
E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Document Title E2E Protocol Specification
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 849

Document Status Final

Part of AUTOSAR Standard Foundation

Part of Standard Release 1.2.0

Document Change History
Date Release Changed by Description

2017-10-27 1.2.0
AUTOSAR
Release
Management

• Initial Release

1 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Table of Contents

1 Introduction and functional overview 7

2 Acronyms and Abbreviations 9

3 Related documentation 9

3.1 Input documents & related standards and norms 9
3.2 Related specification . 9

4 Constraints and assumptions 10

4.1 Limitations . 10
4.2 Applicability to car domains . 10
4.3 Background information concerning functional safety 10

4.3.1 Functional safety and communication 10
4.3.2 Sources of faults in E2E communication 11

4.3.2.1 Software faults . 11
4.3.2.2 Random hardware faults 11
4.3.2.3 External influences, environmental stress 12

4.3.3 Communication faults . 12
4.3.3.1 Repetition of information 12
4.3.3.2 Loss of information 12
4.3.3.3 Delay of information 12
4.3.3.4 Insertion of information 12
4.3.3.5 Masquerading . 12
4.3.3.6 Incorrect addressing 12
4.3.3.7 Incorrect sequence of information 13
4.3.3.8 Corruption of information 13
4.3.3.9 Asymmetric information sent from a sender to multi-

ple receivers . 13
4.3.3.10 Information from a sender received by only a subset

of the receivers . 13
4.3.3.11 Blocking access to a communication channel 13

5 Functional specification 13

5.1 Overview of communication protection 13
5.2 Overview of E2E Profiles . 14

5.2.1 Error detection . 15
5.3 Specification of E2E Profile 1 (Only for CP) 15

5.3.1 Data Layout . 17
5.3.2 Counter . 17
5.3.3 Data ID . 17
5.3.4 CRC calculation . 19
5.3.5 Timeout detection . 20
5.3.6 E2E Profile 1 variants . 20
5.3.7 E2E_P01Protect . 21

3 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

5.3.8 Calculate CRC . 22
5.3.9 E2E_P01Check . 23
5.3.10 E2E Profile 1 Protocol Examples 26

5.3.10.1 DataIDMode set to E2E_P01DATAID_ALT 26
5.3.10.2 DataIDMode set to E2E_P01DATAID_LOW 27
5.3.10.3 DataIDMode set to E2E_P01DATAID_NIBBLE 27

5.4 Specification of E2E Profile 2 (only for CP) 27
5.4.1 E2E_P02Protect . 30
5.4.2 E2E_P02Check . 32

5.5 Specification of E2E Profile 4 . 37
5.5.1 Data Layout . 38

5.5.1.1 User data layout . 38
5.5.1.2 Header layout . 38

5.5.2 Counter . 39
5.5.3 Length . 40
5.5.4 CRC . 40
5.5.5 Timeout detection . 40
5.5.6 E2E Profile 4 variants . 41
5.5.7 E2E_P04Protect . 41
5.5.8 E2E_P04Check . 45

5.6 Specification of E2E Profile 5 . 49
5.6.1 Data Layout . 49

5.6.1.1 User data layout . 49
5.6.1.2 Header layout . 50

5.6.2 Counter . 50
5.6.3 Data ID . 51
5.6.4 Length . 51
5.6.5 CRC . 51
5.6.6 Timeout detection . 52
5.6.7 E2E_P05Protect . 52
5.6.8 E2E_P05Check . 55

5.7 Specification of E2E Profile 6 . 58
5.7.1 Data Layout . 58

5.7.1.1 User data layout . 58
5.7.1.2 Header layout . 59

5.7.2 Counter . 59
5.7.3 Data ID . 60
5.7.4 Length . 60
5.7.5 CRC . 60
5.7.6 Timeout detection . 61
5.7.7 E2E_P06Protect . 61
5.7.8 E2E_P06Check . 65

5.8 Specification of E2E Profile 7 . 68
5.8.1 Data Layout . 68

5.8.1.1 User data layout . 68
5.8.1.2 Header layout . 69

4 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

5.8.2 Counter . 69
5.8.3 Data ID . 70
5.8.4 Length . 70
5.8.5 CRC . 70
5.8.6 Timeout detection . 71
5.8.7 E2E Profile 7 variants . 71
5.8.8 E2E_P07Protect . 71
5.8.9 E2E_P07Check . 75

5.9 Specification of E2E Profile 11 . 79
5.9.1 Data Layout . 80

5.9.1.1 User data layout . 80
5.9.1.2 Header layout . 80

5.9.2 Counter . 82
5.9.3 Data ID . 82
5.9.4 Length . 83
5.9.5 CRC . 83
5.9.6 Timeout detection . 84
5.9.7 E2E_P11Protect . 84
5.9.8 E2E_P11Check . 87

5.10 Specification of E2E Profile 22 . 91
5.10.1 Data Layout . 91

5.10.1.1 User data layout . 91
5.10.1.2 Header layout . 92

5.10.2 Counter . 92
5.10.3 Data ID . 93
5.10.4 Length . 93
5.10.5 CRC . 93
5.10.6 Timeout detection . 94
5.10.7 E2E_P22Protect . 94
5.10.8 E2E_P22Check . 97

5.11 Specification of E2E state machine . 100
5.11.1 Overview of the state machine 101
5.11.2 State machine specification 101

5.12 Basic Concepts of CRC Codes . 105
5.12.1 Mathematical Description . 105
5.12.2 Euclidian Algorithm for Binary Polynomials and Bit-Sequences 108
5.12.3 CRC calculation, Variations and Parameter 109

5.13 CRC Standard Parameters . 109
5.13.1 8-bit CRC calculation . 111

5.13.1.1 8-bit SAE J1850 CRC Calculation 111
5.13.1.2 8-bit 0x2F polynomial CRC Calculation 111

5.13.2 16-bit CRC calculation . 112
5.13.2.1 16-bit CCITT-FALSE CRC16 112

5.13.3 32-bit CRC calculation . 113
5.13.3.1 32-bit Ethernet CRC Calculation 113
5.13.3.2 32-bit 0xF4ACFB13 polynomial CRC calculation . . 114

5 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

5.13.4 64-bit CRC calculation . 115
5.13.4.1 64-bit ECMA polynomial CRC calculation 115

6 E2E API specification 116

6.1 API of middleware to applications . 116
6.2 API of E2E . 117

7 Configuration Parameters 118

8 Protocol usage and guidelines 119

8.1 Periodic use of E2E check . 119
8.2 Error handling . 119
8.3 Maximal lengths of Data, communication buses 120

6 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

1 Introduction and functional overview

The concept of E2E communication protection assumes that safety-related data ex-
change shal lbe protected at runtime against the effects of faults on the communica-
tion link (see Figure 1.1). Faults detected between a sender and a receiver using E2E
communication protection include systematic software faults, such as fauls that are
introduced on the lower communication layers of sender or receiver, and random hard-
ware faults introduced by the MCU hardware, communication peripherals, transceivers,
communication lines or other communication infrastructure.

