWCT _02004]
[TPS_SWCT _02005] [TPS_SWCT_02007]
[TPS_SWCT 02008] [TPS_SWCT 02009]
[TPS_SWCT_02010] [TPS_SWCT_02011]
[TPS_SWCT_02012] [TPS_SWCT_02013]
[TPS_SWCT_02014] [TPS_SWCT _02015]

AUTO SAR

[TPS_SWCT 02016] [TPS_SWCT 02505]

[RS_SWCT_03200]

The SW-Component template
shall support vehicle and
application mode
management

[TPS_SWCT 01008] [TPS_SWCT _01009]
[TPS_SWCT_01010] [TPS_SWCT _01011]
[TPS_SWCT _01016] [TPS_SWCT _01017]
[TPS_SWCT 01018] [TPS_SWCT _01019]
[TPS_SWCT _01020] [TPS_SWCT _01021]
[TPS_SWCT 01063] [TPS_SWCT 01064]
[TPS_SWCT 01065] [TPS_SWCT 01066]
[TPS_SWCT _01067] [TPS_SWCT _01071]
[TPS_SWCT _01126] [TPS_SWCT_01450]
[TPS_SWCT 01451] [TPS_SWCT 01552]
[TPS_SWCT 01553] [TPS_SWCT 01554]
[TPS_SWCT _01572] [TPS_SWCT _01581]
[TPS_SWCT_01664]

[RS_SWCT_03201]

The SW-Component template
shall support Portgroups

[TPS_SWCT _01063] [TPS_SWCT_01064]
[TPS_SWCT 01065] [TPS_SWCT 01066]
[TPS_SWCT 01096] [TPS_SWCT 01126]
[TPS_SWCT _01169] [TPS_SWCT _01173]
[TPS_SWCT 01174]

[RS_SWCT _03202]

The SW-Component template
shall support enabling SWCs
to request dedicated modes

[TPS_SWCT 01086] [TPS_SWCT 01201]
[TPS_SWCT 01353] [TPS_SWCT 01554]
[TPS_SWCT 01572]

[RS_SWCT _03203]

The SW-Component template
shall support propagation of
mode information

[TPS_SWCT 01086] [TPS_SWCT 01087]
[TPS_SWCT _01200] [TPS_SWCT _01201]
[TPS_SWCT 01202] [TPS_SWCT _01552]
[TPS_SWCT 01553] [TPS_SWCT 01566]
[TPS_SWCT 01664]

[RS_SWCT_03210]

The SW-Component template
shall support integrity and
scaling at ports

[TPS_SWCT 01023] [TPS_SWCT _01024]
[TPS_SWCT 01099] [TPS_SWCT _01100]
[TPS_SWCT 01101] [TPS_SWCT 01102]
[TPS_SWCT 01103] [TPS_SWCT 01104]
[TPS_SWCT_01105] [TPS_SWCT_01158]
[TPS_SWCT_01159] [TPS_SWCT_01160]
[TPS_SWCT 01161] [TPS_SWCT 01162]
[TPS_SWCT 01163] [TPS_SWCT _01164]
[TPS_SWCT 01165] [TPS_SWCT _01166]
[TPS_SWCT 01167] [TPS_SWCT _01168]
[TPS_SWCT _01449] [TPS_SWCT _01543]
[TPS_SWCT _01549] [TPS_SWCT _01550]
[TPS_SWCT 01551] [TPS_SWCT _01560]
[TPS_SWCT _01561] [TPS_SWCT_01583]
[TPS_SWCT 01768]

[RS_SWCT_03215]

The SW-Component template
shall define the need to add
application data type on top of
implementation data type

[TPS_SWCT 01072] [TPS_SWCT _01073]
[TPS_SWCT 01074] [TPS_SWCT _01189]
[TPS_SWCT 01229] [TPS_SWCT 01231]
[TPS_SWCT _01235] [TPS_SWCT_01236]

AUTO SAR

[RS_SWCT_03216]

The SW-Component template
shall support application data

type

[TPS_SWCT 01072] [TPS_SWCT_01073]
[TPS_SWCT 01179] [TPS_SWCT 01180]
[TPS_SWCT_01181] [TPS_SWCT_01183]
[TPS_SWCT_01184] [TPS_SWCT_01185]
[TPS_SWCT _01189] [TPS_SWCT _01191]
[TPS_SWCT_01229] [TPS_SWCT_01230]
[TPS_SWCT 01231] [TPS_SWCT_01235]
[TPS_SWCT_01236] [TPS_SWCT_01237]
[TPS_SWCT_01240] [TPS_SWCT_01241]
[TPS_SWCT_01242] [TPS_SWCT_01243]
[TPS_SWCT_01249] [TPS_SWCT_01256]
[TPS_SWCT _01486]

[RS_SWCT_03217]

The SW-Component template
shall support implementation
data type

[TPS_SWCT _01072] [TPS_SWCT_01074]
[TPS_SWCT _01183] [TPS_SWCT _01184]
[TPS_SWCT 01189] [TPS_SWCT 01191]
[TPS_SWCT _01229] [TPS_SWCT 01231]
[TPS_SWCT_01232] [TPS_SWCT_01233]
[TPS_SWCT_01235] [TPS_SWCT_01236]
[TPS_SWCT _01237] [TPS_SWCT_01248]
[TPS_SWCT_01250] [TPS_SWCT _01251]
[TPS_SWCT 01252] [TPS_SWCT 01253]
[TPS_SWCT_01254] [TPS_SWCT_01255]
[TPS_SWCT_01257] [TPS_SWCT_01258]
[TPS_SWCT_01259] [TPS_SWCT_01700]
[TPS_SWCT _01701] [TPS_SWCT 01702]

[RS_SWCT 03218]

The SW-Component template
shall support data types for
primitive data mapping

[TPS_SWCT 01477]

[RS_SWCT_03220]

The SW-Component template
shall allow communication
attributes on compositions

[TPS_SWCT 01088] [TPS_SWCT 01568]

[RS_SWCT_03221]

The SW-Component template
shall allow port specific
configuration of data
transformation properties

[TPS_SWCT 01222] [TPS_SWCT_01594]
[TPS_SWCT 01595] [TPS_SWCT 01596]
[TPS_SWCT 01597] [TPS_SWCT 01598]
[TPS_SWCT 01599] [TPS_SWCT _01600]

[RS_SWCT_03222]

The SW-Component template
shall support error notification
for transformed data
communication

[TPS _SWCT 01616] [TPS_SWCT 01624]
[TPS_SWCT _01626]

[RS_SWCT _03225]

The SW-Component template
shall support an enhanced
non-volatile (NV) memory
interface

[TPS_SWCT 01141] [TPS_SWCT _01142]
[TPS_SWCT _01143] [TPS_SWCT_01227]
[TPS_SWCT _01228] [TPS_SWCT _01584]
[TPS_SWCT 01585] [TPS_SWCT _01586]
[TPS_SWCT _01587] [TPS_SWCT _01588]
[TPS_SWCT 01589] [TPS_SWCT _01590]
[TPS_SWCT 01662] [TPS_SWCT 01665]
[TPS_SWCT 01666] [TPS_SWCT 01675]
[TPS_SWCT 01754] [TPS_SWCT _01755]
[TPS_SWCT 02501] [TPS_SWCT_02502]
[TPS_SWCT 02503] [TPS_SWCT _02504]

[RS_SWCT_03230]

The SW-Component template
shall support documentation
of M1 artifacts

[TPS_SWCT 01062] [TPS_SWCT _01699]

AUTO SAR

[RS_SWCT_03240]

The SW-Component template
shall support end-to-end
communication protection

[TPS_SWCT 01089] [TPS_SWCT _01090]
[TPS_SWCT 01091] [TPS_SWCT _01092]
[TPS_SWCT 01093] [TPS_SWCT 01094]
[TPS_SWCT 01095] [TPS_SWCT 01508]
[TPS_SWCT 01529]

[RS_SWCT_03241]

The SW-Component template
shall support partial
networking

[TPS_SWCT _01169] [TPS_SWCT_01170]
[TPS_SWCT _01171] [TPS_SWCT_01172]
[TPS_SWCT _01173] [TPS_SWCT_01174]
[TPS_SWCT 01175]

[RS_SWCT _03250]

The SW-Component template
shall support bidirectional
communication

[TPS_SWCT 01112] [TPS_SWCT _01113]
[TPS_SWCT_01454] [TPS_SWCT_01455]
[TPS_SWCT _01514] [TPS_SWCT _01573]

[RS_SWCT_03260]

The SW-Component template
shall support rule-based
initialization of arrays

[TPS_SWCT 01484] [TPS_SWCT 01485]
[TPS_SWCT _01493] [TPS_SWCT_01494]
[TPS_SWCT _01495] [TPS_SWCT _01528]
[TPS_SWCT 01609] [TPS_SWCT 01692]

[RS_SWCT _03270]

The SW-Component template
shall support overriding the
activation period time on
instance level

[TPS_SWCT_02507]

[RS_SWCT _03280]

The SW-Component template
shall support the description
of bypass points and bypass
scenarios

[TPS_SWCT 01719] [TPS_SWCT_01720]
[TPS_SWCT _01721] [TPS_SWCT _01722]
[TPS_SWCT 01723] [TPS_SWCT _01724]
[TPS_SWCT 02046] [TPS_SWCT _02047]
[TPS_SWCT 02048] [TPS_SWCT _02049]
[TPS_SWCT 02050] [TPS_SWCT 02051]
[TPS_SWCT _02052]

[RS_SWCT_03281]

The SW-Component template
shall support post-build
hooking tools for rapid

prototyping

[TPS_SWCT_02047]

[RS_SWCT_03282]

The SW-Component template
shall support the description
of service points and rapid
prototyping scenarios

[TPS_SWCT_02046] [TPS_SWCT_02047]

[RS_SWCT_03290]

The SW-Component template
shall support the initialization

of runnables without usage of
mode management

[TPS_SWCT 01525]

[RS_SWCT _03310]

The SW-Component template
shall support Diagnostics over
IP

[TPS SWCT 01537] [TPS _SWCT 01538]
[TPS_SWCT 01539] [TPS_SWCT 01544]
[TPS_SWCT_01546] [TPS_SWCT_01547]
[TPS_SWCT_01746]

[RS_SWCT _03320]

The SW-Component template
shall support the definition of
optional elements for
communication

[TPS_SWCT 01771] [TPS_SWCT _01772]
[TPS_SWCT _01773] [TPS_SWCT_01774]
[TPS_SWCT _01775] [TPS_SWCT_01785]
[TPS_SWCT 01786]

Table 1.3: RequirementsTracing

AUTOSAR

2 Conceptual Aspects

2.1 Introduction

For the sake of a compact description of relevant meta-model elements the discussion
and explanation of conceptual aspects has been concentrated in this chapter.

Reading this chapter is not a pre-requisite for understanding the subsequent chapters.
It just provides a central place for the detailed description of conceptual aspects used
in various other chapters of this document.

The actual explanation of the concept of a software-component starts in chapter 3.

2.2 Measurement and Calibration

2.2.1 Basic Approach of Measurement and Calibration

While performing the calibration process using a MCD tool (Measurement, Calibration,
and Diagnostic) the calibration engineer needs to have a specific insight to the data
within the CPU at runtime.

This insight is provided by access to ECU internal variables (also called measure-
ments) as well as calibration parameters (sometimes also called characteristic value).
For more details, please refer to [TPS_SWCT_01418]

The description of measurement variables and calibration parameters is basically the
same. In AUTOSAR both appear finally as DataPrototypes.

2.2.2 Calibration Parameters Overview

A Calibration Parameter is a parameter which characterizes the dynamics of a control
algorithm. From a software implementation point of view, it is a variable with only
read-access during the normal operation of an ECU. Characteristics are specialized
DataPrototype entities in terms of its associated type but are used in a similar way.

[TPS_SWCT_01418] Ways to define a calibration parameter | This means that Cal-
ibration Parameters can be defined

e individually for a SwComponentPrototype in the SwcInternalBehavior of
a SwComponentType Via an aggregation of an ParameterDataPrototype in
the role of perInstanceParameter (similarto PerInstanceMemory).

e sharing between all swComponentPrototypes of the same SwComponent-
Type inits SwcInternalBehavior via an aggregation of an ParameterDat—
aPrototype in the role of sharedParameter Or constantMemory.

AUTOSAR

e for several swComponentPrototypes (using the port-/interface-concept with
ParameterInterfaces).

10
Please note:

e The definition of perInstanceParameter is further described in chap-
ter 2.2.3.3.

e Chapter 2.2.3.2 provides more information about the definition of sharedpa-
rameter Or constantMemory.

e For more information regarding the definition of ParameterInterface, please
refer to chapter 2.2.3.1.

Tt

Curve Map AXxis

Figure 2.1: Some Categories of calibration parameters

Note: the structure of various calibration objects is visualized in [13].

2.2.3 Using Calibration Parameters

As mentioned above, a ParameterDataPrototype can be used in the context of
SwcInternalBehavior as well as in the context of PortPrototypes.

2.2.3.1 Sharing Calibration Parameters within Compositions

To provide calibration parameters for being visible in other SswComponentTypes, a
dedicated ParameterSwComponent Type (see Figure 3.4) that inherits from SwCom-
ponentType has to be used as a SwComponentPrototype Withina Composition-
SwComponentType.

AUTOSAR

Class ParameterSwComponentType
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note The ParameterSwComponentType defines parameters and characteristic values accessible via provided

Ports. The provided values are the same for all connected SwComponentPrototypes

Tags: atp.recommendedPackage=SwComponentTypes

Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable, SwComponentType

Attribute Type Mul. Kind | Note

constant ConstantSpecification * ref Reference to the ConstanSpecificationMapping to be

Mapping MappingSet applied for the particular ParameterSwComponentType

Stereotypes: atpSplitable
Tags: atp.Splitkey=constantMapping

dataType DataTypeMappingSet * ref Reference to the DataTypeMapping to be applied for the
Mapping particular ParameterSwComponentType

Stereotypes: atpSplitable

Tags: atp.Splitkey=dataTypeMapping
instantiation InstantiationDataDef * aggr The purpose of this is that within the context of a given
DataDefProps Props SwComponentType some data def properties of individual

instantiations can be modified.

The aggregation of InstantiationDataDefProps is subject
to variability with the purpose to support the conditional
existence of PortPrototypes

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompile Time

Table 2.1: ParameterSwComponentType

[TPS_SWCT _01420] swComponentType requiring access to shared calibration
parameters needs RPortPrototype typed by a ParameterInterface | Every
SwComponent Type requiring access to shared calibration parameters will have an
RPortPrototype typed by a ParameterInterface. The definition of this shared
calibration access in the context of a CompositionSwComponent Type will be defined
by creating a SwConnector between the relevant SwComponentPrototypes. ()

Class Parameterinterface
Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface
Note A parameter interface declares a number of parameter and characteristic values to be exchanged

between parameter components and software components.

Tags: atp.recommendedPackage=Portinterfaces

Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtoType, CollectableElement,
Datalnterface, Identifiable, MultilanguageReferrable, PackageableElement, Portinterface, Referrable

Attribute Type Mul. Kind | Note

parameter ParameterData 1.* agar The ParameterDataPrototype of this Parameterinterface.
Prototype

Table 2.2: Parameterinterface

[TPS_SWCT 01421] ParameterInterface is not restricted to parameters which
can actually can be calibrated | Note that a ParameterInterface is not restricted
to parameters which can actually can be calibrated. It can be used whenever there
shall be no write access to the data during normal operation of the software, i.e. only
constant data are visible over the interface. |()

AUTOSAR

The compatibility rules for ParameterInterfaces are described in chapter 6.4; the
compatibility rules for ParameterDataPrototypes are described in chapter 6.4.4.

[TPS_SWCT _01422] Delegation of PortPrototypes typed by a Parameter-
Interface | Access to shared calibration parameters can be provided and re-
quired even over CompositionSwComponentTypeS USINg DelegationSwConnec—
tors and AssemblySwConnectors.

This means that each access to calibration parameters between SwComponentPro-
totypes is explicitly visible. If a SwConnector spans after the mapping of SwCom-
ponentPrototypes over two different ECUs the system generation process has to
ensure the proper allocation of the ParameterbDataPrototype while the calibration
system has to cope with setting the parameter synchronously on the affected ECUs. |

()

AUTO SAR

AtpBlueprintable
AtpPrototype

PortPrototype

I

AbstractProvidedPortPrototype AbstractRequiredPortPrototype

PPortPrototype RPortPrototype
«isOfType» «isOfType»
1 1
{redefines {redefines
+providedinterface \ |/ atpType} +requiredinterface\|/ atpType}
ARElement

AtpBlueprint
AtpBlueprintable
AtpType
Portinterface

+ isService: Boolean
+ serviceKind: ServiceProviderEnum [0..1]

1

Datalnterface

AtpPrototype
DataPrototype

?

Parameterinterface

+parameter | 1.*

ZF ¢

AutosarDataPrototype

+/swDataDefProps

0.1

«atpVariation»

ParameterDataPrototype
SwbDataDefProps

Figure 2.2: Parameterinterface

2.2.3.2 Sharing Calibration Parameters between SwComponentPrototypes of
the Same SwComponentType

To share calibration parameters between several swComponentPrototypes of the
same SwComponentType, @ ParameterDataPrototype is attached to an SwcIn-
ternalBehavior in sharedParameter role (see [TPS_SWCT_01418]).

AUTOSAR

When the swcInternalBehavior is aggregated by an AtomicSwComponentType
the actual calibration parameters of the ParameterDataPrototype is the same for
all swComponentPrototypes.

[TPS_SWCT_01423] pParameterDataPrototype aggregated in the role con-
stantMemory | Additionally, it is possible to describe the implementation of shared
characteristic values via a ParameterDataPrototype which is attached to an
SwcInternalBehavior inthe role constantMemory.

In contrast to the ParameterDataPrototype in sharedParameter role this kind
of memory is not instantiated by the RTE. This supports more efficient implementa-
tions (especially for software components provided as object code) by avoidance of
the additional indirection caused by the RTE’s component data structure. |()

Further on this kind of memory reduces the dependencies of the software-component’s
implementation to generated RTE code which is appreciated for safety related function-
alities.

Nevertheless the information about these characteristic values has to be taken into
account for the A2L file generation.

A typical example for this kind of sharing code between instances is dealing with two
lambda sensors in multiple cylinder-bank engines, where (at least) two SwComponent -
Prototypes for each lambda sensor will use the very same Calibration Parameters.

2.2.3.3 Providing Instance Individual Characteristic Data

[TPS_SWCT _01424] ParameterDataPrototype aggregated in the role perIn-
stanceParameter | To provide instance individual calibration parameters a Param-
eterDataPrototype is owned by a SwcInternalBehavior in perInstancePa-
rameter role.

When the swcInternalBehavior is attached to an At omicSwComponent Type, the
actual calibration values are specific for each SwComponentPrototype. |()

AUTOSAR

InternalBehavior

AtpStructureElement

AutosarDataPrototype

f

+constantMemory

?

SweclinternalBehavior

«atpVariation,atpSplitable» 0..*

1

'
1 +perinstanceParameter
.

+ supportsMultipleInstantiation: Boolean

+ handleTerminationAndRestart: HandleTerminationAndRestartEnum

«atpV'ariation‘,alpSpIitabIe»
' ,

' '
' +sharedParameter
' '

¢

«atpVariation étpSpI_itabIe»

+runnable [0..*

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

AtpStructureElement
ExecutableEntity

RunnableEntity

+ canBelnvokedConcurrently: Boolean
+ symbol: Cldentifier

«atharieition',alpSpIitabIe»
' .

ParameterDataPrototype

V

AtpPrototype
DataPrototype

P
' +localParameter,
’

0.1 +autosarParameter/:\ 0.1

1
«instanceRef»
|

AutosarParameterRef

+accessedParameter 1

¢

\ +parameterAccess
\

gt

«atpVariation,atpSplitable» 0..*

AbstractAccessPoint
AtpStructureElement
Identifiable

ParameterAccess

Figure 2.3: ParameterDataPrototypes in internal behavior

2.3 Runtime and Data Consistency Aspects

2.3.1

This section gives some background information and lists possible strategies concern-
ing the implementation of the RunnableEntitys and the RTE with respect to efficient

Background: the Issues

communication between the RunnableEntitys.

The communication among RunnableEntitys can very efficiently be implemented

by means of “sharing memory™'.

'Please note that the term “sharing memory” can be interpreted on different levels. It is e.g. in the C
language possible to use variables with external linkage (a.k.a. “global variables”, although this term is

not officially defined by the C language) for the purpose of inter-Runnable communication.

AUTOSAR

This is technically feasible because it is always guaranteed that the RunnableEn-
titys within an AtomicSwComponentType are always gathered at a specific pro-
cessing unit (in other words: distribution is not an option).

Note that the purpose of communication among the RunnableEntitys is to establish
a data flow scheme. The latter is a very popular pattern in the application of control
theory to automotive embedded systems. So if “global variables” are used for estab-
lishing internal communication among RunnableEntitys they acquire the semantics
of so called state-messages.

Nevertheless, directly sharing memory between RunnableEntitys requires a seri-
ous problem to be solved: the guarantee of data consistency among communicating
RunnableEntitys. The RunnableEntitys will indeed be mapped to tasks so that
one RunnableEntity of an AtomicSwComponent Type may be preempted by a dif-
ferent RunnableEntity of the same AtomicSwComponent Type.

Please note that a purist approach to achieving data consistency not only applies to
single accesses of concurrently accessed variables. Rather, it would not be permitted
that the value of a concurrently accessed variable (with state-message semantics) is
unintentionally changed during the run-time of a RunnableEntity.

The following paragraphs describe some common strategies that can be used to en-
sure the required data-consistency. We do not attempt to describe the pros or cons of
these approaches.

2.3.1.1 Mutual Exclusion with Semaphores

Multi-threaded operating systems provide mutexes (mutual exclusion semaphores) that
protect access to an exclusive resource that is used from within several tasks.

The RTE could use these OS-provided mutexes to make sure that the RunnableEn-
titys sharing a memory-space would never run concurrently. The RTE would make
sure the task running the RunnableEntity has taken an appropriate mutex before
accessing the memory shared between the RunnableEntitys.

2.3.1.2 Interrupt Disabling

Another alternative would be the disabling of interrupts during the run-time of
RunnableEntitys or at least for a period in time identical to the interval from the
first to the last usage of a concurrently accessed variable in a RunnableEntity. This
approach could lead to seriously non-deterministic execution timing.

AUTOSAR

2.3.1.3 Priority Ceiling

Priority ceiling allows for a non-blocking protection of shared resources. Provided that
the priority scheme is static, the AUTOSAR OS is capable of temporarily raising the
priority of a task that attempts to access a shared resource to the highest priority of all
tasks that would ever attempt to access the resource.

By this means is technically impossible that a task in temporary possession of a re-
source is ever preempted by a task that attempts to access the resource as well.

2.3.1.4 Implicit Communication by Means of Variable Copies

Another alternative is the usage of copies of concurrently accessed variables with state
message semantics. Note that this approach directly corresponds to the semantics of
“‘implicit” sender-receiver communication (see 7.5.1.2).

This means in particular that for a concurrently used variable a copy is created on
which a RunnableEnt ity entity can work without any danger of data inconsistency.

This concept requires additional code to write the value of the concurrently accessed
variable to the copy before the RunnableEntity that accesses the variable is exe-
cuted. The value of the copy shall be written back to the concurrently accessed variable
after the RunnableEntity has been terminated.

This concept is sketched in Figure 2.4. Since it would be too expensive and error-prone
to manually care about the copy routines it would be a good idea to leave the creation
of the additional code to a suitable code generator.

Code Generator

Copy

> Copy to Runnable Entity from

Copy to

Runnable Entity Copy from,

Figure 2.4: Generation of copy routines around RunnableEntitys

The additional copy routines as sketched in Figure 2.4 already protect the particular
RunnableEntitys from unintended changes of concurrently accessed variables. It
would, however, be possible to further optimize the process by reducing the additional
code at the beginning and end of each task (see Figure 2.5).

AUTOSAR

2.3.2 Data Consistency at Runtime

In addition, copy routines will only be inserted where appropriate, e.g. a copy routine
for writing the value of a copy back to the concurrently accessed variable will only be
inserted if the RunnableEntity has write access to the concurrently used variable.

Please note that the copy routines have to temporarily make sure that the copy process
is not interrupted in order to be capable of consistently copying the values from and to
the concurrently accessed variable.

These periods, however, are supposed to be very short compared with the overall
run-time consumption of the RunnableEntity and thus would not have a significant
impact on the runtime behavior.

[Code Generator]

Runnable Entity Copy from

Figure 2.5: Optimized insertion of copy routines

> Copy to Runnable Entity

Further optimization criteria can be applied, for example: it would be perfectly safe
to avoid the creation of copies for RunnableEntitys that are scheduled in the task
with the highest priority of all tasks that (via contained RunnableEntitys) access a
certain concurrently accessed variable.

In order to keep the application code free of any dependencies from the code gener-
ation, access to concurrently accessed variables will be guarded by macros that are
later resolved by the code generator.

The presence of the guard macros directly supports the reuse on the level of source
code. The reuse on the level of object code is only possible if the scheduling scenario
(in terms of the assignment of RunnableEntitys to priority levels) does not change.

This concept can only be implemented properly with the aid of a code generator if the
variables in question can be identified. In other words: the description of an Atomic-
SwComponent Type has to expose all concurrently accessed variables to the outside
world.

2.3.3 Modeling Aspects of Data Consistency

The intrinsic meaning of the terms “explicit communication” and “implicit communica-
tion” is explained in section 7.5.1.1. It would be fair to say that the distinction between

AUTOSAR

implicit and explicit communication establishes a usage pattern in the application do-
main, i.e. in the world of the developer of AUTOSAR software-components and their
implementation.

There is another facet to this subject, however, namely the question how this pattern is
implemented in the meta-model. With respect to the application of the pattern for port-
based communication the details can be found in section 7.5.1.2, more specifically in
section 7.5.1.3. The consideration of the internal communication based on so-called
“‘inter-runnable variables” is described in section 7.4.2.

By reading the respective text sections it becomes apparent that the two applications
of the pattern are modeled differently. The port-based communication uses the vari-
ableAccess to formalize different roles of accessing communication elements. Some
of the roles used for this purpose imply explicit communication (e.g. dataSendPoint)
and some represent implicit communication (e.g. dataWriteAccess).

The important thing about using the VariableAccess, however, is that the modeling
of communication roles is abstracted from the actual communication elements and
represents a uniform (meaning: it can refer to the target directly or by a so-called
InstanceRef) modeling approach that is applied for all use cases?.

Admittedly, this is handled in a different way for the internal communication. Here,
the additional layer of abstraction is not used (although it would have been techni-
cally feasible to do so) with respect to the clear separation of “inter-runnable variables
with implicit behavior” and “inter-runnable variables with explicit behavior” in the RTE.
The implementation of different communication roles (i.e. implicit vs. explicit) is done
by directly aggregating variableDataPrototype in the roles explicitInter—
RunnableVariable and implicitInterRunnableVariable.

On the other hand, access to internal communication never requires the usage of an
InstanceRef and therefore the abstraction might be considered unnecessary over-
head that blows up the M1 model.

2.4 Variant Handling in the Software Component Template

The software Component Template supports the creation of Variants in a subset
of its model elements. The full list of model elements that support variation can be
found in the appendix.

[TPS_SWCT _01038] Support for variant Handling in the in Software Com-
ponent Template [The Variant Handling support in the in Software Com-
ponent Template is mainly driven by the purpose to describe a variable system on
Virtual Functional Bus[3] level by varying

¢ the existence of SwComponentPrototypes

20n a related note, even for non-communication related data access the same pattern applies imple-
mented by ParameterAccess

AUTOSAR

e the existence of SwConnectors
e the existence of Chapters of SwComponentDocumentation
¢ the existence of PortPrototypes

|(RS_SWCT 00220, RS SWCT 03100, RS SWCT 03140, RS SWCT 03142,
RS SWCT 03154)

[TPS_SWCT_01039] Purpose of variant handling | This supports adjusting the num-
ber and kind of software-component instances as well as their interconnection in a
particular system variant. |(RS_SWCT_00220)

[TPS_SWCT _01447] Applicable binding times for model elements in the scope of
the Software Component Template | The first three cases are supporting Post-
Build binding. For the existence of PortPrototypes only preCompileTime iS SUp-
ported as latest Binding Time. |(RS_SWCT_00220)

[TPS_SWCT _01040] swConnector exists depending on a PostBuild condition
[A swConnector which exists depending on a PostBuild condition has an impact
on the behavior of API function calls that apply on a PortPrototype to which the
SwConnector is attached. If the swConnector does not exist the behavior of the RTE
API functions need to take this into account. This means that the RTE implementation
of this PortPrototype resembles the behavior of an unconnected PortPrototype.
|(RS_SWCT_00220, RS _SWCT _03100, RS_SWCT_03143)

Please find more details in the specification of the RTE [2].

[TPS_SWCT _01041] API functions of not existing swConnector are still part of
the software-component’s implementation | If SwConnectors do not exist the cor-
responding API functions are still part of the software-component’s implementation.
It is not possible to remove the API functions in a PostBuild step. Therefore the lat-
est reasonable Binding Time for the conditional existence of a PortPrototype is
preCompileTime. |(RS_SWCT_ 00220, RS_SWCT_03100)

[TPS_SWCT_01085] Variation on the behavior level | In addition to variation of the
VFB-related model elements, the description of variant software-component implemen-
tations is supported. Please note that this requires a broad support of variability in the
Internal Behavior.

The identified main use case are
e the existence of RunnableEntitys
e the existence of RTEEvents

e the existence of variableDataPrototypes in the roles implicitInter-
RunnableVariable and explicitInterRunnableVariable

e the existence of ParameterDataPrototypes in the roles perInstancePa-
rameter, sharedParameter, and constantMemory

|(RS_SWCT_03149, RS_SWCT_03150, RS_SWCT_03151, RS_SWCT_03153)

AUTOSAR

For the same reason that applies on the existence of PortPrototype the latest
Binding Time of these kinds of variability is preCompileTime.

In the meta-model, all locations that may exhibit variability are marked with the stereo-
type <atpvariation>. This allows the definition of possible variation points.
Tagged Values are used to specify additional information, for example the latest binding
time.

[TPS_SWCT _01042] Four types of locations in the meta-model which may exhibit
variability [There are four types of locations in the meta-model which may exhibit
variability:

e Aggregations

e Associations

e Attribute Values

e Classes providing property sets
|(RS_SWCT_00220, RS_SWCT_03100)

The reasons for the attachment of the stereotype <atpvariation>> to certain model
elements and the consequences for other model elements are explained in class tables
in the following chapters. More details about the AUTOSAR Variant Handling Concept
can be found in the AUTOSAR Generic Structure Template [11].

2.5 Communication Specification of Composition Component
Types

[TPS_SWCT_01088] comspecs defined by CompositionSwComponentTypes | It
shall be possible to attach ComSpecs to PortPrototypes owned by Composition-—
SwComponentTypes. |(RS_SWCT_03220)

2.5.1 Rationale

ComSpecs attached to a PortPrototype owned by an AtomicSwComponent Type
have a direct impact on the generation of the RTE. The RTE Generator, on the other
hand, does not consider the existence of CompositionSwComponentTypes.

Nevertheless, there are some cases where the definition of a ComSpec attached to a
PortPrototype owned by a CompositionSwComponentType does make sense.

That is, in case an OEM wants to submit the definition of a CompositionSwCompo-
nentType to a supplier for adding more details and implementing the behavior the
OEM might want to point out that from the OEM’s point of view sender initvalues
and receiver initvalues apply for the elements of PortInterfaces used to type
the delegation PortPrototypes.

AUTOSAR

The idea is that the supplier takes over the initvalues attached to the delegation
PortPrototypes and copies them to the PortPrototypes owned by SwCompo-
nentPrototypes of the CompositionSwComponentType.

[TPS_SWCT _01568] Consideration of RPort ComSpec or PPortComSpec depend-
ing on the ownership [The RTE Generator shall take the attributes of the RPort Com-
Spec or PPortComSpec of the PortPrototypes owned by At omicSwComponent -
TypeS Of ParameterSwComponent Type and ignore the attributes of the RPort Com-
Spec Or PPortComSpec attached to PortPrototypes owned by Composition-—
SwComponentType. |(RS_SWCT_03220)

Therefore, the initvalues of the delegation PortPrototype would be taken as
mere templates for the detailing of PortPrototypes connected to the delegation
PortPrototypes.

It is not required that the initvalues of delegated PortPrototype and a Port-
Prototype connected by means of a DelegationSwConnector match.

Although this would certainly make sense in many cases it is eventually still left to the
supplier to decide on the specific initvalues applicable inside the Composition-
SwComponentType.

On the other hand, a requirement that the initvalues defined on the surface of Com-
positionSwComponentType and the inside of the CompositionSwComponent-
Type shall be consistent in any case might effectively prevent the reuse of existing
AtomicSwComponentTypesS.

Please note that the ability to define a ComSpec in the context of a Composition-
SwComponent Type implies that it shall be possible to define mappings of Applica-
tionDataTypeS used in a PortInterface to their corresponding Implementa-
tionDataTypesS.

For this purpose the CompositionSwComponentType OWNS a DataTypeMap-—
pingSet in the role dataTypeMapping and a ConstantSpecificationMap-
pingSet inthe role constantvValueMapping.

SwConponentType
CompositionSwComponentType

«atpSplitable» «atpSplitable»

+dataTypeMapping|/0..* +constantValueMapping\|/0..*

ARElement ARElement

AtpBlueprint ConstantSpecificationMappingSet
AtpBlueprintable

DataTypeMappingSet

Figure 2.6: Specification of data type mapping for CompositionSwComponentType

AUTOSAR

2.6 PRPortPrototype

In some cases swComponentTypes need to read and write the same piece of data.
One of the most prominent examples for this use case is the NvBlockSwComponent -
Type that factually ready and writes blocks of NvVRAM.

Without the ability to combine read and write semantics in a kind of PortPrototype
that supports both read and write semantics work-arounds have to be implemented
that come with a certain footprint on memory and processing time.

2.6.1 Use Case 1

Without the ability to define a combined read and write semantics the definition of an
RPortPrototype and a PPortPrototype is required for reading and writing the
applicable data.

Application SW Component
R_MyNvData P_MyNvData

E 2

<

R_MyNvData NvBlock SW Component P_MylvData
T, mappings LY

N K

ramBlock

Figure 2.7: Use Case 1 for the existence of PRPortPrototype

Technically, this read and write access is related to the same data item in an NVRAM
Block. This requires a consistent connection of the PortPrototypes between
an NvBlockSwComponentType and ApplicationSwComponentType as well as a
consistent mapping of the corresponding RPortPrototype and a PPortPrototype
of the NvBlockSwComponent Type and the related element of the ramBlock.

2.6.2 Use Case 2

It may happen that a SwComponent Type need to consume the same data that it pro-
duces. If the only way to achieve this was the connection of a PPortPrototype to an
RPortPrototype of the same SwComponentType then the creator of the SwCom-
ponentType cannot enforce this connection as it is created on a higher level of ab-
straction in the context of a CompositionSwComponent Type.

AUTOSAR

In other words, it is impossible to fully specify the semantics of the otherwise self-
contained swComponentType.

Application SW Component A
R_MyData P_MyData

—Er\Read access Write access _.7]

Application SW Component B
MyDats 2 B

—E‘:\Read access

Figure 2.8: Use Case 2 for the existence of PRPortPrototype

This means that only in the in best case one buffer for the data is needed. But depend-
ing on the mapping RunnableEntitys to OS tasks additional buffers may need to be
allocated by the RTE to fully implement the implicit communication pattern.

As an alternative, the ApplicationSwComponentType could utilize inter-runnable
variables but unfortunately this inhibits any optimization in the RTE and will consume
additional RAM. In contrast to the previous approach at least two buffers are needed.

2.6.3 Use Case 3

In this scenario, several ApplicationSwComponentTypeS are iterating over the
same large set of data. This means each ApplicationSwComponentType imple-
ments one out of many steps of a complex data processing algorithm applied to the
same piece of data.

AUTOSAR

Application SW Component A

Write access 72—

Application SW Component B
R.Readaccess yyite access’_,aE—

Application SW Component C

k. Readaccess Writeaccess 72

Figure 2.9: Use Case 3 for the existence of PRPortPrototype

For example, this scenario may apply for video signal processing in camera applica-
tions. Typically, such applications will not be distributed over several ECUs.

It is clear that in this case the allocation of several buffers in the RTE is required to im-
plement the individual connections between the ApplicationSwComponentTypes.
In most cases, the processing has to be executed at a certain point in time in a dedi-
cated order.

2.6.4 Solution

The solution to the above-mentioned use cases is the ability to define a PortProto-
type that can read and write the same piece of data. This solves both the described
problem of resource consumption as well as the problem of having to define multiple
PortPrototypes as outlets for same piece of data item.

The technical details of the definition of PRPortPrototype are explained in chap-
ters 3.2.2 and 4.2.1.

2.7 Pretended Networking

[TPS_SWCT_01510] The role of pretended networking | Pretended networking is
a feature to reduce energy consumption of an ECU by switching the ECU in a mode
called Pretended Networking. Inthis mode the communication on communication
networks is reduced and the ECU can go into power saving modes.

AUTOSAR

When communication via communication networks is required the mode Pretended
Networking shall be left by request of a mode change to Normal Mode. |()

[TPS_SWCT_01511] Configuration option is encoded into ModeDeclaration |
The identification of different configuration options for Pretended Networking shall
be encoded into the definition of dedicated ModeDeclarations inside a ModeDec-
larationGroup. |(RS_SWCT_03110)

For example, assume that an implementation of pretended networking supports three
configuration options:

e PRETENDED_NW_MODE_OFF
e PRETENDED_NW_MODE_ONE
e PRETENDED_NW_MODE_TWO

In this example case, a ModeDeclarationGroup consisting of three ModeDecla-
rations shall be defined where each ModeDeclaration shall represent one of the
above-mentioned configuration options. The shortNames of the ModeDeclaration
shall be taken from the above-mentioned list.

[TPS_SWCT_01512] Request change of Pretended Networking mode | A
SwComponent Type that needs to be able to request a change in the operating mode
of Pretended Networking shall provide a PPortPrototype typed by a Sender-
ReceiverInterface (see [TPS_SWCT_01086]) for requesting a change (towards
the BswM [14]) of the Pretended Networking mode.

It is out of the scope of this document to define the particular properties of the applica-
ble SenderReceiverInterface. The details of this specificSenderReceiverIn-
terface can be found in the specification of the BswM [14]. |(RS_SWCT_03110)

More details about how a mode change is requested can be found in section 9.

[TPS_SWCT_01513] React on the change of Pretended Networking mode | A
SwComponent Type that needs to be able to react on a change in the operating mode
of Pretended Networking shall provide an RPortPrototype typed by a Mod-
eSwitchInterface (see [TPS_SWCT_01087]) for reacting on a change (initiated by
the BswM [14]) of the Pretended Networking mode.

It is out of the scope of this document to define the particular properties of the appli-
cable ModeswitchInterface. The details of this specific ModeSwitchInterface
can be found in the specification of the BswM [14]. |(RS_SWCT_03110)

AUTOSAR

2.8 Variable-size Array Data Types
2.8.1 Overview and Use cases

AUTOSAR supports the definition of array data types where the size of the actual
payload varies at run-time. As far as the configuration is concerned, it is possible to
specify a maximum number of array elements that shall not be exceeded at run-time.

In order to properly understand the approach, it is necessary to understand that the
support for variable-Size Array Data Type$S has been introduced in two waves
that each had a different motivation.

2.8.1.1 “Old-world” dynamic-size Arrays

In the first wave, the support for variable-Size Array Data Type$ was limited
to data types that basically boil down to an array where the base type is an unsigned
integer data type with a length of exactly one byte.

The main use cases for this scenario are derived from diagnostics requirements as
well as support for the J1939 communication protocol.

In both cases the actual length of a Variable-Size Array Data Type could be
determined from the context, i.e. either by the diagnostic basic-software module or by
the implementation of the J1939 TP.

For the lack of a better terminology, this specification distinguishes between “old-world”
dynamic-size arrays and “new-world” variable-Size Array Data TypeS. It will
be necessary to clearly define the characteristics that allow for an disambiguation be-
tween the “old-world” dynamic-size arrays and “new-world” variable-Size Array
Data TypesS.

[TPS_SWCT _01641] Definition of an “old-world” dynamic-size array data type by
means of an ApplicationArrayDataType [An ApplicationArrayDataType
that doesn’t define attribute dynamicArraySizeProfile and that aggregates an
ApplicationArrayElement where attribute arraySizeSemantics exists and is
set to the value variablesSize shall be considered an “old-world” dynamic-size array
data type. |(RS_SWCT_03181)

Please note that [TPS_SWCT_01641] can’t go any deeper into the specifics of the
given data type because it is intentionally focused on ApplicationDataTypes.
There are use cases where the distinction between “old-world” dynamic-size arrays and
“‘new-world” Variable—-Size Array Data TypeS must be done in the absence of
a corresponding ImplementationDataType.

In general, the disambiguation becomes multi-faceted (but not necessarily easier)
if the definition of a corresponding ImplementationDataType iS available (see
[TPS_SWCT_01642)).

AUTOSAR

[TPS_SWCT_01642] Definition of an “old-world” dynamic-size array data type by
means of an ImplementationDataType | An ImplementationDataType that
(after all type references are resolved) fulfills all of the following conditions shall be
considered an “old-world” dynamic-size array data type:

e The value of attribute category is set to ARRAY

e The ImplementationDataType doesn’t define the attribute dynamicArray-
SizeProfile

e The ImplementationDataType aggregates a subElement where

— attribute arraySizeSemantics exists and is set to the value variable-
Size

— attribute arraySizeHandling does not exist

e The ImplementationDataType.swDataDefProps.baseType exists and the
attribute

— baseTypeEncoding exists and is set to the value NONE
— baseTypeSize exists and is set to the value 8
|(RS_SWCT_03181)

By and large, the defining characteristics for “old-world” dynamic-size arrays is the
absence of a definition of the attribute ApplicationArraybDataType.dynamicAr—
raySizeProfile Or ImplementationDataType.dynamicArraySizeProfile.

By regulation of [constr_1387], “old-world” dynamic-size arrays are not supported for
transmission by means of a data transformer. The only supported kind of variable-
Size Array Data Type that can be transmitted using a data transformer is the
“new-world” variable-size arrays.

2.8.1.2 “New-world” variable-size Arrays

In contrast to this, the second wave of support for Vvariable-Size Array Data
Types was motivated by the application software layer itself.

Here, the situation is entirely different because the actual size cannot be determined
by any context software module. The application itself is responsible for maintaining
the proper length of a variable-Size Array Data Type at run-time.

As a consequence, the specification of the actual array size at run-time needs to be re-
flected by the structure of the data types used for hosting the variable-Size Array
Data Type.

[TPS_SWCT _01644] Definition of a “new-world” variable-size array data type by
means of an ApplicationArrayDataType | An ApplicationArrayDataType

AUTOSAR

that fulfills all of the following conditions shall be considered an “new-world” dynamic-
size array data type.

e The ApplicationArrayDataType defines attribute ApplicationArray-
DataType.dynamicArraySizeProfile.

e ApplicationArrayDataType aggregates an ApplicationArrayElement
that defines attribute ApplicationArrayElement.arraySizeHandling.

|(RS_SWCT_03181)

[TPS_SWCT _01645] Definition of a “new-world” variable-size array data type by
means of an ImplementationDataType [An ImplementationDataType that
fulfills all of the following conditions shall be considered an “new-world” dynamic-size
array data type.

e The ImplementationDataType defines attribute Implementation-
DataType.dynamicArraySizeProfile.

e ITmplementationDataType aggregates an ImplementationDataType-
Element that defines attribute ImplementationDataTypeElement.array—
SizeHandling.

|(RS_SWCT 03181)

In contrast to the first use case described above, the application-motivated variable-
Size Array Data Type cannotbe limited interms of the base type of the array data
type, i.e. limiting the underlying data type to an unsigned integer data type with a length
of exactly one byte is not an option.

On top of that, several possible structures of variable-Size Array Data TypeS
have been required. This aspect is depicted in Figure 2.10.

[TPS_SWCT _01636] Definition of profiles for the definition of variable-Size
Array Data TypeS | The possible variants for Variable-Size Array Data
TypeS are:

Linear The data type of the elements of the Vvariable-Size Array Data Type
itself does not consist of a variable-Size Array Data Type.

This case corresponds to the possible value VSA_LINEAR of attribute dynami-
cArraySizeProfile.

Square The data type of the elements of the Variable-Size Array Data Type
itself consists of Variable-Size Array Data TypeS wWhere the maximum
number of elements in all “second order” arrays is identical to the maximum
number of elements in the “first order” array.

This case corresponds to the possible value VSA_SQUARE of attribute dynami-
cArraySizeProfile.

Rectangular The data type of the elements of the variable-Size Array Data
Type itself consists of variable-Size Array Data Types datatypes where

AUTO SAR

the maximum number of elements in “second order” arrays is identical but this
value is typically not identical® to the maximum number of elements in the “first
order” array.

This case corresponds to the possible value VSA_RECTANGULAR of attribute dy-
namicArraySizeProfile.

Fully Flexible The data type of the elements of the Vvariable-Size Array Data

Type itself consists of variable-Size Array Data TypeS where the maxi-
mum number of elements in “second order” arrays is not necessarily identical
with each other and (obviously) not necessarily identical to the maximum num-
ber of elements in the “first order” array.

This case corresponds to the possible value VSA_FULLY FLEXIBLE of attribute
dynamicArraySizeProfile.

|(RS_SWCT 03181)

The described cases directly correspond to the portrayal of different kinds of variable-
size arrays in Figure 2.10:

The value VSA_LINEAR corresponds to the tag (a).
The value VSA__SQUARE corresponds to the tag (b).
The value VSA_RECTANGULAR corresponds to the tag ca).

The value VSA_FULLY_FLEXIBLE corresponds to the tag (d).

(b) (©)

(@) (d)

Figure 2.10: Structural variety of array data types with variable size

Please note that the leaf elementsina variable-Size Array Data Type doesn’t
have to be primitive data types. As mentioned before, it is possible to define multiple-
dimension Variable-Size Array Data TypeS.

The

“terminal” elements can be recognized as such in that they don’t establish further

Variable-Size Array Data TypeS.

3|f it was, the case boils down to the rectangular scenario tagged (b).

AUTOSAR

Please note further that the modeling of variable-Size Array Data TypeSis a
complex step governed by a collection of rules and constraints.

It is the expressed intent of this specification to keep the complexity of the rule set as
low as possible while still providing the user with a powerful modeling framework.

The major consequence of this conclusion is to keep the modeling as straightforward
as possible; in other words: intentionally cut away certain modeling variants for which
acceptable workarounds within the modeling framework itself exist.

One concrete example for such a restriction is that for ImplementationDataTypes,
Variable—-Size Array Data Type$ can only be defined on the level of an Au-
tosarDataType.

It is intentionally not supported to define a variable-Size Array Data Type On
the level of an ImplementationDataTypeElement because the intended seman-
tics can be realized by assigning the value TYPE_REFERENCE to the Implemen-—
tationDataTypeElement.category and then let it reference to another Imple-
mentationDataType that in turn implements the Variable-Size Array Data

Type.

2.8.2 Modeling Aspects regarding Application Data Types

In the context of the AUTOSAR layered data type concept, the level of Application-
DataTypes is not concerned about the structure of how the variable-Size Array
Data TypesS.

In other words, aspects of the implementation of this kind of data type is intentionally
abstracted as much as possible in order to support the idea behind the definition of
ApplicationDataType$ as a concept that is independent from an implementation
to the applicable degree.

Consequently, the support for variable-Size Array Data TypeS on the level of
ApplicationDataType$s requires the addition of a couple of additional attributes.
Details can be found in chapter 5.2.4.2.

Ifavariable-Size Array Data Type is modeled on the level of Application-
DataType it is necessary to also provide a companion ImplementationDataType
as well as a DataTypeMap that refers to both the ApplicationDataType and the
ImplementationDataType.

The contrary is not applicable, i.e. it is possible to define a variable-Size Array
Data Type withonly an ImplementationDataType, see [TPS_SWCT_01622].

AUTOSAR

2.8.3 Modeling Aspects regarding Implementation Data Types

On the other hand, the data type used for the actual hosting of the variable-
Size Array Data Type corresponds directly to the level of the Tmplementation-
DataType.

Here, it is possible to define how an ImplementationDataType can be used to
define avariable-Size Array Data Type.

The definition of ImplementationDataType in the AUTOSAR meta-model comes
with a certain level of generic nature the support for variable-Size Array Data
Types on this level comes as a mixture of dedicated attributes in the meta-model and
a set of recipes how to support different use cases of variable-Size Array Data
Types.

This means that the definition of ImplementationDataTypes for the purpose of
creating Vvariable-Size Array Data TypeS only has a chance to take off if the
structure of these data types is replicated in different implementations of AUTOSAR
software.

Therefore, AUTOSAR defines a common way of how ITmplementationDataTypeS
for the purpose of creating variable-Size Array Data TypeS shall be defined
such that the ImplementationDataType shall be of category STRUCTURE with
the following sub-elements:

1. A numerical value that determines the actual size. This element shall be called
the size Indicator throughout this document.

2. An array of the base-type of the variable-Size Array Data Type thatim-
plements the payload of the Variable-Size Array Data Type. The dimen-
sion of the array shall be defined such that the intended maximum number of
elements fits in.

A Size Indicatorofavariable-Size Array Data Type holds the number of
valid elements of the array. This information is necessary for the RTE to handle the
array efficiently.

On the sender-side this indicator is actively updated by the software-component which
is the only instance that knows how many elements of the array are valid.

So the number of valid elements and the size Indicator have to be kept consistent
by the application. When the software-component sends the data over the RTE the
RTE hands the data over to the transformer.

The transformer may evaluate the size Indicator (depends on the transformer)
and only work on the valid array elements. The output of the transformer can vary in
length and only contain necessary data. Therefore it can be more resource saving.

On the receiver side, the last transformer in the execution order restores the data ele-
ments of the array and the value of the Size Indicator. This outputis handed over

AUTOSAR

by the RTE to the software-component. The application now is aware of the number of
valid elements in the array.

The details of how ImplementationDataTypes need to be modeled for the imple-
mentation of Variable-Size Array Data TypeS can be found in chapter 5.2.5
and a couple of examples is available in the appendix E.1.

2.9 Optional Elements in Structures

2.9.1 Background

The AUTOSAR classic platform supports the usage of a TLv* data encoding on the
SOME/IP transport layer. TLV is typically used where at least a part of the transmitted
data is only optionally existing and filled with meaningful values.

In other words: an optional part of a data structure may exist and carry meaningful val-
ues in one instance of data transmission and be completely missing in another instance
of the data transmission.

The receiving software needs to be able to identify whether the optional part exists and
read its value accordingly.

The receiving software also needs to be able to still execute in a meaningful way if
the optional part of such a data structure does not exist in the specific communication
instance.

Consequently, it is necessary to be able to precisely identify the parts of a data struc-
ture that may become optional for specific instances of data transmission.

In terms of the AUTOSAR meta-model, the identification could - in principle - be at-
tached at various levels of abstraction:

AutosarDataType In this case the optionality that is only needed for communication
purposes would still be existing in all other usages of data types. This seems
unbalanced.

Admittedly, the definition of different optionality configurations for the same data
type may lead to the existence of a bunch of structurally identical data types that
only vary in terms of optionality. The existence of variation points may help to
mitigate this effect, though.

PortInterface In this case the optionality is defined where it is actually required.
However, different optionality could - in principle - be defined for bataProto-
types typed by the same AutosarDataType.

This would lead to an increased effort for the definition of C data types in the
context of the same PortInterface.

4This abbreviation stands for tag-length-value

AUTOSAR

Additional constraints have been identified in the context of the definition of RTE
APIs of the AUTOSAR classic platform that finally render this option as not viable.

ComSpec In this case (for more information please refer to section 4.5) the definition
of optionality would even be more specific in comparison to the definition of op-
tionality on the level of Port Interfaces.

On top of that, the task to define optionality in the vast majority of cases is done by
an OEM, whereas the model definition on the level of ComSpec requires the exis-
tence of swComponent Types and this definition is in many cases in the domain
of a supplier.

As a result of this consideration, AUTOSAR has opted for implementation of the con-
cept of defining the optionality on the level of the AutosarDataType.

AUTOSAR

3 Overview: Software Components, Ports, and
Interfaces

3.1 Introduction

The detailed introduction of all aspects of the Software Component Template in
one move is considered too complex. This chapter therefore provides an overview
of the main conceptual aspects of software components, ports and interfaces. The
overview will then be broken down into further details in chapter 4.

One of the goals of the AUTOSAR concept is the support of re-usability on the level of
application software. In other words: it should be possible to re-use existing artifacts to
create further model elements instead of being forced to create every single modeling
detail from scratch. One of the consequences of this approach is the application of the
so-called type-prototype pattern [11].

Among other things, this concept allows for creating hierarchical structures of software-
components with arbitrary complexity. However, the creation of hierarchical structures
itself does not have an impact on the run-time behavior of the overall system. The
actual behavior is completely defined within the individual software-components.

This conclusion is backed by the understanding that software-components are devel-
oped against the so-called Virtual Functional Bus (VFB), an abstract communication
channel without direct dependency on ECUs and communication buses. The VFB does
not provide any means for expressing a hierarchy of software-components.

Of course, the usage of the VFB has further consequences on the design of software-
components which shall not directly call the operating system or the communication
hardware. As a result, software-components can be deployed to actual ECUs at a
rather late stage in the development process.

In order to make the description more precise, the following text preferably uses accu-
rate meta-model terms instead of the rather vague terminology of “composition” and
“software-component”.

3.2 Software Component

3.2.1 Overview

Application software within AUTOSAR is organized in self-contained units called At om-
icSwComponentTypeS. Such AtomicSwComponentTypeS encapsulate the imple-
mentation of their functionality and behavior and merely expose well-defined connec-
tion points, called PortPrototypes, to the outside world.

AUTOSAR

PortPrototype characterised by Portinterface

provided PortPrototype, ClientServerinterface.

required PortPrototype, ClientServerinterface. @

ConnectorPrototype
provided PortPrototype, SenderReceiverinterface

AUTOSAR-SW-
Component

required PortPrototype, SenderReceiverinterface KZ|

ConnectorPrototype

required service PortPrototype, SenderReceiverinterface

I} provided PortPrototype, SenderReceiverinterface

Figure 3.1: Graphical representation of software-components in AUTOSAR

The graphical appearance of AUTOSAR software-components according to [3] is de-
picted in Figure 3.1.

Class SwComponentType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Base class for AUTOSAR software components.

Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtpoType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable

Subclasses AtomicSwComponentType, CompositionSwComponentType, ParameterSwComponentType

Attribute Type Mul. Kind | Note

consistency ConsistencyNeeds * agor This represents the collection of ConsistencyNeeds

Needs owned by the enclosing SwComponentType.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

port PortPrototype * agor The PortPrototypes through which this SwComponent
Type can communicate.

The aggregation of PortPrototype is subject to variability
with the purpose to support the conditional existence of
PortPrototypes.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

portGroup PortGroup * agar | A port group being part of this component.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompile Time

swComponent SwComponent 0..1 aggr This adds a documentation to the SwComponentType.

Documentation Documentation Stereotypes: atpSplitable; atpVariation

Tags: atp.Splitkey=swComponentDocumentation,
variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=-10

AUTOSAR

A

Class SwComponentType (abstract)

*

ref This allows for the specification of which UnitGroups are
relevant in the context of referencing SwComponentType.

unitGroup UnitGroup

Table 3.1: SwComponentType

3.2.2 PortPrototype

Please note that PortPrototypes of a SwComponent Type are supposed to be used
for attaching swConnectors that establish an actual connection between swCompo-
nentPrototypes (see chapter 3.3).

[TPS_SWCT _01002] swComponentTypesS may only interact by means of their
PortPrototypeS | AtomicSwComponentTypes (and also the more general
SwComponent Types may only interact by means of their PortPrototypes). Hidden
communication dependencies that are not expressed by means of PortPrototypes
are strictly forbidden. |(RS_SWCT 00020, RS_SWCT_00030, RS_SWCT_00150,
RS SWCT 00160, RS SWCT 00200, RS SWCT 00210, RS SWCT 02010,
RS SWCT 02030)

Therefore, software-components are in theory exchangeable as long as they imple-
ment the same functionality and provide the same public communication interface to
the remaining system.

Class PortPrototype (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note Base class for the ports of an AUTOSAR software component.
The aggregation of PortPrototypes is subject to variability with the purpose to support the conditional
existence of ports.
Base ARObject, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable
Subclasses AbstractProvidedPortPrototype, AbstractRequiredPortPrototype
Attribute Type Mul. Kind Note
clientServer ClientServerAnnotation * aggr Annotation of this PortPrototype with respect to
Annotation client/server communication.
delegatedPort DelegatedPort 0..1 aggr Annotations on this delegated port.
Annotation Annotation
ioHwAbstraction | loHwAbstractionServer * aggr Annotations on this 10 Hardware Abstraction port.
Server Annotation
Annotation
modePort ModePortAnnotation * aggr Annotations on this mode port.
Annotation
nvDataPort NvDataPortAnnotation * aggr Annotations on this non voilatile data port.
Annotation
parameterPort ParameterPort * aggr Annotations on this parameter port.
Annotation Annotation
senderReceiver | SenderReceiver * aggr Collection of annotations of this ports sender/receiver
Annotation Annotation communication.

AUTOSAR

A
Class PortPrototype (abstract)
triggerPort TriggerPortAnnotation * aggr | Annotations on this trigger port.
Annotation

Table 3.2: PortPrototype

AtpBlueprintable
AtpPrototype

PortPrototype

‘F

AbstractProvidedPortPrototype AbstractRequiredPortPrototype

?]

PPortPrototype PRPortPrototype RPortPrototype

Figure 3.2: Overview of PortPrototype

[TPS_SWCT 01111] PortPrototypes need an additional model artifact, the
PortInterface | Please note that PortPrototypes actually need an additional
model artifact, the PortInterface, for fully describing the details of the PortPro-
totype. |(RS_SWCT_00010)

The concept of the Port Interface as another means for establishing a high degree
of re-usability is described in chapter 3.4.

[TPS_SWCT_01112] Semantics of PortPrototypes [PortPrototypes can have
the following semantics:

e A require-port (in technical terms: RPortPrototype) requires certain services
or data.

e A provide-port (or PPortPrototype) on the other hand provides services or
data.

e A provide-require-port (or PRPortPrototype) combines the ability to provide
and require services or data in one entity.

|(RS_SWCT_03250)
The semantics of PortPrototype is also depicted in Figure 3.2,

[TPS_SWCT 01573] A PRPortPrototype is never considered unconnected
[A PRPortPrototype iS never considered unconnected, even if there are no

AUTO SAR

SwConnectors actually referring to it. |(RS_SWCT 00010, RS_SWCT_03250,
RS _SWCT _03130)

Please note that [TPS_SWCT _01573] represents the immediate consequence of the
semantics defined in [TPS_SWCT _01112].

[TPS_SWCT_01113] Connecting two PortPrototypes | TWO SwComponentPro-—
totypes are eventually connected by hooking up a PPortPrototype Or PRPort-
Prototype Of one SwComponentPrototype to a compatible RPortPrototype or
PRPortPrototype of the other SwComponentPrototypes. |(RS_SWCT 03130,
RS _SWCT_03250)

Please find more information concerning the definition of “compatibility” in section 6.

Class AbstractRequiredPortPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note This abstract class provides the ability to become a required PortPrototype.

Base ARObject, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Port
Prototype, Referrable

Subclasses PRPortPrototype, RPortPrototype

Attribute Type Mul. Kind | Note

requiredCom RPortComSpec * aggr Required communication attributes, one for each

Spec interface element.

Table 3.3: AbstractRequiredPortPrototype

Class AbstractProvidedPortPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note This abstract class provides the ability to become a provided PortPrototype.

Base ARObject, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Port
Prototype, Referrable

Subclasses PPortPrototype, PRPortPrototype

Attribute Type Mul. Kind | Note

providedCom PPortComSpec * aggr Provided communication attributes per interface element

Spec (data element or operation).

Table 3.4: AbstractProvidedPortPrototype

Class RPortPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Component port requiring a certain port interface.

Base ARObject, AbstractRequiredPortPrototype, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable,
MultilanguageReferrable, PortPrototype, Referrable

Attribute Type Mul. Kind | Note

required PortInterface 1 tref The interface that this port requires, i.e. the port depends

Interface on another port providing the specified interface.

Stereotypes: isOfType

Table 3.5: RPortPrototype

AUTO SAR

Class PPortPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note Component port providing a certain port interface.
Base ARObject, AbstractProvidedPortPrototype, AtpBlueprintable, AtoFeature, AtpPrototype, Identifiable,
MultilanguageReferrable, PortPrototype, Referrable
Attribute Type Mul. Kind | Note
provided Portlnterface 1 tref The interface that this port provides.
Interface i
Stereotypes: isOfType
Table 3.6: PPortPrototype
Class PRPortPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note This kind of PortPrototype can take the role of both a required and a provided PortPrototype.
Base ARObject, AbstractProvidedPortPrototype, AbstractRequiredPortPrototype, AtpBlueprintable, Atp
Feature, AtpPrototype, Identifiable, MultilanguageReferrable, PortPrototype, Referrable
Attribute Type Mul. Kind | Note
provided Portinterface 1 tref This represents the Portinterface used to type the PRPort
Required Prototype
Interface Stereotypes: isOfType

Table 3.7: PRPortPrototype

AUTOSAR

ARElement
AtpBlueprint AtpBlueprintable
AtpBlueprintable +port AtpPrototype
AR «atpVariation,atpSplitable» @+ PortPrototype
SwConponentType !
«atpVariation» Tags:
vh latestBindingTime =
preCompileTime
AbstractRequiredPortPrototype AbstractProvidedPortPrototype
RPortPrototype PRPortPrototype PPortPrototype
«isOfType» «isOfType» «isOfType»
g-redefines 1 1
i atpType} ; - fredefines) {redefines
+requiredinterface pTyp +providedRequiredinterface \|/ atpType} +providedinterface atpType}
ARElement

AtpBlueprint
AtpBlueprintable
AtpType
Portinterface

+ isService: Boolean
+ serviceKind: ServiceProviderEnum [0..1]

Figure 3.3: Components and Ports

[TPS_SWCT_01096] PortGroup | PortPrototypes can be logically grouped into
PortGroups. This mechanism is used for implementing mode management features.
|(RS_SWCT_03201)

Further explanations about the semantics of meta-class PortGroup can be found in
chapter 4.6.

3.2.3 AtomicSwComponentType

[TPS_SWCT_01108] Added value of an AtomicSwComponent Type [As mentioned
before, the term AtomicSwComponent Type is a specific form of the general concept
of the swComponentType. The added value of an At omicSwComponent Type is that
it can aggregate an InternalBehavior |(RS_SWCT_03040)

More information regarding the semantics of InternalBehavior can be found in
chapter 7.

[TPS_SWCT _01109] Adding the swcInternalBehavior in a later process step
[The aggregation of SwcInternalBehavior is stereotyped <atpSplitable>> to

AUTOSAR

allow for adding the swcInternalBehavior in a later process step. In other words,
it is possible to completely develop the VFB view of a software-component and later
add more details like InternalBehavior. ()

Class AtomicSwComponentType (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note An atomic software component is atomic in the sense that it cannot be further decomposed and

distributed across multiple ECUs.

Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtoType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable, SwComponentType

Subclasses ApplicationSwComponentType, ComplexDeviceDriverSwComponentType, EcuAbstractionSwComponent
Type, NvBlockSwComponentType, SensorActuatorSwComponentType, ServiceProxySwComponent
Type, ServiceSwComponentType

Attribute Type Mul. Kind | Note

internalBehavior | SwclinternalBehavior 0..1 aggr The SwclinternalBehaviors owned by an AtomicSw
ComponentType can be located in a different physical file.
Therefore the aggregation is «atpSplitable».

Stereotypes: atpSplitable; atpVariation

Tags: atp.Splitkey=internalBehavior, variationPoint.short
Label

vh.latestBindingTime=preCompileTime

symbolProps SymbolProps 0..1 aggr This represents the SymbolProps for the AtomicSw
ComponentType.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName

Table 3.8: AtomicSwComponentType

There are several specialized swComponentTypes to describe specific software-
components used in the different parts of the AUTOSAR Layered Architecture [5]. Fur-
ther details are mentioned in chapter 10 and 11.

AUTO SAR

ARElement AtpPrototype
aREEpI SwComponentPrototype
AtpBlueprintable | *type p o
atRlvee 1 «isOfType»
SwComponentType fredefines
atpType}
«atpVariation» Tags: +component | 0.*
vh latestBindingTime =
postBuild TTeeall _ __ «atpVariation,atpSplitable»
AtomicSwComponentType ParameterSwComponentType CompositionSwComponentType
ApplicationSwComponentType NvBlockSwComponentType ComplexDeviceDriverSwComponentType ServiceSwComponentType
EcuAbstractionSwComponentType SensorActuatorSwComponentType ServiceProxySwComponentType

Figure 3.4: Overview of Component Types

The ApplicationSwComponentType IS a specialization of At omicSwComponent -
Type for representing hardware-independent application software. The Parameter—
SwComponent Type is a specialization of SwComponent Type that can - in contrast to
AtomicSwComponentType - Not aggregate SwcInternalBehavior.

The purpose of the NvBlockSwComponentType is described in detail in sec-
tion 11.5.2. The serviceSwComponentType is described in section 11.3. Further on,
the EcuAbstractionSwComponent Type and the ComplexDeviceDriverSwCom-
ponent Type are discussed in detail in section 10.

A description of the serviceProxySwComponent Type can be found in section 11.4
while the SensorActuatorSwComponentType is described in section 10.4.

Class ApplicationSwComponentType
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note The ApplicationSwComponentType is used to represent the application software.

Tags: atp.recommendedPackage=SwComponentTypes

Base ARElement, ARObject, AtomicSwComponentType, AtpBlueprint, AtpBlueprintable, AtpClassifier, Atp
Type, CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement, Referrable, Sw
ComponentType

Attribute Type Mul. Kind | Note

Table 3.9: ApplicationSwComponentType

AUTOSAR

3.2.4 ParameterSwComponentType

[constr_1092] ParameterSwComponentType | A ParameterSwComponentType
shall never aggregate a SwcInternalBehavior and also owns exclusively PPort -
Prototypes of type ParameterInterface. |()

However, a ParameterSwComponentType shall have the ability to aggregate In-
stantiationDataDefProps. By this means it is possible to define role-specific
data properties of elements of composite data types used for the definition of calibra-
tion parameters in the scope of a ParameterSwComponent Type.

For more information about this aspect please refer to section 7.5.4.

SwComponentType
ParameterSwComponentType

«atpVariation» Tags:
------- vh.latestBindingTime =

«atpSplitable» «atpVariation» preCompileTime «atpSplitable»

+dataTypeMapping\[/0..* +instantiationDataDefProps | 0..* +constantMapping\[/0..*

AREIengm InstantiationDataDefProps (R
AtpBlueprint

AtpBlueprintable
DataTypeMappingSet

ConstantSpecificationMappingSet

Figure 3.5: Details of ParameterSwComponentType

3.2.5 Symbolic Name of a Software-Component

Please note that an AtomicSwComponent Type manifests itself in the source code of
an RTE into which an instance of the AtomicSwComponentType is deployed. This
implies potential naming conflicts if instances of At omicSwComponent Type that have
identical shortNames are deployed into a specific RTE.

[TPS_SWCT_01110] Symbolic name of a software-component | To mitigate this
potential hazard it is possible to provide the AtomicSwComponentType along with
an accompanying symbolic name that can be used for resolving the name clash. The
symbolic name is provided by means of the attribute symbol of the meta-class Sym-
bolProps owned by AtomicSwComponentType in the role symbolProps. |()

Please note that more information about the symbolic name provided by means of the
attribute symbol of the meta-class SymbolProps owned by At omicSwComponent -
Type in the role symbolProps can be found in Figure 3.6.

For more detailed information about how SymbolProps can be used to mitigate name
clashes occurring during the integration of software-components on an AUTOSAR
ECU, please refer to [4].

AUTOSAR

[TPS_SWCT_01000] Usage of attribute symbol of the symbolProps | In par-
ticular, the RTE generator shall take over the value of the attribute symbol of
the symbolProps owned by a given AtomicSwComponentType. If and only if
symbolProps is not defined the RTE generator shall take the shortName of the
AtomicSwComponentType. For the generation of symbols for RunnableEntitys
[TPS_SWCT_01001] shall be observed. |()

[TPS_SWCT_01001] Prefix symbols generated for the RunnableEntity | If and
only if the attribute symbol of a symbolProps owned by an AtomicSwComponent -
Type exists, its value shall also be taken for prefixing the symbols generated for the
RunnableEntitys owned by the AtomicSwComponentType. |()

Note: if symbolProps is not defined the behavior of the RTE generator is fully back-
wards compatible, i.e. existing implementations of RunnableEntitys do not have to
be touched in order to conform with this version of the AUTOSAR standard.

This is a further measure to mitigate the risk of potential name clashes in the RTE
code.

[TPS_SWCT_01635] Naming conventions may support the effectiveness of sym-
bolProps | Of course, there is a residual risk that even in the presence of Symbol-
Props hame clashes may occur.

Therefore, the definition of naming conventions may facilitate the avoidance of name
clashes to the further degree. | (RS_SWCT_00230)

Referrable
ImplementationProps

+ symbol: Cldentifier

i

SymbolProps

SwConponentType
AtomicSwComponentType +symbolProps

I

ApplicationSwComponentType NvBlockSwComponentType ComplexDeviceDriverSwComponentType ServiceSwComponentType

«atpSplitable» 0.1

EcuAbstractionSwComponentType SensorActuatorSwComponentType ServiceProxySwComponentType

Figure 3.6: Overview of AtomicSwComponentType

AUTOSAR

3.3 Composition
3.3.1 Overview

[TPS_SWCT_01032] CompositionSwComponentType [The purpose of an
AUTOSAR CompositionSwComponentType is to allow the encapsulation of spe-
cific functionality by aggregating existing software-components. |(RS_SWCT_00190,
RS _SWCT _ 02000, RS_SWCT_02020, RS_SWCT_03000)

[TPS_SWCT_01033] Nested definition of CompositionSwComponentTypeS |
Since a CompositionSwComponentType is also a SwComponent Type, it again may
be aggregated in further CompositionSwComponentTypeSs. |(RS_SWCT 00190,
RS_SWCT 02000, RS _SWCT_02020, RS _SWCT_03000)

This recursive relation is formally expressed in Figure 3.7.

It is important to understand that while compositions allow for (sub-) system abstrac-
tion, they are solely an architectural element for the implementation of model scalabil-
ity. They simply group existing software-components and thereby take away complexity
when viewing or designing logical software architecture.

ARElement AtpPrototype

AtpBlueprint SwComponentPrototype
AtpBlueprintable |*type

AtpType

1 «isOfType»
SwComponentType {redefines

atpType}

+component | 0..*

CompositionSwComponentType

>

«atpVari ation,@tpSpIitable»
'

«atpVariation» Tags:
vhlatestBindingTime = postBuild

Figure 3.7: The recursive relation of software-components and compositions

Therefore, the definition of CompositionSwComponentTypes has no effect on how
software-components interact with the Virtual Functional Bus (VFB). Composition-
SwComponent TypeS do not add any new functionality to what is already provided by
the software-components they aggregate.

[TPS_SWCT 01034] CompositionSwComponentTypes do not have any bi-
nary footprint [As the main consequence, CompositionSwComponentTypesS
do not have any binary footprint in the ECU software. |(RS_SWCT 00190,
RS _SWCT 02000, RS_SWCT_02020, RS_SWCT_03000)

AUTOSAR

3.3.2 SwComponentPrototype

[TPS_SWCT 01035] CompositionSwComponentType aggregates SwCompo-
nentPrototypes [Interms of the AUTOSAR meta-model, a composition of software-
components realized by the meta-class CompositionSwComponentType aggre-
gates swComponentPrototypes which in turn are typed by a SwComponent Type. |
(RS_SWCT_00190, RS_SWCT_02000, RS _SWCT_02020, RS _SWCT_03000)

Please note that a CompositionSwComponentType iS also a SwComponentType.

Class CompositionSwComponentType
Package M2::AUTOSARTemplates::SWComponentTemplate::Composition
Note A CompositionSwComponentType aggregates SwComponentPrototypes (that in turn are typed by Sw

ComponentTypes) as well as SwConnectors for primarily connecting SwComponentPrototypes among
each others and towards the surface of the CompositionSwComponentType. By this means hierarchical
structures of software-components can be created.

Tags: atp.recommendedPackage=SwComponentTypes

Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable, SwComponentType

Attribute Type Mul. Kind | Note

component SwComponent * aggr The instantiated components that are part of this
Prototype composition.

The aggregation of SwComponentPrototype is subject to
variability with the purpose to support the conditional
existence of a SwComponentPrototype. Please be aware:
if the conditional existence of SwComponentPrototypes is
resolved post-build the deselected SwComponent
Prototypes are still contained in the ECUs build but the
instances are inactive in in that they are not scheduled by
the RTE.

The aggregation is marked as atpSplitable in order to
allow the addition of service components to the ECU
extract during the ECU integration.

The use case for having 0 components owned by the
CompositionSwComponentType could be to deliver an
empty CompositionSwComponentType to e.g. a supplier
for filling the internal structure.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=postBuild

connector SwConnector * aggr SwConnectors have the principal ability to establish a
connection among PortPrototypes. They can have many
roles in the context of a CompositionSwComponentType.
Details are refined by subclasses.

The aggregation of SwConnectors is subject to variability
with the purpose to support variant data flow.

The aggregation is marked as atpSplitable in order to
allow the extension of the ECU extract with AssemblySw
Connectors between ApplicationSwComponentTypes and
ServiceSwComponentTypes during the ECU integration.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=postBuild

constantValue ConstantSpecification * ref Reference to the ConstantSpecificationMapping to be
Mapping MappingSet applied for initValues of PPortComSpecs and RPortCom
Spec.

Stereotypes: atpSplitable
Tags: atp.Splitkey=constantValueMapping

AUTO SAR

Class CompositionSwComponentType

dataType DataTypeMappingSet * ref Reference to the DataTypeMapping to be applied for the
Mapping used ApplicationDataTypes in Portinterfaces.

Background: when developing subsystems it may happen
that ApplicationDataTypes are used on the surface of
CompositionSwComponentTypes. In this case it would be
reasonable to be able to also provide the intended
mapping to the ImplementationDataTypes. However, this
mapping shall be informal and not technically binding for
the implementers mainly because the RTE generator is
not concerned about the CompositionSwComponent
Types.

Rationale: if the mapping of ApplicationDataTypes on the
delegated and inner

PortPrototype matches then the mapping to
ImplementationDataTypes is not impacting compatibility.

Stereotypes: atpSplitable
Tags: atp.Splitkey=dataTypeMapping

instantiation InstantiationRTEEvent * aggr This allows to define instantiation specific properties for
RTEEventProps | Props RTE Events, in particular for instance specific scheduling.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortLabel, variationPoint.shortLabel
vh.latestBindingTime=codeGenerationTime

Table 3.10: CompositionSwComponentType

Class SwComponentPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::Composition
Note Role of a software component within a composition.
Base ARObject, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable
Attribute Type Mul. Kind | Note
type SwComponentType 1 tref Type of the instance.
Stereotypes: isOfType

Table 3.11: SwComponentPrototype

AUTO SAR

ARElement AtpBlueprintable
AtpBlueprint +port AtpPrototype
AtpBlueprintable (@ — - PortPrototype
AtpType «atpVarlatlon:atpSplltabIe» 0.*%
SwComponentType H

«atpVariation» Tags:
vh.latestBindingTime = preCompileTime

AtpStructureElement
+portGroup Identifiable

«atpVariation» 0.% PortGroup

'
«atpVariation» Tags:
vh.latestBindingTime = preCompileTime

CompositionSwComponentType

t

AtpStructureElement

+connector SwConnector
«atpVariation,atpSplitable»
'
'
«atpVariation» Tags:
vh.latestBindingTime = postBuild
AtpPrototype
+component SwComponentPrototype
e
«atpVariation,atpSplitable» 0.*%
'
'
'
'
'
'
'
«atpVariation» Tags:
vh.latestBindingTime = postBuild
InstantiationRTEEventProps
+instantiationRTEEventProp:
> + shortLabel: Identifier
«atpVariation,atpSplitable» 0.*
'

«atpVariation» Tags:
vh.latestBindingTime = codeGenerationTime

Figure 3.8: Composition and the meta-classes aggregated

[TPS_SWCT _01036] SwComponentPrototype implements a specific role |
Therefore, a SwComponentPrototype implements the usage of a SwComponent-
Type in a specific role. |(RS_SWCT _00190, RS _SWCT_02000, RS_SWCT_02020,
RS SWCT _03000)

[TPS_SWCT_01037] arbitrary numbers of SwComponentPrototypes can be cre-
ated [In general, arbitrary numbers of SwComponentPrototypes that refer to spe-
cific SwComponentTypes can be created. |(RS_SWCT 00190, RS_SWCT_02000,
RS _SWCT _ 02020, RS_SWCT_03000)

Example: a swComponentPrototype “LeftDoorControl” fulfills the role of implement-
ing the SwComponentType “DoorControl” for the left door of a vehicle while the
SwComponentPrototype “RightDoorControl” fulfills the role of the SwComponent-
Type “DoorControl” for the right door.

AUTOSAR

[TPS_SWCT_01080] Delegation ports | Note that being a SwComponentType,
a CompositionSwComponentType also exposes PortPrototypes to the out-
side world. However, the PortPrototypes are only delegated and do not play
the same role as PortPrototypes attached to AtomicSwComponentTypes. |
(RS_SWCT_03130)

[TPS_SWCT_01081] Implications of being a delegation port | Being a PortPro-
totype attached to a CompositionSwComponentType has the following implica-
tions:

e The delegation has to follow the rules for basic compatibility.

e By creating PortPrototypes on the surface of a specific Composition-
SwComponent Type it is explicitly decided whether or not the contents of an “in-
ner” port contained in the CompositionSwComponentType is exposed to the
outside world.

|(RS_SWCT_03130)
Please note that the rules for compatibility are described in chapter 6.

Please note further that the semantics of the delegation of PortPrototypes are sim-
ilar to encapsulation mechanisms like public and private members in object-oriented
programming languages.

One implication of the concept of CompositionSwComponentType is that the appli-
cation software of an entire vehicle eventually is represented by one Composition-
SwComponent Type. This so-called top-level composition has a special role in the
context of the AUTOSAR System Template [10].

However, please note that a top-level composition might have (unconnected) Port—
Prototypes in order to allow for reuse as part of another system.

[constr_1035] Recursive definition of CompositionSwComponentType | The re-
cursive definition of a CompositionSwComponentType that eventually contains
a SwComponentPrototype typed by the same CompositionSwComponentType
shall not be feasible. |()

3.3.3 Connectors

[TPS_SWCT_01079] swConnector | Note that CompositionSwComponentType
also aggregates the abstract meta-class swConnector for connecting the contained
SwComponentPrototypes among each other. |(RS_SWCT_03130)

More information can be found in Figure 3.8.

CompositionSwComponentTypeS contain two kinds of SwConnectors:

AUTOSAR

e [TPS_SWCT_01082] AssemblySwConnector | AssemblySwConnectors in-
terconnect PortPrototypes of SwComponentPrototypes that are part of the
CompositionSwComponentType. |(RS_SWCT_03130)

e [TPS_SWCT _01083] DelegationSwConnector | DelegationSwConnec—
tors connect from “inner” PortPrototypes to delegated “outer” PortProto-—
types. |(RS_SWCT_03130)

[TPS_SWCT _01084] Outer PortPrototype is referenced by multiple pel-
egationSwConnectors [In the case that an outer PortPrototype is refer-
enced by multiple DelegationSwConnectors the semantic is the multiplica-
tion of the AssemblySwConnectors referencing the outer PortPrototypes.|
(RS_SWCT _03130)

[constr_1086] swConnector between two specific PortPrototypes [Each pair
of PortPrototypes can only be connected by one and only one swConnector. |()

In other words, it is not supported to create two different SwConnectors that connect
the same pair of PortPrototypes.

[TPS_SWCT 01638] Existence of SwConnector between two PRPortProto-
types | [constr_1086] applies also in the case that two PRPortPrototypes are con-
nected with each other. In particular, the roles

e AssemblySwConnector.requester

e AssemblySwConnector.provider

e PassThroughSwConnector.providedOuterPort

e PassThroughSwConnector.requiredOuterPort
do not establish a direction in this case. |()

For clarification, [TPS_SWCT_01638] means that the swConnector represents the
ability for bi-directional communication between the two PRPortPrototypes.

[constr_1087] AssemblySwConnector inside CompositionSwComponentType |
An AssemblySwConnector can only connect PortPrototypes of SwComponent —
Prototypes that are owned by the same CompositionSwComponentType |()

[constr_1088] DelegationSwConnector inside CompositionSwComponent-—
Type | A DelegationSwConnector can only connect a PortPrototype of a
SwComponentPrototype that is owned by the same CompositionSwComponent—
Type that also owns the connected delegation PortPrototype. |()

In the context of attaching a DelegationSwConnector to an inner PRPortProto-
type there is some ambiguity to be considered. In particular, from the formal point of
view it would be feasible to use either a PPortInCompositionInstanceRef Or a
RPortInCompositionInstanceRef.

AUTO SAR

The ability to use one or the other meta-class arbitrarily is considered confusing. There-
fore, [TPS_SWCT_01515] has been defined to remove the unnecessary degree of

freedom.

