
Guidelines for using Adaptive Platform interfaces
AUTOSAR AP Release 18-10

1 of 15 Document ID 929: AUTOSAR_EXP_AdaptivePlatformInterfacesGuidelines

- AUTOSAR Confidential -

Document Title Guidelines for using Adaptive
Platform interfaces

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 929

Document Status Final

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release 18-10

Document Change History

Date Release Changed by Change Description

2018-10-31 18-10 AUTOSAR
Release
Management

 Initial release

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP Release 18-10

2 of 15 Document ID 929: AUTOSAR_EXP_AdaptivePlatformInterfacesGuidelines

- AUTOSAR Confidential -

Disclaimer

This work (specification and/or software implementation) and the material contained
in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR
and the companies that have contributed to it shall not be liable for any use of the
work.

The material contained in this work is protected by copyright and other types of
intellectual property rights. The commercial exploitation of the material contained in
this work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the
work may be utilized or reproduced, in any form or by any means, without permission
in writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP Release 18-10

3 of 15 Document ID 929: AUTOSAR_EXP_AdaptivePlatformInterfacesGuidelines

- AUTOSAR Confidential -

Table of Contents
1 Introduction to this document .. 4

1.1 Contents ... 4
1.2 Prereads ... 4
1.3 Relationship to other AUTOSAR specifications .. 4

2 Core Types .. 5

2.1 Error handling ... 5
2.1.1 ErrorCode.. 5
2.1.2 Result .. 5

3 Execution Management ... 9
3.1 Execution State .. 9

3.2 Deterministic Execution .. 9

4 State Management .. 13

4.1 Component State ... 13
5 References .. 15

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP Release 18-10

4 of 15 Document ID 929: AUTOSAR_EXP_AdaptivePlatformInterfacesGuidelines

- AUTOSAR Confidential -

1 Introduction to this document

1.1 Contents

While SWS of FC is a specification for ARA interfaces, some of the interfaces require
“guidelines” on how to use them. The guidelines are indeed related to the
specification, but some are indirect and having such information within each SWS
bloats SWS hence making it difficult for readers to grasp the usage. Another
important perspective is that these guidelines are kind of requirement against AA to
follow, but SWS of FC are specification requirements for FCs. Therefore, it does not
fit well to have these contents in SWS, and this is the purpose of this “Guidelines for
using Adaptive Platform Interfaces.”

The main contents of this document will be the guidelines for applications to follow as
mentioned in the background above. Not necessarily all FCs will have contents in this
document; they will be added when it deems valid.

The contents are organized per relevant topic, but in general, this will be grouped by
FC, each having its independent chapter. Also, note that the contents may be
provided in separate AUTOSAR AP documents. If this is the case, such documents
will be listed or referenced from this guideline.

1.2 Prereads

This document is a supplementary document to the SWS of AP. Therefore, the
relevant SWS of the topic in these guidelines should be read in parallel. Also, the first
AP document to be read is [1], which gives the architectural overview of AP.

1.3 Relationship to other AUTOSAR specifications

Refer to Contents and Prereads.

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP Release 18-10

5 of 15 Document ID 929: AUTOSAR_EXP_AdaptivePlatformInterfacesGuidelines

- AUTOSAR Confidential -

2 Core Types

2.1 Error handling

Handling errors is a crucial topic for any software development. For safety-critical
software, it is even more important, because lifes can depend on it. However, current
standards for the development of safety-critical software places significant
restrictions on the build toolchain, especially with regard to C++ exceptions. For ASIL
applications, using C++ exceptions is usually not possible due to the lack of
exceptions support with ASIL-certified C++ compilers.

The Adaptive Platform introduces a concept that enables error handling without C++
exceptions and defines a number of C++ data types to aid in this.

From an application programmer’s point of view, the central types implementing this

concept are ara::core::ErrorCode and ara::core::Result.

2.1.1 ErrorCode

An instance of ara::core::ErrorCode represents a specific error condition within

a software. It is similar to std::error_code, but differs in significant aspects from

it.