The concept of E2E communication protection assumes that safety-related data ex-
change shall be protected at runtime against the effects of faults within the commu-
nication link (see Figure 1.1). Examples for such faults are random HW faults (e.g.
corrupt registers of a CAN transceiver), interference (e.g. due to EMC), and systemat-
ic faults of the lower communication layers (e.g. RTE, IOC, COM and network stacks).

ECU 2ECU 1
Sender

E2E
Communication

Protection

Lower

Communication

Layers

Receiver

MCU Hardware

Communication

Infrastructure

upper

Communication

Layers

E2E
Communication

Protection

Lower

Communication

Layers

MCU Hardware

upper

Communication

Layers

Figure 1.1: Overview of E2E communication protection between a sender and a receiver

By using E2E communication protection mechanisms, faults in lower software and
hardware layers can be detected and handled at runtime. The E2E Supervision pro-
vides mechanisms for E2E communication protection, adequate for safety-related com-
munication having requirements up to ASIL D.

The algorithms of protection mechanisms are implemented in the E2E Supervision.
The callers of the E2E Supervision are responsible for the correct usage of the E2E

7 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Supervision, in particular for providing correct parameters the E2E Supervision rou-
tines.

The E2E communication protection allows the following:

1. It protects the safety-related data to be sent by adding control data,

2. It verifies the safety-related data received using this control data, and

3. It provides the check result to the receiver, which then has to handle it sufficiently.

To provide the appropriate solution addressing flexibility and standardization,
AUTOSAR specifies a set of flexible E2E profiles that implement an appropriate combi-
nation of E2E communication protection mechanisms. Each specified E2E profile has
a fixed set of mechanisms, as well as configuration options to configure the protocol
header layout and status evaluation on the receiver side.

The E2E Supervision can be invoked from communication middleware e.g. from
Adaptive Platform’s ARA, Classic Platform’s RTE. It can be also invoked in a non-
standardized way from other software, e.g. non-volatile memory managers, local IPCs,
or intra-ECU bus stacks.

Appropriate usage of the E2E Supervision to fulfill the specific safety requirements for
communication depends on several aspects. The specified profiles are capable, to
a high probability, of detecting a large variety of communication faults. However, the
use of a specific E2E profile requires the user to demonstrate that the selected profile
provides sufficient error detection capabilities for the considered use case (taking in-
to account various contributing factors, such as hardware failure rates, bit error rates,
number of nodes in the network, repetition rate of messages, the usage of a gateway,
potential software faults on the communication channel), as well as appropriate reac-
tion on detected faults (e.g. by revoking repeated messages, determining timed-out
communication or reacting on corrupt messages by initiating a safety reaction).

This specification specifies also the functionality, API and the configuration of the CRC
routines.

The following routines for CRC calculation are specified:

• CRC8: SAEJ1850

• CRC8H2F: CRC8 0x2F polynomial

• CRC16

• CRC32

• CRC32P4: CRC32 0x1F4ACFB13 polynomial

• CRC64: CRC-64-ECMA

For all routines (CRC8, CRC8H2F, CRC16, CRC32, CRC32P4 and CRC64), the fol-
lowing calculation methods are possible:

• Table based calculation: Fast execution, but larger code size (ROM table)

8 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

• Runtime calculation: Slower execution, but small code size (no ROM table)

• Hardware supported CRC calculation (device specific): Fast execution, less CPU
time

All routines are re-entrant and can be used by multiple applications at the same time.
Hardware supported CRC calculation may be supported by some devices in the future.

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Communica-
tion Management that are not included in the [1, AUTOSAR glossary].

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_TR_Glossary

3.2 Related specification

1. SAE-J1850 8-bit CRC

2. CCITT-FALSE 16-bit CRC. Refer to:

ITU-T Recommendation X.25 (1096) (Previously „CCITT Recommendation”)
SERIES X: DATA NETWORKS AND OPEN SYSTEM COMMUNICATION
Public data networks - Interfaces
Interface between Data Terminal Equipment (DTE) and Data Circuit-terminating
Equipment (DCE) for terminals operating in the packet mode and connected to
public data networks by dedicated circuit

Section 2.2.7.4 „Frame Check Sequence (FCS) field” and Appendix I „Examples
of data link layer transmitted bit patterns by the DCE and the DTE”
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.25-199610-I!!PDF-
E&type=items

3. IEEE 802.3 Ethernet 32-bit CRC

4. ”32-Bit Cyclic Redundancy Codes for Internet Applications” [Koopman 2002]

5. Wikipedia.org -listing of CRCs, including CRC-64-ECMA http-
s://en.wikipedia.org/wiki/Cyclic_redundancy_check

9 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

4 Constraints and assumptions

4.1 Limitations

E2E communication protection is limited to periodic or semi-periodic data communi-
cation paradigm, where the receiver (subscriber) has an expectancy on the regular
reception of data and in case of communication loss/timeout or error, it performs an
error handling.

Data communication is called sender/receiver in Classic Platform, and it is called event
communication in Adaptive Platform. Note that the word event is a bit confusing as a
periodic communication is required.

This means, a protection of client-server (methods) as well as non-periodic data com-
munication (e.g. transmission only on occurence of a specific event) are not supported
by E2E communication protection.

4.2 Applicability to car domains

The E2E supervision is applicable for the realization of safety-related automotive sys-
tems implemented by various SW-Cs distributed across different ECUs in a vehicle,
interacting via communication links. The Supervision may also be used for intra-ECU
communication (e.g. between memory partitions, processes, OSes/VMs in the same
micorcontroller, between CPU cores or microcontrollers).

4.3 Background information concerning functional safety

This chapter provides some safety background information considered during the de-
sign of the E2E supervision, including the fault model for communication and definition
of sources of faults.