[TPS_SWCT_01515] PPortInCompositionInstanceRef shall be used for at-
taching DelegationSwConnector to an inner PRPortPrototype | For the im-
plementation of the attachment of a DelegationSwConnector to aninner PRPort—
Prototype the meta-class PPortInCompositionInstanceRef shall be used. |

()

[constr_1100] Unconnected RPortPrototype typed by a DataInterface | For
any element in an unconnected RPortPrototype typed by a DataInterface there
shall be a requiredComSpec that defines an initvalue. |()

Class SwConnector (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Composition
Note The base class for connectors between ports. Connectors have to be identifiable to allow references from
the system constraint template.
Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, MultilanguageReferrable,
Referrable
Subclasses AssemblySwConnector, DelegationSwConnector, PassThroughSwConnector
Attribute Type Mul. Kind | Note
mapping PortInterfaceMapping 0..1 ref Reference to a PortInterfaceMapping specifying the
mapping of unequal named Portinterface elements of the
two different Portinterfaces typing the two PortPrototypes
which are referenced by the ConnectorPrototype.
Table 3.12: SwConnector
Class AssemblySwConnector
Package M2::AUTOSARTemplates::SWComponentTemplate::Composition
Note AssemblySwConnectors are exclusively used to connect SwComponentPrototypes in the context of a
CompositionSwComponentType.
Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, MultilanguageReferrable,
Referrable, SwConnector
Attribute Type Mul. Kind | Note
provider AbstractProvidedPort 0..1 iref Instance of providing port.
Prototype
requester AbstractRequiredPort 0..1 iref Instance of requiring port.
Prototype
Table 3.13: AssemblySwConnector
Class DelegationSwConnector
Package M2::AUTOSARTemplates::SWComponentTemplate::Composition
Note A delegation connector delegates one inner PortPrototype (a port of a component that is used inside the
composition) to a outer PortPrototype of compatible type that belongs directly to the composition (a port
that is owned by the composition).

\Y

AUTO SAR

A
Class DelegationSwConnector
Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, MultilanguageReferrable,
Referrable, SwConnector

Attribute Type Mul. Kind | Note

innerPort PortPrototype 1 iref The port that belongs to the ComponentPrototype in the
composition
Tags: xml.typeElement=true

outerPort PortPrototype 1 ref The port that is located on the outside of the Composition
Type

Table 3.14: DelegationSwConnector

One specific use case for the application of SwConnectors is exemplified by the fig-
ures 3.9 and 3.11. A specific CompositionSwComponentType exists in two variants
where one (more complex) variant foresees the existence of a SwComponentPro-
totype inside the CompositionSwComponent Type (depicted by 3.9) and the other
(because it is implementing a simpler semantics) does not need the SwComponent-—
Prototype.

Composition SW Component

Application SW Component

‘ ~- Trigger ; »

™ Ve
RunA1 I

e

T 4

Figure 3.9: Use case for PassThroughSwConnector (l)

Class PassThroughSwConnector

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Note This kind of SwConnector can be used inside a CompositionSwComponentType to connect two
delegation PortPrototypes.

Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, MultilanguageReferrable,
Referrable, SwConnector

Attribute Type Mul. Kind | Note

providedOuter AbstractProvidedPort 1 ref This represents the provided outer delegation Port

Port Prototype Prototype of the PassThroughSwConnector.

requiredOuter AbstractRequiredPort 1 ref This represents the required outer delegation Port

Port Prototype Prototype of the PassThroughSwConnector.

Table 3.15: PassThroughSwConnector

AUTO SAR

AtpStructureElement
SwConnector

I

AssemblySwConnector

PassT hroughSwConnector

T
|

|

| .

| «instanlceRef»
| |

| |

| +provider\‘|/0..1

+providedOuterPorty|/1

«instanceRef» AbstractProvidedPortPrototype
1

M

+requester\1/0..l

+requiredOuterPort 1

AbstractRequiredPortPrototype

Without the ability to define a PassThroughSwConnector the second variant could
only be implemented by defining a dummy SwComponentPrototype inside the
CompositionSwComponentType. However, the dummy SwComponentPrototype
would need to define RunnableEnt itys that are created for the sole purpose of being
able to shovel the data from (e.g. for sender-receiver communication) RPortProto-

Figure 3.10: Connectors

typeSto PPortPrototypes.

This would not only be cumbersome it would also obviously require additional re-
sources (memory and code) at run-time. Plus, the existence of addition RunnableEn-
titys also unnecessarily increases the propagation delay of information flowing

around inside the ECU.

DelegationSwConnector

«instanceRef»
1

+outerPort\|/1 +innerPon\‘|/1

AtpBlueprintable
AtpPrototype

PortPrototype

Composition SW Component

Application SW Component

T
1
:

Y

PortinterfaceMapping

Is/,'l

Figure 3.11:

Use case for PassThroughSwConnector (ll)

AUTOSAR

[TPS_SWCT_01507] The role of PassThroughSwConnector | PassThrough-—
SwConnector can be taken to connect PortPrototypes owned by the same Com-
positionSwComponentType. In other words, PassThroughSwConnector creates
a bypass inside a CompositionSwComponentType form the requiredOuterPort
to the the providedOuterpPort (or vice versa) without involving SwComponentPro-

totypes. |()

[constr_1252] Creation of a loop involving a PassThroughSwConnector is not
allowed | A PassThroughSwConnector is not allowed if the required outer Port-
Prototype is directly or indirectly connected to the provided outer PortPrototype
without the placement of a SwComponentPrototype typed by an AtomicSwCompo-
nentType in the chain of SwConnectors. |()

In other words, according to [constr_1252] it is not allowed to create a “infinite loop” by
means of a PassThroughSwConnector and at least one AssemblySwConnector
that connects the requiredouterPort to the providedOuterPort.

3.3.4 Instantiation-specific RTEEvents

[TPS_SWCT_02507] Instantiation-specific RTEEvents | It is possible to specify
instantiation specific properties of an RTEEvent by applying InstantiationR-
TEEventProps intherole instantiationRTEEventProps.

This allows to use the same ApplicationSwComponentType in different timing sce-
narios. Even if the scheduling is an issue of the SwcInternalBehavior, the instance
specific definition of timing needs to be specified on the level of a Composition-
SwComponentType. |(RS_SWCT_03046, RS_SWCT_03270)

As an example for [TPS_SWCT_02507], please consider a software-component that
implements a closed-loop control algorithm.

This software-component can potentially be deployed to “slow” and “fast” control sce-
narios. As the actual time-base of the control algorithm is derived from the scheduling
implemented in the RTE it obviously facilitates the overall design if the timing can be
defined on “instance” level.

AUTO SAR

SwComponentType

ARElement
AtpBlueprint
AtpBlueprintable
AtpType

AtomicSwComponentType

«atpVari ation,atpSpIitablé;

+internalBehavior | 0..1

N

«atpVariation» Tags:
vhlatestBindingTime =
codeGenerationTime

CompositionSwComponentType

«atpVariation,atpSplitable»

+instantiationRTEEventProps | 0..*

SweinternalBehavior

InternalBehavior

InstantiationRTEEventProps

+ supportsMultipleInstantiation: Boolean

+ handleTerminationAndRestart: HandleTerminationAndRestartEnum

+ shortLabel: Identifier

«atpVariation» Tags:

A

«atpVariation,atpSplitable»

vh latestBindingTime =
preCompileTime

«atpVariation,atpSplitable»

+runnable |0..* +event|*
AtpStructureElement AbstractEvent
ExecutableEntity | +startOnEvent AtpStructureElement |
RunnableEntity o1 RTEEvent «instalnceRef»
+ canBelnvokedConcurrently: Boolean !
+ symbol: Cldentifier . I
+refinedEvent |
e J
1
+waitPoint |*
Identifiable
WaitPoint +rigger
+ timeout: TimeValue 1
TimingEvent InstantiationTimingEventProps
+ offset: TimeValue [0..1] + period: TimeValue
+ period: TimeValue

Figure 3.12: Instantiation specific Properties of RTEEvents

Class InstantiationRTEEventProps (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Note This meta class represents the ability to refine the properties of RTEEvents for particular instances of a

software component.

Base ARObject

Subclasses InstantiationTimingEventProps

Attribute Type Mul. Kind | Note

refinedEvent RTEEvent 1 iref This instance ref denotes the Timing Event for which the
period shall be refined on an instance level.

shortLabel Identifier 1 attr The main purpose of the shortLabel is to contribute to the
splitkey of aggregations that are «atpSplitable».

Table 3.16: InstantiationRTEEventProps

AUTOSAR

[constr_1233] 1InstantiationTimingEventProps shall only reference
TimingEvent | An InstantiationTimingEventProps shall only reference
TimingEvent inthe role refinedEvent. A reference to other kinds of RTEEvents
is not supported. |()

3.4 Port Interface

[TPS_SWCT 01025] The role of PortPrototypes in the AUTOSAR architecture
[A PortPrototype mainly contributes the functionality of being a connection point
to the AUTOSAR concept.

The details, i.e. with respect to what kind of information is actually transported between
two PortPrototypes is defined by the PortInterface. |(RS_SWCT_00010,
RS _SWCT 00080, RS_SWCT 00110, RS_SWCT_02030, RS_SWCT_03010)

[TPS_SWCT 01026] The role of PortInterfaces in the AUTOSAR architec-
ture [PortInterfaces are used to support a design-by-contract work-flow, i.e.
a PortInterface provides means to formally verify structural and dynamic com-
patibility between software-components. |(RS_SWCT_00010, RS_SWCT_00080,
RS_SWCT _ 00110, RS_SWCT_02030, RS_SWCT_03010)

In other words: PortInterfaces (see Figure 3.14) represent a pivotal point in the
AUTOSAR concept.

Please note that a PortInterface creates a name space for the information con-
tained. This allows for defining the details of a specific Port Interface without hav-
ing to care for possible side-effects on other Port Interfaces. Again, this property
of the AUTOSAR concept directly supports re-usability.

[TPS_SWCT_01027] Different flavors of Port Interfaces | Within the AUTOSAR
concept, different flavors of Port Interfaces are defined:

e SenderReceiverInterface
e NvDatalInterface
e ParameterInterface
e ModeSwitchInterface
e ClientServerInterface
e TriggerInterface
|(RS_SWCT_00010, RS_SWCT_00080, RS_SWCT_00110, RS_SWCT_02030)

[TPS_SWCT_01069] DataInterface is defined as abstract base class |
Please note that the conceptual relationship of SenderReceiverInterface, Nv-
DatalInterface, and ParameterInterface is expressed by the definition of
the abstract base class DataInterface. |(RS_SWCT_00010, RS_SWCT_00080,
RS _SWCT 00110, RS_SWCT_03010)

AUTO SAR

Portinterface

AtpBlueprintable

ARElement
AtpBlueprint

AtpType

+ isService: Boolean
+ serviceKind: ServiceProvi

derEnum [0..1]

Datalnterface

A\

Parameterinterface

NvDatalnterface SenderReceiverinterface

Figure 3.13: DataInterface as an abstract base class

Please find more details about the specialization of the Port Interface concept in
chapter 4.2.3 and 4.2.2.

Class Portinterface (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface
Note Abstract base class for an interface that is either provided or required by a port of a software component.
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable
Subclasses ClientServerinterface, Datalnterface, ModeSwitchinterface, Triggerinterface
Attribute Type Mul. Kind | Note
isService Boolean 1 attr This flag is set if the Portinterface is to be used for
communication between an
e ApplicationSwComponentType or
e ServiceProxySwComponentType or
e SensorActuatorSwComponentType or
e ComplexDeviceDriverSwComponentType
e ServiceSwComponentType
e EcuAbstractionSwComponentType
and a ServiceSwComponentType (namely an
AUTOSAR Service) located on the same ECU.
Otherwise the flag is not set.
serviceKind ServiceProviderEnum 0..1 attr This attribute provides further details about the nature of
the applied service.

Table 3.17: Portinterface

AUTO SAR

Class Datalnterface (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface

Note The purpose of this meta-class is to act as an abstract base class for subclasses that share the
semantics of being concerned about data (as opposed to e.g. operations).

Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Portinterface, Referrable

Subclasses NvDatalnterface, Parameterinterface, SenderReceiverinterface

Attribute Type Mul. Kind | Note

Table 3.18: Datalnterface

[TPS_SWCT_01070] PortInterface acts as a type for a PortPrototype | From
an abstract point of view, a PortInterface acts as a type for a PortProto-
type. This means in particular that several PortPrototypes can be typed by the
same PortInterface. |(RS_SWCT_00010, RS_SWCT_00080, RS _SWCT _00110,
RS _SWCT _03010)

Of course, this aspect facilitates the creation of valid connections between software-
components dramatically. By using a specific Port Interface for typing particular
PortPrototypes the latter are eligible for being connected to each other by definition.

AUTO SAR

ARElement

AtpBlueprint ImplementationProps
AtpBlueprintable SymbolProps
AtpType

Portinterface

‘F

ModeSwitchinterface Triggerinterface ClientServerinterface

«atpVariation»

+modeGroup |1 +trigger|1..* +operation|1..*
AtpPrototype AtpStructureElement AtpStructureElement h
ModeDeclarationGroupPrototype ldentifiable Identifiable «atpVariation» Tags:
Trigger ClientServerOperation vh latestBindingTime =
blueprintDerivationTime
Datalnterface «atpVan‘étion»

+argument {ordered}

AutosarDataPrototype
ArgumentDataPrototype
Parameterinterface SenderReceiverinterface NvDatalnterface
+parameterTl..* +dataE|ementTl_* +nvDataYl..*
AutosarDataPrototype AutosarDataPrototype
ParameterDataPrototype VariableDataPrototype

Figure 3.14: PortInterfaces in the AUTOSAR meta-model

However, the creation of a valid connection does not need to be based on the usage of
identical Port Interfaces. It is also possible to use different, but compatible Port -
Interfaces. The details about compatibility of Port Interfaces are described in
chapter 6.

[constr_1036] Connect kinds of PortInterfaces | It shall not be possible to con-
nect PortPrototypes typed by Port Interfaces of different kinds. Subclasses of
DataInterface make an exception from this rule and can be used for creating con-
nections to each other. |()

For clarification, a connection between a PortPrototype typed by a Sender-
ReceiverInterface and a PortPrototype typed by a ClientServerInter-—
face shall not be possible. However, the creation of a connection between a port-
Prototype typed by a SenderReceiverInterface and a PortPrototype typed
by a ParameterInterface is supported.

AUTOSAR

[constr_1137] Applicability of ParameterInterface [APPortPrototype typed
by a ParameterInterface can only be owned by a ParameterSwComponent -

Type. |()

Please note that Port Interfaces also play an important role in the context of defin-
ing so-called AUTOSAR services. In particular, by means of the attribute isService
aPortInterface can define whether or not it is supposed to be used in the context
of an AUTOSAR service and in addition to this it may define (by means of the attribute
serviceKind) what kind of service is intended.

ARElement «enumeration»

AtpBlueprint ServiceProviderEnum
AtpBlueprintable

AtpType basicSoftwareModeManager

Portinterface comManager
cryptoServiceManager

+ isService: Boolean diagnosticCommunicationManager
+ serviceKind: ServiceProviderEnum [0..1] diagnosticEventManager
diagnosticLogAndTrace
ecuManager
functioninhibitionManager
nonVolatileRamManager

syncBaseTimeManager
watchDogManager
anyStandardized
vendorSpecific
operatingSystem
defaultErrorTracer
secureOnBoardCommunication
j1939RequestManager

Figure 3.15: PortInterfaces and AUTOSAR services

The information contained in serviceKind can be used in various ways. The primary
intent is to distinguish between the usage of standardized AUTOSAR services from
the usage of a vendor-specific service. This information may have an impact on the
development- and build process of software-components that use the PortInter-
face.

In addition, it is also possible to use the information contained in serviceKind for
filtering the presentation of an AUTOSAR model in an AUTOSAR authoring tool and
e.g. display the nature of the service portPrototypes independently of the content
of the corresponding Port Interface.

[TPS_SWCT _01003] Inconsistencies regarding the value of serviceKind and
the actual implementation of the PortInterface [In case of inconsistencies
between the value of serviceKind and the actual implementation of the PortIn-
terface the implementation of the Port Interface wins over the value of attribute
PortInterface.serviceKind (which, for the intended purpose shall be considered
an annotation rather than a semantically binding information). |()

[TPS_SWCT_01004] Default value if serviceKind is not defined | if the attribute
serviceKind is not defined in the context of a specific Port Interface the default
value anystandardized shall be assumed. |()

[constr_1174] PortInterfaces used in the context of CompositionSwCompo-
nentTypes cannot refer to AUTOSAR services | CompositionSwComponent-—
Types shall not own PortPrototypes typed by PortInterfaces where the at-
tribute isservice is setto true. |()

AUTO SAR

Enumeration ServiceProviderEnum

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This represents a list of possible service providers

Literal Description

anyStandardized This value means that the specific nature is either unknown or it is not important for the given
purpose. This is also the default value for any attribute of type ServiceProviderEnum
Tags: atp.EnumerationValue=0

basicSoftwareMode | The service relates to the Basic Software Mode Manager (BswM)

Manager Tags: atp.EnumerationValue=1

comManager The service relates to the COM Manager (ComM).
Tags: atp.EnumerationValue=2

cryptoService The service relates to the Crypto Service Manager (CsM).

Manager

Tags: atp.EnumerationValue=3

defaultErrorTracer

The service relates to the Default Error Tracer (DET)
Tags: atp.EnumerationValue=4

diagnostic The service relates to the Diagnostic Communication Manager (DCM).
Communication Tags: atp.EnumerationValue=6

Manager gs: aip. B

diagnosticEvent The service relates to the Diagnostic Event Manager (DEM).

Manager Tags: atp.EnumerationValue=7

diagnosticLogAnd The service relates to the Diagnostic Log and Trace (DLT).

Trace Tags: atp.EnumerationValue=8

ecuManager The service relates to the ECU Manager (EcuM).

Tags: atp.EnumerationValue=9

functionInhibition

The service relates to the Function Inhibition Manager (FIM).

Manager Tags: atp.EnumerationValue=10
j1939Request The service relates to the J1939Rm.
Manager

Tags: atp.EnumerationValue=11

nonVolatileRam
Manager

The service relates to the Non-Volatile RAM Manager (NvM).
Tags: atp.EnumerationValue=12

operatingSystem

The service relates to the Operating System (OS).
Tags: atp.EnumerationValue=13

secureOnBoard
Communication

The service relates to the SecOc module.
Tags: atp.EnumerationValue=14

syncBaseTime

The service relates to the Sync Time Base Manager (StbM).

Manager Tags: atp.EnumerationValue=15
vendorSpecific This value denotes a vendor-specific service.
Tags: atp.EnumerationValue=16
watchDogManager The service relates to the Watchdog Manager (WdgM).

Tags: atp.EnumerationValue=17

Please find more details about the relation of Port Interfaces to AUTOSAR services

in chapter 11.

Table 3.19: ServiceProviderEnum

AUTOSAR

4 Details: Software Components, Ports, and
Interfaces

4.1 Introduction

The specification of the Virtual Functional Bus (VFB) [3] explains the main commu-
nication paradigms for communication among software-components: client/server for
operation-based communication, and sender/receiver for data-based communication.

The nature of the two communication paradigms is quite different, and so is the mod-
eling of SenderReceiverInterfaces and ClientServerInterfaces and their
related meta-classes.

[TPS_SWCT 01516] PortInterface describes the static structure of informa-
tion interchange | PortInterfaces are limited to the description of the static
structure of the exchanged information; the dynamic attributes relevant for commu-
nication are attached to PortPrototypes. |(RS_SWCT_00010, RS_SWCT_00080,
RS_SWCT_00110, RS_SWCT_02030, RS_SWCT_03010)

Please note that the dynamic attributes relevant for communication are described in
chapter 4.5.

4.2 Port Interface Details

4.2.1 Introduction

The usage of value encodings (for more information please refer to section 5.2.6) is
limited within the context of PortInterfaces.

[constr_1045] Supported value encodings for swBaseType in the context of
PortInterfaces | The supported value encodings for the usage within a Port-
Interface are:

e 2C: Two’s complement

IEEE754: floating point numbers

e 150-8859-1: single-byte coded character

e 150-8859-2: single-byte coded character

e WINDOWS-1252: single-byte coded character
e UTF-8: UCS Transformation Format 8

e UTF-16: Character encoding for Unicode code points based on 16 bit code
units [15]

e UCS-2: Universal Character Set 2

AUTOSAR

e NONE: Unsigned Integer

e BOOLEAN: This represents an integer to be interpreted as boolean.

10

[constr_1046] Applicability of [constr_1045] | [constr_1045] applies only if the
value of the attribute isServiceis setto false. ()

[constr_1295] PortInterfaces and category DATA REFERENCE | A DataPro-
totype defined in the context of a PortInterface used by an Application-
SwComponentType Of SensorActuatorSwComponentType that is (after potential
indirections via TYPE_REFERENCE are resolved) either typed by or mapped to an Im-
plementationDataType Of category DATA_REFERENCE shall only be used if ei-
ther the provider or the requester of the information represents a ServiceSwCompo-
nentType, @ ComplexDeviceDriverSwComponentType, & ParameterSwCom—
ponentType, Or an NvBlockSwComponent Type, Or the EcuAbstractionSwCom—
ponentType. ()

Note: [constr_1295] corresponds to [SWS_RTE_07670].

4.2.2 Sender Receiver Communication

[TPS_SWCT_01114] SenderReceiverInterface | SenderReceiverInter—
faces allow for the specification of the typically asynchronous communication pattern
where a sender provides data that is required by one or more receivers.

While the actual communication takes place via the respective PortPrototypes, a
SenderReceiverInterface allows for formally describing what kind of information
is sent and received. |()

Class SenderReceiverinterface
Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface
Note A sender/receiver interface declares a number of data elements to be sent and received.

Tags: atp.recommendedPackage=PortInterfaces

Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtoType, CollectableElement,
Datalnterface, Identifiable, MultilanguageReferrable, PackageableElement, Portinterface, Referrable

Attribute Type Mul. Kind | Note

dataElement VariableDataPrototype 1.* agor The data elements of this SenderReceiverinterface.

invalidation InvalidationPolicy * aggr InvalidationPolicy for a particular dataElement

Policy

Table 4.1: SenderReceiverinterface

AUTOSAR

Class InvalidationPolicy
Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface
Note Specifies whether the component can actively invalidate a particular dataElement.

If no invalidationPolicy points to a dataElement this is considered to yield the identical result as if the
handlelnvalid attribute was set to dontinvalidate.

Base ARObject

Attribute Type Mul. Kind | Note

dataElement VariableDataPrototype 1 ref Reference to the dataElement for which the Invalidation
Policy applies.

handlelnvalid HandlelnvalidEnum 0..1 attr This attribute controls how invalidation is applied to the
dataElement.

Table 4.2: InvalidationPolicy

Enumeration HandlelnvalidEnum

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Strategies of handling the reception of invalidValue.

Literal Description

dontInvalidate

Invalidation is switched off.
Tags: atp.EnumerationValue=0

external

Replace a received invalidValue. The replacement value is sourced from the externalReplacement.

Replacement Tags: atp.EnumerationValue=1

keep The application software is supposed to handle signal invalidation on RTE API level either by Data
ReceiveErrorEvent or check of error code on read access.

Tags: atp.EnumerationValue=2

replace Replace a received invalidValue. The replacement value is specified by the initValue.

Tags: atp.EnumerationValue=3

Table 4.3: HandlelnvalidEnhum

A senderReceiverInterface focuses on the description of information items rep-
resented by VariableDataPrototypes (see section 5.3).

A variableDataPrototype aggregated in the role of dataElement represents
an atomic' piece of information transmitted among PortPrototypes typed by a
SenderReceiverInterface.

[TPS_SWCT_01115] invalidationPolicy [An invalidationPolicy specifies
whether the sending component can actively invalidate a particular datakElement and
which strategy of handling the reception of invalidvalue on the receiver side shall
be implemented. |()

Further information about the related concept of an invalidvalue is provided in
chapter 5.4.2

"Note that the term “atomic” does not have any implication on the implementation on a concrete
computing platform

AUTOSAR

ARElement
AtpBlueprint
AtpBlueprintable
AtpType
Portinterface

+ isService: Boolean
+ serviceKind: ServiceProviderEnum [0..1]

f

Datalnterface

DataPrototype
AutosarDataPrototype

I f

SenderReceiverinterface VariableDataPrototype

+dataElement
+inva|idationPoIicyT0..*

InvalidationPolicy

1.*

+dataElement

+ handlelnvalid: HandlelnvalidEnum [0..1]
1

«enumeration»
HandlelnvalidEnum

keep

replace
dontinvalidate
externalReplacement

Figure 4.1: dataElements of a SenderReceiverInterface

Note that a SenderReceiverInterface provides a name space for the definition
of variableDataPrototypes. In terms of the AUTOSAR meta-model this aspect
is indicated by the inheritance relation to DataPrototype (which in turn inherits from
Identifiable). Please find more information on the creation of name spaces in [11].

[TPS_SWCT_01116] swImplPolicy | The swImplPolicy indicates the way how
a VariableDataPrototype shall be processed at the receiver’s side. If set to
queued the semantics is that the corresponding variableDataPrototype heeds
to be added to a queue (or in other words: a FIFO data structure) from which it is later
consumed by the actual receiver software-component. |()

Please note that the swImplPolicy is described in section 5.4.

[constr_1200] Queued communication is not applicable for dataElements
owned by PRPortPrototype | The swImplPolicy shall not be setto queued for
any dataElement owned by a PRPortPrototype. |()

[TPS_SWCT_01176] last-is-best semantics for sender-receiver communication |
If swImplPolicy is set to any other valid value of SwImplPolicyEnum then lastis
best semantics applies. |()

AUTOSAR

Please note that the definition of variableDataPrototype may possibly come very
close to the reader’s idea of a signal. However, different kinds of signals have a specific
meaning in the AUTOSAR concept, especially in the context of the AUTOSAR System
Template [10].

[TPS_SWCT _01117] Communication patterns for sender-receiver communica-
tion [PortPrototypestypedby a SenderReceiverInterface may be connected
to establish a 1:n (i.e. one sender, multiple receivers) communication relationship. It
is also possible to establish a n:1 (i.e. many senders, one receiver) communication
pattern. |()

[constr_1033] Communication scenarios for sender/receiver communication |
For sender/receiver communication, it is not allowed to create a communication sce-
nario where n sender are connected to m receivers where m and n are both greater
than 1. |()

Factually, [constr_1033] is not applicable to a scenario where several PRPortPro-
totypes are connected by a chain of AssemblySwConnectors Oof PassThrough-
SwConnectors.

[constr_1202] Supported connections by AssemblySwConnector for PortPro-
totypes typed by a SenderReceiverInterface Or NvDataInterface | For
the modeling of AssemblySwConnectors between PortPrototypes typed by a
SenderReceiverInterface Or NvDataInterface, only the connections docu-
mented in Table 4.4 are supported by AUTOSAR. |()

RPortPrototype

PPortPrototype

PRPortPrototype

RPortPrototype

No

Yes

Yes

PPortPrototype

Yes

No

Yes

PRPortPrototype

Yes

Yes

Yes

Table 4.4: Supported connections for PortPrototypes typed by a Sender-
ReceiverInterface Or NvDataInterface

[constr_1203] Supported connections by DelegationSwConnector for Port-
Prototypes typed by a SenderReceiverInterface Or NvDataInterface | For
the modeling of DelegationSwConnectors between PortPrototypes typed by a
SenderReceiverInterface Or NvDataInterface, only the connections docu-

mented in Table 4.5 are supported by AUTOSAR. |()

innerPort

outerPort

RPortPrototype

PPortPrototype

PRPortPrototype

RPortPrototype

Yes

No

Yes

PPortPrototype

No

Yes

Yes

PRPortPrototype

Yes

Yes

Yes

Table 4.5: Supported connections for PortPrototypes typed by a Sender-

ReceiverInterface Or NvDatalInterface

AUTOSAR

4.2.3 Client Server Communication

The underlying semantics of a client/server communication is that a client may initiate
the execution of an operation by a server that supports the operation.

The server executes the operation and, when completed, it provides the client with the
result (synchronous operation call) or else the client checks for the completion of the
operation by itself (asynchronous operation call).

[constr_1037] Client shall not be connected to multiple servers | A client shall not
be connected to multiple servers such that an operation call would be handled by more
than one server. |()

4.2.3.1 Client Server Interface

A ClientServerInterface, t0 some extent, is a counterpart to the Sender-

ReceiverInterface?.

Instead of defining pieces of information to be transferred among software-
components, a ClientServerInterface defines a collection of ClientServer—
Operations.

Class ClientServerinterface
Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface
Note A client/server interface declares a number of operations that can be invoked on a server by a client.

Tags: atp.recommendedPackage=Portinterfaces

Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Portinterface, Referrable

Attribute Type Mul. Kind | Note

operation ClientServerOperation 1.% aggr ClientServerOperation(s) of this ClientServerinterface.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=blueprintDerivationTime

possibleError ApplicationError * agar Application errors that are defined as part of this interface.

Table 4.6: ClientServerinterface

2However, different connection patterns apply, see [constr_1037]

AUTO SAR

ARElement
AtpBlueprint
AtpBlueprintable
AtpType
Portinterface

+ isService: Boolean
+ serviceKind: ServiceProviderEnum [0..1]

i

ClientServerinterface

«atpVariation»

_+operation 1.

-7 AtpStructureElement DataPrototype
Identifiable AutosarDataPrototype
ClientServerOperation
«atpVariation» Tags:
vh.latestBindingTime =~ [----=-----------=-----+ o
blueprintDerivation Time «atpVariation»
+argument | * {ordered}
ArgumentDataPrototype
«enumeration» + direction: ArgumentDirgctionEnum . «isOfType»
ArgumentDirectionEnum + serverArgumentimplPolicy: ServerArgumentimplPolicyEnum [0..1]
in
out
inout
1
+type {redefines atpType}
«enumeration»
ServerArgumentimplPolicyEnum ARElement
AtpType
i =RUVES AutosarDataType
useVoid

Figure 4.2: ClientServerOperations of a ClientServerInterface

[TPS_SWCT 01118] ClientServerInterface | AClientServerInterface is
composed of ClientServerOperations,i.e. aClientServerOperation cannot
be reused in the context of a different ClientServerInterface |()

[TPS_SWCT _01106] ClientServerOperation [A ClientServerOperation
consists of 0.." ArgumentDataPrototypes. The latter may be

e passed to the operation (i.e. the direction is “in”)
e passed to and returned from the operation (i.e. the direction is “inout”)
e returned from the operation (i.e. the direction is “out”)

The aggregation represents a variation point. |(RS_SWCT _03141)

AUTOSAR

Class ClientServerOperation

Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface

Note An operation declared within the scope of a client/server interface.

Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, MultilanguageReferrable,

Referrable

Attribute Type Mul. Kind | Note

argument (or- ArgumentDataPrototype * aggr | An argument of this ClientServerOperation

dered) Stereotypes: atpVariation
Tags: vh.latestBindingTime=blueprintDerivationTime

possibleError ApplicationError * ref Possible errors that may by raised by the referring
operation.

Table 4.7: ClientServerOperation

Class ArgumentDataPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface
Note An argument of an operation, much like a data element, but also carries direction information and is
owned by a particular ClientServerOperation.
Base ARObject, AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable
Attribute Type Mul. Kind | Note
direction ArgumentDirection 1 attr This attribute specifies the direction of the argument
Enum prototype.
serverArgument | ServerArgumentimpl 0..1 attr This defines how the argument type of the servers
ImplPolicy PolicyEnum RunnableEntity is implemented.
If the attribute is not defined this has the same semantics
as if the attribute is set to the value useArgumentType for
primitive arguments and structures.

Table 4.8: ArgumentDataPrototype

[TPS_SWCT_01119] Direction of ArgumentDataPrototypes | To cover these
cases, ArgumentDataPrototype defines an attribute di rection, possible values
are in (pass to operation), out (return from operation), and inout (pass to and return
from operation). |()

In many common programming languages (like C), an operation is yet another data
type. This makes it for example possible to pass a reference to an operation as an
argument to another operation.

This is not allowed in the AUTOSAR concept.

[TPS_SWCT 01517] ClientServerOperation cannot be passed as a reference
[It is not possible to pass a reference to a ClientServerOperation as an Argu-—
mentDataPrototype in another ClientServerOperation. |()

Essentially, all ArgumentDataPrototypesina ClientServerOperation can be
passed (conceptually) by value (from the client to the server and/or from the server to
the client depending on the direction of the ArgumentDataPrototype).

AUTOSAR

[TPS_SWCT_01120] Client needs to provide ArgumentDataPrototypes [When
the client invokes an operation, it needs to provide a value for each ArgumentDat -
aPrototype thatis of direction in or inout. |()

[TPS_SWCT_01121] Pass correct data type | The value passed to an Argument—
DataPrototype Of direction in or inout needs to be of the corresponding

Datatype. |()

[TPS_SWCT_01122] Synchronous call of ClientServerOperation [In the case
of synchronous operation call, the client expects to receive a response to the invocation
of the operation.

As part of the response, it receives a value (of the correct AutosarDataType) for
each ArgumentDataPrototype that is of direction out or inout. |()

Enumeration ArgumentDirectionEnum
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Primitive Types
Note Use cases:

e Arguments in ClientServerOperation can have different directions that need to be formally
indicated because they have an impact on how the function signature looks like eventually.

e Arguments in BswModuleEntry already determine a function signature, but the direction is
used to specify the semantics, especially of pointer arguments.

Literal Description

in The argument value is passed to the callee.
Tags: atp.EnumerationValue=0

inout The argument value is passed to the callee but also passed back from the callee to the caller.

Tags: atp.EnumerationValue=1

out The argument value is passed from the callee to the caller.

Tags: atp.EnumerationValue=2

Table 4.9: ArgumentDirectionEnum

Each ClientServerOperation provides a name space forits ArgumentDataPro-
totypes and therefore has a unique identifier which identifies the operation within the
corresponding ClientServerInterface.

The ClientServerOperations have no ordering within a ClientServerInter-
face (there is no such thing as the “first” operation)3.

[TPS_SWCT_01123] No default values for ArgumentDataPrototypes [It is not
possible to define default values for ArgumentDataPrototypes defined in the con-
text of a ClientServerOperation. Default values might lead to complicated map-
pings to programming languages. |()

3In different parts of the definition of a ClientServerInterface, a “calling-order’ of the
ClientServerOperations might be prescribed: the client might be required to use the
ClientServerOperations in a certain logical ordering.
However, this ordering has nothing to do with the order in which the ClientServerOperations are
listed in the definition of a ClientServerInterface

AUTOSAR

[TPS_SWCT_01124] Definition of ArgumentDataPrototypes within the context
of a ClientServerOperation is ordered | In contrast to the unordered relation-
ship of ClientServerInterface {0 ClientServerOperation, the definition of
ArgumentDataPrototypes within the context of a ClientServerOperation is
ordered, i.e. a ClientServerOperation may have a first argument*. |()

Please note that ArgumentDataPrototype inherits from AutosarDataPrototype
and therefore has a reference to a concrete AutosarbDataType.

The RTE Generator uses the referred AutosarDataTypeS to determine the data
types of the arguments depending on the value of the attribute ArgumentDataPro-
totype.serverArgumentImplPolicy.

Enumeration ServerArgumentimplPolicyEnum

Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface

Note This defines how the argument type of the servers RunnableEntity is implemented.

Literal Description

useArgumentType 'lghe argument type of the RunnableEntity is derived from the AutosarDataType of the Argument
rototype.

Tags: atp.EnumerationValue=0

useVoid The argument type of the RunnableEntity is void.

Tags: atp.EnumerationValue=2

Table 4.10: ServerArgumentimplPolicyEnum

[constr_1286] serverArgumentImplPolicy and ArgumentDataPrototype
typed by primitive data types | The value of the attribute ArgumentDataProto-
type.serverArgument ImplPolicy shall not be setto usevoid foran Argument -
DataPrototype Of direction in thatis typed by an AutosarDataType that boils
down to a primitive C data type (see [TPS_SWCT_01565]). |()

Please note that the server RunnableEntity needs information about the currently
used array length respectively structure size by usage of additionally arguments passed
by the Client or via PortDefinedArgumentValue.

Note further that a ClientServerInterface does not define any timing information
(how quickly the client expects a response of the server). It does not define how the
threading works (if the client for example blocks until the response comes back from
the server).

4 Giving the ArgumentDataPrototypes of a ClientServerOperation both an ordering and a
unique identifier might seem redundant.
For example, in the operation “foo(a, b, ¢)”, we can refer to the “second argument” or to “the argument
named b”. In many common programming languages (like C or Java), only the ordering is actually used
by the client during the invocation of the server (the client invokes the operation as “foo(1,2,3)” not as
“foo(a=1,c=3,b=2)".
In addition, the names of the arguments represent an arbitrary choice made when implementing of the
invocation. In C, only the data types and ordering of the arguments constitute the signature, not the
names of the arguments.

AUTOSAR

It also does not define explicitly how information is passed between an implementation
of the client and the server and the underlying RTE (for example: through “pointers” or
“by value”).

[constr_1204] Supported connections by AssemblySwConnector for Port-
Prototypes typed by a ClientServerInterface, ModeSwitchInterface,
or TriggerInterface | For the modeling of AssemblySwConnectors between
PortPrototypesS typed by a ClientServerInterface, ModeSwitchInter-
face, or TriggerInterface, only the connections documented in Table 4.11 are
supported by AUTOSAR. |()

RPortPrototype PPortPrototype PRPortPrototype
RPortPrototype No Yes Yes
PPortPrototype Yes No No
PRPortPrototype Yes No No
Table 4.11: Supported connections for PortPrototypes typed by a

ClientServerInterface, ModeSwitchInterface, Of TriggerInterface

[constr_1205] Supported connections by DelegationSwConnector for Port-
Prototypes typed by a ClientServerInterface, ModeSwitchInterface, Or
TriggerInterface | For the modeling of DelegationSwConnectors between
PortPrototypesS typed by a ClientServerInterface, ModeSwitchInter-
face, Or TriggerInterface, only the connections documented in Table 4.12 are

supported by AUTOSAR. |()

innerPort

outerPort

RPortPrototype PPortPrototype PRPortPrototype
RPortPrototype Yes No No
PPortPrototype No Yes No
PRPortPrototype No Yes No
Table 4.12: Supported connections for PortPrototypes typed by a

ClientServerInterface, ModeSwitchInterface, Of TriggerInterface

4.2.3.2 Error Handling in Client/Server Communication

This section describes the handling of errors occurring either within an application
software-component or during the communication across the VFB [3]. Errors that are
created and consumed by basic software modules are not in the scope of this docu-
ment and therefore will not be discussed.

Therefore, errors in the scope of this document are divided into two simple classes:
e infrastructure errors and

e application errors.

AUTOSAR

A software-component implementation uses RTE APl methods to communicate with
other software-components. During this communication certain errors can occur as a
result of infrastructure faults, like a bus is not working, or an expected data value was
not arriving in time.

These errors are listed in the RTE specification [2], as they are an inherent feature
of the infrastructure provided by the VFB. Software-components will therefore typically
not raise infrastructure errors on their own.

Instead, the AUTOSAR basic software and the RTE will determine infrastructure faults
and communicate the corresponding error codes to the relevant software-components.

Portinterface
ClientServerinterface

«atpVariation» Tags:
............... vh latestBindingTime =
«atpVariation» blueprintDerivationTime

+operation [1..* +possibleError|0..*

AtpStructureElement Identifiable
Identifiable +possibleError ApplicationError
ClientServerOperation

0..*| + errorCode: Integer

Figure 4.3: Application error meta-model

[TPS_SWCT _01491] AUTOSAR system does not need to explicitly describe in-
frastructure errors | As the fixed set of infrastructure errors is defined as an implicit
part of the VFB, a developer of an AUTOSAR system does not need to explicitly de-
scribe these.

It is assumed that these might occur at run-time and application developers should take
measures to handle them. |()

Application errors, on the other hand, are specific to the functionality or information that
is described in form of a Port Interface. It is not possible to define such errors up
front, instead they are defined at design time of a certain Port Interface.

In principle, such ApplicationErrors could be part of all kinds of PortInter-
faces.

[constr_1102] ApplicationError in the scope of one SwComponentType | If
a SwComponentType has PortPrototypes typed by different ClientServerIn-
terfaces with equal shortName and ApplicationErrors defined then the follow-
ing condition applies: ApplicationErrors with the same shortName shall have
identical values of errorCodes. |()

Rationale for the existence of [constr_1102]: the RTE generator creates symbols for
the error codes in which the shortName of the ClientServerInterface and the
shortName of the ApplicationError Occur.

AUTOSAR

[constr_1108] Value of ApplicationError.errorCode | The value of Applica-
tionError.errorCode shall not exceed the closed interval 1 .. 63. The following
exception applies: only in case possibleError is supposed to represent E_OK the
value 0 shall be allowed. |()

By [constr_1108] it is possible to ensure that only the six least significant bits of a return
value shall be used for indicating an application error.

Class ApplicationError

Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface

Note This is a user-defined error that is associated with an element of an AUTOSAR interface. It is specific for
the particular functionality or service provided by the AUTOSAR software component.

Base ARObject, Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind | Note

errorCode Integer 1 attr The RTE generator is forced to assign this value to the

corresponding error symbol. Note that for error codes
certain ranges are predefined (see RTE specification).

Table 4.13: ApplicationError

Consequently, ClientServerOperations may be associated with a number of Ap-
plicationErrors they possibly raise. These errors are defined as part of the
ClientServerInterface.

[constr_1038] Reference to ApplicationError | A possibleError referenced
by a ClientServerOperation shall be owned by the PortInterface that also
owns the ClientServerOperation. |()

Please note that the meta-class ApplicationError is also used on the AUTOSAR
adaptive platform (see [16]) and therefore [constr_1038] cannot be more specific about
the nature of the enclosing PortInterface.

4.2.4 External Trigger Event Communication

[TPS_SWCT_01196] Semantics of an external trigger event communication [The
underlying semantics of an external trigger event communication is that a trigger source
may initiate the execution of RunnableEntitys in the connected trigger sinks. Typi-
cally (but not necessarily) these RunnableEntitys are executed in a sequential or-

der. |()

[TPS_SWCT_01197] TriggerInterface [The TriggerInterface defines a set
of Trigger to be communicated between software-components. The Trigger repre-
sents a special kind of events at which occurrence the trigger sinks shall react in a
particular manner. |()

AUT o

©SAR

Class Triggerinterface
Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface
Note A trigger interface declares a number of triggers that can be sent by an trigger source.
Tags: atp.recommendedPackage=PortInterfaces
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Portinterface, Referrable
Attribute Type Mul. Kind | Note
trigger Trigger 1.* aggr The Trigger of this trigger interface.
Table 4.14: Triggerinterface
Class Trigger
Package M2::AUTOSARTemplates::CommonStructure::TriggerDeclaration
Note A trigger which is provided (i.e. released) or required (i.e. used to activate something) in the given
context.
Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, MultilanguageReferrable,
Referrable
Attribute Type Mul. Kind | Note
swimplPolicy SwimplPolicyEnum 0..1 attr This attribute, when set to value queued, allows for a
queued processing of Triggers.
triggerPeriod MultidimensionalTime 0..1 aggr Optional definition of a period in case of a periodically
(time or angle) driven external trigger.
Table 4.15: Trigger
Class MultidimensionalTime
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Multidimensional Time
Note This is used to specify a multidimensional time value based on ASAM CSE codes. It is specified by a
code which defined the basis of the time and a scaling factor which finally determines the time value.
If for example the cseCode is 100 and the cseCodeFactor is 360, it represents 360 angular degrees.
If the cseCode is 0 and the cseCodeFactor is 50 it represents 50 microseconds.
Base ARObject
Attribute Type Mul. Kind | Note
cseCode CseCodeType 1 attr Specifies the time base by means of CSE codes.
cseCodeFactor Integer 1 attr The scaling factor for the time value based on the
specified CSE code.

Table 4.16: MultidimensionalTime

AUTOSAR

ARElement
AtpBlueprint
AtpBlueprintable
AtpType
Portinterface

+ isService: Boolean
+ serviceKind: ServiceProviderEnum [0..1]

‘F

Triggerinterface

+triggeIl..*

AtpStructureElement
Identifiable

Trigger

+ swimplPolicy: SwimplPolicyEnum [0..1]

+triggerPeriodT04.l

MultidimensionalTime

+ cseCode: CseCodeType
+ cseCodeFactor: Integer

Figure 4.4: Trigger of a TriggerInterface

As illustrated in Figure 4.4, a TriggerInterface is composed of Trigger.

[TPS_SWCT_01198] Period for periodic triggering [A Trigger can optionally de-
fine a period for periodic triggering. It is expressed via the meta-class Multidimen-
sionalTime in terms of time or angle. Note that the main use case for this is to
specify the properties if the trigger is coming from the Basic Software e.g. from a
Complex Driver, it is not used as an input for the RTE generator. |()

Apart from this, a TriggerInterface does not define any timing information (e.g.
how quickly the source expects a reaction of the sinks). This is property of the timing
information in the templates.

[constr_1104] Trigger sink and trigger source | An RPortPrototype typed by
a TriggerInterface shall not be referenced by more than one SwConnectors
that are in turn referencing PPortPrototypes typed by TriggerInterfaces that
contain Triggers with the same shortName. |()

[constr_1104] boils down to the requirement that trigger communication shall not be
implemented in a n:1 scenario.

To be clear, the n:1 scenario is not supported for trigger communication because there
is no active use case for it. Support would require the implementation of queue man-
agement for Trigger communication.

[TPS_SWCT_01199] Queued processing of Triggers [It may happen that at least
tentatively a Trigger source fires Triggers faster than they can be processed on

AUTOSAR

the side of the Trigger sink. To support this use case it is possible to process trigger
event communication in a queued manner.

In this case the Triggers are added to a queue from where the foremost trigger is
dequeued and processed when the processing of the current Trigger is done. Please
note that the queue size is not subject to definition in the scope of this document. The
actual queue size is defined during the process of RTE configuration.

The specification of whether or not a Trigger is subject to queued processing is
controlled by the attribute Trigger.swImplPolicy. |()

[constr_1169] Allowed values for Trigger.swImplPolicy | The only allowed val-
ues for the attribute Trigger.swImplPolicy are either STANDARD (in which case the
Trigger processing does not use a queue) or QUEUED (in which case the processing
of Triggers positively uses a queue). |()

Please note that the value of Trigger.swImplPolicy is not the final word on the
implementation of a queue for the specific Trigger. The integrator still has the power
to overrule the application software developer’s verdict if applicable.

For more information regarding the ability to connect different kinds of PortProto-
types typed by a TriggerInterface to each others please refer to [constr_1204]
and [constr_1205].

4.2.5 Communication of Modes

There are two distinctive use cases for the communication of modes via ports:

1. An actual mode transition can be communicated from a mode manager compo-
nent to its client components to enforce a mode switch.

2. A request for a mode transition can be communicated from any component to a
mode manager.

[TPS_SWCT_01087] Propagation of mode information | For communicating a
mode switch (i.e. the first use case), the Software-Component Template describes
the concept of the communication of ModeDeclarationGroupPrototypes Simi-
lar to the communication of VariableDataPrototypes but is uses a special type
of PortInterface: the collections of ModeDeclarations that are required or
provided by a swComponentType are defined by means of ModeSwitchInter—
faces used to type the PortPrototypes owned by the SwComponentType. |
(RS_SWCT_03203)

This aspect is depicted in Figure 4.5.

Due to the strong interaction with the RTE for handling the mode switches, this first use
case does not allow communication across ECU boundaries:

[constr_4000] Local communication of mode switches | Ports with ModeSwitch-
Interfaces cannot be connected across ECU boundaries. |()

AUTO SAR

[constr_2049] Different ModeDeclarationGroups shall have different short-
Names. | A software component is not allowed to type multiple PortPrototypes
with ModeSwitchInterfaces where the contained ModeDeclarationGroupPro-
totypes are referencing ModeDeclarationGroups with identical shortNames but
different ModeDeclarations. |()

Obviously, the rationale for [constr_2049] is to avoid conflicts in generated RTE files.

For instance:

Two ModeDeclarationGroups with identical shortName “Foo” are defined.

ModeDeclarationGroup “Fo0”
contains the ModeDeclarations “X”, “Y”, “Z”

ModeDeclarationGroup “Foo*”
contains the ModeDeclarations “W”, “X”, “Y”, “Z”

In this case a software component is only allowed to use either “Foo” or “Foo*”

Class ModeSwitchinterface
Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface
Note A mode switch interface declares a ModeDeclarationGroupPrototype to be sent and received.
Tags: atp.recommendedPackage=PortInterfaces
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Portinterface, Referrable
Attribute Type Mul. Kind | Note
modeGroup ModeDeclarationGroup 1 aggr The ModeDeclarationGroupPrototype of this mode
Prototype interface.
Table 4.17: ModeSwitchinterface
Class ModeDeclarationGroupPrototype
Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration
Note The ModeDeclarationGroupPrototype specifies a set of Modes (ModeDeclarationGroup) which is
provided or required in the given context.
Tags: atp.ManifestKind=ExecutionManifest,MachineManifest
Base ARObject, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable
Attribute Type Mul. Kind | Note
swCalibration SwcCalibrationAccess 0..1 attr This allows for specifying whether or not the enclosing
Access Enum ModeDeclarationGroupPrototype can be measured at
run-time.
type ModeDeclarationGroup 1 tref The "collection of ModeDeclarations" (= ModeDeclaration
Group) supported by a component
Stereotypes: isOfType

Table 4.18: ModeDeclarationGroupPrototype

Please note that by aggregating swCalibrationAccessEnum in the role swCal-
ibrationAccess a ModeDeclarationGroupPrototype gains the ability to be-
come measurable. This implies the following constraint:

AUTOSAR

[constr_1172] Allowed values of SwCalibrationAccessEnum for ModeDecla-
rationGroupPrototype | The only allowed values of swCalibrationAccess ag-
gregated by ModeDeclarationGroupPrototype are notAccessible and read-

Only. |()
[TPS_SWCT 01566] Define literals for an MCD system in the context of a

FlatInstanceDescriptor | If ModeDeclarationGroupPrototype.swCali-
brationAccess is setto readOnly areferenced Flat InstanceDescriptor.sw—
DataDefProps may in turn refer to a CompuMethod that defines the particular literals
used in the MCD system for displaying values of the the measured ModeDeclara-
tionGroupPrototypes. |(RS_SWCT_03203)

The existence of this use case is the reason for putting “Al” at the intersection of com-
puMethod and FlatInstanceDescriptor.

Another possible scenario (that does not necessarily have to be related to Modebec-
larationGroupPrototypes but to the definition of literals for MCD systems in gen-
eral) isthata FlatInstanceDescriptor does not exist (e.g. because the affected
piece of data exists in the basic software) but still it would be good to have the ability
to define particular literals for displaying values in an MCD system.

This case can be supported by the AUTOSAR standard as well by putting “Al” at the
intersection of compuMethod and McDataInstance in table 5.39.

[TPS_SWCT _01200] ModeDeclarationGroupPrototype per ModeSwitchIn-
terface | The multiplicity of the aggregation of ModeDeclarationGroupProto-
type 0o ModeSwitchInterface is pragmatically limited to 1. |(RS_SWCT_03203)

Admittedly, there would be no technical restriction to support a 0..* multiplicity but on
the other hand it does not seem as if any reasonable use case for such a scenario
exists.

If somehow a SwComponentType would have to consider two or even more Mod-
eDeclarationGroupPrototypes itis very likely that these would be part of different
ModeSwitchInterfaces.

The containment of a ModeDeclarationGroupPrototype in @ ModeSwitchIn—
terface allows for explicitly defining SswConnectors which communicate between
SwComponentPrototypes and to define service interfaces for communication with
ServiceSwComponentTypeS. Due to the compatibility rules of PortInterfaces
(see chapter 6) each swComponentType can rely on the availability of required mode
activations.

AUTOSAR

Portinterface
ModeSwitchinterface

+modeGroupT1
AtpPrototype

ModeDeclarationGroupPrototype

+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]
«atpVariation» Tags:

vh latestBindingTime =
| blueprintDerivationTime

«isOfType»

1
+type \|/{redefines atpType}

1

ARElement . AtpStructureElement
AtpBlueprint gy, ,'+modeDeclaration Identifiable
AtpBlueprintable «atpVariation» 1.% ModeDeclaration
AtpType
ModeDeclarationGroup + value: Positivelnteger [0..1]

+ onTransitionValue: Positivelnteger [0..1]
+initialMode

1

Figure 4.5: Mode Switch Interface

Please note that each swComponentType can define (via their PortPrototypes
and ModeSwitchInterfaces) a list of required and provided ModeDeclara-
tionGroupPrototypes.

[TPS_SWCT _01201] CompositionSwComponentType requires and provides the
modes that are required or provided by its contained SswComponentPrototypes
[Eventually, a CompositionSwComponentType requires and provides the modes
that are required or provided by its contained SwComponentPrototypes. The dele-
gation of these modes from SwComponentPrototypes to the enclosing Composi-
tionSwComponentType is explicitly described by DelegationSwConnectors. |
(RS_SWCT 03202, RS SWCT _03203)

The formal description of a software-component does not make any assumptions about
the semantics of the required and provided ModeDeclarationGroupPrototypes.
It just requires and provides the ModeDeclarationGroupPrototypes by name. For
more information about mode declaration refer to section 9.1.

[TPS_SWCT_01086] Request mode change | The ability to request a mode (i.e.
the second use case) is modeled on the VFB via a senderReceiverInterface
and for the RTE it is like a usual communication, that means the connector can also
cross ECU boundaries and the communicated dataElements have to be based on
AutosarDataTypesS. |(RS_SWCT 03202, RS_SWCT_03203)

However, for semantic consistency with the first use case, a communicated mode re-
quest shall also be mapped to a corresponding ModeDeclarationGroup. This can
be defined by a mapping class as shown in figure 4.6.

The ImplementationDataType mapped to a certain ModeDeclarationGroup
can then be used in a PortInterface to represent a ModeDeclaration of the
associated ModeDeclarationGroup as a numerical value:

AUTO SAR

[constr_4002] Unambiguous mapping of modes to data types | Within one
DataTypeMappingSet, a ModeDeclarationGroup shall not be mapped to differ-
ent ImplementationDataTypes. |()

ARElement ARElement

AtpBlueprint AtpBlueprint

AtpBlueprintable AtpBlueprintable
PortinterfaceMappingSet DataTypeMappingSet

«atpVariation» Tags:
«atpVariation» ~ | vh.latestBindingTime =
blueprintDerivationTime

+portinterfaceMapping [1..* 0..x| +tmodeRequestTypeMap
AthIgepnnt ModeRequestTypeMap AbstractimplementationDataType
AtpBlueprintable ImplementationDataType
Identifiable
PortinterfaceMapping + fiynamicArraySi.zeProfiIe: String [0..1]
+ isStructwWithOptionalElement: Boolean [0..1]
+ typeEmitter: NameToken [0..1]
ARElement
AtpBlueprint
AtpBlueprintable
ModelnterfaceMapping AtpType
+modeGroup 1 ModeDeclarationGroup
+ onTransitionValue: Positivelnteger [0..1]
+type 1
{redefines
atpType}
«isOfType»
+modeMapping |1
ModeDeclarationGroupPrototypeMapping +irtModeGroup AtpPrototype
1 ModeDeclarationGroupPrototype
+secondModeGroup —— ——
+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]
1

Figure 4.6: Mapping of modes to data types

Class ModeRequestTypeMap

Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration

Note Specifies a mapping between a ModeDeclarationGroup and an ImplementationDataType. This
ImplementationDataType shall be used to implement the ModeDeclarationGroup.

Base ARObject

Attribute Type Mul. Kind | Note

implementation Abstractimplementation 1 ref This is the corresponding AbstractimplementationData

DataType DataType Type. It shall be modeled along the idea of an "unsigned

integer-like" data type.
modeGroup ModeDeclarationGroup 1 ref This is the corresponding ModeDeclarationGroup.

Table 4.19: ModeRequestTypeMap

[constr_1166] Restrictions of ModeRequestTypeMap | For every ModeDeclara—
tionGroup referenced by a ModeDeclarationGroupPrototype usedinaPort-
Prototype typed by a ModeSwitchInterface a ModeRequestTypeMap shall ex-
ist that points to the ModeDeclarationGroup and also to an eligible Implementa-
tionDataType.

AUTO SAR

The ModeRequest TypeMap shall be aggregated by a DataTypeMappingSet which
is referenced from the SwcInternalBehavior thatis owned by the Application-
SwComponent Type that also owns the PortPrototype. |()

ARElement AtpStructureElement

AtpBlueprint InternalBehavior
AtpBlueprintable |+dataTypeMapping

DataTypeMappingSet

0..xatpSplitable»

+modeRequestTypeMap | 0..*

ARElement
AtpBlueprint
AtpBlueprintable
AtpType

ModeRequestTypeMap SweclnternalBehavior

SwComponentType

+internalBehavior 0.1

«atpVariation,atpSplitable» <atpVariation» Tags:

-------------------------------- vh latestBindingTime =

«atpVariation,atpSplitable» preCompileTime
+modeGroupy[/1 +port|0..*
AREIemept AbstractimplementationDataType AtomicSwComponentType AtpBlueprintable
AtpBlueprint ImplementationDataType AtpPrototype
AtpBlueprintable PortPrototype
AtpType
ModeDeclarationGroup
+type 1
{redefines
atpType} -
ARElement AbstractProvidedPortPrototype
AtpBlueprint | +providedinterface PPortPrototype
AtpBlueprintable T~
AtpType «isOfType»
plyp {redefines atpType} P
Portinterface
AbstractProvidedPortPrototype
+providedRequiredinterface /AbstractRequiredPortPrototype
1 «isOfType» PRPortPrototype
{redefines atpType}
. iredintert AbstractRequiredPortPrototype
i requiredinterface
«isOfType» q RPortPrototype
1 «isOfType»
{redefines atpType}

i

ModeSwitchInterface

+modeGroupT1

AtpPrototype

+irstModeGroup ModeDeclarationGroupPrototypeMapping

ModeDeclarationGroupPrototype

1

+secondModeGroup

1

Figure 4.7: Big picture of mode declaration mapping

[constr_1167] ImplementationDataTypes used as ModeRequestTypeMap.im-
plementationDataType [The ImplementationDataType referenced by a

AUTOSAR

ModeRequestTypeMap shall either be of category VALUE or of category
TYPE_REFERENCE that in turn references an ImplementationDataType oOf cat—
egory VALUE.

The baseType referenced by the ImplementationDataType shall have set the
value of the attribute BaseTypeDirectDefinition.baseTypeEncoding to NONE.

10

[TPS_SWCT _01202] ApplicationDataType defines a subset of the values used
in the ModeDeclarationGroup | Please note that the corresponding Appli-
cationDataType is defining a subset of the values used in the ModeDeclara-
tionGroup and the used labels may differ from the names used for the ModeDec—
larations.

It is in the responsibility of a system designer to maintain the data types and ModeDec—
larationGroups according to the functional needs.

For example, a ModeRequester may only request a subset of the available Modes (via
SenderReceiverInterface Or ClientServerInterface). The ModeManager
may additionally decide to indicate failure. |(RS_SWCT_03203)

For more information regarding the ability to connect different kinds of PortProto-
typestyped by aModeswitchInterface to each other please refer to [constr_1204]
and [constr_1205].

4.2.6 Parameter Communication

Of course, the “communication” of ParameterDataPrototypes as part ofa Param-
eterInterface does not establish an actual transmission of data.

The term is used in a conceptual meaning; and the existence of something like a
ParameterInterface is justified by the mere idea of unifying the exposure of cali-
bration parameters at the surface of a software-component on the same formal level
as the exposure of other pieces of data, i.e. by means of a PortPrototype typed by
aPortInterface.

[constr_1312] PortPrototypes typed by a ParameterInterface [PortPro-
totypes typed by a ParameterInterface can either be PPortPrototypes or
RPortPrototypes. The usage of PRPortPrototypes that are typed by a Param-
eterInterface is not supported. |()

4.3 Portinterface Mapping and Data Scaling

In former versions of this specification, the requirements on PortInterfaces to
match each other could lead to situations where PortInterfaces that were “prac-
tically” compatible would nevertheless be rejected because of formal reasons (e.g.
shortNames of dataElements do not match).

AUTOSAR

In order to also support scenarios where the developer of a CompositionSwCom-
ponentType needs to connect PortPrototypes that would match to each others
but don’t fulfill formal requirements the concept of “port interface mapping” has been
introduced.

[TPS_SWCT_01158] Cases for Port InterfaceMapping [In general, the existence
ofaPortInterfaceMapping is suitable in the following cases:

1. Two PortPrototypes shall be connected and the PortInterface elements
are compatible except the unequal shortNames. This requires a pure logical
mapping of the Port Interface elements.

2. portInterface elements are logically equivalent but the range and resolution
is differently. This requires a data conversion respectively a re-scaling of the
provided data and arguments to the required data and arguments range and
resolution.

3. invalidationPolicyof PortInterface elementsis different. This might re-
quire the implementation of different invalidation handling strategies for the same
dataElement in parallel on the same ECU.

4. Two PortPrototypes shall be connected and the PortInterface elements
shall be converted using the AUTOSAR data transformer approach.

|(RS_SWCT_03210)

More information about the AUTOSAR data transformer approach can be found in
section 4.3.3.

Typically the mapping of such PortInterface is agreed once between the different
component vendors and system designer in the early phase of a project.

[TPS_SWCT _01159] Mapping is described separately from the SswConnector as
reusable ARElement | The mapping is described separately from the SswConnec-
tor as reusable ARElement. A set of PortInterfaceMappings is grouped in a
PortInterfaceMappingSet. |(RS_SWCT_03210)

[TPS_SWCT 01543] PortInterfaceMapping overrides all other compatibility
rules [The existence of a Port InterfaceMapping overrides all other compatibility
rules given that the following statements are fulfilled:

e [constr_1071] applies also for the application of a Port InterfaceMapping.
e [constr_1268] applies also for the application of a Port InterfaceMapping.
e [constr_1269] applies also for the application of a Port InterfaceMapping.
e [constr_1270] applies also for the application of a Port InterfaceMapping.

e A structural difference between mapped DataPrototypes can be mitigated by
means of a SubElementMapping. This includes the case that a “structure” data
type is mapped to an “array” data type and vice versa. [TPS_SWCT_01195] is
also applicable.

AUTOSAR

When using a PortInterfaceMapping, the developer of a software-component
needs to properly understand the consequences in terms of model semantics. |
(RS_SWCT _03210)

Please note that [TPS_SWCT_01543] does not require a tool implementation to ignore
and let go unreported deviations of all other compatibility rules in the presence of a
PortInterfaceMapping.

If this is considered helpful, the tool may still issue warnings with respect to compatibil-
ity rules defined in section 6 but this is not mandated by the AUTOSAR standard. The
tool, however, shall not report errors in this case.

Class PortinterfaceMappingSet
Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface
Note Specifies a set of (one or more) PortinterfaceMappings.

Tags: atp.recommendedPackage=PortinterfaceMappingSets

Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable

Attribute Type Mul. Kind | Note

portinterface PortInterfaceMapping 1.7 aggr Specifies one PortInterfaceMapping to support the

Mapping connection of Ports typed by two different Portinterfaces

with Portinterface elements having unequal names and/or
unequal semantic (resolution or range).

Stereotypes: atpVariation
Tags: vh.latestBindingTime=blueprintDerivationTime

Table 4.20: PortinterfaceMappingSet

Class PortinterfaceMapping (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface

Note Specifies one PortInterfaceMapping to support the connection of Ports typed by two different Port
Interfaces with Portinterface elements having unequal names and/or unequal semantic (resolution or
range).

Base ARObject, AtpBlueprint, AtoBlueprintable, Identifiable, MultilanguageReferrable, Referrable

Subclasses ClientServerlinterfaceMapping, ModelnterfaceMapping, TriggerInterfaceMapping, VariableAndParameter
InterfaceMapping

Attribute Type Mul. Kind | Note

Table 4.21: PortinterfaceMapping

4.3.1 Portinterface Mapping

By default, the shortNames of PortInterface elements are used to identify the
matching element pairs of connected PortPrototypes. In case of non-matching
shortNames (this might be due to distributed development, off-the-shelves develop-
ment, or reuse of software-components) it is required to explicitly specify which ele-
ments of Port Interfaces shall correlate to each other.

This definition is provided with Port InterfaceMappings.

AUTOSAR

[TPS_SWCT_01099] PortInterfaceMapping [Each PortInterfaceMapping
describes the mapping of the Port Interface elements of exactly two Port Inter-
faces. |(RS_SWCT _ 03155, RS_SWCT_03210)

To apply the Port InterfaceMapping a SwConnector has to reference a Port In-
terfaceMapping.

[constr_1151] Applicability of PortInterfaceMapping | A PortInter-—
faceMapping is only applicable and valid for a SwConnector if the two PortProto-
types which are referenced by the swConnector are typed by the same two Port-
Interfaces which are mapped by the Port InterfaceMapping. |()

[TPS_SWCT_01100] Precedence of PortInterfaceMapping | The mapping via
PortInterfaceMapping has a higher precedence than the mapping by equal
shortNames as defined in compatibility rules.

If a connector has an associated PortInterfaceMapping this mapping shall
be strictly binding with respect to the number of mapped data elements. |
(RS_SWCT_03155, RS_SWCT_03210)

Please note that the compatibility rules are described in chapter 6.

[TPS_SWCT_01101] Unmapped elements of PortInterfaces | Unmapped
PortInterface elements will not be connected by the referencing SwConnector.
|(RS_SWCT_03155, RS_SWCT_03210)

[constr_1583] PortInterfaceMapping for DataPrototype typed by Compound
Primitive Data Type | There is one very limited use case to apply PortIn-
terfaceMapping for a DataPrototype typed by a Compound Primitive Data
Type: adjustment of the shortName of the bataPrototype. Everything else is not
supported. |()

ARElement

AtpBlueprint

AtpBlueprintable
PortinterfaceMappingSet

«atpVariation» Tags:
«atpVariation» === =-""""""1 vh.latestBindingTime = blueprintDerivationTime

+portinterfaceMapping | 1..*

AtpBlueprint . AtpStructureElement
AtpBlueprintable | *Mapping SwConnector
Identifiable

PortinterfaceMapping

A

0.1

VariableAndParameterinterfaceMapping ClientServerinterfaceMapping ModelnterfaceMapping TriggerinterfaceMapping

Figure 4.8: Relevant meta-classes for Portinterface element mapping

AUTOSAR

4.3.1.1 Mapping of Sender Receiver Interface, Parameter Interface and Non
Volatile Data Interface Elements

[TPS_SWCT_01102] VariableAndParameterInterfaceMapping | The vari-
ableAndParameterInterfaceMapping defines the correlation of variableDat—
aPrototypes and ParameterDataPrototypes defined in the context of batain-
terfaces, i.e. SenderReceiverInterface, NvDatalInterface, Of Parameter—

Interface. |(RS_SWCT _ 03155, RS_SWCT_03210, RS_SWCT_03170)

[constr_1159] Consistency of VariableAndParameterInterfaceMapping with
respect to the referenced DataInterfaces [Within one variableAndParame-
terInterfaceMapping all firstDataPrototypes shall belong to one and only
one DataInterface and all secondbataPrototypes shall belong to one other and
only one other DataInterface. |()

[TPS_SWCT_01103] Mapping between different kinds of PortInterfaces |
Thereby it is possible to describe the mapping between different kinds of Port Inter-
faces for instance a ParameterInterface and SenderReceiverInterface. |
(RS_SWCT_03155, RS_SWCT_03210, RS _SWCT_03170)

[TPS_SWCT _01104] Possible mappings are restricted by the swImplPolicy
[Nevertheless, the possible mappings of VariableDataPrototypes and Pa-
rameterDataPrototypeS are restricted by the swImplPolicy attribute. |
(RS_SWCT 03155, RS SWCT_03210, RS SWCT _03170)

For more explanation of [TPS_SWCT_01104], please refer to [constr_1071].

[constr_1039] Relevance of swImplPolicy [It is not possible to define a mapping
between an element where the swImplPolicy is setto queued and an other element
where the swImplPolicy is set differently. |()

This is required to fulfill the compatibility rules defined in table 6.1.

[constr_1635]{DRAFT} Relevance of attribute isOptional | If a SubEle-
mentMapping is defined for the elements of a structured data type then the attribute
isOptional® shall either not exist for the firstElement and secondElement or it
shall have the identical value for the firstElement and secondElement. [()

[constr_1040] Conversion of SenderReceiverInterfaces [The conversion of el-
ements of SenderReceiverInterfaces is possible if one of the following conditions
applies:

e The AutosarDataTypes of the referred DataPrototypes are compatible.
e A conversion of the data is available.

e A DataPrototypeMapping.firstToSecondDataTransformation is de-
fined.

Sthis is valid for both ApplicationRecordElement as well as ImplementationDataTypeEle—
ment

AUTO SAR

10

The compatibility of AutosarDataTypes is described in section 6.2. A description of the
conversion of data can be found in section 4.3.2.

PortinterfaceMapping
VariableAndParameterinterfaceMapping

+dataMapping |1..*

TextTableMapping

DataPrototypeMappin
% [T . + identicalMapping: Boolean
+textTableMapping

+ mappingDirection: MappingDirectionEnum
P pping pping

0..2| «atpVariation»
+ bitfieldTextTableMaskFirst: Positivelnteger [0..1]
+ bitfieldTextTableMaskSecond: Positivelnteger [0..1]

+firstDataPrototype \|/1 +secondDataPrototype\ [/1
DataPrototype
AutosarDataPrototype
VariableDataPrototype ParameterDataPrototype
+dataElement | 1.* +nvData 1. +parameter | 1.*
Datalnterface Datalnterface Datalnterface
SenderReceiverinterface NvDatalnterface Parameterinterface

Figure 4.9: Mapping of Sender Receiver Interface, Parameter Interface and Non Volatile
Data Interface elements

Class VariableAndParameterinterfaceMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface

Note Defines the mapping of VariableDataPrototypes or ParameterDataPrototypes in context of two different
SenderReceiverinterfaces, NvDatalnterfaces or Parameterinterfaces.

Base ARObject, AtpBlueprint, AtoBlueprintable, Identifiable, MultilanguageReferrable, PortinterfaceMapping,
Referrable

Attribute Type Mul. Kind | Note

dataMapping DataPrototypeMapping 1.7 aggr Defines the mapping of two particular VariableData

Prototypes or ParameterDataPrototypes with unequal
names and/or unequal semantic (resolution or range) in
context of two different SenderReceiverinterfaces, Nv
Datalnterfaces or Parameterinterfaces

Table 4.22: VariableAndParameterinterfaceMapping

AUTOSAR

Class DataPrototypeMapping
Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface
Note Defines the mapping of two particular VariableDataPrototypes, ParameterDataPrototypes or Argument
DataPrototypes with unequal names and/or unequal semantic (resolution or range) in context of two
different SenderReceiverinterface, NvDatalnterface or Parameterinterface or Operations.
If the semantic is unequal following rules apply:
The textTableMapping is only applicable if the referred DataPrototypes are typed by AutosarDataType
referring to CompuMethods of category TEXTTABLE, SCALE_LINEAR_AND_TEXTTABLE or
BITFIELD_TEXTTABLE.
In the case that the DataPrototypes are typed by AutosarDataType either referring to CompuMethods of
category LINEAR, IDENTICAL or referring to no CompuMethod (which is similar as IDENTICAL) the
linear conversion factor is calculated out of the factorSiToUnit and offsetSiToUnit attributes of the referred
Units and the CompuRationalCoeffs of a compulnternalToPhys of the referred CompuMethods.
Base ARObject
Attribute Type Mul. Kind | Note
firstData AutosarDataPrototype 1 ref First to be mapped DataPrototype in context of a Sender
Prototype Receiverinterface, NvDatalnterface, Parameterinterface
or Operation.
firstToSecond DataTransformation 0..1 ref This reference defines the need to execute the Data
Data Transformation <Mip>_<transformerld> functions of the
Transformation transformation chain when communicating from the Data
PrototypeMapping.firstDataPrototype to the Data
PrototypeMapping.secondDataPrototype.
This reference also specifies the reverse Data
Transformation <Mip>_Inv_<transformerld> functions of
the transformation chain (i.e. from the DataPrototype
Mapping.secondDataPrototype to the DataPrototype
Mapping.firstDataPrototype) if the referenced Data
Transformation is symmetric, i.e. attribute Data
Transformation.dataTransformationKind is set to
symmetric.
secondData AutosarDataPrototype 1 ref Second to be mapped DataPrototype in context of a
Prototype SenderReceiverinterface, NvDatalnterface, Parameter
Interface or Operation.
secondToFirst DataTransformation 0..1 ref This defines the need to execute the reverse Data
Data Transformation <Mip>_Inv_<transformerld> functions of
Transformation the transformation chain when communicating from the
DataPrototypeMapping.secondDataPrototype to the Data
PrototypeMapping.firstDataPrototype.
subElement SubElementMapping * aggr This represents the owned SubelementMapping.
Mapping
textTable TextTableMapping 0.2 aggr Applied TextTableMapping(s)
Mapping

Table 4.23: DataPrototypeMapping

4.3.1.2 Mapping of Client Server Interface Elements

[TPS_SWCT_01105] ClientServerInterfaceMapping | The ClientServer—
InterfaceMapping defines the correlation of ClientServerOperations de-
fined in the context of two ClientServerInterfaces. |(RS_SWCT_03155,
RS _SWCT _03210)

[constr_1237] Scope of mapped ClientServerOperations in the context of a
ClientServerOperationMapping [All ClientServerOperations referenced

AUTOSAR

by aClientServerOperationMapping inthe role firstOperation shall belong
to exactly one ClientServerInterface.

All ClientServerOperations referenced by a ClientServerOperation-—
Mapping in the role secondOperation shall belong to exactly one other
ClientServerInterface. [()

[constr_1238] Scope of mapped ApplicationErrors in the context of a
ClientServerOperationMapping | All ApplicationErrors referenced by a
ClientServerApplicationErrorMapping in the role firstApplication-
Error shall belong to exactly one ClientServerInterface.

All ApplicationErrorsreferencedbyaclientServerApplicationErrorMap—
ping in the role secondaApplicationError shall belong to exactly one other
ClientServerInterface. [()

[constr_1041] Conversion of ClientServerInterfaces | Either the Autosar-
DataTypes of the referred ArgumentDataPrototypes are compatible or a conver-
sion of the data is available. |()

The compatibility of AutosarDataTypes is described in section 6.2. A description of the
conversion of data can be found in section 4.3.2.

[constr_1240] Consistency of ArgumentDataPrototypes within the context of
a ClientServerOperationMapping [Unless a ClientServerOperationMap-
ping.firstToSecondDataTransformation exists, for each argument owned by
a ClientServerOperationMapping.firstOperation and ClientServerOp-—
erationMapping.secondOperation a reference in the role ClientServerOp-
erationMapping.argumentMapping.firstDataPrototypeOrClientServer—
OperationMapping.argumentMapping.secondDataPrototype shall exist orig-
inated by one of the ClientServerOperationMapping.argumentMapping$
owned by the mentioned ClientServerOperationMapping. |()

[constr_1268] ArgumentDataPrototype.direction shall be preserved in a
ClientServerOperationMapping [Within the context of a ClientServerOper-
ationMapping, the value of the argument ArgumentDataPrototype.direction
of two mapped ArgumentDataPrototype shall be identical. |()

[constr_1269] Number of arguments shall be preserved in a ClientServerOp-
erationMapping | Within the contextofa ClientServerOperationMapping, the
number of arguments of firstOperation and secondOperation shall be identi-

cal. |()

[constr_1270] ArgumentDataPrototype shall be mapped only once in a
ClientServerOperationMapping [Within the context of a ClientServerOp-
erationMapping, each argument shall only be referenced once in the role first-
DataPrototype Of secondDataPrototype. [()

[constr_1469] Applicability of constraints depending on the existence of a data
transformation | [constr_1269], [constr_1270], [constr_1268], and [constr_1240] shall
not apply under the following conditions:

AUTO SAR

e A reference from the respective ClientServerOperationMapping t0 a
DataTransformation in the role firstToSecondDataTransformation
exists.

e The value of the attribute dataTransformationKind of the referenced
DataTransformation is setto DataTransformationKindEnum.asymmet—
ricFromByteArray Or DataTransformationKindEnum.asymmetricTo-
ByteArray.

10

PortinterfaceMapping Portinterface
ClientServerinterfaceMapping ClientServerinterface

«atpVariation» Tags:
vh.latestBindingTime =
blueprintDerivationTime

------- «atpVariation»

+operationMapping | 1..* +operation|1..*

+firstOperation AtpStructureElement
Identifiable

ClientServerOperation

ClientServerOperationMapping

1
+secondOperation

1

0..1\|/ HirstToSecondDataTransformation

Identifiable
Transformer::DataTransformation

+ dataTransformationKind: DataTransformationKindEnum [0..1]
+ executeDespiteDataUnavailability: Boolean

+errorMapping | 0..* +possibleError\|/0..* +possibleError|0..*

+firstApplicationError ifi
ClientServerApplicationErrorMapping PP ldentifiable

1 ApplicationError

+secondApplicationError| + errorCode: Integer

1

Figure 4.10: Mapping of ClientServerInterface elements and mapping of arguments

AUTO SAR

ClientServerOperationMapping

+firstOperation

Portinterface
ClientServerinterface

«atpVariation»
+operation|l..* Tteell

1

+secondOperation

+argumentMapping [0..*

DataPrototypeMapping

1

+firstDataPrototype

AtpStructureElement R
Identifiable «atpVariation» Tags:

ClientServerOperation vh.atestBindingTime =
blueprintDerivationTime

«atpVariation»
*

+argument| {ordered}

ArgumentDataPrototype

1

+secondDataPrototype|

+textTableMapping (0..2

TextTableMapping

+ identicalMapping: Boolean

+ mappingDirection: MappingDirectionEnum
«atpVariation»

+ bitfieldTextTableMaskFirst: Positivelnteger [0..1]

+ bitfieldTextTableMaskSecond: Positivelnteger [0..1]

1

DataPrototype
AutosarDataPrototype

Figure 4.11: Mapping of ArgumentDataPrototypes

Class ClientServerinterfaceMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface

Note Defines the mapping of ClientServerOperations in context of two different ClientServerinterfaces.

Base ARObject, AtpBlueprint, AtoBlueprintable, Identifiable, MultilanguageReferrable, PortinterfaceMapping,
Referrable

Attribute Type Mul. Kind | Note

errorMapping ClientServerApplication * aggr Map two different ApplicationErrors defined in the context
ErrorMapping of two different ClientServerinterfaces.

operation ClientServerOperation 1.* aggr Mapping of two ClientServerOperations in two different

Mapping Mapping ClientServerInterfaces

Table 4.24: ClientServerinterfaceMapping

AUTO SAR

Class ClientServerOperationMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface

Note Defines the mapping of two particular ClientServerOperations in context of two different ClientServer

Interfaces.

Base ARObject

Attribute Type Mul. Kind | Note

argument DataPrototypeMapping * aggr Defines the mapping of two particular ArgumentData

Mapping Prototypes with unequal names or unequal semantic
(resolution or range) in context of Operations.

firstOperation ClientServerOperation 1 ref First to-be-mapped ClientServerOperation of a Client
Serverlnterface.

firstToSecond DataTransformation 0..1 ref This reference indicates that a DataTransformation is

Data intended in the context of the ClientServerOperation

Transformation Mapping.

second ClientServerOperation 1 ref Second to-be-mapped ClientServerOperation of a Client

Operation Serverlnterface.

Table 4.25: ClientServerOperationMapping

Class ClientServerApplicationErrorMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface

Note This meta-class represents the ability to map ApplicationErrors onto each other.

Base ARObject

Attribute Type Mul. Kind | Note

firstApplication ApplicationError 1 ref This represents the first ApplicationError in the context of
Error the ClientServerApplicationErrorMapping.

second ApplicationError 1 ref This represents the second ApplicationError in the
ApplicationError context of the ClientServerApplicationErrorMapping.

Table 4.26: ClientServerApplicationErrorMapping

4.3.1.3 Mapping of Mode Interface Elements

[TPS_SWCT_01160] ModeInterfaceMapping | The ModeInterfaceMapping
defines the correlation of ModeDeclarationGroupPrototypes defined in the con-
text of ModeSwitchInterfaces. |(RS_SWCT_03210)

[TPS_SWCT_01167] Validity of ModeInterfaceMapping [The mapping of Mod-
eDeclarationGroupPrototypes is only valid if these are typed by (read “refer t0”)
compatible ModeDeclarationGroups. |(RS_SWCT_03210)

The compatibility of ModeDeclarationGroups is described in chapter 6.7.

AUTO SAR

Class ModelnterfaceMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface

Note Defines the mapping of ModeDeclarationGroupPrototypes in context of two different Modelnterfaces.

Base ARObject, AtpBlueprint, AtpBlueprintable, Identifiable, MultilanguageReferrable, PortinterfaceMapping,
Referrable

Attribute Type Mul. Kind | Note

modeMapping ModeDeclarationGroup 1 aggr Mapping of two ModeDeclarationGroupPrototypes in two
PrototypeMapping different Modelnterfaces

Table 4.27: ModelnterfaceMapping

Class ModeDeclarationGroupPrototypeMapping

Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration

Note Defines the mapping of two particular ModeDeclarationGroupPrototypes (in the given context) that are
unequally named and/or require a reference to a ModeDeclarationMappingSet in order to become
compatible by definition of ModeDeclarationMappings.

Base ARObject

Attribute Type Mul. Kind | Note

firstModeGroup ModeDeclarationGroup 1 ref ModeDeclarationGroupPrototype to be mapped.
Prototype

mode ModeDeclaration 0..1 ref This represents the available mappings of Mode

Declaration MappingSet Declarations in the context ot this ModeDeclarationGroup

MappingSet Prototype.

secondMode ModeDeclarationGroup 1 ref ModeDeclarationGroupPrototype to be mapped.