An ErrorCode always contains an enumeration value (type-erased into an integral

type) and a reference to an error domain. The enumeration value describes the
specific type of error, and the error domain reference defines the context where that
error is applicable. Additional optional members are a user-defined message string
and a vendor-defined supplementary error description value.

2.1.2 Result

Class ara::core::Result follows the “ValueOrError” concept from the C++

proposal p0786 (see https://wg21.link/P0786). It either contains a value, or an error.
Due to their templated nature, both value and error can be of any type. However,

ErrorType is defaulted to ara::core::ErrorCode, and it is expected that this

assignment is kept throughout the Adaptive Platform.

Because the ErrorType is defaulted to ara::core::ErrorCode, most declarations

of ara::core::Result only need to give the ValueType, e.g.

ara::core::Result<int> for a Result type that contains either an int variable,

or an ErrorCode.

ARA interfaces use ara::core::Result as return type for functions that can

encounter recoverable errors. This type can be used to either generate a C++
exception from the object if the user chooses to use exceptions, or retrieve
error information via observer methods without using exceptions.

This section guides you how to handle such Result objects returned from ARA

interface in your application code, and also gives guidance on how to create new

Result objects within your own Adaptive Application.

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP Release 18-10

6 of 15 Document ID 929: AUTOSAR_EXP_AdaptivePlatformInterfacesGuidelines

- AUTOSAR Confidential -

2.1.2.1 Creation of a Result

For creating a Result with an embedded value, there are constructors allowing

implicit conversion from a ValueType. This makes defining a Result with a value

quite straightforward:

Result<int> res1(42);

Result<int> res2 = 42;

Returning a value from a function declared to return a Result is similarly

straightforward:

Result<int> myfunction()

{

 return 42;

}

Putting an error inside a Result requires calling an explicit constructor, e.g.:

ErrorCode ec = MyEnum::some_error;

Result<int> res2(ec);

Alternatively, construction of Result objects is also possible with static member

functions, for instance:

Result<int> res1 = Result<int>::FromValue(42);

Result<int> res2 = Result<int>::FromError(ec);

These forms can be advantageous when ValueType or ErrorType are expensive to

copy, because they allow in-place construction. For instance, returning a Result

containing an instance of BigClass which is constructed with two constructor

arguments “a1” and “a2” could look like this:

return Result<BigClass>::FromValue(a1, a2);

For ErrorType, this also allows implicit construction of the ErrorCode instance,

including a custom error message and/or a support data value:

return Result<BigClass>::FromError(

 MyEnum::some_error, // ErrorCode enum value

 "this operation did not work", // custom error message

 0x12345678 // support data value

);

With this form of construction, only one constructor call is performed, unlike the
regular (unnamed) constructor call, where at least two constructor calls are
performed, because the pre-created value must then be copied or moved into the

Result instance.

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP Release 18-10

7 of 15 Document ID 929: AUTOSAR_EXP_AdaptivePlatformInterfacesGuidelines

- AUTOSAR Confidential -

2.1.2.2 Retrieving values and errors

When trying to retrieve the value or error that is contained within a Result, one first
has to consider which one of these (value or error) is actually available. In general,
this is not known, so one has to take care to handle both cases.

When working without exceptions, the Result object is queried to check whether it
contains a value or an error:

Result<int> some_function() { … }

Result<int> res = some_function();

if (res.HasValue()) {

 int theValue = res.Value();

} else {

 ErrorCode const& ec = res.Error();

}

This code also works in a completely exception-free environment, including with a
compiler that does not support exceptions at all.

When working with an exception-based workflow, the query code looks quite similar
to regular exception-based code:

Result<int> some_function() { … }

int theValue = some_function().ValueOrThrow();

Here, the Result object that is returned by some_function() is immediately

reduced to its ValueType (int) by calling its ValueOrThrow() member function.

If the Result did, in fact, contain an ErrorCode, this would immediately throw an

exception type that corresponds to the embedded ErrorCode object.

Naturally, a try…catch block should be added at a suitable location in the code.

2.1.2.3 Advanced topics

The two basic methods for retrieving the embedded value or error are called just as

such: Result::Value() and Result::Error(). However, when calling any of

these, one has to be certain that the Result object does indeed contain what is

implied by calling one of these functions. In the previous section, this was done by

first calling Result::HasValue(), and calling Value() or Error() depending on

the outcome of that call.