4.3.1 Functional safety and communication

With respect to the exchange of information in safety-related systems, the mechanisms
for the in-time detection of causes for faults, or effects of faults as listed below, can be
used to design suitable safety concepts, e.g. to achieve freedom from interference
between system elements sharing a common communication infrastructure (see ISO
26262-6:2011, annex D.2.4):

• repetition of information;

• loss of information;

• delay of information;

10 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

• insertion of information;

• masquerade or incorrect addressing of information;

• incorrect sequence of information;

• corruption of information;

• asymmetric information sent from a sender to multiple receivers;

• information from a sender received by only a subset of the receivers;

• blocking access to a communication channel.

4.3.2 Sources of faults in E2E communication

E2E communication protection aims to detect and mitigate the causes for or effects of
communication faults arising from:

1. (systematic) software faults,

2. (random) hardware faults,

3. transient faults due to external influences.

These three sources are described in the sections below.

4.3.2.1 Software faults

Software like, communication stack modules and RTE, may contain faults, which are
of a systematic nature.

Systematic faults may occur in any stage of the system’s life cycle including specifica-
tion, design, manufacturing, operation, and maintenance, and they will always appear
when the circumstances (e.g. trigger conditions for the root-cause) are the same. The
consequences of software faults can be failures of the communication, like interruption
of sending of data, overrun of the receiver (e.g. buffer overflow), or underrun of the
sender (e.g. buffer empty). To prevent (or to handle) resulting failures the appropriate
technical measures to detect and handle such faults (e.g. program flow monitoring or
E2E supervision) have to be considered.

4.3.2.2 Random hardware faults

A random hardware fault is typically the result of electrical overload, degradation, aging
or exposure to external influences (e.g. environmental stress) of hardware parts. A ran-
dom hardware fault cannot be avoided completely, but its probability can be evaluated
and appropriate technical measures can be implemented (e.g. diagnostics).

11 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

4.3.2.3 External influences, environmental stress

This includes influences like EMI, ESD, humidity, corrosion, temperature or mechanical
stress (e.g. vibration).

4.3.3 Communication faults

Relevant faults related to the exchange of information are listed in this section.

4.3.3.1 Repetition of information

A type of communication fault, were information is received more than once.

4.3.3.2 Loss of information

A type of communication fault, were information or parts of information are removed
from a stream of transmitted information.

4.3.3.3 Delay of information

A type of communication fault, were information is received later than expected.

4.3.3.4 Insertion of information

A type of communication fault, were additional information is inserted into a stream of
transmitted information.

4.3.3.5 Masquerading

A type of communication fault, were non-authentic information is accepted as authentic
information by a receiver.

4.3.3.6 Incorrect addressing

A type of communication fault, were information is accepted from an incorrect sender
or by an incorrect receiver.

12 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

4.3.3.7 Incorrect sequence of information

A type of communication fault, which modifies the sequence of the information in a
stream of transmitted information.

4.3.3.8 Corruption of information

A type of communication fault, which changes information.

4.3.3.9 Asymmetric information sent from a sender to multiple receivers

A type of communication fault, were receivers do receive different information from the
same sender.

4.3.3.10 Information from a sender received by only a subset of the receivers

A type of communication fault, were some receivers do not receive the information.

4.3.3.11 Blocking access to a communication channel

A type of communication fault, were the access to a communication channel is blocked.

5 Functional specification

This chapter contains the specification of the internal functional behavior of the E2E
supervision. For general introduction of the E2E supervision, see first chapter 1.

5.1 Overview of communication protection

An important aspect of a communication protection mechanism is its standardization
and its flexibility for different purposes. This is resolved by having a set of E2E Profiles,
that define a combination of protection mechanismsm, a message format, and a set of
configuration parameters.

Moreover, some E2E Profiles have standard E2E variants. An E2E variant is simply
a set of configuration options to be used with a given E2E Profile. For example, in
E2E Profile 1, the positions of CRC and counter are configurable. The E2E variant 1A
requires that CRC starts at bit 0 and counter starts at bit 8.

13 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Apart from E2E Profiles, the E2E Supervision provides also elementary functions (e.g.
multibyte CRCs) to build additional (e.g. vendor-specific) safety protocols.

E2E communication protection works as follows:

• Sender: addition of control fields like CRC or counter to the transmitted data;

• Receiver: evaluation of the control fields from the received data, calculation of
control fields (e.g. CRC calculation on the received data), comparison of calcu-
lated control fields with an expected/received content.

Figure 5.1: Safety protocol concept (with exemplary location of the E2E header)

Each E2E Profile has a specific set of control fields with a specific functional behavior
and with specific properties for the detection of communication faults.

5.2 Overview of E2E Profiles

The E2E Profiles provide a consistent set of data protection mechanisms, designed to
protecting against the faults considered in the fault model.

Each E2E Profile provides an alternative way to protect the communication, by means
of different algorithms. However, E2E Profile have similar interfaces and behavior.

[PRS_E2EProtocol_00221] d Each E2E Profile shall use a subset of the following data
protection mechanisms:

1. A CRC, provided by CRC Supervision;

2. A Sequence Counter incremented at every transmission request, the value is
checked at receiver side for correct incrementation;

3. An Alive Counter incremented at every transmission request, the value checked
at the receiver side if it changes at all, but correct incrementation is not checked;

4. A specific ID for every port data element sent over a port or a specific ID for every
I-PDU group (global to system, where the system may contain potentially several
ECUs);

5. Timeout detection:

(a) Receiver communication timeout.

14 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

(b) Sender acknowledgement timeout.

Depending on the used communication and network stack, appropriate subsets of
these mechanisms are defined as E2E communication profiles.

c(RS_E2EProtocol_08531)

Some of the above mechanisms are implemented in RTE, COM, and/or communication
stacks. However, to reduce or avoid an allocation of safety requirements to these
modules, they are not considered: E2E Supervision provides all mechanisms internally
(only with usage of CRC Supervision).

The E2E Profiles can be used for both inter and intra ECU communication. The E2E
Profiles were specified for specific communication infrastructure, such as CAN, CAN
FD, FlexRay, LIN, Ethernet.

Depending on the system, the user selects which E2E Profile is to be used, from the
E2E Profiles provided by E2E Supervision.