Group Prototype

Table 4.28: ModeDeclarationGroupPrototypeMapping

[TPS_SWCT_01449] Semantics of a ModeDeclarationGroupPrototypeMap-
ping [A ModeDeclarationGroupPrototypeMapping shall be used to identify
two ModeDeclarationGroups that afterwards shall be considered compatible. This
also applies if the two ModeDeclarationGroups deviate with respect to the con-
tained modeTransitions. |(RS_SWCT_03210)

AUTO SAR

PortinterfaceMapping Portinterface
ModelnterfaceMapping ModeSwitchinterface

+modeMapping |1 +modeGroup |1

+secondModeGrou
ModeDeclarationGroupPrototypeMapping p AtpPrototype

1 ModeDeclarationGroupPrototype

+HirstModeGroup [, gycalibrationAccess: SwCalibrationAccessEnum [0..1]

1

«isOfType»
1
+modeDeclarationMappingSet\|/0..1 +type {redefines atpType}
ARElement ARElement
AtpType AtpBlueprint
ModeDeclarationMappingSet AtpBlueprintable
AtpType
ModeDeclarationGroup
+ onTransitionValue: PositiveInteger [0..1]
«atpVariation» Tags:
vh.latestBindingTime =~ f--------- L
blueprintDerivationTime «atpVariation»
+modeDeclarationMapping | 1..* modeDeclaration | 1..* +initialMode \[/1
AtpStructureElement HirstMode AtpStructureElement
Identifiable 1. Identifiable
ModeDeclarationMapping +secondMode ModeDeclaration
1+ value: Positivelnteger [0..1]

Figure 4.12: Mapping of ModeSwitchInterface elements

[constr_1246] Consistency of firstMode and secondMode in the scope of one
ModeDeclarationMappingSet [Within the scope of one ModeDeclaration-—
MappingSet, all firstModes shall belong to one and only one ModeDeclara-
tionGroup and all secondModes shall belong to one and only one other ModeDec-
larationGroup |()

[constr_1247] Consistency of ModeDeclarationMappingSet with respect to
the referenced firstModeGroup and secondModeGroup | If a ModeDec-
larationGroupPrototypeMapping.modeDeclarationMappingSet exists, the
ModeDeclarationGroup owning the modeDeclarations referenced in the role
firstMode shall be the type of the ModeDeclarationGroupPrototypeMap-—
ping.firstModeGroup and the ModeDeclarationGroup owning the modeDec—
larations referenced in the role secondMode shall be the type of the ModeDec—
larationGroupPrototypeMapping.secondModeGroup. |()

[TPS_SWCT _01462] ModeDeclarationMapping defines the explicit correlation
of ModeDeclarations | The meta-class ModeDeclarationMapping defines the
explicit correlation of ModeDeclarations defined in the context of two ModeDecla-
rationGroups. |()

[TPS_SWCT_01463] ModeDeclarationGroupPrototypeMapping.modeDecla—
rationMappingSet defines the applicable set of ModeDeclarationMappings

AUTOSAR

[The attribute ModeDeclarationGroupPrototypeMapping.modeDeclaration—
MappingSet defines the applicable set of ModeDeclarationMappings for the
connection of ModeDeclarationGroupPrototypes typed by ModeDeclara-
tionGroups with differently named ModeDeclarations and/or with a different num-
ber of ModeDeclarations. [()

Class ModeDeclarationMappingSet
Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface
Note This meta-class implements a container for ModeDeclarationGroupMappings

Tags: atp.recommendedPackage=PortinterfaceMappingSets

Base ARElement, ARObject, AtpClassifier, AtpType, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable

Attribute Type Mul. Kind | Note

mode ModeDeclaration 1.7 aggr This represents the collection of ModeDeclaration

Declaration Mapping Mappings owned by the enclosing ModeDeclaration

Mapping MappingSet.

Table 4.29: ModeDeclarationMappingSet

Class ModeDeclarationMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface

Note This meta-class implements a concrete mapping of two ModeDeclarations.

Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, MultilanguageReferrable,

Referrable

Attribute Type Mul. Kind | Note

firstMode ModeDeclaration 1.7 ref This represents the first ModeDeclaration of the Mode
DeclarationMapping. This reference has the multiplicity 1
.. * to support use cases where e.g. one mode of the
mode user is mapped to several modes of the mode
manager.

secondMode ModeDeclaration 1 ref This represents the second ModeDeclaration of the Mode
DeclarationMapping.

Table 4.30: ModeDeclarationMapping

[TPS_SWCT_01464] ModeDeclaration of a mode user is mapped to exactly one
ModeDeclaration of a mode manager | The mode that corresponds to the Mod-
eDeclaration of the Mode User is entered or exited when the mode of the mode
manager that corresponds to the mapped (i.e. referenced by the same ModeDecla-
rationMapping) ModeDeclaration of the mode manager is entered or exited. |
(RS_SWCT_03115)

[TPS_SWCT _01465] ModeDeclaration of a mode user is mapped to several
ModeDeclarations of a mode manager | The mode that corresponds to the
mapped ModeDeclaration of the mode user is entered when any of the modes of the
Mode Manager that correspond to ModeDeclarations referenced by the applicable
ModeDeclarationMapping is entered.

AUTOSAR

The mode that corresponds to the mapped ModeDeclaration of the mode user is
exited when any of the modes of the Mode Manager that correspond to ModeDec-
larations referenced by the applicable ModeDeclarationMapping is exited if the
new mode is not mapped to related mode of the mode user. |(RS_SWCT_03115)

Please note if one ModeDeclaration of a mode user is mapped to several Mod-
eDeclarations of a mode manager by means of several ModeDeclarationMap—
pings the intended semantics is defined in a way that the individual mode transitions
of the mode manager are representing “exit” and “enter” events for the Mode User. In
other words, the individual transitions are recognizable by the mode user.

If one ModeDeclaration of a mode user is (by utilizing the multiplicity of the role
firstMode) mapped to several ModeDeclarations of a mode manager in the con-
text of a single ModeDeclarationMapping the semantics is defined in a way that
the individual mode transitions of the Mode Manager are not recognizable to the Mode
User.

[constr_1209] Mapping of ModeDeclarations of mode user to ModeDeclara-
tion of mode manager | A configuration that maps several ModeDeclarations
representing modes of a mode user to one ModeDeclaration representing a mode
of a mode manager shall be rejected. |()

[constr_1210] Mapping of ModeDeclarations of mode user to all ModeDecla-
rations of mode manager | If a ModeDeclarationMapping exists that references
a ModeDeclaration representing a mode of the mode manager then ModeDecla-
rationMappings shall exist that map all modes of the mode manager to modes of
the mode user. |()

Please note that [constr_1210] prevents the existence of configurations where the
mode user is not in a defined mode when no transition is ongoing.

[TPS_SWCT _01545] ModeDeclaration of a mode user that is not mapped to a
ModeDeclaration of a mode manager | A ModeDeclaration of a mode user that
is not mapped to a ModeDeclaration of a mode manager represents a valid model.
In this case the related mode is never entered nor exit during runtime of the ECU. |
(RS_SWCT_03115)

4.3.1.4 Mapping of Trigger Interface Elements

[TPS_SWCT_01161] TriggerInterfaceMapping | The TriggerInter-—
faceMapping defines the correlation of Triggers defined in the context Trigger-
Interfaces. |(RS_SWCT_03210)

AUT o

©SAR

Class TriggerinterfaceMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface

Note Defines the mapping of unequal named Triggers in context of two different Triggerinterfaces.

Base ARObject, AtpBlueprint, AtpBlueprintable, Identifiable, MultilanguageReferrable, PortinterfaceMapping,
Referrable

Attribute Type Mul. Kind | Note

triggerMapping TriggerMapping 1.* aggr Mapping of two Trigger in two different Triggerinterface

Table 4.31: TriggerinterfaceMapping

Class TriggerMapping

Package M2::AUTOSARTemplates::CommonStructure::TriggerDeclaration

Note Defines the mapping of two particular unequally named Triggers in the given context.

Base ARObject

Attribute Type Mul. Kind | Note

firstTrigger Trigger 1 ref A Trigger to be mapped.

secondTrigger Trigger 1 ref A Trigger to be mapped.

Table 4.32: TriggerMapping

PortinterfaceMapping
TriggerinterfaceMapping

+triggerMapping |1..*

TriggerMapping

+irstTrigger AtpStructureElement

Portinterface
Triggerinterface

+trigger|1..*

+secondTrigger

1 Identifiable
Trigger

+ swimplPolicy: SwimplPolicyEnum [0..1]

Figure 4.13: Mapping of TriggerInterface elements

4.3.1.5 Mapping of Elements of a composite Data Type

The mapping of elements of Port Interfaces is not limited to mapping entire Dat -

aPrototypes onto each others.

[TPS_SWCT_01023] Mapping of elements of composite data types | For appli-
cations of DataInterfaces it is also possible to formally describe the mapping of
elements of ApplicationCompositeDataTypeS Of ImplementationDataTypeS
of category STRUCTURE oOr ARRAY onto each others.

RS_SWCT_03135)

This ability can be used if e.g. dataElements on the sender and receiver side are

typed by different ApplicationRecordDataTypes.

|(RS_SWCT_03210,

AUTOSAR

In this case the mapping of elements of ApplicationCompositeDataTypeS Of Im-
plementationDataTypeS of category STRUCTURE or ARRAY onto each others al-
lows for the definition of specific pairs of elements that fulfill the compatibility rules.

[TPS_SWCT_01551] Mapping of elements on the sender side to elements on the
receiver side | Unless the attribute swImplPolicy is setto queued, itis not required
that all elements on the sender side need to be mapped to elements on the receiver
side to achieve compatibility. |(RS_SWCT_03210, RS_SWCT_03135)

The details regarding the compatibility rules are explained in chapter 6.3.

[constr_1279] Unmapped elements of ApplicationCompositeDataTypeS Of
ImplementationDataTypes and the attribute swImplPolicy [If the attribute
swImplPolicy is setto queued it is not allowed to have unmapped elements of Ap-
plicationCompositeDataTypeS Or ImplementationDataTypeS oOf category
STRUCTURE or ARRAY on the receiver side. |()

[constr_1280] Unmapped dataElement on the receiver side shall have an init-
Value | If elements of ApplicationCompositeDataTypes Of Implementation-—
DataTypeS of category STRUCTURE or ARRAY are not considered in a SubEle-
mentMapping then the enclosing dataElement shall have an initvalue if the
NonqueuedReceiverComSpec is aggregated by an AbstractRequiredPortPro-

totype. |()

AUTO SAR

DataPrototypeMapping . TextTableMapping «(.enun.lerat-ion»
+textTableMapping MappingDirectionEnum
+ identicalMapping: Boolean = :
0.2| &+ mappingDirection: MappingDirectionEnum bidirectional
. firstT
«atpVariation» irstToSecond

e . - secondToFirst
+ bitfieldTextTableMaskFirst: Positivelnteger [0..1]

+ bitfieldTextTableMaskSecond: Positivelnteger [0..1]

+textTableMapping 0.2

+mbEIementMappingI 0.*

SubElementMapping

«atpVariation» Tags:
_ | vhlatestBindingTime =
preCompileTime

«atpVariation» «atpVariation»

+firstElement | 0..1 +secondElement | 0..1

SubElementRef

ApplicationCompositeDataTypeSubElementRef ImplementationDataTypeSubElementRef
| | |
| . | |
«instanceRef» «lnstanlceRef» «instanceRef»
1 1
| | |
+app|icationCompositeEIementd/1 +parameterlmpIementationDataTypeEIement\'/0..1 +imp|ementationDataTypeEIement\"/ 0.1
DataPrototype AbstractimplementationDataTypeElement
ApplicationCompositeElementDataPrototype ImplementationDataTypeElement

+ arraySizeHandling: ArraySizeHandlingEnum [0..1]
+ arraySizeSemantics: ArraySizeSemanticsEnum [0..1]
+ isOptional: Boolean [0..1]

«atpVariation»
+ arraySize: Positivelnteger [0..1]

+subElement 0..*
{ordered}
atpVariation M- .

" 1 «atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

Figure 4.14: Mapping of elements of composite data types

[TPS_SWCT_01024] Combination of ApplicationCompositeDataType and
nested ImplementationDataType | The mapping of elements of Application-
CompositeDataType$S Of ImplementationDataTypes Of category STRUCTURE
or ARRAY works for both ApplicationCompositeDataType and nested Imple-—
mentationDataTypeS and even for combinations of them, i.e. one PortIn-
terface may use an ApplicationCompositeDataType While the other Port-
Interface uses a nested ImplementationDataType. [|(RS_SWCT 03210,
RS _SWCT_03135)

AUTOSAR

[TPS_SWCT_01195] Mapping of composite element to primitive DataPrototype
[It is also possible to map an element of a composite data type on the provided side to
a primitive DataPrototype on the required side. For this purpose the multiplicity of
the firstElement shall be set to 1 and the multiplicity of the secondElement shall
be setto 0. |(RS_SWCT _03136)

In general, the multiplicity of the firstElement can technically also be set to 0 but
this case is reserved for future use.

[constr_1190] Only one mapping for composite to primitive use case | In the case
described by [TPS_SWCT_01195] only one subElementMapping shall exist at the
enclosing DataPrototypeMapping. ()

[constr_1300] Primitive DataPrototype on the provider side shall not be
mapped to element of a composite data type on the requester side | The usage of
DataPrototypeMapping Of SubElementMapping does not support the following
configuration:

e The AutosarDataPrototype referenced on the provider/client side is typed by
an ApplicationPrimitiveDataType Of category VALUE Or Implemen—
tationDataType Of category VALUE Of category TYPE_REFERENCE that
eventually resolves to category VALUE.

e The DataPrototypeMapping aggregates a subElementMapping that refers
to a ImplementationDataTypeElement Of ApplicationCompositeEle-
mentDataPrototype on the requester/server side.

10

[constr_1611] Existence of ImplementationDataTypeSubElementRef.imple—
mentationDataTypeElement as opposed to ImplementationDataType-
SubElementRef.parameterImplementationDataTypeElement | For any given
ImplementationDataTypeSubElementRef, either the aggregation

e ITmplementationDataTypeSubElementRef.implementationDataType-
Element oOr

e TmplementationDataTypeSubElementRef.parameterImplementa-
tionDataTypeElement

shall exist. |()

In other words, the TmplementationDataTypeSubElementRef shall either refer
to the nested hierarchy inside a VariableDataPrototype Of @ ParameterDat—
abPrototype.

AUT o

©SAR

Class SubElementMapping
Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface
Note This meta-class allows for the definition of mappings of elements of a composite data type.
Base ARObject
Attribute Type Mul. Kind | Note
firstElement SubElementRef 0..1 aggr This represents the first element referenced in the scope
of the mapping.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompile Time
secondElement SubElementRef 0..1 aggr This represents the second element referenced in the
scope of the mapping.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompile Time
textTable TextTableMapping 0.2 agor This allows for the text-table translation of individual
Mapping elements of a composite data type.
Table 4.33: SubElementMapping
Class SubElementRef (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface
Note This meta-class provides the ability to reference elements of composite data type.
Base ARObject
Subclasses ApplicationCompositeDataTypeSubElementRef, ImplementationDataTypeSubElementRef
Attribute Type Mul. Kind | Note
Table 4.34: SubElementRef
Class ImplementationDataTypeSubElementRef
Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface
Note This meta-class represents the specialization of SubElementMapping with respect to Implementation
DataTypes.
Base ARObject, SubElementRef
Attribute Type Mul. Kind | Note
implementation ArVariableln 0..1 aggr This represents the referenced implementationDataType
DataType ImplementationData Element.
Element InstanceRef
parameter ArParameterin 0..1 aggr This represents the referenced ImplementationDataType
Implementation ImplementationData Element.
DataType InstanceRef
Element

Table 4.35: ImplementationDataTypeSubElementRef

AUTO SAR

Figure 4.15: Implementation of the InstanceRef for the mapping of elements of compos-

atpContextElement}

ite application data types

[constr_1184] Consistency of rootDataPrototype and base in the context of
ApplicationCompositeElementInPortInterfaceInstanceRef | The root-
DataPrototype referenced by ApplicationCompositeElementInPortInter—
faceInstanceRef shall be owned by the applicable subclass of DataInterface

referenced in the role base.

Class ApplicationCompositeDataTypeSubElementRef
Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface
Note This meta-class represents the specialization of SubElementMapping with respect to Application
CompositeDataTypes.
Base ARObject, SubElementRef
Attribute Type Mul. Kind | Note
application ApplicationComposite 1 iref This represents the referenced ApplicationComposite
Composite ElementDataPrototype DataPrototype.
Element
Table 4.36: ApplicationCompositeDataTypeSubElementRef
SubElementRef
ApplicationCompositeDataTypeSubElementRef PETIEEES
Datalnterface
| +base /|\ 1
: {redefines
| atpBase}
: «atpDerived»
|
| 1 | +applicationCompositeElement
AtpPrototype : AtplinstanceRef
DataPrototype : ApplicationCompositeElementinPortinterfacelnstanceRef
|
|
|
|
«instanlceRef»
I
I
| 1 0.*
o . : {redefines {subsets
;rappl|cat|onC0mposteEIementvl +targetDataPrototype atpTarget} +contextDataPrototype atpContextElement}
ApplicationCompositeElementDataPrototype
AutosarDataPrototype +rootDataPrototype
1
{subsets

AUTO SAR

This implies that the rootDataPrototype shallbe a ParameterDataPrototype if
the base is a ParameterInterface. Otherwise the rootDataPrototype shall be
aVvariableDataPrototype. |()

[constr_1185] Consistency of data types in the context of ApplicationCompos-
iteElementInPortInterfaceInstanceRef | The definition of attributes con-
textDataPrototype and targetDataPrototype shall (via the type-prototype pat-
tern) be enclosed in the context of the definition of the data type used to type root -
DataPrototype. |()

In other words, it shall be possible to reach contextDataPrototype and target-
DataPrototype by means of the type-prototype chain created by the definition of the
data type used to type rootDataPrototype. And, as implied by the definition of the
InstanceRef, the contextDataPrototypes shall enclose each others and, eventu-
ally, the targetDataPrototype.

SubElementRef
ImplementationDataTypeSubElementRef

|

|

|

|
«instanceRef»

|

0.1 \1/+implementationDataTypeEIement +implementationDataTypeElement | 0..1

AbstractimplementationDataTypeElement

+contextDataPrototype ArVariableInimplementationDatalnstanceRef
ImplementationDataTypeElement

0..
+ arraySizeHandling: ArraySizeHandlingEnum [0..1] {ordered}
+ arraySizeSemantics: ArraySizeSemanticsEnum [0..1]
+ isOptional: Boolean [0..1]

+targetDataPrototype
«atpVariation»
+ arraySize: Positivelnteger [0..1] 1
0.* | +subElement +subElement 0..*
{ordered} {ordered}
ARElement
Variati AtpType
atpVariation
«atpvanation» AutosarDataType
'
:
. +type 1
«atpVariation» ' {redefines atpType}
'
' «isOfTIype»
'
A . DataPrototype
AutosarDataPrototype
«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime
0 +rootVariableDataPrototype 0.1

AbstractimplementationDataType

VariableDataPrototype
ImplementationDataType

+ dynamicArraySizeProfile: String [0..1]
+ isStructWithOptionalElement: Boolean [0..1]
+ typeEmitter: NameToken [0..1]

Figure 4.16: Implementation of the InstanceRef for the mapping of elements of a vari-
ableDataPrototype typed by a composite implementation data type

AUTOSAR

[constr_1186] Consistency of data types in the context of ArvariableInImple-
mentationDataInstanceRef | The definition of attributes contextbataProto-
type and targetDataPrototype shall be enclosed in the context of the definition
of the data type used to type rootvariableDataPrototype. |()

SubElementRef
ImplementationDataTypeSubElementRef

|

|

|
«instanceRef»

|

+parameterlmpIementationDataTypeEIement\1/0..1 +parameterimplementationDataTypeElement | 0..1
AbstractimplementationDataTypeElement +contextDataPrototype ArParameterinimplementationDatalnstanceRef
ImplementationDataTypeElement
0..
+ arraySizeHandling: ArraySizeHandlingEnum [0..1] {ordered}
+ arraySizeSemantics: ArraySizeSemanticsEnum [0..1]
+ isOptional: Boolean [0..1] +targetDataPrototype
«atpVariation»
+ arraySize: Positivelnteger [0..1] 1
+subElement | 0..* {ordered} +subElement 0..*
{ordered}
ARElement
AtpType
«atpVariation» AutosarDataType
'
.
'
! +type 1
! {redefines atpType}
«atpVariation» «isOfType»
R DataPrototype
AutosarDataPrototype
«atpVariation» Tags:
vh latestBindingTime =
preCompileTime
0 +rootParameterDataPrototype \[/0..1

AbstractimplementationDataType ParameterDataPrototype

ImplementationDataType

+ dynamicArraySizeProfile: String [0..1]
+ isStructWithOptionalElement: Boolean [0..1]
+ typeEmitter: NameToken [0..1]

Figure 4.17: Implementation of the InstanceRef for the mapping of elements of a Param-
eterDataPrototype typed by a composite implementation data type

[constr_1518] Consistency of data types in the context of ArParameterInIm-
plementationDataInstanceRef | The definition of attributes contextDataPro-
totype and targetDataPrototype shall be enclosed in the context of the definition
of the data type used to type rootParameterDataPrototype. |()

4.3.2 Data Conversion

[TPS_SWCT _01560] Supported categorys of CompuMethods for data conver-
sion | Data conversion shall be supported for AutosarDataTypes that refer to Com-
puMethods of category

AUTOSAR

e LINEAR,

e IDENTICAL,

e SCALE_LINEAR_AND_TEXTTABLE,
e TEXTTABLE,

e BITFIELD TEXTTABLE, and

e RAT_FUNC - as long as the semantics of the latter comes down to a reciprocal
linear data scaling.

|(RS_SWCT _03210)

[TPS_SWCT 01561] Application of data conversion to composite Autosar-
DataTypes | Data conversion is also applicable for composite AutosarDataTypes.
The actual conversion, however, shall be individually applied to each leaf element of a
given composite AutosarDataType. |(RS_SWCT_03210)

4.3.2.1 Linear Data Scaling

A Linear Data Scaling can be defined under following preconditions:

[TPS_SWCT_01549] Definition of linear data scaling [The term Linear Scaling
is defined as follows:

1. Regarding the existence of CompuMethods one of the following cases shall ap-
ply:
(@) The involved AutosarDataTypes refer to CompuMethods of category
IDENTICAL, LINEAR, Or RAT_FUNC.

(b) If one side (sender or receiver) does not refer a CompuMethod then a “de-
fault” CompuMethod of category IDENTICAL shall be assumed.

2. Regarding the existence of units one of the following cases shall apply:

(@) The CompuMethods refer either to compatible Units or to Units that in
turn refer to compatible definitions of PhysicalDimension.

(b) Unitsand PhysicalDimensions do partially not exist on one side:

¢ If one side (sender or receiver) does not refer to a unit, then an “imag-
inary” Unit with the properties defined in [TPS_SWCT_01492] shall be
assumed.

e if the PhysicalDimension is only defined on one side (sender or re-
ceiver) then it shall be considered as default for the other side.

3. Both compuMethods fulfill the following condition:
__ No*phys®+Nysphys' +Noxphys®+...4 N;xphys* H
Int = Do*phys®~+ D1 xphysl+Daxphys2+...4+D;xphyst with

AUTOSAR

o Ny=N;=..=N;=0
e D=Ds=...=D;=0
o N, #0
e Dy #0
The coefficient N, represents the offset and can take any value.
|(RS_SWCT_03210)

[TPS_SWCT_01550] Definition of reciprocal linear data scaling | The term Re-
ciprocal Linear Scaling is defined as follows:

1. The involved AutosarDataTypeS refer to CompuMethods of category
RAT_FUNC.

2. The CompuMethods refer either to compatible Units or to Units that in turn
refer to compatible definitions of PhysicalDimension.

3. Both compuMethods fulfill the following condition:
Int = No*phys®+ Ny «phys! +Noxphys?+...+N;xphys® Wlth
" DoxphysO+D1*physl+Doxphys?+...+D;xphys®

e Ni=N,=...=N;=0
o Dy=D3=...=D;=0
o Ny #0
e D; #0
The coefficient D, represents the (reciprocal) offset and can take any value.
|(RS_SWCT_03210)

[TPS_SWCT_01168] Linear conversion factor can be calculated | In such cases
a linear conversion factor can be calculated out of the factorsiToUnit and off-
setSiToUnit attributes of the referred Units and the CompuRationalCoeffs of a

compulInternalToPhys/compuPhysToInternal of the referred CompuMethods. |
(RS_SWCT _03210)

4.3.2.2 Table Conversion

[TPS_SWCT_01162] Existence of TextTableMapping [A TextTableMapping
can be defined if the AutosarDataTypes refer to CompuMethods of cate-
gory TEXTTABLE, SCALE_LINEAR_ AND_TEXTTABLE, and BITFIELD TEXTTABLE.
|(RS_SWCT_03210)

Please note that the use case behind the appearance of BITFIELD_TEXTTABLE in
[TPS_SWCT_01162] is the fact that BSW modules such as the Dem need to put data
into the NVRAM that has the nature of single bits embedded into a composite data type.

AUTOSAR

The TextTableMapping is defined as a table based conversion.

[TPS_SWCT_01163] Conversion from firstValue t0 secondValue | A first-
Value of a valuePair is converted into the secondvalue in case of a data flow from
the firstDataPrototype to the secondbataPrototype. |(RS_SWCT _03210)

[TPS_SWCT_01164] Conversion from secondValue to firstValue | In case of a
data flow from the secondbDataPrototype to firstDataPrototype the second-
Value is substituted by the firstvalue. |(RS_SWCT_03210)

[TPS_SWCT_01165] Invertible mapping [If the mappingDirection attribute is set
to bidirectional then the TextTableMapping has to be invertible. This requires
that the list of all £irstvalues and the list of all secondvalues do not contain iden-
tical values inside a list. |(RS_SWCT _03210)

[TPS_SWCT_01166] Non-invertible mapping | For non-invertible TextTableMap—
ping, a dedicated TextTableMapping for each direction can be defined. |
(RS_SWCT_03210)

[constr_1303] Applicability of TextTableMapping depending on the value of
CompuMethod.category | If a DataPrototypeMapping aggregates a Text-
TableMapping then only certain combinations of the value of the applicable com-
puMethod.category are supported:

e category of firstDataPrototype: TEXTTABLE,
category of secondDataPrototype: TEXTTABLE

e category of firstDataPrototype: SCALE_LINEAR_AND_TEXTTABLE,
category of secondDataPrototype: TEXTTABLE

e category of firstDataPrototype: TEXTTABLE,
category of secondDataPrototype: SCALE_LINEAR_AND_TEXTTABLE

e category of firstDataPrototype: BITFIELD_TEXTTABLE,
category of secondDataPrototype: TEXTTABLE

e category of firstDataPrototype: TEXTTABLE,
category of secondDataPrototype: BITFIELD_TEXTTABLE

e category of firstDataPrototype: BITFIELD_TEXTTABLE,
category of secondDataPrototype: BITFIELD_TEXTTABLE

10

To some extent, bitfields can be regarded as a hybrid between a primitive and a struc-
tured data type:

e On the one hand, a bitfield is defined in the context of a primitive Tmplementa-
tionDataType.

e On the other hand, by means of the definition of a mask, it is possible to define
isolated parts within the primitive ITmplementationDataType that potentially

AUTOSAR

can be totally independent from each other with respect to the semantics of the
data that match the mask.

In other words, the existence of semantically independent and potentially isolated parts
within the primitive TmplementationDataType creates a similar characteristic as
if the definitions of the isolated parts were created by means of defining primitive Tm-
plementationDataTypeElements within the context of a composite Tmplemen-
tationDataType.

And because it is possible to regard the “mission statement” of a DataPrototype
that refers to a CompuMethod of category BITFIELD_TEXTTABLE as to mimic the
semantics of a structured data type it is also possible to apply some of the rules that
are already in place for structured data types in this specific case as well.

This conclusion, in combination with the existence of [TPS_SWCT_01551], sets the
stage for [TPS_SWCT_01583].

[TPS_SWCT _01583] Completeness of TextTableMapping is not a requirement
[If aDataPrototypeMapping contains one or more Text TableMapping(s) where
the DataPrototype on the sender side refers to a CompuMethod of category
BITFIELD_TEXTTABLE it is not required that for each possible value and each possi-
ble bit mask on the sender side corresponding values on the receiver side are specified.
|(RS_SWCT_03210)

With respect to [TPS_SWCT_01583] it is still important to observe that within a single
mask all values on the sender side shall have a mapping to the receiver side.

Otherwise the RTE generator would not be able to create mapping code that unam-
biguously takes care of mapping the correct values onto each other.

[constr_1313] Completeness of TextTableMapping for the values of a given bit
mask on the sender side [If a DataPrototypeMapping contains one or more
TextTableMapping(s) where the DataPrototype on the sender side refers to a
CompuMethod of category BITFIELD_TEXTTABLE then all DataPrototypeMap—
ping.textTableMapping shall aggregate a collection of Text TableMapping.val-
uePair where each possible value of the sender bit mask® is represented by
exactly one TextTableValuePair.firstValue ([TPS_SWCT_01163]) or Text-
TableValuePair.secondValue ([TPS_SWCT_01164]). |()

[constr_1304] Existence of attribute bitfieldTextTableMaskFirst [The at-
tribute bitfieldTextTableMaskFirst shall be defined only if the firstDat-
aPrototype of a DataPrototypeMapping refers to a CompuMethod that has the
value of category setto BITFIELD_TEXTTABLE. |()

6Depending on the applicable case this means either bitfieldTextTableMaskFirst (ap-
plies if [TPS_SWCT_01163] is in place) or bitfieldTextTableMaskSecond for the case of
[TPS_SWCT_01164].

AUTOSAR

[constr_1305] Existence of attribute bitfieldTextTableMaskSecond | The at-
tribute bitfieldTextTableMaskSecond shall be defined only if the secondbat -
aPrototype of a DataPrototypeMapping refers to a CompuMethod that has the
value of category setto BITFIELD_TEXTTABLE. |()

[constr_1306] Limitation of TextTableMapping for CompuMethods that have
the value of category set to BITFIELD TEXTTABLE | For any TextTableMap-
pingwhere both firstDataPrototype and secondDataPrototype referto Com-
puMethods that have the value of category set to BITFIELD_TEXTTABLE and
where the attribute TextTableMapping.valuePair exists the value of attribute
TextTableMapping.identicalMapping shall be set to false. |()

[constr_1307] Consistency of values and masks in TextTableMapping |
If a TextTableMapping element defines bit masks as bitfieldTextTable-
MaskFirst oOr bitfieldTextTableMaskSecond then all contained Text-
TableMapping.valuePair.firstValuesaswell asall TextTableMapping.val-
uePair.secondValues shall not specify a value that would be ruled out when - de-
pending on the given value of TextTableMapping.mappingDirection - the rele-
vant bit mask is applied. |()

Example for [constr_1307]: For a bit mask 0b00001000 only the corresponding values
8 and 0 are allowed.

Class TextTableMapping
Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface
Note Defines the mapping of two DataPrototypes typed by AutosarDataTypes that refer to CompuMethods of
category TEXTTABLE, SCALE_LINEAR_AND_TEXTTABLE or BITFIELD_TEXTTABLE.
Base ARObject
Attribute Type Mul. Kind | Note
bitfieldTextTable | Positivelnteger 0..1 attr This attribute can be used to support the mapping of bit
MaskFirst field to bit field, boolean values to bit fields, and vice
versa. The attribute defines the bit mask for the first
element of the TextTableMapping.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
bitfieldTextTable | Positivelnteger 0..1 attr This attribute can be used to support the mapping of bit
MaskSecond field to bit field, boolean values to bit fields, and vice
versa. The attribute defines the bit mask for the second
element of the TextTableMapping.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
identical Boolean 1 attr If identicalMapping is set == true the values of the two
Mapping referenced DataPrototypes do not need any conversion of
the values.
mapping MappingDirectionEnum 1 attr Specifies the conversion direction for which the TextTable
Direction Mapping is applicable.
valuePair TextTableValuePair * aggr Defines a pair of values which are translated into each
other.

Table 4.37: TextTableMapping

AUT o

©SAR

Enumeration MappingDirectionEnum

Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface
Note Specifies the conversion direction for which the mapping is applicable.
Literal Description

bidirectional The TextTableMapping is applicable in both directions.

Tags: atp.EnumerationValue=0

firstToSecond

The TextTableMapping is applicable in the direction from firstDataPrototype / firstOperationArgument
referring into the Portinterface of the PPortPrototype to secondDataPrototype / secondOperation
Argument referring into the Portinterface of the RPortPrototype.

Tags: atp.EnumerationValue=1

secondToFirst

The TextTableMapping is applicable in the direction from secondDataPrototype / secondOperation
Argument referring into the Portinterface of the PPortPrototype to firstDataPrototype / firstOperation
Argument referring into the Portinterface of the RPortPrototype.

Tags: atp.EnumerationValue=2

Table 4.38: MappingDirectionEnum

Class TextTableValuePair

Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface

Note Defines a pair of text values which are translated into each other.

Base ARObject

Attribute Type Mul. Kind | Note

firstValue Numerical 1 attr Value of first DataPrototype provided similar to a
numerical ValueSpecification which is intended to be
assigned to a Primitive data element.
Note that the numerical value is a variant, it can be
computed by a formula.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

secondValue Numerical 1 attr Value of second DataPrototype provided similar to a

numerical ValueSpecification which is intended to be
assigned to a Primitive data element.

Note that the numerical value is a variant, it can be
computed by a formula.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompile Time

Table 4.39: TextTableValuePair

AUTO SAR

pataProtonpeNapping PPt AutosarDataPrototIyD;:eapmmtype
1
+secondDataPrototype
1
+textTableMapping|0..2
TextTableMapping «enumeration»

MappingDirectionEnum

+ identicalMapping: Boolean

+ mappingDirection: MappingDirectionEnum bidirectional

firstToSecond
secondToFirst

«atpVariation»
+ DbitfieldTextTableMaskFirst: Positivelnteger [0..1]
+ bitfieldTextTableMaskSecond: Positivelnteger [0..1]

+valuePair|0..*

TextTableValuePair

«atpVariation»
+ firstValue: Numerical
+ secondValue: Numerical

Figure 4.18: Mapping of DataPrototypes that eventually refer to CompuMethods of cat-
egory TEXTTABLE, SCALE_LINEAR_AND_TEXTTABLE, and BITFIELD_TEXTTABLE

4.3.3 Relevance for Data Transformation

One (prominent) use-case for item 4 in [TPS_SWCT_01158] is the interaction between
the NvBlockSwComponent Type and the AUTOSAR Dcm.

Specifically, the RTE will call a data transformer to convert the uint8-array representa-
tion of the diagnostic data available from a PortPrototype owned by the Dcm Ser—
viceSwComponentType t0 @ VariableDataPrototype owned by a PortProto-
type of NvBlockSwComponentType.

For the configuration of this purpose, the applicable DataPrototypeMapping refers
toaDataTransformationintherole firstToSecondDataTransformation and
- for the case of two connected PortPrototypes that use asymmetric data transfor-
mation - secondToFirstDataTransformation (see Figure 4.19).

DataPrototypeMappin Identifiable
o PRINg +firstToSecondDataTransformation DataTransformation

0.1[+ dataTransformationKind: DataTransformationKindEnum [0..1]

" . + executeDespiteDataUnavailability: Boolean
+secondToFirstDataTransformation &7 Y

0.1

Figure 4.19: Configuration of Ecu-internal data transformation

Note that for this specific interaction between an ApplicationSwComponentType
and a ServiceSwComponentType [TPS_SWCT_01579] applies which defines that
attribute isservice shall be set to false for the dataElementsin PortPrototypes
typed by a SenderReceiverInterface.

AUTO SAR

[TPS_SWCT_01768] Semantics of DataPrototypeMapping.secondToFirst-
DataTransformation [For symmetric data transformations (i.e. the value of at-
tribute DataTransformation.dataTransformationKind is set to DataTrans-
formationKindEnum.symmetric) it is sufficient to specify the reference first-
ToSecondDataTransformation.

There are, however, use cases for asymmetric data transformations between two con-
nected PRPortPrototypes and in this case it is necessary to specify each direction
separately.

For this purpose, the reference secondToFirstDataTransformation exists in ad-
ditionto firstToSecondbataTransformation. |(RS_SWCT_03210)

Figure 4.20 describes the most prominent use case for the necessity to specify both
firstToSecondDataTransformation and secondToFirstDataTransforma-—
tion.

TransformationTechnology DataTransformation

transformerChain dataTransformationkind=

\ asymmetricToByteArray

protocol=Somelp

A transformerChain firstToSecondDataTransformation

DataTransformation

dataTransformationKind=

. econdToFirstDataTransformation
asymmetricFromByteArray \
VariableAndPa r1meterMapping

DataPrototypeMapping

SwComponentPrototype typed by
NvBlockSwComponentType A

SwComponentPrototype typed by
ServiceSwComponentType (Dcm)

NvDatalnterface o

nvData AssemblySwConnector SenderReceiverinterface

dataElement

RecordElement 1

-- <> PRPortPrototype
PRPortPrototype

RecordElement 2 Byte-Array

RecordElement 3

RecordElement 4

Figure 4.20: Use case for the existence of asymmetric data transformation in both direc-
tions

An SwComponentPrototype typed by NvBlockSwComponent Type €XpPOSES a PR—
PortPrototype that is connected to another PRPortPrototype attached to an
SwComponentPrototype that represents the Dcm service software-component.

AUTOSAR

The PRPortPrototype on the side of the NvBlockSwComponent Type in typed by
an NvDatalInterface that in turn aggregates a single nvbata. The data type used
to define the nvData is a structured data type.

The service software-component representing the Dcm, however, is not capable of
dealing with structured data types. It can only handle primitive types and arrays of
primitive types, e.g. bytes.

Therefore, the existence of (asymmetric) data transformers is conveniently utilized to
serialize the content of the structured data type into a linear array and vice versa.

To expressly define this intended semantics, the DataPrototypeMapping defines
two references:

e firstToSecondDataTransformation that refers to a DataTransforma-
t ion where attribute dataTransformationKind is setto the value asymmet -
ricToByteArray. This reference represents the direction from the NvBlock-
SwComponent Type to the Dcm.

e secondToFirstDataTransformation that refers to a DataTransforma-
tion where attribute dataTransformationKind is set to the value asym-
metricFromByteArray. This reference represents the direction from the Dcm
to the NvBlockSwComponent Type.

This approach to modeling is formalized in [constr_1631] and [constr_1632].

[constr_1631] Applicability of DataPrototypeMapping.secondToFirstData-
Transformation | The reference to DataTransformation in the role DataPro-
totypeMapping.secondToFirstDataTransformation shall only exist if refer-
ence DataPrototypeMapping.firstToSecondDataTransformation exists and
refers to a DataTransformation where attribute dataTransformationKind ex-
ists and is not set to the value symmetric. ()

[constr_1632] Restriction for firstToSecondDataTransformation and sec-
ondToFirstDataTransformation | If both the reference firstToSecondData-
Transformation and the reference secondToFirstDataTransformation exist
in the context of the same DataPrototypeMapping then

e the firstToSecondbDataTransformation shall refer to a bataTransfor-
mation with attribute dataTransformationKind set to0 asymmetricTo-
ByteArray and

e the secondToFirstDataTransformation shall refer to a DataTransfor-
mation with attribute dataTransformationKind set t0 asymmetricFrom-
ByteArray.

10

AUTOSAR

Class DataTransformation

Package M2::AUTOSARTemplates::SystemTemplate:: Transformer

Note A DataTransformation represents a transformer chain. It is an ordered list of transformers.

Base ARObject, Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind | Note

data DataTransformationKind 0..1 attr This attribute controls the kind of DataTransformation to

Transformation Enum be applied.

Kind

executeDespite Boolean 1 attr Specifies whether the transformer chain is executed even

Data if no input data are available.

Unavailability

transformer Transformation 1.7 ref This attribute represents the definition of a chain of

Chain (ordered) Technology transformers that are supposed to be executed according
to the order of being referenced from DataTransformation.

Table 4.40: DataTransformation

Enumeration DataTransformationKindEnum
Package M2::AUTOSARTemplates::SystemTemplate::Transformer
Note This enumeration contributes to the definition of the scope of the DataTransformation.
Literal Description
asymmetricFrom The DataTransformation shall only be applied to the receiving end only, i.e. transform from byte array
ByteArray to data type.
Tags: atp.EnumerationValue=0
asymmetricToByte The DataTransformation shall be applied to the sending end only, i.e. from data type to byte array.
Array Tags: atp.EnumerationValue=1
symmetric The DataTransformation shall be applied at both the sending and the receiving end of the
communication.
Tags: atp.EnumerationValue=2

Table 4.41: DataTransformationKindEnhum

4.4 Port Annotation

4.4.1

Introduction

[TPS_SWCT_01203] PortPrototype may own port annotations | In addition to
the formal specification required to implement the communication via ports, a Port -
Prototype may own so-called port annotations.

They do not directly influence the signature of calls via this PortPrototype, but con-
tain further information that may be useful for the application developers of the compo-
nents on both sides of the connection. |()

A summary of port-level annotations can be found in Figure 4.21.

[TPS_SWCT_01204] GeneralAnnotation [Beside formally specified attributes it is
also possible to place textual information as provided in GeneralAnnotation. |()

AUTO SAR

SwComponentType

ARElement
AtpBlueprint
AtpBlueprintable
AtpType

«atpVariation» Tags:

«atpVariation,atpSplitable»

+port|0..*

AtpBlueprintable
AtpPrototype

PortPrototype

preCompileTime

vh.latestBindingTime =

+senderReceiverAnnotation

GeneralAnnotation
SenderReceiverAnnotation

0..*

constraints
{"port'sinterface isa SenderReceiverinterface"}

+delegatedPortAnnotation

GeneralAnnotation
DelegatedPortAnnotation

0.1

constraints
{aggregating PortPrototype isa port of a CompositionSwComponentType (DelegatedPort)}

+failureMonitoring

GeneralAnnotation
loHWAbstractionServerAnnotation

0.1

+ioHwAbstractionServerAnnotation

0.*

constraints
{"port'sinterface isa client/server interface using the operations GET and SET"}

+parameterPortAnnotation

GeneralAnnotation
ParameterPortAnnotation

constraints
{"The corresponding port interface shall be a Parameterinterface."}

GeneralAnnotation
ModePortAnnotation

constraints
{"The corresponding port interface shall be a Modelnterface."}

GeneralAnnotation
NvDataPortAnnotation

constraints
{"The corresponding port interface shall be a NvDatalnterface."}

GeneralAnnotation
TriggerPortAnnotation

constraints
{"The corresponding port interface shall be a Triggerinterface."}

GeneralAnnotation
ClientServerAnnotation

et
0..*
+modePortAnnotation
0.*
+nvDataPortAnnotation
0.*
+triggerPortAnnotation
0.*
+clientServerAnnotation
et

0..*

constraints
{"The corresponding Portinterface shall be a ClientServerinterface."}

Figure 4.21: Application Level Port Annotations Overview

AUTOSAR

4.4.2 SenderReceiverAnnotation

Embedded automotive software is used to implement open-loop and closed-loop
control-algorithms. Therefore, a software-component description has to accommodate
typical control engineering description means which have only indirect influence of the
embedded software itself.

These annotations provide the (function-) developer with a direct indication whether
a certain software-component is appropriate for the control-algorithm to be designed.
A typical annotation is the signal quality which is characterized by several properties.
Each of the property is an annotation in its own.

[TPS_SWCT_01205] Typical annotations for sender/receiver communication |
Typical annotations for sender/receiver communication are:

¢ Signal Age: this attribute expresses that the associated software-component will
only work correctly given that the propagation of the signal from a sensor to a
consumer can be finished within a particular time-limit. Of course, this cannot be
identified on component or role level, but has to take into account the instance
view as well as the actual ECU- and bus-scheduling.

e Raw: a raw signal is typically taken directly from the basic software modules
of the ECU abstraction layer. In particular, no sensor software-component has
filtered its original value. A dataElement in an RPortPrototype of a SwCom-—
ponent Type using this annotation indicates to the control engineer (who devel-
ops a control-algorithm for this component) that the signal has to be filtered (This
relationship applies for SenderReceiverInterfaces).

¢ Filtered: this attribute indicates that a raw signal has been manipulated by some
application software-components by using a certain filter.

e Computed: this attribute indicates that this signal is not measured directly but
calculated from tentatively several other measured or calculated signals. In a
vehicle, there might be alternative signals to be used from other components
having a better quality, e.g. a raw signal.

e Min: this annotation indicates that the signal carries a minimum value. If, for
example, a reference value computed in the software-component is below that
value some dedicated actions (e.g. failure-mode) might have to be taken.

e Max: this annotation indicates that the signal carries a maximum value. If, for
example, a reference value computed in the software-component is above that
value some dedicated actions (e.g. failure-mode) might have to be taken.

In the meta-model this aspect is implemented by the abstract meta-class sender-
ReceiverAnnotation which represents the base class of both SenderAnnota-
tion and ReceiverAnnotation. [()

The relationship of abstract abstract meta-class SenderReceiverAnnotation to
SenderAnnotation and ReceiverAnnotationis depicted in Figure 4.22.

AUT o

©SAR

Class SenderReceiverAnnotation (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes

Note Annotation of the data elements in a port that realizes a sender/receiver interface.

Base ARObject, GeneralAnnotation

Subclasses ReceiverAnnotation, SenderAnnotation

Attribute Type Mul. Kind | Note

computed Boolean 1 attr Flag whether this data element was not measured directly
but instead was calculated from possibly several other
measured or calculated values.

dataElement VariableDataPrototype 1 ref The instance of VariableDataPrototype annotated.

limitKind DataLimitKindEnum 1 attr This min or max has not to be mismatched with the min-
and max for data-value in a compu-method. For example,
this annotation
shows when the result of the calculation performed in a
RunnableEntity owned by one AtomicSwComponentType
is transmitted to another AtomicSwComponentType
whose RunnableEntity will use this value as a limit, e.g.
the max.power which can be used by that
software-component, or the current min. slip.

processingKind ProcessingKindEnum 1 attr This attribute controls how data is processed according to
the possible values of ProcessingKindEnum.

Table 4.42: SenderReceiverAnnotation

Class SenderAnnotation
Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes
Note Annotation of a sender port, specifying properties of data elements that don’t affect communication or
generation of the RTE.
Base ARObject, GeneralAnnotation, SenderReceiverAnnotation
Attribute Type Mul. Kind | Note
Table 4.43: SenderAnnotation
Class ReceiverAnnotation
Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes
Note Annotation of a receiver port, specifying properties of data elements that don’t affect communication or
generation of the RTE. The given attributes are requirements on the required data.
Base ARObject, GeneralAnnotation, SenderReceiverAnnotation
Attribute Type Mul. Kind | Note
signalAge MultidimensionalTime 1 aggr | The maximum allowed age of the signal since it was
originally read by a sensor. This is a requirement
specified on the receiver side.

Table 4.44: ReceiverAnnotation

AUTOSAR

Enumeration ProcessingKindEnum
Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes
Note Kind of processing which has been applied to a data element.
Literal Description
filtered Indicates that a raw signal has been manipulated by some application software components by using
filters.
Tags: atp.EnumerationValue=0
none Indicates that none of the other option apply.
Tags: atp.EnumerationValue=1
raw Specifies that a signal is taken directly from the basic software modules, i.e. from the ECU abstraction
layer. It indicates to a developer that the control algorithm in the software has to provide filters.
Tags: atp.EnumerationValue=2
Table 4.45: ProcessingKindEnum
Enumeration DataLimitKindEnum
Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes
Note Indicates whether the data element carries a minimum or maximum value, thereby limiting the current
range of another value.
Literal Description
max Limitation to maximum value
Tags: atp.EnumerationValue=0
min Limitation to minimum value
Tags: atp.EnumerationValue=1
none No limitation applicable
Tags: atp.EnumerationValue=2

Table 4.46: DataLimitKindEnum

[TPS_SWCT _01206] Min and Max annotations are valid for a certain amount of
time | The Min and Max annotations are valid for a certain amount of time. The value
is likely to change to another valid value while the ECU is running. E.g. the maximal
torque which can be requested from an engine is a typical use-case. |()

This value might vary depending on e.g. the status of the climate control system.
Therefore, these annotations shall not be mismatched with the min and max attributes
of CompuMethods.

AUTOSAR

AtpBlueprintable

AtpPrototype
PortPrototype
+senderReceiverAnnotation [0..*
GeneralAnnotation
SenderReceiverAnnotation
+ computed: Boolean +dataElement AutosarDataPrototype
+ limitKind: DataLimitKindEnum VariableDataPrototype
+ processingKind: ProcessingKindEnum 1
constraints
{"port'sinterface isa SenderReceiverinterface"}

I

«enumeration» «enumeration»
. . . ProcessingKindEnum DataLimitKindEnum
SenderAnnotation ReceiverAnnotation
none none
raw min
filtered max

+signalAge T 1

Multidimensional Time

+ cseCode: CseCodeType
+ cseCodeFactor: Integer

Figure 4.22: senderReceiverAnnotation

The application level port annotations for sender/receiver communication have to be
associated to each dataElement in a PortPrototype, €.9. there might be a “raw”
dataElement and a “filtered” dataElement in the same PortPrototype!

[TPS_SWCT 01207] variableDataPrototypes use the same application-level
SenderReceiverAnnotation | Furthermore, if two VariableDataPrototypes
use the same application-level senderReceiverAnnotation, a reference from the
annotation to the variableDataPrototypes will be established by an appropriate

tool. |()

[TPS_SWCT_01208] Grouping for SenderReceiverAnnotation | The Sender-
ReceiverAnnotation for sender/receiver communication are grouped into

e processing type, indicating to some extend the direct quality of the signal,
e computed, which is just a flag or,
¢ limit type, showing the component expects an actual limit.

In the case of an RPortPrototype, the signal age of the value, carried by the asso-
ciated swConnector, can be specified. Each of these groups can be interpreted as a
property of the signal-quality. |()

For more information about meta-class SenderReceiverAnnotation please refer
to Figure 4.22.

AUTO SAR

[constr_4004] Context of SenderReceiverAnnotation | A SenderReceiver-
Annotation shall only be aggregated by a PortPrototype typed by a Sender-—
ReceiverInterface. ()

4.4.3 ClientServerAnnotation

[TPS_SWCT _01209] ClientServerAnnotation [The ClientServerAnnota-
tion can be used to provide more information with respect to the ClientServerOp-

eration of the PortPrototype. [()

Class ClientServerAnnotation

Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes

Note Annotation to a port regarding a certain Operation.

Base ARObject, GeneralAnnotation

Attribute Type Mul. Kind | Note

operation ClientServerOperation 1 ref This represents the ClientServerOperation that the Client
ServerAnnotation corresponds to.

The main use-case

Table 4.47: ClientServerAnnotation

ClientServerOperation.

is to allow define additional information related to the

AtpBlueprintable
AtpPrototype

PortPrototype

+clientServerAnnotation | 0..*

GeneralAnnotation
ClientServerAnnotation

+operation\|/1

AtpStructureElement
Identifiable

ClientServerOperation

Figure 4.23: ClientServerAnnotation

[constr_4005] Context of ClientServerAnnotation [A ClientServerAnno-
tation shall only be aggregated by a PortPrototype typedby a ClientServer—
Interface. [()

AUTO SAR

4.4.4 Annotation for the I/0 Hardware Abstraction Layer

Within the ECU-Abstraction Layer there are ECU-signals defined. These signals rep-
resent the electrical signals as they arrive in the micro-controller peripheral and are
fetched from the registers via the MCAL.

Access to the I/0O Hardware Abstraction Layer is done via service interfaces, i.e. the 1/0
Hardware Abstraction Layer provides GET- and SET-operations at the specified service
ports of a SensorActuatorSwComponentType.

[TPS_SWCT_01524] Usage of IoHwAbstractionServerAnnotation [ToHwAb-
stractionServerAnnotation can be used for all kinds of Port Interfaces ex-
cept NvDataInterface. ()

AtpBlueprintable AtpStructureElement Datalnterface
AtpPrototype Identifiable SenderReceiverinterface
PortPrototype ClientServerOperation

0.1 +failureMonitoring

«atpVariation»

* R
+argument T
0.* +ioHwAbstractionServerAnnotation 9 {ordered} ~ 1 «atpVariation» Tags:
AutosarDataPrototype tion>» 1ags: _
| - vhlatestBindingTime =
e R ArgumentDataPrototype blueprintDerivationTime
loHwADbstractionServerAnnotation +argument
+ bswResolution: Float 0.1
+ filteringDebouncing: FilterDebouncingEnum
+ pulseTest: PulseTestEnum +dataElement|1..*
AutosarDataPrototype
+dataElement X
VariableDataPrototype
0.1
+trigger AtpStructureElement
9 dentifiable
0.1 Trigger
+ swimplPolicy: SwimplPolicyEnum [0..1]
+age | 0.1
MultidimensionalTime +riggerPeriod
+ cseCode: CseCodeType 0.1
+ cseCodeFactor: Integer
+trigger | 1.*
«enumeration» «enumeration» Portinterface
FilterDebouncingEnum PulseTestEnum Triggerinterface
rawData disable
debounceData enable
waitTimeDate

Figure 4.24: IoHwAbstractionServerAnnotation

AUTOSAR

Class loHwADbstractionServerAnnotation
Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes
Note The loHwAbstractionServerAnnotation will only be used from a sensor- or an actuator component while
interacting with the loHwADbstraction layer.
Note that the "server" in the name of this meta-class is not meant to restrict the usage to ClientServer
Interfaces.
Base ARObject, GeneralAnnotation
Attribute Type Mul. Kind | Note
age MultidimensionalTime 0..1 aggr In case of a SET operation, the age will be interpreted as
Delay while in a GET operation (input) it specifies the
Lifetime of the signal within the loHwAbstraction Layer
Tags: xml.sequenceOffset=10
argument ArgumentDataPrototype 0..1 ref Reference to the corresponding ArgumentDataPrototype.

Tags: xml.sequenceOffset=20

bswResolution

Float 1 attr This value is determined by an appropriate combination
of the range, the unit as well as the data-elements type,
i.e. (ecuSignalRange.upperLimit-ecuSignalRange.lower
Limit) / (2datatypelength - 1)

Tags: xml.sequenceOffset=30

dataElement

VariableDataPrototype 0..1 ref Reference to the corresponding VariableDataPrototype.

Tags: xml.sequenceOffset=40

failure
Monitoring

PortPrototype 0..1 ref This is only applicable in SET operations. If it is enabled,
the loHwADbstraction layer will monitor the result of the
operation and issue an diagnostic signal. This means
especially, that an additional client-server port has to be
created. Tools can use this information to cross-check
whether for each data-element in a SET operation with
FailureMonitoring enabled an additional port is created

The referenced port monitors a failure in the to be
monitored VariableDataPrototype of the loHwAbstraction
layer. The referenced port has to be another port of the
same Actuator or Sensor Component.

Tags: xml.sequenceOffset=50

filtering
Debouncing

FilterDebouncingEnum 1 attr This attribute is used to indicate what kind of
filtering/debouncing has been put to the signal in the lo
HwAbstraction layer.

rawData means that no modification of the signal has
been applied. This is the default value
debounceData means that the signal is a mean value
waitTimeData means that the signal is delivered by a
GET operation after a certain amount of time

Tags: xml.sequenceOffset=60

pulseTest

PulseTestEnum 1 attr This attribute indicates to the connected SensorActuator
SwComponentType whether the VariableDataPrototype
can be used to generate pulse test sequences using the
loHwADbstraction layer

Tags: xml.sequenceOffset=70

trigger

Trigger 0..1 ref Reference to the corresponding Trigger.

Tags: xml.sequenceOffset=80

Table 4.48: loHwAbstractionServerAnnotation

AUTOSAR

Enumeration FilterDebouncingEnum
Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes
Note This enumeration defines possible values for the filter debouncing strategy.
Literal Description
debounceData The signal is a

mean value

Tags: atp.EnumerationValue=0

rawData Means that no modification of the
signal has been applied. This is the default
value

Tags: atp.EnumerationValue=1

waitTimeDate The signal is delivered by a GET operation after a certain amount of time
Tags: atp.EnumerationValue=2

Table 4.49: FilterDebouncingEnum

Enumeration PulseTestEnum

Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes

Note This element indicates to the connected Actuator Software component whether the data-element can
be used to generate pulse test sequences using the loHwAbstraction layer

Literal Description

disable Disables the pulse test

Tags: atp.EnumerationValue=0

enable Enables the pulse test

Tags: atp.EnumerationValue=1

Table 4.50: PulseTestEnum

[TPS_SWCT_01211] Assign several annotations to ArgumentDataPrototype |
The ClientServerOperations provide an ArgumentDataPrototype where sev-
eral annotations can be assigned to. |()

They are depicted in the ToHwAbstractionServerAnnotation meta-class in Fig-
ure 4.24.

A detailed description of the attributes can be found in the loHwADbstraction Layer soft-
ware specification document [17]. For example, the signal age has a very dedicated
meaning in this particular interface with respect to a register whereas the signal age in
the SenderReceiverAnnotation is more generic. Especially, there is no relation-
ship with the micro-controller peripherals.

4.4.5 Parameter Port Annotation

[TPS_SWCT_01212] ParameterPortAnnotation | The ParameterPortAnno-
tation can be used to provide more information with respect to calibration parameter
prototypes of the portPrototype. The data provided at the PortPrototype is
calibration parameters. The ParameterPortAnnotation provides a reference to a
particular ParameterDataPrototype. |()

AUTO SAR

Class ParameterPortAnnotation

Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes

Note Annotation to a port used for calibration regarding a certain ParameterDataPrototype.

Base ARObject, GeneralAnnotation

Attribute Type Mul. Kind | Note

parameter ParameterData 1 ref The instance of annotated ParameterDataPrototype.
Prototype

Table 4.51: ParameterPortAnnotation

The main use-case is to allow easy access to the information which calibration param-
eters influence the data on the PortPrototype.

AtpBlueprintable
AtpPrototype

PortPrototype

+parameterPonAnnotationTO..*

ParameterPortAnnotation

GeneralAnnotation

constraints
{"The corresponding port interface shall be a Parameterinterface."}

+parameter\|/1

AutosarDataPrototype
ParameterDataPrototype

Figure 4.25: ParameterPortAnnotation

[constr_4006] Context of ParameterPortAnnotation | A ParameterPortAn-
notation shall only be aggregated by a PPortPrototype owned by a Parame-
terSwComponentType. |()

4.4.6 Mode Port Annotation

[TPS_SWCT_01213] ModePortAnnotation | The ModePortAnnotation can be
used to provide more information with respect to the mode declaration group prototype
of the PortPrototype. |()

AUTO SAR

Class ModePortAnnotation

Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes

Note Annotation to a port used for calibration regarding a certain ModeDeclarationGroupPrototype.

Base ARObject, GeneralAnnotation

Attribute Type Mul. Kind | Note

modeGroup ModeDeclarationGroup 1 ref The instance of annotated ModeDeclarationGroup
Prototype Prototype.

Table 4.52: ModePortAnnotation

The main use-case is to allow for the definition of additional information related to the
mode declaration group prototype.

AtpBlueprintable
AtpPrototype

PortPrototype

+modePonAnnotationIJ..*

GeneralAnnotation

ModePortAnnotation

+modeGroup\|/1

AtpPrototype
ModeDeclarationGroupPrototype

+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

Figure 4.26: ModePortAnnotation

[constr_4007] Context of ModePortAnnotation | A ModePortAnnotation shall
only be aggregated by a PortPrototype typed by a ModeSwitchInterface. |()

4.4.7 Trigger Port Annotation

[TPS_SWCT_01214] TriggerPortAnnotation | The TriggerPortAnnotation
can be used to provide more information with respect to the trigger of the PortPro-

totype. |()

AUTO SAR

Class TriggerPortAnnotation

Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes

Note Annotation to a port used for calibration regarding a certain Trigger.

Base ARObject, GeneralAnnotation

Attribute Type Mul. Kind | Note

trigger Trigger 1 ref The instance of annotated trigger.

Table 4.53: TriggerPortAnnotation

The main use-case is to allow define additional information related to the trigger.

AtpBlueprintable
AtpPrototype

PortPrototype

+triggerPortAnnotation|0..*

GeneralAnnotation
TriggerPortAnnotation

+trigger\|[/1

AtpStructureElement
Identifiable

Trigger

+ swimplPolicy: SwimplPolicyEnum [0..1]

Figure 4.27: TriggerPortAnnotation

[constr_4008] Context of TriggerPortAnnotation [A TriggerPortAnnota-
tion shall only be aggregated by a PortPrototype typed by a TriggerInter-—

face. |()

4.4.8 Non Volatile Data Port Annotation

[TPS_SWCT _01215] NvDataPortAnnotation | The NvDataPortAnnotation
can be used to provide more information with respect to the non volatile data of the
PortPrototype. |()

Class NvDataPortAnnotation

Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes
Note Annotation to a port regarding a certain VariableDataPrototype.

Base ARObject, GeneralAnnotation

V

AUTOSAR

A
Class NvDataPortAnnotation
Attribute Type Mul. Kind | Note
variable VariableDataPrototype 1 ref The instance of nv data annotated.

Table 4.54: NvDataPortAnnotation

The main use-case is to allow define additional information related to the non volatile
data elements.

AtpBlueprintable
AtpPrototype

PortPrototype

+nvDataPonAnnotationT0“*

GeneralAnnotation
NvDataPortAnnotation

+variable\[/1

AutosarDataPrototype
VariableDataPrototype

Figure 4.28: NvDataPortAnnotation

[constr_4009] Context of NvDataPortAnnotation [An NvDataPortAnnota-—
tion shall only be aggregated by a PortPrototype typed by an NvDatalInter-—
face. [()

4.4.9 Delegated Port Annotations

[TPS_SWCT _01216] DelegatedPortAnnotation [The DelegatedPortAnno-—
tation is used to define the Signal Fan In or Signal Fan Out inside the Composi-
tionSwComponentType.

This information is used to pre-define and pre-check resulting communication patterns
in the VFB (1:n, n:1, 1:1) if empty CompositionSwComponentTypesS are used as
interface definition for sub-systems.

The DelegatedPortAnnotation guides either the system designer in connecting
the empty CompositionSwComponentType or the sub-system designer in applying
communication pattern (1:n, n:1, 1:1) inside of the CompositionSwComponent Type.

10

AUT o

©SAR

Class DelegatedPortAnnotation

Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes

Note Annotation to a "delegated port" to specify the Signal Fan In or Signal Fan Out inside the CompositionSw

ComponentType.

Base ARObject, GeneralAnnotation

Attribute Type Mul. Kind | Note

signalFan SignalFanEnum 0..1 attr Specifies the Signal Fan In or Signal Fan Out inside the

Composition Type.
Table 4.55: DelegatedPortAnnotation

Enumeration SignalFanEnum

Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes

Note Signal Fan inside the Composition Component Type.

Literal Description

nfold The connections internally in the CompositionSwComponentType via DelegationSwConnectors and
AssemblySwConnectors are defined in a way that at least one data element present in the S/R
interface or one ClientServerOperation in the C/S interface of the outer PortPrototype is involved in a
1:n or n:1 communication pattern.
Tags: atp.EnumerationValue=0

single The connections internally in the CompositionSwComponentType via DelegationSwConnectors and
AssemblySwConnectors are defined in a way that each VariableDataPrototype present in the S/R
interface or ClientServerOperation in the C/S interface of the outer PortPrototype is involved in a 1:1
communication pattern only.
Tags: atp.EnumerationValue=1

Table 4.56: SignalFanEnum

[TPS_SWCT_01217] Semantics of DelegatedPortAnnotation.signalFan |
The attribute values have following definition:

e single: the internal connections in the CompositionSwComponentType Vvia
DelegationSwConnectors and AssemblySwConnectors are defined in a
way that each dataElement present in the SenderReceiverInterfaces or
operation in the ClientServerInterfaces of the outer PortPrototype
is involved in a 1:1 communication pattern only.

e nfold: The internal connections in the CompositionSwComponentType Vvia
DelegationSwConnectors and AssemblySwConnectors are defined in a
way that at least one dataElement present in the SenderReceiverInter—
faceS Or one operation in the ClientServerInterfaces of the outer
PortPrototype isinvolved in a 1:n or n:1 communication pattern.

10

[constr_4010] Context of DelegatedPortAnnotation [A DelegatedPortAn-
notation shall only be aggregated by a PortPrototype aggregated by a Compo-
sitionSwComponentType. |()

AUTOSAR

4.4.10 General Annotation

Besides formally specified attributes it is also possible to place textual information as
provided in the abstract GeneralAnnotation (see Figure 4.29 for an overview).

GeneralAnnotation

+ annotationOrigin: String

+annotationText | 1 +label | 0..1

«atpMixed» MultilanguageLongName
DocumentationBlock

Figure 4.29: textual information in annotations

Class GeneralAnnotation (abstract)
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::GeneralAnnotation
Note This class represents textual comments (called annotations) which relate to the object in which it is

aggregated. These annotations are intended for use during the development process for transferring
information from one step of the development process to the next one.

The approach is similar to the "yellow pads" ...

This abstract class can be specialized in order to add some further formal properties.

Base ARObject
Subclasses Annotation, ClientServerAnnotation, DelegatedPortAnnotation, loHwAbstractionServerAnnotation, Mode
PortAnnotation, NvDataPortAnnotation, ParameterPortAnnotation, SenderReceiverAnnotation, Trigger
PortAnnotation
Attribute Type Mul. Kind | Note
annotation String 1 attr This attribute identifies the origin of the annotation. Itis an
Origin arbitrary string since it can be an individual’s name as well
as the name of a tool or even the name of a process step.
Tags: xml.sequenceOffset=30
annotationText DocumentationBlock 1 aggr This is the text of the annotation.
Tags: xml.sequenceOffset=40
label MultilanguagelLong 0..1 aggr This is the headline for the annotation.
Name Tags: xml.sequenceOffset=20

Table 4.57: GeneralAnnotation

4.5 Communication Specification

[TPS_SWCT_01218] Big picture of comSpec | The highest level of description of
information exchanged between components in an AUTOSAR system is the Port—
Interfaces, as shown in earlier sections. Such PortInterface however, only
describes structure and does not include information about whether communication
needs to be done reliably, or whether an initial value exists in case the real data is not
yet available.

AUTOSAR

This information is role-specific, i.e. it shall be applied on the level of PortPrototypes
rather than Port Interfaces. Therefore, most communication-relevant atiributes are

related to the PortPrototypes of an SwComponent Type.

The communication attributes are organized in a so-called communication specifica-

tion (in terms of the meta-model: ComSpec) classes. |()

Note that the communication specification is optional, i.e. its existence is not required in
any case. Figures 4.30 and 4.31 provide an overview of communication specifications.

The derived meta-classes are explained in the following sub-chapters.

PortPrototype
AbstractRequiredPortPrototype

¢

RPortPrototype

AbstractProvidedPortPrototype
PRPortPrototype

+requiredComSpec|0..*

RPortComSpec

I

ClientComSpec

ModeSwitchReceiverComSpec

NvRequireComSpec ParameterRequireComSpec

ReceiverComSpec

Figure 4.30: Overview of communication attributes of RPortPrototype

AUTOSAR

PortPrototype
AbstractProvidedPortPrototype

¢

AbstractRequiredPortPrototype

PPortPrototype
PRPortPrototype

+providedComSpec|0..*

PPortComSpec

‘F

ModeSwitchSenderComSpec ParameterProvideComSpec SenderComSpec

Figure 4.31: Overview of communication attributes of PPortPrototype

As explained before, ComSpec meta-classes which are required on the level of a
SwComponentType are attached to the PortPrototype declarations which in turn
are part of the definition of a SwComponent Type. Nevertheless, the usage of Com-
Specs is not restricted to the PortPrototypes of AtomicSwComponent Types (for
more details please refer to section 2.5).

Sections 7.5.1 and 7.5.2 then explain the sender-receiver and client-server communi-
cation patterns with respect to the RTE, the RTE events and the corresponding com-
munication attributes.

Several cComSpecs allow to define initvalues in relation to the associated Dat -
aPrototype. Forfurther details about the representation of initvalues please refer
to section 5.7.2.

Furthermore, semantic constraints apply such that specific subclasses of ComSpec
can only be owned by PortPrototypes typed by the corresponding kind of Port In-
terface.

[constr_1290] Limitation on the hnumber of PPortComSpecs in the context of one
PPortPrototype [Within the context of one PPortPrototype there can only be
one PPortComSpec that references a given dataElement or operation. |()

In other words, it is not allowed that two or more PPortComSpec exist in the context of
aone PpPortPrototype that refer to the same dataElement Or operation.

[constr_1291] Limitation on the number of RPortComSpecs in the context of one
PPortPrototype [Within the context of one RPortPrototype, there can only be
one RPortComSpec that references a given dataElement or operation. |()

AUTOSAR

In other words, it is not allowed that two or more RPortComSpec exist in the context of
aone RportPrototype that refer to the same dataElement Or operation.

[TPS_SWCT _01454] PRPortPrototype can own both RPortComSpecs and
PPortComSpecs [In contrast to PPortPrototype and RPortPrototype, PR-
PortPrototype can own both RPortComSpecs and PPortComSpecs at the same
time. |(RS_SWCT_03250)

Nevertheless, the following restriction applies:

[constr_1292] Limitation on the number of RPortComSpecs/PPortComSpecs in
the context of one PRPortPrototype [Within the context of one PRPortProto-
type, there can only be one RPortComSpec and one PPortComSpec that references
a given dataElement Or operation. |()

In other words, it is not allowed that two or more PPortComSpec exist in the context of
aone PRPortPrototype that refer to the same dataElement or operation. Inthe
same manner, it is not allowed that two or more RPort ComSpec exist in the context of
one PRPortPrototype that refer to the same dataElement or operation.

The rationale for the existence of [constr 1290], [constr_1291], and [constr _1292] is
that the AUTOSAR communication layer needs an unambiguous specification of the
communication behavior. The existence of redundant RPort ComSpecS/PPortCom—
Specs may easily be contradicting each other and this would inhibit the creation of a
valid configuration for the AUTOSAR Com.

Class PPortComSpec (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Note Communication attributes of a provided PortPrototype. This class will contain attributes that are valid for

all kinds of provide ports, independent of client-server or sender-receiver communication patterns.
Base ARObject

Subclasses ModeSwitchSenderComSpec, NvProvideComSpec, ParameterProvideComSpec, SenderComSpec,
ServerComSpec
Attribute Type Mul. Kind | Note

Table 4.58: PPortComSpec

Class RPortComSpec (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes of a required PortPrototype. This class will contain attributes that are valid for
all kinds of require-ports, independent of client-server or sender-receiver communication patterns.

Base ARObject

Subclasses ClientComSpec, ModeSwitchReceiverComSpec, NvRequireComSpec, ParameterRequireComSpec,
ReceiverComSpec

Attribute Type Mul. Kind | Note

Table 4.59: RPortComSpec

AUTOSAR

[constr_1043] PortInterface VS. ComSpec | The allowed combinations of a spe-
cific kind of Port Interface and a kind of ComSpec are documented in Table 4.60. |

()

PortInterface ComSpec

SenderReceiverInterface SenderComSpec, ReceiverComSpec
ClientServerInterface ClientComSpec, ServerComSpec

ModeSwitchInterface ModeSwitchSenderComSpec, ModeSwitchReceiverComSpec
ParameterInterface ParameterProvideComSpec, ParameterRequireComSpec
NvDataInterface NvRequireComSpec, NvProvideComSpec

Table 4.60: PortInterface VS. ComSpec

As explained in section 2.5, there are cases where PortPrototypes owned by a
CompositionSwComponentType could have initvalues.

Therefore, it is possible that PortPrototypes owned by CompositionSwCompo-
nentType$ can have ComSpecs. It is not required that the ComSpecs defined on the
composition level match the comSpecs defined inside the CompositionSwCompo-
nentType.

If consistency would be required this constraint might be a major obstacle for integrat-
ing existing AtomicSwComponentType$ into a CompositionSwComponentType
that has PortPrototypes with ComSpecs.

4.5.1 Communication Specification for Sender-Receiver Communication

Communication specification applies in different ways to specific kinds of communi-
cation. Figure 4.32 shows the meta-model of the communication attributes relevant
sender-receiver communication at an RPortPrototype.

[TPS_SWCT _01455] Duplicate existence of initvalue in the context of a PR-
PortPrototype | If an initValue is defined in @ NonqueuedReceiverComSpec
owned by a PRPortPrototype its value shall be ignored. |(RS_SWCT_03250)

AUTO SAR

AbstractAccessPoint
AtpStructureElement
Identifiable

VariableAccess

ApplicationConpositeElementDataPrototype

DataPrototype

+IeafEIemem/|'\ 1

1
«instanceRef»

AbstractRequiredPortPrototype

PortPrototype

CompositeNetworkRepresentation

+ scope: VariableAccessScopeEnum [0..1]

0.* +compositeNetworkRepresentation
+requiredComSpec| 0..* +networkRepresentation | 1
RPortComSpec «atpVariation» Describable
SwDataDefProps TransformationComSpecProps
+networkRepresentation 0.1 0..* |+transformationComSpecProps
ReceiverComSpec
+replaceWith
<« + handleOutOfRange: HandleOutOfRangeEnum

0.1 + handleOutOfRangeStatus: HandleOutOfRangeStatusEnum [0..1]

«atpVariation»

+ maxNoNewOrRepeatedData: Positivelnteger [0..1]
+ syncCounterlnit: Positivelnteger [0..1]

+ maxDeltaCounterInit: Positivelnteger [0..1]

none
ignore

saturate

default

invalid
externalReplacement

«enumeration»
HandleTimeoutEnum

replace
none
replaceByTimeoutSubstitutionValue

DataPrototype + usesEndToEndProtection: Boolean [0..1]
+dataElement
AutosarDataPrototype
0.1
VariableDataPrototype NonqueuedReceiverComSpec QueuedReceiverComSpec
+ aliveTimeout: TimeValue + queuelength: Postivelnteger
+ enableUpdate: Boolean
+ handleDataStatus: Boolean [0..1]
+ handleNeverReceived: Boolean
+ handleTimeoutType: HandleTimeoutEnum
«enumeration»
HandleOutOfRangeEnum
+initvalue | 0..1 +timeoutSubstitutionValue | 0..1 +filter|0..1

ValueSpecification

DataFilter

4

shortLabel: Identifier [0..1]

HandleOutOfRangeStatusEnum

«enumeration»

silent
indicate

Figure 4.32: Communication attributes of RPortPrototype with respect to sender-

receiver communication.

[TPS_SWCT_01219] comSpec for queued and non-queued sender-receiver com-
munication | Sender-receiver communication might be queued or non-queued. This

+ o+ o+ o+ o+

+

dataFilterType: DataFilterTypeEnum
mask Unlimitedinteger [0..1]

max: Unlimitedinteger [0..1]

min: Unlimitedinteger [0..1]

offset: Positivelnteger [0..1]

period: Positivelnteger [0..1]

x: Unlimitedinteger [0..1]

AUTOSAR

aspect is primarily reflected in the value of dataElement.swDataDefProps.swlim—

plPolicy.

If the value of this attribute is set to queued then QueuedSender-

ComSpec and/or QueuedReceiverComSpec shall be defined. In all other applica-
ble cases NonqueuedSenderComSpec Of NonqueuedReceiverComSpec shall be
used. Thus, the constraints [constr_1129], [constr_1130], [constr_1131], and [con-
str_1132] shall apply.

While in the case of queued communication the queueLength attribute remains the
only information item the non-queued case foresees several attributes for controlling
communication behavior. |()

Representation

Class ReceiverComSpec (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Receiver-specific communication attributes (RPortPrototype typed by SenderReceiverinterface).
Base ARObject, RPortComSpec

Subclasses NongueuedReceiverComSpec, QueuedReceiverComSpec

Attribute Type Mul. Kind | Note

composite CompositeNetwork * aggr This represents a CompositeNetworkRepresentation
Network Representation defined in the context of a ReceiverComSpec. The

purpose of this aggregation is to be able to specify the
network representation of leaf elements of Application

CompositeDataTypes.
dataElement AutosarDataPrototype 0..1 ref Data element these attributes belong to.
handleOutOf HandleOutOfRange 1 attr This attribute controls how values that are out of the
Range Enum specified range are handled according to the values of
HandleOutOfRangeEnum.
handleOutOf HandleOutOfRange 0..1 attr Control the way how return values are created in case of
RangeStatus StatusEnum an out-of-range situation.
maxDelta Positivelnteger 0..1 attr Initial maximum allowed gap between two counter values
Counterlnit of two consecutively received valid Data, i.e. how many
subsequent lost data is accepted. For example, if the
receiver gets Data with counter 1 and MaxDeltaCounter
Initis 1, then at the next reception the receiver can accept
Counters with values 2 and 3, but not 4.
Note that if the receiver does not receive new Data at a
consecutive read, then the receiver increments the
tolerance by 1.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
maxNoNewOr Positivelnteger 0..1 attr The maximum amount of missing or repeated Data which
RepeatedData the receiver does not expect to exceed under normal
communication conditions.
network SwDataDefProps 0..1 agar A networkRepresentation is used to define how the data
Representation Element is mapped to a communication bus.
replaceWith VariableAccess 0..1 aggr This aggregation is used to identify the AutosarData

Prototype to be taken for sourcing an external
replacement in the out-of-range handling.

syncCounterlnit

Positivelnteger 0..1 attr Number of Data required for validating the consistency of
the counter that shall be received with a valid counter (i.e.
counter within the allowed lock-in range) after the
detection of an unexpected behavior of a received
counter.

AUT o

©SAR

A

Class ReceiverComSpec (abstract)

transformation TransformationCom * aggr This references the TransformationComSpecProps which

ComSpecProps SpecProps define port-specific configuration for data transformation.

usesEndToEnd Boolean 0..1 attr This indicates whether the corresponding dataElement

Protection shall be transmitted using end-to-end protection.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompile Time

Table 4.61: ReceiverComSpec

Class NonqueuedReceiverComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes specific to non-queued receiving.

Base ARObject, RPortComSpec, ReceiverComSpec

Attribute Type Mul. Kind | Note

aliveTimeout TimeValue 1 attr Specify the amount of time (in seconds) after which the
software component (via the RTE) needs to be notified if
the corresponding data item have not been received
according to the specified timing description.
If the aliveTimeout attribute is 0 no timeout monitoring
shall be performed.

enableUpdate Boolean 1 attr This attribute controls whether application code is entitled
to check whether the value of the corresponding Variable
DataPrototype has been updated.

filter DataFilter 0..1 agor The applicable filter algorithm for filtering the value of the
corresponding dataElement.

handleData Boolean 0..1 attr If this attribute is set to true than the Rte_|Status API shall

Status exist. If the attribute does not exist or is set to false then

the Rte_IStatus APl may still exist in response to the
existence of further conditions.

handleNever
Received

Boolean 1 attr This attribute specifies whether for the corresponding
VariableDataPrototype the "never received" flag is
available. If yes, the RTE is supposed to assume that
initially the VariableDataPrototype has not been received
before.

After the first reception of the corresponding VariableData
Prototype the flag is cleared.

e If the value of this attribute is set to "true" the flag
is required.

e If setto "false", the RTE shall not support the
"never received" functionality for the
corresponding VariableDataPrototype.

handleTimeout
Type

HandleTimeoutEnum 1 attr This attribute controls the behavior with respect to the
handling of timeouts.

initValue ValueSpecification 0..1 aggr Initial value to be used in case the sending component is
not yet initialized. If the sender also specifies an initial
value the receiver’s value will be used.

timeout ValueSpecification 0..1 aggr This attribute represents the substitution value applicable

Substitution in the case of a timeout.

Value

Table 4.62: NonqueuedReceiverComSpec

AUTO SAR

Class QueuedReceiverComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes specific to queued receiving.

Base ARObject, RPortComSpec, ReceiverComSpec

Attribute Type Mul. Kind | Note

queuelength Positivelnteger 1 attr Length of queue for received events.

Table 4.63: QueuedReceiverComSpec

Enumeration HandleTimeoutEnum

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Note Strategies of handling a reception timeout violation.

Literal Description

none If set to none no replacement shall take place.

Tags: atp.EnumerationValue=0

replace If set to replace, the replacement value shall be the CominitValue.
Tags: atp.EnumerationValue=1

replaceByTimeout If set to replace, the replacement value shall be the timeout substitution value.
SubstitutionValue

Tags: atp.EnumerationValue=2

Table 4.64: HandleTimeoutEnum

Primitive TimeValue
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Primitive Types
Note This primitive type is taken for expressing time values. The numerical value is supposed to be interpreted

in the physical unit second.

Tags: xml.xsd.customType=TIME-VALUE
xml.xsd.type=double

Table 4.65: TimeValue

[constr_1538] Restriction for ReceiverComSpec.dataElement | The reference
ReceiverComSpec.dataElement shall not refer to an ArgumentDataPrototype
or ParameterDataPrototype. |()

[constr_1103] NonqueuedReceiverComSpec and enableUpdate | A Nonqueue-
dReceiverComSpec that has attribute enableUpdate set to true may not refer-
ence a dataElement that in turn is referenced by a variableAccess in the role
dataReadAccess. |()

In general, it is considered beneficial for software-components to define initvalues
for all the dataElements received by RPortPrototypes.

These initVvalues are required by the RTE for several functionalities, e.g.:

e Providing a default value for not yet received dataElements (see
[TPS_SWCT_01220]).

e Providing default values in case of unconnected RPortPrototypes (see [con-
str_1100]).

AUTOSAR

e Partial mapping of composite data (see [constr_1280])

Therefore, the availability of initvalue increases the flexibility of the usage of the
software-component in different scenarios.

On the other hand, there are also use cases where initvalues are not mandatory,
l.e. the DataPrototype remains intentionally uninitialized. This is expressed by ap-
plying a SwAddrMethod where the sectionInitializationPolicy is setto NO-
INIT) or when the software component is intentionally only prepared for intra partition
communication.

In response to these conflicting objectives [TPS_SWCT_01688] is written as a recom-
mendation as opposed to a binding constraint.

[TPS_SWCT_01688] initValue should exist in an RPortPrototype [The op-
tional attribute initvalue should exist if the enclosing NonqueuedReceiverCom-
Spec is owned by an RPortPrototype. |()

[constr_1129] swImplPolicy and NonqueuedReceiverComSpec | The attribute
swIimplPolicy of a dataElement referenced by a NonqueuedReceiverComSpec
shall not be set to the value queued. |()

[constr_1130] swImplPolicy and QueuedReceiverComSpec | The attribute
swImplPolicy of a dataElement referenced by a QueuedReceiverComSpec
shall be set to the value queued. |()

[constr_1188] Existence of ReceiverComSpec.replaceWith [The aggregation
of variableAccess in the role ReceiverComSpec.replaceWith shall exist if and
only if at least one of the following conditions is fulfilled:

e Attribute ReceiverComSpec.handleOutOfRange is set to the value exter-
nalReplacement.

e Attribute SenderReceiverInterface.invalidationPolicy.handleIn-
valid is setto the value externalReplacement.

10

[TPS_SWCT 01753] Application of compatibility rules for ReceiverCom-
Spec.replaceWith [Compatibility rules as formulated by [constr_1068] and [con-
str_1187] shall be applicable for the reference ReceiverComSpec.replaceWith. |

()

[constr_1131] swImplPolicy and NonqueuedSenderComSpec | The attribute
swIimplPolicy of a dataElement referenced by a NonqueuedSenderComSpec
shall not be set to the value queued. |()

[constr_1132] swImplPolicy and QueuedSenderComSpec | The attribute swIm-
plPolicy of a dataElement referenced by a QueuedSenderComSpec shall be set
to the value queued. |()

AUTOSAR

[TPS_SWCT _01220] initValue defines an initial value that shall be taken if the
corresponding dataElement has not yet been received | The aggregation of val-
ueSpecification inthe role initvalue defines an initial value that shall be taken
if the corresponding dataElement has not yet been received but the application soft-
ware is attempting to access its value.