A more convenient way of accessing the embedded value has already also been

mentioned in the previous section: By calling Result::ValueOrThrow, no if-

statement is needed, and the invocation collapses into a single-line statement
(excluding the try…catch block, which might exist elsewhere).

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP Release 18-10

8 of 15 Document ID 929: AUTOSAR_EXP_AdaptivePlatformInterfacesGuidelines

- AUTOSAR Confidential -

Other convenience methods exist, for instance Result::ValueOr, which retrieves

the value, if if exists, or takes a default value otherwise (i.e., in case of any error),
e.g.:

int res = some_function().ValueOr(42);

A generalization of Result::ValueOr is called Result::Resolve, which does not take a
default value as argument, but a Callable, which is to create the default value on-
demand:

int res = some_function()

 .Resolve([](ErrorCode const& ec){ return 42; });

For this particular example, using Result::Resolve instead of

Result::ValueOr does not make much sense. However, it can be advantageous

when the default value is expensive to create. By using Result::Resolve, the

default value is only created when it is actually needed.

Another convenience method is Result::Bind, which allows to transform the

contained value into another value, or even into another type. For instance:

Result<String> res = some_function()

 .Bind([](int v){ return v + 1; })

.Bind([](int v){ return std::to_string(v); })

.Bind([](String const& s) { return "'" + s + "'"); });

The first call to Result::Bind takes the int value contained in the Result object,

adds one to it, puts that into a new Result object, and returns it.

The second call to Result::Bind takes the incremented int value from the new

Result object, converts it into a String, and returns a new Result<String>

object with it.

The third and final call to Result::Bind takes the String object contained in the

new Result object, adds quote characters to it, and returns a new Result object

with it.

If the Result does not contain a value, then none of these Callables are invoked,

and the Result object is only type-converted, but retains the original ErrorCode.

The Callables passed to Result::Bind must take a suitable type as parameter and

can return either a ValueType directly (as shown above, and either the same

ValueType as before, or a new, different ValueType), or a Result<ValueType>.

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP Release 18-10

9 of 15 Document ID 929: AUTOSAR_EXP_AdaptivePlatformInterfacesGuidelines

- AUTOSAR Confidential -

3 Execution Management

3.1 Execution State

The Execution State characterizes the internal lifecycle of any Process. Each
Process needs to report changes in its Execution State to Execution Management,

using the ExecutionClient::ReportExecutionState() interface (see [2]).

Figure 3-1 Execution States

Upon Process startup, Execution Management shall consider Process initialization

complete when the state kRunning is reported (see [SWS_EM_01053]). Please

note that Service Discovery can introduce nondeterministic delays and thus is

advised to be done after reporting kRunning state; thus, the Process may not have

completed all its initialization when the kRunning state is reported by the Process.

Execution Management initiates Process termination by sending the SIGTERM
signal to a Process. On reception of SIGTERM, the Process shall acknowledge the

state change request by reporting kTerminating to Execution Management (see

[SWS_EM_01070).

In the case of a self-terminating Process, the Process shall initiate self-termination by

reporting the kTerminating state to Execution Management (see

[SWS_EM_01071).

After reporting kTerminating, the Process is expected to save persistent data and

free all internally used resources. The Process indicates completion of the
Terminating state by simply exiting (with an appropriate exit code). Execution
Management does not require an explicit notification of actual Process
termination by the process itself.

3.2 Deterministic Execution

Execution Management supports a fully deterministic multithreaded execution of a
Process, so processing a given set of input data always produces a consistent output
within a bounded time, i.e. the behavior is reproducible.

Expected use cases of the AUTOSAR Adaptive Platform where such determinism is
required include redundant execution in a Software Lockstep framework for systems
with high safety goals (up to ASIL D) and reuse of verified software. For more details
see [2], section “Deterministic Execution”.

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP Release 18-10

10 of 15 Document ID 929: AUTOSAR_EXP_AdaptivePlatformInterfacesGuidelines

- AUTOSAR Confidential -

A Process that can be executed fully deterministically must be designed,
implemented and integrated in a way such that it is independent of processor load
caused by other functions and calculations, sporadic unrelated events, race
conditions, deviating random numbers etc.