[PRS_E2EProtocol_00217] d The implementation of the E2E Supervision shall pro-
vide at least one of the E2E Profiles.

c(RS_E2EProtocol_08528)

However, it is possible that specific implementations of E2E Supervision do not provide
all profiles, but only a one of them.

5.2.1 Error detection

[PRS_E2EProtocol_00012] dThe internal Supervision mechanisms error detection
and reporting shall be implemented according to the pre-defined E2E Profiles spec-
ified in the following sections. c(RS_E2EProtocol_08528)

5.3 Specification of E2E Profile 1 (Only for CP)

Profile 1 shall provide the following mechanisms:

[PRS_E2EProtocol_00218] d

Mechanism Description
Counter 4bit (explicitly sent) representing numbers from 0 to 14 in-

cremented on every send request. Both Alive Counter and
Sequence Counter mechanisms are provided by E2E Pro-
file 1, evaluating the same 4 bits.

Timeout monitoring Timeout is determined by E2E Supervision by mean-
s of evaluation of the Counter, by a nonblocking read
at the receiver. Timeout is reported by E2E Super-
vision to the caller by means of the status flags in
E2E_P01CheckStatusType.

15 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Data ID 16 bit, unique number, included in the CRC calculation.
For dataIdMode equal to 0, 1 or 2, the Data ID is not trans-
mitted, but included in the CRC computation (implicit trans-
mission). For dataIdMode equal to 3:

• the high nibble of high byte of DataID is not used (it
is 0x0), as the DataID is limited to 12 bits,

• the low nibble of high byte of DataID is transmit-
ted explicitly and covered by CRC calculation when
computing the CRC over Data.

• the low byte is not transmitted, but it is included in
the CRC computation as start value (implicit trans-
mission, like for dataIDMode equal to 0, 1 or 2) .

CRC CRC-8-SAE J1850 - 0x1D (x8 + x4 + x3 + x2 + 1), but with
different start and XOR values (both start value and XOR
value are 0x00).
This CRC is provided by CRC Supervision. Starting with
AUTOSAR R4.0, the SAE8 CRC function of the CRC Su-
pervision uses 0xFF as start value and XOR value. To
compensate a different behavior of the CRC Supervision,
the E2E Supervision applies additional XOR 0xFF oper-
ations starting with R4.0, to come up with 0x00 as start
value and XOR value.
Note: This CRC polynomial is different from the CRC-
polynomials used by FlexRay, CAN and LIN.

c(RS_E2EProtocol_08529, RS_E2EProtocol_08530, RS_E2EProtocol_08533)

The E2E mechanisms can detect the following faults or effects of faults:

E2E Mechanism Detected communication faults
Counter Repetition, Loss, insertion, incorrect sequence, blocking
Transmission on a regular ba-
sis and timeout monitoring using
E2E-Supervision 1

Loss, delay, blocking

Data ID + CRC Masquerade and incorrect addressing, insertion
CRC Corruption, Asymmetric information 2

[PRS_E2EProtocol_00070] d

E2E Profile 1 shall use the polynomial of CRC-8-SAE J1850, i.e. the polynomial 0x1D
(x8 + x4 + x3 + x2 + 1), but with start value and XOR value equal to 0x00.

c(RS_E2EProtocol_08531)

1Implementation by sender and receiver, which are using E2E-Supervision
2for a set of data protected by same CRC

16 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

For details of CRC calculation, the usage of start values and XOR values see CRC
Supervision in section 5.13.

5.3.1 Data Layout

In the E2E Profile 1, the layout is in general free to be defined by the user - it is only
constrained by the byte alignment user requirements E2E0062 and E2E0063 (i.e. bytes
of data elements signals must be aligned to byte limits). However, the E2E Profile 1
variants constrain the layout, see subsection 5.3.6.

5.3.2 Counter

In E2E Profile 1, the counter is initialized, incremented, reset and checked by E2E
profile.

[PRS_E2EProtocol_00075] dIn E2E Profile 1, on the sender side, for the first trans-
mission request of a data element the counter shall be initialized with 0 and shall be
incremented by 1 for every subsequent send request (from sender SW-C). When the
counter reaches the value 14 (0xE), then it shall restart with 0 for the next send re-
quest (i.e. value 0xF shall be skipped). All these actions shall be executed by E2E
Supervision.

c(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00076] dIn E2E Profile 1, on the receiver side, by evaluating the
counter of received data against the counter of previously received data, the following
shall be detected by the E2E Supervision: (1) no new data has arrived since last invo-
cation of E2E Supervision check function, (2) no new data has arrived since receiver
start, (3) the data is repeated (4) counter is incremented by one (i.e. no data lost), (5)
counter is incremented more than by one, but still within allowed limits (i.e. some data
lost), (6) counter is incremented more than allowed (i.e. too many data lost).

c(RS_E2EProtocol_08528)

Case 3 corresponds to the failed alive counter check, and case 6 correspond to failed
sequence counter check.

The above requirements are specified in more details by the UML diagrams in the
following document sections.

5.3.3 Data ID

The unique Data IDs are to verify the identity of each transmitted safety-related data
element.

17 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

[PRS_E2EProtocol_00163] dThere shall be following four inclusion modes for the two-
byte Data ID into the calculation of the one-byte CRC:

1. E2E_P01_DATAID_BOTH: both two bytes (double ID configuration) are in-
cluded in the CRC, first low byte and then high byte (see variant 1A -
PRS_E2EProtocol_00227) or

2. E2E_P01_DATAID_ALT: depending on parity of the counter (alternating ID
configuration) the high and the low byte is included (see variant 1B -
PRS_E2EProtocol_00228). For even counter values the low byte is included and
for odd counter values the high byte is included.

3. E2E_P01_DATAID_LOW: only the low byte is included and high byte is never
used. This equals to the situation if the Data IDs (in a given application) are only
8 bits.

4. E2E_P01_DATAID_NIBBLE:

• the high nibble of high byte of DataID is not used (it is 0x0), as the DataID is
limited to 12 bits,

• the low nibble of high byte of DataID is transmitted explicitly and covered by
CRC calculation when computing the CRC over Data.

• the low byte is not transmitted, but it is included in the CRC computation as
start value (implicit transmission, like for the inclusion modes _BOTH, _ALT
and _LOW)

c(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00085] dIn E2E Profile 1, with E2E_P01DataIDMode equal to
E2E_P01_DATAID_BOTH or E2E_P01_DATAID_ALT the length of the Data ID shall
be 16 bits (i.e. 2 byte). c(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00169] dIn E2E Profile 1, with E2E_P01DataIDMode equal
to E2E_P01_DATAID_LOW, the high byte of Data ID shall be set to 0x00. c
(RS_E2EProtocol_08528)

The above requirement means that when high byte of Data ID is unused, it is set to
0x00.