This is the only relevant definition of an initial value for data transmission. That is, any
initVvalue defined in the context of variableDataPrototype is ignored! |()

The communication attributes on the sender side are sketched in Figure 4.34.

DataFilter «enumeration»
DataFilterTypeEnum

dataFilterType: DataFilterTypeEnum

¥
+ mask Unlimitedinteger [0..1] always

+ max: Unlimitedinteger [0..1] maskedNewEqualsX

+ min: Unlimitedinteger [0..1] maskedNewDiffersMaskedOld
+ offset: Positivelnteger [0..1] maskedNewDiffersX

+ period: Positivelnteger [0..1] never

+ x: Unlimitedinteger [0..1] newlsWithin

newlsOutside
oneEveryN

Figure 4.33: DataFilter and its communication attributes.

Figure 4.33 shows the model of the communication attributes relevant for defining data
filters.

[TPS_SWCT _01221] pDataFilter | For every RPortPrototype typed by a
SenderReceiverInterface a DataFilter can be defined given that non-queued
communication is foreseen. |()

Fifteen filter algorithms formally described by the enumeration type DataFilter-
TypeEnum in the meta-model are taken from the ISO 17356-4 specification [18] that is
referenced by the RTE specification [2].

[TPS_SWCT_01222] Applicability of DataFilter [This ISO 17356-4 specifica-
tion states that “filtering is only used for messages that can be interpreted as C lan-
guage unsigned integer types (characters, unsigned integers and enumerations).” |
(RS_SWCT _03221)

[constr_1044] Applicability of DataFilter [According to the origin of DataFil-
ter, i.e. 1ISO 17356-4 specification [18], DataFilters can only be applied to values
with an integer base type. |()

Class DataFilter

Package M2::AUTOSARTemplates::CommonStructure::Filter

Note Base class for data filters. The type of the filter is specified in attribute dataFilterType. Some of the filter
types require additional arguments which are specified as attributes of this class.

Base ARObject

Attribute Type Mul. Kind | Note

dataFilterType DataFilterTypeEnum 1 attr This attribute specifies the type of the filter.

Y

AUTO SAR

A
Class DataFilter
mask Unlimitedinteger 0..1 attr Mask for old and new value.
max Unlimitedinteger 0..1 attr Value to specify the upper boundary
min Unlimitedinteger 0..1 attr Value to specify the lower boundary
offset Positivelnteger 0..1 attr Specifies the initial number of messages to occur before
the first message is passed
period Positivelnteger 0..1 attr Specifies number of messages to occur before the
message is passed again
X Unlimitedinteger 0..1 attr Value to compare with
Table 4.66: DataFilter
Enumeration DataFilterTypeEnum
Package M2::AUTOSARTemplates::CommonStructure::Filter
Note This enum specifies the supported DataFilterTypes.
Literal Description
always No filtering is performed so that the message always passes.

Tags: atp.EnumerationValue=0

maskedNewDiffers
MaskedOld

Pass messages where the masked value has changed.

(new_value&mask) !=(old_value&mask)

new_value: current value of the message

old_value: last value of the message (initialized with the initial value of the message, updated with
new_value if the new message value is not filtered out)

Tags: atp.EnumerationValue=1

maskedNewDiffers
X

Pass messages whose masked value is not equal to a specific value x

(new_value&mask) != x
new_value: current value of the message

Tags: atp.EnumerationValue=2

maskedNewEquals Pass messages whose masked value is equal to a specific value x
X (new_value&mask) == x

new_value: current value of the message

Tags: atp.EnumerationValue=3
never The filter removes all messages.

Tags: atp.EnumerationValue=4

newlsOutside

Pass a message if its value is outside a predefined boundary.
(min > new_value) OR (new_value > max)

Tags: atp.EnumerationValue=5

newlsWithin Pass a message if its value is within a predefined boundary.
min <= new_value <= max
Tags: atp.EnumerationValue=6

oneEveryN Pass a message once every N message occurrences.

Algorithm: occurrence % period == offset

Start: occurrence = 0.

Each time the message is received or transmitted, occurrence is incremented by 1 after filtering.
Length of occurrence is 8 bit (minimum).

Tags: atp.EnumerationValue=7

Table 4.67: DataFilterTypeEnum

AUTO SAR

[TPS_SWCT_01593] Semantics of attribute ReceiverComSpec.transforma-
tionComSpecProps | The ReceiverComSpec.transformationComSpecProps
is used to configure PortPrototype-specific properties for data transformation in
case of receiving inter-ECU communication. |()

[TPS_SWCT_01682] The meaning of E2E-related attributes in a ReceiverCom-
Spec if a TransformationComSpecProps Of type EndToEndTransformation—
ComSpecProps is defined. | The attributes usesEndToEndProtection, sync-
CounterInit, maxDeltaCounterInit, and maxNoNewOrRepeatedData in Re—
ceiverComSpec have no meaning if a TransformationComSpecProps of type
EndToEndTransformationComSpecProps is defined in the same ReceiverCom-

spec. |()

DataPrototype
ApplicationConpositeElementDataPrototype

+|eafE|ementA 1

«instanceRef»
1

PortPrototype
AbstractProvidedPortPrototype

CompositeNetworkRepresentation

0..* | tcompositeNetworkRepresentation
+providedComSpec|0..* +networkRepresentation | 1
PPortComSpec «atpVariation»
SwbDataDefProps
Zr 0..1i+networl<Representation
«enumeration» SenderComSpec DataPrototype

HandleOutOfRangeEnum

+dataElement AutosarDataPrototype

+ handleOutOfRange: HandleOutOfRangeEnum

none

ignore «atpVariation» o
+ usesEndToEndProtection: Boolean [0..1]

saturate

default

invalid

externalReplacement ’ Zr

QueuedSenderComSpec NonqueuedSenderComSpec VariableDataPrototype
+transmissionAcknowledge |0..1 +initVaIue$l
TransmissionAcknowledgementRequest ValueSpecification
+ timeout: TimeValue + shortLabel: Identifier [0..1]

Figure 4.34: Communication attributes of PPortPrototype with respect to sender-
receiver communication.

AUTOSAR

[TPS_SWCT _01751] The meaning of E2E-related attributes in a SenderComSpec
if a TransformationComSpecProps Of type EndToEndTransformationCom-
SpecProps is defined | The attribute usesEndToEndProtection has no mean-
ing ifa TransformationComSpecProps Of type EndToEndTransformationCom—
SpecProps is defined in the same senderComSpec. |()

Please note:

e SenderComSpec.usesEndToEndProtection does not have any influence on
code generation.

It could be used, for example, by a validation framework to make sure that, if set
to True the dataElement meets a transformer configuration for all respective
SwConnectors connecting to the PortPrototype that owns the senderCom-
Spec.

e SenderComSpec.usesEndToEndProtection could be used as a statement
from the application developer that the given dataElement shall be end-to-end
protected.

However, it seems far-fetched for an application developer to expressly state that
a dataElement shall not be end-to-end protected. This goes beyond the re-
sponsibility of an application developer.

Therefore, two relevant states for SenderComSpec.usesEndToEndProtec—
tion can be expected:

— attribute exists and is set to True (application developer asserts the neces-
sity to end-to-end protect the dataElement)

— attribute does not exist (application developer doesn’t care)

e The application developer may not have enough oversight to envision how the
dataElement is communicated, i.e. local vs. network communication. Setting
usesEndToEndProtection to True and then deploy the enclosing software-
component such that it communicates only locally on the respective PortProto-
type also seems unusual for the current situation regarding transformer-based
communication.

[constr_1539] Restriction for SenderComSpec.dataElement | The reference
SenderComSpec.dataElement shall not refer to an ArgumentDataPrototype or
ParameterDataPrototype. |()

AUTO SAR

Class SenderComSpec (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Note Communication attributes for a sender port (PPortPrototype typed by SenderReceiverinterface).
Base ARObject, PPortComSpec
Subclasses NonqueuedSenderComSpec, QueuedSenderComSpec
Attribute Type Mul. Kind | Note
composite CompositeNetwork * aggr This represents a CompositeNetworkRepresentation
Network Representation defined in the context of a SenderComSpec.
Representation
dataElement AutosarDataPrototype 0..1 ref Data element these quality of service attributes apply to.
handleOutOf HandleOutOfRange 1 attr This attribute controls how out-of-range values shall be
Range Enum dealt with.
network SwDataDefProps 0..1 aggr A networkRepresentation is used to define how the data
Representation Element is mapped to a communication bus.
transmission Transmission 0..1 aggr Requested transmission acknowledgement for data
Acknowledge Acknowledgement element.
Request
usesEndToEnd Boolean 0..1 attr This indicates whether the corresponding dataElement
Protection shall be transmitted using end-to-end protection.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
Table 4.68: SenderComSpec
Class QueuedSenderComSpec
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Note Communication attributes specific to distribution of events (PPortPrototype, SenderReceiverinterface and
dataElement carries an "event").
Base ARObject, PPortComSpec, SenderComSpec
Attribute Type Mul. Kind | Note
Table 4.69: QueuedSenderComSpec
Class NonqueuedSenderComSpec
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Note Communication attributes for non-queued sender/receiver communication (sender side)
Base ARObject, PPortComSpec, SenderComSpec
Attribute Type Mul. Kind | Note
initValue ValueSpecification 1 aggr Initial value to be sent if sender component is not yet fully
initialized, but receiver needs data already.

Table 4.70: NonqueuedSenderComSpec

AUTOSAR

Class TransmissionAcknowledgementRequest

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Requests transmission acknowledgement that data has been sent successfully. Success/failure is
reported via a SendPoint of a RunnableEntity.

Base ARObject

Attribute Type Mul. Kind | Note

timeout TimeValue 1 attr Number of seconds before an error is reported or in case

of allowed redundancy, the value is sent again.

Table 4.71: TransmissionAcknowledgementRequest

Enumeration HandleOutOfRangeEnum
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Note A value of this type is taken for controlling the range checking behavior of the AUTOSAR RTE.
Literal Description
default The RTE will use the initValue if the actual value is out of the specified bounds.
Tags: atp.EnumerationValue=0
external This indicates that the value replacement is sourced from the attribute replaceWith.

Replacement Tags: atp.EnumerationValue=1

ignore The RTE will ignore any attempt to send or receive the corresponding dataElement if the value is out
of the specified range.

Tags: atp.EnumerationValue=2

invalid The RTE will use the invalidValue if the value is out of the specified bounds.

Tags: atp.EnumerationValue=3

none A range check is not required.

Tags: atp.EnumerationValue=4

saturate The RTE will saturate the value of the dataElement such that it is limited to the applicable upper
bound if it is greater than the upper bound. Consequently, it is limited to the applicable lower bound if
the value is less than the lower bound.

Tags: atp.EnumerationValue=5

Table 4.72: HandleOutOfRangeEnum

[TPS_SWCT _01223] networkRepresentation defines how a specific dataEle-
ment is represented on a communication bus | For sender-receiver communication,
it is possible to specify how dataElements are represented given that the communi-
cation requires the usage of a dedicated communication bus.

That is, by means of the networkRepresentation it is possible to define how a
specific dataElement is represented on a communication bus. For this purpose the
networkRepresentation is implemented as an aggregation of SwbataDefProps.

10

[TPS_SWCT _01224] CompuMethods of dataElement and the networkRepre-
sentation are used for conversion purposes | The attached CompuMethods of
both the dataElement and the networkRepresentation can be used to identify
the conversion between the two. The advantage of this approach is that this can also be
used without any modifications in combination with a general remapping and rescaling
of dataElements between different swComponentTypes, regardless whether they
are located on the same or on different ECUs. |()

AUTOSAR

Please note that the decision whether or not to take the networkRepresentation
for data mapping is done in the context of the AUTOSAR System Template [10]. Please
find more detailed information about this aspect in the applicable specification.

[TPS_SWCT_01452] Applicability of networkRepresentation for Applica-
tionCompositeDataType | The aggregation of networkRepresentation at the
ReceiverComSpec Or SenderComSpec only applies for dataElements typed by
ApplicationPrimitiveDataTypes. For the case of using an ApplicationCom-
positeDataType an additional mechanism shall be used.

In particular, compositeNetworkRepresentation shall be used to define the net -
workRepresentation of leaf elements of ApplicationCompositeDataTypes. |

()

[constr_1196] Existence of networkRepresentation VS. compositeNet-
workRepresentation | If a ReceiverComSpec or SenderComSpec aggregates
networkRepresentation it shall not aggregate compositeNetworkRepresen-—
tation at the same time (and vice versa). |()

[constr_1197] Existence of compositeNetworkRepresentation shall be com-
prehensive | If at least one compositeNetworkRepresentation exists then for
each leaf ApplicationCompositeElementDataPrototype of the affected Ap-

plicationCompositeDataType exactly one compositeNetworkRepresenta—
tion shall be defined. |()

Granted, the definition of [constr_1197] to some extent has a recursive character. The
meaning is that if it is actually intended to define a compositeNetworkRepresen—
tation then the definition shall be completely covering the entire set of leaf elements
of the corresponding ApplicationCompositeDataType. In other words, it’s all or
nothing.

Class CompositeNetworkRepresentation
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Note This meta-class is used to define the network representation of leaf elements of composite application
data types.
Base ARObject
Attribute Type Mul. Kind | Note
leafElement ApplicationComposite 1 iref This represents that leaf element of an application
ElementDataPrototype composite data type.
network SwDataDefProps 1 aggr The SwDataDefProps owned by the CompositeNetwork
Representation Representation are used to define the network
representation of the leaf element of an Application
CompositeDataType.

Table 4.73: CompositeNetworkRepresentation

AUTOSAR

4.5.2 Communication Specification for Client-Server Communication

The communication aspects relevant for client communication are sketched in Fig-
ure 4.35.

PortPrototype
AbstractRequiredPortPrototype

+requiredComSpec| 0..*

RPortComSpec

i

ClientComSpec

+operation\(/0..1 +transformationComSpecPropsT 0.*
AtpStructureElement Describable
Identifiable

. R TransformationComSpecProps
ClientServerOperation

Figure 4.35: Communication attributes of RPortPrototype with respect to client-server
communication.

Class ClientComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Client-specific communication attributes (RPortPrototype typed by ClientServerInterface).

Base ARObject, RPortComSpec

Attribute Type Mul. Kind | Note

operation ClientServerOperation 0..1 ref This represents the corresponding ClientServerOperation.
transformation TransformationCom * aggr | This references the TransformationComSpecProps which
ComSpecProps | SpecProps define port-specific configuration for data transformation.

Table 4.74: ClientComSpec

[constr_1540] Existence of ClientComSpec.operation [The reference Client-
ComSpec.operation shall exist if the AbstractRequiredPortPrototype that
owns the ClientComSpec istyped by a ClientServerInterface. [()

Note: on the AUTOSAR adaptive platform the ClientComSpec can also be used in
the context of RPortPrototypes typed by PortInterfaces that are not available
on the AUTOSAR classic platform. This is the motivation for the existence of [con-
str_1540].

AUTOSAR

The server side looks very similar but provides an attribute for specifying the queue
length.

PortPrototype
AbstractProvidedPortPrototype

+providedComSpec|0..*

PPortComSpec

ServerComSpec

+ queuelLength: Positivelnteger

+operation\|/0..1 +transformationComSpecProps | 0..*
AtpStructureElement Describable
ldentifiable TransformationComSpecProps

ClientServerOperation

Figure 4.36: Communication attributes of PPortPrototype with respect to client-server
communication.

Class ServerComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes for a server port (PPortPrototype and ClientServerinterface).

Base ARObject, PPortComSpec

Attribute Type Mul. Kind | Note

operation ClientServerOperation 0..1 ref Operation these communication attributes apply to.

queuelength Positivelnteger 1 attr Length of call queue on the server side. The queue is
implemented by the RTE. The value shall be greater or
equal to 1. Setting the value of queueLength to 1 implies
that incoming requests are rejected while another request
that arrived earlier is being processed.

transformation TransformationCom * aggr This references the TransformationComSpecProps which

ComSpecProps | SpecProps define port-specific configuration for data transformation.

Table 4.75: ServerComSpec

[constr_1541] Existence of ServerComSpec.operation [The reference Server-
ComSpec.operation shall exist if the AbstractProvidedPortPrototype that
owns the serverComSpec istyped by a ClientServerInterface. [()

Note: on the AUTOSAR adaptive platform the serverComSpec can also be used in
the context of RPortPrototypes typed by PortInterfaces that are not available
on the AUTOSAR classic platform. This is the motivation for the existence of [con-
str_1541].

AUTOSAR

[TPS_SWCT_01225] RunnableEnt ity implements the functionality of more than
one ClientServerOperations | A single RunnableEntity can implement the
functionality of more than one ClientServerOperations.

For this purpose, one OperationInvokedEvent for each affected ClientServer-
Operation shall reference the respective RunnableEntity.

The attribute serverComSpec.queueLength shall be taken for the determination of
the resulting queue length, [constr_1128] applies. |()

[constr_1128] Queue length of ClientServerOperations associated with the
same RunnableEntity [If two or more OperationInvokedEvents reference a
single RunnableEntity the value of the ServerComsSpec attribute queuelLength
shall be identical for all serverComSpecs owned by PPortPrototypes of the en-
closing swComponentType that reference one of the ClientServerOperations
that are also referenced by the OperationInvokedEvents. |()

[TPS_SWCT 01595] Semantics of attribute ClientComSpec.transformation-
ComSpecProps | The attribute ClientComSpec.transformationComSpecProps
shall be used to configure PortPrototype-specific properties for data transforma-
tion in case of Client/Server inter-ECU communication for the reception of the server’s
response. |(RS_SWCT _03221)

[TPS_SWCT _01596] Semantics of attribute ServerComSpec.transformation-
ComSpecProps | The attribute ServerComSpec.transformationComSpecProps
shall be used to configure PortPrototype-specific properties for data transforma-
tion in case of Client/Server inter-ECU communication for the reception of the client’s
request. |(RS_SWCT_03221)

See chapter 4.5.6 for details.

4.5.3 Communication Specification for Mode Switch Communication

In analogy to the previous section, Figure 4.37 shows the meta-model elements rel-
evant for a mode switch communication. On the sender side it is possible to specify
that an acknowledgement is supposed to be returned that indicates the successful
processing of the mode switch request.

AUTO SAR

PortPrototype
AbstractProvidedPortPrototype

+providedComSpec|0..*

PPortComSpec

?

ModeSwitchSenderComSpec

AtpPrototype
+modeGroup ModeDeclarationGroupPrototype
+ enhancedModeApi: Boolean [0..1]
+ queuelength: Positivelnteger 1|+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]
+modeSwitchedAclI0..1
ModeSwitchedAckRequest

+ timeout: TimeValue

Figure 4.37: Communication attributes of PPortPrototype with respect to mode switch
communication.

PortPrototype
AbstractRequiredPortPrototype

+requiredComSpecT0..*

RPortComSpec

i

ModeSwitchReceiverComSpec

AtpPrototype
+modeGroup ModeDeclarationGroupPrototype
+ enhancedModeApi: Boolean [0..1] "

v 01 I) I
+ supportsAsynchronousModeSwitch: Boolean | + swCalibrationAccess: SwCalibrationAccessEnum [0..1]

Association Tags:
atp Status =
shallBecomeMandatory

Figure 4.38: Communication attributes of PPortPrototype with respect to mode switch
communication.

[TPS_SWCT_01514] Duplicate existence of enhancedModeApi in the context
of a PRPortPrototype | If the attribute enhancedModerpi is defined in a Mod-

eSwitchReceiverComSpec owned by a PRPortPrototype its value shall be ig-
nored. |(RS_SWCT _03250)

AUT o

©SAR

Class ModeSwitchSenderComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes of PPortPrototypes with respect to mode communication

Base ARObject, PPortComSpec

Attribute Type Mul. Kind | Note

enhancedMode Boolean 0..1 attr This controls the creation of the enhanced mode API that

Api returns information about the previous mode and the next
mode. If set to "true" the enhanced mode API is
supposed to be generated. For more details please refer
to the SWS_RTE.

modeGroup ModeDeclarationGroup 1 ref ModeDeclarationGroupPrototype (of the same Port

Prototype Interface) to which these communication attributes apply.

modeSwitched ModeSwitchedAck 0..1 aggr If this aggregation exists an acknowledgement for the

Ack Request successful processing of the mode switch request is
required.

queuelLength Positivelnteger 1 attr Length of call queue on the mode user side. The queue is
implemented by the RTE. The value shall be greater or
equal to 1. Setting the value of queueLength to 1 implies
that incoming requests are rejected while another request
that arrived earlier is being processed.

Table 4.76: ModeSwitchSenderComSpec

Class ModeSwitchedAckRequest

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Requests acknowledgements that a mode switch has been proceeded successfully

Base ARObject

Attribute Type Mul. Kind | Note

timeout TimeValue 1 attr Number of seconds before an error is reported or in case
of allowed redundancy, the value is sent again.

Table 4.77: ModeSwitchedAckRequest

Class ModeSwitchReceiverComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes of RPortPrototypes with respect to mode communication

Base ARObject, RPortComSpec

Attribute Type Mul. Kind | Note

enhancedMode Boolean 0..1 attr This controls the creation of the enhanced mode API that

Api returns information about the previous mode and the next
mode. If set to "true" the enhanced mode APl is
supposed to be generated. For more details please refer
to the SWS_RTE.

modeGroup ModeDeclarationGroup 0..1 ref ModeDeclarationGroupPrototype (of the same Port

Prototype Interface) to which these communication attributes apply.

Tags: atp.Status=shallBecomeMandatory

AUTOSAR

A
Class ModeSwitchReceiverComSpec
supports Boolean 1 attr This attribute controls the behavior of the corresponding
Asynchronous RPortPrototype with respect to the question whether it
ModeSwitch can deal with asynchronous mode switch requests, i.e. if
set to true, the RPortPrototype is able to deal with an
asynchronous mode switch request.

Table 4.78: ModeSwitchReceiverComSpec

4.5.4 Communication Specification for Parameters

Granted, the definition of a ComSpec for ParameterDataPrototypes looks strange
on first sight. AParameterDataPrototype owned by a PPortPrototype typed by
aParameterInterface is not actually transmitted over any communication medium.
Therefore, the term communication should in this case be taken with a grain of salt.

However, it is generally necessary to be able to define role-specific initial values for pa—
rameterDataPrototypes aggregated in a ParameterInterface. In other words,
the actual problem closely resembles the definition of initial values in the case of
sender-receiver communication.

[TPS_SWCT 01226] initValue on the level of a ComSpec is relevant for connec-
tions to the corresponding PortPrototype | Please note that (along the example
of sender-receiver communication) only the initvalue defined in the context of a
ParameterProvideComSpec Of ParameterRequireComSpec is relevant for con-
nections to the corresponding PortPrototype. An initValue defined in the scope
of a ParameterDataPrototype isignored. |()

Therefore, it is only reasonable to apply the existing and well-known pattern to the
definition of initial values for ParameterDataPrototypes aggregated in a Parame—
terInterface. The actual modeling is sketched in Figure 4.39 for provided Parame—
terDataPrototypes and in Figure 4.40 for required ParameterDataPrototypes.

AUTO SAR

PortPrototype
AbstractProvidedPortPrototype

+providedComSpec|0..*

PPortComSpec

AutosarDataPrototype
ParameterDataPrototype

ParameterProvideComSpec
+parameter

1

+initvalue | 0.1

ValueSpecification

+ shortLabel: Identifier [0..1]

Figure 4.39: Communication attributes of ParameterDataPrototypes with respect to
PPortPrototype

Class ParameterProvideComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note "Communication" specification that applies to parameters on the provided side of a connection.

Base ARObject, PPortComSpec

Attribute Type Mul. Kind | Note

initValue ValueSpecification 0..1 aggr | The initial value applicable for the corresponding

ParameterDataPrototype.

parameter ParameterData 1 ref The ParameterDataPrototype to which the Parameter

Prototype ComSpec applies.

Table 4.79: ParameterProvideComSpec

AUTO SAR

PortPrototype
AbstractRequiredPortPrototype

+requiredComSpec|0..*

RPortComSpec

|

ParameterRequireComSpec

+ini1VaIueT0..l

ValueSpecification

AutosarDataPrototype
+parameter| ParameterDataPrototype

1

+ shortLabel: Identifier [0..1]

Figure 4.40: Communication attributes of ParameterDataPrototypes with respect to
RPortPrototype

Class ParameterRequireComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note "Communication" specification that applies to parameters on the required side of a connection.

Base ARObject, RPortComSpec

Attribute Type Mul. Kind | Note

initValue ValueSpecification 0..1 aggr The initial value applicable for the corresponding

ParameterDataPrototype.

parameter ParameterData 1 ref The ParameterDataPrototype to which the Parameter

Prototype RequireComSpec applies.

Table 4.80: ParameterRequireComSpec

4.5.5 Communication Specification for NV Data

[TPS_SWCT_01141] AtomicSwComponentType may have AbstractRequired-
PortPrototypes typed by an NvDataInterface [An AtomicSwComponent-
Type may have AbstractRequiredPortPrototypestyped by an NvDataInter—
face. If such an AbstractRequiredPortPrototype remains unconnected the
nvData still need to have reasonable value’. | (RS_SWCT_03225)

"Note that it is assumed that only a subset of meta-classes that inherit from At omicSwComponent —
Type Will actually apply for the definition of initial values for nvData. Most likely the Application-—
SwComponentType and the SensorActuatorSwComponentType Will be candidates for using this
feature but it will obviously not be reasonable for e.g. NvBlockSwComponent Type.

AUTOSAR

[TPS_SWCT _01227] Unconnected AbstractRequiredPortPrototype typed by
NvDataInterface [For this purpose it is possible to let the AbstractRequired-
PortPrototype OWn an NvRequireComSpec that in turn owns a valueSpecifi-
cationintherole of initvalue.

It is therefore possible to provide an nvData with a reasonable value even if
the corresponding AbstractRequiredPortPrototype remains unconnected. |
(RS_SWCT_03225)

PortPrototype
AbstractRequiredPortPrototype

¢

+requiredComSpec| 0..*

RPortComSpec

T

NvRequireComSpec

+initVaIueT0..1

ValueSpecification

AutosarDataPrototype
+variable VariableDataPrototype

1

+ shortLabel: Identifier [0..1]

Figure 4.41: Communication attributes of a required variableDataPrototypes used in
the context of an NvDataInterface

[TPS_SWCT_01754] initValue defined in the context of a ComSpec | Unless
[TPS_SWCT_01755] applies, only the initvalue defined in the context of a NvRe-
quireComSpec is relevant for connections to the corresponding PortPrototype.

An initvalue defined in the scope of a variableDataPrototype shall be ignored
anyway. | (RS_SWCT_03225)

[TPS_SWCT _01755] Duplicate existence of initvalue in the context of a PR-
PortPrototype typed by an NvDataInterface [If an initValue is defined in
a NvRequireComSpec owned by a PRPortPrototype its value shall be ignored.
Instead, the initvalue shall be taken from the NvProvideComSpec.ramBlock-
Initvalue. |(RS_SWCT _03225)

AUTOSAR

Class NvRequireComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes of RPortPrototypes with respect to Nv data communication on the required
side.

Base ARObject, RPortComSpec

Attribute Type Mul. Kind | Note

initValue ValueSpecification 0..1 agor The initial value owned by the NvComSpec

variable VariableDataPrototype 1 ref The VariableDataPrototype the ComSpec applies for.

Table 4.81: NvRequireComSpec

[TPS_SWCT_01228] NvProvideComSpec | As communication with an NvBlock-
SwComponent Type is in most cases bi-directional it is also necessary to consider role-
specific communication attributes for AbstractProvidedPortPrototypes typed
by an NvDataInterface. For this purpose the NvProvideComSpec is defined.

The main purpose of this kind of ComSpec is the definition of initial values for the RaM
Block and the ROM Block that corresponds to an nvData defined in the context
of the NvDataInterface used to type the given AbstractProvidedPortProto-
type. |(RS_SWCT_03225)

More information about NvProvideComSpec please refer to Figure 4.42.

Note that these initial values can be taken as an input for designing an NvBlock-
SwComponent Type, in particular the ramBlocks and romBlocks of NvBlockDe-
scriptors owned by the NvBlockSwComponent Type. Further details are explained
in Figure 11.9.

Further note that the romBlockInitvalue provided in the NvProvideComSpec
does not necessarily have to be identical to the respective section within romBlock
in the NvBlockDescriptor.

This could happen if an NvBlockSwComponent Type is already existing and an Ap-
plicationSwComponentType is connected to it. Finally, the romBlock inside the
NvBlockDescriptor is the only relevant information for the RTE generation.

AUTO SAR

PortPrototype
AbstractProvidedPortPrototype

+providedComSpec|0..*

PPortComSpec

AutosarDataPrototype

NvProvideComSpec .
+variable VariableDataPrototype

1

+romBlockinitvalue | 0..1 +ramBlockinitvalue | 0..1

ValueSpecification

+ shortLabel: Identifier [0..1]

Figure 4.42: Communication attributes of a provided VvariableDataPrototypes used
in the context of an NvDataInterface

In other words, by means of the NvProvideComSpec the author of an Applica-
tionSwComponentType can express detailed requirements on the later design of a
corresponding NvBlockSwComponentType.

Class NvProvideComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes of PPortPrototypes with respect to Nv data communication on the provided
side.

Base ARObject, PPortComSpec

Attribute Type Mul. Kind | Note

ramBlocklInit ValueSpecification 0..1 aggr This represents the initial value of the RAM Block that

Value corresponds to the referenced variable.

romBlocklInit ValueSpecification 0..1 aggr | This represents the initial value of the ROM block that

Value corresponds to the referenced variable.

variable VariableDataPrototype 1 ref This represents the variable for which the ComSpec is

specified.

Table 4.82: NvProvideComSpec

4.5.6 Configuration of Data Transformation

Using the TransformationComSpecProps it is possible to define configuration op-
tions for specific transformers of inter-ecu communication which is subject to data
transformation.

AUTOSAR

[TPS_SWCT_01594] Semantics of TransformationComSpecProps | The defini-
tion of a TransformationComSpecProps can always be provided in the SWC de-
scription but the configuration shall only have an effect if

1. the actual communication involves at least two EcuInstances

2. the respective data transformer (given by the used TransformationCom-
SpecProps) is used during data transformation (see DataTransformation)

|(RS_SWCT 03221)

For clarification, the configuration given in TransformationComSpecProps will sim-
ply be ignored if the conditions defined by [TPS_SWCT_01594] do not apply.

[TPS_SWCT_01597] portPrototype-specific data transformation configuration
[Meta-class TransformationComSpecProps shall be used for the specification of
PortPrototype-specific configuration options for data transformation of inter-ECU
communication. |(RS_SWCT_03221)

Please note that only some transformers offer PortPrototype-specific configuration
(e.g. SOME/IP transformer doesn’t have TransformationComSpecProps).

RPortComSpec PPortComSpec RPortComSpec
ReceiverComSpec ServerComSpec ClientComSpec
+transformationComSpecProps | 0..* +transformationComSpecProps | 0..* +transformationComSpecProps | 0..*

Describable
TransformationComSpecProps

UserDefinedTransformationComSpecProps EndToEndTransformationComSpecProps

disableEndToEndCheck Boolean
maxDeltaCounter: Positivelnteger [0..1]
maxErrorStatelnit: Positivelnteger [0..1]
maxErrorStatelnvalid: Positivelnteger [0..1]
maxErrorStateValid: Positivelnteger [0..1]
maxNoNewOrRepeatedData: Positivelnteger [0..1]
minOkStatelnit: Positivelnteger [0..1]
minOkStatelnvalid: Positivelnteger [0..1]
minOkStateValid: Positivelnteger [0..1]
syncCounterlnit: Positivelnteger [0..1]
windowSize: Positivelnteger [0..1]

+ 4+ + o+ o+ o+

Figure 4.43: Specification of data transformation properties within ReceiverComSpec,
ServerComSpec, and ClientComSpec

AUTOSAR

Class TransformationComSpecProps (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note TransformationComSpecProps holds all the attributes for transformers that are port specific.
Base ARObject, Describable

Subclasses EndToEndTransformationComSpecProps, UserDefinedTransformationComSpecProps
Attribute Type Mul. Kind | Note

Table 4.83: TransformationComSpecProps

It can be determined by the specific TransformationComSpecProps to which trans-
former this configuration is applicable:

e The configuration in EndToEndTransformationComSpecProps is applicable
to E2E transformer (protocol of TransformationTechnology is setto End-
ToEnd).

e The configuration in UserDefinedTransformationComSpecProps is appli-
cable to a user-defined transformer.

[TPS_SWCT 01598] More than one user-defined transformer is used within
one transformer chain | If more than one user-defined transformer is used
within one transformer chain (defined by meta-class TransformationTechnol-
ogy), the UserDefinedTransformationComSpecProps shall be assigned to
the correct user-defined custom transformer in TransformationTechnology. |
(RS_SWCT_03221)

AUTO SAR

DataTransformationSet

ARElement

DataPrototypeMapping

«atpVariation,atpSplitable»

«atpVariation,atpSplitable»
V
.

'
0..* | +dataTransformation *+secondToFirstDataTransformation\|/0..1

+firstToSecondDataTransformation

0.1

DataTransformation

Identifiable

. +

’ +

dataTransformationKind: DataTransformationKindEnum [0..1]
executeDespiteDataUnavailability: Boolean

«atpVariation» Tags:
vh.latestBindingTime =
codeGenerationTime

. «enumeration»
DataTransformationKindEnum

symmetric
asymmetricFromByteArray
asymmetricT oByteArray

1%
+transformationTechnology {ordered}

0.1

+dataTransformation

«atpVariation,atpSplitable»

«atpVariation» Tags:
71 vh.latestBindingTime =
codeGenerationTime

I1Signal

«atpVariation,atpSplitable»

+comBasedSignalGroupTransformation 0.1

FibexElement
+iSignal

+ dataTypePolicy: DataTypePolicyEnum
+ iSignalType: ISignalTypeEnum [0..1]
+ length: Integer

0..*

FibexElement
I1SignalGroup

+transformationlSignalProps| 0..*

+transformationlSignalProps

0.*

«atpVariation»
TransformationISignalProps

Describable

+ csErrorReaction: CSTransformerErrorReactionEnum [0..1]

+transformerChain

+transformer
1

TransformationTechnology

Identifiable

+ o+ o+ o+ o+

hasinternalState: Boolean [0..1]
needsOriginalData: Boolean [0..1]
protocol: String

transformerClass: TransformerClassEnum

version: String

«atpVariation»- - - - - -

+transformationDescription o 1

«atpVariation» Tags:
vh latestBindingTime =
postBuild

Describable
TransformationDescription

«enumeration»
TransformerClassEnum

serializer
safety
security
custom

+bufferProperties|1

BufferProperties

+ headerLength: Integer
+ inPlace: Boolean

+bufferComputation|0..1

CompuScale

+ mask Positivelnteger [0..1]

+ shortLabel: Identifier [0..1]

+ symbol: Cldentifier [0..1]
«atpVariation»

+ lowerLimit: Limit [0..1]

+ upperLimit: Limit [0..1]

Figure 4.44: Big picture of data transformation in the AUTOSAR meta-model

AUTO SAR

[constr_1400] Reference to a specific DataTransformation | A specific Data-
Transformation shall only be referenced by either

e 2 DataPrototypeMapping in the role firstToSecondDataTransforma-
tion (and potentially secondToFirstDataTransformation) OF

an Isignal inthe role dataTransformation or

an ISignalGroup in the role comBasedSignalGroupTransformation Or

e 2 ClientServerOperationMapping in the role firstToSecondData-
Transformation

10

[constr_1401] Restrictions on the relation between DataPrototypeMapping and
DataTransformation | A VariableDataPrototype in the context of a Port-
Prototype shall not be referenced by a DataPrototypeMapping that references a
DataTransformation while a DataMapping exists that points to this variable-
DataPrototype (viathe SystemSignal) that also refers to an 1signal thatin turn
references a DataTransformation. |()

In other words: a variableDataPrototype can either become a part of a Dat-
aPrototypeMapping-based data transformation or of an 1signal-based data trans-
formation.

Please note that in a composite software structure the variableDataProto-
type can be delegated throughout the CompositionSwComponentType and [con-
str_1401] still applies.

Class TransformationTechnology
Package M2::AUTOSARTemplates::SystemTemplate:: Transformer
Note A TransformationTechnology is a transformer inside a transformer chain.
Tags: xml.namePlural=TRANSFORMATION-TECHNOLOGIES
Base ARObject, Identifiable, MultilanguageReferrable, Referrable
Attribute Type Mul. Kind | Note
bufferProperties | BufferProperties 1 agar Aggregation of the mandatory BufferProperties.
haslInternal Boolean 0..1 attr This attribute defines whether the Transformer has an
State internal state or not.
needsOriginal Boolean 0..1 attr Specifies whether this transformer gets access to the
Data SWC'’s original data.
protocol String 1 attr Specifies the protocol that is implemented by this
transformer.
transformation Transformation 0..1 aggr A transformer can be configured with transformer specific
Description Description parameters which are represented by the Transformer
Description.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=postBuild
transformer TransformerClassEnum 1 attr Specifies to which transformer class this transformer
Class belongs.

AUTOSAR

A

Class TransformationTechnology

version String ‘ 1 ‘ attr ‘Version of the implemented protocol.

Table 4.84: TransformationTechnology

Based on the user defined attributes inside UserDefinedTransformationCom—
SpecProps (Which are, of course, not standardized), the generator of the user-
defined transformer shall determine to which user-defined transformer a UserDe-
finedTransformationComSpecProps belongs to.

Class UserDefinedTransformationComSpecProps

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note The UserDefinedTransformationComSpecProps is used to specify port specific configuration properties
for custom transformers.

Base ARObject, Describable, TransformationComSpecProps

Attribute Type Mul. Kind | Note

Table 4.85: UserDefinedTransformationComSpecProps

[TPS_SWCT 01599] PortPrototype-specific configuration for custom trans-
formers | Meta-class UserDefinedTransformationComSpecProps shall be used
for the specification of PortPrototype-specific configuration options for custom
transformers. | (RS_SWCT_03221)

Please note that it is possible to add custom configuration items in UserDefined-
TransformationComSpecProps by means of the attribute adminData.sdg.

Class EndToEndTransformationComSpecProps
Package M2::AUTOSARTemplates::SystemTemplate:: Transformer
Note The class EndToEndTransformationlComSpecProps specifies port specific
configuration properties for EndToEnd transformer attributes.
Base ARObject, Describable, TransformationComSpecProps
Attribute Type Mul. Kind | Note
disableEndTo Boolean 1 attr Disables/Enables the E2E check. The E2Eheader is
EndCheck removed from the payload independent from the setting of
this attribute.
maxDelta Positivelnteger 0..1 attr Maximum allowed difference between two counter values
Counter of two consecutively received valid messages. For

example, if the receiver gets data with counter 1 and Max
DeltaCounter is 3, then at the next reception the receiver
can accept Counters with values 2, 3 or 4.

maxErrorState Positivelnteger 0..1 attr Maximal number of checks in which ProfileStatus equal to
Init E2E_P_ERROR was determined, within the last Window
Size checks, for the state E2E_SM_INIT.

The minimum value is 0.

AUTOSAR

A
Class EndToEndTransformationComSpecProps
maxErrorState Positivelnteger 0..1 attr Maximal number of checks in which ProfileStatus equal to
Invalid E2E_P_ERROR was determined, within the last Window
Size checks, for the state E2E_SM_INVALID.
The minimum value is 0.
maxErrorState Positivelnteger 0..1 attr Maximal number of checks in which ProfileStatus equal to
Valid E2E_P_ERROR was determined, within the last Window
Size checks, for the state E2E_SM_VALID.
The minimum value is 0.
maxNoNewOr Positivelnteger 0..1 attr EndToEndTransformationDescription holds these
RepeatedData attributes which are profile specific and have the same
value for all E2E transformers.
minOkStatelnit Positivelnteger 0..1 attr Minimal number of checks in which ProfileStatus equal to
E2E_P_OK was determined, within the last WindowSize
checks, for the state E2E_SM_INIT.
The minimum value is 1.
minOkState Positivelnteger 0..1 attr Minimal number of checks in which ProfileStatus equal to
Invalid E2E_P_OK was determined, within the last WindowSize
checks, for the state E2E_SM_INVALID.
The minimum value is 1.
minOkState Positivelnteger 0..1 attr Minimal number of checks in which ProfileStatus equal to
Valid E2E_P_OK was determined, within the last WindowSize
checks, for the state E2E_SM_VALID.
The minimum value is 1.
syncCounterlnit Positivelnteger 0..1 attr EndToEndTransformationDescription holds these
attributes which are profile specific and have the same
value for all E2E transformers.
windowSize Positivelnteger 0..1 attr Size of the monitoring window for the E2E state machine.
The meaning is the number of correct cycles
(E2E_P_OK) that are required in E2E_SM_INITCOM
before the transition to E2E_SM_VALID.
The minimum allowed value is 1.

Table 4.86: EndToEndTransformationComSpecProps

[TPS_SWCT _01600] PortPrototype-specific configuration for data transform-
ers related to end-to-end protection | Meta-class EndToEndTransformation-
ComSpecProps shall be used for the specification of PortPrototype-specific
configuration options for data transformers related to end-to-end protection. |
(RS_SWCT_03221)

4.6 Port Groups within Component Types

[TPS_SWCT_01063] PortGroup | A SwComponentType can declare that some of
its PortPrototypes belong to a PortGroup.

Such a port group defines a logical grouping of PortPrototypes which is used as
input to configure the implementation of mode managers in the basic software, for
example the communication of bus signals associated with the grouped ports maybe
suppressed in a certain mode. | (RS_SWCT_03200, RS_SWCT_03201)

AUTOSAR

ARElement
AtpBlueprint
AtpBlueprintable
AtpType
SwConponentType

AtpBlueprintable
+port AtpPrototype

>

«atpVariation,atpSplitable» 0..*
)

«atpVariation» Tags:

vhlatestBindingTime =

preCompileTime

PortPrototype

+outerPort 0.*

«atpVariation»

«atpVariation»

AtpStructureElement
+portGroup Identifiable
0% PortGroup
T
| +innerGroup /:\
| 0.* |
| |
| |
J
«instanceRef»

Figure 4.45: Declaration of PortGroups

Class PortGroup
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note Group of ports which share a common functionality, e.g. need specific network resources. This
information shall be available on the VFB level in order to delegate it properly via compositions. When
propagated into the ECU extract, this information is used as input for the configuration of Services like
the Communication Manager. A PortGroup is defined locally in a component (which can be a
composition) and refers to the "outer" ports belonging to the group as well as to the "inner" groups which
propagate this group into the components which are part of a composition. A PortGroup within an atomic
SWC cannot be linked to inner groups.
Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, MultilanguageReferrable,
Referrable
Attribute Type Mul. Kind | Note
innerGroup PortGroup * iref Links a PortGroup in a composition to another PortGroup,
that is defined in a component which is part of this
CompositionSwComponentType.
outerPort PortPrototype * ref Outer PortPrototype of this AtomicSwComponentType
which belongs to the group. A port can belong to several
groups or to no group at all.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table 4.87: PortGroup

[TPS_SWCT_01064] PortGroups have to be defined on the VFB level [Though
the declaration PortGroups is not relevant for the RTE, they have to be defined on the
VFB level, because they represent design decisions taken on this level. Accordingly,

PortGroups can be defined for CompositionSwComponentTypes as well as for
AtomicSwComponentTypesS. |(RS_SWCT 03200, RS_SWCT_03201)

[TPS_SWCT _01065] PortPrototype may belong to more than one PortGroups
[A PortPrototype may belong to more than one PortGroups and PortGroups
can be associated with the “inner” PortGroups of SwComponentPrototypes which
are aggregated by the same swComponentType as the PortGroup. By this, Port-
Groups can be locally defined but still traced down the component hierarchy.
(RS_SWCT_03200, RS_SWCT_03201)

AUTOSAR

[TPS_SWCT _01066] PortGroups can be associated with certain ServiceNeeds
| PortGroups can be associated with certain SserviceNeeds in order to trace the
information down to the configuration of the basic software. |(RS_SWCT_03200,
RS SWCT 03201)

For more details, see chapter 7.11.2.

[constr _1147] Standardized values for the attribute category of meta-class
PortGroup |

The following values of the attribute category of meta-class PortGroup are reserved
by the AUTOSAR standard:

e MODE_MANAGEMENT: This represents the usage of the PortGroup for the pur-
pose of mode management

e PARTIAL_NETWORKING: This represents the usage of the PortGroup for the
purpose of partial networking

10

4.7 End to End Protection

The aspect of end-to-end protection has seen different support by the AUTOSAR meta-
model.

On the one hand, there is the definition of dedicated meta-classes, .. EndToEnd-
Description, which aim at an implementation that uses a so-called E2E wrapper
(an approach with a software component above RTE invoking the E2E library) or
AUTOSAR Com module callout mechanism (with Com callouts used to invoke E2E
library).

This approach is documented in chapter 4.7 of this document.

As an alternative approach, it is possible to implement end-to-end protection using
so-called data transformers.

The detailed description of how this approach can be configured is beyond the scope
of this document. Please refer to the TPS System Template [10] where the details of
the alternative approach are explained.

In contrast to the approach based on the EndToEndProtection and EndToEnd-
Description (which partly involves technologies that are not subjected to the
AUTOSAR standard), the second approach is fully standardized by AUTOSAR.

As described in [19] there are cases where safety-related software-components pro-
tect the data exchanged between each other. For this purpose modeling support is
provided by the software-component template.

AUTOSAR

Note that several end-to-end profiles are selectable for a specific application. The spe-
cific end-to-end profile is represented by the attribute category of meta-class End-
ToEndDescription.

Semantically, the category value represents an identification of the specific end-to-
end profile applicable for the communication of the corresponding data element. Ac-
cording to [19] there are two pre-defined profiles that can be used.

[TPS_SWCT_01089] end-to-end communication protection [The information
specific to each profile is expressed by the set of attributes of EndToEndDe-
scription owned by EndToEndProtection in the role endToEndProfile. |
(RS_SWCT_03240)

Class EndToEndDescription
Package M2::AUTOSARTemplates::SWComponentTemplate::EndToEndProtection

Note This meta-class contains information about end-to-end protection. The set of applicable attributes
depends on the actual value of the category attribute of EndToEndProtection.

Base ARObject
Attribute Type Mul. Kind | Note

category NameToken 1 attr The category represents the identification of the concrete
E2E profile. The applicable values are specified in a
semantic constraint and determine the applicable
attributes of EndToEndDescription.

Tags: xml.sequenceOffset=-100

counterOffset Positivelnteger 0..1 attr Bit offset of Counter from the beginning of the Array
representation of the Signal Group/VariableDataPrototype
(MSB order, bit numbering: bit 0 is the least important).
The offset shall be a multiplicity of 4 and it should be 8
whenever possible. For example, offset 8 means that the
counter will take the low nibble of the byte 1, i.e. bits 8 ..
11. If counterOffset is not present the value is defined by
the selected profile.

Tags: xml.sequenceOffset=-50

crcOffset Positivelnteger 0..1 attr Bit offset of CRC from the beginning of the Array
representation of the Signal Group/VariableDataPrototype
(MSB order, bit numbering: bit 0 is the least important).
The offset shall be a multiplicity of 8 and it should be 0
whenever possible. For example, offset 8 means that the
CRC will take the byte 1, i.e. bits 8..15. If crcOffset is not
present the value is defined by the selected profile.

Tags: xml.sequenceOffset=-60

datald (ordered) | Positivelnteger * attr This represents a unique numerical identifier.

Note: ID is used for protection against masquerading.
The details concerning the maximum number of values
(this information is specific for each E2E profile)
applicable for this attribute are controlled by a semantic
constraint that depends on the category of the EndToEnd
Protection.

Tags: xml.sequenceOffset=-90

AUTOSAR

Class EndToEndDescription

dataldMode Positivelnteger

0..1

attr

There are three inclusion modes how the implicit two-byte
Data ID is included in the one-byte CRC:

e datalDMode = 0: Two bytes are included in the
CRC (double ID configuration) This is used in
variant 1A.

e datalDMode = 1: One of the two bytes byte is
included, alternating high and low byte,
depending on parity of the counter (alternating ID
configuration). For even counter low byte is
included; For odd counters the high byte is
included. This is used in variant 1B.

e datalDMode = 2: Only low byte is included, high
byte is never used. This is applicable if the IDs in
a particular system are 8 bits.

e dataldMode = 3: The low byte is included in the
implicit CRC calculation, the low nibble of the
high byte is transmitted along with the data (i.e. it
is explicitly included), the high nibble of the high
byte is not used. This is applicable for the IDs up
to 12 bits.

Tags: xml.sequenceOffset=-85

dataldNibble
Offset

Positivelnteger

0..1

attr

Bit offset of the low nibble of the high byte of Data ID. The
applicability of this attribute is controlled by [constr_1261].

Tags: xml.sequenceOffset=-25

datalLength Positivelnteger

0..1

attr

This attribute represents the length of the Array
representation of the Signal Group/VariableDataPrototype
including CRC and Counter in bits.

Tags: xml.sequenceOffset=-80

maxDelta
Counterlnit

Positivelnteger

0..1

attr

Initial maximum allowed gap between two counter values
of two consecutively received valid Data, i.e. how many
subsequent lost data is accepted. For example, if the
receiver gets Data with counter 1 and MaxDeltaCounter
Initis 1, then at the next reception the receiver can accept
Counters with values 2 and 3, but not 4.

Note that if the receiver does not receive new Data at a
consecutive read, then the receiver increments the
tolerance by 1.

Tags: xml.sequenceOffset=-70

maxNoNewOr
RepeatedData

Positivelnteger

0..1

attr

The maximum amount of missing or repeated Data which
the receiver does not expect to exceed under normal
communication conditions.

Tags: xml.sequenceOffset=-40

syncCounterlnit | Positivelnteger

0..1

attr

Number of Data required for validating the consistency of
the counter that shall be received with a valid counter
(i.e. counter within the allowed lock-in range) after the
detection of an unexpected behavior of a received
counter.

Tags: xml.sequenceOffset=-30

Table 4.88: EndToEndDescription

[TPS_SWCT_01090] EndToEndProtection [EndToEndProtectionisthe Iden-
tifiable class that owns specific elements for referencing the to-be-protected data

elements and signals

AUTOSAR

e EndToEndProtectionVariablePrototype: a specific dataElement
owned by a specific PortPrototype

e EndToEndProtectionISignalIPdu: a specific ISignalGroup in the con-
text of an ISignalIPdu. For more details please refer to [10]

|(RS_SWCT_03240)

[TPS_SWCT_01091] Two cases for end-to-end protection | In order to protect
a VariableDataPrototype the EndToEndProtectionVariablePrototype shall be
defined. If communication is defined between ECUs using AUTOSAR COM the End-
ToEndProtectionISignalIPdu shall be defined as well. |(RS_SWCT_03240)

The following features apply:

e [constr_1000] End-to-end protection is limited to sender/receive communi-
cation | end-to-end protection applies for sender/receiver communication only |

()

e The value of the dataId is assigned by a central authority rather than by the
developer of the software-component.

e The information about the dataId shall be available at both the sender and the
receiver(s).

e [constr_1001] Value of dataId shall be unique [The value of the datald
shall be unique within the scope of the System. |()

e [TPS_SWCT_01508] Scope of end-to-end protection | End-to-end protection
applies to local (i.e. within the ECU) as well as remote (i.e. ECU to ECU) com-
munication. | (RS_SWCT_03240)

[TPS_SWCT_01092] EndToEndProtectionSet | The meta-class EndToEndPro-
tectionSet provides a container for EndToEndProtection. The aggregation is
stereotyped <atpSplitable>> because the information about end-to-end protection
is added at a later step in the development workflow. | (RS_SWCT_03240)

It also has the stereotype <atpvariation>> because this allows for implementing
the software-component in two variants, one that uses end-to-end protection and one
that does not use it. It also might happen that the communication ends themselves are
variant.

EndToEndProtection maintains InstanceRefs t0 one dataElement in the role
of sender and to one or many dataElements in the role of receiver. By this means
it is possible to support a 1:n communication scenario.

[TPS_SWCT_01093] Definition of end-to-end protection is splitable [End-
ToEndProtection aggregates EndToEndDescription using stereotype
<atpSplitable>. By this means it is for the integrator of an ECU possible
to generally specify the nature of a specific end-to-end protection but leave the actual
assignment of values (e.g. for dataId) to a later process step. |(RS_SWCT_03240)

AUTOSAR

ARElement
EndToEndProtectionSet

«atpVariation,atpSplitable»

.7 EndToEndDescription
P 0..* | +endToEndProtection
- + category: NameToken
Identifiable + counterOffset: Positivelnteger [0..1]
«atpVariation» Tags: EndToEndProtection +endToEndProfile | * SO ngtlvelnteger [k
vh.latestBindingTime = > + datald: Positivelnteger [0..*] {ordered}
preCompileTime «atpSplitable» 1| + dataldMode: Positivelnteger [0..1]
+ dataldNibbleOffset: Positivelnteger [0..1]
N + dataLength: Positivelnteger [0..1]
+ maxDeltaCounterlnit: Positivelnteger [0..1]
~ + maxNoNewOrRepeatedData: Positivelnteger [0..1]
+ syncCounterlnit: Positivelnteger [0..1]
«atpVariation,atpSplitable»
+endToEndProtectionVariablePrototype | 0..*
+sender e =
EndToEndProtectionVariablePrototype e FSERIESIAS
0.1 VariableDataPrototypelnSystemInstanceRef
+ shortLabel: Identifier [0..1] +receiver
>
0..*
1
{redefines
+targetDataPrototype atpTarget}
+send
____________ se_ n_er AutosarDataPrototype
«instanceRef» 0.1 VariableDataPrototype
+receiver
«instanceRef» 0.*

Figure 4.46: Details of the modeling of end-to-end protection

According to [19] the following constraints apply on the attributes of EndToEndPro-
tection (note that additional M1 constraints apply as described in [19]):

[constr_1110] Value of category in EndToEndDescription | The attribute cat-
egory of EndToEndDescription can have the following values:

« NONE
 PROFILE 01
e PROFILE 02

10

[TPS_SWCT_01094] category of EndToEndDescription | The values for the
category Of EndToEndDescription mentioned in [constr_1110] are standardized
and reserved for being used in the way the AUTOSAR standard foresees. In addition,
it is positively possible to use other than the standardized values for the category. |
(RS_SWCT_03240)

This aspect will be clarified in more detail in later revisions of the AUTOSAR standard.
For the time being, it shall be noted that the usage of other than the standardized values
shall not create name clashes with future standardized values. This can be achieved
by using e.g. a company-specific prefix or suffix to the value of category.

AUTOSAR

The semantics of the categorys is:

NONE this indicates that the E2E framework shall be enabled for the given
sender/receiver respectively the given isignalIPdu. The wrapper code
shall be generated but it shall not invoke E2E library protection routines. E2E
wrapper works as pass-through.

This may be used when a profile selection or profile options are not yet selected
in a given system but it is required that the system can be built successfully
under consideration of the E2E library. This would also be applicable for migrating
from/to a system with/without E2E protection.

[TPS_SWCT _01095] category set to NONE | If attributes exist in the pres-
ence of the category being set to NONE the attributes shall be ignored. |
(RS_SWCT 03240)

PROFILE_01 This indicates that the settings of E2E profile 1 (that uses a SAE CRCS,
implicit 16 bit data ID, and a 4 bit alive counter) apply.

[constr_1113] Existence of attributes in PROFILE_01 | In PROFILE_01, the
following attributes shall exist:

e datalength

e datald

10

Please note that the attribute maxDeltaCounterInit is also part of PRO-
FILE 01 but it does not necessarily have to exist provided that ReceiverCom-
Spec.maxDeltaCounterInit exists.

[constr_1170] Interpretation of attribute maxDeltaCounterInit owned
by EndToEndDescription | If EndToEndProtection.endToEndPro-
tectionVariablePrototype.receiver is identical to the RPortProto-
type.requiredComSpec.dataElement and RPortPrototype.required-
ComSpec.maxDeltaCounterInit is defined then the value of RPort-
Prototype.requiredComSpec.maxDeltaCounterInit shall be preferred
over the value of EndToEndProtection.endToEndProfile.maxDelta-—
CounterInit.

If the value of category of EndToEndDescription is set to PROFILE_01
and either the described correspondence rule concerning the referenced
VariableDataPrototype is not fulfiled or RPortPrototype.required-
ComSpec.maxDeltaCounterInit is not defined then EndToEndProtec—
tion.endToEndProfile.maxDeltaCounterInit shall exist. |()

[constr_1111] Constraints of dataIld in PROFILE_01 | In PROFILE_O01, there
shall be only one element in the set and the applicable range of values is
[0..65535]. |()

AUTOSAR

[constr_1112] Constraints of dataIdMode in PROFILE_01 | In PROFILE_01,
the applicable range of values for dataIdMode is [0 .. 3]. |()

[constr_1114] Constraints of crcOffset in PROFILE_01 | In PROFILE_01,
the applicable range of values for crcoffset is [0 .. 65535]. For the value of
this attribute the constraint value mod 4 = 0 applies. |()

[constr_1115] Constraints of counteroffset in PROFILE_01 | In PRO-
FILE_O01, the applicable range of values for counterOffset is [0 .. 65535]. For
the value of this attribute the constraint value mod 4 = 0 applies. |()

[constr_1116] Constraints of dataLength in PROFILE_01 | In PROFILE_01,
the applicable range of values for dataLength is [0 .. 240]. For the value of this
attribute the constraint value mod 8 = 0 applies. |()

[constr_1117] Constraints of maxDeltaCounterInit in PROFILE_01
[In PROFILE_01, the applicable range of values for EndToEndDescrip—
tion.maxDeltaCounterInit and ReceiverComSpec.maxDeltaCoun-

terInitis[0..14]. |()

[constr_1211] Constraints of maxNoNewOrRepeatedData in PROFILE_01
[In PROFILE_01, the applicable range of values for EndToEndDescrip-
tion.maxNoNewOrRepeatedData and ReceiverComSpec.maxNoNewOrRe—
peatedDatais [0 .. 14]. |()

[constr_1212] Constraints of syncCounterInit in PROFILE_01 | In PRO-
FILE_01, the applicable range of values for EndToEndDescription.sync—
CounterInit and ReceiverComSpec.syncCounterInit is[0..14]. |()

[constr_1215] Interpretation of attribute maxNoNewOrRepeatedData
owned by EndToEndDescription in PROFILE_01 [If EndToEndProtec-
tion.endToEndProtectionVariablePrototype.receiver is identical to
the RPortPrototype.requiredComSpec.dataElement and RPortPro-
totype.requiredComSpec.maxNoNewOrRepeatedData is defined then the
value of RPortPrototype.requiredComSpec.maxNoNewOrRepeatedData
shall be preferred over the value of EndToEndProtection.endToEndPro-—
file.maxNoNewOrRepeatedData.

If the value of category of EndToEndDescription is set to PROFILE_01
and either the described correspondence rule concerning the referenced
VariableDataPrototype is not fulfiled or RPortPrototype.required-
ComSpec.maxNoNewOrRepeatedData is not defined then EndToEndProtec—
tion.endToEndProfile.maxNoNewOrRepeatedData shall exist. |()

AUTOSAR

[constr_1216] Interpretation of attribute syncCounterInit owned by End-
ToEndDescription in PROFILE_01 [If EndToEndProtection.endToEnd-
ProtectionVariablePrototype.receiver Iis identical to the RPort-
Prototype.requiredComSpec.dataElement and RPortPrototype.re-—
quiredComSpec.syncCounterInit is defined then the value of RPortPro-
totype.requiredComSpec.syncCounterInit shall be preferred over the
value of EndToEndProtection.endToEndProfile.syncCounterInit.

If the value of category of EndToEndDescription is set to PROFILE_01
and either the described correspondence rule concerning the referenced vari-
ableDataPrototype is not fulfilled or RPortPrototype.requiredCom-
Spec.syncCounterInit is not defined then EndToEndProtection.end-
ToEndProfile.syncCounterInit shall exist. |()

[constr_1261] Applicability for EndToEndDescription.dataIdNibble-
Offset | EndToEndDescription.dataldNibbleOffset shall be used only
if EndToEndDescription.dataIdMode is set to the value 3 and at the same
time EndToEndDescription.category is set to PROFILE_01. |()

[TPS_SWCT_01529] Default value for EndToEndDescription.dataIdNib-
bleOffset [If EndToEndDescription.dataIdMode is setto the value 3 and
at the same time EndToEndDescription.category is set to the value PRO-
FILE 01 and EndToEndDescription.dataIldNibbleOffset is not specified,
then the default value of 12 (bits) shall be assumed for the attribute EndToEnd-
Description.dataldNibbleOffset. |(RS_SWCT_03240)

PROFILE_02 this indicates that the settings of E2E profile 2 apply.

[constr_1118] Existence of attributes in PROFILE_02 | In PROFILE_02, only
the following attributes shall exist:

e datalength

e datald

10

Please note that the attribute maxDeltaCounterInit is also part of PRO-
FILE_ 01 but it does not necessarily have to exist provided that ReceiverCom-
Spec.maxDeltaCounterInit exists.

[constr_1171] Interpretation of attribute maxDeltaCounterInit of End-
ToEndDescription | If EndToEndProtection.endToEndProtection-
VariablePrototype.receiver is identical to the RPortPrototype.re-
quiredComSpec.dataElement and RPortPrototype.requiredCom-
Spec.maxDeltaCounterInit is defined then the value of RPortProto-
type.requiredComSpec.maxDeltaCounterInit shall be preferred over
the value of EndToEndProtection.endToEndProfile.maxDeltaCoun-—
terInit.

AUTOSAR

If the value of category of EndToEndDescription is set to PROFILE_02
and either the described correspondence rule concerning the referenced
VariableDataPrototype is not fulfiled or RPortPrototype.required-
ComSpec.maxDeltaCounterInit is not defined then EndToEndProtec—
tion.endToEndProfile.maxDeltaCounterInit shall exist. |()

[constr_1119] Constraints of dataLength in PROFILE_02 | In PROFILE_02,
the applicable range of values for dataLength is [0 .. 65535]. For the value of
this attribute the constraint value mod 8 = 0 applies. |()

[constr_1120] Constraints of dataId in PROFILE_02 | In PROFILE_02, there
shall be exactly ordered 16 elements in the set and the applicable range of values
is [0 ..255]. |()

[constr_1121] Constraints of maxDeltaCounterInit in PROFILE_02
[In PROFILE_02, the applicable range of values for EndToEndDescrip-
tion.maxDeltaCounterInit and ReceiverComSpec.maxDeltaCoun-—

terInitis[0..15]. |()

[constr_1213] Constraints of maxNoNewOrRepeatedData in PROFILE_02
[In PROFILE_02, the applicable range of values for EndToEndDescrip-
tion.maxNoNewOrRepeatedData and ReceiverComSpec.maxNoNewOrRe—
peatedDatais [0 .. 15]. |()

[constr_1214] Constraints of syncCounterInit in PROFILE_02 | In PRO-
FILE_02, the applicable range of values for EndToEndDescription.sync-
CounterInit and ReceiverComSpec.syncCounterInit is[0 .. 15]. |()

[constr_1217] Interpretation of attribute maxNoNewOrRepeatedData
owned by EndToEndDescription in PROFILE_02 [If EndToEndProtec-—
tion.endToEndProtectionVariablePrototype.receiver is identical to
the RPortPrototype.requiredComSpec.dataElement and RPortPro-
totype.requiredComSpec.maxNoNewOrRepeatedData is defined then the
value of RPortPrototype.requiredComSpec.maxNoNewOrRepeatedData
shall be preferred over the value of EndToEndProtection.endToEndPro-—
file.maxNoNewOrRepeatedData.

If the value of category of EndToEndDescription is set to PROFILE_02
and either the described correspondence rule concerning the referenced
VariableDataPrototype is not fulfilled or RPortPrototype.required-
ComSpec.maxNoNewOrRepeatedData is not defined then EndToEndProtec—
tion.endToEndProfile.maxNoNewOrRepeatedData shall exist. |()

[constr_1218] Interpretation of attribute syncCounterInit owned by End-
ToEndDescription in PROFILE_02 | If EndToEndProtection.endToEnd-
ProtectionVariablePrototype.receiver is identical to the RpPort-
Prototype.requiredComSpec.dataElement and RPortPrototype.re-—
quiredComSpec.syncCounterInit is defined then the value of RPortPro-
totype.requiredComSpec.syncCounterInit shall be preferred over the
value of EndToEndProtection.endToEndProfile.syncCounterInit.

AUTO SAR

If the value of category of EndToEndDescription is set to PROFILE_02
and either the described correspondence rule concerning the referenced vari-
ableDataPrototype is not fulfiled or RPortPrototype.requiredCom-
Spec.syncCounterInit is not defined then EndToEndProtection.end-
ToEndProfile.syncCounterInit shall exist. |()

Class EndToEndProtectionSet
Package M2::AUTOSARTemplates::SWComponentTemplate::EndToEndProtection
Note This represents a container for collection EndToEndProtectioninformation.

Tags: atp.recommendedPackage=EndToEndProtectionSets

Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable

Attribute Type Mul. Kind | Note

endToEnd EndToEndProtection * agor This is one particular EndToEndProtection.

Protection

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

Table 4.89: EndToEndProtectionSet

Class EndToEndProtection

Package M2::AUTOSARTemplates::SWComponentTemplate::EndToEndProtection

Note This meta-class represents the ability to describe a particular end to end protection.

Base ARObject, Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind | Note

endToEnd EndToEndDescription 1 agar This represents the particular EndToEndDescription.

Profile Stereotypes: atpSplitable
Tags: atp.Splitkey=endToEndProfile

endToEnd EndToEndProtectionl * aggr Defines to which ISignallPdu - ISignalGroup pair this End

Protection SignallPdu ToEndProtection shall apply.

ISignallPdu .

In case several ISignalGroups are used to transport the
data (e.g. fan-out in the RTE) there may exist several End
ToEndProtectionISignallPdu definitions.

Stereotypes: atpSplitable; atpVariation

Tags: atp.Splitkey=variationPoint.shortLabel
vh.latestBindingTime=preCompile Time

endToEnd EndToEndProtection * aggr Defines to which VariableDataPrototypes in the roles of

Protection VariablePrototype one sender and one or more receivers this EndTo

Variable Endprotection applies.

Prototype It shall be possible to aggregate several EndToEnd
ProtectionVariablePrototype in case additional
hierarchical decompositions are introduced subsequently.
In this case one particular PortPrototype is split into
multiple PortPrototypes and connectors, all representing
the same data entity.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortLabel, variationPoint.shortLabel
vh.latestBindingTime=preCompile Time

Table 4.90: EndToEndProtection

AUTOSAR

Class EndToEndProtectionVariablePrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::EndToEndProtection
Note It is possible to protect the data exchanged between software components. For this purpose, for each

communication to be protected, the user defines a separate EndToEndProtection (specifying a set of
protection settings) and refers to a variableDataPrototype in the role of sender and to one or many
variableDataPrototypes in the role of receiver. For details, see EndToEnd Library.

Base ARObject

Attribute Type Mul. Kind | Note

receiver VariableDataPrototype * iref This represents the receiver. Note that 1:n
communication is supported for this use case.

sender VariableDataPrototype 0..1 iref This represents the sender.
Can be optional if an ecu extract is provided and the
sender is part of the extract.

shortLabel Identifier 0..1 attr This serves as part of the split key in case of more than
one EndToEndProtectionVariablePrototype is aggregated
in the bound model.

Table 4.91: EndToEndProtectionVariablePrototype

Please note that using end-to-end protection it is explicitly supported that one sender
may correspond to one or more receivers.

[constr_1183] EndToEndProtectionVariablePrototypes aggregated by End-
ToEndProtection | All EndToEndProtectionVariablePrototypeS aggre-
gated by the same EndToEndProtection shall refer to the identical sender. |()

4.8 Partial Networking

[TPS_SWCT_01169] Support for partial networking [On the level of the Software
Component Template, partial networking is supported by means of the concept of a
“Virtual Function Cluster” (VFC).

The latter groups all communication on the VFB with respect to a given function. How-
ever, the conceptual idea of a Virtual Function Cluster is not represented in the meta-
model as such.

Instead, PortGroups are used to specify the grouping of PortPrototypes to
the higher conceptual level of a Virtual Function Cluster. |(RS_SWCT_03241,
RS _SWCT _03201)

Please note that more information regarding the semantics of PortGroups can be
found in chapter 4.6.

There are no restrictions regarding the structure of PortGroup definitions on M1. One
PortPrototype may become a member of several PortGroups, thereby creating
overlapping PortGroups.

[TPS_SWCT_01170] Purpose of Virtual Function Cluster | The purpose of Virtual
Function Cluster within the Software Component Template mainly has three aspects:

AUTOSAR

1. assign portPrototypes (non service related) of Sender Receiver or Client
Server communication to Virtual Function Clusters.

2. control the behavior of the corresponding function in terms of whether or not it is
required at a given point in time. This aspect is implemented by the concept of
a control port. Software-components that implement control ports of a Virtual
Function Cluster conceptually become VFC Controllers.

3. allow for the application software to retrieve the status of a given Virtual Function
Cluster. This aspect is implemented by the concept of a status port.

|(RS_SWCT _03241)

The usage of the generic concept of PortGroups for the purpose of partial networks
shall be indicated by setting the value of the attribute category of PortGroup to
PARTIAL_NETWORKING, see [constr_1147].

4.8.1 VFC Control Ports

[TPS_SWCT_01171] Purpose of a control port | The purpose of a control port is
to request or release a VFC. Requesting means that the VFC is actively using com-
munication resources while release boils down to the VFC being inactive, i.e. the
corresponding partial network may be shut down until further notice.

As the requesting and releasing semantics is implemented by means of interfacing the
BSW the corresponding control ports need to be typed by a Port Interface that has
the attribute isService setto true. |(RS_SWCT_03241)

[TPS_SWCT_01172] Requesting and releasing partial networks | For requesting
and releasing partial networks, the BSW can be interfaced in two alternative (i.e. either
one or the other) ways:

e ComM: ClientServerInterface using the standardized ComM_UserRe-
quest.RequestComMode [20]

e BswM: senderReceiverInterface using the standardized AppModeRe-
questInterface.requestedMode [14]

|(RS_SWCT _03241)

[TPS_SWCT_01173] Control port shall not become a part of the PortGroup |
Please note that the control port shall not become a part of the PortGroup that de-
fines the particular VFC the control port is going to service.

The relationship is implemented by means of a specific SwcServiceDependency
that owns a RoleBasedPortAssignment to the intended control port and refers
to a PortGroup (that comprises the VFC) in the role representedPortGroup. |
(RS_SWCT_03241, RS_SWCT_03201)

For further information, please refer to [TPS_SWCT_01126].

AUTOSAR

4.8.2 VFC Status Ports

[TPS_SWCT_01175] Actively query the status of a partial network | Very much like
mode management, the concept of partial networking supports the ability to actively
query the status of a partial network.

This can be done by means of interfacing the BSW in three alternative (as in “one of”)
ways:

e ComM: ClientServerInterface using the standardized ComM_UserRe-
quest.GetCurrentComMode [20]

e ComM: ModeSwitchInterface using the standardized ComM_CurrentMode.
currentMode [20]

e BswM: ModeSwitchInterface using the standardized AppModeInter-
face.currentMode [14]

|(RS_SWCT _03241)

As mentioned above, the status of the ComM can be retrieved by either a
ClientServerInterface Or a SenderReceiverInterface. Which of the two
alternatives applies in a specific case is up to the author of a software-component®.

When using one of the possible SenderReceiverInterfaces, the correspondence
of the status port concept with mode management extends to the point that the status
of the partial network is returned as an actual ModeDeclaration.

This implies that all mechanisms foreseen by the Software Component Template to
react on mode changes are in place and can be used within the application software.

To assure that the communication via PortPrototypes that belong to a partial net-
work is valid the software component shall consider the status of the partial network
before communicating in order to assert its activity.

[TPS_SWCT_01174] Status port shall not become a member of the PortGroup |
A status port shall not become a member of the PortGroup that corresponds to the
partial network subject to the status port.

The relationship is implemented by means of a specific SwcServiceDependency
that owns a RoleBasedPortAssignment to the intended status port and refers
to a PortGroup (that comprises the VFC) in the role representedPortGroup. |
(RS_SWCT 03241, RS_SWCT_03201)

For further information, please refer to [TPS_SWCT_01126].

8The usage of the ClientServerInterface effectively implements a “pull” approach for the mode
information while the usage of the senderReceiverInterface resembles a “push” approach if it is
used in combination with a SwcModeSwitchEvent.

AUTOSAR

4.9 Formal Definition of implicit Communication Behavior

[TPS_SWCT_01509] Implicit communication behavior | The purpose of the formal
definition of the behavior of a SwComponent Type with respect to the implicit commu-
nication can conceptually condensed to two basic aspects:

e Stable data during the execution of a group of RunnableEntitys. This means
that all data values read by different RunnableEntitys are from the same
age. Therefore the value is not changing during the execution of the chain of
RunnableEntitys.

e Coherent data consumption and propagation for a group of DataProto-
types. This means that a set of interdependent data values are from the
same calculation iteration. Therefore the set of values has to be propagated
at once to RunnableEntitys requiring the complete result of the calculation.
RunnableEntitys which are part of the calculation chain may still consume
partly updated values.

|(RS_SWCT_03065)

[TPS_SWCT _01481] The meaning of the term stability with respect to Consis-
tencyNeeds [The meaning of the term stability is that the values of a group of vari-
ableDataPrototypes shall not change values during the execution of a group of
RunnableEntitys. |(RS_SWCT_03065)

[TPS_SWCT _01482] The meaning of the term coherence with respect to Consis-
tencyNeeds | The meaning of the term coherence means that the values of a group of
VariableDataPrototypes shall not be read by receiving RunnableEntitys until
all the producing RunnableEntitys are terminated. |(RS_SWCT_03065)

In response to these goals the meta-model provides means to express the correlation
between a group of RunnableEntitys and a group of DataPrototypes. These
groups might be defined hierarchically.

The information (in terms of ConsistencyNeeds) can be defined primarily during the
design of an AtomicSwComponent Type but it is just as well possible to specify this
ConsistencyNeeds during the definition of CompositionSwComponentTypes.

For example, the existence of stable data is typically expected for the execution of
RunnableEntitys of several AtomicSwComponent Types.

AUTOSAR

ARElement
AtpBlueprint
AtpBlueprintable
AtpType
SwComponentType

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

«atpVariation,atpSplitable»

+consistencyNeeds | 0..*

AtpBlueprint
AtpBlueprintable
Identifiable

ConsistencyNeeds

«atpVariation» Tags:

- { vhlatestBindingTime = | -t-___________
preCompileTime N

«atpVariation,atpSplitable» «atpVariation,atpSplitable» «atpVariation,atpSplitable» «atpVariation,atpSplitable»

+regRequiresStability | 0..* +regDoesNotRequireStability | 0..* +dpgRequiresCoherency | 0..* +dpgDoesNotRequireCoherency | 0..*
________ AtpStructureElement AtpStructureElement
instan Identifiabl T T T Identifiabl
«ingtanceRef») entitiable «instanceRef» entiiable
| RunnableEntityGroup | DataPrototypeGroup
L______> L_____>
+runnableEntityGroup 0..*

T +dataPrototypeGroup 0..* T
| |
«instar:,ceRef» «nstanceRef»
| |
| |
+runnableEntity \1/ 0.* +imp|icitDataAccess\l/ 0.*

AtpStructureElement AutosarDataPrototype
ExecutableEntity VariableDataPrototype
RunnableEntity

+ canBelnvokedConcurrently: Boolean
+ symbol: Cldentifier

+dataElement | 1..* +nvData | 1..*
Datalnterface Datalnterface
SenderReceiverinterface NvDatalnterface

Figure 4.47: Formal definition of implicit communication behavior

Please note that the two aspects stability and coherence are not necessarily con-
nected to each other. It is possible to require stability without coherence and vice
versa. For this purpose the roles dpgboesNotRequireCoherency and regDoes-—
NotRequireStability are needed.

[TPS_SWCT_01480] Stability and/or coherence is not required [In order to be
able to clearly separate the aspect of stability from coherence it is possible to use the
roles dpgDoesNotRequireCoherency to express that a group of variableDat—
aPrototypes explicitly does not require consistency.

Likewise, regDoesNotRequireStability can be used to express that for a group
of RunnableEntitys stability with respect to data access is not required. |()

AUTOSAR

[TPS_SWCT_01479] Applicability of ConsistencyNeeds | ConsistencyNeeds
can only be applied to RunnableEntitys that make use of “implicit” communication.
|(RS_SWCT_03065)

[TPS_SWCT _01466] ConsistencyNeeds applied on RunnableEntitys that
do not use implicit communication [If a ConsistencyNeeds is applied on
RunnableEntitys that do not use implicit communication it shall be ignored. |
(RS_SWCT_03065)

The formal definition of the implicit communication behavior foresees the grouping of
model elements in order to indicate their relevance for consistent implicit communica-
tion.

[TPS_SWCT_01470] RunnableEntityGroup | A RunnableEntitys belongs to
a specific RunnableEntityGroup if it is associated either directly with the given
RunnableEntityGroup oOr if the RunnableEntityGroup the RunnableEntity
belongs to is eventually (there can be more than one nesting level) referenced by the
given RunnableEntityGroup. |(RS_SWCT_03065)

[TPS_SWCT_01471] DataPrototypeGroup [A VariableDataPrototypes be-
longs to a specific DataPrototypeGroup if it is associated either directly with the
given DataPrototypeGroup Or if the DataPrototypeGroup the VariableDat-
aPrototype belongs to is eventually (there can be more than one nesting level) ref-
erenced by the given DataPrototypeGroup. |(RS_SWCT_03065)

[constr_1231] ConsistencyNeeds aggregated by CompositionSwComponent-—
Type | If ConsistencyNeeds are aggregated by a CompositionSwComponent-—
Type the associations stereotyped <instanceRef>> may only refer to context and
target elements within the context of this CompositionSwComponentType. |()

For clarification, [constr_1231] includes VariableDataPrototypes owned by del-
egation PortPrototypes of the owning CompositionSwComponentType, Vari-
ableDataPrototypes in delegation PortPrototypes of CompositionSwCompo-
nent Type instantiated in the enclosing CompositionSwComponent Type, Of Vari-
ableDataPrototypeSinPortPrototypesowned by AtomicSwComponentTypeS
instantiated inside the context of the enclosing CompositionSwComponentType.

[constr_1232] consistencyNeeds aggregated by AtomicSwComponentType | If
ConsistencyNeeds are aggregated by a AtomicSwComponentType the associa-
tions stereotyped <instanceRef>> may only refer to context and target elements
within the context of this At omicSwComponentType. |()

Strictly speaking, these are the RunnableEntitys and PortPrototypes oOf this
particular AtomicSwComponent Type OF RunnableEntityGroups and DataPro-
totypeGroups which are owned by the same AtomicSwComponent Type.

Please note that pre-defined values for the category of RunnableEntityGroup
and DataPrototypeGroup are described in [1].

AUTO SAR

Class ConsistencyNeeds
Package M2::AUTOSARTemplates::SWComponentTemplate::ImplicitCommunicationBehavior
Note This meta-class represents the ability to define requirements on the implicit communication behavior.
Base ARObject, AtpBlueprint, AtpBlueprintable, Identifiable, MultilanguageReferrable, Referrable
Attribute Type Mul. Kind | Note
dpgDoesNot DataPrototypeGroup * agar This group of VariableDataPrototypes does not require
Require coherency with respect to the implicit communication
Coherency behavior.
Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
dpgRequires DataPrototypeGroup * aggr This group of VariableDataPrototypes requires coherency
Coherency with respect to the implicit communication behavior, i.e.
all read and write access to VariableDataPrototypes in the
DataPrototypeGroup by the RunnableEntitys of the
RunnableEntityGroup need to be handled in a coherent
manner.
Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
regDoesNot RunnableEntityGroup * aggr This group of RunnableEntities does not require stability
RequireStability with respect to the implicit communication behavior.
Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
regRequires RunnableEntityGroup * agar | This group of RunnableEntities requires stability with
Stability respect to the implicit communication behavior, i.e. all
read and write access to VariableDataPrototypes in the
DataPrototypeGroup by the RunnableEntitys of the
RunnableEntityGroup need to be handled in a stable
manner.
Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
Table 4.92: ConsistencyNeeds
Class RunnableEntityGroup
Package M2::AUTOSARTemplates::SWComponentTemplate::ImplicitCommunicationBehavior
Note This meta-class represents the ability to define a collection of RunnableEntities. The collection can be
nested.
Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, MultilanguageReferrable,
Referrable
Attribute Type Mul. Kind | Note
runnableEntity RunnableEntity * iref This represents a collection of RunnableEntitys that
belong to the enclosing RunnableEntityGroup.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
runnableEntity RunnableEntityGroup * iref This represents the ability to define nested groups of
Group RunnableEntitys.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table 4.93: RunnableEntityGroup

AUTOSAR

Class DataPrototypeGroup

Package M2::AUTOSARTemplates::SWComponentTemplate::ImplicitCommunicationBehavior

Note This meta-class represents the ability to define a collection of DataPrototypes that are subject to the
formal definition of implicit communication behavior. The definition of the collection can be nested.

Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mul. Kind | Note

dataPrototype DataPrototypeGroup * iref This represents the ability to define nested groups of

Group VariableDataPrototypes.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

implicitData VariableDataPrototype iref This represents a collection of VariableDataPrototypes
Access that belong to the enclosing DataPrototypeGroup

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table 4.94: DataPrototypeGroup

4.9.1 Consistency Needs on Receiver Side

[TPS_SWCT _01472] Receiving SwComponentType OWNS a DataPrototype-
Group in the role dpgRequiresCoherency [If a receiving SwComponentType
owns a DataPrototypeGroup in the role dpgRequiresCoherency for one or sev-
eral of its RunnableEntitys it is required that VariableDataPrototypes be-
longing to the same DataPrototypeGroup are produced coherently. This means
that the values of the variableDataPrototypes shall be of the same age. |
(RS_SWCT_03065)

[TPS_SWCT 01473] Receiving SwComponentType OWNS a RunnableEntity-
Group in the role regRequiresStability [If a receiving SwComponentType
owns a RunnableEntityGroup intherole regRequiresStability for one or sev-
eral of its RunnableEntitys it is required that the values of implicitly communicated
VariableDataPrototypes are kept stable over the execution of all RunnableEn-
titys belonging to the given RunnableEntityGroup. |(RS_SWCT_03065)

[TPS_SWCT_01474] Receiving SwComponentType OWNS a RunnableEntity-
Group in the role regRequiresStability and also owns one or several Dat-
aPrototypeGroups in the role dpgRequiresCoherency [If a receiving SwCom-
ponentType OWNS @ RunnableEntityGroup inthe role regRequiresStability
and also owns one or several DataPrototypeGroups in the role dpgRequiresCo-
herency it is required that values of variableDataPrototypes belonging to the
same DataPrototypeGroup are produced coherently.