Non-deterministic behavior may arise from different reasons; for example insufficient
computing resources, or uncoordinated access of data, potentially by multiple
threads running on multiple processor cores. The order in which the threads access
such data will affect the result, which makes it non-deterministic.

Full deterministic execution includes:

 Time Determinism: The output of the calculation is always produced before a
given deadline. The resource demands of the Process need to be described in
a standardized way, so the integrator can assign sufficient resources to the
Process (see subsection “Real-Time Resources” in [2]).

 Data Determinism: Given the same input and internal state, the calculation
always produces the same output. The rest of this section will describe how to
achieve Data Determinism.

Execution Management} provides DeterministicClient library functions to

support deterministic execution:

 Control of a process-internal cycle by wait point API

WaitForNextActivation() ([SWS_EM_01301]). The Process shall

execute one cycle when the API returns and then call the API again to wait for
the next activation. A return value of the API controls the internal lifecycle (e.g.
init, run, terminate) of the Process, which must be prepared accordingly
([SWS_EM_01302], [SWS_EM_01303] and [SWS_EM_01304]).

 A blocking deterministic worker pool API RunWorkerPool()

([SWS_EM_01305]) for execution of a set of container elements
([SWS_EM_01306]) which are processed in parallel or sequentially by the
same worker runnable object (i.e. application function).

 APIs GetActivationTime() ([SWS_EM_01310]) and

GetNextActivationTime() ([SWS_EM_01311]) to provide activation time

stamps which don't change until the Process reaches its next wait point.

 API GetRandom() to provide random numbers ([SWS_EM_01308]). If used

from within the worker pool, the random numbers are assigned to specific
container elements to allow deterministic redundant execution.

To ensure deterministic behavior, only a “deterministic subset” of all available APIs
may be used by the deterministic user Process, including the worker runnable
objects:

 The Process is not allowed to create threads on its own by using normal
POSIX mechanisms or access any other POSIX APIs directly, to avoid the risk
of inducing indeterministic behavior.

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP Release 18-10

11 of 15 Document ID 929: AUTOSAR_EXP_AdaptivePlatformInterfacesGuidelines

- AUTOSAR Confidential -

 Only a “deterministic subset” of all available ara::com mechanisms are allowed
to be used by the Process. A detailed list of such APIs and mechanisms will
be provided at a later point in time.

 Only the following ara::exec interfaces may be used:
o DeterministicClient

o ExecutionClient

 No other ARA interfaces are allowed to be accessed by the user Process.

If the worker pool API RunWorkerPool() is used, the worker runnable object which

processes the container elements, i.e. the jobs to be computed, needs to satisfy
certain implementation rules to ensure Data Determinism:

 The runnable object is not allowed to exchange any information while it is
running, i.e. it doesn't access data which can be altered by other instances of
the runnable object to avoid race conditions.

Rationale: The runnable object instances can physically run in parallel or
sequentially in any order. Timing between individual workers is not
guaranteed. The Operating System is scheduling threads individually.
Concurrent influencing of the same data will result in indeterminate results.

 No locks and synchronization points except common joins for all workers by

returning from RunWorkerPool() (e.g. no Semaphores/Mutexes, no

locking/blocking).

Rationale: locking/blocking makes Process runtime in-deterministic. Workers
are provided to increase utilization of runtime. If synchronization is needed, a
return from RunWorkerPool() is necessary.

The worker pool cannot be used to process multiple different tasks in parallel. The
use of multiple potentially different explicit functions (worker runnable objects) could
add unnecessary complexity and can lead to extremely heterogeneous runtime
utilization, as each worker may have different computing time. This would complicate
the planning of resource deployment, which is necessary for black-box integration.