[PRS_E2EProtocol_00306] d In E2E Profile 1, with E2E_P01DataIDMode equal
to E2E_P01_DATAID_NIBBLE, the high nibble of the high byte shall be 0x0. c
(RS_E2EProtocol_08528)

The above requirement means that the address space with
E2E_P01_DATAID_NIBBLE is limited to 12 bits.

In case of usage of E2E Supervision for protecting data elements, due to multiplicity
of communication (1:1 or 1:N), a receiver of a data element receives it only from one
sender. In case of usage of E2E Supervision for protecting I-PDUs, because each
I-PDU has a unique Data ID, the receiver COM of an I-PDU receives it from only from

18 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

one sender COM. As a result (regardless if the protection is at data element level or
at I-PDUs), the receiver expects data with only one Data ID. The receiver uses the
expected Data ID to calculate the CRC. If CRC matches, it means that the Data ID
used by the sender and expected Data ID used by the receiver are the same.

5.3.4 CRC calculation

E2E Profile 1 uses CRC-8-SAE J1850, but using different start and XOR values. This
checksum is already provided by AUTOSAR CRC Supervision, which typically is quite
efficient and may use hardware support.

[PRS_E2EProtocol_00083] dE2E Profile 1 shall use CRC-8-SAE J1850 for CR-
C calculation. It shall use 0x00 as the start value and XOR value. c
(RS_E2EProtocol_08529, RS_E2EProtocol_08533)

[PRS_E2EProtocol_00190] dE2E Profile 1 shall use the Crc_CalculateCRC8 ()
function of the SWS CRC Supervision for calculating CRC checksums. c
(RS_E2EProtocol_08528, RS_E2EProtocol_08531)

Note: The CRC used by E2E Profile 1 is different than the CRCs used by FlexRay
and CAN and is provided by different software modules (FlexRay and CAN CRCs are
provided by hardware support in Communication Controllers, not by CRC Supervision).

The CRC calculation is illustrated by the following two examples.

For standard variant 1A:

Figure 5.2: E2E Profile 1 variant 1A CRC calculation example

For standard variant 1C:

Figure 5.3: E2E Profile 1 variant 1C CRC calculation example

19 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

The Data ID can be encoded in CRC in different ways, see [PRS_E2EProtocol_00163].

[PRS_E2EProtocol_00082] dIn E2E Profile 1, the CRC is calculated over:

1. First over the one or two bytes of the Data ID (depending on Data ID configura-
tion), and

2. then over all transmitted bytes of a safety-related complex data element/signal
group (except the CRC byte).

c(RS_E2EProtocol_08536)

5.3.5 Timeout detection

The previously mentioned mechanisms (CRC, counter, Data ID) enable to check the
validity of received data element, when the receiver is executed independently from
the data transmission, i.e. when receiver is not blocked waiting for Data Elements or
respectively signal groups, but instead if the receiver reads the currently available data
(i.e. checks if new data is available). Then, by means of the counter, the receiver can
detect loss of communication and timeouts.

The attribute State->Status = E2E_P01STATUS_REPEATED means that there is a
repetition (caused either by communication loss, delay or duplication of the previous
message). The receiver uses State->Status for detecting communication timeouts.

5.3.6 E2E Profile 1 variants

The E2E Profile 1 has variants. The variants are specific configurations of E2E Profile.

[PRS_E2EProtocol_00227] d The E2E Profile variant 1A is defined as follows:

1. CRC is the 0th byte in the signal group (i.e. starts with bit offset 0)

2. Alive counter is located in lowest 4 bits of 1st byte (i.e. starts with bit offset 8)

3. E2E_P01DataIDMode = E2E_P01_DATAID_BOTH

4. SignalIPdu.unusedBitPattern = 0xFF.

c(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00228] d The E2E Profile variant 1B is defined as follows:

1. CRC is the 0th byte in the signal group (i.e. starts with bit offset 0)

2. Alive counter is located in lowest 4 bits of 1st byte (i.e. starts with bit offset 8)

3. E2E_P01DataIDMode = E2E_P01_DATAID_ALTERNATING

4. SignalIPdu.unusedBitPattern = 0xFF.

20 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

c(RS_E2EProtocol_08528)

Below is an example compliant to 1A/1B:

Figure 5.4: E2E Profile 1 example layout (two signal groups protected by E2E in one
I-PDU)

[PRS_E2EProtocol_00307] d The E2E Profile variant 1C is defined as follows:

1. CRC is the 0th byte in the signal group (i.e. starts with bit offset 0)

2. Alive counter is located in lowest 4 bits of 1st byte (i.e. starts with bit offset 8)

3. The Data ID nibble is located in the highest 4 bits of 1st byte (i.e. starts with bit
offset 12)

4. E2E_P01DataIDMode = E2E_P01_DATAID_NIBBLE

5. SignalIPdu.unusedBitPattern = 0xFF.

c(RS_E2EProtocol_08528)

5.3.7 E2E_P01Protect

[PRS_E2EProtocol_00195] d The function E2E_P01Protect() shall:

1. write the Counter in Data,

2. write DataID nibble in Data (E2E_P01_DATAID_NIBBLE) in Data

3. compute the CRC over DataID and Data

4. write CRC in Data

5. increment the Counter (which will be used in the next invocation of
E2E_P01Protect()),as specified by Figure 5.5 and Figure 5.6

c(RS_E2EProtocol_08528)

21 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

E2E_P01Protect(Config, State,
Data)

*(Data+(Config->CounterOffset/8)) =
(*(Data+(Config->CounterOffset/8)) & 0xF0) |

(State->Counter & 0x0F)

*(Data+(Config->CRCOffset/8)) = CRC

return

Write the counter in the Data, at the configured
CounterOffset. The counter goes either into low
nibble (left branch) or high nibble (right branch) of
Data. Note that the nibble next to Counter may be
used by application.

CRC is written to the Data at configured
location.

(State->Counter ++) % 15
Increment the counter
modulo 15 (i .e. next
value after 14 is 0).