This means that the values of the variableDataPrototypes shall be of the same
age and are kept stable over the execution of all RunnableEntitys belonging to the
given RunnableEntityGroup. [()

AUTOSAR

4.9.2 Consistency Needs on Sender Side

[TPS_SWCT _01475] Sending SwComponentType OWNS a DataPrototypeGroup
in the role dpgRequiresCoherency | If a sending SwComponentType OWNS a
DataPrototypeGroup in the role dpgRequiresCoherency for one or several
of its RunnableEntitys it is required that variableDataPrototypes belonging
to the same DataPrototypeGroup are propagated at the same point of time to
RunnableEntitys which are not belonging to the group of producing RunnableEn-
titys (which may, but don’t have to be formally described as a RunnableEntity-
Group). |(RS_SWCT_03065)

The coherence is created at the point in time when the RunnableEntitys of the
producing group of RunnableEntitys terminate (and the implicit data get updated).

If those RunnableEntitys are reading the data also, those read accesses will not
read the coherent values but the intermediary values written by RunnableEntitys of
the same group.

For all other RunnableEntitys that are not member of the producing group of
RunnableEntitys it appears as if the data have been updated at this very point
coherently.

In order to avoid incorrect configurations its possible to explicitly define the group of
RunnableEntitys for which the coherency does not apply.

[TPS_SWCT_01625] Sending SwComponentType OWNS a DataPrototypeGroup
in the role dpgRequiresCoherency and also RunnableEntityGroups | If
a sending SwComponentType OWNS a DataPrototypeGroup in the role dp-
gRequiresCoherency, RunnableEntityGroups in the role regboesNotRe-
quireStability may exist.

Read accesses from RunnableEntitys in those RunnableEntityGroups Will not
read the coherent values but the intermediary values written by RunnableEntitys of
the same group. | (RS_SWCT_03065)

4.9.3 Consistency Needs for Senders and receivers of the same Data inside on
RunnableEntityGroup

[TPS_SWCT _01476] Sender and receiver of the same implicitly communicated
VariableDataPrototypes are associated with the same RunnableEntity-
Group | For the case of sender and receiver of the same implicitly communi-
cated VariableDataPrototypeS are associated with the same RunnableEnti-
tyGroup [TPS_SWCT_01472], [TPS_SWCT_01473], [TPS_SWCT_01475] as well
as [TPS_SWCT_01475] apply with the exception that updates of the values of im-
plicitly communicated variableDataPrototypes inside the given RunnableEn-
tityGroup become visible immediately after the producing RunnableEntity was
terminated. | (RS_SWCT_03065)

AUTOSAR

5 Data Description

5.1 Introduction

[TPS_SWCT_01229] Three different levels of abstraction regarding the definition
of data types | In the context of defining data types and prototypes, the AUTOSAR
concept distinguishes between three different levels of abstraction as depicted in Ta-
ble 5.1. |(RS_SWCT_03215, RS _SWCT _03216, RS_SWCT_03217)

Application Data Level

Implementation Data Level

Base Type Level

Table 5.1: Abstraction Levels for Describing Data

[TPS_SWCT_01230] Application Data Level [The Application Data Level is the
common level at which ApplicationSwComponent Types specify a data type or pro-
totype. This level allows to define all the data attributes which are needed from the
application point of view, in order to exchange data between software components or
between a software component and a measurement and calibration tool. It is possible
to specify data communication of a complete virtual Function Bus based on this
level only.

This level includes among other things the numerical range of values, the data structure
as well as the physical semantics. Data semantics (e.g. physical units) is not in the
focus' for the RTE in order to make communication technically possible. However,
it is important for a unique interpretation of data in the application software and in
measurement and calibration systems. |(RS_SWCT _03216)

Please note that ApplicationDataTypes — by virtue of being platform-independent
by definition — do not become visible as data types in the code implementation of
software-components.

In former version of this specification, this level was not clearly separated from the
implementation level. These had the following drawbacks which are now solved:

e The model of primitive types (like integer, boolean, real, opaque) was anticipating
implementation aspects already on a very high level of design.

e The data type model used within ports, focusing on communication via the RTE,
was not sufficient to model all type-aspects of variables and parameters which are
visible within an AUTOSAR system for other purposes than RTE-communication,
namely NvM-data access, calibration, measurement, diagnostics, BSW-module

'There are some aspects that affect the RTE, e.g. scaling of dataElements

AUTOSAR

interfaces. Using a uniform type system covering all these aspects is now fa-
vored.

e Calibration parameters were not completely incorporated into the data type con-
cept. Some of their attributes (especially for curves and maps) could be spec-
ified only on the level of prototypes or were not completely formalized within
AUTOSAR (like swRecordLayout).

e The data type system was not compatible with the usage in calibration standards
like ASAM-MCD (namely the usage of categorys).

e Adding implementation specific elements like a base type, was not possible with-
out formally changing the data type used in a VFB design. A mapping mecha-
nism that could be used in later project phases and is common in other parts of
AUTOSAR (e.g. for mapping components to ECUs) was missing.

e The RTE Specification contained many default rules and assumptions on how to
implement certain data types or prototypes in C. With a more formal description
of all relevant implementation aspects, the generation of C-interfaces is better
determined. But these aspects should be separated from the application level
design.

e Since there could be many data types on the application level in a big system, the
probability of name clashes in the interfaces to the RTE was rather high. Using a
separate set of types to implement the RTE interfaces solves this issue.

[TPS_SWCT _01231] Application level may impose strong requirements on the
design of the corresponding implementation level | It should be pointed out, that
with the specification of computation methods and record layouts, the application level
imposes strong requirements on the design of the corresponding implementation level.
It might even be the case, that when anticipating different implementations, these ele-
ments might be chosen differently.

This is due to the nature of these elements which form a bridge from the physical
world to the numerical representation (and vice versa). Nonetheless we consider the
specification of these elements as belonging to the application level.

On the one hand, this information is required by MCD-tools and thus shall be part
of a rather high-level design. On the other hand, this approach will allow to use
a limited set of implementation data types. |(RS_SWCT_03215, RS_SWCT 03216,
RS_SWCT _03217)

Further information about the compatibility requirements between application level and
implementation level can be found in section 6.2.5.

[TPS_SWCT_01232] Implementation Data Level [The Implementation Data Level
is closer to the actual code implementation in a programming language like C, though
it is still an abstraction of the code.

AUTOSAR

Its values correspond to the actual binary numbers handled by the programming lan-
guage on the CPU. It contains concepts like pointers and unions which relate to the
organization of data in memory and are not relevant for the application level.

This level also defines structure, but it can be more granular. For example, the appli-
cation level may define a text to be transferred to an instrument cluster as a primitive
type (if the structure is not relevant for the application), whereas on the implementation
level it could be modeled as an array of bytes. |(RS_SWCT_03217)

[TPS_SWCT_01233] Use case for the Implementation Data Level | There are sev-
eral use cases for this level in AUTOSAR:

e First of all, the Implementation Data level can be used in the description of in-
terfaces, and data (e.g. debug data) within the basic software, see [6] for more
details on these use cases.

e ImplementationDataTypes should also be used to describe the interfaces of
libraries which operate on a purely numerical level.

e Implementation Data is also used for the description of interfaces between
software-components and and the basic software (namely AUTOSAR Services),
because these typically cover implementation aspects only.

e It is possible to define communication in a VFB system directly on this level if the
physical and semantical abstraction is not of interest.

e Last not least the input for the RTE generator is defined by data descriptions on
this level. This means that in case a SWC defines its data only on application level
a corresponding set of implementation data types shall be created (or generated)
as part of the ECU extract before the RTE can be generated.

|(RS_SWCT 03217)

[TPS_SWCT_01234] Base Level | The Base Type Level is used to describe the
primitive elements in terms of bits and bytes from which the implementation data is
built up. It is considered as a separate level in order to allow for reuse of the basic
types defined on this level.

These base types still do not completely determine the actual implementation on a
programming language, but they impose strong restrictions for this as they define for
example the number of bits and bytes to be used.

Depending on the use case, the base types can be defined as platform independent or
can also contain platform specific attributes (namely endianess and alignment). | ()

[TPS_SWCT_01235] Mapping of data defined on the Application level to the Im-
plementation and Base Type level [It is important to understand, that the mapping
of data defined on the Application level to the Implementation and Base Type level
depends on the medium on which the data is transported.

For example, if a physical value can be expressed with sufficient accuracy and range
by a 16-bit unsigned integer, it still might look very different when sent over CAN, when

AUTOSAR

seen by a software-component on a big-endian 32-bit machine or when seen by a
software-component on a little-endian 16-bit processor.

Conversion between several data implementations of the same application data type
might be necessary in case of communication between components on different ECUs.
AUTOSAR COM [21] is responsible for this.

It implies that the configuration depends on the definition of the data that
are transmitted between components®. |(RS_SWCT_ 03215, RS _SWCT 03216,
RS_SWCT _03217)

AUTOSAR COM might need to convert a 16-bit integer between little-endian and big-
endian representations; whereas an array of 16 bytes does not need to be swapped
even if the endianess changes. In case of intra-ECU communication byte order con-
version is not necessary, since the software-components reside on the same machine.

[TPS_SWCT_01236] Big picture of data types | Another way of approaching the
concept of data types in AUTOSAR (especially with respect to the question of what
“kind” of data type in related to which modeling meta-level) is to sketch the following
“big picture” of data types:

ApplicationDataType Defined on M2 - provides the meta model for data types on
application level. It covers the application-relevant aspects of a data type.

An ApplicationDataType shall finally be mapped to an Implementation-—
DataType.

ImplementationDataType Defined on M2 - provides the meta-model for data types
on implementation level. With respect to C source code, an Tmplementation-—
DataType finally boils down to a typedef.

BaseType Defined on M2 - provides the platform-dependent part of an Tmplementa—
tionDataType. the dependency on the platform covers the following aspects:

¢ Definition on the level of the C language - using nativeDeclaration

e Technical representation on the target platform (byte order, alignment, en-
coding) as required for the support of MCD systems.

Platform Data Type Defined on M1 - provided by AUTOSAR. Platform types shall be
available on each platform on which an AUTOSAR-System can run.

The name of the Plat form Data Type and the properties with respect to the
interface between modules / components is the same on every platform.

The particular representation varies from platform to platform.

Platform Data TypeS shall be modeled using TImplementation-
DataTypesS.

2More exactly speaking, the data shall be converted to and from a so-called SystemSignal.

AUTOSAR

Note that in AUTOSAR R3.x the platform types are implemented manually and
could even not be expressed on ARXML model (see [SRS_Rte_00150]). In
AUTOSAR R4.1the Platform Data TypeS can be represented in the ARXML
model. Subsequent releases of AUTOSAR may generate the P1latform Data
Types directly from the ARXML Model.

Standard Type Defined on M1 - provided by AUTOSAR. Standard types are defined
by referring to platform types.

|(RS_SWCT_03215, RS_SWCT_03216, RS_SWCT_03217)

[TPS_SWCT_01237] swbataDefProps | The properties of data are summarized in
the meta-class swhataDefProps. This meta-class itself is the superset of all applica-
ble properties. | (RS_SWCT_03216, RS_SWCT _03217)

Subsets of swbataDefProps are applicable in specific case, for a summary please
refer to the following tables:

e The data categorys are summarized in table 5.6.

Properties for ApplicationDataTypes are summarized in table 5.7.

Properties for ImplementationDataTypeS are summarized in table 5.17.

Properties for DataPrototypes typed by ApplicationDataType$S are sum-
marized in table 5.31.

Properties for DataPrototypes typed by ImplementationDataTypeS are
summarized in table 5.32.

Applicability of swbataDefProps is summarized in table 5.39.

5.2 Data Types

5.2.1 Overview

As explained in section 5.1 it is possible to describe data provided by a software-
component from the application as well as from the implementation point of view.

[TPS_SWCT_01072] ApplicationDataType and ImplementationDataType |
The common concept behind this is expressed by the abstract meta-class Autosar-—

DataType, from which an ApplicationDataType and an Implementation-
DataType is derived. |(RS_SWCT_03215, RS _SWCT _03216, RS_SWCT_03217)

Figure 5.1 shows a summary of the basic meta-classes used for the definition of
AutosarDataTypesS.

AUTOSAR

ARElement «atpVariation»
AtpType +swDataDefProps SwDataDefProps
AutosarDataType o

0.1
AtpBlueprint AtpBlueprint ARElement
AtpBlueprintable AtpBlueprintable AtpBlueprint
ApplicationDataType AbstractimplementationDataType AtpBlueprintable
AtpType
ModeDeclarationGroup
1 +type +applicationDataType 1 +implementationDataType 1 1 /\+timplementationDataType +modeGroup 1
{redefines
atpType}
«isOfType»
IDEVEIREEa3 DataTypeMap ModeRequestTypeMap
ApplicationCompositeElementDataPrototype
:" +dataTypeMap| 0..* +modeRequestTypeMap 0..*

ApplicationCompositeDataPrototype is
contained in ApplicationDataType as
ApplicationArrayElement or
ApplicationRecordElement.

ARElement
AtpBlueprint
AtpBlueprintable

DataTypeMappingSet

Figure 5.1: Summary of AutosarDataType

Class AutosarDataType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note Abstract base class for user defined AUTOSAR data types for ECU software.

Base ARElement, ARObject, AtpClassifier, AtpType, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable

Subclasses AbstractimplementationDataType, ApplicationDataType

Attribute Type Mul. Kind | Note

swDataDef SwDataDefProps 0..1 agor The properties of this AutosarDataType.

Props

Table 5.2: AutosarDataType

Class ApplicationDataType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note ApplicationDataType defines a data type from the application point of view. Especially it should be used
whenever something "physical" is at stake.
An ApplicationDataType represents a set of values as seen in the application model, such as
measurement units. It does not consider implementation details such as bit-size, endianess, etc.
It should be possible to model the application level aspects of a VFB system by using ApplicationData
Types only.

Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, AutosarDataType,
CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement, Referrable

Y

AUTOSAR

A
Class ApplicationDataType (abstract)
Subclasses ApplicationCompositeDataType, ApplicationPrimitiveDataType
Attribute Type Mul. Kind | Note

Table 5.3: ApplicationDataType

[TPS_SWCT_01073] Composite ApplicationDataType [An Application-—
DataType can be composed (in form of a record or an array) of elements which
themselves are typed by another ApplicationDataType. |(RS_SWCT_03215,
RS SWCT 03216)

h [TPS_SWCT_01074] Composite ImplementationDataType | An Implementa-—
tionDataType can also be composed of elements but in this case no type/prototype
concept (see [11]) has been applied. Both concepts will be explained in the following
chapters in more detail. | (RS_SWCT_03215, RS_SWCT_03217)

5.2.2 Data Type Mapping

As explained above, the concept of application data types as well as that of implemen-
tation data types can be used to instantiate a data prototype in an M1 model. However
there are use cases, especially in order to generate the RTE contract for Applica-
tionSwComponentTypeS, Where it is required to consider both levels for one given
data prototype.

[TPS_SWCT_01189] DataTypeMap | This is supported by the meta-class
DataTypeMap by which an ApplicationDataType and an Implementation-—
DataType can be mapped to each others in order to describe both aspects of one
dataElement. |(RS_SWCT_ 03216, RS_SWCT_03217, RS_SWCT_03215)

Class DataTypeMap

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note This class represents the relationship between ApplicationDataType and its implementing Abstract
ImplementationDataType.

Base ARObject

Attribute Type Mul. Kind | Note

applicationData ApplicationDataType 1 ref This is the corresponding ApplicationDataType

Type

implementation Abstractimplementation 1 ref This is the corresponding AbstractimplementationData

DataType DataType Type.

Table 5.4: DataTypeMap

If, for example, a dataElement in @ SenderReceiverInterface is typed by an
ApplicationDataType it shall additionally be associated to an Tmplementation—
DataType in order to be able to generate the RTE.

AUTOSAR

[TPS_SWCT_01190] ModeRequestTypeMap | Another mapping class, Mod-
eRequestTypeMap, has been introduced in order to allow the transport of mode re-
lated information via “normal” sender-receiver communication. Apart from this, mode
information is not handled by the usual type system but needs special meta-classes. |
(RS_SWCT_03110)

This aspect is explained in more detail in chapter 4.2.5.

Note that the mapping classes instead of direct associations have been introduced
for process reasons: It allows to maintain application and implementation types in
separate M1 artifacts without direct links.

For example, if a software component is moved to another hardware platform the map-
ping between application and implementation types might be changed in the scope of
the specific component without changing the overall VFB model.

[TPS_SWCT 01191] mapped ApplicationDataType and Implementation-
DataType shall be compatible | In order to set up a valid DataTypeMap between
an ApplicationDataType and an ImplementationDataType the two types shall
be compatible.

Of course, if TmplementationDataTypeS are generated from existing Appli-
cationDataTypes it is expected that they will be automatically compatible. |
(RS_SWCT_03216, RS_SWCT_03217)

Please note that the compatibility between an ApplicationDataType and an Im-
plementationDataType mapped onto each other is clarified in chapter 6.2.5.

Furthermore, the various mappings are aggregated in a container DataTypeMap—
pingSet for easier maintenance in artifacts.

Class DataTypeMappingSet
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Note This class represents a list of mappings between ApplicationDataTypes and ImplementationDataTypes.

In addition, it can contain mappings between ImplementationDataTypes and ModeDeclarationGroups.

Tags: atp.recommendedPackage=DataTypeMappingSets

Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable

Attribute Type Mul. Kind | Note

dataTypeMap DataTypeMap * aggr This is one particular association between an Application
DataType and its AbstractimplementationDataType.

modeRequest ModeRequestTypeMap * aggr This is one particular association between an Mode

TypeMap DeclarationGroup and its AbstractimplementationData
Type.

Table 5.5: DataTypeMappingSet

Note that the meta-classes AutosarDataType, ModeDeclarationGroup and
DataTypeMappingSet are derived from ARElement. This means that these and
the meta-classes derived from them can be declared on the M1 level as part of an
ARPackage and thus can be used in several different Software Component or Basic
Software Module Descriptions.

AUTOSAR

How to organize DataTypeMappingSets for a software system, for example whether
there is a separate mapping set for each ECU or even for each software component,
is considered as project specific. However, the RTE generator needs a well defined
DataTypeMappingSet as input in relation those artifacts which might define data
typed as ApplicationDataTypes.

[TPS_SWCT _01192] Meta-classes that have an association to a DataTypeMap-
pingSet | Therefore, the following meta-classes in the scope of this document have
an association to a DataTypeMappingSet:

e InternalBehavior, because it represents the interface between the software
component’s code and the RTE and all data types belonging to the particular
component type have to be uniquely provided on implementation level.

e ParameterSwComponentType, for the same reason (this component type
doesn’'t have an InternalBehavior).

e NvBlockDescriptor, because this meta-class also leads to generation of code
from data types and is not associated to an InternalBehavior.

e CompositionSwComponentType, to support the definition of ComSpecs in the
context of a CompositionSwComponentType. Please note that this definition
of a data type mapping is informal (i.e. it shall be taken as a hint for delegation
PortPrototypes that are not yet referenced by a DelegationSwConnector
or PassThroughSwConnector) and shall not be regarded as a binding contract
towards the inner elements of the CompositionSwComponentType.

10

For more details about this aspect please refer to figure 5.79.

[TPS_SWCT _01193] Mappings between application and implementation types do
not necessarily have to form a 1:1 relation | In general, it is not required that the sum
of all mappings between ApplicationDataType and ImplementationDataType
in a given system form a 1:1 relation. Depending on the use case and on the scope,
1:n as well as n:1 mappings are possible :

e Several different ApplicationbDataTypeS may be mapped to the same Im-
plementationDataType in the scope of a system, an ECU, or even a single
InternalBehavior of an atomic software component.

Of course, this requires that the different ApplicationDataTypes are used for
different DataPrototypes and thus that the DataPrototypes are typed by
them (and not by the ImplementationDataTypeS). This allows to establish
a more simple type system on the implementation level, than on the application
model level.

e The same ApplicationDataTypes may be mapped to different Tmplemen-
tationDataTypes for different ECUs. This scenario allows to chose the imple-
mentation data types according to the needs of specific ECUs.

AUTOSAR

e The same ApplicationDataTypes may be mapped to different Implemen-
tationDataTypeS even in the scope of a single ECU (more exactly speak-
ing, a single RTE), but only for different At omicSwComponent Types (see [con-
str_1004]).

This improves the portability of software components which were developed in-
dependently or are ported between ECUs.

10

[constr_1004] Mapping of ApplicationDataTypes in the scope of single Atom-
icSwComponentTypes | In the scope of At omicSwComponent Type.internalBe—
havior.dataTypeMapping, each ApplicationDataType shall be mapped to ex-
actly one ImplementationDataType. |()

[constr_1005] Compatibility of ImplementationDataTypes mapped to the same
ApplicationDataType [Itisrequiredthat ImplementationDataTypes which are
taken for connecting corresponding elements of Port Interfaces and thus refer to
compatible ApplicationDataTypes are also compatible among each other (so that
RTE is able to cope with possible connections by converting the data accordingly). |()

This constraint is visualized in figure 5.2.

compatible and connected

ApplicationDataType |« » ApplicationDataType

A A

compatible and mapped

compatible and mapped

A v

ImplementationDataType ¢ -----—-—---- » ImplementationDataType

shall also be
compatible

Figure 5.2: Compatibility of Data Types

AUTOSAR

[constr_1636]{DRAFT} Mapping of data types that represent an Optional Ele-
ment Structure [An ApplicationRecordDataType With at least one element
where attribute i sOptional is set to True shall only be mapped to an Implemen-
tationDataType that fulfills the structural requirements to represent an Optional
Element Structure (see[TPS_SWCT_01774]). |()

5.2.3 Data Categories

An AutosarDataType is derived from Identifiable, thus having a 1ongName, a
shortName, a category, and several further attributes for administrative and docu-
mentation purposes (for details see [11]).

[TPS_SWCT _01238] Attribute category used in the context of Autosar-
DataType | The category attribute is used to set constraints for the various proper-
ties which can be specified for an AutosarDataType. These properties are defined
by aggregating the meta-class swbataDefProps which contains several attributes
and references. |()

Detailed explanations about the semantics of meta-class swbataDefProps can be
found in chapter 5.4.

[constr_1143] category of AutosarDataType shall not be extended | In contrast
to the general rule that category can be extended by user-specific values it is not
allowed to extend the meaning of the attribute category of meta-class Autosar-

DataType |()

This approach avoids a very deep and complicated inheritance tree which otherwise
would be needed on the M2 level for AutosarDataType. There is to some extend a
redundancy between setting the category and defining the attributes of Autosar-
DataType.swDataDefProps. This redundancy is intended and allows to for a tool to
rule out senseless configurations via simple rules.

In former version of this specification the categories were only used for calibration
parameters. Due to several extensions the categories are now applicable for all use
cases of the AutosarDataType.

An overview on all valid categorys defined for AutosarDataType is shown in ta-
ble 5.6. Some of the categorys are also applied to sub-elements of the type system
(column “Applicable to ...” in table 5.6). This is explained in more detail in the following
sections.

Please note that the column “RTE + BSW” of table 5.6 is only applicable for cate-
gorys that are relevant either for ImplementationDataTypes and/or the aspect of
measurement and calibration in McDataInstance.

[constr_1006] applicable data categories | Table 5.6 defines the applicable cate-
gorys depending on specific model elements related to data definition properties. |

()

AUTOSAR

Category Applicable to ...

Use Case

Description

ApplicationArrayDataType
ApplicationRecordDataType

SwServiceArg

> |ApplicationPrimitiveDataType

X | ApplicationRecordElement
X |ApplicationArrayElement

VALUE

X [ApplicationValueSpecification

> | ImplementationDataType

> | ImplementationDataTypeElement

x | SwSystemconst

X | McDataInstance
> | Calibration

> [Communication Port Interfaces

x| Measurement
< | RTE + BSW

Contains a single value.

VAL_BLK X [XX

A value block defines values stored together within one cali-
bration parameter object.

It is similar to an value array but it stores the values by means
of an axis instead (only important for calibration data han-
dling).

DATA REF-
ERENCE

Contains an address of another DataPrototype (whose
type is given via SwDataDefProps.swPointerTarget—
Props).

FUNCTION_
REFERENCE

Contains an address of a function prototype (whose sig-
nature is given via SwDataDefProps.swPointerTarget—
Props.functionPointerSignature).

TYPE_REF-
ERENCE

The element is defined via reference to another data type (via
SwDataDefProps.implementationDataType).

STRUCTURE X X | X

Holds one or several further elements which can have differ-
ent AutosarDataTypes.

The underlying elements are defined in the same manner as
normal data except for the association to SwAddrMethod:
This has to be the same for all underlying elements.

Corresponds to a Record if used in the application domain.

UNION

Can hold values of different data types. It is similar to STRUC-
TURE except that all of its members start at the same location
in memory.

A UNION data prototype can contain only one of its elements
at a time. The size of the UNTON is at least the size of the
largest member.

Please find more information in [TPS_SWCT_01700].

ARRAY X X | X

An array of sub-elements which are of the same type.

BIT

One or several bits within a host variable, which are treated
as an own data object.

HOST

A HOST data type is like a simple VALUE, but it is used for
packed bit definition.

That means it can host several BIT variables which have their
own description and measurement access.

STRING X [X |X

Contains a single value interpreted as a text string (note that
it appears as a single value for the application domain; the
internal representation can be an array).

3[constr_1295] applies!

AUTOSAR

A

Category Applicable to ... Use Case | Description

ApplicationArrayDataType
ApplicationRecordDataType
ApplicationPrimitiveDataType
ApplicationRecordElement
ApplicationArrayElement
ApplicationValueSpecification
ImplementationDataType
ImplementationDataTypeElement
Communication Port Interfaces

RTE + BSW

SwServiceArg
SwSystemconst
McDatalInstance
Calibration
Measurement

Contains one boolean state. Depending on the CPU direct
addressing of single bits may not be available.

x
x
x
x
x
x
x
x

BOOLEAN .
So a byte or a word can be used to store only one logical

state.

An axis definition as separate calibration parameter which can
be referenced by any CURVE, MAP, CUBOID, CUBE_4, and

CUBE_5.
COM_AXIS X [x|x]x X | X X)) o)
The benefits by using a common axis is that it saves memory

space; because it is stored only one time and can be used in
multiple CURVES, MAPS, CUBOIDS, CUBE_4s, and CUBE_5s.

A RES_AXIsS (rescale axis) is also a shared axis like
COM_AXIS, the difference is that this kind of axis can be used
for rescaling.

Note that the RES_AXTIS is by nature a CURVE which is used

RES_AXIS X [x1x]x X [X X] : .)
to implement a non linear scaling (rescale) of the axis.

In addition to saving memory space via the shared usage like
a COM_AXIS, it can compress a huge range to a non-linear
distributed axis points thus retaining the required accuracy.

Calibration parameter with one input value and one output
value. That means output values can be defined depending
on the input value. The granularity of implemented functional-
ity can be changed by using different number of axis points.

A CURVE has always one input axis and one output axis. The
output axis is a characteristic of the curve and every time
present but the input axis can be defined within the curve def-
inition or separately.

Calibration parameter with two input values and one output
value. That means output values can be defined depending
on the input values.

The granularity of implemented functionality can be changed
MAP X | XX |x X | X X by using different number of axis points for y- and x-axis. A
MAP has always two input axes and one output axis.

The output axis is a characteristic of the MAP and every time
present but the input axes can be defined within the MAP defi-
nition or separately.

AUTOSAR

A

Category Applicable to ... Use Case | Description

o L
7] o o
[N - 0]
> I} g
0| E o 0]
wg:tuu 4] ~
g: YRR =N PR]] 0
Hlolo|g|lwH|o|lo 0}
Hldg Q|l&| 0 H| & & 5}
P00 E| O > D> g
AHEEEEEE 5
! -—
n%u%mmuu c
IR I IR I R A =
gl Oo|E|lolm|B|AalA e
sH|lo|AlO|H]|A|g| g 7] o
H|lo|4lo|u|lo|OfO L0 o
BRI TR R =
ale|als glP|P| H(g]|a —| o
o|o|o|lo|o|]o|m®|m|d|O P c|l=
Al A A Al A A P[P O[O ®0 q;mg
PlolpiPiplplel a0l Elgls] el O
g0 ©d|ld dldlo|0(ld|0|H|O|g|E
v(vlv|Uv|U|O|E|[E|lP|R|0|E|2| (D
AfA| Al AlAlA| O[O M0 0[SOS 4
H|ld|A|lAdA|A|A|A|[A| 0| > ©[S]|@
N HEEEREEEE R
< || H|H| 0|n S [O2|0|x

Calibration parameter with three input values and one output
value. That means output values can be defined depending
on the input values.

The granularity of implemented functionality can be changed
CUBOID X | X |x|x X | X X by using different number of axis points for the input axes. A
CUBOID has always three input axes and one output axis.

The output axis is a characteristic of the cuUBOID and every
time present but the input axes can be defined within the
CUBOID definition or separately.

Calibration parameter with four input values and one output
value. That means output values can be defined depending
on the input values.

The granularity of implemented functionality can be changed
CUBE_4 X [x|x]x X | X X by using different number of axis points for the input axes. A
CUBE_4 has always four input axes and one output axis.

The output axis is a characteristic of the CUBE_4 and every
time present but the input axes can be defined within the
CUBE_4 definition or separately.

Calibration parameter with five input values and one output
value. That means output values can be defined depending
on the input values.

The granularity of implemented functionality can be changed
CUBE_5 X | X |x|x X | X X by using different number of axis points for the input axes. A
CUBE_5 has always five input axes and one output axis.

The output axis is a characteristic of the CUBE_5 and every
time present but the input axes can be defined within the
CUBE_5 definition or separately.

MACRO X X | This represents an argument to a C macro.

Table 5.6: Usage of category for Data Types

[TPS_SWCT 01239] default value for attribute category used in the context of
SwSystemconst [The default value for the category of a SwSystemconst shall be
VALUE. This has to be applied if no explicit definition of the category can be found. |

()

AUTO SAR

5.2.4 Application Data Type

[TPS_SWCT_01240] Subclasses of ApplicationDataType | The abstract meta-
class ApplicationDataType is further derived into an ApplicationPrimitive-
DataType and an ApplicationCompositeDataType Which are further explained
in the following sub-chapters. |(RS_SWCT_03216)

This aspect is further explained in Figure 5.3.

ARElement «atpVariation»
AtpType +swDataDefProps SwDataDefProps
AutosarDataType o
0.1

?

AtpBlueprint
AtpBlueprintable
ApplicationDataType

I

ApplicationCompositeDataType

I

ApplicationPrimitiveDataType ApplicationRecordDataType ApplicationArrayDataType

+ dynamicArraySizeProfile: String [0..1]

Figure 5.3: Basic Meta-Model for ApplicationDataType

AUT O SAR Software Component Template
) AUTOSAR CP Release 4.4.0

Attributes of SwDataDefProps Root Elem. | Attribute Existence per Category

ApplicationDataType
ApplicationRecordElement
ApplicationArrayElement

x
>
>

X | X[X|X]|X]|XxX]| X

Other Attributes below the Root Element

V
4don’t care
5This is required by [TPS_SWCT_01179].
235 of 1069 Document ID 062: AUTOSAR_TPS_SoftwareComponentTemplate

— AUTOSAR CONFIDENTIAL —

AUTOSAR

element: < | x| x 1 *
ApplicationRecordElement o
element: X X X 1
ApplicationArrayElement

ApplicationArrayElement.array- X 0.1
SizeSemantics -
ApplicationArrayEle- X 1
ment.maxNumberOfElements

Table 5.7: Allowed Attributes vs. category for ApplicationDataTypeS

Class ApplicationPrimitiveDataType
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Note A primitive data type defines a set of allowed values.

Tags: atp.recommendedPackage=ApplicationDataTypes

Base ARElement, ARObject, ApplicationDataType, AtpBlueprint, AtoBlueprintable, AtoClassifier, AtpType,
AutosarDataType, CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement,
Referrable

Attribute Type Mul. Kind | Note

Table 5.8: ApplicationPrimitiveDataType

Class ApplicationCompositeDataType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note Abstract base class for all application data types composed of other data types.

Base ARElement, ARObject, ApplicationDataType, AtpBlueprint, AtoBlueprintable, AtoClassifier, AtpType,
AutosarDataType, CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement,
Referrable

Subclasses ApplicationArrayDataType, ApplicationRecordDataType

Attribute Type Mul. Kind | Note

Table 5.9: ApplicationCompositeDataType

[TPS_SWCT _01241] Applicable categorys for subclasses of Application-
DataType | Like any AutosarDataType, also the primitive and composite types
on application level are characterized by their category and their SwbataDefProps.
For a given category, only a limited set of attributes of the swbatabDefProps makes
sense. |(RS_SWCT_03216)

[constr_1007] Allowed attributes of SwDataDefProps for Application-
DataTypes | The allowed attributes of SwDataDefProps for Application-
DataType$s and their allowed multiplicities are listed as an overview in table 5.7. |

()

This list makes use of the swhbatabDefProps and other meta-model elements which
are explained in detail in the further sections of this chapter.

[constr_1008] Applicability of categorys STRUCTURE and ARRAY | The cate-
gories STRUCTURE and ARRAY correspond to ApplicationCompositeDataTypeS

AUTOSAR

whereas all other categorys can be applied only for ApplicationPrimitive-
DataTypes. |()

5.2.4.1 Application Primitive Data Types
5.2.4.1.1 Data Types for Single Values

In contrast to prior versions (R3.x) of the AUTOSAR standard, the primitive application
data types on M2 level are no longer specified. Instead of this, the meta-class Appli-
cationPrimitiveDataType in combination with the attached swhatabDefProps is
used on the level of the M2 (meta-) model to specify the details on M1 modeling level.

[TPS_SWCT _01242] category characterizes the nature of a data type on appli-
cation level | The category is used in addition to characterize the nature of a data
type on application level. |(RS_SWCT_03216)

For example, the IntegerType as of AUTOSAR R3.x allows for specifying lower and
upper ranges that constrain the applicable value interval. That aspect is still supported
by this version of AUTOSAR, but the meta-model is different from the former approach.
Especially it is no more considered of importance to specify that an Application-
PrimitiveDataType is actually represented by “integer” numbers.

Figure 5.4 provides a sketch of how limits are defined now. The key feature is the ag-
gregation of SwbataDefProps at AutosarDataType. The meta-class SwbataDef-
Props allows for creating a reference to a DataConstr that in turn aggregates a
DataConstrRule.

The latter aggregates PhysConstrs and this meta-class finally owns two Limits in
the roles lowerLimit and upperLimit.

AUTO SAR

ARElement
AtpType
AutosarDataType
+swDataDefProps | 0..1
«atpVariation» AthI_ueprint
SwDataDefProps AtpBlueprintable
ApplicationDataType
+dataConstr\(/0..1
ARElement

AtpBlueprint ApplicationPrimitiveDataType

AtpBlueprintable
DataConstr

+dataConstrRule | 0..*

DataConstrRule

+ constrLevel: Integer [0..1]

+physConstrs | 0..1

PhysConstrs

+ maxDiff: Numerical [0..1]

+ maxGradient: Numerical [0..1]

+ monotony: MonotonyEnum [0..1]
«atpVariation»

+ lowerLimit: Limit [0..1]

+ upperLimit: Limit [0..1]

Figure 5.4: Specification of Physical Limits

Another example is shown in Figure 5.5. By making again use of SswbataDefProps,
this figure shows how semantics in form of a CompuMethod and a Unit can be at-
tached.

Also an initValue can be defined which is used by the RTE in order to initialize
values of variableDataPrototypeS/ParameterDataPrototypes defined locally
in a software-component.

AUTOSAR

ARElement AtpBlueprint
AtpType | AtpBlueprintable
AutosarDataType ApplicationDataType

’ ‘f

ApplicationPrimitiveDataType

+swDataDefProps | 0..1

«atpVariation» +compuMethod Agl;ilzllle;r;\ﬁ::
SwDataDefProps
0.1 AtpBlueprintable
CompuMethod
+unit\|/0..1
+unit ARElement
Unit
0.1

+invalidvalue | 0..1

ValueSpecification

Figure 5.5: Some Properties of ApplicationPrimitiveDataTypeS

Figure 5.6 illustrates the relationship between the data constraints for Application-
DataType, CompuMethod, ImplementationDataType, BaseType and also the
invalidvalue for the case of an entirely linear or rational conversion.

AUTO SAR

Invalid Value

Invalidvaue outside the scope of

Invalidvaue inside the scope of the

the CompuMethod is transparent CompuMethod is known to the
tothe software-component N software-component

Application
DataType

CompuMethod

Implementation
DataType

Lower [unit] Upper [unit]
|< physConstrs of I
I ApplicationDataType /I
! limits of CompuMethod I
| l
7 .
computed interalConstrs of \
ApplicationDataType \ 4

interna Constrs of

ImplementationDataType

BaseType

range by BaseType

0

2n

Figure 5.6: Value ranges and invalid values for linear and rational CompuMethod

Please note that Figure 5.6 is only applicable for linear and rational CompuMethods.

Figure 5.7 and Figure 5.8 depict a similar situation for the case of mixed Com-
puMethods where the invalidvalue is defined in the discrete part of a Com-
puMethod.

AUTO SAR

Invalid Value

Invalidvalue appears in the textual

partof the CompuMethodandis
4 therefore known to the componert

Application ' .
DataType Lower [unit] Upper [unit]
! physCorstrs of |
| ApplicationDataType I
CompuMethod I limits of CompuMethod I
l |
I -

Textud Value defined as //o

partof the ComptMethod computed internalConstrs of \

ApplicationDataType \ ’

Implementation

DataType
interna Constrs of
ImplementationDataType
range by BaseType
BaseType : 0

Figure 5.7: Value ranges and invalid values with discrete invalidvalue defined inside
the scope of the CompuMethod

Figure 5.7 sketches a case where a CompuMethod has a linear and a discrete part and
the invalidvalue is defined by means of one value that is defined in the discrete part
of the CompuMethod.

As mentioned by [constr_1281], the invalidvalue shall be defined in the physical
domain in this case. In other words, the invalidvalue shall be defined by a symbol
according to [TPS_SWCT _01432].

As a consequence of the definition of an invalidvalue inside the scope of a mixed
CompuMethod the invalidvalue is visible to the software-component.

AUTOSAR

Invalid Value

Invalidvaue does not appear in
the textua part ofthe

: CompuMethod and is ther efore
H not known to the comporent

Application

DataType Lower [unit] Upper [unit]
! physConstrs of l
I ApplicationDataType I
I I
CompUMethOd 0 limits of CompuMethod 0
0.0 ,I I
Textua Value defined as : \
- computed internalConstrs of
partof the CompuMethod ApplicationDataType \ 7%
Implementation
DataType
interna Constrs of
ImplementationDataType
range by BaseType
BaseType : 0

Figure 5.8: Value ranges and invalid values with discrete invalidvalue defined outside
the scope of the CompuMethod

Figure 5.8, on the other hand, sketches a case where a CompuMethod has a linear
and a discrete part and the invalidvalue is not within the defined linear interval and
not defined by means of one value out of the discrete part of the CompuMethod.

As mentioned by [constr_1283], the invalidvalue shall be defined in the internal
domain in this case. In other words, the invalidvalue shall be defined by a Numer-
icalValueSpecification.

As a consequence of the definition of an invalidvalue outside the scope of a mixed
CompuMethod the invalidvalue is visible to the software-component.

If an ApplicationPrimitiveDataType does not define dataConstr then implicit
constraints can be derived from physical meaning of the ApplicationDataType.

For example, if the data type represents a temperature the lower bound will not be able
to exceed OK.

For other physical meanings, it could be possible that the implicitly assumed limits go
from —INF to +INF.

In order to avoid ambiguity regarding the values of limits it is strongly recommended
to define a reasonable limit for ApplicationPrimitiveDataTypes.

[constr_2544] Limits need to be consistent |

AUTOSAR

e The limits of ApplicationDataType shall be inside of the definition range of
the CompuMethod

The CcompuMethod needs to be applicable for limits of an Application-
DataType. The reason is that the internal representation of the limits for the
ApplicationDataType are calculated by applying the CompuMethod.

e The such defined internal limits of the ApplicationDataType shall be within
or equal the internalConstrs of the mapped ImplementationDataType.

e The limits of the TmplementationDataType shall be within or equal to the
limits defined by the size of the BaseType.

10

[constr_1281] invalidvValue is inside the scope of the compuMethod | If the
value of the invalidvalue of an ApplicationPrimitiveDataType Of cate-
gory VALUE is supposed to be inside the scope of the applicable CompuMethod an
ApplicationValueSpecification is used to describe the invalidvalue of the
ApplicationPrimitiveDataType. |()

[constr_1281] means that the value of the ApplicationValueSpecification shall
be within the bounds defined by swhatabDefProps.compuMethod.compuPhysToIn-
ternal.compuContent.compuScale.lowerLimit Or upperLimit or the inverse
case that is based on the bounds defined by swbatabDefProps.compuMethod.com-
pulnternalToPhys.compuContent.compuScale.lowerLimit Or upperLimit.

[constr_1283] invalidvValue is outside the scope of the compuMethod | If the
value of the invalidvalue of an ApplicationPrimitiveDataType Of cate-
gory VALUE is supposed to be outside the scope of the applicable CompuMethod
a NumericalValueSpecification shall be used to describe the invalidvalue
of the ApplicationPrimitiveDataType. |()

The handling of invalidvalue for ApplicationPrimitiveDataType oOf cate-
gory STRING is defined by [constr_1242].

For a more detailed description of the properties that can be defined for data types
(and data prototypes as well) see sections 5.4 and 5.4.2.

[TPS_SWCT _01760] Defining the dimension of an ApplicationPrimitive-
DataType Of category VAL_BLK [An ApplicationPrimitiveDataType Of
category VAL_BLK that has only one dimension shall be described using the attribute
SwDataDefProps.swValueBlockSize.

An ApplicationPrimitiveDataType Of category VAL_BLK that has more than
one dimension shall be described using the attribute SwhataDefProps.swValue-
BlockSizeMult. [()

[constr_1610] Existence of SwDataDefProps.swValueBlockSize and Sw-
DataDefProps.swValueBlockSizeMult | Attributes SwDataDefProps.swVal-
ueBlockSize and SwhataDefProps.swValueBlockSizeMult shall not exist at
the same time in the context of a given swbataDefProps. |()

AUTOSAR

5.2.4.1.2 About Enumerations

[TPS_SWCT_01243] Definition of enumeration types | In the AUTOSAR meta-
model, an enumeration is not implemented by means of an ApplicationCompos-—
iteDataType.

Instead, a range of integer numbers can be used as a structural description for a single
ApplicationPrimitiveDataType Or an ImplementationDataType Of cate-
gory VALUE or TYPE_REFERENCE that boils downto an ImplementationDataType
of category VALUE.

The mapping of the integer numbers to /abels in the scope of the definition of an enu-
meration is considered part of the semantical definition via an attached CompuMethod
rather than part of the structural description. |(RS_SWCT_03216)

[TPS_SWCT_01562] Specification of values of an enumeration | For the specifi-
cation of values of an enumeration on the basis of the labels defined in the applicable
CompuMethod it is necessary to distinguish two approaches based on the used Au-
tosarDataType:

e ImplementationDataType: as mentioned by [constr _1225], the definition of
the labels of an enumeration shall only be done by using TextValueSpecifi-
cation.

e ApplicationPrimitiveDataType: use the ApplicationValueSpecifi-
cation.swValueCont.swValuesPhys.vt Or ApplicationRuleBasedVal-—
ueSpecification.swValueCont.ruleBasedValues.arguments.vt.

10

The relevant meta-classes in the context of SwhbataDefProps are sketched in Fig-
ure 5.9. This includes all meta-classes that may contribute to the definition of the
symbol of a CompuScale in C code, see [TPS_SWCT_01431].

AUTO SAR

«atpVariation»
SwbDataDefProps

additionalNativeTypeQualifier: NativeDeclarationString [0..1]
displayFormat: DisplayFormatString [0..1]
displayPresentation: DisplayPresentationEnum [0..1]
stepSize: Float [0..1]

swAlignment: AlignmentType [0..1]

swCalibrationAccess: SwCalibrationAccessEnum [0..1]
swimplPolicy: SwimplPolicyEnum [0..1]
swintendedResolution: Numerical [0..1]
swinterpolationMethod: Identifier [0..1]

swisVirtual: Boolean [0..1]

P I

«atpVariation»
+ swValueBlockSize: Numerical [0..1]
+ swValueBlockSizeMult: Numerical [0..*] {ordered}

+compuMethod\|/0..1

ARElement

AtpBlueprint

AtpBlueprintable
CompuMethod

CompuContent

+ displayFormat: DisplayFormatString [0..1]

+compuContent | 1

+compuPhysTolnternal | 0..1 +compulntemalToPhys| 0..1

Compu CompuScales

«atpVariation»
«atpVariation» Tags: -
vh.latestBindingTime = eeenT 0.
blueprintDerivationTime +compuScale | {ordered}
msrid =
+compuDefaultvalue | 0..1 COMPU_scales TYPE_CO CompuScale
MPU-SCALES
+ mask Positivelnteger [0..1]
(CEIEEE] + shortLabel: Identifier [0..1]
+compulnverseValue + symbol: Cldentifier [0..1]
0.1 «atpVariation»
+ lowerLimit: Limit [0..1]

+ upperLimit: Limit [0..1]

+compuConst 1
+compuConstContentType | 1 +compuScaleContents | 0..1
CompuConstContent CompuScaleConstantContents CompuScaleContents
CompuConstTextContent

+ vt: VerbatimString

Figure 5.9: Relevant meta-classes for the specification of enumerations

An example of how an enumeration looks like in ARXML is contained in section 5.5.1.4.

AUTOSAR

5.2.4.1.3 Data Types for Calibration Parameters

[TPS_SWCT _01244] Data types for calibration parameters are also described as
primitive types | Data types for calibration parameters are from the application per-
spective also described as primitive types. This is obvious, if they are simple values (
category VALUE). Also the category STRING is treated as a primitive type on ap-
plication level.

Less obvious is the fact that ApplicationDataTypes of the categories VAL_BILK,
COM_AXIS,RES_AXIS, CURVE, MAP, CUBOID, CUBE_4, and CUBE_5 are not described
as composite data types (as far as the application level is concerned) although they
admittedly possess some kind of internal structure.

In contrastto ApplicationCompositeDataTypes, they are not composed in a self-
similar way of other AutosarDataTypes. Their substructure needs a special descrip-
tion in oder to be compatible with existing calibration techniques. |()

[TPS_SWCT _01245] swDataDefProps control the structure of calibration param-
eters | The substructure of these types is attached to the swbatabDefProps. By this
means it is possible to define on the level of DataPrototypes or other artifacts, where
the SswbataDefProps come into play. |()

For details on these part of the SswhbataDefProps see chapters 5.4.4 and 5.5.5.

5.2.4.1.4 Data Types for Textual Strings

[constr_1093] Definition of textual strings | An ApplicationPrimitive-
DataType Of category STRING shall have a swTextProps which determines the
arraySizeSemantics and swMaxTextSize. [()

[TPS_SWCT 01488] ApplicationPrimitiveDataType shall be interpreted as
a string of a particular encoding | To indicate that an ApplicationPrimitive-
DataType shall be interpreted as a string of a particular encoding it shall reference
swhataDefProps.swTextProps.baseType and the only attribute of the referenced
SwBaseType relevant for this purpose is the BaseTypeDirectDefinition.base-
TypeEncoding. [()

AUTO SAR

ARElement
AtpType
AutosarDataType

AtpBlueprint
AtpBlueprintable
ApplicationDataType

ApplicationPrimitiveDataType

ARElement
SwRecordLayout

ValueSpecification

+ shortLabel: Identifier [0..1]

+invalidvalue

0.1

JA

ApplicationValueSpecification

+swDataDefProps «atpVariation»
P SwbDataDefProps
0.1]+ additionalNativeTypeQualifier:

NativeDeclarationString [0..1]

+ displayFormat: DisplayFormatString [0..1]

+ displayPresentation: DisplayPresentationEnum
[0.1]

+ stepSize: Float [0..1]

+ swAlignment: AlignmentType [0..1]

+ swCalibrationAccess:
SwCalibrationAccessEnum [0..1]

+ swimplPolicy: SwimplPolicyEnum [0..1]

+ swintendedResolution: Numerical [0..1]

+ swinterpolationMethod: Identifier [0..1]

+ swlisVirtual: Boolean [0..1]

«atpVariation»

+ swValueBlockSize: Numerical [0..1]

+ swValueBlockSizeMult: Numerical [0..*]
{ordered}

+swRecordLayout
0.1

+swTextProps | 0..1

+ category: Identifier

SwTextProps

o
+

arraySizeSemantics: ArraySizeSemanticsEnum
swFillCharacter: Integer [0..1]

«atpVariation»

s

swMaxTextSize: Integer

+baseType\|/0..1

AtpBlueprint
AtpBlueprintable
BaseType

SwBaseType

Figure 5.10: Specification of textual strings

Class SwTextProps

Package M2::MSR::DataDictionary::DataDefProperties

Note This meta-class expresses particular properties applicable to strings in variables or calibration
parameters.

Base ARObject

Attribute Type | Mul. | Kind | Note

\Y

AUTOSAR

A

Class SwTextProps

arraySize ArraySizeSemantics 1 attr This attribute controls the semantics of the arraysize for

Semantics Enum the array representing the string in an Implementation
DataType.
It is there to support a safe conversion between
ApplicationDatatype and ImplementationDatatype, even
for variable length strings as required e.g. for Support of
SAE J1939.

baseType SwBaseType 0..1 ref This is the base type of one character in the string. In
particular this baseType denotes the intended encoding of
the characters in the string on level of ApplicationData
Type.
Tags: xml.sequenceOffset=30

swFillCharacter Integer 0..1 attr Filler character for text parameter to pad up to the
maximum length swMaxTextSize.
The value will be interpreted according to the encoding
specified in the associated base type of the data object,
e.g. 0x30 (hex) represents the ASCII character zero as
filler character and 0 (dec) represents an end of string as
filler character.
The usage of the fill character depends on the arraySize
Semantics.
Tags: xml.sequenceOffset=40

swMaxTextSize Integer 1 attr Specifies the maximum text size in characters. Note the
size in bytes depends on the encoding in the
corresponding baseType.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20

Table 5.10: SwTextProps

[TPS_SWCT_01127] Byte array with variable size | SswTextProps can be used to
define byte arrays of variable size. | (RS_SWCT_03182, RS_SWCT_03181)

[TPS_SWCT _01246] swRecordLayout may also be required for A2L generation
[A swRecordLayout may also be required for the generation of A2L if the string is
part of calibration data. |()

As stated by [TPS_SWCT_01128], the definition of SwhataDefProps.swRecord-
Layout is considered mandatory anyway for ApplicationPrimitiveDataTypeS
of category STRING.

The following series of XML fragments exemplifies the definition of a data type for the
representation of a textual string. First, the applicable ApplicationPrimitive-
DataType is defined (see Figure 5.10):

Listing 5.1: Example for the definition of a string ApplicationPrimitiveDataType

<AR-PACKAGE>
<SHORT-NAME>ApplicationDataTypes</SHORT-NAME>
<ELEMENTS>
<APPLICATION-PRIMITIVE-DATA-TYPE>
<SHORT-NAME>MyApplicationStringType</SHORT-NAME>
<CATEGORY>STRING</CATEGORY>
<SW-DATA-DEF-PROPS>

AUTOSAR

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS—-CONDITIONAL>
<SW-TEXT-PROPS>
<ARRAY-SIZE-SEMANTICS>VARIABLE-SIZE</ARRAY-SIZE-SEMANTICS>
<SW-MAX-TEXT-SIZE>50</SW-MAX-TEXT-SIZE>
<BASE-TYPE-REF BASE="default" DEST="SW-BASE-TYPE">BaseTypes/
MyTextBaseType</BASE-TYPE-REF>
</SW-TEXT-PROPS>
<INVALID-VALUE>
<APPLICATION-VALUE-SPECIFICATION>
<CATEGORY>STRING</CATEGORY>
<SW-VALUE-CONT>
<SW-VALUES-PHYS>
<VT>inv</VT>
</SW-VALUES-PHYS>
</SW-VALUE-CONT>
</APPLICATION-VALUE-SPECIFICATION>
</INVALID-VALUE>
<SW-RECORD-LAYOUT-REF BASE="default" DEST="SW-RECORD-LAYOUT">
RecordLayouts/StringDescriptor</SW-RECORD-LAYOUT-REF>
</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>
</APPLICATION-PRIMITIVE-DATA-TYPE>
</ELEMENTS>
</AR-PACKAGE>

Note that the category is set to the value STRING. Also the ApplicationPrimi-
tiveDataType.swDataDefProps.swTextProps indicate the width of the string and
also define (by means of the reference to baseType) the encoding this string data type
is supposed to utilize.

Note further that the fact that an ApplicationDataType directly references (across
the implementation level) to a SwBaseType represents an exception to the rule that
ApplicationDataType should not be concerned about the lowest level of data
type definition in AUTOSAR.

If the bridging of the implementation level were accepted as a general pattern for the
modeling of ApplicationDataType it would easily be possible to bypass the imple-
mentation level to some extent and this would render ApplicationDataTypes less
versatile.

[TPS_SWCT 01128] swRecordLayout heeded for ApplicationPrimitive-
DataType Of category STRING | As mentioned in [TPS_SWCT_01179], an Ap-
plicationPrimitiveDataType of category STRING is considered a Compound
Primitive Data Type.

Therefore, it needs a reference to the definition of a SwRecordLayout that presets
the approach for creating a matching ImplementationDataType. ()

In this specific example the definition of the SwRecordLayout foresees the Applica-
tionPrimitiveDataType Of category STRING to be implemented as a structured
data type that consists of:

AUTOSAR

1. the size of an instance of the string data type in terms of the number of characters
plus

2. an array that can be used to store the individual characters contained in an in-
stance of the string data type.

Depending on the used encoding the array may need to be bigger (in terms of the
number of elements) than the corresponding value of the size. Furthermore, the defi-
nition of the swRecordLayout already takes into account that the implementation of
an array data type by means of an ImplementationDataType requires the definition
of an ImplementationDataTypeElement.

The meaning of the standardized values of SwRecordLayoutV.swRecordLay-—
outVProp are documented in [TPS_SWCT _01489]. In the scope of this example
the values COUNT and VALUE are used.

The fact that the swRecordLayoutGroupTo contains the value -1 means that the
iteration ends at the last element of the array.

Listing 5.2: Example for the definition of a SwRecordLayout for an ApplicationPrim-
itiveDataType Of category STRING

<AR-PACKAGE>
<SHORT-NAME>RecordLayout s</SHORT-NAME>
<ELEMENTS>
<SW-RECORD-LAYOUT>
<SHORT-NAME>StringDescriptor</SHORT-NAME>
<LONG-NAME>
<L-4 L="EN">String by descriptor</L-4>
</LONG-NAME>
<INTRODUCTION>
<VERBATIM>
<L-5 L="EN" xml:space="default">
struct{
size,
char[]
}
</L-5>
</VERBATIM>
</INTRODUCTION>
<SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-V>
<SHORT-LABEL>size</SHORT-LABEL>
<SW-RECORD-LAYOUT-V-AXIS>STRING</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>COUNT</SW—RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL>chars</SHORT-LABEL>
<SW-RECORD-LAYOUT-GROUP-AXIS>STRING</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-FROM>(0</SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<SHORT-LABEL>char</SHORT-LABEL>
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW—-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>

AUTOSAR

</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT>
</ELEMENTS>
</AR-PACKAGE>

Please note further that the discussed example of an ApplicationPrimitive-
DataType Of category STRING also contains the definition of an invalidvalue
for the string data type.

The next step is the definition of an TmplementationDataType that represents the
string type on the implementation level. The definition of the Tmplementation-
DataType can be derived from the definition of the applicable SswRecordLayout.

Please note that the ImplementationDataType also defines an invalidvalue.
As mentioned in [TPS_SWCT_01487], the consistency of the invalidvalue defined
in the scope of the ApplicationPrimitiveDataType Of category STRING and
the invalidvalue defined in the scope of the corresponding Implementation-
DataType cannot formally be checked.

Listing 5.3: Example for the definition of a string ImplementationDataType

<AR-PACKAGE>
<SHORT-NAME>ImplementationDataTypes</SHORT-NAME>
<ELEMENTS>
<IMPLEMENTATION-DATA-TYPE>
<SHORT-NAME>uint 8§</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>
<SW-DATA-DEF-PROPS>
<SW-DATA-DEF-PROPS—-VARIANTS>
<SW-DATA-DEF-PROPS—-CONDITIONAL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">BaseTypes/uint8BaseType</
BASE-TYPE—-REF>
</SW-DATA-DEF-PROPS—-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>
</IMPLEMENTATION-DATA-TYPE>
<IMPLEMENTATION-DATA-TYPE>
<SHORT-NAME>MyImplementationStringType</SHORT-NAME>
<CATEGORY>STRUCTURE</CATEGORY>
<SUB-ELEMENTS>
<IMPLEMENTATION-DATA-TYPE-ELEMENT>
<SHORT-NAME>size</SHORT-NAME>
<CATEGORY>TYPE_REFERENCE</CATEGORY>
<SW-DATA-DEF-PROPS>
<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS—-CONDITIONAL>
<IMPLEMENTATION-DATA-TYPE-REF DEST="IMPLEMENTATION-DATA-
TYPE">ImplementationDataTypes/uint8</IMPLEMENTATION-DATA
-TYPE-REF>
<INVALID-VALUE>
<NUMERICAL-VALUE-SPECIFICATION>
<VALUE>3</VALUE>
</NUMERICAL-VALUE-SPECIFICATION>
</INVALID-VALUE>

AUTOSAR

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>
</IMPLEMENTATION-DATA-TYPE-ELEMENT>
<IMPLEMENTATION-DATA-TYPE-ELEMENT>
<SHORT-NAME>string</SHORT-NAME>
<CATEGORY>ARRAY</CATEGORY>
<SUB-ELEMENTS>
<IMPLEMENTATION-DATA-TYPE-ELEMENT>
<SHORT-NAME>character</SHORT-NAME>
<CATEGORY>TYPE_REFERENCE</CATEGORY>
<ARRAY-SIZE>200</ARRAY-SIZE>
<ARRAY-SIZE-SEMANTICS>FIXED-SIZE</ARRAY-SIZE-SEMANTICS>
<SW-DATA-DEF-PROPS>
<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS—-CONDITIONAL>
<IMPLEMENTATION-DATA-TYPE-REF DEST="IMPLEMENTATION-DATA
-TYPE">ImplementationDataTypes/uint8</IMPLEMENTATION
-DATA-TYPE-REF>
<INVALID-VALUE>
<ARRAY-VALUE-SPECIFICATION>
<ELEMENTS>
<NUMERICAL-VALUE-SPECIFICATION>
<VALUE>105</VALUE>
</NUMERICAL-VALUE-SPECIFICATION>
<NUMERICAL-VALUE-SPECIFICATION>
<VALUE>110</VALUE>
</NUMERICAL-VALUE-SPECIFICATION>
<NUMERICAL-VALUE-SPECIFICATION>
<VALUE>118</VALUE>
</NUMERICAL-VALUE-SPECIFICATION>
</ELEMENTS>
</ARRAY-VALUE-SPECIFICATION>
</INVALID-VALUE>
</SW-DATA-DEF-PROPS—-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>
</IMPLEMENTATION-DATA-TYPE-ELEMENT>
</SUB-ELEMENTS>
</IMPLEMENTATION-DATA-TYPE-ELEMENT>
</SUB-ELEMENTS>
</IMPLEMENTATION-DATA-TYPE>
</ELEMENTS>
</AR-PACKAGE>

Please note that the size of the payload array in the the definition of the Tmplementa-
tionDataType in Listing 5.3 has been set to the value 200 in order to accommodate
for the definition of swMaxTextSize in the definition of the corresponding Applica-
tionDataType in combination with the fact that the value of baseTypeEncoding
has been set to UTF-8.

For background, the value of attribute SwTextProps.swMaxTextSize shall be spec-
ified as the number of code points in the string.

AUTOSAR

Each code point will be encoded by a sequence of bytes, depending on the applicable
encoding. In the case of UTF-8, for example, each code point will be encoded by up
to four bytes.

On the level of TmplementationDataType, an array designed to hold a string con-
sisting of code points encoded using UTF-8 needs to be big enough to carry the num-
ber of code points (which may have been described by SwTextProps.swMaxText—
Size) times 4 bytes.

The interesting part about this definition is the fact that on the implementation level, it
was (driven by the definition of the SwRecordLayout) decided to implement the string
as a structure of a size element (that goes by the shortName “size”) and a value
element (that goes by the shortName “string”) which in turn is defined as an array
data type and therefore has a sub-element that goes by the shortName “character”.

The latter references (in the role swbataDefProps.implementationDataType)
the Platform Data Type “Uint8” (that, according to the rules of Platform Data
Types, is realized by an TmplementationDataType “Uint8”).

Please note that the ApplicationPrimitiveDataType named “MyApplication-
StringType” references the SwBaseType named “MyTextBaseType” which is defined
in the following XML fragment:

Listing 5.4: Example for the definition of a string SwBaseType

<AR-PACKAGE>
<SHORT-NAME>BaseTypes</SHORT-NAME>
<ELEMENTS>
<SW-BASE-TYPE>
<SHORT-NAME>MyTextBaseType</SHORT-NAME>
<CATEGORY>FIXED_LENGTH</CATEGORY>
<BASE-TYPE-SIZE>8</BASE-TYPE-SIZE>
<BASE-TYPE-ENCODING>UTF-8</BASE-TYPE-ENCODING>
</SW-BASE-TYPE>
<SW-BASE-TYPE>
<SHORT-NAME>uint 8BaseType</SHORT-NAME>
<CATEGORY>FIXED_LENGTH</CATEGORY>
<BASE-TYPE-SIZE>8</BASE-TYPE-SIZE>
</SW-BASE-TYPE>
</ELEMENTS>
</AR-PACKAGE>

The contribution of this definition of SwBaseType to the overall definition of a string
data type is represented by the definition of the encoding (which is set to UTF-8). How-
ever, there is still one important part missing, i.e. the definition of the mapping of Ap-
plicationPrimitiveDataType 10 ImplementationDataType (and vice versa):

Listing 5.5: Example for the definition of the applicable DataTypeMappingSet

<AR-PACKAGE>
<SHORT-NAME>DataTypeMappingSet s</SHORT-NAME>
<ELEMENTS>
<DATA-TYPE-MAPPING-SET>
<SHORT-NAME>theExample</SHORT-NAME>

AUTOSAR

<DATA-TYPE-MAPS>
<DATA-TYPE-MAP>
<APPLICATION-DATA-TYPE-REF BASE="default" DEST="APPLICATION-
PRIMITIVE-DATA-TYPE">ApplicationDataTypes/
MyApplicationStringType</APPLICATION-DATA-TYPE-REF>
<IMPLEMENTATION-DATA-TYPE-REF BASE="default" DEST="IMPLEMENTATION
-DATA-TYPE">ImplementationDataTypes/MyImplementationStringType
</IMPLEMENTATION-DATA-TYPE-REF>
</DATA-TYPE-MAP>
</DATA-TYPE-MAPS>
</DATA-TYPE-MAPPING-SET>
</ELEMENTS>
</AR-PACKAGE>

As mentioned before, the definition of an ImplementationDataType that corre-
sponds t0 an ApplicationPrimitiveDataType Of category STRING can be
to some extent derived from the ApplicationPrimitiveDataType.swDataDef-
Props.swRecordLayout.

[TPS_SWCT 01570] pataTypeMap is mandatory in the presence of Applica-
tionPrimitiveDataType.swDataDefProps.swRecordLayout | The definition of
a DataTypeMap is mandatory even if an TmplementationDataType has been de-
rived from an ApplicationPrimitiveDataType that defines a SwRecordLayout.

10

One motivation for the existence of [TPS_SWCT_01570] is that the integrator of an
AUTOSAR ECU may rightfully decide to take a different ImplementationDataType
other than the one that has been generated on the basis of the SswRecordLayout.

5.2.4.2 Application Composite Data Types

[TPS_SWCT 01247] ApplicationArrayDataType and ApplicationRecord-
DataType | The meta-classes ApplicationArrayDataType and Application-
RecordDataType provide the means to define composite data types.

Such a composite data type is required if the application software wants to have ac-
cess to the individual elements of the composite as well as to do operations with the
whole composite, e.g. wants to communicate the complete record or array in a single
transaction.

It is possible to use a combination of ApplicationArrayDataType and Applica-
tionRecordDataType, SO thatan ApplicationArraybDataType could be defined
as ApplicationRecordElement Of a ApplicationRecordDataType and in the
same manner a ApplicationRecordDataType could be used as the base type of
an ApplicationArrayDataType. The creation of nested ApplicationCompos—
iteDataTypes is also possible. |()

Details about meta-class ApplicationRecordDataType are depicted in Fig-
ure 5.11.

AUTO SAR

ARElement
AtpType
AutosarDataType

AtpBlueprint

AtpBlueprintable
ApplicationDataType

i

ApplicationConpositeDataType

ApplicationArrayDataType ApplicationRecordDataType

+ dynamicArraySizeProfile: String [0..1]

«atpVariation» Tags:
«atpVariation» =~ """ 7" 7 777 vh latestBindingTime =
preCompileTime

1.
+element | 1 +element| {ordered}
ApplicationCompositeElementDataPrototype ApplicationCompositeElementDataPrototype
ApplicationArrayElement ApplicationRecordElement
+ arraySizeHandling: ArraySizeHandlingEnum [0..1] + isOptional: Boolean [0..1]

+ arraySizeSemantics: ArraySizeSemanticsEnum [0..1]

«atpVariation»
+ maxNumberOfElements: Positivelnteger [0..1]

«enumeration» «enumeration»
ArraySizeHandlingEnum ArraySizeSemanticsEnum
allindicesSameArraySize fixedSize
allindicesDifferentArraySize variableSize
inheritedFromArrayElementTypeSize

Figure 5.11: Summary of ApplicationCompositeDataType

5.2.4.2.1 ApplicationArrayDataType

[TPS_SWCT_01078] Configurable array size [An ApplicationArrayDataType
may6 contain maxNumberOfElements ApplicationArrayElements.

Each of these ApplicationArrayElements has the same data type.

When referring to an element of an 2ApplicationArrayDataType within a software-
component description, the element-index runs from 0 to the value of maxNumbero-
fElements-1. |(RS_SWCT _03144)

5This applies although the multiplicity in the meta-model is 1. In fact, it would be possible to model
ApplicationArrayDataType Without ApplicationArrayElement. The latter exists only so that
it can be the target of a reference within an AUTOSAR XML file

AUTOSAR

Class ApplicationArrayDataType
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Note An application data type which is an array, each element is of the same application data type.
Tags: atp.recommendedPackage=ApplicationDataTypes
Base ARElement, ARObject, ApplicationCompositeDataType, ApplicationDataType, AtpBlueprint, Atp
Blueprintable, AtpClassifier, AtpType, AutosarDataType, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Attribute Type Mul. Kind | Note
dynamicArray String 0..1 attr Specifies the profile which the array will follow if it is a
SizeProfile variable size array.
element ApplicationArray 1 aggr This association implements the concept of an array
Element element. That is, in some cases it is necessary to be able
to identify single array elements, e.g. as input values for
an interpolation routine.
Table 5.11: ApplicationArrayDataType
Class ApplicationArrayElement
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes
Note Describes the properties of the elements of an application array data type.
Base ARObject, ApplicationCompositeElementDataPrototype, AtpFeature, AtpPrototype, DataPrototype,
Identifiable, MultilanguageReferrable, Referrable
Attribute Type Mul. Kind | Note
arraySize ArraySizeHandling 0..1 attr The way how the size of the array is handled.
Handling Enum
arraySize ArraySizeSemantics 0..1 attr This attribute controls how the information about the array
Semantics Enum size shall be interpreted.
indexDataType ApplicationPrimitive 0..1 ref This reference can be taken to assign a CompuMethod of
DataType category TEXTTABLE to the array. The texttable entries
associate a textual value to an index number such that
the element with that index number is represented by a
symbolic name.
maxNumberOf Positivelnteger 0..1 attr The maximum number of elements that the array can
Elements contain.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompile Time

Table 5.12: ApplicationArrayElement

Please note that the information about the number of elements of a specific Appli-
cationArrayDataType is not absolute but allows for further interpretation.

[TPS_SWCT _01076] Number of elements of a specific ApplicationArray-
DataType might vary at run-time | That is, there are cases where the number of
elements of a specific ApplicationArrayDataType might vary at run-time.

To be precise, the number of elements might vary between 0 and the value denoted by
maxNumberOfElements.

For this purpose an additional attribute arraySizeSemantics is available that can
be used to clarify the meaning of maxNumberOfElements.

AUTOSAR

For clarification, it might indeed happen that the actual number of elements in a specific
ApplicationArrayDataType yields 0 simply because the respective DataProto-
type is part of a higher-level protocol where under certain circumstances the Dat -
aPrototype of ApplicationArrayDataType is simply not required for expressing
a given semantics. |(RS_SWCT 03180, RS_SWCT_03181, RS_SWCT _03144)

[TPS_SWCT_01752] Initialization of a variable-size array | If a DataProto-
type typed by an ApplicationArrayDataType where atiribute arraySizeSe-
mantics setto the value variablesize is initialized by an ArrayvalueSpecifi-
cation that does not aggregate an element then the semantics shall be that the
DataPrototype is initialized as empty. |(RS_SWCT_03180, RS_SWCT_03181,
RS SWCT 03144)

Enumeration ArraySizeSemanticsEnum

Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes

Note This type controls how the information about the number of elements in an ApplicationArrayDataType
is to be interpreted.

Literal Description

fixedSize This means that the ApplicationArrayDataType will always have a fixed number of elements.

Tags: atp.EnumerationValue=0

variableSize This implies that the actual number of elements in the ApplicationArrayDataType might vary at
run-time. The value of arraySize represents the maximum number of elements in the array.

Tags: atp.EnumerationValue=1

Table 5.13: ArraySizeSemanticsEnum

Please note that the ability to define the semantic meaning of maxNumberOfEle-
ments is not only limited to the application data type level. The same approach also
applies for ImplementationDataType.

[constr_1152] category of ApplicationArrayElement and AutosarDataType
referenced in the role type shall be kept in sync | The value of category of an
ApplicationArrayElement shall always be identical to the value of category of
the AutosarDataType referenced by the ApplicationArrayElement. |()

[TPS_SWCT 01601] size Indicator shall be updated by software-component
[If a software-component changes the number of valid elements in a variable size
array, it shall also update the Size Indicator inthe ImplementationDataType.
|(RS_SWCT_03181)

[TPS_SWCT 01602] size Indicator shall be read by the software-component
[If a software-component receives a variable size array, it shall use the Size Indi-
catorinthe ImplementationDataType to determine the number of valid elements
in the array. |(RS_SWCT_03181)

AUTOSAR

Enumeration ArraySizeHandlingEnum

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note This enumeration defines different ways to handle the sizes of variable size arrays.
Literal Description

allindicesDifferent All elements of the variable size array may have different sizes.

ArraySize Tags: atp.EnumerationValue=0

allindicesSame All elements of the variable size array have the same size.

ArraySize

Tags: atp.EnumerationValue=1

inheritedFromArray The size of all dimensions of the variable size array is determined by the size of the contained array
ElementTypeSize element.

Tags: atp.EnumerationValue=2

Table 5.14: ArraySizeHandlingEnum

5.2.4.2.1.1 Variable Size Array

[TPS_SWCT_01604] Enable size Indicator | To enable the RTE’s ability to
consider the number of valid elements inside a vVariable-Size Array Data
Type the ApplicationArrayDataType.dynamicArraySizeProfile of Appli-

cationArrayDataType and ApplicationArrayElement.arraySizeHandling
shall be set. |(RS_SWCT_03181)

[TPS_SWCT 01605] Semantics of ApplicationArrayElement.arraySizeHan-
dling [The attribute ApplicationArrayElement.arraySizeHandling Speci-
fies how the size is determined in case of multi-dimensional variable size array. |
(RS_SWCT_03181)

This allows to specify coherencies between the sizes of the nested variable size arrays
in case of multiple dimensions.

With a suitable ImplementationDataType, it is possible to enable other software-
components, RTE, and other BSW modules to make use of the Size Indicator and
only transfer the valid data elements from the sender to the receiver.

[TPS_SWCT_01606] Internal structure of mapped ImplementationDataType |
The attribute dynamicArraySizeProfile specifies which internal structure the Im-
plementationDataType that is mapped to the ApplicationDataType shall fol-
low. |(RS_SWCT_03181)

[TPS_SWCT _01607] Profiles for internal structure of mapped Implementa-
tionDataType | For the structure of the ImplementationDataType that is
mapped to the ApplicationDataType the following profiles are defined for dy-
namicArraySizeProfile: VSA_LINEAR, VSA_SQUARE, VSA_RECTANGULAR, and
VSA_FULLY_FLEXIBLE. |(RS_SWCT_03181)

[TPS_SWCT _01608] Custom profiles for internal structure of mapped Implemen-
tationDataType | Custom profiles can be added to dynamicArraySizeProfile.
They shall have a company-specific prefix. | (RS_SWCT_03181)

AUTOSAR

As it is a general rule for the definition of custom profiles or values of category, the
custom value should start with a company-specific prefix in order to avoid clashes with
later extensions of the AUTOSAR standard.

dynamicArraySizeProfile is used to specify how the number of elements of the
multiple dimensions of a variable size array correlate. They could be totally indepen-
dent (VSA_FULLY_FLEXIBLE) onthe one hand or each dimension has the same num-
ber of valid elements (VSA_SQUARE).

[TPS_SWCT_01623] Justification for the existence of attributes Application-
ArrayDataType.dynamicArraySizeProfile and ApplicationArrayEle-
ment.arraySizeHandling | At the first glance, the two attributes Application-
ArrayDataType.dynamicArraySizeProfile and ApplicationArrayEle-
ment.arraySizeHandling seem equivalent.

However, both are needed because they have to be used if multi dimensional variable
size arrays have to be described. In this case, multiple combinations of sizes could
occur which cannot be specified beforehand. |(RS_SWCT_03181)

The ImplementationDataType has to follow certain rules depending on the chosen
profile. See chapter 5.2.5 for details.

[constr_1314] Profile VvsSA LINEAR for ApplicationArrayDataType | |If
the dynamicArraySizeProfile of ApplicationArrayDataType is set to
VSA_LINEAR, the contained ApplicationArrayElement shall fulfill all of the fol-
lowing conditions:

e The attribute ApplicationArrayElement.arraySizeSemantics shall set
to the value variableSize.

e The attribute ApplicationArrayElement.maxNumberOfElements shall be
defined.

e The attribute ApplicationArrayElement.arraySizeHandling shall be set
to the value allIndicesSameArraySize.

e The ApplicationArrayElement shall be typed by an Application-
DataType that is not an ApplicationArrayDataType where the attribute
dynamicArraySizeProfile exists.

10

The part of [constr_1314] that demands that the ApplicationArrayElement
shall be typed by an ApplicationDataType that is not an ApplicationArray-—
DataType where the attribute dynamicArraySizeProfile exists basically boils
down to the simple explanation that the “leaf’ data type of the variable-Size Ar-
ray Data Type can be anything buta variable-Size Array Data Type.

[constr_1315] Profile VSA SQUARE for ApplicationArrayDataType | |If
the dynamicArraySizeProfile of ApplicationArrayDataType IS set to
VSA_SQUARE, the contained ApplicationArrayElement shall fulfill all of the fol-
lowing conditions:

AUTO SAR

e The attribute ApplicationArrayElement.arraySizeSemantics shall be
set to the value variableSize.

e The attribute 2ApplicationArrayElement.maxNumberOfElements shall not
be defined.

e The attribute ApplicationArrayElement.arraySizeHandling shall be set
to the value inheritedFromArrayElement TypeSize.

e The ApplicationArrayElement shall be typed by an ApplicationArray-
DataType.

The referred ApplicationArrayDataType shall refer over a chain (under consid-
eration of the number of dimensions of the “root” ApplicationArrayDataType) of
nested ApplicationArrayDataTypeS With ApplicationArrayElements to an
ApplicationDataType that is not an ApplicationArrayDataType Where the
attribute dynamicArraySizeProfile exists.

The last ApplicationArrayDataType in that chain shall have an Application-
ArrayElement that fulfills all of the following conditions:

e The attribute ApplicationArrayElement.arraySizeSemantics shall be
set to the value variableSize.

e The attribute ApplicationArrayElement.maxNumberOfElements shall be
defined.

e The attribute ApplicationArrayElement.arraySizeHandling set to the
value allIndicesSameArraySize.

All ApplicationArrayDataTypes before shall have an ApplicationArrayEle—
ment that fulfills all of the following conditions:

e The attribute ApplicationArrayElement.arraySizeSemantics shall be
set to the value variableSize.

e The attribute ApplicationArrayElement.maxNumberOfElements shall not
be defined.

e The attribute ApplicationArrayElement.arraySizeHandling shall be set
to the value inheritedFromArrayElementTypeSize.

e The ApplicationArrayElement shall be typed by an ApplicationArray-
DataType.

10

The part of [constr_1315], [constr_1316], and [constr_1317] that demands that the re-
ferred ApplicationArrayDataType Shall refer over a chain (under consideration
of the number of dimensions of the “root” ApplicationArrayDataType) of nested
ApplicationArrayDataTypeS With ApplicationArrayElement$ to an Appli-
cationDataType thatis not an ApplicationArrayDataType where the attribute
dynamicArraySizeProfile exists basically boils down to the simple explanation

AUTO SAR

that the “leaf” data type of the variable-Size Array Data Type can be anything
buta variable-Size Array Data Type.

[constr_1316] Profile VSA RECTANGULAR for ApplicationArrayDataType |
If the dynamicArraySizeProfile of ApplicationArrayDataType iS set to
VSA_RECTANGULAR the contained ApplicationArrayElement shall fulfill all of the
following conditions:

e The attribute ApplicationArrayElement.arraySizeSemantics shall be
set to the value variableSize.

e The attribute ApplicationArrayElement.maxNumberOfElements shall be
defined.

e The attribute ApplicationArrayElement.arraySizeHandling shall be set
tothe value allIndicesSameArraySize.

e The ApplicationArrayElement shall be typed by an ApplicationArray-
DataType.

The referred ApplicationArrayDataType shall refer over a chain (under consid-
eration of the number of dimensions of the “root” ApplicationArrayDataType) of
nested ApplicationArrayDataTypeS With ApplicationArrayElementS to an
ApplicationDataType that is not an ApplicationArrayDataType Where the
attribute dynamicArraySizeProfile exists.

The last ApplicationArrayDataType in that chain shall have an Application-
ArrayElement that fulfills all of the following conditions:

e The attribute ApplicationArrayElement.arraySizeSemantics shall be
set to the value variableSize.

e The attribute ApplicationArrayElement.maxNumberOfElements shall be
defined.

e The attribute ApplicationArrayElement.arraySizeHandling shall be set
tothe value allIndicesSameArraySize.

All ApplicationArrayDataTypes before shall have an ApplicationArrayEle-—
ment that fulfills all of the following conditions:

e The attribute ApplicationArrayElement.arraySizeSemantics shall set
to the value variableSize

e The attribute ApplicationArrayElement.maxNumberOfElements shall be
defined.

e The attribute ApplicationArrayElement.arraySizeHandling shall be set
to the value all1IndicesSameArraySize.

e The ApplicationArrayElement shall be typed by an ApplicationArray-
DataType.

AUTO SAR

10

[constr_1317] Profile VSA_FULLY FLEXIBLE for ApplicationArrayDataType
[If the dynamicArraySizeProfile of ApplicationArrayDataType is set to
VSA_FULLY_FLEXIBLE, the contained ApplicationArrayElement shall fulfill all
of the following conditions:

e The attribute ApplicationArrayElement.arraySizeSemantics shall be
set to the value variableSize.

e The attribute ApplicationArrayElement.maxNumberOfElements shall be
defined.

e The attribute ApplicationArrayElement.arraySizeHandling shall be set
tothe value allIndicesDifferentArraySize.

e The ApplicationArrayElement shall be typed by an ApplicationArray-
DataType.

The referred ApplicationArrayDataType shall refer over a chain (under consid-
eration of the number of dimensions of the “root” ApplicationArrayDataType) of
nested ApplicationArrayDataTypeS With ApplicationArrayElementS to an
ApplicationDataType that is not an ApplicationArrayDataType Where the
attribute dynamicArraySizeProfile exist.

The last ApplicationArrayDataType in that chain shall have an Application-
ArrayElement that fulfills all of the following conditions:

e The attribute ApplicationArrayElement.arraySizeSemantics shall be
set to the value variableSize.

e The attribute ApplicationArrayElement.maxNumberOfElements shall be
defined.

e The attribute ApplicationArrayElement.arraySizeHandling shall be set
tothe value allIndicesSameArraySize.

All ApplicationArrayDataTypes before shall have an ApplicationArrayEle-
ment that fulfills all of the following conditions:

e The attribute ApplicationArrayElement.arraySizeSemantics shall be
set to the value variablesSize.

e The attribute ApplicationArrayElement.maxNumberOfElements shall be
defined.

e The attribute ApplicationArrayElement.arraySizeHandling shall be set
tothe value allIndicesDifferentArraySize.

e The ApplicationArrayElement shall be typed by an ApplicationArray-
DataType.

10

AUTO SAR

For examples see Appendix E.1.

5.2.4.2.1.2 Multi-Dimensional Arrays

[TPS_SWCT_01256] Definition of multi-dimensional array data types | In order
to describe multi dimensional arrays an ApplicationArrayElement references
again another ApplicationArrayDataType. Hereby, one ApplicationArray-
DataType per dimension is required.