Example of the implementation of Worker Pool Users, i.e. of a worker runnable
object:

class MyWorker1

: public DeterministicClient::WorkerrunnableBase<myContainer::

 value_type, MyWorker1>

{

public:

 void worker_runnable(myContainer::value_type& container_element,

 DeterministicClient::WorkerThread& t)

 {

 // Get a unique and deterministic pseudo-random number}

 uint64_t random_number = t.GetRandom();

 }

};

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP Release 18-10

12 of 15 Document ID 929: AUTOSAR_EXP_AdaptivePlatformInterfacesGuidelines

- AUTOSAR Confidential -

Worker-thread object:

class DeterministicClient::WorkerThread

{

 // returns a deterministic pseudo-random number}

 // which is unique for each container element}

 uint64_t GetRandom();

 ...

};

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP Release 18-10

13 of 15 Document ID 929: AUTOSAR_EXP_AdaptivePlatformInterfacesGuidelines

- AUTOSAR Confidential -

4 State Management

4.1 Component State

Component States are used to control Processes in a more fine grained way than it
would be possible with Execution Management even without the need to unload and
reload them from and to memory.

It is used e.g. to support ‘late-wakeup’: The Processes can continue their work
immediately when a new wakeup reason is detected during shutdown.

Therefor the Executable has to register to State Management. It is done implicitly

when the constructor the ComponentClient::ComponentClient() is called (see

[2]).

A component is identified by State Management via the provided ara::core::string

identifier in the ComponentClient constructor.

Two modes for the component state are supported

- Polling mode for safety critical components to have a deterministic behavior.
- Event mode for all other components.

The mode of the ComponentClient (polling or event-based) is specified by an

additional parameter for the ComponentClient constructor

When the polling mode is selected the component has to use

ComponentClient::GetNewState() to get next state from State Management

When the event mode is selected the component has to use ComponentClient::

SetStateUpdateHandler() to provide an event-handler to State Management

The Components are informed then via the given callback about needed state
changes.

The states are given as ara::core::string. Predefined states are

- ‘kOff’’: Executable shall persist its data similar to when SigTerm is
 received, but Process remains in memory

- ‘kFastOff’: Similar to ‘kOff’, but only a subset of data shall be persisted
 (when needed at all). Used e.g. for fast shutdown in production
 diagnosis

- ‘kOn’: Executable works in regular manner
- ‘khardReset’: Used in diagnostic session when a hard reset is requested.

 Behavior is project specific
- ‘ksoftReset’: Used in diagnostic session when a soft reset is requested.

 Behavior is project specific

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP Release 18-10

14 of 15 Document ID 929: AUTOSAR_EXP_AdaptivePlatformInterfacesGuidelines

- AUTOSAR Confidential -

Further predefined states could be introduced in the future because other
functionalities might have to be supported e.g. communication control states due to
diagnostic communication control request needs.

Each component can decline to enter the requested stated due to its current needs
e.g. the Bluetooth stack can decline to enter the ‘kOff’ state when a phonecall is
ongoing.
Therefor State Management secures state requests with a project specific timeout
and retry-count. To enable State Management to do so each Component has to

report its state using ComponentClient::ReportUpdatedState .in a project

specific time-slot.
When timeout and retry counts are exceeded State Management tries again to set
the state with an enforcement flag.

To make State Management aware that a component is no longer available (don’t
care about timeouts any more), each component within a Process has to de-register
from State Management. Therefore the destructor of the component interface has to
be called (de-registration is done implicitly)

ComponentClient::~ComponentClient() when components are no longer

interested to receive component state updates e.g. a Process is terminated.

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP Release 18-10

15 of 15 Document ID 929: AUTOSAR_EXP_AdaptivePlatformInterfacesGuidelines

- AUTOSAR Confidential -

5 References

[1] Explanations of Adaptive Platform Design, AUTOSAR_EXP_PlatformDesign.pdf.

[2] Specification of Execution Management,
AUTOSAR_SWS_StateManagement.pdf.

	1 Introduction to this document
	1.1 Contents
	1.2 Prereads
	1.3 Relationship to other AUTOSAR specifications

	2 Core Types
	2.1 Error handling
	2.1.1 ErrorCode
	2.1.2 Result
	2.1.2.1 Creation of a Result
	2.1.2.2 Retrieving values and errors
	2.1.2.3 Advanced topics

	3 Execution Management
	3.1 Execution State
	3.2 Deterministic Execution

	4 State Management
	4.1 Component State

	5 References