Config->CounterOffset % 8 == 0

*(Data+(Config->CounterOffset/8)) =
(*(Data+(Config->CounterOffset/8)) & 0x0F) |

((State->Counter<<4) & 0xF0)

CRC = Calculate CRC over Data

Config->DataIDMode == E2E_P01_DATAID_NIBBLE

Config->DataIDNibbleOffset % 8 == 0

*(Data+(Config->DataIDNibbleOffset/8)) =
(*(Data+(Config->DataIDNibbleOffset/8)) &

0xF0) | ((Config->DataID>>8) & 0x0F)

*(Data+(Config->DataIDNibbleOffset/8)) =
(*(Data+(Config->DataIDNibbleOffset/8)) &

0x0F) | ((Config->DataID>>4) & 0xF0)

Write the low nibble of high byte of Data ID - only
for E2E_P01_DATAID_NIBBLE configuration.

[TRUE] [FALSE]

[TRUE] [FALSE]

[TRUE] [FALSE]

Figure 5.5: E2E_P01Protect()

5.3.8 Calculate CRC

The diagram of the function E2E_P01Protect() (see above chapter) and
E2E_P01Check() (see below chapter) have a sub-diagram specifying the calculation
of CRC:

22 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Figure 5.6: Subdiagram „Calculate CRC over Data ID and Data”, used by
E2E_P01Protect() and E2E_P01Check()

It is important to note that the function Crc_CalculateCRC8 of CRC Supervision / CRC
routines have changed is functionality since R4.0, i.e. it is different in R3.2 and >=R4.0:

1. There is an additional parameter Crc_IsFirstCall

2. The function has different start value and different XOR values (changed from
0x00 to OxFF).

This results with a different value of computed CRC of a given buffer.

To have the same results of the functions E2E_P01Protect() and E2E_P02Check() in
>=R4.0 and R3.2, while using differently functioning CRC Supervision, E2E «„compen-
sates” different behavior of the CRC Supervision. This results with different invocation
of the CRC Supervision by E2E Supervision Figure 5.6 in >=R4.0 and R3.2. This
means Figure 5.6 is different in >=R4.0 and R3.2.

5.3.9 E2E_P01Check

[PRS_E2EProtocol_00196] dThe function E2E_P01Check shall

23 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

1. Check the CRC

2. Check the Data ID nibble, i.e. compare the expected value with the received
value (for E2E_P01_DATAID_NIBBLE configuration only)

3. Check the Counter,

4. determine the check Status,as specified by Figure 5.7 and Figure 5.6.

c(RS_E2EProtocol_08528, RS_E2EProtocol_08530)

24 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Figure 5.7: E2E_P01Check()

The diagram of the function E2E_P01Check() has a sub-diagram specifying the calcu-
lation of CRC, which is shown by Figure 5.6.

25 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

5.3.10 E2E Profile 1 Protocol Examples

The default configuration assumed for the following examples, if not otherwise stated
to be different:

E2E_P01ConfigType field Value
CounterOffset 8
CRCOffset 0
DataID 0x01234
DataIDNibbleOffset 12
DataIDMode E2E_P01DATAID_BOTH
DataLength 64
MaxDeltaCounterInit 1
MaxNoNewOrRepeatedData 15
SyncCounterInit 0

E2E_P01ProtectStateType field Value
Counter 0

Result data of E2E_P01Protect() with data equals all zeros (0x00), counter = 0:

Byte

0 1 2 3 4 5 6 7

0xcc 0x00 0x00 0x00 0x00 0x00 0x00 0x00

Result data of E2E_P01Protect() with data equals all zeros (0x00), counter =
1:

Byte

0 1 2 3 4 5 6 7

0x91 0x01 0x00 0x00 0x00 0x00 0x00 0x00

5.3.10.1 DataIDMode set to E2E_P01DATAID_ALT

Result data of E2E_P01Protect() with data equals all zeros (0x00), counter = 0:

Byte

0 1 2 3 4 5 6 7

0x5f 0x00 0x00 0x00 0x00 0x00 0x00 0x00

Result data of E2E_P01Protect() with data equals all zeros (0x00), counter =
1:

26 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Byte

0 1 2 3 4 5 6 7

0x93 0x01 0x00 0x00 0x00 0x00 0x00 0x00

5.3.10.2 DataIDMode set to E2E_P01DATAID_LOW

Result data of E2E_P01Protect() with data equals all zeros (0x00), counter = 0:

Byte

0 1 2 3 4 5 6 7

0x5f 0x00 0x00 0x00 0x00 0x00 0x00 0x00

Result data of E2E_P01Protect() with data equals all zeros (0x00), counter =
1:

Byte

0 1 2 3 4 5 6 7

0x02 0x01 0x00 0x00 0x00 0x00 0x00 0x00

5.3.10.3 DataIDMode set to E2E_P01DATAID_NIBBLE

Result data of E2E_P01Protect() with data equals all zeros (0x00), counter = 0:

Byte

0 1 2 3 4 5 6 7

0x2a 0x10 0x00 0x00 0x00 0x00 0x00 0x00

Result data of E2E_P01Protect() with data equals all zeros (0x00), counter =
1:

Byte

0 1 2 3 4 5 6 7

0x77 0x11 0x00 0x00 0x00 0x00 0x00 0x00

5.4 Specification of E2E Profile 2 (only for CP)

[PRS_E2EProtocol_00219] dProfile 2 shall provide the following mechanisms:

Mechanism Description

27 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Sequence Number (Counter) 4bit (explicitly sent) representing numbers from 0 to 15 in-
cremented by 1 on every send request (Bit 0:3 of Data

1

) at sender side. The counter is incremented on every call
of the E2E_P02Protect() function, i.e. on every transmis-
sion request of the SW-C

Message Key used for CRC cal-
culation (Data ID)

8 bit (not explicitly sent) The specific Data ID used to cal-
culate the CRC depends on the value of the Counter and is
an element of an pre-defined set of Data IDs (value of the
counter as index to select the particular Data ID used for
the protection). For every Data element, the List of Data
IDs depending on each value of the counter is unique.