This multiple dimensions do have a well-defined correlation to the individual dimen-
sions of an ImplementationDataType Of category ARRAY when the Applica-
tionArrayDataType is mapped to an ImplementationDataType.

The ApplicationArrayElementS are mapping in the order of the Applica-
tionArrayElement t0 ApplicationArrayDataType references to Implemen-—
tationDataTypeElements in the order of first ImplementationDataTypeEle-
ment Of the TmplementationDataType to leaf ImplementationDataTypeEle—
ment.

In other words the ApplicationArrayElement of the top level ApplicationAr-
rayDataType relates to the first ImplementationbDataTypeElement of the Im-
plementationDataType.

The ApplicationArrayElement of the referenced ApplicationArray-
DataTypes relates to the sub ImplementationDataTypeElements in the order of
the ApplicationArrayElement -> ApplicationArrayDataType references. |

(RS_SWCT_03216)

AUTO SAR

BOOLEAN_true_false_SysConDim1_SysConDim2_SysConDim3: boolean_NcNrDim1_NcNrDim2_NcNrDim3: ImplementationDataType
ApplicationArrayDataType
category = ARRAY

category = ARRAY

+implementationDataType

+applicationDataType ?

+element +subElement
Dim1: ApplicationArrayElement) Dim1: ImplementationDataTypeElement
SysConDim1:
category = ARRAY SwSystemconst category = ARRAY
arraySizeSemantics = FIXED-SIZE arraySizeSemantics = FIXED-SIZE
maxNumberOfElements = SysConDim1 arraySize = SysConDim1
+type

BOOLEAN_true_false_SysConDim2_SysConDim3:
ApplicationArrayDataType
category = ARRAY

+e|ement$ +subElement
Dim2: ApplicationArrayElement . Dim2: ImplementationDataTypeElement
SysConDim2:
category = ARRAY SwSystemconst category = ARRAY
arraySizeSemantics = FIXED-SIZE arraySizeSemantics = FIXED-SIZE
maxNumberOfElements = SysConDim2 arraySize = SysConDim2
+type

BOOLEAN_true_false_SysConDim3: ApplicationArrayDataType

category = ARRAY

+element$ +subElement
Dim3: ApplicationArmayElement . Dim3: ImplementationDataTypeElement
SysConDim3:
category = BOOLEAN SwSystemconst category = TYPE_REFERENCE
arraySizeSemantics = FIXED-SIZE arraySizeSemantics = FIXED-SIZE
maxNumberOfElements = SysConDim3 arraySize = SysConDim3
+swDataDefProps
«atpVariation»
:SwDataDefProps
+type +implementationDataType
BOOLEAN_true_false: boolean:
ApplicationPrimitiveDataType ImplementationDataType
DefaultDataTypeMapping:
category = BOOLEAN DataTypeMappingSet category = VALUE
+dataTypeMap$
:DataTypeMap

Figure 5.12: Example of a three dimensional array type

Figure 5.12 shows a three dimensional array described with a set of Application-
ArrayDataTypes on the left hand side. The array element is typed by an Applica-
tionPrimitiveDataType Of category BOOLEAN. On the right hand side the im-
plementation of the three dimensional array is described with an Implementation-
DataType Which contains three nested ImplementationDataTypeElements.

AUTOSAR

Matching ApplicationArrayElementS and ImplementationDataTypeEle-—
ments are shown on the same layer. For the sake of clarity correlating maxNumberO-
fElements and arraySize attributes are described with the identical instance of a
SwSystemconst instead of a value. Further details of variant rich M1 models are not
in the scope of this example.

The data type of the array element is described by the ApplicationArrayDataType
with the means of a ApplicationPrimitiveDataType Of category BOOLEAN. In
order to fulfill [constr_1152] the category of ApplicationArrayElement “Dim3”
is set to BOOLEAN.

This ApplicationPrimitiveDataType “BOOLEAN” correlates to the Implemen-—
tationDataType “boolean” of category VALUE which is typically the boolean type
of the AUTOSAR Platform Types. Please note here [constr_1063].

5.2.4.2.1.3 Index Data Type

The usage of an array represents an elegant way to group data with identical proper-
ties. This allows for an easy processing of the same functionality by iterating over the
array elements.

From a functional point of view, however, each array element may have a distinct mean-
ing that could be visible to the application software. To create this visibility, it is possible
to take advantage of an existing mechanism: CompuMethods of category TEXT-
TABLE.

[TPS_SWCT_01699] Usage of ApplicationArrayElement.indexDataType |
The primary use case of the attribute ApplicationArrayElement.index-
DataType is the creation of composite data type mappings or the description of mea-
surement and calibration. Furthermore, the information could be used for documenta-
tion purposes. |(RS_SWCT_03230)

AUTO SAR

«atpVariation»
SwbDataDefProps

additionalNative TypeQualifier: NativeDeclarationString [0..1]
displayFormat: DisplayFormatString [0..1]
displayPresentation: DisplayPresentationEnum [0..1]
stepSize: Float [0..1]
swAlignment: AlignmentType [0..1] ARElement
swCalibrationAccess: SwCalibrationAccessEnum [0..1]
swimplPolicy: SwimplPolicyEnum [0..1] +swDatabefProps P P AlpType
swintendedResolution: Numerical [0..1] 0.1 VRE
swinterpolationMethod: Identifier [0..1]
swisVirtual: Boolean [0..1]

N

P i

«atpVariation»
+ swValueBlockSize: Numerical [0..1]
+ swValueBlockSizeMult: Numerical [0..*] {ordered}

+compuMethod\|/0..1

ARElement AtpBlueprint
AtpBlueprint AtpBlueprintable
AtpBlueprintable ApplicationDataType
CompuMethod
+ displayFormat: DisplayFormatString [0..1]

ApplicationConmpositeDataType
ApplicationArrayDataType

+ dynamicArraySizeProfile: String [0..1]

+element | 1

ApplicationCompositeElementDataPrototype

- ApplicationPrimitiveDataType
ApplicationArrayElement

+i DataT
+ arraySizeHandling: ArraySizeHandlingEnum [0..1] indexDataType

+ arraySizeSemantics: ArraySizeSemanticsEnum [0..1] 0.1

«atpVariation»
+ maxNumberOfElements: PositiveInteger [0..1]

Figure 5.13: Modeling of the ApplicationArrayElement.indexDataType

[constr_1438] ApplicationArrayElement.indexDataType heeds to refer to a
CompuMethod of category TEXTTABLE | The reference ApplicationArrayEle-
ment.indexDataType shall only point to an ApplicationPrimitiveDataType
that in turn refers to a CompuMethod of category TEXTTABLE. |()

[constr_1440] Size of the CompuMethod of category TEXTTABLE referenced by
ApplicationArrayElement.indexDataType | The interval defined by the Com-
puScales contained in the CompuMethod referenced by ApplicationArrayEle-—
ment.indexDataType shall start at 0 and include all integer values until Applica-
tionArrayElement.maxNumberOfElements - 1. |()

[constr_1439] Requirements on ApplicationArrayElement if attribute index-
DataType exists [If ApplicationArrayElement.indexDataType exists thenthe
attribute ApplicationArrayElement.arraySizeSemantics shall be set to the
value fixedsSize and attribute arraysizeHandling shall not exist. |()

AUTOSAR

Listing 5.6 exemplifies the definition of an indexDataType.

Listing 5.6: Example for array index data type

<APPLICATION-ARRAY-DATA-TYPE>
<SHORT-NAME>CylinderArray</SHORT-NAME>
<ELEMENT>
<SHORT-NAME>CylinderArrayElement </SHORT-NAME>
<ARRAY-SIZE-SEMANTICS>FIXED-SIZE</ARRAY-SIZE-SEMANTICS>
<INDEX-DATA-TYPE-REF DEST="APPLICATION-PRIMITIVE-DATA-TYPE">
myIndexDataType</INDEX-DATA-TYPE-REF>
</ELEMENT>
</APPLICATION-ARRAY-DATA-TYPE>
<APPLICATION-PRIMITIVE-DATA-TYPE>
<SHORT-NAME>myIndexDataType</SHORT-NAME>
<SW-DATA-DEF-PROPS>
<SW-DATA-DEF-PROPS—-VARIANTS>
<SW-DATA-DEF-PROPS—-CONDITIONAL>
<COMPU-METHOD-REF DEST="COMPU-METHOD">cylinders</COMPU-METHOD-REF>
</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>
</APPLICATION-PRIMITIVE-DATA-TYPE>

Listing 5.7 contains a example of a CompuMethod eligible for an indexDataType.

Listing 5.7: Example for a compu method used by an array index data type

<COMPU-METHOD>
<SHORT-NAME>cylinders</SHORT-NAME>
<CATEGORY>TEXTTABLE</CATEGORY>
<COMPU-INTERNAL-TO-PHYS>
<COMPU-SCALES>
<COMPU-SCALE>
<LOWER-LIMIT INTERVAL-TYPE="CLOSED">0</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">(0</UPPER-LIMIT>
<COMPU-CONST>
<VT>Cylinderl</VT>
</COMPU-CONST>
</COMPU-SCALE>
<COMPU-SCALE>
<LOWER-LIMIT INTERVAL-TYPE="CLOSED">1</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">1</UPPER-LIMIT>
<COMPU-CONST>
<VT>Cylinder2</VT>
</COMPU-CONST>
</COMPU-SCALE>
<COMPU-SCALE>
<LOWER-LIMIT INTERVAL-TYPE="CLOSED">2</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">2</UPPER-LIMIT>
<COMPU-CONST>
<VT>Cylinder3</VT>
</COMPU-CONST>
</COMPU-SCALE>
<COMPU-SCALE>
<LOWER-LIMIT INTERVAL-TYPE="CLOSED">3</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">3</UPPER-LIMIT>

AUTO SAR

<COMPU-CONST>
<VT>Cylinderd4</VT>
</COMPU-CONST>
</COMPU-SCALE>
</COMPU-SCALES>
</COMPU-INTERNAL-TO-PHYS>
</COMPU-METHOD>

5.2.4.2.2 ApplicationRecordDataType

[TPS_SWCT _01249] ApplicationRecordDataType | A declaration of Applica-
tionRecordDataType describes a non-empty set of objects, each of which has a
unique identifier with respect to the ApplicationRecordbDataType and each has
an own ApplicationDataType.

The shortName of each ApplicationRecordElement within the scope of an Ap-
plicationRecordDataType shall be unique. |(RS_SWCT_03216)

Class ApplicationRecordDataType
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Note An application data type which can be decomposed into prototypes of other application data types.

Tags: atp.recommendedPackage=ApplicationDataTypes

Base ARElement, ARObject, ApplicationCompositeDataType, ApplicationDataType, AtpBlueprint, Atp
Blueprintable, AtpClassifier, AtpoType, AutosarDataType, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable

Attribute Type Mul. Kind | Note
element (or- ApplicationRecord 1.7 aggr | Specifies an element of a record.
dered) Element

The aggregation of ApplicationRecordElement is subject
to variability with the purpose to support the conditional
existence of elements inside a ApplicationrecordData
Type.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table 5.15: ApplicationRecordDataType

Class ApplicationRecordElement

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note Describes the properties of one particular element of an application record data type.

Base ARObject, ApplicationCompositeElementDataPrototype, AtpFeature, AtpPrototype, DataPrototype,

Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind | Note

isOptional Boolean 0..1 attr This attribute represents the ability to declare the
enclosing ApplicationRecordElement as optional. This
means the that, at runtime, the ApplicationRecord
Element may or may not have a valid value and shall
therefore be ignored.

v

AUTOSAR

Class ApplicationRecordElement

A
The underlying runtime software provides means to set
the ApplicationRecordElement as not valid at the sending
end of a communication and determine its validity at the
receiving end.

Tags: atp.Status=draft
Table 5.16: ApplicationRecordElement

[TPS_SWCT_01771]{DRAFT} Definition of optional elements on the level of Ap-
plicationDataType | The modeling approach for the definition of optional ele-
ments on the level of ApplicationDataType is to set the attribute Application-—
RecordElement.isOptional to the value True.

If the attribute is not set or set to the value False then the respective Application-
RecordElement shall be considered mandatory. |(RS_SWCT _03320)

5.2.5 Implementation Data Type

[TPS_SWCT 01250] ImplementationDataType has been introduced to opti-
mize the formal support for data type handling on the implementation level |
The concept of an ImplementationDataType has been introduced to optimize the
formal support for data type handling on the implementation level.

That is, an ImplementationDataType conceptually corresponds to the level of (C)
source code. For example, TmplementationDataTypes have a direct impact on the
contract (please find an explanation of this term in [2]) of a software-component and
the RTE. | (RS_SWCT_03217)

AUT O SAR Software Component Template
) AUTOSAR CP Release 4.4.0

Attributes of SwDataDefProps Root Element Attribute Existence per Category

X | X |x|x|[x|x|SwPointerTargetProps

x [> [x]x]x|x|SwServiceArg

X | x| > |>x[x]|x[>x|x|x]x]|x|x|ImplementationDataTypeElement

X | x| x| x|x[x[x[x]x]|x[x]|x|x|ImplementationDataType

X X
X
X
X X
X X X
X X X X
X X X X
X X X X

“don’t care

8There is a use case for the definition of an invalidvalue for category ARRAY and therefore
category STRUCTURE is also supported for the sake of symmetry.

9This represents an exception such that it would make sense to use an entire ArrayvValueSpeci-
fication asthe invalidvalue because a string semantically is more than just a bunch of characters
in a row.

270 of 1069 Document ID 062: AUTOSAR_TPS_SoftwareComponentTemplate
— AUTOSAR CONFIDENTIAL —

AUTOSAR

Attributes of SwDataDefProps Root Element Attribute Existence per Category
L
g
g
7]
—
[}
7] 0]
Q Q
> >)
3] 3} o
] o 9 =]
2 2 Y 3}
] o [Z
Q a i} §
[+ o 7] 5] 5]
o o o 3} =] 3]
Sl3 a3 555
R R |8 | d q | & | d
] 2 H 0] =] | =)
ARAREE 55|58
g | e |8 |F 2|2 |8 | &
0] 0] - 4 g I [| 9} Z >
eI R
SlA|a|a|B|&|R|&8 | a8
swTextProps
swValueBlockSize
swValueBlockSizeMult
unit
valueAxisDataType
Other Attributes
subElement: ImplementationDataTypeElement X X 1.1 1.7 1
subElement.arraySizeSemantics X X 0..1
subElement.arraySize X X 1

Table 5.17: Allowed Attributes vs. category for ImplementationDataType

[TPS_SWCT_01251] Limited set of values for category are applicable for Im-
plementationDataType | Like any AutosarDataType, also the data types on im-
plementation level are characterized by its category and its SwbatabDefProps. For
a given category, only a limited set of attributes of the swbatabefProps makes
sense. |(RS_SWCT_03217)

[constr_1009] swDataDefProps applicable to0 ImplementationDataTypes | A
complete list of the SwbataDefProps and other attributes and their multiplicities which
are allowed for a given category is shown in table 5.17. |()

This list makes use of the swhbatabDefProps and other meta-model elements which
are explained in detail in the further sections of this chapter.

Regulations regarding the applicable categorys for attribute Implementation-
DataType.swDataDefProps.compuMethod can be found in [constr 1158] inside
section 5.5.1.3.2.

[constr_1383] Existence of CompuMethod and DataConstr for Implementa-
tionDataTypeS Of category TYPE REFERENCE | The existence of Imple-
mentationDataType.swDataDefProps.compuMethod and Implementation-—
DataType.swDataDefProps.dataConstr for ImplementationDataTypeS oOf
category TYPE_REFERENCE is only allowed if the respective Implementation-
DataType, after all type references are resolved, ends up in an Tmplementation-
DataType Of category VALUE. |()

AUTOSAR

Please note that, as a consequence of the existence of [constr_1383], it is possible
that the elements of a composite TmplementationDataType define individual Com-
puMethods. However, the definition of one CompuMethod that applies to the entire
composite TmplementationDataType is not supported.

[TPS_SWCT _01252] ImplementationDataType can express concepts not avail-
able on application level | As a consequence of the specific focus, it is possible to
express concepts with an TmplementationDataType that are not supported on the
application level, i.e. by ApplicationDataType:

e TmplementationDataType supports the definition of pointers
e Itis possible to define “alias” names just as in a typedef

e It is possible to define nested ImplementationDataTypes but in contrast to
the concept implemented for ApplicationDataType these implement a direct
aggregation of sub-elements rather than applying the type-prototype pattern.

|(RS_SWCT 03217)

The general structure of ImplementationDataType is sketched in Figure 5.14. If a
specific ImplementationDataType is supposed to define a composite data type the
ImplementationDataType aggregates ImplementationDataTypeElements.

AtpBlueprint
AtpBlueprintable
AutosarDataType
AbstractimplementationDataType
. ImplementationProps
ImplementationDataType
SymbolProps
© . N - + bolP
+ dynamicArraySizeProfile: String [0..1] > ymbo'Frops
+ isStructWithOptionalElement: Boolean [0..1] «atpSplitable» 0.1
+ typeEmitter: NameToken [0..1]
AtpStructureElement
ldentifiable «atpVariation» Tags:
AbstractimplementationDataTypeElement | «atpvariation» . . -« o oo o mmmmmo - === - o vh.latestBindingTime =
preCompileTime
0.*
{ordered}| +subElement
+subElement e
ImplementationDataTypeElement 0..* {ordered} - ’
.
+ arraySizeHandling: ArraySizeHandlingEnum [0..1] l, -
+ arraySizeSemantics: ArraySizeSemanticsEnum [0..1]
+ isOptional: Boolean [0..1] «atpVariation»
«atpVariation»
+ arraySize: Positivelnteger [0..1]
«enumeration» «enumeration»
ArraySizeHandlingEnum ArraySizeSemanticsEnum
allindicesSameArraySize fixedSize
allindicesDifferentArraySize variableSize
inheritedFromArrayElementTypeSize

Figure 5.14: ImplementationDataType overview

AUTOSAR

Class ImplementationDataType

Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes

Note Describes a reusable data type on the implementation level. This will typically correspond to a typedef in
C-code.

Tags: atp.recommendedPackage=ImplementationDataTypes

Base ARElement, ARObject, AbstractimplementationDataType, AtpBlueprint, AtpBlueprintable, AtpClassifier,
AtpType, AutosarDataType, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable

Attribute Type Mul. Kind | Note

dynamicArray String 0..1 attr Specifies the profile which the array will follow in case this
SizeProfile data type is a variable size array.

isStructWith Boolean 0..1 attr This attribute is only valid if the attribute category is set to
Optional STRUCTURE.

Element

If set to True, this attribute indicates that the
ImplementationDataType has been created with the
intention to define at least one element of the structure as
optional.

Tags: atp.Status=draft

subElement (or- | ImplementationData * agar Specifies an element of an array, struct, or union data
dered) TypeElement type.

The aggregation of ImplementionDataTypeElement is
subject to variability with the purpose to support the
conditional existence of elements inside a Implementation
DataType representing a structure.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompile Time

symbolProps SymbolProps 0..1 aggr This represents the SymbolProps for the Implementation
DataType.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName

typeEmitter NameToken 0..1 attr This attribute is used to control which part of the
AUTOSAR toolchain is supposed to trigger data type
definitions.

Table 5.18: ImplementationDataType

[TPS_SWCT _01253] Rules apply for the usage of the attribute Implementation-
DataType.typeEmitter | The following set of rules applies for the usage of the at-
tribute ImplementationDataType.typeEmitter:

e If the value of attribute t ypeEmitter is NOT defined and a nativeDeclara-
tion is provided the RTE generator shall generate the corresponding data type
definition®.

e If the value of attribute typeEmitter is setto “RTE” and a nativeDeclara-
tion is provided the RTE generator shall generate the corresponding data type
definition.

e If the value of the attribute typeEmitter is set to “RTE” and no nativeDec-
laration is provided the RTE generator shall issue an error message.

0This rule represents the behavior before the attribute t ypeEmitter was introduced. The rule has
specifically been added in order to support a backwards-compatible behavior.

AUTOSAR

e If the value of attribute typeEmitter is set to anything else but “RTE” the RTE
generator shall silently not generate the corresponding data type definition re-
gardless of the existence of nat iveDeclaration attribute.

|(RS_SWCT 03217)

Note that the rules listed above imply that the allowed values of the attribute type-
Emitter are not constrained with the singular exception that the definition of the be-
havior in case of “RTE” is claimed by AUTOSAR. Other values can be provided; the
consequences of this provision are implementation-dependent and outside the scope
of the definition of the AUTOSAR standard.

The usage of ImplementationDataTypes withinan AnyInstanceRef is described
in detail in [11].

[TPS_SWCT_01248] Nested definition of ImplementationDataType [If an Im-
plementationDataTypeElement also represents a composite data type it can ag-
gregate TmplementationDataTypeElements in the role of subElement. Again,
the type-prototype pattern does not apply in this case. |(RS_SWCT_03217)

[constr_1106] Structure shall have at least one element | An Implementation-—
DataType Of ImplementationDataTypeElement Of category STRUCTURE shall
own at least one ImplementationDataTypeElement. ()

[constr_1107] Union shall have at least one element | An Implementation-—
DataType Of ImplementationDataTypeElement of category UNION shall own
at least one ImplementationDataTypeElement. [()

Class ImplementationDataTypeElement
Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes
Note Declares a data object which is locally aggregated. Such an element can only be used within the scope

where it is aggregated.
This element either consists of further subElements or it is further defined via its swDataDefProps.
There are several use cases within the system of ImplementationDataTypes fur such a local declaration:
e |t can represent the elements of an array, defining the element type and array size
e |t can represent an element of a struct, defining its type

e |t can be the local declaration of a debug element.

Base ARObject, AbstractimplementationDataTypeElement, AtpClassifier, AtpFeature, AtpStructureElement,
Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind | Note

arraySize Positivelnteger 0..1 attr The existence of this attributes (if bigger than 0) defines

the size of an array and declares that this Implementation
DataTypeElement represents the type of each single
array element.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompile Time

arraySize ArraySizeHandling 0..1 attr The way how the size of the array is handled in case of a
Handling Enum variable size array.

AUTOSAR

Class ImplementationDataTypeElement

arraySize ArraySizeSemantics 0..1 attr This attribute controls the meaning of the value of the
Semantics Enum array size.

isOptional Boolean 0..1 attr This attribute represents the ability to declare the
enclosing ImplementationDataTypeElement as optional.
This means that, at runtime, the ImplementationDataType
Element may or may not have a valid value and shall
therefore be ignored.

The underlying runtime software provides means to set
the CpplmplementationDataTypeElement as not valid at
the sending end of a communication and determine its
validity at the receiving end.

Tags: atp.Status=draft

subElement (or- | ImplementationData * aggr Element of an array, struct, or union in case of a nested
dered) TypeElement declaration (i.e. without using "typedefs").

The aggregation of ImplementionDataTypeElement is
subject to variability with the purpose to support the
conditional existence of elements inside a Implementation
DataType representing a structure.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompile Time

swDataDef SwDataDefProps 0..1 aggr | The properties of this ImplementationDataTypeElement.
Props

Table 5.19: ImplementationDataTypeElement

[TPS_SWCT_01254] ImplementationDataType With array semantics | Of
course, it is also possible to define an TmplementationDataType that provides array
semantics. |(RS_SWCT_03217)

[TPS_SWCT 01006] ImplementationDataType.subElement.arraySize shall
be used to define the size of the array | The primitive attribute Tmplementation-
DataType.subElement.arraySize shall be used to define the size of the array. |

()

[TPS_SWCT_01007] Semantics of array index | For an Implementation-
DataType that implements an array data type, the semantics of the array index is
such that

e it shall start with the value 0

e it shall run to the value of arraySize -1

10

[constr_1105] Value of arraysSize | The value of the attribute arraysSize of an
ImplementationDataTypeElement owned by an TmplementationDataType Of
ImplementationDataTypeElement Of category ARRAY shall be greater than 0
unless attribute TmplementationDataTypeElement.arraySizeHandling exists
and is set to the value inheritedFromArrayElementTypeSize. ()

AUTOSAR

[TPS_SWCT _01478] Array size is defined as an attribute of the Implementa-
tionDataTypeElement | Please note that the array size is not defined as an at-
tribute of the TmplementationDataType Which stands for the whole array. It is ac-
tually defined as an attribute of the ImplementationDataTypeElement which is
describing the array element (note that the same pattern is used in 2pplicationAr-

rayDataType). J()

Consequently, if a “struct” element represents an array this specific struct-element is
given by an TmplementationDataTypeElement Of category ARRAY which in turn
aggregates another ImplementationDataTypeElement of €.9. category VALUE
representing the array element and containing the size.

[TPS_SWCT _01255] Indicate whether the array is supposed to have a fixed size
or whether the actual size might change during run-time [It is also possible to
indicate whether the array is supposed to have a fixed size or whether the actual size
might change during run-time. |(RS_SWCT _03217)

In the same way as for ApplicationDataTypes, itis also possible to specifica Size
Indicator of a variable size array which holds the number of valid elements of the
array in the ITmplementationDataType.

Please find more information about this topic in section 5.2.4.2.

[TPS_SWCT _01622] Modeling of a Variable-Size Array Data Type only
with ImplementationDataType | The modeling of a Variable-Size Ar-
ray Data Type does not require the existence of an ApplicationComposite-
DataType and a DataTypeMap. A Variable-Size Array Data Type can be
created by just setting up an ImplementationDataType. |(RS_SWCT_03181)

[TPS_SWCT 01610] Modeling of a Variable-Size Array Data Type With
Size Indicator enabled | An ImplementationDataType With category
STRUCTURE where the attribute ImplementationDataType.dynamicArray-
SizeProfile exists represents a Variable-Size Array Data Type With Size
Indicator enabled.

For the sake of a proper definition of terminology, this ImplementationDataType shall
be called the VSA ImplementationDataType. |(RS_SWCT _03181)

[TPS_SWCT_01650] Structure of the VSA ImplementationDataType [The Vsa
ImplementationDataType shall consist of

e an ImplementationDataTypeElement representing the Size Indicator
and

e an ImplementationDataTypeElement representing the Payload of the
Variable—-Size Array Data Type.

For the sake of a proper definition of terminology, these TmplementationDataType-
Elements shall be called the VSA Size Indicator ImplementationDataType-—
Element andthe VSA Payload ImplementationDataTypeElement respectively.
|(RS_SWCT_03181)

AUTOSAR

[TPS_SWCT 01612] arraySizeHandling specifies how the size is determined
[arraySizeHandling specifies how the size is determined in case of multi-
dimensional variable size array. |(RS_SWCT_03181)

The statement made by [TPS_SWCT_01612] allows the specification of coherency
between the sizes of the nested variable size arrays in case of multiple dimensions.

[TPS_SWCT_01613] Internal structure of mapped ImplementationDataType |
The attribute dynamicArraySizeProfile specifies which internal structure the Tm-
plementationDataType shall follow. | (RS_SWCT_03181)

[TPS_SWCT_01614] Profiles for internal structure of mapped Implementation-
DataType | For the structure of the ImplementationDataType the following pro-
files are defined for dynamicArraySizeProfile: VSA_LINEAR, VSA_SQUARE,
VSA_RECTANGULAR and VSA_FULLY_FLEXIBLE. | (RS_SWCT_03181)

[TPS_SWCT_01615] Custom profiles for internal structure of mapped Implemen-
tationDataType | Custom profiles can be added to dynamicArraySizeProfile.
They shall have a company-specific prefix. |(RS_SWCT_03181)

For reasons of readability and comprehensibility the following constraints focus on the
payload of the Variable-Size Array Data Type only. For the Size Indica-
tor additional individual constraints do apply.

[constr_1318] Profile VSA_LINEAR for ImplementationDataType | If the value
of attribute ImplementationDataType.dynamicArraySizeProfile is set to
VSA_LINEAR, the ImplementationDataType shall aggregate avsSA Payload Im-
plementationDataTypeElement that fulfills all of the following conditions:

e The attribute ImplementationDataTypeElement.arraySizeSemantics
shall not be defined.

e The attribute ImplementationDataTypeElement.category shall be set to
ARRAY.

e The attribute TmplementationDataTypeElement.arraySize shall not be
defined.

e The attribute ImplementationDataTypeElement.arraySizeHandling
shall not be defined.

The VSA Payload ImplementationDataTypeElement shall immediately aggre-
gate another TmplementationDataTypeElement that shall fulfill all of the following
conditions:

e The attribute ImplementationDataTypeElement.arraySizeSemantics
shall be set to the value variablesSize.

e The attribute ImplementationDataTypeElement.arraySize shall be de-
fined.

AUTO SAR

e The attribute ImplementationDataTypeElement.arraySizeHandling
shall be set to the value al1IndicesSameArraySize.

10

Please note that the ImplementationDataTypeElement aggregated by the vsa
Payload ImplementationDataTypeElement can basically have any possible
value of the attribute category.

[constr_1319] Profile VSA_SQUARE for ImplementationDataType | If the value
of attribute ImplementationDataType.dynamicArraySizeProfile is set to
VSA_SQUARE, the ImplementationDataType shall aggregate a vsSA Payload Im-
plementationDataTypeElement that fulfills all of the the following conditions:

e The attribute ImplementationDataTypeElement.arraySizeSemantics
shall not be defined.

e The attribute ImplementationDataTypeElement.category shall be set to
the value ARRAY.

e The attribute ImplementationDataTypeElement.arraySize shall not be
defined.

e The attribute ImplementationDataTypeElement.arraySizeHandling
shall not be defined.

The VSA Payload ImplementationDataTypeElement shall immediately aggre-
gate another ITmplementationDataTypeElement (representing the first dimension)
that shall fulfill all of the following conditions:

e The attribute ImplementationDataTypeElement.arraySizeSemantics
shall be set to the value variableSize.

e The attribute TmplementationDataTypeElement.category shall be set to
the value ARRAY.

e The attribute ImplementationDataTypeElement.arraySize shall not be
defined.

e The attribute ImplementationDataTypeElement.arraySizeHandling
shall be set to the value inheritedFromArrayElementTypeSize.

All intermediate ImplementationDataTypeElements in the aggregation chain
that do not terminate the chain shall fulfill all of the following conditions:

e The attribute ImplementationDataTypeElement.arraySizeSemantics
shall be set to the value variablesSize.

e The attribute TmplementationDataTypeElement.category shall be set to
the value ARRAY.

e The attribute ImplementationDataTypeElement.arraySize shall not be
defined.

AUTO SAR

e The attribute ImplementationDataTypeElement.arraySizeHandling
shall be set to the value inheritedFromArrayElement TypeSize.

The terminating ImplementationDataTypeElement inthe aggregation chain shall
fulfill all of the following conditions:

e The attribute ImplementationDataTypeElement.arraySizeSemantics
shall be set to the value variableSize.

e The attribute ImplementationDataTypeElement.arraySize shall be de-
fined.

e The attribute ImplementationDataTypeElement.arraySizeHandling
shall be set to the value allIndicesSameArraySize.

10

[constr_1320] Profile VSA_ RECTANGULAR for ImplementationDataType | If the
value of attribute ImplementationDataType.dynamicArraySizeProfile is set
to VSA_RECTANGULAR, the ImplementationDataType shall aggregate a vsa
Payload ImplementationDataTypeElement that fulfills all of the following con-
ditions:

e The attribute ImplementationDataTypeElement.arraySizeSemantics
shall not be defined.

e The attribute ImplementationDataTypeElement.category shall be set to
the value ARRAY.

e The attribute TmplementationDataTypeElement.arraySize shall not be
defined.

e The attribute ImplementationDataTypeElement.arraySizeHandling
shall not be defined.

The VSA Payload ImplementationDataTypeElement shall immediately aggre-
gate another ImplementationDataTypeElement (representing the first dimension)
that shall fulfill all of the following conditions:

e The attribute ImplementationDataTypeElement.category shall be set to
the value ARRAY.

e The attribute ImplementationDataTypeElement.arraySizeSemantics
shall be set to the value variableSize.

e The attribute ImplementationDataTypeElement.arraySize shall be de-
fined.

e The attribute ImplementationDataTypeElement.arraySizeHandling
shall be set to the value allIndicesSameArraySize.

All intermediate ImplementationDataTypeElements in the aggregation chain
that do not terminate the chain shall fulfill all of the following conditions:

AUTO SAR

e The attribute ImplementationDataTypeElement.category shall be set to
the value ARRAY.

e The attribute ImplementationDataTypeElement.arraySizeSemantics
shall be set to the value variableSize.

e The attribute ImplementationDataTypeElement.arraySize shall be de-
fined.

e The attribute ImplementationDataTypeElement.arraySizeHandling
shall be set to the value allIndicesSameArraySize.

The terminating ImplementationDataTypeElement inthe aggregation chain shall
fulfill all of the following conditions:

e The atiribute ImplementationDataTypeElement.arraySizeSemantics
shall be set to the value variableSize.

e The attribute ImplementationDataTypeElement.arraySize shall be de-
fined.

e The attribute ImplementationDataTypeElement.arraySizeHandling
shall be set to the value al1IndicesSameArraySize.

10

[constr_1321] Profile VSA_FULLY FLEXIBLE for ImplementationDataType | If
the value of attribute TmplementationDataType.dynamicArraySizeProfile IS
set to the value VSA_FULLY_FLEXIBLE, the ImplementationDataType shall ag-
gregate a VSA Payload ImplementationDataTypeElement that fulfills all of the
following conditions:

e The attribute ImplementationDataTypeElement.arraySizeSemantics
shall not be defined.

e The attribute ImplementationDataTypeElement.category shall be set to
the value ARRAY.

e The attribute ImplementationDataTypeElement.arraySize shall not be
defined

e The attribute ImplementationDataTypeElement.arraySizeHandling
shall not be defined.

The VSA Payload ImplementationDataTypeElement shall immediately aggre-
gate another TmplementationDataTypeElement (representing the first dimension)
that shall fulfill all of the following conditions:

e The attribute TmplementationDataTypeElement.category shall be set to
STRUCTURE

e The atiribute ImplementationDataTypeElement.arraySizeSemantics
shall be set to the value variableSize.

AUTO SAR

e The attribute ImplementationDataTypeElement.arraySize shall be de-
fined.

e The attribute ImplementationDataTypeElement.arraySizeHandling
shall be set to the value allIndicesDifferentArraySize.

The ImplementationDataTypeElement shall aggregate another ITmplementa-—
tionDataTypeElement that fulfills the following conditions:

e The attribute ImplementationDataTypeElement.arraySizeSemantics
shall not be defined.

e The attribute TmplementationDataTypeElement.category shall be set to
the value ARRAY.

e The attribute ImplementationDataTypeElement.arraySize shall not be
defined.

e The attribute ImplementationDataTypeElement.arraySizeHandling
shall not be defined.

The aggregation chain is continued by a (possible empty) sequence of a pair of
ImplementationDataTypeElements with the following characteristics:

e The first ImplementationDataTypeElement in the pair shall fulfill all of the
following conditions:

— The attribute ImplementationDataTypeElement.category shall be
set to STRUCTURE.

— The attribute ImplementationDataTypeElement.arraySizeSeman-
tics shall be set to the value variableSize.

— The attribute ImplementationDataTypeElement.arraySize shall be
defined.

— The attribute ImplementationDataTypeElement.arraySizeHan-
dling shall be set to the value all1IndicesDifferentArraySize.

e The second ImplementationDataTypeElement in the pair shall fulfill all of
the following conditions:

— The attribute ImplementationDataTypeElement.arraySizeSeman-—
tics shall not be defined.

— The attribute ImplementationDataTypeElement.category shall be
set to the value ARRAY.

— The attribute TmplementationDataTypeElement.arraySize shall not
be defined.

— The attribute ImplementationDataTypeElement.arraySizeHan-
d1ling shall not be defined.

AUTOSAR

The terminating ImplementationDataTypeElement inthe aggregation chain shall
fulfill all of the following conditions:

e The attribute ImplementationDataTypeElement.arraySizeSemantics
shall be set to the value variableSize.

e The attribute ImplementationDataTypeElement.arraySize shall be de-
fined.

e The attribute ImplementationDataTypeElement.arraySizeHandling
shall be set to the value allIndicesSameArraySize.

10

[constr_1396] Restriction for the value of attribute category for non-terminating
ImplementationDataTypeElements taken to model a Variable-Size Array
Data Type [The value of attribute category for non-terminating Implementa-
tionDataTypeElements taken to model a Variable-Size Array Data Type
shall not be set to TYPE_REFERENCE. |()

[constr_1322] Ssize Indicator for undefined dynamicArraySizeProfile | If
the ITmplementationDataType.dynamicArraySizeProfile does not exists but
the ITmplementationDataType iS mapped t0 an ApplicationArrayDataType
where the attribute ApplicationArrayDataType.dynamicArraySizeProfile
exists, then the ImplementationDataType shall have the category STRUCTURE,
representing a Variable-Size Array Data Type With Size Indicator en-
abled. |()

[TPS_SWCT _01617] Structure of an ImplementationDataType that represents
a variable-sized array data type | The ImplementationDataType that represents
a Variable-Size Array Data Type shall have the category STRUCTURE that
has two subElements.

The role of the subElements with the definition of a variable-Size Array Data
Type is defined by [TPS_SWCT_01618], [TPS_SWCT_01619], [TPS_SWCT_01620],
and [TPS_SWCT_01621]. |(RS_SWCT_03181)

[TPS_SWCT 01618] Size Indicator for dynamicArraySizeProfile set to
VSA_LINEAR, VSA_SQUARE, Or VSA FULLY FLEXIBLE | If an Implementa-
tionDataType iS mapped to an ApplicationArrayDataType which has at-
tribute dynamicArraySizeProfile set to the value VSA_LINEAR, VSA_SQUARE
Or VSA_FULLY_FLEXIBLE, the first ImplementationDataType.subElement shall
be an integer large enough to hold the maximum number of valid elements of the vari-
able size array (according to maxNumberOfElements).

This is the size Indicator which holds the current number of valid elements of the
variable size array. |(RS_SWCT _03181)

AUTOSAR

[TPS_SWCT 01647] Size Indicator for dynamicArraySizeProfile set to
VSA_LINEAR, VSA_SQUARE, Of VSA_FULLY_FLEXIBLE if only Implementation-
DataType is present | For each ImplementationDataType Which has at-
tribute dynamicArraySizeProfile settothe value VSA_LINEAR, VSA_SQUARE, Of
VSA_FULLY_FLEXIBLE, the first ImplementationDataType.subElement shall be
an integer large enough to hold the maximum number of valid elements of the variable
size array (according to arraySize).

This is the size Indicator which holds the current number of valid elements of the
Variable-Size Array Data Type. |(RS_SWCT_03181)

[TPS_SWCT 01619] Size Indicator for dynamicArraySizeProfile set to
VSA_RECTANGULAR | If an ImplementationDataType is mapped to an Applica-
tionArrayDataType Where the attribute ApplicationArraybDataType.dynami-
cArraySizeProfile exists and is set to the value VSA_RECTANGULAR, the first
ImplementationDataType.subElement shallbe a ImplementationDataType-—
Element with the category setto ARRAY and the attribute arraysize setto a value
equal to the number of the according dimension of the corresponding Application-
DataType. |(RS_SWCT_03181)

[TPS_SWCT 01648] Size Indicator for dynamicArraySizeProfile set to
VSA_RECTANGULAR if only ImplementationDataType is present | For each
ImplementationDataType wWhere the attribute ImplementationDataType.dy—
namicArraySizeProfile exists and is set to the value VSA_RECTANGULAR,
the first TmplementationDataType.subElement shall be a Tmplementation-—
DataTypeElement with the category set to ARRAY and the attribute arraysize
set to a value equal to the size of the according dimension of the rectangular array. |
(RS_SWCT _03181)

[TPS_SWCT 01620] size Indicator for dynamicArraySizeProfile set to
VSA_RECTANGULAR | The elements of this Size Indicator array shall consist of
integers large enough to hold the maximum number of valid elements (according to
maxNumberOfElements). |(RS_SWCT_03181)

This array holds the Size Indicators of all dimensions.

[TPS_SWCT_01621] Payload for dynamicArraySizeProfile [If an Imple-
mentationDataType IS mapped to an ApplicationArrayDataType Wwhere
the attribute dynamicArraySizeProfile exists, the second Implementation-
DataType.subElement shall be an array which can hold the data of the variable size
array with all dimensions defined for the ApplicationDataType.

The category shall be set to ARRAY and arraySize shall be set to
maxNumberOfElements of the corresponding ApplicationArrayDataType. |
(RS_SWCT 03181)

[TPS_SWCT _01649] Payload for dynamicArraySizeProfile if only Implemen-
tationDataType is present | Each ImplementationDataType where the at-
tribute dynamicArraySizeProfile exists shall aggregate a second ITmplementa—
tionDataType.subElement with the category setto ARRAY. |(RS_SWCT_03181)

AUTOSAR

For examples, see Appendix E.1.

An ImplementationDataType is also allowed to have SswbataDefProps (this fea-
ture is inherited from AutosarDataType), i.e. it can define various specific structural
and semantical attributes. Table 5.39 shows which swhataDefProps will be typically
used here.

[TPS_SWCT _01257] ImplementationDataType or the aggregated Implemen-
tationDataTypeElements do not form closed sets [An Implementation-
DataType or the aggregated ImplementationDataTypeElements do not form
closed sets but refer to further type definitions in one of four distinctive ways, depend-
ing on whether the type is implemented via a base type, a data or function pointer, or
a reference to another implementation data type:

1. Reference to an underlying swBaseType corresponds to category VALUE.

2. Reference to BswModuleEntry in SwPointerTargetProps corresponds to
category FUNCTION_REFERENCE.

3. SwhataDefProps in SwPointerTargetProps corresponds to category
DATA_REFERENCE.

4. Reference to another TmplementationDataType corresponds to category
TYPE_ _REFERENCE.

|(RS_SWCT 03217)

At the end, all the “leafs” of the complete tree formed by these references shall end up
in SwBaseTypes. Figures 5.15, 5.16, and Figure 5.17 illustrate more examples about
Typedefs and references.

AUTOSAR

typedef unsigned short MySimpleType; Ij typedef MySimpleType* MyPointerType;Ij

MySimpleType: MyPointerType:
ImplementationDataType ImplementationDataType
category = VALUE category = DATA_REFERENCE

! !

:SwDataDefProps

!

:SwPointerTargetProps
targetCategory = TYPE_REFERENCE

!

:SwDataDefProps :SwDataDefProps

uint16: SwBaseType
category = FIXED_LENGTH

|

:BaseTypeDirectDefinition

baseTypeEncoding = NONE
nativeDeclaration = unsigned short

Figure 5.15: Example (1) for TypeDefs

[TPS_SWCT_01258] Definition of a pointer to data | The definition of a data pointer
requires a special meta-class SwPointerTargetProps Which aggregates another
SwhataDefProps. This mechanism allows to describe the category and properties
of the pointer object itself as well as the category and properties of its target data
type. | (RS_SWCT_03217)

[constr_1177] Allowed targetCategory for SwPointerTargetProps | The
value of targetCategory for SwPointerTargetProps can only be one of
TYPE_REFERENCE Or FUNCTION_REFERENCE. The only exception from this rule ap-
plies if the swDataDefProps owned by the swPointerTargetProps refers to a
SwBaseType With native type declaration void, in this case the value VALUE is also
permitted. |()

AUTO SAR

typedef struct
{
unsigned short C1;
OtherStructType C2;
} MyStructType;
MyStructType: ImplementationDataType
category = STRUCTURE
Cl1:: ImplementationDataTypeElement C2: ImplementationDataTypeElement
category = VALUE category = TYPE_REFERENCE
:SwDataDefProps :SwDataDefProps
uint16: SwBaseType OtherStructType: ImplementationDataType
category = FIXED_LENGTH category = STRUCTURE

T

:BaseTypeDirectDefinition

baseTypeEncoding = NONE
nativeDeclaration = unsigned short

Figure 5.16: Example (2) for TypeDefs

As far as the AUTOSAR meta-model is concerned, a pointer to a pointer could in
principle be implemented in two ways:

1. by defining an ImplementationDataType Of category DATA_REFERENCE
that aggregates swbataDefProps in the role swbataDefProps that in turn
aggregate SwPointerTargetProps in the role swPointerTargetProps
with attribute targetCategory set to TYPE_REFERENCE that aggregates Sw-
DataDefProps intherole swbataDefProps that references an Implementa-
tionDataType Of category DATA_REFERENCE.

2. by defining an ImplementationDataType Of category DATA_REFERENCE
that aggregates swbatabDefProps in the role swbatabefProps thatin turn ag-
gregate SwPointerTargetProps in the role swPointerTargetProps with
attribute targetCategory set to DATA_REFERENCE (which is not allowed
according to [constr_1177]) that in turn aggregates SwDataDefProps in the
role swbataDefProps that aggregates SwPointerTargetProps in the role
swPointerTargetProps that references an ImplementationDataType Of
category e.g. VALUE.

AUTO SAR

[constr_1254] Definition of a pointer to a pointer | AUTOSAR does not support
the definition of a pointer to a pointer by defining an ImplementationDataType
of category DATA_REFERENCE that aggregates swbataDefProps in the role sw-
DataDefProps that in turn aggregate SwPointerTargetProps in the role sw-
PointerTargetProps With attribute targetCategory set to DATA_REFERENCE
that in turn aggregates SwbhataDefProps in the role swbataDefProps that ag-
gregates swPointerTargetProps in the role swPointerTargetProps that ref-
erences an ImplementationDataType Of category e.g. VALUE. |()

For clarification, The AUTOSAR RTE does not support a definition of a pointer to a
pointer by way of option 2 anyway. For all intents and purposes, [constr_1254] merely
reflects this restriction on the level of AUTOSAR models. Option 1 (which is also fea-
tured in Figure 5.17) is the only viable way that is positively supported by the AUTOSAR
RTE [2].

typedef const void * Foo Iﬁ typedef void * const Foo ﬁ typedef bar * const Foo ﬁ
Foo: ImplementationDataType Foo: ImplementationDataType Foo: ImplementationDataType
category = DATA_REFERENCE category = DATA_REFERENCE category = DATA_REFERENCE
:SwDataDefProps :SwDataDefProps :SwDataDefProps
swimplPolicy = const swimplPolicy = const
:SwPointerTargetProps :SwPointerTargetProps :SwPointerTargetProps
targetCategory = VALUE targetCategory = VALUE targetCategory = TYPE_REFERENCE
:SwDataDefProps :SwDataDefProps :SwDataDefProps
swimplPolicy = const
VOID: SwBaseType VOID: SwBaseType bar: ImplementationDataType
category = FIXED_LENGTH category = FIXED_LENGTH category = DATA_REFERENCE
:BaseTypeDirectDefinition :BaseTypeDirectDefinition
baseTypeEncoding = VOID baseTypeEncoding = VOID
nativeDeclaration = void nativeDeclaration = void

Figure 5.17: Example (3) for TypeDefs

[TPS_SWCT_01259] Definition of a pointer to a function | An Implementation-
DataType or one of its sub-elements can also describe a function pointer. This com-
pletes its ability to declare all kinds of local data and of possible arguments used in
library calls.

AUTOSAR

A function pointer is defined by the category FUNCTION_REFERENCE and the as-
sociation SwPointerTargetProps.functionPointerSignature that refers to a
BswModuleEntry. The latter essentially describes the signature of a function as ex-

plained in [6]. |(RS_SWCT 03217)

Class SwPointerTargetProps
Package M2::MSR::DataDictionary::DataDefProperties
Note This element defines, that the data object (which is specified by the aggregating element) contains a
reference to another data object or to a function in the CPU code. This corresponds to a pointer in the
C-language.
The attributes of this element describe the category and the detailed properties of the target which is
either a data description or a function signature.
Base ARObject
Attribute Type Mul. Kind | Note
functionPointer BswModuleEntry 0..1 ref The referenced BswModuleEntry serves as the signature
Signature of a function pointer definition. Primary use case: function
pointer passed as argument to other function.
Tags: xml.sequenceOffset=40
swDataDef SwDataDefProps 0..1 agar | The properties of the target data type.
Props Tags: xml.sequenceOffset=30
targetCategory Identifier 0..1 attr This specifies the category of the target:
e In case of a data pointer, it shall specify the
category of the referenced data.
e In case of a function pointer, it could be used to
denote the category of the referenced Bsw
ModuleEntry. Since currently no categories for
BswModuleEntry are defined it will be empty.
Tags: xml.sequenceOffset=5

Table 5.20: SwPointerTargetProps

The allowed existence and multiplicity of all the attributes of swbatabefProps and
other properties depend on the category of the TmplementationDataType.

AUTO SAR

ARElement
AtpType
AutosarDataType

¢

AtpBlueprint
AtpBlueprintable

AbstractimplementationDataType

0.1 +implementationDataType

«atpVariation» Tags:
vh latestBindingTime =
preCompileTime

ImplementationDataType

+ dynamicArraySizeProfile: String [0..1]

! S . + isStructWithOptionalElement: Boolean [0..1]
' AR + typeEmitter: NameToken [0..1]
«atpVariation» N
«atpVariation» «atpSplitable»
+subElement 0.*
0..* {ordered} +subElement | (ordered} +symbolProps | 0..1
AbstractimplementationDataTypeElement ImplementationProps
ImplementationDataTypeElement SymbolProps

+ arraySizeHandling: ArraySizeHandlingEnum [0..1]
+ arraySizeSemantics: ArraySizeSemanticsEnum [0..1]
+ isOptional: Boolean [0..1]

«atpVariation»
+ arraySize: Positivelnteger [0..1]

+swDataDefProps | 0..1 I+SNDa\taDefProps 0.1
ARElement «atpVariation»
AtpBlueprint [+syAddrMethod SwbDataDefProps
AtpBlueprintable
SwAddrMethod 0.1 + additionalNativeTypeQualifier: NativeDeclarationString [0..1]
+ displayFormat: DisplayFormatString [0..1]
+ displayPresentation: DisplayPresentationEnum [0..1]
+ stepSize: Float [0..1]
+ swAlignment: AlignmentType [0..1]
+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]
SwBitRepresentation +swBitRepresentation + swimplPolicy: SwimplPolicyEnum [0..1]
+ bitPosition: Integer [0.1] + swintendedResolution: Numerical [0..1]
5 DRI ok 0.1 + swinterpolationMethod: Identifier [0..1]
+ numberOfBits: Integer [0..1] + swlsvirual: Boolean [0..1]

«atpVariation»
+ swValueBlockSize: Numerical [0..1]
+ swValueBlockSizeMult: Numerical [0..*] {ordered}

AtpBlueprint
AtpBlueprintable | +baseType
BaseType

SwBaseType

0.1

0..1 | +swDataDefProps

+swPointerTargetProps 0.1

ARElement

AtpBlueprint . . .
. +functionPointerSignature —
AtpBlueprintable + targetCategory: Identifier [0..1]

BswModuleEntry 0.1

SwPointerTargetProps

Figure 5.18: swbataDefProps used in the context of ImplementationDataType

[constr_1178] Existence of attributes of SwbataDefProps in the context of Im-
plementationDataType | For the sake of removing possible sources of ambiguity,
SwhataDefProps used in the context of ImplementationDataType can only have
one of

AUTOSAR

e baseType
e swPointerTargetProps

e implementationDataType

10

Please note that an ImplementationDataType manifests itself in the source code
of an RTE into which a DataPrototype typed by the TmplementationDataType
is deployed. This implies potential naming conflicts if ImplementationDataType$s
that have identical shortNames are deployed into a specific RTE.

[TPS_SWCT_01194] Symbolic nhame of an ImplementationDataType [To mit-
igate this potential hazard it is possible to provide the ImplementationDataType
along with an accompanying symbolic name that can be used for resolving the name
clash. The symbolic name is provided by means of the attribute symbol of the
meta-class SymbolProps owned by ITmplementationDataType in the role sym-
bolProps. |()

For more information about symbolProps, please refer to Figure 5.14.

[TPS_SWCT_01441] Nature of a TYPE_REFERENCE | A type reference (formally rep-
resented by an ImplementationDataType Of category TYPE_REFERENCE) imple-
ments a redirection to common ImplementationDataTypeS. ()

[TPS_SWCT 01442] ImplementationDataType Of category TYPE REFERENCE
does not define own properties | As long as an ImplementationDataType Of
category TYPE_REFERENCE does not define own properties the properties of the
refined ImplementationDataType apply. |()

[TPS_SWCT 01443] ImplementationDataType Of category TYPE REFERENCE
overwrites properties of refined ImplementationDataType | If an implementa-
tion data types of category TYPE_REFERENCE defines own properties (e.g. Com-
puMethod) this properties overwrite the properties of the refined ITmplementation-

DataType. |()
As explained by [constr_1050], Compatibility checks of ImplementationDataType

require a prior resolution of possible type references, i.e. the compatibility shall be
checked on the resolved ImplementationDataType.

Referrable
ImplementationProps

+ symbol: Cldentifier

I

BswSchedulerNamePrefix SectionNamePrefix SymbolProps SymbolicNameProps

Figure 5.19: ImplementationProps and its subclasses

AUTOSAR

Class ImplementationProps (abstract)

Package M2::AUTOSARTemplates::CommonStructure::Implementation

Note Defines a symbol to be used as (depending on the concrete case) either a complete replacement or a
prefix when generating code artifacts.

Base ARObject, Referrable

Subclasses BswSchedulerNamePrefix, ExecutableEntityActivationReason, SectionNamePrefix, SymbolProps,
SymbolicNameProps

Attribute Type Mul. Kind | Note

symbol Cldentifier 1 attr The symbol to be used as (depending on the concrete

case) either a complete replacement or a prefix.

Table 5.21: ImplementationProps

Class SymbolProps
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note This meta-class represents the ability to attach with the symbol attribute a symbolic name that is conform

to C language requirements to another meta-class, e.g. AtomicSwComponentType, that is a potential
subject to a name clash on the level of RTE source code.

Base ARObject, ImplementationProps, Referrable
Attribute Type Mul. Kind | Note

Table 5.22: SymbolProps

[TPS_SWCT_01759] Use cases for unions | There are different use cases for the
definition of a union data type:

1. The DataPrototypes derived from the union data type shall be transported
over a communication network. For this purpose, it is necessary to apply a
special modeling in the form of a wrapped union data type, as explained by
[TPS_SWCT_01700].

2. The DataPrototypes created from the union data type are used internally
within the same ECU, e.g. as a PerInstanceMemory, romBlock, Of ram-
Block. In this case the modeling of the union data type does not depend on
specific constraints.

10

In summary, there are cases where unions can be used in PortInterfaces, but
these are restricted to the fulfillment of certain conditions that are explained in [con-
str_1607].

[constr_1607] Only Wrapped Union Data TypesS in PortInterface [Within the
scope of a Port Interface the usage of a Union data type is only supported

e for Wrapped Union Data Types.

e for a PortInterface that is used to type a PortPrototype that does not
appear as a context in an instanceRef owned by a DataMapping. See also
[1441].

AUTOSAR

10

5.2.5.1 Modeling of Optional Element Structure with ImplementationDataType

Please note that the content of this chapter has draft character

The definition of an ImplementationbDataType that represents an Optional El-
ement Structure shall not only rely on the existence of optional elements.

Also the definition of the enclosing ImplementationDataType shall clearly signal
the intention by means of the dedicated attribute TmplementationDataType.is—
StructWithOptionalElement.

[TPS_SWCT_01772]{DRAFT} Semantics of attribute Implementation-
DataType.isStructWithOptionalElement | If attribute Implementation-
DataType.isStructWithOptionalElement is set to True then the Implemen-
tationDataType advertises the intention to represent an Optional Element
Structure such that the fulfillment of structural requirements for the existence of
optional elements can be formally checked.

Again, this attribute represents a formal specification that optionality is intended as
opposed to an ImplementationDataType that fulfills the structural requirements
out of different motivations. | (RS_SWCT_03320)

[TPS_SWCT_01773]{DRAFT} Definition of Optional Element Structure on
the level of ImplementationDataType | The modeling approach for the definition
ofan Optional Element Structure onthe level of ImplementationDataType
is to set the attribute ImplementationDataTypeElement.isOptional tothe value
True.

If the attribute is not set or set to the value False then the respective Tmplementa-
tionDataTypeElement shall be considered mandatory. |(RS_SWCT _03320)

[constr_1637]{DRAFT} Existence of ImplementationDataTypeElement.isOp-
tional vS. ImplementationDataType.isStructWithOptionalElement | If
one ImplementationDataType.subElement sets attribute isOptional to the
value True then the enclosing ImplementationDataType shall also set attribute
isStructWithOptionalElement to True. |()

In order to be able to generate a proper RTE API for the access to optional elements of
data types in general it is necessary to impose structural requirements on the definition
of ImplementationDataType.

In particular, it is necessary at runtime to store the information about the availability
of a specific ImplementationDataTypeElement where attribute i sOptional has
been set to the value True in the context of an ImplementationDataType of cat—
egory STRUCTURE.

AUTOSAR

An ImplementationDataType that represents an Optional Element Struc-
ture shall contain a special element which represents an availability bitfield.

This bitfield is implemented as an array of uint8 and shall hold one bit for each optional
element contained in the structured data type.

In particular, the applicable structural requirements for an Implementation-
DataType that represents an Optional Element Structure are described in the
following specification items.

[TPS_SWCT_01774]{DRAFT} Modeling of ImplementationDataType with op-
tional elements |

The following approach shall be taken to model an TmplementationDataType that
represents an Optional Element Structure:

e The first ImplementationDataTypeElement oOf Implementation-
DataType Where attribute isStructWithOptionalElement is set to
True shall have the shortName availabilityBitfield. [constr_1638]
applies.

e This ImplementationDataTypeElement shall be of category ARRAY

e The ImplementationDataTypeElement shall set attribute arraysSizeSe-
mantics to the value fixedSize.

e The ImplementationDataTypeElement shall aggregate a further Imple-
mentationDataTypeElement in the role subElement for which the following
requirements apply:

— The ImplementationDataTypeElement shall be of category
TYPE_REFERENCE that eventually refers to an Implementation-
DataType that - one way or the other - implements an array of unsigned
bytes, e.g. take the Plat form Data Type nhamed uint8 as the element

type''.
— The ImplementationDataTypeElement shall set the value of attribute
arraySize to max(1,ceil(numberOfOptionalElements / 8)).
|(RS_SWCT_03320)

[constr_1638]{DRAFT} First ImplementationDataTypeElement Of Implemen-
tationDataType that represents an Optional Element Structure | The first
ImplementationDataTypeElement Of ImplementationDataType that repre-
sents an Optional Element Structure, i.e. the availabilityBitfield ac-
cording to [TPS_SWCT_01774], shall not set attribute i sOptional to True. |()

A further structural requirement applies.

Mthis relation could be expressed in a more formal way. But it would be a very expansive formal way
in an already complicated specification item. It is assumed that it is sufficient to convey the general idea.

AUTOSAR

[constr_1639]{DRAFT} ImplementationDataTypeElement Wwith attribute
isOptional set t0 True | ImplementationDataTypeElement with attribute
isOptional setto True shall not be of category STRUCTURE. |()

Instead, nested structures shall be created by modeling Implementation-
DataTypeElements of category TYPE_REFERENCE that in turn refer to Imple-
mentationDataTypes of category STRUCTURE.

Rationale: the existence of [constr_1639] simplifies the concept of the availability bit-
field.

The bitfield shall only contain information of the availability of the direct child elements
and not of elements of sub-structures.

By using the category TYPE_REFERENCE it is assured that a separate Implemen-
tationDataType Of category STRUCTURE is generated for the sub-structure.

Since the AUTOSAR RTE provides the APIs to access the availability information on
the basis of an ITmplementationDataType Of category STRUCTURE the usage of
anonymous structures with optional elements is not possible.

5.2.6 Base Type

[TPS_SWCT_01260] swBaseType | BaseType is used to specify the basic data type
level. AUTOSAR uses the meta-class swBaseType which is derived from the abstract
class BaseType due to other use cases for BaseType in ASAM HDO. |()

[TPS_SWCT_01261] Use case for SwBaseType | One use case for SwBaseType is
to serve as input for the RTE generator. It will always appear at the “leaves” of data
the types definitions which are relevant for RTE generation. It is used to generate
the corresponding C-code typedefs in case the attribute BaseTypeDirectDefini-
tion.nativeDeclaration exists. |()

[constr_1010] If nativeDeclaration does not exist | If nativeDeclaration
does not exist in the SwBaseType it is required that the shortName (e.g. “uint8”)
of the corresponding ImplementationDataType is equal to a name of one of the
Platform or Standard Types predefined in AUTOSAR code. |()

The consequence of [constr_1010] is that if the nativeDeclaration does not exist
the RTE generator will not consider the TmplementationDataType for the genera-
tion of data type definitions.

Still, the compiler will positively be able to resolve the data type because it can fall back
to the data type definitions contained in the header file for platform and standard data
types that has to be included by regulation of the AUTOSAR standard.

AUTOSAR

Please note that nat iveDeclaration shall yield a valid C data type symbol, whether
this is done by a t ypedef or a by using the symbol'? of an integral data type is princi-
pally all the same.

Of course, using the symbol of an integral data type as the value of nativebeclara-
tion increases the odds that the enclosing SswBaseType can be used independently
of the availability of the definition of a typedef that may or may not be available in a
given context.

[TPS_SWCT_01563] Applicable values for nativeDeclaration [For the purpose
of avoiding portability issues the value nativeDeclaration should only consist of
the symbol of an integral C data type. |()

For more information on this refer to [22].

[TPS_SWCT_01263] Further use cases for swBaseType | Within the basic software
description, SwBaseType can be used (together with TmplementationDataTypes)
for documentation or to specify variables for debugging. Furthermore, swBaseTypes
are required in the generation of support data for measurement and calibration tools.
Please refer to [6] for details on these use cases. |()

A more detailed description of BaseTypes can also be found in ASAM MCD 2 Harmo-
nized Data Objects.'3

Class BaseType (abstract)

Package M2::MSR::AsamHdo::BaseTypes

Note This abstract meta-class represents the ability to specify a platform dependant base type.

Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable

Subclasses SwBaseType

Attribute Type Mul. Kind | Note

tE))a?eType BaseTypeDefinition 1 aggr | This is the actual definition of the base type.

efinition

Tags: xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

Table 5.23: BaseType

2The symbol does not necessarily have to consist of a single token, i.e. for all intents and purposes
(for example) unsigned char is also considered the symbol of an integral C data type.

13The definition of Harmonized Data Objects can be retrieved from ASAM at www.asam.net. Access
is limited to ASAM members.

AUT o

©SAR

Class SwBaseType

Package M2::MSR::AsamHdo::BaseTypes

Note This meta-class represents a base type used within ECU software.

Tags: atp.recommendedPackage=BaseTypes
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, BaseType, CollectableElement, Identifiable,
MultilanguageReferrable, PackageableElement, Referrable
Attribute Type Mul. Kind | Note
Table 5.24: SwBaseType

Class BaseTypeDefinition (abstract)

Package M2::MSR::AsamHdo::BaseTypes

Note This meta-class represents the ability to define a basetype.

Base ARObject

Subclasses BaseTypeDirectDefinition

Attribute Type Mul. Kind | Note

Table 5.25: BaseTypeDefinition

Class BaseTypeDirectDefinition

Package M2::MSR::AsamHdo::BaseTypes

Note This BaseType is defined directly (as opposite to a derived BaseType)

Base ARObject, BaseTypeDefinition

Attribute Type Mul. Kind | Note

baseType BaseTypeEncoding 1 attr This specifies, how an object of the current BaseType is

Encoding String encoded, e.g. in an ECU within a message sequence.
Tags: xml.sequenceOffset=90

baseTypeSize Positivelnteger 0..1 attr Describes the length of the data type specified in the
container in bits.
Tags: xml.sequenceOffset=70

byteOrder ByteOrderEnum 0..1 attr This attribute specifies the byte order of the base type.
Tags: xml.sequenceOffset=110

memAlignment Positivelnteger 0..1 attr This attribute describes the alignment of the memory
object in bits. E.g. "8" specifies, that the object in
question is aligned to a byte while "32" specifies that it is
aligned four byte. If the value is set to "0" the meaning
shall be interpreted as "unspecified".
Tags: xml.sequenceOffset=100

native NativeDeclarationString 0..1 attr This attribute describes the declaration of such a base

Declaration type in the native programming language, primarily in the
Programming language C. This can then be used by a
code generator to include the necessary declarations into
a header file. For example
BaseType with

shortName: "MyUnsignedInt"
nativeDeclaration: "unsigned shor
v

t"

AUTOSAR

Class

BaseTypeDirectDefinition

A
Results in

typedef unsigned short MyUnsignedI

If the attribute is not defined the referring Implementation
DataTypes will not be generated as a typedef by RTE.

If a nativeDeclaration type is given it shall fulfill the
characteristic given by basetypeEncoding and baseType
Size.

This is required to ensure the consistent handling and
interpretation by software components, RTE, COM and
MCM systems.

Tags: xml.sequenceOffset=120

Table 5.26: BaseTypeDirectDefinition

BaseType

ARElement

f

AtpBlueprint
AtpBlueprintable
SwBaseType

+baseTypeDefinitionT 1

BaseTypeDefinition

f

BaseTypeDirectDefinition

+ o+ o+ o+ o+

baseTypeEncoding: BaseTypeEncodingString
baseTypeSize: Positivelnteger [0..1]

byteOrder: ByteOrderEnum [0..1]
memAlignment: Positivelnteger [0..1]
nativeDeclaration: NativeDeclarationString [0..1]

Figure 5.20: BaseType

Some additional hints to the properties of swBaseType:

e [constr_1011] category of SwBaseType | For the atiribute SwBase-

Type.category only the values FIXED_LENGTH and VOID are supported. |

e [constr_1422] Value of category is VOID [If the value of the attribute

SwBaseType.category is set to VOID then the attribute baseTypeSize shall
not exist. | ()

e [constr_1012] Value of category is FIXED LENGTH | If the value of the

attribute swBaseType.category is set to FIXED_LENGTH then the attribute
baseTypeSize shall be filled with content. |()

e [TPS_SWCT_01444] Size of swBaseType is specified in bits | In both cases

(mentioned in [constr_1012]) the size of SwBaseType is specified in bits. |()

AUTOSAR

e The attribute baseTypeEncoding specifies how the values of the base type are
encoded.

[constr_1014] Supported value encodings for swBaseType | The supported
values for attribute BaseTypeDirectDefinition.baseTypeEncoding are:

10

1C: One’s complement

2C: Two’s complement

BCD-P: Packed Binary Coded Decimals
BCD-UP: Unpacked Binary Coded Decimals
DSP-FRACTIONAL: Digital Signal Processor
SM: Sign Magnitude

IEEE754: floating point numbers
150-8859-1: single-byte coded character
I1S0-8859-2: single-byte coded character
WINDOWS-1252: single-byte coded character
UTF-8: UCS Transformation Format 8

UTF-16: Character encoding for Unicode code points based on 16 bit code
units [15]

Ucs-2: Universal Character Set 2
NONE: Unsigned Integer

VOID: corresponds to a void in C. The encoding is not formally specified
here.

BOOLEAN: This represents an unsigned integer to be interpreted as boolean.
The value shall be interpreted as t rue if the value of the unsigned integer
is 1 and it shall be interpreted as false if the value of the unsigned integer
is 0.

A CompuMethod shall be referenced by the corresponding Autosar-—
DataType that implements the common sense behind the boolean concept,
i.e. define a TEXTTABLE with two CompuScales: e.g. true —> 1, false
— 0.

e [TPS_SWCT_01262] memAlignment and byteOrder are platform-specific
[The value of attributes BaseTypeDirectDefinition.memAlignment and
BaseTypeDirectDefinition.byteOrder is platform-specific and therefore
should be set only in use cases where this is really needed.

These attributes shall be considered as optional.

AUTOSAR

If a swBaseType is platform-specific then also the ImplementationDataType
and software-component descriptions build on top of it become platform-specific.

10

However, there are use cases for SwBaseType where this does not matter: es-
pecially the calibration support format which is generated in ECU-specific scope
(and also contains swBaseType, see [6]) could well be platform-specific.

Further regulations apply for the case that the value UTF-16 is used for setting the
attribute BaseTypeDirectDefinition.baseTypeEncoding:

[constr_1398] Existence of attributes of BaseTypeDirectDefinition [If the
value of attribute BaseTypeDirectDefinition.baseTypeEncodingissetto UTF-
16 then the attribute BaseTypeDirectDefinition.byteOrder shall exist.

The only allowed values of BaseTypeDirectDefinition.byteOrder in this case
are mostSignificantByteFirst and mostSignificantByteLast [()

There is already predefined terminology (see [15]) existing that describes the two pos-
sible cases of byte orientation in a UTF-16-encoded string. The connection to this
terminology is defined by [TPS_SWCT_01651] and [TPS_SWCT_01652].

Enumeration ByteOrderEnum
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Primitive Types
Note When more than one byte is stored in the memory the order of those bytes may differ depending on

the architecture of the processing unit. If the least significant byte is stored at the lowest address, this
architecture is called little endian and otherwise it is called big endian.

ByteOrder is very important in case of communication between different PUs or ECUs.

Literal Description

mostSignificantByte | Most significant byte shall come at the lowest address (also known as BigEndian or as
First Motorola-Format)

Tags: atp.EnumerationValue=0

mostSignificantByte | Most significant byte shall come highest address (also known as LittleEndian or as Intel-Format)

Last Tags: atp.EnumerationValue=1

opaque For opaque data endianness conversion has to be configured to Opaque. See AUTOSAR COM
Specification for more details.

Tags: atp.EnumerationValue=2

Table 5.27: ByteOrderEnum

[TPS_SWCT_01651] uTF-16BE | If the value of attribute BaseTypeDirectDefi-
nition.baseTypeEncoding is setto UTF-16 and the attribute BaseTypeDirect—
Definition.byteOrder in this case are mostSignificantByteFirst then the
SwBaseType corresponds to the definition of UTF-16BE according to the Unicode
standard [15]. |()

[TPS_SWCT_01652] uTF-16LE | If the value of attribute BaseTypeDirectDefi-
nition.baseTypeEncoding is setto UTF-16 and the attribute BaseTypeDirect—
Definition.byteOrder in this case are mostSignificantByteLast then the
SwBaseType corresponds to the definition of UTF-16LE according to the Unicode
standard [15]. |()

AUTOSAR

A further question that needs clarification is the usage of the so-called Byte Order
Mark which allows (at run-time) for determining the actual byte order directly from the
payload of a unicode string.

As AUTOSAR has means to formally and comprehensively define the byte order of any
given DataPrototype that can hold a string at run time it is not necessary to support
a further instrument that pretty much takes care of the same purpose.

[TPS_SWCT _01653] uTF-16-encoded strings are not allowed to start with a BoM
[If the value of attribute BaseTypeDirectDefinition.baseTypeEncoding is set
to UTF-16 then the value of a DataPrototype (which is effectively representing a
string) is not allowed to start with a Byte Order Mark (BOM). |()

Please note that [TPS_SWCT_01653] removes a possible redundancy in the definition
and execution of UTF-1 6-encoded strings.

The redundancy is not only regarded unnecessary but also potentially dangerous be-
cause it is not possible to check whether the definition is consistent with the execution
at configuration time.

From the formal point of view, [TPS_SWCT_01653] does not represent an actual con-
straint although it is formulated as such.

However, an AUTOSAR tool would not be able to properly check the condition at con-
figuration time and therefore this rule is published as a specification item.

5.2.7 Data Type Terminology

There are uses of data types that on the one hand need a handy term (because this
kind of data type is used a lot) but on the other hand cannot easily be expressed in
simple terms of meta-model elements (like ApplicationDataType).

Therefore, it is not an option to fully describe the characteristics of these kinds of data
types precisely every time one of these is used. A definition of terminology is supposed
to associate the mentioned kinds of data types with the term under which their use shall
be paraphrased.

5.2.7.1 Primitive Type

In some cases it is necessary to constrain that applicability of data types to primitive C
data types. It would be possible to describe the characteristics of eligible Autosar-
DataTypes at every single place in an AUTOSAR specification where this specific
limitation applies.

However, this may end up in lengthy and potentially inconsistent descriptions at differ-
ent places within AUTOSAR specifications. Therefore, this chapter provides a canoni-
cal definition of a primitive data type that can be referred to from other places.

AUTOSAR

[TPS_SWCT_01564] Non-recursive definition of a primitive data type [An Au-
tosarDataType is considered a primitive data type if the following conditions apply:

e itisan ApplicationPrimitiveDataType Of category VALUE Or BOOLEAN

e itisan ImplementationDataType Of category VALUE

10

[TPS_SWCT_01565] Recursive definition of a primitive data type | An Autosar-—
DataType is considered a primitive data type if the following conditions apply:

e itis an AutosarDataType according to [TPS_SWCT_01564]

e itis an AutosarDataType Of category TYPE_REFERENCE that, after all type
references have been resolved, boils down an AutosarbDataType according to
[TPS_SWCT_01564].

10

5.2.7.2 Compound Primitive Data Type

[TPS_SWCT_01179] Compound Primitive Data Type | For clarification, a “com-
pound primitive data type” is an ApplicationPrimitiveDataType Of cate-
gory STRING, CURVE, MAP, CUBOID, CURE_4, CUBE_5, COM_AXIS, RES_AXIS, and
VAL_BLK.

This implies the existence of a swRecordLayout owned by the swhataDefProps of
the ApplicationPrimitiveDataType that defines the mapping to a corresponding
ImplementationDataType.

The main characteristic of the “compound primitive data type” is that with respect to the
application data type layer its data type is considered a primitive data type but when it
comes to the implementation data type layer the type is implemented as a composite
data type according to the applicable SswRecordLayout. |(RS_SWCT_03216)

[TPS_SWCT _01486] ApplicationPrimitiveDataType Of category STRING
may have invalidvalue [The only kind of Compound Primitive Data Type
that is allowed to define an invalidvalue iS an ApplicationPrimitive-—
DataType Of category STRING. |(RS_SWCT_03216)

[constr_1241] Compound Primitive Data TypeS and invalidValue [Com-—
pound Primitive Data Type$ that have set the value of category other than
STRING shall not define invalidvalue. |()

5.2.7.3 Integral Primitive Type

The senderReceiverToSignalMapping (see [10]) allows for the integral mapping
of a piece of data to a single systemSignal. The specification of AUTOSAR COM

AUTOSAR

[21] imposes certain requirements on the characteristics of data that apply for the inte-
gral mapping.

[TPS_SWCT_01477] Integral Primitive Types [Data types that qualify for be-
ing used in the context of a The SenderReceiverToSignalMapping shall be called
Integral Primitive Types. |(RS_SWCT_03218)

[constr_1229] category of ImplementationDataType boils down to VALUE |
An ImplementationDataType qualifies as an Integral Primitive Type if and
only if either

e itS category iS VALUE or TYPE_REFERENCE that eventually boils down to
VALUE oOF

e itscategory is ARRAY and it has only one subElement and one of the following
conditions applies:

— subElement.category is set to VALUE or TYPE_REFERENCE that even-
tually boils down to VALUE and the subElement refers to a SwBaseType
where baseTypeSize is set to the value 8 and the baseTypeEncoding
is set to NONE.

— subElement.category is setto TYPE_REFERENCE and the swhDataDef-
Props.implementationDataType literally represents the Platform
Data Type hamed “uint8”.

— subElement.category is setto TYPE_REFERENCE and the attribute sw-
DataDefProps.implementationDataType.shortName is set to “uint8”
and swDhataDefProps.baseType.baseTypeDefinition.nativeDec—
laration does not exist.

10

[constr_1230] ApplicationDataType that qualifies for Integral Primitive
Type | An ApplicationDataType qualifies as an Integral Primitive Type if
and only if all of the following conditions apply:

e ApplicationDataType.category issetto BOOLEAN, VALUE, STRING, Or AR—
RAY

e in the applicable scope a DataTypeMap is available that refers to the given 2Ap-
plicationDataType

e the found DataTypeMap refers to an ImplementationDataType that fulfills
the requirements of [constr_1229]

10

AUTOSAR

5.2.7.4 \Variable-Size Array Data Type

The definition of and further explanation regarding the term variable-Size Array
Data Type can be found in chapter 2.8.

5.2.7.5 Wrapped Union Data Type

There are use cases for sending a DataPrototype thatis effectively typed by a union
data type over a communication network. In this case, however, it is necessary to
not only send the DataPrototype itself but add an information about the applicable
member of the union as a form of “meta-data” to the transmission.

By this means the sender can identify the applicable member of the union and the
receiver can accordingly access the proper union element.

It is the nature of union data types that executable code shall symmetrically access
the union, i.e. the member that was written needs to be read, the usage of a union as a
“type converter” is heavily frowned upon (because it causes unspecified behavior from
ISO-C:90 [23] point of view) and shall be discouraged by AUTOSAR.

Thus, AUTOSAR needs to take this condition into account and define a specific mod-
eling for the handling of union data types.

[TPS_SWCT _01700] Definition of unions that can be transmitted over a commu-
nication network | If it is intended to send a data object typed by a union data type
over a communication bus then a specific modeling is required for this purpose.

e The union data type shall never be used as such, it shall always be enclosed in an
ImplementationDataType Of category STRUCTURE that aggregates exactly
two ImplementationDataTypeElements:

— The first ImplementationDataTypeElement shall be used to identify
the applicable element of the actual union data type.

The shortName of this element shall be set to “memberSelector”, it shall
be of category VALUE, or of category TYPE_REFERENCE that finally
boils down to category VALUE.

Furthermore, it shall refer to a swBaseType with attribute baseTypeEn-
coding set to NONE and attribute baseTypeSize set to the value 8, 16, or
32.

This ImplementationDataTypeElement shall be called the Member
Selector.

— The second ImplementationDataTypeElement shall be of category
UNION, it represents the actual union “payload”.

e The purpose of the Member Selector is to identify the element of the union
data type that applies for a given access to the union.

AUTOSAR

If the value of the Member Selector is setto 1 then the first subElement of
the TmplementationDataType Of category UNION is applicable.

If the value of the Member Selector is setto 2 then the second subElement
is applicable and so on.

e The value of the Member Selector shall range between the value 1 and the
number of subElements of the ImplementationDataTypeElement Of cat—
egory UNION. Once again, the index counting is 1-based!

e Obviously, the actual data type used to hold the Member Selector shall be
capable of storing a value that corresponds to the number of subElements of
the ImplementationDataTypeElement of category UNION.

e Constraint [constr_1441] applies.
|(RS_SWCT _03217)

[TPS_SWCT_01701] Wrapped Union Data Type | Data types that fulfill the require-
ments of [TPS_SWCT_01700] shall be called Wrapped Union Data Types. |
(RS_SWCT 03217)

[constr_1442] category TYPE REFERENCE shall not be used for modeling the
“payload” of a Wrapped Union Data Type | For the modeling of the “payload”
part of a Wrapped Union Data Type it shall not be possible to use an Tmplemen-
tationDataTypeElement Of category TYPE_REFERENCE that finally (i.e. after all
possible indirections are resolved) boils down to category UNION. |()

The definition of the Wrapped Union Data Type represents the canonical way of
how union data types shall be used in AUTOSAR on the application and communication
level. Consequentially, the usage of the category value UNION is effectively limited
to an ImplementationDataTypeElement.

[constr_1444] Limited applicability of Wrapped Union Data Type | There is
no support for the usage of Wrapped Union Data Type in PortInterfaceMap—
pings, and Diagnostics. |()

In response to existing constraints that are out of the control of AUTOSAR, the initial-
ization of a Wrapped Union Data Type is somehow complicated.

C90 [23], which is the standard language basis for AUTOSAR (see [RS_Main_00220]),
allows only for the initialization of the first member of a union.

Granted, this restriction may not be sufficient to cover all use cases connected with the
deployment of Wwrapped Union Data Typesin AUTOSAR, but that’s all that can be
reasonably supported for the time being.

One obvious consequence of this restriction is that for any given valueSpecifi-
cation taken to initialize a Wrapped Union Data Type the value of the Member
Selector is strictly locked to 1.

AUTOSAR

[constr_1445] Initialization of the Member Selector of a Wrapped Union Data
Type | The initvalue for the Member Selector shall never be set to any value
other than 1. |()

Another aspect of the initialization of a Wrapped Union Data Type is that the “pay-
load” part cannot be treated as a composite data type unless the first element of the
“payload” part is typed by a composite data type.

In other words, it is not possible to initialize the first subElement of an Implementa-
tionDataTypeElement of category UNION. It is only possible to assign an initial
value to the “payload” part itself.

[TPS_SWCT _01702] Initialization of the “payload” of a Wrapped Union Data
Type | The initValue for the ImplementationDataTypeElement of category
UNION shall be assigned to the ImplementationDataTypeElement oOf category
UNION but it shall reflect the structure of the first subElement of the Implementa-
tionDataTypeElement Of category UNION. |(RS_SWCT_03217)

In other words, if the first subElement of the ImplementationDataTypeElement
of category UNION is of a primitive type then a NumericalValueSpecification
shall be used to initialize the ImplementationDataTypeElement of category
UNION.

If the subElement is typed by a composite data type then a a Compositevalue-
Specification shall be used toinitialize the TmplementationDataTypeElement
of category UNION.

To summarize the initialization issue, a Wrapped Union Data Type is modeled as
a structure of two elements and requires a RecordvalueSpecification thatinturn
aggregates two ValueSpecifications, one for the Member Selector that shall
have no other value than 1, and one for the “payload”.

The structure of the second ValueSpecification depends on the data type used
for the first element of the “payload”.

The following example shows a simplified and stripped-down (e.g. without the sw-
DataDefProps required to make the model complete) model of a Wrapped Union
Data Type.

Listing 5.8: Simplified example of a Wrapped Union Data Type

<IMPLEMENTATION-DATA-TYPE>
<SHORT-NAME>UnionExample</SHORT-NAME>
<CATEGORY>STRUCTURE</CATEGORY>
<SUB-ELEMENTS>
<IMPLEMENTATION-DATA-TYPE-ELEMENT>
<SHORT-NAME>memberSelector</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>
</IMPLEMENTATION-DATA-TYPE-ELEMENT>
<IMPLEMENTATION-DATA-TYPE-ELEMENT>
<SHORT-NAME>payload</SHORT-NAME>
<CATEGORY>UNION</CATEGORY>
<SUB-ELEMENTS>

AUTOSAR

<IMPLEMENTATION-DATA-TYPE-ELEMENT>
<SHORT-NAME>primitive</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>
</IMPLEMENTATION-DATA-TYPE-ELEMENT>
<IMPLEMENTATION-DATA-TYPE-ELEMENT>
<SHORT-NAME>array</SHORT-NAME>
<CATEGORY>ARRAY</CATEGORY>
<SUB-ELEMENTS>
<IMPLEMENTATION-DATA-TYPE-ELEMENT>
<SHORT-NAME>arraySub</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>
<ARRAY-SIZE>4</ARRAY-SIZE>
<ARRAY-SIZE-SEMANTICS>FIXED-SIZE</ARRAY-SIZE-SEMANTICS>
</IMPLEMENTATION-DATA-TYPE-ELEMENT>
</SUB-ELEMENTS>
</IMPLEMENTATION-DATA-TYPE-ELEMENT>
</SUB-ELEMENTS>
</IMPLEMENTATION-DATA-TYPE-ELEMENT>
</SUB-ELEMENTS>
</IMPLEMENTATION-DATA-TYPE>

5.2.7.6 Optional Element Structure

As already mentioned in section 2.9, there are use cases for structured data types that
contain optional elements that may or may not exist at a given time.

These data types require a specific modeling on both the level of Application-
DataType and the level of ImplementationDataType.

[TPS_SWCT_01775]{DRAFT} Structured data types with optional elements | A
structured data type that contains at least one optional element shall be called an
Optional Element Structure. |(RS_SWCT_03320)

On the level of ApplicationDataType, the existence of optional elements is sig-
naled by setting the attribute 2ApplicationRecordElement.isOptional t0 True.
For more details, please refer to section 5.2.4.2.2.

The description of how an Optional Element Structure shall be modeled using
ImplementationDataType can be found in section 5.2.5.1.

5.3 Data Prototypes

5.3.1 Overview

[TPS_SWCT_01264] Data prototypes implement a role of a data type | Generally
speaking, a data prototype represents the implementation of a role of a data type within
the definition of another data type, e.g. a “typed” data object declared within a software
component or a port interface.

AUTO SAR

This means formally that it has an is-of-type relation to a data type and is usually
aggregated by another element, e.g. the internal behavior or a port interface. |()

In the meta-model, various kinds of data prototypes are derived from the abstract Dat -
aPrototype as shown in figure 5.21.

The reason for the introduction of this hierarchy was the distinction between Autosar-
DataPrototype (Which can be used for the application and implementation types as
well) and ApplicationCompositeElementDataPrototype (Which is restricted to
be used within the application types).

ARElement AtpBlueprint
AtpType AtpBlueprintable
AutosarDataType <= ApplicationDataType
1 +type) L/\ +type
{redefines atpType} {redefines atpType}
0..1 | *swDataDefProps
«atpVariation» AtpPrototype .
isOfType
SwDataDefProps +/swDataDefProps DataPrototype « ype»
0.1
«isOfType» Zr
AutosarDataPrototype ApplicationCompositeElementDataPrototype
VariableDataPrototype ParameterDataPrototype ApplicationRecordElement ApplicationArrayElement

+ isOptional: Boolean [0..1] + arraySizeHandling:
ArraySizeHandlingEnum [0..1]

+ arraySizeSemantics:
ArraySizeSemanticsEnum [0..1]

«atpVariation»
ArgumentDataPrototype + maxNumberOfElements:
Positivelnteger [0..1]

+ direction: ArgumentDirectionEnum
+ serverArgumentimplPolicy: ServerArgumentimplPolicyEnum [0..1]

Figure 5.21: Data Prototypes Overview

Class DataPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note Base class for prototypical roles of any data type.

Base ARObject, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable
Subclasses ApplicationCompositeElementDataPrototype, AutosarDataPrototype

Attribute Type | Mul. | Kind | Note

\Y%

AUTOSAR

A
Class DataPrototype (abstract)
swDataDef SwDataDefProps 0..1 aggr This property allows to specify data definition properties
Props which apply on data prototype level.

Table 5.28: DataPrototype

Class AutosarDataPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note Base class for prototypical roles of an AutosarDataType.

Base ARObject, AtpFeature, AtpPrototype, DataPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses ArgumentDataPrototype, ParameterDataPrototype, VariableDataPrototype

Attribute Type Mul. Kind | Note

type AutosarDataType 1 tref This represents the corresponding data type.
Stereotypes: isOfType

Table 5.29: AutosarDataPrototype

Class ApplicationCompositeElementDataPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note This class represents a data prototype which is aggregated within a composite application data type
gg?sord or array). It is introduced to provide a better distinction between target and context in instance

Base ARObject, AtpFeature, AtoPrototype, DataPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses ApplicationArrayElement, ApplicationRecordElement

Attribute Type Mul. Kind | Note

type ApplicationDataType 1 tref This represents the corresponding data type.

Stereotypes: isOfType

Table 5.30: ApplicationCompositeElementDataPrototype

Because these DataPrototypes are modeled as own meta-classes it is possible
to define own attributes for them (on M2) which (in the M1 model) could extend or
constrain the attribute values already set via the corresponding data type.

[TPS_SWCT 01265] DataPrototype aggregates an own set of SwDataDef-
Props | This mechanism is used here in the way that DataPrototype aggregates
an own set of SswbatabDefProps. Thus each kind of DataPrototype has the ability
to extend or even overwrite the SswbataDefProps already defined by its Applica-
tionDataType Or ImplementationDataType.

This mechanism, if carefully applied, allows for a better reuse of data types because
they can be kept free of the properties which vary according to the context or are
defined in later project phases. |()

Chapter 5.4 describes more details about this aspect of the meta-model.

[TPS_SWCT_01445] Applicability of swbataDefProps for DataPrototypes |
The applicability of SswbataDefProps for DataPrototypes shall follow the same
rules as for the categorys of the corresponding AutosarDataTypes. |()

AUT O SAR Software Component Template
) AUTOSAR CP Release 4.4.0

The applicability of swbataDefProps for DataPrototypes is documented in Ta-
ble 5.7.

Further information can be found in table 5.31 and table 5.32.

Please note that table 5.31 does not include the ApplicationRecordElement and
ApplicationArrayElement because these specializations of ApplicationCom—
positeElementDataPrototype are already part of table 5.7. The same applies for
table 5.32 which does not include the TmplementationDataTypeElement.

Attributes of SwDataDefProps Root El. | Attribute Existence per Category

InstantiationDataDefProps

DataPrototype
ParameterAccess

x
x
x

4don’t care

309 of 1069 Document ID 062: AUTOSAR_TPS_SoftwareComponentTemplate
— AUTOSAR CONFIDENTIAL —

AUT O SAR Software Component Template
) AUTOSAR CP Release 4.4.0

A

Attributes of SwDataDefProps Root El. | Attribute Existence per Category

InstantiationDataDefProps

DataPrototype
ParameterAccess

Table 5.31: Allowed Attributes vs. category for DataPrototypes typed by Application
Data Types

[constr_1289] Allowed Attributes vs. category for DataPrototypes typed by
ApplicationDataTypes | The allowed values of Attributes per category for Dat-
aPrototypes typed by ApplicationDataTypes are documented in table 5.31. |

()

Attributes of SwDataDefProps Root Element Attribute Existence per Category

InstantiationDataDefProps

DataPrototype
ParameterAccess

310 of 1069 Document ID 062: AUTOSAR_TPS_SoftwareComponentTemplate
— AUTOSAR CONFIDENTIAL —

AUT O SAR Software Component Template
) AUTOSAR CP Release 4.4.0

A
Attributes of SwDataDefProps Root Element Attribute Existence per Category

X X *
X X

X X

X X

X X

X X

X X

X

X X

Table 5.32: Allowed Attributes vs. category for DataPrototypes typed by Imple-
mentationDataTypeS

[constr_1288] Allowed Attributes vs. category for DataPrototypes typed by
ImplementationDataTypes | The allowed values per category for DataProto-
types typed by ImplementationDataTypes are documented in table 5.32. |()

[TPS_SWCT_01266] Three non-abstract classes derived from AutosarDataPro-
totype | There are three non-abstract classes derived from AutosarDataProto—
type which reflect the main use cases in the SWC-Template:

e Operation arguments (ArgumentDataPrototype) in a client-server interface.

e Variables (VvariableDataPrototype) which are changed by the application
software at runtime.

5don’t care

311 of 1069 Document ID 062: AUTOSAR_TPS_SoftwareComponentTemplate
— AUTOSAR CONFIDENTIAL —

AUTOSAR

e Parameters (ParameterDataPrototype) Which are constant (except for cali-
bration access) from the application point of view.

Class VariableDataPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note A VariableDataPrototype is used to contain values in an ECU application. This means that most likely a
VariableDataPrototype allocates "static" memory on the ECU. In some cases optimization strategies
might lead to a situation where the memory allocation can be avoided.
In particular, the value of a VariableDataPrototype is likely to change as the ECU on which it is used
executes.

Base ARObject, AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable

Attribute Type Mul. Kind | Note

initValue ValueSpecification 0..1 aggr Specifies initial value(s) of the VariableDataPrototype

Table 5.33: VariableDataPrototype

Class ParameterDataPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note A parameter element used for parameter interface and internal behavior, supporting signal like parameter
and characteristic value communication patterns and parameter and characteristic value definition.

Base ARObject, AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable

Attribute Type Mul. Kind | Note

initValue ValueSpecification 0..1 aggr Specifies initial value(s) of the ParameterDataPrototype

Table 5.34: ParameterDataPrototype

[TPS_SWCT_01267] DataPrototype can be aggregated in different roles | Note
that even though the meta-classes variableDataPrototype and ParameterDat -
aPrototype already express specific use cases of the underlying data type the same
DataPrototype can still be aggregated in different roles, e.g. in the SwcInternal-
Behavior to express different methods how to access it. |()

An example is the aggregation of variableDataPrototype by SwcInternalBe-
havior in the roles of either implicitInterRunnableVariable Of explicit-
InterRunnableVariable. Find more information concerning these use cases in
chapter 7.

[TPS_SWCT_01268] Definition of initValue for a VariableDataPrototype OrF
a ParameterDataPrototype | It is possible to assign an initvalue for both a
VariableDataPrototype and a ParameterDataPrototype. |()

This aspect is sketched in Figure 5.22.

[TPS_SWCT 01269] In PortInterfaces, initial values defined for DataProto-
types are ignored [These initValues have no meaning for DataPrototypes
within Port Interfaces because in this case a more specific definition of initial val-
ues via the so-called comspec is required. |()

AUTOSAR

For more information, please refer to chapter 4.5.

AutosarDataPrototype AutosarDataPrototype
VariableDataPrototype ParameterDataPrototype

+initvalue | 0..1 +initvalue | 0..1

ValueSpecification

+ shortLabel: Identifier [0..1]

Figure 5.22: Initial value for AutosarDataPrototypes

Find more information about the interpretation of initvalue in section 5.7.

[constr_1416] Existence of ApplicationArrayElement.maxNumberOfEle-
ments | The attribute ApplicationArrayElement.maxNumberOfElements shall
existforall ApplicationArrayElements definedin the scope of an Application-
ArrayDataType where the attribute ApplicationArrayDataType.dynamicAr—
raySizeProfile does not exist. |()

This means that for fixed-size array data types the attribute ApplicationArrayEle-
ment.maxNumberOfElements shall be defined for every dimension of the fixed-size
array data.

5.3.2 Data Constraints for DataPrototypes typed by Array DataTypes

There are cases where it should be possible to reference different DataConstrs
from DataPrototypes of category ARRAY typed by either an ApplicationAr-—
rayDataType Or an ImplementationDataType Of category ARRAY.

AUTOSAR supports this use case under the following conditions:

[constr_1407] Definition of SwbataDefProps.dataConstr depending on the ca-
pabilities of the data type | The definition of a SwbataDefProps.dataConstr ac-
cording to [constr_1288] and [constr_1289] is only supported for a DataPrototype
of category ARRAY if the corresponding ApplicationArrayDataType Of Imple-
mentationDataType Of category ARRAY also supports the specification of a Sw-
DataDefProps.dataConstr. [()

[constr_1408] Definition of SwhbataDefProps.displayFormat depending on the
capabilities of the data type | The definition of a SwbatabDefProps.displayFor-
mat according to [constr_1288] and [constr_1289] is only supported for a DataPro-
totype Of category ARRAY if the corresponding ApplicationArrayDataType Or
ImplementationDataType Of category ARRAY also supports the specification of
a SwhataDefProps.displayFormat. |()

AUTOSAR

[constr_1413] Definition of SwbataDefProps.stepSize depending on the capa-
bilities of the data type | The definition of a SwbatabDefProps.stepSize accord-
ing to [constr_1288] and [constr_1289] is only supported for a DataPrototype of
category ARRAY if the corresponding ApplicationArrayDataType Of Imple-—
mentationDataType Of category ARRAY also supports the specification of a Sw-
DataDefProps.stepSize. |()

[constr_1409] Definition of SswbataDefProps.dataConstr depending on the ca-
pabilities of the element data type | The definition of a SwhatabefProps.data-
Constr according to [constr_1007] and [constr_1009] is only supported for an Appli-
cationArrayDataType Or an ImplementationDataType Of category ARRAY
if the aggregated ApplicationArrayDataType.element Of Implementation—
DataType.subElement also supports the specification of a SwhbataDefProps.dat-
aConstr. |()

[constr_1410] Definition of SwhbataDefProps.displayFormat depending on the
capabilities of the element data type | The definition of a SwhataDefProps.dis-
playFormat according to [constr_1007] and [constr_1009] is only supported for
an ApplicationArrayDataType Oran ImplementationDataType Of category
ARRAY if the aggregated ApplicationArrayDataType.element Of Implemen—
tationDataType.subElement also supports the specification of a SwhDataDef-
Props.displayFormat. ()

[constr_1414] Definition of SwDataDefProps.stepSize depending on the ca-
pabilities of the element data type | The definition of a SwhatabDefProps.step-
Size according to [constr_1007] and [constr_1009] is only supported for an Ap-
plicationArrayDataType Or an ImplementationDataType Of category AR-
RAY if the aggregated ApplicationArrayDataType.element Of Implementa-
tionDataType.subElement also supports the specification of a SwDataDef-
Props.stepSize. |()

5.3.3 Reference to Data Prototypes

This chapter explains the various patterns for referencing DataPrototypes.

[TPS_SWCT _01446] References to a DataPrototype may or may nhot imply the
necessity for using an instanceRef | As references to a DataPrototype may
or may not imply the necessity for using an instanceRef this would mean that in
some places the meta-model would have to implement both variants depending on
the use case. To avoid this, AUTOSAR defines a unified reference implementation for
VariableDataPrototypes and ParameterDataPrototypes. |()

AUTOSAR

5.3.3.1 AUTOSAR Variable Ref

[TPS_SWCT_01270] AutosarVariableRef | With the advent of Autosarvari-
ableRef it is possible to implement a uniform reference to a variableDataProto-
type that covers all foreseen use cases:

e Referencetoa localvariable, N0 AtpInstanceRef required.

e Reference to an autosarvariable (which involves an AtpInstanceRef).

e Reference to the internal structure of avariablebDataPrototype implemented
using a composite TmplementationDataType.

10

Class AutosarVariableRef
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcinternalBehavior::DataElements
Note This class represents a reference to a variable within AUTOSAR which can be one of the following use
cases:
localVariable:
e localVariable which is used as whole (e.g. InterRunnableVariable, inputValue for curve)
autosarVariable:
e avariable provided via Port which is used as whole (e.g. dataAccesspoints)
e an element inside of a composite local variable typed by ApplicationDatatype (e.g. inputValue for
acurve)
e an element inside of a composite variable provided via Port and typed by ApplicationDatatype
(e.g. inputValue for a curve)
autosarVariablelnimplDatatype:
e an element inside of a composite local variable typed by ImplementationDatatype (e.g. nvram
Data mapping)
e an element inside of a composite variable provided via Port and typed by Implementation
Datatype (e.g. inputValue for a curve)
Base ARObject
Attribute Type Mul. Kind | Note
autosarVariable DataPrototype 0..1 iref This references a variable which is provided by a port
and/or which is part of a CompositeDataType.
autosarVariable ArVariableln 0..1 aggr This is used if the target variable is inside of variableData
InImplDatatype ImplementationData Prototype typed by an ImplementationDataType.
InstanceRef
localVariable VariableDataPrototype 0..1 ref This reference is used if the variable is local to the current

component. It would also be possible to use the instance
refence here.

Such an instance ref would not have a contextElement,
since the current instance is the context.

But the local instance is a special case which may provide
further optimization. Therefore an expclicit reference is
provided for this case.

Table 5.35: AutosarVariableRef

AUTOSAR

AutosarVariableRef

+autosarVariableT0..l

AtpinstanceRef
VariableInAtomicSWCTypelnstanceRef

+localVvariable\|/0..1 +autosarVariablelnimplDatatype | 0..1

AutosarDataPrototype

X ArvariablelnimplementationDatalnstanceRef
VariableDataPrototype +rootVariableDataPrototype

0.1

Figure 5.23: Implementation of AutosarVariableRef

Rules for the modeling and semantics of an AtpInstanceRef are defined in general
in[11].

[constr_2536] Target of an autosarVariable in AutosarVariableRef shall re-
fer to a variable | The target of autosarvariable (which in fact is an instance
ref) in AutosarvariableRef shall either be or be nested in VvariableDataPro-—
totype. This means that the target shall either be a VariableDataPrototype oOr
an ApplicationCompositeElementDataPrototype that in turn is owned by a
VariableDataPrototype. |()

5.3.3.2 AUTOSAR Parameter Ref

[TPS_SWCT_01271] AutosarParameterRef | With the advent of AutosarParam-
eterRef it is possible to implement a uniform reference to a ParameterDataPro-
totype that covers all foreseen use cases:

e Referenceto a localParameter, N0 AtpInstanceRef required.

e Reference to an autosarParameter (which involves an AtpInstanceRef).

10

Please note that there is a very limited amount of use-cases available where the Au-
tosarParameterRef can (with the active consent of the AUTOSAR standard) refer-
ence a VariableDataPrototype.

[constr_1173] Applicability of AutosarParameterRef referencing a variable-
DataPrototype | A reference from AutosarParameterRef t0 VariableDat-
aPrototype is only applicable if the AutosarParameterRef is used in the context
of SwAxisGrouped. |()

For example, the use case referenced in [constr_1173] applies if it is required to store
a grouped axis in a variable in order to adapt the axis during run-time of the ECU

AUTOSAR

by a dedicated algorithm. Note that in all cases where [constr_1173] does not apply
[constr_2535] shall be fulfilled.

Class AutosarParameterRef

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcinternalBehavior::DataElements

Note This class represents a reference to a parameter within AUTOSAR which can be one of the following use
cases:

localParameter:
e localParameter which is used as whole (e.g. sharedAxis for curve)
autosarVariable:
e a parameter provided via PortPrototype which is used as whole (e.g. parameterAccess)

e an element inside of a composite local parameter typed by ApplicationDatatype (e.g. sharedAxis
for a curve)

e an element inside of a composite parameter provided via Port and typed by ApplicationDatatype
(e.g. sharedAxis for a curve)

autosarParameterinimplDatatype:
e an element inside of a composite local parameter typed by ImplementationDatatype

e an element inside of a composite parameter provided via PortPrototype and typed by
ImplementationDatatype

Base ARObject

Attribute Type Mul. Kind | Note

autosar DataPrototype 0..1 iref This instance reference is used if the callibration

Parameter parameter is either imported via a port or is part of a
composite data structure.

localParameter DataPrototype 0..1 ref In the majority of cases this reference goes to Parameter

DataPrototypes rather than VariableDataPrototypes.
Pointing the reference to a VariableDataPrototype is
limited to special use cases, e.g. if the AutosarParameter
Ref is used in the context of an SwAxisGrouped.

This reference is used if the arParameter is local to the
current component.

Of course, it would technically also be feasible to use an
InstanceRef for this case. However, the InstanceRef
would not have a contextElement (because the current
instance is the context).

Hence, the local instance is a special case which may
provide further optimization. Therefore an explicit
reference is provided for this case.

Table 5.36: AutosarParameterRef

[constr_2535] Target of an autosarParameter in AutosarParameterRef shall
refer to a parameter | Except for the specifically described cases where [constr_1173]
applies the target of autosarParameter (which in fact is an instance ref) in Au-
tosarParameterRef shall either be or be nested in ParameterDataPrototype.
This means that the target shall either be a ParameterDataPrototype Or an Ap-—
plicationCompositeElementDataPrototype thatinturnis owned by a Param-
eterDataPrototype. [()

AUTOSAR

5.3.3.3 Modeling Approach

[constr_1161] Applicability of the index attribute of Ref | The index attribute of
Ref is limited to a given set if use cases as there are:

e McDataInstance.instanceInMemory
e AutosarVariableRef
e AutosarParameterRef

e FlatInstanceDescriptor/AnyInstanceRef

10

The implementation of the AtpInstanceRefs for AutosarVariableRef and Au-
tosarParameterRef probably needs some clarification regarding the references to
DataPrototypes.

[TPS_SWCT_01374] Implementation of AutosarParameterRef | The reference to
rootParameterDataPrototype is not redundant. It is required for identifying the
autosarParameter itself in @ ParameterInterface for the case that the tar-
getDataPrototype iS an ApplicationCompositeElementDataPrototype. |

()

As explained before, the implementation of AutosarParameterRef in a specific case
is subject to [constr_1173].

[constr_1608] Existence of rootParameterDataPrototype | The reference
rootParameterDataPrototype shall exist if and only if

e AutosarDataType Of the autosarParameter is a composite data type and

e targetDataPrototype refers to a DataPrototype inside the rootParam-
eterDataPrototype.

10

Note: If the target of the AtpInstanceRef is an AutosarDataPrototype then the
rootParameterDataPrototype shall not exist.

AUTO SAR

A R A RS SwComponentType AtpBlueprintable
AtomicSwCormponentType AtpPrototype
PortPrototype
1 +base 1 +portPrototype /|\ 0..1
| {redefines {subsets
: atpBase} atpContextElement}
| «atpDerived»
+autci$rParameter 0.1

| AtpInstanceRef
: ParameterinAtomicSWCTypelnstanceRef
|

'
«instanceRef»

1
| {subsets

+IocalParameter+autosarParameter\1/ 0..1 +targetDataPrototype atpTarget} 0.1
"2 {subsets

AtpPrototype | atpContextElement}

DataPrototype
+rootParameterDataPrototype

ApplicationCompositeElementDataPrototype | *contextDataPrototype

0..*

{ordered,

subsets
atpContextElement}

Figure 5.24: Implementation of the InstanceRef for AutosarParameterRef

[TPS_SWCT_01375] Implementation of AutosarvVariableRef | The reference to
rootVariableDataPrototype is not redundant. It is required for identifying the
autosarVariable itself in a SenderReceiverInterface of NvDataInterface
for the case that the targetDataPrototype is an ApplicationCompositeEle-
mentDataPrototype. |()

[constr_1609] Existence of rootVariableDataPrototype [The reference
rootVariableDataPrototype shall exist if and only if

e the AutosarDataType of the autosarvariable is a composite data type and

e the targetDataPrototype refers t0 a DataPrototype inside the root-
VariableDataPrototype.

10

Note: If the target of the AtpInstanceRef is an AutosarDataPrototype then the
rootVariableDataPrototype shall not exist.

AUTO SAR

AutosarvariableRef SwComponentType AtpBlueprintable
AtomicSwComponentType AtpPrototype
PortPrototype
+base 1 +portPrototype 0.1
{subsets {subsets
atpBase} atpContextElement}

«atpDerived»

+autosarvVariable | 0..1

AtpinstanceRef
| VariableInAtomicSWCTypelnstanceRef

1
«instanceRef»
|

|
|
|
|
|
| 1

| {subsets
+autosarvariable \1/ 0..1 +targetDataPrototype atpTarget}

AtpPrototype
DataPrototype

f 0“*
{ordered,

subsets
+conte>|<tDataPrototype atpContextElement}

AutosarDataPrototype ApplicationCompositeElementDataPrototype

+localVariable\|/0..1 ZF

VariableDataPrototype

+rootVariableDataPrototype

0.1
{subsets
atpContextElement}

Figure 5.25: Implementation of the InstanceRef for AutosarVariableRef

5.3.3.4 Access into VariableDataPrototype typed by an Implementation-
DataType

The meta-class ArvariableInImplementationDatalInstanceRef, despite the
name, has formally no relationship to AtpInstanceRef. Therefore the following defi-
nition applies:

[TPS_SWCT_01681] Context path in ArvVariableInImplementationDataIn-
stanceRef | The references in the roles

e portPrototype
e rootVariableDataPrototype
e ordered collection of contextDataPrototype

e targetDataPrototype

AUTO SAR

constitute the path leading from the root to the specified inner instance of a
dataElement inside of a VariableDataPrototype typed by an Implementa-
tionDataType. |()

This relation is also depicted in Figure 5.26.

ArVariableInimplementationDatalnstanceRef

0..*
+portPrototype\(/0..1 +contextDataPrototype \|/{ordered} +targetDataPrototype 1
AtpBlueprintable AtpPrototype AbstractimplementationDataTypeElement
AtpPrototype DataPrototype ImplementationDataTypeElement

PortPrototype - - - -
+ arraySizeHandling: ArraySizeHandlingEnum [0..1]

+ arraySizeSemantics: ArraySizeSemanticsEnum [0..1]
+ isOptional: Boolean [0..1]

«atpVariation»
+ arraySize: Positivelnteger [0..1]

+subElement 0..* {ordered}

ARElement «atpVariation» Tags:
AutosarDataPrototype «isOfType» +ype AtpType vh latestBindingTime =
AutosarDataType F--"- preCompileTime
«atpVariation»

1
{redefines atpType}

+rootVariableDataPrototype \|/0..1 T 0

AbstractimplementationDataType

VariableDataPrototype ImplementationDataType

+ dynamicArraySizeProfile: String [0..1]
+ isStructWithOptionalElement: Boolean [0..1]
+ typeEmitter: NameToken [0..1]

Figure 5.26: Implementation of ArvariableInImplementationDataInstanceRef

[constr_1423] Completeness of references ArvVariableInImplementation-
DataInstanceRef.contextDataPrototype | The reference ArvariableInIm-
plementationDatalnstanceRef.contextDataPrototype shall be defined for

e each leaf (i.e. the end of a chain of aggregating elements) Implementation-
DataTypeElement of category TYPE_REFERENCE in a chain of referencing
ImplementationDataTypes Which is not the targetDataPrototype

e and each ImplementationDataTypeElement owned by an Implementa-
tionDataType Or ImplementationDataTypeElement of category ARRAY
in a chain of referencing TmplementationDataTypes

starting from the TmplementationDataTypes of the rootvVariableDataProto-
type down to the leaf ImplementationDataTypeElement which is typed (directly
or indirectly via ImplementationDataType Of category TYPE_REFERENCE) by the
ImplementationDataType of the targetDataPrototype. |()

AUTOSAR

Figure 5.27 contains an example of a nested ImplementationDataType along with
the application of ArvariableInImplementationDataInstanceRef. The exam-
ple contains both cases for the definition of a contextDataPrototype mentioned in
[constr_1423].

:ArvariableInimplementationDatalnstanceRef +rootVariableDataPrototype :VariableDataPrototype

+ype

:ImplementationDataType Trmal ionDataTypes of the
category = ARRAY rootVanabIeDataPrototype

+subElement

+i .
contextDataPrototype :ImplementationDataTypeElement each

{index =1} DataTypeElement owne
Index = category = ARRAY d by ImplementationDataType of
y ARRAY

+subElement

+contextDataPrototype | :implementationDataTypeElement each leaf
ImplementationDataTypeElement which
is typed by the
ImplementationDataType of the
targetDataPrototype

{index = 2} category = TYPE_REFERENCE

+implementationDataType ln th|s case it is indirectly typed via

ionDataType of category
TYBE REFERENCE, but those are not
visible in the instance ref.

:ImplementationDataType
category = TYPE_REFERENCE

+implementationDataType

:ImplementationDataType
category = STRUCTURE

+subElement +subElement

ImpIementationD_ataTypeEIement ImplementationD_ataTypeEIement

category = VALUE category = STRUCTURE

+subElement , +subEIement,

:ImplementationDataTypeElement :ImplementationDataTypeElement

+targetDataPrototype

category = TYPE_REFERENCE category = VALUE

+implementationDataType

:ImplementationDataType i
primitive leaf types are not
category = VALUE visible in the instance ref

+baseType

:SwBaseType
category = FIXED_LENGTH

Figure 5.27: Example for the usage of ArVariableInImplementationDataln-
stanceRef

AUTOSAR

[constr_1424] Existence of ArVariableInImplementationDataln-
stanceRef.contextDataPrototype [The attribute ArvariableInImple-
mentationDataInstanceRef.contextDataPrototype shall only exist for an
ImplementationDataTypeElement category TYPE_REFERENCE Of ARRAY. |()

Technically, it would be possible to avoid the context for a one-dimensional array in
the hierarchy. The context is still required because then the rule for the existence of
contexts becomes much simpler.

Class ArVariablelnimplementationDatalnstanceRef
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcinternalBehavior::DataElements
Note This class represents the ability to navigate into a data element inside of an VariableDataPrototype which

is typed by an ImplementationDatatype.
Note that it shall not be used if the target is the VariableDataPrototype itself (e.g. if its a primitive).

Note that this class follows the pattern of an InstanceRef but is not implemented based on the abstract
classes because the ImplementationDataType isn’t either, especially because ImplementationDataType
Element isn’t derived from AtpPrototype.

Base ARObject
Attribute Type Mul. Kind | Note

*

contextDataPro- | ImplementationData ref This is a context in case there are subelements with
totype (ordered) | TypeElement explicit types. The reference has to be ordered to
properly reflect the nested structure.

Tags: xml.sequenceOffset=30

portPrototype PortPrototype 0..1 ref This is the port providing/receiving the root of the variable
Tags: xml.sequenceOffset=10

rootVariable VariableDataPrototype 0..1 ref This refers to the VariableDataPrototype typed by the

DataPrototype ImplementationDatatype in which the target can be found.

Tags: xml.sequenceOffset=20

targetData ImplementationData 1 ref This reference points to the target ImplementationData
Prototype TypeElement TypeElement.

Tags: xml.sequenceOffset=40

Table 5.37: ArVariablelnlmplementationDatalnstanceRef

5.3.3.5 Access into ParameterDataPrototype typed by an Implementation-
DataType

Please note that it is also possible to access the inside of a nested ParameterDat -
aPrototype typed by an ImplementationDataType in pretty much the same way
as this is possible for a variableDataPrototype typed by an Implementation-
DataType.

[TPS_SWCT _01738] Context path in ArParameterInImplementationDataIn-
stanceRef | The references in the roles

e portPrototype
e rootParameterDataPrototype

e ordered collection of contextDataPrototype

AUTO SAR

e targetDataPrototype

constitute the path leading from the root to the specified inner instance of a parameter
inside of a ParameterDataPrototype typed by an ImplementationDataType. |

()

This relation is also depicted in Figure 5.28.

ArParameterinimplementationDatalnstanceRef

0.*

+portPrototype \|/0..1 +contextDataPrototype \ [/ {ordered} +targetDataPrototype\|/1
AtpBlueprintable AtpPrototype AbstractimplementationDataTypeElement
AtpPrototype DataPrototype ImplementationDataTypeElement

PortPrototype

+ arraySizeHandling: ArraySizeHandlingEnum [0..1]
+ arraySizeSemantics: ArraySizeSemanticsEnum [0..1]
+ isOptional: Boolean [0..1]

«atpVariation»
+ arraySize: Postivelnteger [0..1]

+subElement 0..* {ordered}
ARElement
AutosarDataPrototype
typ +type AtpType
«isOfType» 1 AUIOSEIDEERPS «atpVariation»
{redefines atpType}

+rootParameterDataPrototype \[/0..1 AbstractimplementationDataType

ImplementationDataType
ParameterDataPrototype

+ dynamicArraySizeProfile: String [0..1]
+ isStructWithOptionalElement: Boolean [0..1]
+ typeEmitter: NameToken [0..1]

Figure 5.28: Implementation of ArParameterInImplementationDataInstanceRef

[constr_1516] Completeness of references ArParameterInImplementation-
DataInstanceRef.contextDataPrototype | The reference ArParameterIn-
ImplementationDatalnstanceRef.contextDataPrototype shall be defined
for

e each leaf (i.e. the end of a chain of aggregating elements) Implementation-
DataTypeElement 0Of category TYPE_REFERENCE in a chain of referencing
ImplementationDataTypesS Which is not the targetDataPrototype

e and each TmplementationDataTypeElement owned by an Implementa-
tionDataType Or ImplementationDataTypeElement of category ARRAY
in a chain of referencing TmplementationDataTypeS

starting from the ImplementationDataTypes of the rootParameterDataProto-
type down to the leaf TmplementationDataTypeElement Which is typed (directly
orindirectly via TmplementationDataType Of category TYPE_REFERENCE) by the
ImplementationDataType of the targetDataPrototype. |()

AUTOSAR

[constr_1517] Existence of ArParameterInImplementationDataln-
stanceRef.contextDataPrototype [The attribute ArParameterInIm-—
plementationDatalnstanceRef.contextDataPrototype shall only exist for an
ImplementationDataTypeElement category TYPE_REFERENCE Of ARRAY. |()

Technically, it would be possible to avoid the context for a one-dimensional array in
the hierarchy. The context is still required because then the rule for the existence of
contexts becomes much simpler.

Class ArParameterinimplementationDatalnstanceRef
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcinternalBehavior::DataElements
Note This class represents the ability to navigate into an element inside of an ParameterDataPrototype typed

by an ImplementationDatatype.

Note that it shall not be used if the target is the ParameterDataPrototype itself (e.g. if the target is a
primitive data type).

Note that this class follows the pattern of an InstanceRef but is not implemented based on the abstract
classes because the ImplementationDataType isn’t either, especially because ImplementationDataType
Element (intentionally) isn’t derived from AtpPrototype.

Base ARObject
Attribute Type Mul. Kind | Note

*

contextDataPro- | ImplementationData ref This is a context in case there are subelements with
totype (ordered) | TypeElement explicit types. The reference has to be ordered to
properly reflect the nested structure.

portPrototype PortPrototype 0..1 ref This reference points to the PortPrototype
providing/receiving the root of the parameter.

rootParameter ParameterData 0..1 ref This refers to the ParameterDataPrototype typed by the

DataPrototype Prototype implementationDataType in which the target can be
found.

targetData ImplementationData 1 ref This reference points to the target ImplementationData

Prototype TypeElement TypeElement.

Table 5.38: ArParameterinimplementationDatalnstanceRef

5.4 Properties of Data Definitions

5.4.1 Overview

As it has already been shown in the previous chapters, various properties and asso-
ciations can be attached to the definition of data types as well as prototypes. These
are described by the meta-class swbataDefProps which covers all properties of a
particular data object under various aspects.

In general, the properties specified within SwbataDefProps may apply to all kind of
data declared within the software-component template and within the basic software
module description template as well, e.g. component local data, data used for commu-
nication, data used for measurement as well as for calibration.

However, there are constraints for the attributes depending on the role of the data:

AUTOSAR

[constr_1015] Prioritization of SswDataDefProps | The prioritization and usage of
attributes of meta-class swbatabDefProps shall follow the restrictions given in ta-

ble 5.39. |()
Attributes of SwDataDefProps Usage For Place of Setting
]
0,
)
o Y H
o3 [N o
1 W i)
25| |8 &
& 2] H >
B | ®) 3] &
] a 1} 0n n [}
Q| g Q| 0| 0 &
s | 0o|lo | g |0 PO =~ T T I
Q| A | o 9] a [0] <] n | =
[~] L > - 9] < 9} (] =} [}
®© | 0| W | v | v |« 3| & 9| 0o]| v
9| A | L |0 |®]|H | 8| w| ol s
S|P | |L|lA]0|lo|lf|L|s|E|
S| @ | 0|0 | |L|d|lFB|a|H]|d]|s
o 0 = H =1 Q Q. 4 o (] + n
= - [0] [d & () o H I 0 o
wlo B3 2|38 8(8 g% 2|8
- [«

&< 8| & 5|8|5|8|8|a|a|2|a]a
additionalNativeTypeQualifier X X INA| D I INA{NA[NA| D [NA| S |NA|NA
annotation x| D|A|A|A|A A|DI|[NA|A|D|NA
baseType X | X[X |NA| D | | | R | D |NA[S | M|[NA
compuMethod X | x| x| DJ|A]|I I [NA] R I | Al S| D |NA
dataConstr X| x| x| D|C|R|R I INA| R [NA| S| D |NA
displayFormat X D|A|R|R I INA| R |[NA| S| D |[NA
displayPresentation X | X[X | D|[A|R|R|NA|NA|NAINA| S |[NA[NA
implementationDataType X X [NA| D | | I INA| D [NA|NA|NA|[NA
invalidvalue X | x D|A | I INA] D |[NA|NA| S [NA|NA
stepSize X D|A|A|A|A|NANA[A | S |NA|NA
swAddrMethod X | X[X | D|R|R|R|NA|INA|NA| R |[NA|NA| D
swAlignment X X INA| D | R| R |[NA|NA|NA|NA|NA|[NA|NA
swBitRepresentation X | X [NA|NA|NA|NA[NA| NA[NA|NA| D |NA|NA
swCalibrationAccess X X DI R|R|[R|NAINA|R|R|S|D|(NA
swCalprmAxisSet X | x D |[NA| | | I INA|NA|[NA| S |NA[NA
swCalprmAxisSet.swCalprmAxis
/SwAxisGrouped.swCalprmRef X NATINAYINAY D R R S Lol
swCalprmAxisSet.swCalprmAxis
/SwAxisIndividual.swVariableRef X RS C | R EAEAES S BaEs
swCalprmAxisSet.swCalprmAxis
/SwAxisGrouped.sharedAxisType X D INATINATINATNAINA T NATNA| S [NATNA
swCalprmAxisSet.swCalprmAxis
/SwAxisIndividual.inputVariableType X D ESESE R L SR S L
swCalprmAxisSet/SwAxisIndividual.unit opt. D [NA| | | I INA| I |[NA| S |NA|NA
swComparisonVariable X NA|NA|NA|NA| D [NA[NA|NA| S [NA|NA
swDataDependency X INA|{NA| D | R|NA|NA|NA[NA| S [NA|NA
swHostVariable X INA|NA|NA[NA|NA|NA|NA|NA| D [NA|NA
swImplPolicy X X | D|A| A |NA|NA|NA| D [NA|NA|[NA|NA
swIntendedResolution X | D8 NA|NA|[NA|NA|NA|NA|NA|[NA|NA|NA
swInterpolationMethod X | D | R| R| R|NA[NA[NA| S [NA|[NA
swilsVirtual X NA|NA| D | R [NA|NA[NA|NA| S |NA|NA
swPointerTargetProps X INA| D I [NA|NA|NA| D |NA|NA|NA|[NA
swRecordLayout X | X | X | D|[NA| I | I INA|NA|[NA| S |NA[NA

Y

18swIntendedResolution is used only in an early phase of the definition of data types, namely
in the context of the definition of so-called blueprints. To that extent, swIntendedResolution rep-
resents a non-binding requirement that shall later be considered for the definition of an appropriate
CompuMethod.

AUTOSAR

A
Attributes of SwDataDefProps Usage For Place of Setting
)
Q,
9]
o Y H
& [N o
0 | B b B
Q] a B
> L] H >
B | © » 3] &
L} a 1] 0n n [}
2 [+ a]]] (4] =
g | 0| o | g | @ ol Q0w |8
a - [o 0 g [0} =1 |7} =
=] 2 >] 9] < 9} [=} [}
© | 0| ® |p | v |« 3| 8| 9| 09o]|0v
| A | L | 0| w | H 1 d|w| 0| s
@ | L | |P|[HA|O0|lo|l|L|s|E| @
S| @ | 00| |L|d|lT|a|H]|d|s
> 0 & N =1 Q o 14 o] + n
N EIEA AR IR A A A A - AR
Bl 2|5 B (5 E|5(5|%8(2|8|F)%
|l < O | < |H|a|H | |[O0O|?|®m |2 |0 |n
swRefreshTiming X D|R|R|R|NA[NA| R|R|R|NA|NA
swTextProps X | X | D | | | I [NA|NA|NA| S [NA|NA
swValueBlockSize X | X | D | | | I INA|NA|[NA| S |NA[NA
swValueBlockSizeMult X X | D | | | I [NA|NA|NA| S [NA|NA
unit X | X | D | | I INANA[I |[NA| S | D |NA
valueAxisDataType X X D | | | I INA|NA|NA| S |NA|NA

Table 5.39: Usage of Attributes of SwDataDefProps
Please note that this table is (by reference) a part of [constr_1015]

The following settings apply in table 5.39:

D Define the attribute independent from settings to the left.

R Use or re-define definition from the left in the scope of this element.
A Add attribute if not defined on the left, or as an additional information.

If the attribute has an upper multiplicity > 1 and the attribute is defined on the left
then the attribute is added to the attribute defined on the left.

If the attribute has a upper multiplicity of 1 and the attribute is not defined on the
left then the attribute is defined.

If the attribute has an upper multiplicity of 1 and the attribute is already defined
on the left then the attribute is not redefined but this is considered as invalid
configuration.

I Inherit the definition from the left for usage in the scope of this element.
NA Attribute is not applicable for usage in the scope of this element.

M Attribute is meaningless in the scope of this element. As it was allowed in previous
versions, declaring it as Not Applicable (NA) would break compatibility. Tools
shall ignore such an attribute without a warning.

C This means that the left element constrains right element.

Al If the attribute is already defined on the left then the attribute is not redefined but
adds implementation-related information.

AUTOSAR

Example: an ApplicationDataType Of category BOOLEAN supports the def-
inition of an own CompuMethod to define the semantics of e.g. (ON, OFF) or
(HIGH, LOW) or (PASSED, FAILED) as long as the number of values match
and matching pairs of values on application level and implementation level
exist. In contrast, the corresponding ImplementationDataType USeS (true,
false) as the applicable literals in any of the above mentioned cases.

S Create a “Self-contained” artifact based on the left.

Example: A compuMethod defined in the context of a System of category
ECU_EXTRACT is copied into the separate artifact for the McSupportData and
references need to be updated to the copy.

Use case: Provide a McDataGenerator with a single, self-contained file to do its
job.

Some of the property names contain the term “variable” or “calprm”, this comes from
historical'” reasons and can be taken as some hint where the property most likely
applies to.

Class «atpVariation» SwDataDefProps
Package M2::MSR::DataDictionary::DataDefProperties
Note This class is a collection of properties relevant for data objects under various aspects. One could

consider this class as a "pattern of inheritance by aggregation". The properties can be applied to all
objects of all classes in which SwDataDefProps is aggregated.

Note that not all of the attributes or associated elements are useful all of the time. Hence, the process
definition (e.g. expressed with an OCL or a Document Control Instance MSR-DCI) has the task of
implementing limitations.

SwDataDefProps covers various aspects:

e Structure of the data element for calibration use cases: is it a single value, a curve, or a map, but
also the recordLayouts which specify how such elements are mapped/converted to the Data
Types in the programming language (or in AUTOSAR). This is mainly expressed by properties
like swRecordLayout and swCalprmAxisSet

e Implementation aspects, mainly expressed by swimplPolicy, swVariableAccessImplPolicy, sw
AddrMethod, swPointerTagetProps, baseType, implementationDataType and additionalNative
TypeQualifier

e Access policy for the MCD system, mainly expressed by swCalibrationAccess

e Semantics of the data element, mainly expressed by compuMethod and/or unit, dataConstr,
invalidValue

e Code generation policy provided by swRecordLayout
Tags: vh.latestBindingTime=codeGenerationTime
Base ARObject
Attribute Type | Mul. | Kind | Note

V

7In the beginning of ASAM and MSR measurements and calibration parameters (characteristics)
were separated and the properties were merged over the time.

AUTOSAR

Class

«atpVariation» SwDataDefProps

additionalNative
TypeQualifier

NativeDeclarationString

0..1

attr

This attribute is used to declare native qualifiers of the
programming language which can neither be deduced
from the baseType (e.g. because the data object
describes a pointer) nor from other more abstract
attributes. Examples are qualifiers like "volatile", "strict" or
"enum" of the C-language. All such declarations have to
be put into one string.

Tags: xml.sequenceOffset=235

annotation

Annotation

agar

This aggregation allows to add annotations (yellow pads
...) related to the current data object.

Tags: xml.roleElement=true
xml.roleWrapperElement=true
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

baseType

SwBaseType

ref

Base type associated with the containing data object.
Tags: xml.sequenceOffset=50

compuMethod

CompuMethod

ref

Computation method associated with the semantics of
this data object.

Tags: xml.sequenceOffset=180

dataConstr

DataConstr

ref

Data constraint for this data object.
Tags: xml.sequenceOffset=190

displayFormat

DisplayFormatString

attr

This property describes how a number is to be rendered
e.g. in documents or in a measurement and calibration
system.

Tags: xml.sequenceOffset=210

display
Presentation

DisplayPresentation
Enum

attr

This attribute controls the presentation of the related data
for measurement and calibration tools.

implementation
DataType

Abstractimplementation
DataType

ref

This association denotes the ImplementationDataType of
a data declaration via its aggregated SwDataDefProps. It
is used whenever a data declaration is not directly
referring to a base type. Especially

e redefinition of an ImplementationDataType via a
"typedef" to another ImplementationDatatype

e the target type of a pointer (see SwPointerTarget
Props), if it does not refer to a base type directly

e the data type of an array or record element within
an ImplementationDataType, if it does not refer to
a base type directly

o the data type of an SwServiceArg, if it does not
refer to a base type directly

Tags: xml.sequenceOffset=215

invalidValue

ValueSpecification

0..1

aggr

Optional value to express invalidity of the actual data
element.

Tags: xml.sequenceOffset=255

stepSize

Float

0..1

attr

This attribute can be used to define a value which is
added to or subtracted from the value of a DataPrototype
when using up/down keys while calibrating.

swAddrMethod

SwAddrMethod

0..1

ref

Addressing method related to this data object. Via an
association to the same SwAddrMethod it can be
specified that several DataPrototypes shall be located in
the same memory without already specifying the memory
section itself.

Tags: xml.sequenceOffset=30

AUTO SAR

A
Class «atpVariation» SwDataDefProps
swAlignment AlignmentType 0..1 attr The attribute describes the intended alignment of the
DataPrototype. If the attribute is not defined the alignment
is determined by the swBaseType size and the memory
AllocationKeywordPolicy of the referenced SwAddr
Method.
Tags: xml.sequenceOffset=33
swBit SwBitRepresentation 0..1 agor Description of the binary representation in case of a bit
Representation variable.
Tags: xml.sequenceOffset=60
swCalibration SwCalibrationAccess 0..1 attr Specifies the read or write access by MCD tools for this
Access Enum data object.
Tags: xml.sequenceOffset=70
swCalprmAxis SwCalprmAxisSet 0..1 aggr This specifies the properties of the axes in case of a
Set curve or map etc. This is mainly applicable to calibration
parameters.
Tags: xml.sequenceOffset=90
swComparison SwVariableRefProxy * agar Variables used for comparison in an MCD process.
Variable Tags: xml.sequenceOffset=170
xml.typeElement=false
swData SwDataDependency 0..1 agor Describes how the value of the data object has to be
Dependency calculated from the value of another data object (by the
MCD system).
Tags: xml.sequenceOffset=200
swHostVariable SwVariableRefProxy 0..1 aggr | Contains a reference to a variable which serves as a
host-variable for a bit variable. Only applicable to bit
objects.
Tags: xml.sequenceOffset=220
xml.typeElement=false
swimplPolicy SwimplPolicyEnum 0..1 attr Implementation policy for this data object.
Tags: xml.sequenceOffset=230
swintended Numerical 0..1 attr The purpose of this element is to describe the requested
Resolution quantization of data objects early on in the design
process.
The resolution ultimately occurs via the conversion
formula present (compuMethod), which specifies the
transition from the physical world to the standardized
world (and vice-versa) (here, "the slope per bit" is present
implicitly in the conversion formula).
In the case of a development phase without a fixed
conversion formula, a pre-specification can occur through
swintendedResolution.
The resolution is specified in the physical domain
according to the property "unit".
Tags: xml.sequenceOffset=240
swinterpolation Identifier 0..1 attr This is a keyword identifying the mathematical method to
Method be applied for interpolation. The keyword needs to be
related to the interpolation routine which needs to be
invoked.
Tags: xml.sequenceOffset=250

AUTOSAR

A

Class «atpVariation» SwDataDefProps

swlisVirtual Boolean 0..1 attr This element distinguishes virtual objects. Virtual objects
do not appear in the memory, their derivation is much
more dependent on other objects and hence they shall
have a swDataDependency .
Tags: xml.sequenceOffset=260

swPointerTarget | SwPointerTargetProps 0..1 aggr Specifies that the containing data object is a pointer to

Props another data object.
Tags: xml.sequenceOffset=280

swRecord SwRecordLayout 0..1 ref Record layout for this data object.

Layout Tags: xml.sequenceOffset=290

swRefresh MultidimensionalTime 0..1 aggr This element specifies the frequency in which the object

Timing involved shall be or is called or calculated. This timing
can be collected from the task in which write access
processes to the variable run. But this cannot be done by
the MCD system.
So this attribute can be used in an early phase to express
the desired refresh timing and later on to specify the real
refresh timing.
Tags: xml.sequenceOffset=300

swTextProps SwTextProps 0..1 aggr | the specific properties if the data object is a text object.
Tags: xml.sequenceOffset=120

swValueBlock Numerical 0..1 attr This represents the size of a Value Block

Size Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=80

swValueBlock Numerical * attr This attribute is used to specify the dimensions of a value

Size block (VAL_BLK) for the case that that value block has

Mult (ordered) more than one dimension.
The dimensions given in this attribute are ordered such
that the first entry represents the first dimension, the
second entry represents the second dimension, and so
on.
For one-dimensional value blocks the attribute swValue
BlockSize shall be used and this attribute shall not exist.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

unit Unit 0..1 ref Physical unit associated with the semantics of this data
object. This attribute applies if no compuMethod is
specified. If both units (this as well as via compuMethod)
are specified the units shall be compatible.
Tags: xml.sequenceOffset=350

valueAxisData ApplicationPrimitive 0..1 ref The referenced ApplicationPrimitiveDataType represents

Type DataType the primitive data type of the value axis within a
compound primitive (e.g. curve, map). It supersedes
CompuMethod, Unit, and BaseType.
Tags: xml.sequenceOffset=355

Table 5.40: SwDataDefProps

AUT o

©SAR

Primitive NativeDeclarationString
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Primitive Types
Note This string contains a native data declaration of a data type in a programming language. It is basically a
string, but white-space must be preserved.
Tags: xml.xsd.customType=NATIVE-DECLARATION-STRING
xml.xsd.type=string
xml.xsd.whiteSpace=preserve
Table 5.41: NativeDeclarationString
Class SwBitRepresentation
Package M2::MSR::DataDictionary::DataDefProperties
Note Description of the structure of a bit variable: Comprises of the bitPosition in a memory object (e.g. sw
HostVariable, which stands parallel to swBitRepresentation) and the numberOfBits . In this way,
interrelated memory areas can be described. Non-related memory areas are not supported.
Base ARObject
Attribute Type Mul. Kind | Note
bitPosition Integer 0..1 attr If the "bit data object" is hosted within another data object
(e.g. if the memory can be accessed via byte as well as
bit address), this attribute specifies the position of the
data object. The count starts at zero (0).
Tags: xml.sequenceOffset=20
numberOfBits Integer 0..1 attr Number of bits allocated by a "bit data object" within its
host data object.
Tags: xml.sequenceOffset=30
Table 5.42: SwBitRepresentation
Primitive DisplayFormatString
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Primitive Types
Note This is a display format specifier for the display of values e.g. in documents or in measurement and

calibration systems.

The display format specifier is a subset of the ANSI C printf specifiers with the following
form:

[}

% [flags] [width] [.prec]
For more details refer to "ASAM-HarmonizedDataObjects-V1.1.pdf" chapter 13.3.2 DISPLAY OF DATA.
Due to the numerical nature of value settings, only the following type characters are allowed:

type character

e d: Signed decimal integer

e i: Signed decimal integer

e 0: Unsigned octal integer

e u: Unsigned decimal integer

e X: Unsigned hexadecimal integer, using "abcdef"

e X: Unsigned hexadecimal integer, using "ABCDEF"

e e: Signed value having the form [-]d.dddd e [sign]ddd where d is a single decimal digit, dddd is
one or more decimal digits, ddd is exactly three decimal digits, and sign is + or -

e E: Identical to the e format except that E rather than e introduces the exponent
\Y4

Y%

AUTOSAR

A

Primitive DisplayFormatString

AN
e f: Signed value having the form [-]Jdddd.dddd, where dddd is one or more decimal digits; the
number of digits before the decimal point depends on the magnitude of the number, and the
number of digits after the decimal point depends on the requested precision

e g: Signed value printed in f or e format, whichever is more compact for the given value and
precision; trailing zeros are truncated, and the decimal point appears only if one or more digits
follow it

e G: Identical to the g format, except that E, rather than e, introduces the exponent (where
appropriate)
Tags: xml.xsd.customType=DISPLAY-FORMAT-STRING
xml.xsd.pattern=%[\-+#]?[0-9]*(\.[0-9]) ?[diouxXfeEgGcs]
xml.xsd.type=string

Table 5.43: DisplayFormatString

Class Annotation

Package M2::MSR::Documentation::Annotation

Note This is a plain annotation which does not have further formal data.
Base ARObject, GeneralAnnotation

Attribute Type Mul. Kind | Note

Table 5.44: Annotation

[constr_1244] DataPrototypes used in application software shall not be typed
by Cenums [ADataPrototype thatis usedin an AtomicSwComponent Type shall
not set swhataDefProps.additionalNativeTypeQualifier to enum. |()

[TPS_SWCT_01272] Semantics of swComparisonVariable | Please note that
swComparisonVariables shall be displayed in the MCD system on the ordinate in
a curve. By showing the input value and the comparison value the calibration engineer
can see if the current working point is above or below a curve provident thresholds.
For example in a curve specifying a temperature depending gear shift threshold en-
gine speed the engine speed can be shown as “comparisonVariable”.

These variables can be used to display the value of a variable on the value axis of a cal-
ibration parameter (characteristic), that is currently displayed in the MCD-System. The
purpose is to compare the appropriate result from the calibration parameter in question,
with a value being calculated or taken from a sensor (the comparison variable).

The sole purpose of this comparison-variable is therefore to serve the calibration pro-
cess. |()

The meaning behind swComparisonvariable is depicted in Figure 5.29. Legend:
t, represents the current temperature and ¢,,,; represents the motor temperature. V/
represents the current speed as shown in the MCD system for comparison: this is the
swComparisonVariable. Likewise, V, represents the speed characteristic over the
temperature.

>

tX tmot

Figure 5.29: Explanation of swComparisonVariable

Enumeration SwCalibrationAccessEnum
Package M2::MSR::DataDictionary::DataDefProperties
Note Determines the access rights to a data object w.r.t. measurement and calibration.

Literal

Description

notAccessible

The element will not be accessible via MCD tools, i.e. will not appear in the ASAP file.

Tags: atp.EnumerationValue=0

readOnly The element will only appear as read-only in an ASAP file.
Tags: atp.EnumerationValue=1
readWrite The element will appear in the ASAP file with both read and write access.

Tags: atp.EnumerationValue=2

[TPS_SWCT_01273] Precedence rules for the application of SwbataDefProps |
SwDataDefProps can be specified on various levels, from type over prototype to in-
stantiation, finally data access and calibration support after RTE generation. In general,
properties specified on prototype level override the ones specified on type level.

Table 5.45: SwCalibrationAccessEnum

More formally, the precedence of such properties is:

1. attributes of SswhbatabDefProps defined on ApplicationDataType Which may

be overwritten by

2. attributes of swbatabefProps defined on ImplementationDataType which

may be overwritten by

3. attributes of swbataDefProps defined on DataPrototype which may be over-
written by

4. attributes of swhataDefProps defined on InstantiationDataDefProps

which may be overwritten by

5. attributes of SwbataDefProps defined on ParameterAccess respectively Ar-

gument which may be overwritten by

AUTOSAR

6. attributes of swbatabDefProps defined on FlatInstanceDescriptor which
may be overwritten by

7. attributes of swhbataDefProps defined on McDataInstance

10

Note that details about applicable attributes of SwbatabefProps can be found in Ta-
ble 5.39.

[TPS_SWCT _01274] swbataDefProps used to support calibration and measure-
ment | The last item in the list of use cases contained in [TPS_SWCT_01273] denotes
that swbataDefProps are also used as part of McSupportData which is a direct in-
put to the generation of measurement and calibration configuration formats (so-called
A2L-files). This use case is further explained in [6]. Since these data are generated
by the RTE, they will use a copy of the properties according to the precedence given
above.

However, even in this use case which comes after RTE generation it is possible that
properties relevant for the MCD system are added which had been undefined so far.

This for example, applies to the attribute swRefreshTiming which denotes a timing
information relevant for the measurement system; this information may be set rather
late in the process chain. |()

Obviously such an override is not applicable in all cases. In particular, the properties
covering the structure shall not be redefined on DataPrototype. Implementation
policy, semantics and code generation policy may be changed under consideration of
compatibility rules.

Access policy for the MCD system is the most likely subject to be redefined on the
DataPrototype of even on an instantiation level.

Section 5.4.3 describes how sSwbhataDefProps are used for measuring purposes
while Section 5.4.4 describes the construction of characteristics based on the com-
bination of SswhbataDefProps with DataPrototypes.

Section 2.2.2 describes in which context calibration parameters can be defined. Fi-
nally, sections 2.2.3, 7.5.4, and 5.5.4 show how calibration parameters are used in
RunnableEntitys and show the link to an actual ECU implementation.

Enumeration SwimplPolicyEnum

Package M2::MSR::DataDictionary::DataDefProperties

Note Specifies the implementation strategy with respect to consistency mechanisms of variables.
Literal Description

Y%

AUTOSAR

A
Enumeration SwimplPolicyEnum
const forced implementation such that the running software within the ECU shall not modify it. For example
implemented with the "const" modifier in C. This can be applied for parameters (not for those in
NVRAM) as well as argument data prototypes.
Tags: atp.EnumerationValue=0
fixed This data element is fixed. In particular this indicates, that it might also be implemented e.g. as in

place data, (#DEFINE).

Tags: atp.EnumerationValue=1

measurementPoint

The data element is created for measurement purposes only. The data element is never read directly
within the ECU software. In contrast to a "standard" data element in an unconnected provide port is,
this unconnection is guaranteed for measurementPoint data elements.

Tags: atp.EnumerationValue=2

queued The content of the data element is queued and the data element has 'event’ semantics, i.e. data
elements are stored in a queue and all data elements are processed in ‘first in first out’ order.
The queuing is intended to be implemented by RTE Generator.
This value is not applicable for parameters.
Tags: atp.EnumerationValue=3

standard This is applicable for all kinds of data elements. For variable data prototypes the ’last is best’

semantics applies. For parameter there is no specific implementation directive.
Tags: atp.EnumerationValue=4

Table 5.46: SwimplPolicyEnum

[TPS_SWCT_01275] values of the attribute swImplPolicy are restricted depend-
ing on the context [The values of the attribute swImplPolicy are restricted (sum-
marized in table 5.47) depending on the context. This restriction reflects the fact that
not all possible implementation strategies are useful or supported for all kinds of Dat -
aPrototypes. |()

The restrictions summarized in table 5.47 are formalized in a set of constraints below

the table.

Please note that the usage of swImplPolicy is further constraint in the combination
with the attribute value swCalibrationAccess as described in [constr _1017].

Attribute of SwImplPolicyEnum |VariableDataPrototype ParameterDataPrototype | Misc.

inrole implicitInterRunnableVariable
in role explicitInterRunnableVariable

in SenderReceiverInterface

in role arTypedPerInstanceMemory
ParameterDataPrototype

in role perInstanceParameter

VariableDataPrototype
VariableDataPrototype
in ParameterInterface
ParameterDataPrototype
in role romBlock
ParameterDataPrototype
in role sharedParameter
ParameterDataPrototype
ParameterDataPrototype
in role constantMemory
ArgumentDataPrototype

in NvDataInterface
VariableDataPrototype

in role ramBlock
VariableDataPrototype
VariableDataPrototype
VariableDataPrototype
VariableDataPrototype
in role staticMemory

SwServiceArg

<

AUTOSAR

A
const NA | NA | NA | NA | NA| NA | NA [X NA | X X X NA | X
fixed NA | NA | NA | NA| NA | NA| NA| X NA | NA | NA | X NA | NA
measurementPoint X NA | NA | NA | NA X X NA | NA | NA | NA | NA | NA | NA
queued X NA | NA | NA | NA | NA | NA | NA [NA | NA | NA | NA | NA [NA
standard X X X X X X X X X X X X X X

Table 5.47: Allowed attributes values for swImplPolicy VS. DataPrototypes and their
roles

The following settings apply in table 5.47:
X Attribute is applicable for usage in the scope of this element.
NA Attribute is not applicable for usage in the scope of this element.

[constr_2035] swImplPolicy for VariableDataPrototype in Sender-
ReceiverInterface | The overriding swImplPolicy attribute value of a vari-
ableDataPrototype In SenderReceiverInterface shall be standard,
queued Or measurementPoint. |()

[constr_2036] swImplPolicy for VariableDataPrototype in NvDataInter-
face [The overriding swImplPolicy attribute value of a VariableDataProto-
type in NvDataInterface shall be standard. |()

[constr_2037] swImplPolicy for VariableDataPrototype in the role ram-
Block [The overriding swImplPolicy attribute value of a VvariableDataProto-
type in the role ramBlock shall be standard. |()

[constr_2038] swImplPolicy for VariableDataPrototype in the role implic-
itInterRunnableVariable [The overriding swImplPolicy attribute value of a
VariableDataPrototype in the role implicitInterRunnableVariable shall
be standard. |()

[constr_2039] swImplPolicy for VariableDataPrototype in the role explic-
itInterRunnableVariable [The overriding swImplPolicy attribute value of a
VariableDataPrototype in the role explicitInterRunnableVariable shall
be standard. |()

[constr_2040] swImplPolicy for VariableDataPrototype in the role arType-
dPerInstanceMemory | The overriding swImplPolicy attribute value of a vari-
ableDataPrototype intherole arTypedPerInstanceMemory shallbe standard
or measurementPoint. [()

[constr_2041] swImplPolicy for VariableDataPrototype in the role stat-
icMemory [The overriding swImplPolicy attribute value of a variableDataPro-
totype in the role staticMemory shall be standard or measurementPoint. |

()

[constr_2042] swImplPolicy for ParameterDataPrototype in ParameterIn-
terface [The overriding swImplPolicy attribute value of a ParameterDataPro-
totype in ParameterInterface shall be standard, const or fixed. |()

AUTOSAR

[constr 2043] swImplPolicy for ParameterDataPrototype in the role
romBlock [The overriding swImplPolicy attribute value of a ParameterDat-
aPrototype in the role romBlock shall be standard. |()

[constr_2044] swImplPolicy for ParameterDataPrototype in the role
sharedParameter [The overriding swImplPolicy attribute value of a Parame—
terDataPrototype in the role sharedParameter shall be standard, const. |

()

[constr_2045] swImplPolicy for ParameterDataPrototype in the role perIn-
stanceParameter [The overriding swImplPolicy attribute value of a Param-
eterDataPrototype in the role perInstanceParameter shall be standard,
const. |()

[constr_2046] swImplPolicy for ParameterDataPrototype in the role con-
stantMemory | The overriding swImplPolicy attribute value of a ParameterDat—
aPrototype in the role constantMemory shall be standard, const or fixed. |

()

[constr_2047] swImplPolicy for ArgumentDataPrototype [The overriding
swIimplPolicy attribute value of a ArgumentDataPrototype shall be standard.

10

[constr_2048] swImplPolicy for SwServiceArg [The overriding swImplPolicy
attribute value of a swserviceArg shall be standard or const. |()

[TPS_SWCT_02000] Default value for attribute swImplPolicy [If the attribute
swImplPolicy is not explicitly set at any of the locations listed in “Place of Setting”
for swbataDefProps the default value standard applies. |()

Please note that the locations listed in “Place of Setting” for SswbatabefProps are
described in Table 5.39.

5.4.2 Invalid Value

The diagram 5.5 shows that in addition to the semantics defined through the com-
puMethod (explained below in chapter 5.5.1), also an invalidvalue can be spec-
ified. This is a requirement of the VFB [3], allowing to express which specific value is
used to indicate invalidation.

AUTOSAR

ARElement AtpPrototype
AtpType

AutosarDataType

+swDataDefProps T 0.1 +/5NDataDefPropsT 0.1

«atpVariation»
SwbDataDefProps

DataPrototype

+invalidvalue | 0..1

ValueSpecification

Figure 5.30: Invalid value

The invalidvalue can be used in different flavors (also illustrated in Figure 5.6:

e [TPS_SWCT_01432] Keep the invalidvalue transparent to the sending
and receiving software components | On the one hand it is possible to keep
the invalidvalue transparent to the sending and receiving software compo-
nents. In this case the invalidation API of the RTE on the sender side has to be
used.

The receiving software component can either use the data receive status or the
DataReceiveErrorEvent respectively DataReceivedEvent to decide about
the validity of the received data or the receiving software component can rely on
the reception of an initVvalue as a default value in case of data invalidation.

In this case the invalid value should (and usually will) be outside of the range
limits defined by the compuMethod. |()

[TPS_SWCT_01434] Sender and receiver have knowledge of invalid value |
On the other hand it is possible that the communicating software components do
have knowledge about the invalidvalue andthe invalidvalue is visible for
them.

This is in particular the case if the sender and receiver are calculating a checksum
over a larger data structure to implement an end to end communication protec-
tion. To ensure the integrity of the checksums it is required to set invalid values
by the sending component directly and to receive invalid values unchanged.

In this case the invalid value should (and usually will) be inside of the range
limits defined by the compuMethod. |()

[TPS_SWCT_01436] Different receivers require different handling of data
invalidation | It is possible that in case of 1:n communication different receivers
requiring a different handling of data invalidation depending on the criticality of
its functionality. For instance, one receiver applies the checksum based end to

AUTOSAR

end communication protection and another receiver relies on the substitution of
invalid values by invalidvalues. |()

A typical use case for putting the invalidvalue inside the boundaries of the appli-
cable compuMethod is a composite data type that contains the values of all individual
wheel speeds. If one of the sensors fails and starts to send invalidvalue it would
probably not make sense to consider the whole composite data element invalid.

It may very likely still be possible to make sense of the remaining intact wheel speed
values and carry on with whatever business the receiving software-component has with
that data.

From this perspective, it would obviously be OK for the sending software-component to
actively send the invalidvalue that is then processed as a “regular” value without
applying additional semantics by the RTE/Com.

[TPS_SWCT_01646] Sending invalidvalue without invalidation applied by
RTE/Com | For intentionally sending invalidvalue without invalidation ap-
plied by RTE/Com the SenderReceiverInterface.invalidationPolicy.han-
dleInvalid shall be set to the value HandleInvalidEnum.dontInvalidate. |

()

[constr_1390] Restriction to the value of SenderReceiverInterface.in-
validationPolicy.handlelInvalid | If the value of SenderReceiverInter-
face.invalidationPolicy.handleInvalid is set to any value other than Han-
dleInvalidEnum.dontInvalidate thenthe invalidvalue shall not be withinthe
interval defined by the CompuMethod of the applicable dataElement. |()

Please note that ApplicationPrimitiveDataTypes of category VALUE in prin-
ciple can have an invalidvalue provided by a NumericalValueSpecification
because the value of the attribute invalidvalue can be outside the range of the
applicable compuMethod (see [TPS_SWCT_01432]).

[TPS_SWCT 01437] invalidvalue can also be specified without setting a
compuMethod [An invalidvalue can also be specified without setting a com-
puMethod. |()

Figure 5.6 illustrates the relationship between ApplicationDataType, Com-—
puMethod, ImplementationDataType, invalidValue, BaseType.

[constr_2545] invalidvalue shall fit in the specified ranges [The invalid-
Value shall be in the range of the ImplementationDataType. |()

Please note that the invalidvalueisaValueSpecification. Of course, it would
technically be possible to use any subclass of valueSpecification at this place.

[constr_1016] Restriction of invalidvalue for ImplementationDataType and
ImplementationDataTypeElement | invalidValue for Implementation-
DataType and ImplementationDataTypeElement is restricted to to be either a

AUTOSAR

compatible NumericalValueSpecification, TextValueSpecification (cau-
tion, [constr_1284] applies) or a ConstantReference thatin turn points to a compat-
ible ValueSpecification. |()

[constr_1384] Definition of invalidvalue for DataPrototype typed by Ap-
plicationPrimitiveDataType Of category CURVE, MAP, CUBOID, CUBE_4,
CUBE_5, COM_AXIS, RES_AXIS, and VAL BLK | An invalidvalue shall not be
specified for a DataPrototype typed by ApplicationPrimitiveDataType oOf
category CURVE, MAP, CUBOID, CUBE_4, CUBE_5, COM_AXIS, RES_AXIS, and
VAL_BLK |()

Rationale for [constr_1384]: there is no use case for sending a DataPrototype
typed by ApplicationPrimitiveDataType Of category CURVE, MAP, CUBOID,
CUBE_4, CUBE_5, COM_AXIS, RES_AXIS, and VAL_BLK over a communication bus.

[constr_1242] Restriction of invalidvalue for ApplicationPrimitive-
DataType Of category STRING | invalidValue for ApplicationPrimitive-
DataType Of category STRING ([constr_1241] applies) is restricted to be either a
compatible ApplicationValueSpecification Ora ConstantReference thatin
turn points to a compatible ApplicationvalueSpecification. ()

[TPS_SWCT _01487] Correspondence of invalidvValue for ApplicationPrim-
itiveDataType and ImplementationDataType | The invalidvalue specified
on the level of an ApplicationPrimitiveDataType shall correspond to the in-
validvalue specified on the level of a compatible TmplementationDataType. The
terms “corresponds” boils down to:

e category VALUE or BOOLEAN: application of CompuMethod

e category STRING: mapping of the encoding on the ApplicationPrimi-
tiveDataType side to the numerical values on the level of the ITmplementa-
tionDataType (shall reference swBaseType with baseTypeEncoding set to
NONE). There is no formal support defined to check that the values of invalid-
Value really correspond to each other.

10

[constr_1225] DataPrototype is typed by an ImplementationDataType that
references a CompuMethod of category TEXTTABLE Of BITFIELD TEXTTABLE |
If a DataPrototype is typed by an ImplementationDataType that references
a CompuMethod of category TEXTTABLE or BITFIELD_TEXTTABLE the applicable
ValueSpecification shallbe a TextvalueSpecification.

In this case the value provided shall match to one of the applicable text values (vt,
shortLabel, symbol) defined by the applicable CompuScales. |()

Please note that several attributes of meta-class CompuScale can be taken to describe
the actual value. It is therefore necessary to clarify what happens if several of these
attributes exist within the context of one Compuscale. This clarification can be found
in [TPS_SWCT_01696].

AUTOSAR

[TPS_SWCT _01467] ImplementationDataType references an SwBaseType With
a string encoding | If an ImplementationDataType references an SwBaseType
with a string encoding the initvalue shall still be provided as numerical values ac-
cording to the string encoding. |()

[constr_1302] Restriction of data invalidation | Data invalidation is only applicable
for one of the following cases applicable on the receiving side:

1. VariableDataPrototypes typed by either an ApplicationPrimitive-
DataType Or an ImplementationDataType Of category VALUE oOr
TYPE_REFERENCE that boils down to category VALUE that have defined an
invalidvalue.

2. VariableDataPrototypes typed by either an ApplicationComposite-
DataType Or an ImplementationDataType Of category STRUCTURE, Or
ARRAY or of category TYPE_REFERENCE that boils down to category STRUC—
TURE, or ARRAY that have at least one primitive element withan invalidvalue.

10

Please note that [constr_1302], in general, leaves room for the definition of an invalid
value for a DataPrototype typed by a Wrapped Union Data Type because it
demands the existence of a primitive element that has an invalidvalue. In the
case of a Wrapped Union Data Type, the primitive element could be the Member
Selector, and thus [constr_1302] would technically be fulfilled.

On the one hand, it does not make sense to just define an invalid value for the Member
Selector from the semantic point of view. On the other hand, the actual payload may
not even have an invalid value according to [constr_1009] or [constr_1288], respec-
tively.

In order to simplify the situation and make a clear statement, [constr_1446] has been
defined.

[constr_1446] No definition of invalidvalue for a Wrapped Union Data Type
[The definition of an invalidvalue for a DataPrototype typed by a Wrapped
Union Data Type is not supported. |()

[constr_1140] Combination of invalidvalue with the attribute handleInvalid
[The combination of setting the attribute handleInvalid of the meta-class Inval-
idationPolicy owned by SenderReceiverInterface to value replace and of
setting the value of the attribute initvalue owned by a corresponding Nonqueue-
dReceiverComSpec effectively to the value of the invalidvalue (owned by a cor-
responding SwDataDefProps) is not supported. |()

The term “corresponding” (as utilized in [constr_1140]) refers to the fact that informa-
tion regarding the fulfillment of [constr_1140] is factually distributed over different areas
of the meta-model. For clarification, the following relationship should be considered:

The senderReceiverInterface defines how to deal with an invalid value by means
of the attribute handleInvalid on the basis of individual dataElements. The

AUTOSAR

SenderReceiverInterface is taken for typing a RPortPrototype that in turn
owns a ReceiverComSpec. [constr_1140] applies if the particular ReceiverCom-
Spec is actually a NonqueuedReceiverComSpec that refers to the same datakEle-
ment.

In this case the invalidvalue owned by the SwbataDefProps thatin turnis owned
by the respective dataElement is relevant for the fulfillment of [constr_1140]. The
“big picture” of this relationship is sketched in Figure 5.31.

[constr_1219] Invalidation depends on the value of swImplPolicy | Invalidation
of dataElements is only supported for dataElements where the value of swIim-
plPolicy is not set to queued. [()

AUTO SAR

AbstractRequiredPortPrototype
RPortPrototype

«isOfType»
1
+requiredinterface \|/ {redefines atpType}

ARElement
AtpBlueprint
AtpBlueprintable
AtpType RPortComSpec

Portinterface

+ isService: Boolean
+ serviceKind: ServiceProviderEnum [0..1]

i

Datalnterface ReceiverComSpec

+ handleOutOfRange: HandleOutOfRangeEnum
+ handleOutOfRangeStatus: HandleOutOfRangeStatusEnum [0..1]
+
% +

maxNoNewOrRepeatedData: Positivelnteger [0..1]
syncCounterlnit: Positivelnteger [0..1]

«atpVariation»
+ maxDeltaCounterlnit: Positivelnteger [0..1]
+ usesEndToEndProtection: Boolean [0..1]

¢ ¢ ¢

+dataElement | 1..*

SenderReceiverinterface

AutosarDataPrototype
VariableDataPrototype

NonqueuedReceiverComSpec

aliveTimeout: TimeValue

enableUpdate: Boolean

handleDataStatus: Boolean [0..1]
handleNeverReceived: Boolean
handleTimeoutType: HandleTimeoutEnum

+dataElement 1

+ o+ o+ o+ o+

+invalidationPolicy | 0..*

InvalidationPolicy

+ handlelnvalid: HandlelnvalidEnum [0..1]

+networkRepresentation | 0..1 +timeoutSubstitutionValue | 0..1 +initvalue | 0..1

«enumeration» «atpVariation» ValueSpecification
HandlelnvalidEnum SwDataDefProps +invalidvalue
+ shortLabel: Identifier [0..1]
keep additionalNative TypeQualifier: NativeDeclarationString [0..1] 0.1
replace displayFormat: DisplayFormatString [0..1]

dontlnvalidate
externalReplacement

displayPresentation: DisplayPresentationEnum [0..1]
stepSize: Float [0..1]

swAlignment: AlignmentType [0..1]
swCalibrationAccess: SwCalibrationAccessEnum [0..1]
swimplPolicy: SwimplPolicyEnum [0..1]
swintendedResolution: Numerical [0..1]
swinterpolationMethod: Identifier [0..1]

swisVirtual: Boolean [0..1]

«atpVariation»
+ swValueBlockSize: Numerical [0..1]
+ swValueBlockSizeMult: Numerical [0..*] {ordered}

Figure 5.31: Relationships required to consider the invalidvalue

[constr_1282] Restriction concerning the usage of RuleBasedvValueSpecifi-
cation Or a ReferenceValueSpecification for the specification of an in-
validValue | The aggregation of a RuleBasedValueSpecification or a Ref—
erenceValueSpecification for the definition of a ApplicationPrimitive-
DataType.swDataDefProps.invalidValue is not supported. |()

AUTOSAR

5.4.3 Properties for Measurement

In embedded automotive software design, measurement means access to memory
locations in an ECU and transferring its contents to the measurement & calibration
system. While in classical software design, variables abstract the memory locations in
the code, AUTOSAR provides for this purpose the DataPrototype with its various
specializations:

e VariableDataPrototype Of @ SenderReceiverInterface Or NvDataln—
terface used in a PortPrototype (0f a SwComponentPrototype), to cap-
ture sender-receiver and non volatile data communication between SwCompo-
nentPrototypes

e ArgumentDataPrototype of a ClientServerOperation in a
ClientServerInterface to capture client-server communication between
SwComponentPrototypes.

e VariableDataPrototype inthe context of an SwcInternalBehavior to

— capture communication between RunnableEntitys within @ SwCompo-—
nentPrototype

— handle data in a non volatile memory block

— provide pure software component internal memory which has to be accessi-
ble for a MCD system

[TPS_SWCT_01440] Measurement is not limited to primitive objects [The ability
of being measured is not restricted to primitive data (category VALUE) but can also
be applied to composite data (category STRUCTURE Or ARRAY). |()

The following semantical and structural features from swDataDefProps are relevant
(among other purposes) for the measurement system:

swCalibrationAccess

e swimplPolicy

e compuMethod

e unit (if not specified by compuMethod)
e baseType

e swAddrMethod

[TPS_SWCT _01130] Measurement and calibration access to model elements is
defined by swCalibrationAccess | The ability to be accessed by e.g. a calibration
tool is given by setting the swCalibrationAccess attribute. |(RS_SWCT_03152)

The following table shows all valid settings of swCalibrationAccess:

AUTOSAR

[TPS_SWCT _01559] Default value for attribute SwbDataDefProps.swCalibra-
tionAccess | The default value for the attribute swbDataDefProps.swCalibra-
tionAccess is SwCalibrationAccessEnum.notAccessible. |()

[constr_1017] Supported combinations of swImplPolicy and swCalibra-
tionAccess | The table 5.48 defines the supported combinations of swImplPolicy
and swCalibrationAccess attribute setting. |()

swImplPolicy swCalibrationAccess

notAccessible readOnly readWrite
fixed yes not supported not supported
const yes yes not supported
standard yes yes yes
queued yes not supported not supported
measurementPoint not supported yes not supported

Table 5.48: Supported combinations of swImplPolicy and swCalibrationAccess

[constr_1018] measurementPoint shall not be referenced by a variableAc-
cess aggregated by RunnableEntity in the role dataReadAccess | Due to the
nature of datakElements characterized by setting the swImplPolicy t0 measure-
mentPoint, such dataElements shall not be referenced by a variableAccess
aggregated by RunnableEntity in the role dataReadAccess. [()

5.4.4 Properties of Curves and Maps

A characteristic table is defined by setting the category of the corresponding Au-
tosarDataType Of DataPrototype t0 CURVE respectively MAP, CUBOID, CUBE_ 4,
and CUBE_5.

Its swhataDefProps determine an axis description. The type of the functional values
is given by the attached swBaseType and the CompuMethod.

The axis description itself is defined by the meta-model element swCalprmAxisSet
aggregating the appropriate number of SwCalprmAxisTypeProps.

This is the base class for a so called “individual axis” (formalized by meta-class swaAx-
isIndividual) or a “grouped axis” (formalized by meta-class SwAxisGrouped).

The latter is used to share axis points by several characteristic tables. Figure 5.32
shows an overview on the relevant meta-model elements.

The type of the functional values is given by the attached swBaseType and the Com-
puMethod or by the referenced ApplicationDataType.

If an ApplicationDataType is referenced (via valueAxisDataType) this super-
sedes CompuMethod, Unit, and BaseType if these are defined in parallel.

AUTO SAR

SwCalprmAxis SwAXxisIndividual +dataConstr Aggﬁeegﬁ::
01 AtpBlueprintable
DataConstr
ARElement
AtpBlueprint
+compuMethod
P AtpBlueprintable
0.1 CompuMethod
+unit\[/0..1
ARElement
+unit Unit
0.1
1 | +swCalprmAxisTypeProps
SwcCalpmAxisTypeProps
SwAxisGeneric
+swAxisGeneric
0.1
X SwVariableRefProxy
+swVariableRef
0.*
{ordered}
ApplicationDataType
+inputvariableType ApplicationPrimitiveDataType
0.1
+sharedAxisType 0.1
SwAXxisGrouped
SwCalprmRefProxy
+swCalprmRef
1

Figure 5.32: Overview on the Meta-Model for Axis Description

AUTOSAR

SwAxisGeneric

+swAxisType \|/1

+swGenericAxisParam | 0..*

SwAXisType

ARElement

SwGenericAxisParam

+swGenericAxisParamType [0..*

«atpVariation»
+ vf: Numerical [1..*] {ordered}

+swGenericAxisParamType\|/1

SwGenericAxisParamType

Identifiable

Figure 5.33: Overview on a Generic Axis

Figure 5.34 shows how an individual axis is represented by the meta-model. The corre-
sponding M1 Model is illustrated in Figure 5.35. The swAxisIndividual references
value-models to account the minimum and the maximum number of axis values as well

as the number of axis points.

Hence, the size of the structure to hold the functional values is determined by the
number of axis values for all axes. The type of the axis values is determined when the
type of the referenced input value (swvariableRef) has been set. For further details

see 5.4.5.

[TPS_SWCT _01107] swMinAxisPoints and swMaxAxisPoints represent varia-
tion points | The value of attributes swMinAxisPoints and swMaxAxisPoints is

subject to variant handling. |(RS_SWCT_03148)

AUTO SAR

ARElement ARElement
AtpBlueprint
SwR dL t .
Wy AtpBlueprintable
SwAddrMethod
+swRecordLayout 0..1 0.1

+swAddrMethod

AtpBlueprint «atpVariation»
AtpBlueprintable | +baseType SwbDataDefProps
BaseType

SwBaseType 0.1

0..1
+baseType
+swCalprmAxisSet 0.1 +compuMethod\|/0..1 +dataConstr\(/0..1
A ARElement ARElement
SwCalprmAxisSet
P AtpBlueprint AtpBlueprint
AtpBlueprintable AtpBlueprintable
CompuMethod DataConstr
0.1 +dataConstr 0.1
+compuMethod
+swCalprmAxis | 0..*
SwCalprmAxis
+swCalprmAxisTypeProps | 1 +unit\[/0..1 +unit\}/0..1
SwCalprmAxisTypeProps AREIE =
Unit
0.1
+unit
SwAxisGrouped SwAKxisIndividual
0.