Data ID + CRC Masquerade and incorrect addressing, insertion
Safety Code(CRC) 8 bit explicitly sent (Data

0

) Polynomial: 0x2F (x8 + x5 + x3 + x2 + x + 1) Start value:
0xFF Final XOR-value: 0xFF
Note: This CRC polynomial is different from the CRC-
polynomials used by FlexRay and CAN.

c(RS_E2EProtocol_08529, RS_E2EProtocol_08530, RS_E2EProtocol_08533)

The mechanisms provided by Profile 2 enable the detection of the relevant failure
modes except message delay (for details see the table in section 5.4):

Since this profile is implemented in a Supervision, the Supervision’s E2E_P02Check()
function itself cannot ensure to be called in a periodic manner. Thus, a required pro-
tection mechanism against undetected message delay (e.g. Timeout) must be imple-
mented in the caller.

The E2E mechanisms can detect the following faults or effects of faults:

E2E Mechanism Detected communication faults
Counter Repetition, Loss, insertion, incorrect sequence, blocking
Transmission on a regular bases
and timeout monitoring using
E2E-Library 3

Loss, delay, blocking

Data ID + CRC Masquerade and incorrect addressing, insertion
CRC Corruption, Asymmetric information 4

3Implementation by sender and receiver
4for a set of data protected by same CRC

28 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

[PRS_E2EProtocol_00117] dE2E Profile 2 shall use the Crc_CalculateCRC8H2F()
function of the SWS CRC Supervision for calculating CRC checksums. c
(RS_E2EProtocol_08531)

[PRS_E2EProtocol_00118] dE2E Profile 2 shall use 0xFF as the start value CR-
C_StartValue8 for CRC calculation. c(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00119] dIn E2E Profile 2, the specific Data ID used to calculate a
specific CRC shall be of length 8 bit. c(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00120] dIn E2E Profile 2, the specific Data ID used for CRC cal-
culation shall be selected from a pre-defined DataIDList[16] using the value of the
Counter as an index. c(RS_E2EProtocol_08528)

Each data, which is protected by a CRC owns a dedicated DataIDList which is deposit-
ed on the sender site and all the receiver sites.

The pre-defined DataIDList[16] is generated offline. In general, there are several fac-
tors influencing the contents of DataIDList, e.g:

1. length of the protected data

2. number of protected data elements

3. number of cycles within a masquerading fault has to be detected

4. number of senders and receivers

5. characteristics of the CRC polynomial.

Due to the limited length of the 8bit polynomial, a masquerading fault cannot be detect-
ed in a specific cycle when evaluating a received CRC value. Due to the adequate Data
IDs in the DataIDList, a masquerading fault can be detected in one of the successive
communication cycles.

Due to the underlying rules for the DataIDList, the system design of the application has
to take into account that a masquerading fault is detected not until evaluating a certain
number of communication cycles.

[PRS_E2EProtocol_00121] d In E2E Profile 2, the layout of the data buffer (Data) shall
be as depicted in below, with a maximum length of 256 bytes (i.e. N=255)

Figure 5.8

c(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00122] d In E2E Profile 2, the CRC shall be Data[0]. c
(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00123] d In E2E Profile 2, the Counter shall be the low nibble (Bit
0...Bit 3) of Data[1]. c(RS_E2EProtocol_08528)

29 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

[PRS_E2EProtocol_00124] d In E2E Profile 2, the E2E_P02Protect() function shall
not modify any bit of Data except the bits representing the CRC and the Counter. c
(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00125] d In E2E Profile 2, the E2E_P02Check() function shall not
modify any bit in Data. c(RS_E2EProtocol_08528)

5.4.1 E2E_P02Protect

The E2E_P02Protect() function of E2E Profile 2 is called by a SW-C in order to pro-
tect its application data against the failure modes as shown in table in section 5.4.
E2E_P02Protect() therefore calculates the Counter and the CRC and puts it in-
to the data buffer (Data). A flow chart with the visual description of the function
E2E_P02Protect() is depicted in Figure 5.9 and Figure 5.10.

[PRS_E2EProtocol_00126] d In E2E Profile 2, the E2E_P02Protect() function
shall perform the activities as specified in Figure 5.9 and Figure 5.10. c
(RS_E2EProtocol_08528, RS_E2EProtocol_08536)

E2E_P02Protect(Config, State, Data)

Increment State->Counter

(Data+1) = ((Data+1) & 0xF0) | (State->Counter
& 0x0F)

DataID =
Config->DataIDList[State->Counter]

CRC = Crc_CalculateCRC8H2F() computed over Data[1], Data[2], …
Data[Config->DataLength/8-1], DataID

Data[0] = CRC

return

Counter is written to Bits
0...3 of Data[1]

CRC is written to Data[0]

Figure 5.9: E2E_P02Protect()

30 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Increment
State->Counter

State->Counter < 15
?

State-> Counter = 0State->Counter ++

[TRUE]

[FALSE]

Figure 5.10: Increment Counter

[PRS_E2EProtocol_00127] d In E2E Profile 2, the E2E_P02Protect() function shall
increment the Counter of the state (E2E_P02ProtectStateType) by 1 on every trans-
mission request from the sending SW-C, i.e. on every call of E2E_P02Protect(). c
(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00128] d In E2E Profile 2, the range of the value of the Counter
shall be [0...15]. c(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00129] d When the Counter has reached its upper bound of 15
(0xF), it shall restart at 0 for the next call of the E2E_P02Protect() from the sending
SW-C. c(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00130] d In E2E Profile 2, the E2E_P02Protect() function shall
update the Counter (i.e. low nibble (Bit 0...Bit 3) of Data byte 1) in the data buffer
(Data) after incrementing the Counter. c(RS_E2EProtocol_08528)

The specific Data ID used for this send request is then determined from a DataIDList[]
depending on the value of the Counter (Counter is used as an index to select the Data
ID from DataIDList[]). The DataIDList[] is defined in E2E_P02ConfigType.

[PRS_E2EProtocol_00132] d In E2E Profile 2, after determining the specific Data
ID, the E2E_P02Protect() function shall calculate the CRC over Data[1], Data[2], ...
Data[Config->DataLength/8-1] of the data buffer (Data) extended with the Data ID. c
(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00133] d In E2E Profile 2, the E2E_P02Protect() function shall
update the CRC (i.e. Data[0]) in the data buffer (Data) after computing the CRC. c
(RS_E2EProtocol_08528)

The specific Data ID itself is not transmitted on the bus. It is just a virtual message key
used for the CRC calculation.

31 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

5.4.2 E2E_P02Check

The E2E_P02Check() function is used as an error detection mechanism by a caller in
order to check if the received data is correct with respect to the failure modes men-
tioned in the profile summary.

A flow chart with the visual description of the function E2E_P02Check() is depicted in
Figure 5.11, Figure 5.12 and Figure 5.13.