+swCalprmRef | 1 +swVariableRef (o“rdered}

SwCalprmRefProxy SwVariableRefProxy

Figure 5.34: Meta-Model Elements used for a Curve

AUTO SAR

Element: ApplicationDataType

category = CURVE
shortName = MyCurve

!

swDataDefProps: SwDataDefProps

Element: CompuMethod

Element: Unit

Element: SwAddrMethod

!

swCalprmAxisSet:
SwCalprmAxisSet

!

swCalprmAxis: SwCalprmAxis

!

swCalprmAxisT ypeProps:

Element: SwRecordLayout

SwAXxisIndividual

Element:
ApplicationPrimitiveDataType

swDataDefProps: SwDataDefProps

Element: CompuMethod

------ need to be consistent

Element: Unit

Figure 5.35: lllustration of a Curve in M1

Class SwCalprmAxisSet

Package M2::MSR::DataDictionary::CalibrationParameter

Note This element specifies the input parameter axes (abscissas) of parameters (and variables, if these are
used adaptively).

Base ARObject

Attribute Type | Mul. | Kind | Note

Y

AUT o

©SAR

Class

SwCalprmAxisSet

swCalprmAxis

SwCalprmAxis * aggr One axis belonging to this SwCalprmAxisSet

Tags: xml.roleElement=true
xml.roleWrapperElement=false
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

Table 5.49: SwCalprmAxisSet

Class SwCalprmAxis

Package M2::MSR::DataDictionary::CalibrationParameter

Note This element specifies an individual input parameter axis (abscissa).

Base ARObject

Attribute Type Mul. Kind | Note

category CalprmAxisCategory 0..1 attr This property specifies the category of a particular axis.

Enum Tags: xml.sequenceOffset=30

baseType SwBaseType 0..1 ref The SwBaseType to be used for the axis. Note that this is
not applicable for ApplicationDataTypes. The value shall
be ignored.
Tags: atp.Status=removed
xml.sequenceOffset=110

displayFormat DisplayFormatString 0..1 attr This property specifies how the axis values shall be
displayed e.g. in documents or in measurement and
calibration tools.
Tags: xml.sequenceOffset=100

swAxisIndex AxisIndexType 0..1 attr This attribute specifies which axis is specified by the
containing SwCalprmAXxis.
For example in a curve this is usually "1". In a map this is
"y o mon
Tags: xml.sequenceOffset=20

swCalibration SwCalibrationAccess 0..1 attr Describes the applicability of parameters and variables.

Access Enum Tags: xml.sequenceOffset=90

swCalprmAxis SwCalprmAxisType 1 agar specific properties depending on the type of the axis.

TypeProps Props Tags: xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=40
xml.typeElement=true
xml.typeWrapperElement=false

Table 5.50: SwCalprmAxis

Enumeration CalprmAxisCategoryEnum

Package M2::MSR::DataDictionary::CalibrationParameter

Note This enum specifies the possible values of the category property within SwCalprmAxis.

Literal Description

\Y

AUT o

©SAR

A

Enumeration

CalprmAxisCategoryEnum

comAXxis

COM_AXIS is equal to an STD_AXIS, the difference is, that a COM_AXIS is an shared axis, that
means this axis can be used multiple times by different CURVEs, MAPs, CUBOIDs, CUBE_4s, and
CUBE_5s.

Tags: atp.EnumerationValue=0
xml.name=COM_AXIS

fixAXIS

FIX_AXIS means that the input axis is not stored. The axis is calculated using parameters and so on
it is also not possible to modify the axis points.

Tags: atp.EnumerationValue=4
xml.name=FIX_AXIS

resAxis

RES_AXIS is also an shared axis like COM_AXIS, the difference is that this kind of axis can be used
for rescaling.

Tags: atp.EnumerationValue=6
xml.name=RES_AXIS

stdAxis

STD_AXIS means that input and output axis definition are stored within this CURVE, MAP, CUBOID,
CUBE_4, and CUBE_5.

There is no shared or calculated axis.

Tags: atp.EnumerationValue=8
xml.name=STD_AXIS

Table 5.51: CalprmAxisCategoryEnum

Class

SwCalprmAxisTypeProps (abstract)

Package

M2::MSR::DataDictionary::CalibrationParameter

Note

Base class for the type of the calibration axis. This provides the particular model of the specialization. If
the specialization would be the directly from SwCalPrmAxis, the sequence of common properties and the
specializes ones would be different.

Base

ARObject

Subclasses

SwAXxisGrouped, SwAXxisIndividual

Attribute

Type Mul. Kind | Note

maxGradient

Float 0..1 attr This attribute defines the maximum permissible gradient
for an adjustable object (curve, map or cuboid) with
respect to a specific axis.

MaxGrad = maximum(absolute((Value i,k - Value
i-1,k)/(Axis Point i - Axis Point i-1)))

monotony MonotonyEnum 0..1 attr This attribute specifies the monotony constraint for an
adjustable object (curve, map or cuboid) with respect to a
specific axis. This information can be used by MCD
system to verify whether the monotony constraint is
fulfilled and to prevent from changes violating the
constraint.
Table 5.52: SwCalprmAxisTypeProps
Class SwAXxisIndividual
Package M2::MSR::DataDictionary::Axis
Note This meta-class describes an axis integrated into a parameter (field etc.). The integration makes this
individual to each parameter. The so-called grouped axis represents the counterpart to this. It is
conceived as an independent parameter (see class SwAxisGrouped).
Base ARObject, SwCalprmAxis TypeProps

Y%

AUTOSAR

A
Class SwAXxisIndividual
Attribute Type Mul. Kind | Note
compuMethod CompuMethod 0..1 ref This is the compuMethod which is expected for the axis. It
is used in early stages if the particular input-value is not
yet available.
Tags: xml.sequenceOffset=30
dataConstr DataConstr 0..1 ref Refers to constraints, e.g. for plausibility checks.
Tags: xml.sequenceOffset=80
inputVariable ApplicationPrimitive 0..1 ref This is the datatype of the input value for the axis. This
Type DataType allows to define e.g. a type of curve, where the input
value is finalized at the access point.
swAxisGeneric SwAxisGeneric 0..1 aggr this specifies the properties of a generic axis if applicable.
Tags: xml.sequenceOffset=90
swMaxAxis Integer 1 attr Maximum number of base points contained in the axis of
Points a map or curve.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=60
swMinAxis Integer 1 attr Minimum number of base points contained in the axis of a
Points map or curve.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompile Time
xml.sequenceOffset=70
swVariable SwVariableRefProxy * aggr Refers to input variables of the axis. It is possible to
Ref (ordered) specify more than one variable. Here the following is

valid:

e The variable with the highest priority shall be
given first. It is used in the generation of the code
and is also displayed first in the application
system.

e All variables referenced shall be of the same
physical nature. This is usually detected in that
the conversion formulae affected refer back to
the same Sl-units.

In AUTOSAR this ensured by the constraint, that the
referenced input variables shall use a type compatible to
"inputVariableType".

e This multiple referencing allows a base point
distribution for more than one input variable to be
used. One example of this are the temperature
curves which can depend both on the induction
air temperature and the engine temperature.

These variables can be displayed simultaneously by MCD
systems (adjustment systems), enabling operating points
to be shown in the curves.

Tags: xml.roleElement=false
xml.roleWrapperElement=true
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

AUT o

©SAR

Param

A
Class SwAXxisIndividual
unit Unit 0..1 ref This represents the physical unit of the input value of the
axis. It is provided to support the case that the particular
input variable is not yet known.
Tags: xml.sequenceOffset=40
Table 5.53: SwAXxisIndividual
Class SwAXxisGeneric
Package M2::MSR::DataDictionary::Axis
Note This meta-class defines a generic axis. In a generic axis the axispoints points are calculated in the ECU.
The ECU is equipped with a fixed calculation algorithm. Parameters for the algorithm can be stored in the
data component of the ECU. Therefore these parameters are specified in the data declaration, not in the
calibration data.
Base ARObject
Attribute Type Mul. Kind | Note
swAxisType SwAxisType 1 ref Associated axis calculation strategy.
Tags: xml.sequenceOffset=20
swGenericAxis SwGenericAxisParam * aggr Specific parameter of a generic axis.

Tags: xml.roleElement=true
xml.roleWrapperElement=true
xml.sequenceOffset=40
xml.typeElement=false
xml.typeWrapperElement=false

Table 5.54: SwAxisGeneric

Class SwAXxisType
Package M2::MSR::DataDictionary::Axis
Note This meta-class represents a specific axis calculation strategy. No formal specification is given, due to
the fact that it is possible to use arbitrary algorithms for calculating axis-points.
Instead, the algorithm is described verbally but the parameters are specified formally with respect to their
names and constraints. As a result, SwAxisType mainly reserves appropriate keywords.
Tags: atp.recommendedPackage=SwAxisTypes

Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable

Attribute Type Mul. Kind | Note

swGenericAxis DocumentationBlock 0..1 aggr Associated axis description in textual form.

Desc Tags: xml.sequenceOffset=20

swGenericAxis SwGenericAxisParam * aggr Parameters for this calculation algorithm.

ParamType Type Tags: xml.roleElement=true
xml.roleWrapperElement=true
xml.sequenceOffset=30
xml.typeElement=false
xml.typeWrapperElement=false

Table 5.55: SwAXxisType

AUT o

©SAR

Class SwGenericAxisParam
Package M2::MSR::DataDictionary::Axis
Note This meta-class describes a specific parameter of a generic axis. The name of the parameter is defined
through a reference to a parameter type defined on a corresponding axis type.
The value of the parameter is given here in case that it is not changeable during calibration. Example is
shift / offset in a fixed axis.
Base ARObject
Attribute Type Mul. Kind | Note
swGenericAxis SwGenericAxisParam 1 ref Parameter type defined on a corresponding axis type.
ParamType Type References can only be made to axis parameters types
which are defined within the referenced axis type.
Tags: xml.sequenceOffset=20
vf (ordered) Numerical 1.* attr This attribute represents the value of the generic axis

parameter.

Stereotypes: atpVariation

Tags: vh.latestBindingTime=preCompileTime
xml.roleElement=true
xml.roleWrapperElement=false
xml.sequenceOffset=30
xml.typeElement=false

Table 5.56: SwGenericAxisParam

Class SwGenericAxisParamType
Package M2::MSR::DataDictionary::Axis
Note This meta-class describes a generic axis parameter type, namely:

e Plausibility checks can be specified via dataConstr.

e Textual description (desc), as a formal description is not of any use, due to the large variety of

possibilities.
o |[f this parameter contains structures, these can be simulated through the recursive use of Sw
GenericAxisParamTypes.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable
Attribute Type Mul. Kind | Note
dataConstr DataConstr 0..1 ref This refernce denoted data constraints applicable to the
generic axis parameter.
Tags: xml.sequenceOffset=20
Table 5.57: SwGenericAxisParamType
Class SwAxisGrouped
Package M2::MSR::DataDictionary::Axis
Note An SwAxisGrouped is an axis which is shared between multiple calibration parameters.
Base ARObject, SwCalprmAxis TypeProps
Attribute Type Mul. Kind | Note
sharedAxisType | ApplicationPrimitive 0..1 ref This is the datatype of the calibration parameter providing
DataType the shared axis.

\Y%

AUTOSAR

Class SwAxisGrouped

swAxisIndex AxislndexType 0..1 attr Describes which axis of the referenced calibration
parameter provides the values for the group axis.
The index satisfies the following convention:

e 0 =value axis. in this case, the interpolation
result of the referenced parameter is used as a
base point index.

e The index should only be specified if the
parameter under swCalprm contains more than
one axis. It is standard practice for the axis index
of parameters with more than one axis, to be set
to 1, if data has not been assigned to swAxis
Index.

Tags: xml.sequenceOffset=20

swCalprmRef SwCalprmRefProxy 1 aggr This property specifes the calibration parameter which
serves as the input axis. In AUTOSAR, the type of the
referenced Calibration parameter shall be compatible to
the type specified by sharedAxisType.

Tags: xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=30
xml.typeElement=false
xml.typeWrapperElement=false

Table 5.58: SwAxisGrouped

5.4.4.1 Specification of fix Axes
In most cases the axes of a curve or map are accessible to a calibration software and
it is possible to calibrate axes points and their corresponding values.

There are cases, however, where axes are intentionally declared as fix and where no
intention exists to change the properties of the axis ever'®.

These axes are also known as fix axes. The support for the creation of fix axes in the
meta-model is based upon the usage of SwAxisGeneric as depicted in Figure 5.33.

[TPS_SWCT_01747] Value of category for fix axis [A fix axis shall be modeled as
an swCalprmAxis with attribute category set to the value FI1x_2AX1S. |()

[TPS_SWCT_01748] Sub-categories of fix axes | There are different sub-categories
of fix axes:

e Fix axis where the distance between axis points can be computed according to a
standardized algorithm.

In this case, fix axes of arbitrary length can be described by feeding three argu-
ments defined in the context of the axis description into the axis algorithm.

18Typically, a calibration software does not have the ability to manipulate (or even inspect) the axis’
properties by inspecting the ECU’s memory.

AUTOSAR

Consequently, the memory footprint of different fix axis of this category is liter-
ally identical, independently of the number of axis points.

The following variations exist:

— Subcategory PAR, i.e. category = FIX_AXIS_PAR: the axis is created
out of a starting value and a shift that creates further axis points as using a
power-of-two algorithm. The details can be found in [24].

— Subcategory PAR DIST, i.e. category = FIX_AXIS_PAR_DIST:the axis
is created out of a starting value and an offset that adds further axis points
with the distance given by offset. The details can be found in [24].

e Fix axis where the axis points are defined as a list of values directly in the axis
definition. This variety boils down to

— Subcategory PAR LIST,i.e. category = FIX_AXIS_PAR_LIST:the axis
is created out of a list of numerical values that represent the axis points. The
details can be found in [24].

These values of category shall be used for SwAxisType. |()

As mentioned before, the modeling of a fix axis is based upon the definition of the
SwAxisGeneric. But this statement by itself is not yet sufficient to unambiguously
clarify the details of the modeling.

For this purpose, it is necessary to provide further information about the specifics of the
roles SwAxisGeneric.swAxisType and SwAxisGeneric.swGenericAxisParam.

[TPS_SWCT _01749] Semantics of SwAxisGeneric.swAxisType in the definition
of a fix axis [The role SwAxisGeneric.swAxisType specifies the category of the
fix axis according to [TPS_SWCT_01748]. |()

[TPS_SWCT 01750] Semantics of SwAxisGeneric.swGenericAxisParam in the
definition of a fix axis | The role SwAxisGeneric.swGenericAxisParam provides
the actual numeric values for the definition of the axis.

The semantics of a provided numerical value is clarified by the attribute SwGeneri-
cAxisParamType.category wWhere meta-class SwGenericAxisParamType is ref-
erenced in the role swGenericAxisParamType. |()

category of swAxisType |category Of SwGenericAxis- | Multiplicity of swGenericAxis- | Multiplicity of v£
ParamType Param
FIX_AXIS_PAR OFFSET 1 1
SHIFT 1 1
FIX_AXIS_PAR_DIST OFFSET 1 1
DISTANCE 1 1
FIX_AXIS_PAR_LIST LIST 1 1.*

Table 5.59: Modeling of SwAxisGeneric

AUTO SAR

[constr_1544] Modeling of SwAxisGeneric for the definition of a fix axis | The
standardized values and multiplicities within the model of an SwAxisGeneric accord-
ing to [TPS_SWCT_01479] and [TPS_SWCT_01480] are documented in Table 5.59. |

()

The modeling of an axis of category FIx_AXTS_PAR is sketched in the following ex-
ample model (Figure 5.36).

MyFixAxisDataType:
ApplicationPrimitiveDataType

category = CURVE

T

swDataDefProps:
SwDataDefProps

T

SwCalprmAxisSet

T

swCalprmAxis: SwCalprmAxis

category = FIX_AXIS
swAxisindex = 1

T

swCalprmAxisTypeProps:

SwAXxisIndividual

swAxisGeneric: SwWAxisGeneric

offset: SwAXisType: SWAXisType shift:
SwGenericAxisParam SwGenericAxisParam
category = FIX_AXIS_PAR
vi=0 vf=2
offset: SwGenericAxisParamType shift: SwGenericAxisParamType
category = OFFSET category = SHIFT

Figure 5.36: Modeling of a fix axis of category FIX AXIS_PAR

AUTO SAR

The modeling of an axis of category FIx_AXTIS_PAR_DIST is sketched in the following
example model (Figure 5.37).

MyFixAxisDataType:
ApplicationPrimitiveDataType

category = CURVE

T

swDataDefProps: SwDataDefProps

swCalprmAxisSet: SwCalprmAxisSet

swCalprmAxis: SwCalprmAxis

category = FIX_AXIS
swAxisindex = 1

swCalprmAxisTypeProps:
SwAXxisIindividual

swAxisGeneric: SwWAxisGeneric

offset: SwAXisType: SWAXisType distance:
SwGenericAxisParam SwGenericAxisParam
category = FIX_AXIS_PAR_DIST
vf=3 vi=5
offset: SwGenericAxisParamType distance: SwGenericAxisParamType
category = OFFSET category = DISTANCE

Figure 5.37: Modeling of a fix axis of category FIX AXIS PAR DIST

The modeling of an axis of category FIX_AXIS_PAR_LIST is sketched in the following
example model (Figure 5.38).

AUTO SAR

MyFixAxisDataType:
ApplicationPrimitiveDataType

category = CURVE

!

swDataDefProps: SwDataDefProps

!

swCalprmAxisSet: SwCalprmAxisSet

!

swCalprmAXxis. SwCalprmAXxis

category = FIX_AXIS
swAxisindex = 1

!

swCalprmAxisTypeProps:
SwAXxisindividual

swAxisGeneric: SwAxisGeneric

T

swAxisType: SwAxisType :SwGenericAxisParam
category = FIX_AXIS_PAR_LIST vf=15,42

axisPoint2: SwGenericAxisParamType

category = LIST

Figure 5.38: Modeling of a fix axis of category FIX AXIS PAR LIST

Please note that the axis points and values of a fix axis are defined in the definition of
the fix axis itself and therefore any initial value assigned to a fix axis would be ignored
anyway.

This might lead to confusion such that the initial value does not make it into the soft-
ware. In order to avoid such confusion AUTOSAR does not support the definition of
an initial value for a fix axis.

This regulation is reflected in the existence of [constr_1545].

AUTOSAR

[constr_1545] No initialization for fix axis | An ApplicationvValueSpecifica-—
tion taken to initialize an ApplicationPrimitiveDataType that contains a fix
axis shall not contain initial values for the axis index of the fix axis inside the Appli-
cationPrimitiveDataType. |()

Please note that the calibration software may have still have access to axis points and
values of the fix axis if these properties are specified in an A2L file.

For this purpose McDataInstance needs to be set up properly. The details are ex-
plained in [6].

5.4.5 Setting an Axis Input Value

When an interpolation routine is called, an input value has to be provided to find the ap-
propriate axis entry in the implementation of a RunnableEntity. However, this input
value cannot be arbitrarily chosen but only be selected from available variableDat -
aPrototype assigned to it.

In an axis definition attached to an ApplicationPrimitiveDataType, itis possible
to specify the data type of the input values by means of the reference SwaAxisIndi-
vidual.inputVariableType.

However, the reference SswAxisIndividual.inputVariableType does not neces-
sarily have to exist.

This leaves the consideration of compatibility between the DataPrototype(s) refer-
enced by means of swAxisIndividual.swVariableRef and the actual axis speci-
fication to the following attributes:

e SwAxisIndividual.dataConstr
e SwAxisIndividual.compuMethod
e SwAxisIndividual.unit

[TPS_SWCT _01676] Preferred approach to checking the compatibility of input
value and axis | The compatibility in terms of data type between the description of
an swAxisIndividual andthe DataPrototype(s) used as an input variable to the
respective interpolation routine shall preferably be checked alternatively between

e the ApplicationPrimitiveDataType(s) of DataPrototype(s) referenced
by means of SwAxisIndividual.swVariableRef (the provider in terms of
compatibility)

e the ApplicationPrimitiveDataType referenced by means of SwAxisIn-
dividual.inputVariableType (The requester in terms of compatibility).

For compatibility, the compuMethod of SwAxisIndividual.swVariableRef and
the ApplicationPrimitiveDataType referenced by means of SwAxisIndivid-
ual.inputVariableType shall not be considered. |()

AUTOSAR

Rationale: in many cases the input variable is defined by a float data type to take
benefit from the precision in computations. But the axis data type is an integer data
type to save memory. In this situation, a requirement for compatible compuMethods
would exclude the described scenario.

The implementation of the software-component shall make sure that the float value is
properly converted and rescaled to an integer data type compatible to the axis data

type.

[TPS_SWCT _01677] Fall-back approach to checking the compatibility of input
value and axis [If the reference SwAxisIndividual.inputVariableType does
not exist then the compatibility in terms of data type between the description of an
SwAxisIndividual andthe DataPrototype(s) used as an input variable to the re-
spective interpolation routine shall be checked on the basis of the following references:

e SwAxisIndividual.dataConstr
e SwAxisIndividual.unit
respectively
e SwAxisIndividual.dataConstr
e SwAxisIndividual.compuMethod.unit

against their respective counterparts in the ApplicationPrimitiveDataTypeS
of the DataPrototype(s) referenced by means of SwAxisIndividual.swVari-
ableRef. |()

[constr_1420] Existence of SwAxisIndividual.inputVariableType | If the ref-
erence SwAxisIndividual.inputVariableType does not exist then either:

e SwAxisIndividual.dataConstr
e SwAxisIndividual.unit
or

e SwAxisIndividual.dataConstr

SwAxisIndividual.compuMethod.unit
shall exist. |()

The constraint is necessary for the generation of the respective specification of the axis
in A2L.

Every ParameterDataPrototype then allows to specify zero or more input values
(being type compatible to inputvariableType) in its axis description.

This means that at the specification time of an SwcInternalBehavior a list of input
values has to be specified where the implementer of a RunnableEntity can choose
of. The input values are DataPrototype entities either being

AUTOSAR

e 2 VariableDataPrototype in a SenderReceiverInterface Or Nv-
DataInterface oOf a PortPrototype, of the AtomicSwComponentType
where the SwcInternalBehavior is associated to, or an ArgumentDataPro-
totypeina ClientServerOperation of a ClientServerInterfaceina
PortPrototype of the AtomicSwComponent Type where the InternalBe-—
havior is associated to, or

e aVariableDataPrototype withinthe SwcInternalBehavior.
To achieve this, SwAxisIndividual is aggregating a SwvariableRefProxy.

Originally, MSRSW uses a AutosarVariableRef to set the input value of an axis
appropriately. In AUTOSAR, this has been extended by first introducing a swvari-
ableRefProxy.

Note that this is a specific use case for the role swvariableRefProxy.autosar—
Variable.

Note further that the use cases for the existence of the attributes swvariableRef-
Proxy.autosarVariable and SwVariableRefProxy.mcDataInstanceVar are
entirely disjoint and therefore the simultaneous existence of these two attributes would
not make any sense at all.

Therefore, [constr_1382] has been introduced to clarify this aspect.

[constr_1382] Mutually exclusive existence of attributes SwvariableRef-
Proxy.autosarVariable VS. SwVariableRefProxy.mcDataInstanceVar | In
any given AUTOSAR model, the aggregations SwvariableRefProxy.autosar-—
Variable and SwVariableRefProxy.mcDataInstanceVar shall never exist at
the same time. |()

As shown in Figure 5.39, this approach is also used to represent a AutosarvVari-
ableRef in all roles, e.g. the result of an interpolation routine applied to an axis, the
input value determination, a list of dependent parameters, and swbDataDependency.

AUTO SAR

AtpPrototype
DataPrototype
+localParameter, 0.1
+/swDataDefProps | 0..1
«atpVariation» AutosarDataPrototype
SwbDataDefProps
+swCalprmAxisSet | o 1
SwCalprmAxisSet VariableDataPrototype ParameterDataPrototype
+localVariable 0.1
+swCalpmAxis | o..*
SwCalprmAxis AutosarVariableRef AutosarParameterRef
+autosarVariable 0.1 +arParameter 0.1

+swCalprmAxisTypeProps| 1

SwcCalprmAxisTypeProps SwCalprmRefProxy

A +swCalprmRef 1

U

SwAXxisIndividual

0.
+swVariableRef | {ordered} ‘ ‘

SwVvariableRefProxy SwAXxisGrouped

Figure 5.39: Extended Axis Elements and Input Variable Reference

With the means of ApplicationArrayDataTypes it's possible to define bataPro-
totypes holding a n-dimensional array of Compound Primitive Data TypeS of
category CURVE, MAP, CUBOID, CUBE_4, CUBE_5, COM_AXIS, Ofr RES_AXIS.

For those DataPrototypes input values for the axes should be described to enable
a display of the working point in the MCD system.

Thereby, typically the whole array of the contained axes is either associated with an
array of a variables or with a single value. In the case of arrays typically the n-th axis is
combined with the n-th input value.

AUTOSAR

| InstantiationDataDefProps

swDataDefProps.
swCalprmAxisSet.swCalprmAxis.
swCalprmAxisTypeProps
(as SwAxisIndividual).swVariableRef

parameterinstance

COM_AXIS VALUE
COM_AXIS VALUE
COM_AXIS VALUE
COM_AXIS VALUE
COM_AXIS VALUE

Figure 5.40: The nth coM_aX1s in the array of coM_AXISs uses the n' VALUE in the array
of VALUES as working point.

[constr_1425] Definition of swCalprmAxisSet.swCalprmAxis/ SwAxisIndi-
vidual.swVariableRef depending on the capabilities of the data type | The
definition of a swCalprmAxisSet.swCalprmAxis/ SwAxisIndividual.swVari-
ableRef in the context of an InstantiationDataDefProps Or @ Parameter—
Access is only supported for a DataPrototype oOf category ARRAY if the data
type of the ApplicationArrayElement also supports the specification of a swCal-
prmAxisSet.swCalprmAxis/ SwAxisIndividual.swVariableRef according to
[constr_1289].

Thereby, multiple ApplicationArrayDataTypes might be nested to express multi-
ple array dimensions. |()

[TPS_SWCT _01683] Specification of an array of input variable for an array of
axes | For DataPrototypes typed by an array of elements of category CURVE,
MAP, CUBOID, CUBE_4, CUBE_5, COM_AXIS, of RES_AXIS the applied Instantia-
tionDataDefProps Of ParameterAccess may reference a variableDataPro-
totype typed by an ApplicationArrayDataType with the means of SwAxisIn-
dividual.swVariableRef.autosarVariable.

This expresses the semantic that the n" element in the axis array uses the n'" value in
the input variable array for the specific SwAxisGrouped.swAxisIndex. [()

Please note that in this case the two associated arrays needs to have same number of
dimensions and sizes of the dimensions.

[constr_1426] Consistency of array sizes for axes and input variable array | The
number of array dimension defined by ApplicationArraybDataTypeS and the val-
ues of the maxNumberOfElements attributes for the array of elements of cate-
gory CURVE, MAP, CUBOID, CUBE_4, CUBE_5, COM_AXIS, or RES_AXIS shall be

AUTOSAR

identical to the number of array dimension and according value of the maxNum-
berOfElements of the VariableDataPrototype referenced by SwAxisIndi-
vidual.swVariableRef.autosarVariable. ()

InstantiationDataDefProps

swDataDefProps.

parameterinstance swCalprmAxisSet.swCalprmAxis.
swCalprmAxisTypeProps

(as SwAxisIndividual).swVariableRef

COM_AXIS VALUE

COM_AXIS

COM_AXIS

COM_AXIS

COM_AXIS

Figure 5.41: Each coM_AXIs in the array of coM_AXISs uses the identical VALUE as
working point.

[TPS_SWCT _01684] Specification of a single input variable for an array of axes
[For DataPrototypes typed by an array of elements of category CURVE, MAP,
CUBOID, CUBE_4, CUBE_5, COM_AXIS, or RES_AXIS the applied Instantiation-
DataDefProps Or ParameterAccess may reference a variableDataPrototype
typed by an ApplicationPrimitiveDataType with the means of SwAxisIndi-
vidual.swVariableRef.autosarVariable.

This expresses the semantic that each element in the axis array uses the identical input
variable for the specific SwAxisGrouped.swAxisIndex. |()

5.4.6 Setting a Group Axis

Grouped curves share the same axis definition. In MSRSW, this is shown by referenc-
ing the swCalprm, representing an individual curve, from a SwAxisGrouped.

Note that this does not describe which axis shall be taken from a reference swCalprm-
Ref acting as a shared axis. This would be done in SwAxisGrouped.swAxisIndex.

AUTOSAR applies a similar proxy approach for parameters as for the variables. There-
fore, an swCalprmRefProxy has been introduced in MSRSW, and is aggregated by
the swAxisGrouped element.

AUTO SAR

The swCalprmRefProxy aggregates an AutosarParameterRef providing an as-
sociation to a ParameterDataPrototype, representing a curve with an axis. When
defining the data type of a parameter the type of the shared axis is defined in
sharedAxisType.

[constr_1020] ParameterDataPrototype needs to be of compatible data type
as referenced in sharedAxisType | Finally, the ParameterDataPrototype as-
signed in swCalprmRef shall be typed by data type compatible to sharedaxisType.

10

The AUTOSAR-style is shown in the upper left part of Figure 5.39, while in the upper
middle the MSRSW style is shown, referencing the swCalprm.

SwVariableRefProxy «atpVariation»
SwbDataDefProps

+ additionalNativeTypeQualifier:
NativeDeclarationString [0..1]

+ displayFormat: DisplayFormatString [0..1]

+ displayPresentation:

> DisplayPresentationEnum [0..1]

0.* + stepSize: Float [0..1]

+ swAlignment: AlignmentType [0..1]

+ swCalibrationAccess:

+swComparisonVariable

+swHostVariable SwCalibrationAccessEnum [0..1]
<P swimplPolicy: SwimplPolicyEnum [0..1]
0.1 + swintendedResolution: Numerical [0..1]

+ swinterpolationMethod: Identifier [0..1]
+ swlsVirtual: Boolean [0..1]

«atpVariation»
+ swValueBlockSize: Numerical [0..1]
+ swValueBlockSizeMult: Numerical [0..*]
{ordered}

¢ ¢

+swVariable «atpMixed»

SwDataDependencyArgs
1

+swVariableRef | 0..* +swDataDependencyArgs [0..1

{ordered}

+swDataDependency | 0..1 +swCalprmAxisSet | 0..1

SwbDataDependency SwCalprmAxisSet

SwAXxisIndividual

«atpVariation»
+ swMaxAxisPoints: Integer
+ swMinAxisPoints: Integer

+swCalpmAxis | 0..*

SwCalprmAxis

i . + category: CalprmAxisCategoryEnum [0..1
SwCaIIprrrAwaypeProps +swCalprmAxisTypeProps + displgza\yllzlorma[t): DisplayFor?nant,String [[0..1]]
+ maxGradient: Float [0..1] 1 . + swAxisindex: AxisindexType [0..1]
+ monotony: MonotonyEnum [0..1] + swCalibrationAccess:

SwcCalibrationAccessEnum [0..1]

Figure 5.42: Applying Proxy Variable Reference Mechanism

AUTO SAR

SwCalprmAxisTypeProps SwCalpmRefProxy

SwAXxisGrouped
+ swAxisindex: AxisindexType [0..1] +swCalprmRef
1

«atpMixed»
SwDataDependencyArgs +swCalprmRef
t
1
+arParameter | 0..1
AutosarParameterRef

+autosarParameter | 0..1

AtpinstanceRef
ParameterinAtomicSWCTypelnstanceRef

|
«instanceRef»
I

+auto§arParameter\‘|/ 0..1 +localParameter\|/0..1

AtpPrototype
+targetDataPrototype DataPrototype
1
{subsets atpTarget}
AutosarDataPrototype
ParameterDataPrototype

Figure 5.43: Applying Proxy Parameter Reference Mechanism

Class SwCalprmRefProxy

Package M2::MSR::DataDictionary::DatadictionaryProxies

Note Wrapper class for different kinds of references to a calibration parameter.

Base ARObject

Attribute Type Mul. Kind | Note

arParameter AutosarParameterRef 0..1 aggr This represents a Parameter within AUTOSAR. Note that
the Datatype of the referenced ParameterDataPrototype
shall be an ApplicationDataType of category VALUE.

mcDatalnstance | McDatalnstance 0..1 ref This reference is used in the McSupport file to express

the final instance of group axis etc. It is not allowed to use
this outside of an McDatalnstance.

The referenced mcDatalnstance shall be originated from
a ParameterDataPrototype.

Table 5.60: SwCalprmRefProxy

AUTOSAR

Var

Class SwVariableRefProxy

Package M2::MSR::DataDictionary::DatadictionaryProxies

Note Proxy class for several kinds of references to a variable.

Base ARObject

Attribute Type Mul. Kind | Note

autosarVariable AutosarVariableRef 0..1 aggr This represents the reference to a Variable in an Autosar
system. Note that the target of the reference within
AutosarVariableRef shall be typed by a primitive data type

mcDatalnstance | McDatalnstance 0..1 ref This reference is used in the McSupport file to express

the final instance of input values etc. It is not allowed to
use this outside of an McDatalnstance.

The referenced mcDatalnstance shall be originated from
a VariableDataPrototype.

Table 5.61: SwVariableRefProxy

SwCalprmRefProxy

0.1 +mcDatalnstance 0.1 | +arParameter

Identifiable
McDatalnstance

AutosarParameterRef

+mcDatalnstanceVar 0.1

SwVariableRefProxy

+autosarvVariable | 0..1

AutosarVariableRef

Figure 5.44: Proxy reference classes

The basic patterns for referencing bataPrototypes are explained in section 5.3.3. In
the context of this chapter it is worth to remark that the definition of access to calibration
parameters is implemented in the context of a RunnableEntity (see Figure 7.3).

As the definition of a calibration parameter may involve the definition of several axes
the necessity to provide this amount of information might become cumbersome and
(to some extent) redundant and difficult to maintain if the same calibration parameter
is accessed from within several RunnableEntitys. In other words: in this case it
would be necessary to repeat the more or less complex set of information for each
RunnableEntity.

AUTOSAR

To avoid this unnecessary level of complexity for the definition of access to calibration
parameters, it is possible to define the access to the calibration parameter on the level
of InstantiationDataDefProps Which have been defined to facilitate this kind of
re-use (for more information please refer to section 7.5.4). This ability is also docu-
mented in Table 5.39.

With the means of ApplicationArrayDataTypes its possible to define bataPro-
totypes holding a n-dimensional array of Compound Primitive Data TypeS of
category CURVE, MAP, CUBOID, CUBE_4, and CUBE_5.

Forthose DataPrototypes, group axis/axes needs to be defined in case SwAxisIn-
dividuals are not used for all SwCalprmAxis definitions.

Thereby, typically the whole array of elements of category CURVE, MAP, CUBOID,
CUBE_4, and CUBE_5 is either associated with an array of group axes or alternatively
with a single group axis.

In the case of arrays typically the n'" CURVE, MAP, CUBOID, CUBE_4, and CUBE_5 is
combined with the n'" CoM_AXIS or RES_AXIS.

| InstantiationDataDefProps

swDataDefProps.
swCalprmAxisSet.swCalprmAxis.
swCalprmAxisTypeProps
(as SwAxisIndividual).swVariableRef

parameterinstance

CURVE COM_AXIS
CURVE COM_AXIS
CURVE COM_AXIS
CURVE COM_AXIS
CURVE COM_AXIS

Figure 5.45: The n'" CURVE in the array of CURVES relates to the nt" coMm_ax1s in the array
of COM_AXISs

[constr_1427] Definition of swCalprmAxisSet.swCalprmAxis/ SwAxis-
Grouped.swCalprmRef depending on the capabilities of the data type | The
definition of a swCalprmAxisSet.swCalprmAxis/ SwAxisGrouped.swCalprmRef
in the context of an InstantiationDataDefProps Or a ParameterAccess IS
only supported for a DataPrototype of category ARRAY if the data type of the
ApplicationArrayElement also supports the specification of a swCalprmAxis—
Set.swCalprmAxis/ SwAxisGrouped.swCalprmRef according to [constr_1289].

Thereby, multiple ApplicationArrayDataTypes might be nested to express multi-
ple array dimensions. |()

AUTOSAR

[TPS_SWCT _01685] Specification of an array of group axes for an array of cat-
egory CURVE, MAP, CUBOID, CUBE_4, or CUBE_5 | For DataPrototypes typed by an
array of elements of category CURVE, MAP, CUBOID, CUBE_4, or CUBE_5 the ap-
plied InstantiationDataDefProps Of ParameterAccess may reference a Dat-
aPrototype typed by an ApplicationArrayDataType with the means of SwaAx—
isGrouped.swCalprmRef.arParameter.

This expresses the semantic that the n'" element in the CURVE, MAP, CUBOID, CUBE_4,
or CUBE_5 array uses the n' group axis in the COM_AXIS or RES_AXIS array for the
specific SwAxisGrouped.swAxisIndex. [()

Please note that in this case the two associated arrays needs to have same number of
dimensions and sizes of the dimensions.

[constr_1428] Consistency of array sizes for arrays of elements of category
CURVE, MAP, CUBOID, CUBE_4, Or CUBE_5 arrays and used group axes arrays
[The number of array dimension defined by ApplicationArrayDataTypes and
the values of attribute maxNumberOfElements attributes for the array of elements
of category CURVE, MAP, CUBOID, CUBE_4, or CUBE_5 needs to be identical to the
number of array dimension and according value of the maxNumberOfElements of the
DataPrototype referenced by SwAxisGrouped.swCalprmRef.arParameter. |()

InstantiationDataDefProps

swDataDefProps.

parameteﬂnstance swCaIprmAxisSet.swCaIprmAxis.
swCalprmAxisTypeProps

(as SwAxisIndividual).swVariableRef

CURVE COM_AXIS

CURVE

CURVE

CURVE

CURVE

Figure 5.46: Each MAP in the array of CURVES uses the identical coM_AXIS

[TPS_SWCT _01686] Specification of a single group axis for an array of elements
of category CURVE, MAP, CUBOID, CUBE_4, Or CUBE_5 [For DataPrototypeS
typed by an array of elements of category CURVE, MAP, CUBOID, CUBE_4, Of CUBE_5
the applied InstantiationDataDefProps Of ParameterAccess may reference
a DataPrototype typed by a ApplicationPrimitiveDataTypeS of category
COM_AXIS or RES_AXIS with the means of SwAxisGrouped.swCalprmRef.arPa—
rameter.

AUTOSAR

This expresses the semantic that each element in the CURVE, MAP, CUBOID, CUBE_ 4,
or CUBE_5 array uses the identical cOM_AXIS or RES_AXIS for the specific SwAxis—
Grouped.swAxisIndex. ()

5.4.7 Specifying Data Dependencies

SwhataDependency allows dependent data elements to be specified. For exam-
ple, other ParameterDataPrototypes can be combined into one ParameterDat—
aPrototype whose consistent value is automatically derived by the measurement and
calibration system. Upon adjusting one of the parameters, the dependent parameter is
then also automatically adjusted according to the chosen formula.

Consider for example a rectangular triangle with a hypotenuse of length 1, where the
length of the other sides are the parameter A and B. When adjusting A the parameter

B has to be adjusted accordingly to B = /(1 — Ax A). Also other parameters might

depend on B, e.g. B_AREA = Bx Bor TRIANGULAR_ARFEA = (A« B)/2. This
example is shown in listing 5.9.

A dependent parameter should not be adjustable by itself. The only way to influence
its value is through the adjustment of a parameter it depends on.

Listing 5.9: Data Dependency

<PER-INSTANCE-PARAMETERS>
<PARAMETER-DATA-PROTOTYPE>
<SHORT-NAME>A</SHORT-NAME >
<DESC>
<L-2 L="DE">The independent Parameter</L-2>
</DESC>
<CATEGORY>VALUE</CATEGORY>
</PARAMETER-DATA-PROTOTYPE>
<PARAMETER-DATA-PROTOTYPE>
<SHORT-NAME>B</SHORT-NAME >
<DESC>
<L-2 L="DE">The dependent Parameter</L-2>
</DESC>
<SW-DATA-DEF-PROPS>
<SW-DATA-DEF-PROPS—-VARIANTS>
<SW-DATA-DEF-PROPS—-CONDITIONAL>
<SW-DATA-DEPENDENCY>
<SW-DATA-DEPENDENCY-FORMULA>SQRT (X1 % X1)</SW-
DATA-DEPENDENCY-FORMULA>
<SW-DATA-DEPENDENCY-ARGS>
<AR-PARAMETER>
<LOCAL-PARAMETER-REF DEST="PARAMETER-DATA-
PROTOTYPE">/DataDependency/foo/bar/A</
LOCAL-PARAMETER-REF>
</AR-PARAMETER>
</SW-DATA-DEPENDENCY-ARGS>
</SW-DATA-DEPENDENCY>
</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

AUTOSAR

</SW-DATA-DEF-PROPS>
</PARAMETER-DATA-PROTOTYPE>
<PARAMETER-DATA-PROTOTYPE>
<SHORT-NAME>B_AREA</SHORT-NAME>
<DESC>
<L-2 L="DE">The dependent Parameter</L-2>
</DESC>
<SW-DATA-DEF-PROPS>
<SW-DATA-DEF-PROPS—-VARIANTS>
<SW-DATA-DEF-PROPS—-CONDITIONAL>
<SW-DATA-DEPENDENCY>
<SW-DATA-DEPENDENCY-FORMULA>X1 * X1</SW-DATA-
DEPENDENCY-FORMULA>
<SW-DATA-DEPENDENCY-ARGS>
<AR-PARAMETER>
<LOCAL-PARAMETER-REF DEST="PARAMETER-DATA-
PROTOTYPE">/DataDependency/foo/bar/B</
LOCAL-PARAMETER—-REF>
</AR-PARAMETER>
</SW-DATA-DEPENDENCY-ARGS>
</SW-DATA-DEPENDENCY>
</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>
</PARAMETER-DATA-PROTOTYPE>
<PARAMETER-DATA-PROTOTYPE>
<SHORT-NAME>TRIANGULAR_AREA</SHORT-NAME>
<DESC>
<L-2 L="DE">The dependent Parameter</L-2>
</DESC>
<SW-DATA-DEF-PROPS>
<SW-DATA-DEF-PROPS—-VARIANTS>
<SW-DATA-DEF-PROPS—CONDITIONAL>
<SW-DATA-DEPENDENCY>
<SW-DATA-DEPENDENCY-FORMULA> (X1 * X2) / 2</SW-
DATA-DEPENDENCY-FORMULA>
<SW-DATA-DEPENDENCY-ARGS>
<AR-PARAMETER>
<LOCAL-PARAMETER-REF DEST="PARAMETER-DATA-
PROTOTYPE">/DataDependency/foo/bar/A</
LOCAL-PARAMETER-REF>
</AR-PARAMETER>
<AR-PARAMETER>
<LOCAL-PARAMETER-REF DEST="PARAMETER-DATA-
PROTOTYPE">/DataDependency/foo/bar/B</
LOCAL-PARAMETER—-REF>
</AR-PARAMETER>
</SW-DATA-DEPENDENCY-ARGS>
</SW-DATA-DEPENDENCY>
</SW-DATA-DEF-PROPS—-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>
</PARAMETER-DATA-PROTOTYPE>
</PER-INSTANCE-PARAMETERS>
</SWC-INTERNAL-BEHAVIOR>
</INTERNAL-BEHAVIORS>

AUTOSAR

Class SwDataDependency

Package M2::MSR::DataDictionary::DataDefProperties

Note This element describes the interdependencies of data objects, e.g. variables and parameters.

Use cases:
e Calculate the value of a calibration parameter (by the MCD system) from the value(s) of other
calibration parameters.
e Virtual data - that means the data object is not directly in the ecu and this property describes
how the "virtual variable" can be computed from the real ones (by the MCD system).

Base ARObject

Attribute Type Mul. Kind | Note

swData SwDataDependency 0..1 aggr Specifies the arguments used in the data dependency.

Dependency Args Note that this is 0..1 since the aggregated class is a

Args container (atpMixed).
Tags: xml.sequenceOffset=40

swData CompuGenericMath 0..1 aggr | This element describes the formula with which the

Dependency dependencies between the participating objects are

Formula defined.
Tags: xml.sequenceOffset=30

Table 5.62: SwDataDependency

Class «atpMixed» SwDataDependencyArgs

Package M2::MSR::DataDictionary::DataDefProperties

Note This element specifies the elements used in a SwDataDependency.

Base ARObject

Attribute Type Mul. Kind | Note

swCalprmRef SwCalprmRefProxy 1 agor Specifies a calibration parameter as an input argument to
the dependency.
Tags: xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=60
xml.typeElement=false
xml.typeWrapperElement=false

swVariable SwVariableRefProxy 1 aggr | Specifies a variable as an input argument to the
dependency.
Tags: xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=70
xml.typeElement=false
xml.typeWrapperElement=false

Table 5.63: SwDataDependencyArgs

5.4.8 Precedence of data properties with respect to data elements, axis ele-
ments, computation methods, units

There are similar attributes defined in SwhbataDefProps aswell asin SwCalprmAxis
as well as in CompuMethod. Therefore we need to define which attribute value wins in
the overall process from SWC-Description to MC-Support to ASAM-A2L.

AUTO SAR

Figure 5.47 illustrates the fact that some attributes in SwbatabefProps can also be
expressed in subelements respectively in referenced elements.

[TPS_SWCT_01496] General precedence rule for attributes of SwbataDefProps
[The general precedence rule is that

10

SwDataDefProps WIiNs over valueAxisDataType (exception: compuMethod
and unit).

SwhataDefProps WIiNns over compuMethod.
SwDataDefProps WIiNs over swCalprmAxisSet.

SwDataDefProps.swCalprmAxisSet Wins over swCalprmAxisSet.swCal-
prmAxis.swCalprmAxisTypeProps.compuMethod
Or SwAxisIndividual.inputVariableType.

SwAxisIndividual.inputVariableType Wins over SwAxisIndivid-
ual.compuMethod, SwAxisIndividual.unit, but not over SwAxisIndi-
vidual.dataConstr.

AUTO SAR

The following examples illustrate particular cases (the highest precedence comes first):
e [TPS_SWCT_01497] Precedence of the unit of value axis [For the usage of

+swVariableRef

SwCalprmAxisTypeProps SwCalprmAxis
= +swCalprmAxisTypeProps -
+ maxGradient: Float [0..1] > category: CalprmAxisCategoryEnum [0..1]
+ monotony: MonotonyEnum [0..1] 1 + displayFormat: DisplayFormatString [0..1]
+ swAxisindex: AxisindexType [0..1]
+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]
+5NCaIprmAxis$ 0.*
SwCalprmAxisSet
- +swCalprmAxisSet 0.1
TypeProperties
SwAxisindividual AN «atpVariation»
+dataConstr AtpBlueprint | +dataConstr SwDataDefProps
«atpVariation» AtpBlueprintable
o oY el eme 0.1 DataConstr 0.1 + add'ltlonalNatl\/eTynguallfler:
. MinAxisPoints. Int NativeDeclarationString [0..1]
IR TS Iy + displayFormat: DisplayFormatString [0..1]
+ displayPresentation:
DisplayPresentationEnum [0..1]
ARElement + s{epsize: Float [lOA.l]
AtpBlueprint + swAllgnmgnt: AlignmentType [0..1]
+compuMethod AtpBlueprintable +compuMethod | + swCalibrationAccess:
c it SwcCalibrationAccessEnum [0..1]
0.1 ompuMetho 0.1 + swimplPolicy: SwimplPolicyEnum [0..1]
+ displayFormat: DisplayFormatString [0..1] + swintendedResolution: Numerical [0..1]
+ swinterpolationMethod: Identifier [0..1]
+ swisVirtual: Boolean [0..1]
«atpVariation»
+unit\|/0..1 + swValueBlockSize: Numerical [0..1]
+ swValueBlockSizeMult: Numerical [0..%]
) ARElement {ordered}
tunit Unit +unit
+ factorSiToUnit: Float [0..1 0.1
0.1
+ offsetSiToUnit: Float [0..1]
ARElement +swDataDefProps|
AtpType
AutosarDataType 0.1
AtpBlueprint
AtpBlueprintable
ApplicationDataType
ApplicationPrimitiveDataType .
+inputvariableType +valueAxisDataType
0.1 0.1

SwVariableRefProxy

0.%
{ordered}

Figure 5.47: Various Attributes in the Context of SwDataDefProps

unit of value axis the following precedence rule is defined:

— SwhataDefProps.valueAxisDataType.swDataDefProps.unit

— SwDataDefProps.valueAxisDataType.swDataDefProps.com—
puMethod.unit

AUTOSAR

— SwDhataDefProps.unit

— SwDataDefProps.compuMethod.unit

10

[constr_2550] Units of value axis shall be consistent | The units specified in
the context of value axis shall be the same, even if there is a precedence rule. |()

In particular, [constr_2550] reflects the fact that a unit may be specified in dif-
ferent phases of the development process but finally need to be consistent.

e [TPS_SWCT_01498] Precedence of the DataConstr of value axis | For the
usage of DataConstr of value axis the following precedence rule is defined:

— SwhataDefProps.dataConstr

— SwDataDefProps.valueAxisDataType.swDataDefProps.dataCon-
str

10

[constr_2548] Data constraint of value axis shall match | The values com-
pliant to swhataDefProps.dataConstr shall be also be compliant to Sw-
DataDefProps.valueAxisDataType.swDataDefProps.dataConstr.

In other words swbataDefProps.dataConstr win over but are not allowed to
relax SwDataDefProps.valueAxisDataType.swDataDefProps.dataCon-—
str but are not allowed |()

e [TPS_SWCT_01499] Precedence of the CompuMethod of value axis | For the
usage of CompuMethod of value axis the following precedence rule is defined:

— SwhataDefProps.valueAxisDataType.swDataDefProps.com—
puMethod

— SwDataDefProps.compuMethod

10

e [TPS_SWCT_01500] Precedence of the display format of value axis | For the
usage of display format of value axis the following precedence rule is defined:

— SwDataDefProps.displayFormat

— SwDataDefProps.valueAxisDataType.swDataDefProps.display-
Format

— SwDhataDefProps.valueAxisDataType.swDataDefProps.com—
puMethod.displayFormat

— SwDataDefProps.compuMethod.displayFormat

10

AUTOSAR

Note that this deviates from the general rule since displayFormat is not an
essential property. The last item in the list above is the consequence of the fact
that if there is a valueAxisDataType it supersedes the compuMethod

e [TPS_SWCT_01501] Precedence of the calibration access of value axis |
For the usage of calibration access of value axis the following precedence rule is
defined:

— SwhataDefProps.swCalibrationAccess

— SwDataDefProps.valueAxisDataType.swDataDefProps.swCali-
brationAccess

10

Note that this deviates from the general rule since swCalibrationAccess is
not such an essential property.

e [TPS_SWCT_01502] Precedence of the unit of the input axis | For the usage
of Unit of the input axis the following precedence rule is defined:

— SwAxisIndividual.unit
— SwAxisIndividual.compuMethod.unit
— SwAxisIndividual.inputVariableType.swDataDefProps.unit

— SwAxisIndividual.swVariableRef.autosarVariable.autosar—
Variable.type.swDataDefProps.compuMethod.unit

— SwAxisIndividual.swVariableRef.autosarVariable.autosar—
Variable.type.swDataDefProps.unit

10

[constr_2549] Units of input axis shall be consistent [The units specified in
the context of an input axis shall be compatible, even if there is a precedence

rule. |()

[constr_2549] reflects the fact that unit may be specified in different phases of
the development process but finally need to be consistent.

e [TPS_SWCT_01503] Precedence of the DataConstr of the input axis | For
the usage of DataConstr of the input axis the following precedence rule is de-
fined:

— SwAxisIndividual.dataConstr

— SwAxisIndividual.inputVariableType.swDataDefProps.data-
Constr

— SwAxisIndividual.swVariableRef.type.swDataDefProps.data-
Constr

10

AUTO SAR

Please note that the attribute swAxisIndividual.inputVariableType.sw—
DataDefProps.dataConstr represents the input value, not the axis itself. For
this reason, there is no specific constraint defined that the dataConstr needs
to fulfill.

e [TPS_SWCT_01504] Precedence of the display format of the input axis |
For the usage of display format of the input axis the following precedence rule is
defined:

SwCalprmAxis.displayFormat

— SwCalprmAxis.swCalprmAxisTypeProps.compuMethod.display-
Format

— SwCalprmAxis.swCalprmAxisTypeProps.inputVariableType.sw—
DataDefProps.displayFormat

— SwCalprmAxis.swCalprmAxisTypeProps.inputVariableType.sw—
DataDefProps.compuMethod.displayFormat

— SwCalprmAxis.swCalprmAxisTypeProps.swVariableRef.type.sw-—
DataDefProps.displayFormat

— SwCalprmAxis.swCalprmAxisTypeProps.swVariableRef.type.sw—
DataDefProps.compuMethod.displayFormat

10

Please note that SwAxisIndividual.inputVariableType.swDataDef-
Props.dataConstr represent the input value and not the axis itself. For this
reason there is no specific constraint that displayFormat needs to match.

e [TPS_SWCT_01505] Precedence of calibration access along structure hier-
archies in complex types | For the usage of calibration access along structure
hierarchies in complex types the precedence rule is defined in table 5.64. |()

outer inner result

notAccessible * notAccessible

readOnly readOnly readOnly

readOnly readWrite readOnly

readOnly notAccessible notAccessible

readWrite notAccessible notAccessible

readWrite readOnly readOnly

readWrite readWrite readWrite
Table 5.64: Precedence of swCalibrationAccess along structure hier-
archies

The interpretation of table 5.64 is that it lists possible combinations of values of
SwCalibrationAccessEnum for outer and inner elements of a complex data
type and the (in the column "result") indicates value of swCalibrationAc-—
cessEnum applicable for this specific combination.

AUTOSAR

e [TPS_SWCT_01506] Precedence of the calibration access of input axis |
For the usage of calibration access of input axis the following precedence rule is
defined:

— SwDataDefProps.swCalibrationAccess

— SwCalprmAxis.swCalibrationAccess

10

Note that the swCalibrationAccess defined on a Compound Primitive
Data Type (see [TPS_SWCT_01179]) reflects the entire curve or map.

Therefore, if the entire curve or map cannot be accessed by the measurement
calibration diagnostic system (MCD-System), the axis can also not be accessed.
On the other hand it might be that access is granted for the value axis only but
not for the axis points.

5.5 Elements used in Properties of Data Definitions

This section describes further elements which are attached to SswhatabefProps via
associations.

5.5.1 Computation Methods

[TPS_SWCT_01276] Computation methods | An important part of semantics is the
specification of a so-called computation method which specifies the conversion be-
tween the physical and the internal representation of data. This usually makes sense
only for primitive data types. |()

An ApplicationCompositeDataType cannot be given a particular semantic mean-
ing as a whole but it is obviously possible to specify the semantics of all or a part of the
contained elements, i.e. the ApplicationPrimitiveDataTypes.

Class CompuMethod
Package M2::MSR::AsamHdo::ComputationMethod
Note This meta-class represents the ability to express the relationship between a physical value and the

mathematical representation.

Note that this is still independent of the technical implementation in data types. It only specifies the
formula how the internal value corresponds to its physical pendant.

Tags: atp.recommendedPackage=CompuMethods

Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Attribute Type | Mul. | Kind | Note

V

AUTOSAR

A
Class CompuMethod
compulnternal Compu 0..1 aggr This specifies the computation from internal values to
ToPhys physical values.
Tags: xml.sequenceOffset=80
compuPhysTo Compu 0..1 agar This represents the computation from physical values to
Internal the internal values.
Tags: xml.sequenceOffset=90
displayFormat DisplayFormatString 0..1 attr This property specifies, how the physical value shall be
displayed e.g. in documents or measurement and
calibration tools.
Tags: xml.sequenceOffset=20
unit Unit 0..1 ref This is the physical unit of the Physical values for which
the CompuMethod applies.
Tags: xml.sequenceOffset=30

Table 5.65: CompuMethod

This meta-class CompuMethod was actually taken from the ASAM standard’s harmo-
nized data objects. This is also indicated by the green color of the meta-classes in the
diagram.

[constr_1142] category of CompuMethod shall not be extended [In contrast to the
general rule that category can be extended by user-specific values it is not allowed
to extend the meaning of the attribute category of meta-class CompuMethod |()

[TPS_SWCT _01277] Computation methods are used for the conversion of inter-
nal values into their physical representation and vice versa [CompuMethods are
used for the conversion of internal values into their physical representation and vice
versa. The direction of the conversion depends on the origin of the value to be con-
verted:

e If the value is provided by the ECU then the conversion direction is from internal
to physical.

e |f a physical value is provided by the tester it is converted to internal values before
being sent to the ECU

10

[TPS_SWCT_01548] Limits of a CompuMethod | In case CompuScale.lowerLimit
and CompuScale.upperLimit are used to constrain the applicable range of the con-
version of a CompuMethod, they logically represent the limiting values before the con-
version is applied. |()

In other words, the limits are applied on the source end of the conversion rather than
to the result that comes out at the other end of the conversion. This is obviously a lot
safer than the opposite approach where a given physical/internal value would first be
converted to its internal/physical equivalent and then, after the conversion is finished
there would be (as a second step) the obligation to check whether the result of the
conversion is actually valid in terms of the applicable limits.

AUTOSAR

[TPS_SWCT _01278] compuMethods can also be used to assign symbolic names
to internal values [CompuMethods can also be used to assign symbolic names to
internal values (like an enumeration in C) or to ranges of internal values or to single bits
(like a bitfield in C). This is also considered as a conversion between internal numbers
and a semantical representation. Some examples are given below. |()

Actually, the preferred conversion direction depends on the use case.

ARElement
AtpBlueprint @
AtpBlueprintable 0.1

+compuPhysTolntemnal Compu

CompuMethod
+compulntemal ToPhys

+ displayFormat: DisplayFormatString [0..1] (€@

0..1
+unit\|/0..1 +compuContent | 1
AREEE CompuContent
Unit

+ factorSiToUnit: Float [0..1]

+ offsetSiToUnit: Float [0..1]

+physicalDimension\|/0..1
ARElement

CompusScales
PhysicalDimension

currentExp: Numerical [0..1]
lengthExp: Numerical [0..1]
luminousintensityExp: Numerical [0..1]
massExp: Numerical [0..1]
molarAmountExp: Numerical [0..1]
temperatureExp: Numerical [0..1] «atpVariation»
timeExp: Numerical [0..1]

ot o+ o+ o+

0.%
+compuScale | {ordered}

CompuScale

+ mask Positivelnteger [0..1]

+ shortLabel: Identifier [0..1]

+ symbol: Cldentifier [0..1]
«atpVariation»

+ lowerLimit: Limit [0..1]

+ upperLimit: Limit [0..1]

Figure 5.48: A compuMethod and its attributes define data semantics

AUTOSAR

CompuScale

+ mask Positivelnteger [0..1]

+ shortLabel: Identifier [0..1]

+ symbol: Cldentifier [0..1]
«atpVariation»

+ lowerLimit: Limit [0..1]

+ upperLimit: Limit [0..1]

+compuScaleContents | 0..1 +compulnverseValue | 0..1
CompuScaleContents CompuConst

Zr +compuConst 1

CompuScaleRationalFormula CompusScaleConstantContents

1 |+compuRational Coeffs

CompuRationalCoeffs

1 | +compuNumerator 1 [+compuDenominator

CompuNominatorDenominator

«atpVariation»
+ v: Numerical [0..*] {ordered}

Figure 5.49: A compuScale and its attributes define data semantics

In the following, the internal-to-physical conversion direction is used as the default.
Usually a compuMethod is defined for one conversion direction only even if it is used
in both directions.

For simple functions like identical (1:1 conversion) or linear functions this is sufficient
because the inverse function can be derived quite easily from the defined function. In
this case also the limits for the reverse direction can be gained by applying the forward
function to the forward limits.

For more complex functions (e.g. rational functions) it is usually not possible to com-
pute the inverse function automatically. More seriously, the inversion yields ambiguous
results if the function is not monotonic. To deal with such possible ambiguities in a
direct way an inverse value can be provided explicitly for the function or for each of its
parts respectively.

[constr_1022] Limits shall be defined for each direction of CompuMethod | In case
that both domains are specified in the CompuMethod both shall have explicitly defined
limits. |()

AUTOSAR

[TPS_SWCT_01280] compuMethod applied to values outside of its limits | If a
CompuMethod is applied to values outside of its limits, it is up to the MCD-tool (Mea-
surement, Calibration, Diagnostic tool) to indicate this to the user. In this case the
CompuMethod shall not be applied at all. |()

[constr_1175] Depending on its category, CompuMethod shall refer to a unit
[As a CompuMethod specifies the conversion between the physical world and the
numerical values they shall refer to a unit unless the CompuMethod’s category is
one of TEXTTABLE, BITFIELD_TEXTTABLE, Or IDENTICAL. |()

[constr_1175] does not imply that CompuMethods where the category is one of
TEXTTABLE, BITFIELD_TEXTTABLE, Oor IDENTICAL are not allowed to refer to a
unit. They may still refer to a unit, but according to [constr_1175] this relation is not
mandated.

A further implication is that the unit itself may not have a dimension, i.e. all exponents
of Sl units are 0.

Figure 5.48 sketches a conceptual overview of CompuMethod. It consists of the fol-
lowing attributes:

e [TPS_SWCT_01281] unit associated with a PhysicalDimension | A unit
(described in next section) can be associated with a PhysicalDimension. ()

Note that quantities like “%” are not derived from Sl units. However, they have a
meaning in the physical world and need to be represented in form of data types.
Therefore, a CompuMethod also applies in those cases.

e [TPS_SWCT_01430] Conversion specification from internal to physical val-
ues as well as the reverse conversion | A conversion specification from internal
to physical values, as well as the reverse conversion. Both of them in turn con-
sist of an abstract CompuContent. Derived classes allow the specification of a
conversion formula in two different ways. |()

[constr_1024] Stepwise definition of CompuMethods | In a bound model, the
intervals (i.e. determined by attributes CompuScale.lowerLimit and CompuS—
cale.upperLimit) defined by CompuScales used in the context of a given
CompuMethod of all values of category except BITFIELD_TEXTTABLE shall
not overlap.

For CompuMethods of category BITFIELD_TEXTTABLE, the combination
of the interval created by attributes CompuScale.upperLimit, CompuS-—
cale.lowerLimit and CompuScale.mask shall be unique in the context of the
enclosing CompuMethod. |()

The possible values of CompuMethod.category are listed in Table 5.76.

[TPS_SWCT_01667] Avoidance of overlapping of directly adjacent intervals
within CompuMethods | Intervals of a given CompuMethod may be located
directly adjacent to each other.

AUTOSAR

This means that the upperLimit of one CompuScale has the same numerical
value as the lowerLimit of another CompuScale defined within the context of
the CompuMethod.

In this case, it is necessary to properly set the attribute CompuScale.lower-
Limit.intervalType Or CompuScale.upperLimit.intervalType in order
to avoid an overlapping.

Specifically, one of the interval boundaries shall be setto intervalType.open
in order to avoid an overlapping. |()

e [TPS_SWCT_01282] Number of intervals in which a given conversion ap-
plies [CompuScales is a number of intervals (called Compuscale) within which
a certain conversion applies. The respective interval is given in terms of upper
and lower limit.

Within each CompuScale we have the abstract CompuScaleContents. To deal
with possible ambiguities in a direct way an inverse value can be provided explic-
itly for that particular scale (compuInversevalue). ()

Please note that limits are explained in more detail in chapter 5.2.4.1.

e As the diagram shows, CompuScaleContents is an abstract meta-class. A
number of derived meta-classes allow the specification of a conversion formula
in a variety of ways, including:

— mapping the whole interval to a constant (CompuConst)

— providing rational coefficients of the conversion formula (CompuRational-
Coeffs)

e [TPS_SWCT_01283] Rational function [The rational function is specified as
rational coefficients for the numerator (compuNumerator) and the denominator
(compuDenominator). CompuNominatorDenominator can have as many V
elements as needed for the rational function.

The sequence of the values V carries the information for the exponents, that
means the first V is the coefficient for x0, the second V is the coefficient for x1,
etc. With this sequence the values of the exponents can be entirely represented.

10

[constr_1025] Avoid division by zero in rational formula | The rational formula
shall not yield any division by zero. |()

[TPS_SWCT_01284] compuScale might require a representation in the generated
RTE C code | A CompuScale might require a representation in the generated RTE C
code. For this purpose it is necessary to identify a property that controls how to symbol
used for the Compuscale in the C code is created. The symbol itself can be created
out of different sources according to a standardized precedence schema. |()

[TPS_SWCT_01569] Definition of CompuScale Code Symbolic Name | In C
code, a CompuScale is represented by an identifier that is, as far as AUTOSAR

AUTOSAR

modeling is concerned, called a CompuScale Symbolic Name. The CompuS-—
cale Code Symbolic Name may be taken from CompuScale.symbol, Compu-—
ConstTextContent.vt, Or CompuScale.shortLabel. The details are explained
in [TPS_SWCT_01431]. |()

[TPS_SWCT _01431] Finding the symbol for the representation of a CompuScale
with a point-range in C code [In general, the value of the attributes symbo1l, vt, and
shortLabel can be taken as a the source for naming the symbol that represents the
CompuScale in the C code. The following rule applies (lower values indicate higher
priority) for all CompuScales with a point-range:

1. Take the value of symbol if this attribute exists.
2. Take the value of vt if it makes a valid C identifier.
3. Take the value of shortLabel if it exists.

Fail if none of the possible options apply.

10

[TPS_SWCT 01695] Relation between valueSpecification and the definition
of CompuScales | In order to find a match between the content of a value-
Specification and a CompuScale the content of the VvalueSpecification
shall be checked against the CompuScale Value Symbolic Names according to
[TPS_SWCT_01696].

If no matching CompuScale Value Symbolic NameS can be found then the val-
ueSpecification shall be considered unusable in the context of the CompuMethod
that is subject to [constr_1146]. |()

[TPS_SWCT_01696] CompuScale Value Symbolic Name | The value of the
CompuScale Value Symbolic Name Of a given CompuScale shall be obtained by
taking the values of the following attributes according to the following priority (lower
values indicate higher priority):

1. Take the value of symbol if this attribute exists.
2. Take the value of vt if this attribute exists.

3. Take the value of shortLabel if it exists.

10

Just to be sure, the (obvious) difference between a CompuScale Value Symbolic
Name and a CompuScale Code Symbolic Name is that the former is not required
to pass as a valid C identifier.

[constr_1434] CompuScales shall not have identical CompuScale Value Sym-
bolic Names | In a CompuMethod that is subject to [constr_1146], no two Com-—
puScales shall have identical CompuScale Value Symbolic Names (according to
[TPS_SWCT_01696]). |()

AUTO SAR

[constr_1146] Applicability of a symbol for a CompuScale in C code | The sym-
bol attribute shall only be provided for Compuscales where the category of the
enclosing CompuMethod is one of the following:

SCALE_LINEAR_AND_TEXTTABLE

SCALE_RATIONAL_AND_TEXTTABLE

TEXTTABLE

BITFIELD_TEXTTABLE

10

Class Compu

Package M2::MSR::AsamHdo::ComputationMethod

Note This meta-class represents the ability to express one particular computation.

Base ARObject

Attribute Type Mul. Kind | Note

compuContent CompuContent 1 aggr This specifies the details of the computation.
Tags: xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

compuDefault CompuConst 0..1 aggr This property can be used to specify an output value for a

Value conversion formula, if the value to be converted lies
outside the plausibility limit. Although this is possible for
all conversion formulae, it is especially valid for variables
with tabular conversion formulae.
Tags: xml.sequenceOffset=70

Table 5.66: Compu

Class CompuContent (abstract)
Package M2::MSR::AsamHdo::ComputationMethod
Note This abstract meta-class represents the various definition means of a computation method.
Base ARObject
Subclasses CompuScales
Attribute Type Mul. Kind | Note
Table 5.67: CompuContent
Class CompuScale
Package M2::MSR::AsamHdo::ComputationMethod
Note This meta-class represents the ability to specify one segment of a segmented computation method.
Base ARObject
Attribute Type | Mul. | Kind | Note

\Y%

AUTOSAR

Class

CompuScale

desc

MultiLanguageOverview

Paragraph

0..1

aggr

<desc> represents a general but brief description of the
object in question.

Tags: xml.sequenceOffset=30

compulnverse
Value

CompuConst

aggr

This is the inverse value of the constraint. This supports
the case that the scale is not reversible per se.

Tags: xml.sequenceOffset=60

compuScale
Contents

CompuScaleContents

0..1

agar

This represents the computation details of the scale.

Tags: xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=70
xml.typeElement=false
xml.typeWrapperElement=false

lowerLimit

Limit

0..1

attr

This specifies the lower limit of the scale.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=40

mask

Positivelnteger

0..1

attr

In difference to all the other computational methods every
COMPU-SCALE will be applied including the bit MASK.
Therefore it is allowed for this type of COMPU-METHOD,
that COMPU-SCALES overlap.

To calculate the string reverse to a value, the string has to
be split and the according value for each substring has to
be summed up. The sum is finally transmitted.

The processing has to be done in order of the
COMPU-SCALE elements.

Tags: xml.sequenceOffset=35

shortLabel

Identifier

0..1

attr

This element specifies a short name for the particular
scale. The name can for example be used to derive a
programming language identifier.

Tags: xml.sequenceOffset=20

symbol

Cldentifier

0..1

attr

The symbol, if provided, is used by code generators to get
a C identifier for the CompuScale. The name will be used
as is for the code generation, therefore it needs to be
unique within the generation context.

Tags: xml.sequenceOffset=25

upperLimit

Limit

0..1

attr

This specifies the upper limit of a of the scale.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=50

Table 5.68: CompuScale

AUTO SAR

Scale (ordered)

Class CompuScales

Package M2::MSR::AsamHdo::ComputationMethod

Note This meta-class represents the ability to stepwise express a computation method.

Base ARObject, CompuContent

Attribute Type Mul. Kind | Note

compu CompuScale * agor This represents one scale within the compu method. Note

that it contains a Variationpoint in order to support
blueprints of enumerations.

Stereotypes: atpVariation

Tags: vh.latestBindingTime=blueprintDerivationTime
xml.roleElement=true

xml.roleWrapperElement=true
xml.sequenceOffset=40

xml.typeElement=false
xml.typeWrapperElement=false

Table 5.69: CompuScales

Class CompuScaleContents (abstract)
Package M2::MSR::AsamHdo::ComputationMethod
Note This abstract meta-class represents the content of one particular scale.
Base ARObject
Subclasses CompuScaleConstantContents, CompuScaleRationalFormula
Attribute Type Mul. Kind | Note
Table 5.70: CompuScaleContents
Class CompuRationalCoeffs
Package M2::MSR::AsamHdo::ComputationMethod
Note This meta-class represents the ability to express a rational function by specifying the coefficients of
nominator and denominator.
Base ARObject
Attribute Type Mul. Kind | Note
compu CompuNominator 1 aggr | This is the denominator of the expression.
Denominator Denominator Tags: xml.sequenceOffset=30
compu CompuNominator 1 agagr | This is the numerator of the rational expression.
Numerator Denominator Tags: xml.sequenceOffset=20
Table 5.71: CompuRationalCoeffs
Class CompuConst
Package M2::MSR::AsamHdo::ComputationMethod
Note This meta-class represents the fact that the value of a computation method scale is constant.
Base ARObject
Attribute Type | Mul. | Kind | Note

\Y

AUTO SAR

A
Class CompuConst
compuConst CompuConstContent 1 aggr This is the actual content of the constant compu method
ContentType scale.

Tags: xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=10
xml.typeElement=false
xml.typeWrapperElement=false

Table 5.72: CompuConst

[TPS_SWCT_01429] [constr_1135] only applies for BITFIELD TEXTTABLE | Note
that [constr_1135] only applies for BITFIELD_TEXTTABLE. It does not apply to the
definition of vt in the context of an ApplicationValueSpecification. |()

Class CompuScaleRationalFormula
Package M2::MSR::AsamHdo::ComputationMethod
Note This meta-class represents the fact that the computation in this scale is represented as rational term.
Base ARObject, CompuScaleContents
Attribute Type Mul. Kind | Note
compuRational CompuRationalCoeffs 1 agor This specifies the coefficients of the rational formula.
Coeffs
Tags: xml.sequenceOffset=110

Table 5.73: CompuScaleRationalFormula

Class CompuScaleConstantContents

Package M2::MSR::AsamHdo::ComputationMethod

Note This meta-class represents the fact that a particular scale of the computation method is constant.

Base ARObject, CompuScaleContents

Attribute Type Mul. Kind | Note

compuConst CompuConst 1 aggr This represents the fact that the scale is a constant. The
use case is mainly a non interplolated scale. It is a
simplification of the fact that a constant scale can also be
expressed as Rational Function of oder 0.
Tags: xml.sequenceOffset=90

Table 5.74: CompuScaleConstantContents

Class CompuNominatorDenominator

Package M2::MSR::AsamHdo::ComputationMethod

Note This class represents the ability to express a polynomial either as Nominator or as Denominator.

Base ARObject

Attribute Type | Mul. | Kind | Note

V

AUTOSAR

Class

CompuNominatorDenominator

v (ordered)

Numerical

* attr

this is the list of polynomial factors. Note that the first vf
represents the power=0. The polynomial is v[0] * x0 + v[1]
*x1 ...

Stereotypes: atpVariation

Tags: vh.latestBindingTime=preCompileTime
xml.roleElement=true
xml.roleWrapperElement=false
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

Table 5.75: CompuNominatorDenominator

Please note that the values of coefficients within a rational formula are not restricted
to integer values. It is possible to use floating point values as well.

The values of exponents cannot be set arbitrarily but are implicitly defined by the
appearance of coefficients in CompuNominatorDenominator.v, i.e. the first value in
the ordered list of CompuNominatorDenominator.v represents the exponent 0, the
second CompuNominatorDenominator.v represents the exponent 1, and so on.

5.5.1.1

Category Values in the context of a CompuMethod

For a detailed description of CompuMethods, please refer to the ASAM MCD 2 Har-
monized Data Objects [25].

Table 5.76 contains a definition of possible values for the attribute category.

tor; after that, an offset is added
to the result of the multiplication.

ASAM Category Meaning Specific properties
This CompuMethod just hands | Only the base elements are allowed and unit, physCon—
IDENTICAL over the internal value with an | strs and internalConstrs are optional. This is the sim-
optional unit. plest type of a CompuMethod.
A linear conversion can be per- | Exactly one Compuscale, with two v in compuNumerator
formed in two steps: The inter- | and one v in compuDenominator.
LINEAR nal value is multiplied with a fac-

SCALE_LINEAR

Used for a piecewise linear con-
version.

More than one compuScale can be defined. Additionally
there have to be the upperLimit and lowerLimit ele-
ments which define the region of validity for the linear func-
tion. The boundaries of the regions shall not overlap.

SCALE_LINEAR AND_
TEXTTABLE

Used for piecewise definition of
one linear and several texttable
scales.

Properties depend on the used scale function. For de-
tails see definition of SCALE_LINEAR and TEXTTABLE. The
scales shall each provide lowerLimit and upperLimit
definitions.

\Y%

AUTOSAR

ASAM Category Meaning Specific properties
The rational function type is sim- | It can have as many v elements as needed for the rational
ilar to the linear type without | function. The sequence of the values v carries the informa-
the restrictions for the com- | tion for the exponents, that means the first v is the coefficient
puNumerators and compubDe— | for x0, the second v is the coefficient for x1, etc.

RAT FUNC nominators.

With this sequence the values of the exponents can be en-
tirely represented. A rational function is only applicable for
conversions in the direction that it is defined for, i.e. the auto-
matic calculation of the inverse function is not supported by
the MCD system.

SCALE_RAT_FUNC

Used for piecewise defined ra-
tional conversion.

SCALE_RATIONAL_AND_
TEXTTABLE

Used for piecewise definition of
one rational and several text-
table scales.

Properties depend on the used scale function. For details
see definition of SCALE_RAT_FUNC and TEXTTABLE. The
scales shall each provide lowerLimit and upperLimit
definitions.

The type TEXTTABLE is used
for transformations of the inter-
nal value into textual elements.

The result is placed in the vt member of CompuConst. The
compubDefaultValue is optional. If the reverse calculation
is needed then for each scale the compuInversevalue can
be used to define the reverse calculation result.

numerical values.

TEXTTABLE . . .)
If no inverse value is explicitly defined then the smallest pos-
sible value of the scale will be used as result of the reverse
calculation.

[constr_1134] applies!
TAB_NOINTP Similar to TEXTTABLE, but for | The values per scale are defined in CompuConst.

BITFIELD TEXTTABLE

Similar to TEXTTABLE but for bit
fields.

BITFIELD_TEXTTABLE is derived from TEXTTABLE. The
main difference is that TEXTTABLE results to a single value
while BITFIELD_TEXTTABLE results to a concatenated
value set.

In difference to all the other computational methods every
CompuScale will be applied including the bit mask speci-
fied in mask. Therefore it is allowed for this type of com-
puMethod, that CompuScales overlap.

To calculate the string reverse to a value, the string has to
be split and the according value for each substring has to be
summed up. The sum is finally transmitted. The processing
has to be done in order of the CompuScale elements.

[constr_1135] applies!

Table 5.76: ASAM compuMethod

[constr_1134] Allowed structure of TEXTTABLE | physConstrs is not allowed.
compulnternalToPhys shall exist with compuScales consisting of upperLimit
and lowerLimit. |()

[constr_1135] Limit of vt in BITFIELD TEXTTABLE | The separator is “|” and is
forbidden in vt therefore. |()

5.5.1.2 Applicability of Attributes in the context of a CompuMethod

This section summarizes the applicability of CompuMethod in terms of which attributes
of CompuMethod and related meta-classes (e.g. CompuScale, CompuConst) shall

AUTOSAR

be used depending on the nature of the CompuMethod, expressed by means of the

value of attribute category.

[constr_1375] Existence of attributes of CompuMethod and related meta-classes
[The existence of attributes of CompuMethod and related meta-classes depending on
the value of the category shall follow the restrictions documented in Table 5.77. |()

Attribute Existence per Category

]
“ =]
5| 8
| X
Bt i
b B
w | & '
2 g | *
: AN
b 4
3 é :') E| g E 3]
3 Sleld|d|a|58|8| §
H ﬁ | | 5] | | o
B =) [5] 3] H [} 5] z
4 E | B [} |
: 5 E |5 |5 |3|d8|CE|8|[8/| &
Attributes of CompuMethod H] 0 § 7] 3] M 7} 7] H
compulnternalToPhys N/A | D(1) | D(1) | D(2) | D(2) D D D(8) | D(2) D
compuPhysToInternal N/A | D(1) | D) | D(2) [D(2) | N/A | N/A | N/A [D(2,3) N/A
Attributes of meta-classes related to CompuMethod
compuDefaultValue N/A | O(6) | O®) | O6) | O®B) | O®) | O®) | O®B) | OB) 0O(6)
CompuScale N/A | D/..1|D/..n| D/1..1{ D/1..n| D/1..n{ D/1..n| D/1..n| D/1..n D/A..n
CompuScale.compulnverseValue N/A | N/A | NA | O@2) | O2) | O(5) | N/A | O(2,5) O(2,5) 0O(5)
CompuScale.lowerLimit N/A | O D | D@4 |D@4)| D D D | D(4) D
CompuScale.mask N/A | N/A | N/A | NA | NA | NA D N/A | N/A N/A
CompuScale.shortLabel N/A | N/A | NJA | N/A | N/A | O(7) | O(7) | O(7) | O(7) N/A
CompuScale.symbol N/A | N/A | NJA | N/A | N/A | O(7) | O(7) | O(7) | O7) N/A
CompuScale.upperLimit N/A (6] D D(4) | D(4) D D D D(4) D
CompuConst N/A | N/A | N/A | NJA | N/A | D/vt | D/vt | Divt | D/ve | Divt or vE
CompuRationalCoeffs N/A D D D D N/A | N/A D D N/A
CompuRationalCoeffs.compuDenominator | N/A | D/1v | D/1v D D N/A | N/A | DAv D N/A
CompuRationalCoeffs.compuNumerator N/A | D/2v | D/2v D D N/A | N/A | D/2v D N/A

Table 5.77: Allowed Attributes vs. category for CompuMethods

For clarification, the first two rows of Table 5.77 define the applicability of the immedi-
ate attributes of meta-class compuMethod, the remainder of the table then goes into
further detail regarding the usage of the attributes of related meta-classes (e.g. Com-

puScale, CompuConst).

Please note that annotations apply to the individual cell values. These annotations are
formulated by means of a numerical value in parentheses, e.g. (1).

The legend for the individual annotations can be found below Table 5.77.

The following legend applies to the cells in table 5.77:

D Define the attribute.

N/A Attribute is not applicable for usage in the scope of this element.

AUTOSAR

O Optionally define the attribute.

In addition to the primary cell legend the following annotations apply to the cells in
table 5.77:

(1) Inthis case either compuPhysToInternal OF compulnternalToPhys shall be
defined.

(2) In this case both compuPhysToInternal and compulnternalToPhys shall
be defined unless compuInversevalue exists (see [TPS_SWCT_01282]). In
other words, if the explicit definition of a compuInversevalue exists then there
is no need to define conversions from internal to physical and vice versa.

(3) Not applicable for CompuScales where attribute compuScaleContents.compu-
Const exists.

(4) Limits shall be defined according to [constr_1022].

(5) Restrictions on the structure of the CompuMethod according to [constr_1134] ap-
ply.

(6) Specify an output value for a conversion formula if the value to be converted yields
outside the plausibility limit (for more information, please refer to the class table
of Compu).

(7) Restricted applicability for the attribute CompusScale.symbol, see [constr_1146]).

(8) Mandatory for CompuConst; enforced for CompuRationalCoeffs.

5.5.1.3 CompuMethod and AutosarDataType

This chapter clarifies the applicability of CompuMethod for the relevant concrete sub-
classes of AutosarDataType.

5.5.1.3.1 CompuMethod and ApplicationDat