[PRS_E2EProtocol_00134] d In E2E Profile 2, the E2E_P02Check() function shal-
l perform the activities as specified in Figure 5.11, Figure 5.12 and Figure 5.13. c
(RS_E2EProtocol_08528, RS_E2EProtocol_08536)

Figure 5.11: E2E_P02Check

32 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Checksum OK

CalcualtedCRC = Crc_CalculateCRC8H2F() computed
over Data[1], Data[2], … Data[Config->DataLength/8-1],

DataID

CalculatedCRC ==
Data[0]

return
TRUE

return
FALSE

[FALSE][TRUE]

Figure 5.12: Checksum OK

Increment
State->Counter

State->Counter < 15
?

State-> Counter = 0State->Counter ++

[TRUE]

[FALSE]

Figure 5.13: Calculate Delta Counter

First, the E2E_P02Check() function increments the value MaxDeltaCounter. MaxDelta-
Counter specifies the maximum allowed difference between two Counter values of t-
wo consecutively received valid messages. Note: MaxDeltaCounter is used in order
to perform a plausibility check for the failure mode re-sequencing. If the flag New-
DataAvailable is set, the E2E_P02Check() function continues with the evaluation of
the CRC. Otherwise, it returns with Status set to E2E_P02STATUS_NONEWDATA. To
evaluate the correctness of the CRC, the following actions are performed:

• The specific Data ID is determined using the value of the Counter as provided in
Data.

• Then the CRC is calculated over Data payload extended with the Data ID as
last Byte: CalculatedCRC = Crc_CalculateCRC8H2F() calculated over Data[1],
Data[2], ... Data[Config->DataLength/8-1], Data ID

• Finally, the check for correctness of the received Data is performed by comparing
CalculatedCRC with the value of CRC stored in Data.

In case CRC in Data and CalculatedCRC do not match, the E2E_P02Check() func-
tion returns with Status E2E_P02STATUS_WRONGCRC, otherwise it continues with
further evaluation steps.

33 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

The flag WaitForFirstData specifies if the SW-C expects the first message after startup
or after a timeout error. This flag should be set by the SW-C if the SW-C expects the
first message e.g. after startup or after reinitialization due to error handling. This flag
is allowed to be reset by the E2E_P02Check() function only. The reception of the first
message is a special event because no plausibility checks against previously received
messages is performed.

If the flag WaitForFirstData is set by the SW-C, E2E_P02Check() does not evaluate
the Counter of Data and returns with Status E2E_P02STATUS_INITIAL. However, if
the flag WaitForFirstData is reset (the SW-C does not expect the first message) the
E2E_P02Check() function evaluates the value of the Counter in Data.

For messages with a received Counter value within a valid range, the
E2E_P02Check() function returns either with E2E_P02STATUS_OK or
E2E_P02STATUS_OKSOMELOST. In LostData, the number of missing messages
since the most recently received valid message is provided to the SW-C.

For messages with a received Counter value outside of a valid range, E2E_P02Check()
returns with one of the following states: E2E_P02STATUS_WRONGSEQUENCE or
E2E_P02STATUS_REPEATED.

[PRS_E2EProtocol_00135] d In E2E Profile 2, the local variable DeltaCounter shall
be calculated by subtracting LastValidCounter from Counter in Data, considering an
overflow due to the range of values [0...15]. c(RS_E2EProtocol_08528)

Details on the calculation of DeltaCounter are depicted in Figure 7-12.

[PRS_E2EProtocol_00136] dIn E2E Profile 2, MaxDeltaCounter shall specify the max-
imum allowed difference between two Counter values of two consecutively received
valid messages. c(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00137] d In E2E Profile 2, MaxDeltaCounter shall be incremented
by 1 every time the E2E_P02Check() function is called, up to the maximum value of 15
(0xF). c(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00138] d In E2E Profile 2, the E2E_P02Check() function shall set
Status to E2E_P02STATUS_NONEWDATA if the attribute NewDataAvailable is FALSE.
c(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00139] d In E2E Profile 2, the E2E_P02Check() function shall
determine the specific Data ID from DataIDList using the Counter of the received Data
as index. c(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00140] d In E2E Profile 2, the E2E_P02Check() function shall cal-
culate CalculatedCRC over Data[1], Data[2], ... Data[Config->DataLength/8-1] of the
data buffer (Data) extended with the determined Data ID. c(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00141] d In E2E Profile 2, the E2E_P02Check() function shall
set Status to E2E_P02STATUS_WRONGCRC if the calculated CalculatedCRC value
differs from the value of the CRC in Data.

c(RS_E2EProtocol_08528)

34 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

[PRS_E2EProtocol_00142] d In E2E Profile 2, the E2E_P02Check() function shal-
l set Status to E2E_P02STATUS_INITIAL if the flag WaitForFirstData is TRUE. c
(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00143] d In E2E Profile 2, the E2E_P02Check() function shall
clear the flag WaitForFirstData if it returns with Status E2E_P02STATUS_INITIAL. c
(RS_E2EProtocol_08528)

For the first message after start up no plausibility check of the Counter is possible.
Thus, at least a minimum number of messages need to be received in order to per-
form a check of the Counter values and in order to guarantee that at least one correct
message was received.

[PRS_E2EProtocol_00145] d The E2E_P02Check() function shall

• set Status to E2E_P02STATUS_WRONGSEQUENCE; and

• re-initialize SyncCounter with SyncCounterInit

if the calculated value of DeltaCounter exceeds the value of MaxDeltaCounter. c
(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00146] d The E2E_P02Check() function shall set Status
to E2E_P02STATUS_REPEATED if the calculated DeltaCounter equals 0. c
(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00147] d The E2E_P02Check() function shall set Status to
E2E_P02STATUS_OK if the following conditions are true:

• the calculated DeltaCounter equals 1; and

• the value of the NoNewOrRepeatedDataCounter is less than or equal to
MaxNoNewOrRepeatedData (i.e. State –> NoNewOrRepeatedDataCounter <=
Config –> MaxNoNewOrRepeatedData); and

• the SyncCounter equals 0.

c(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00298] d The E2E_P02Check() function shall

• re-initialize SyncCounter with SyncCounterInit; and

• set Status to E2E_P02STATUS_SYNC; if the following conditions are true:

• the calculated DeltaCounter is within the parameters of 1 and MaxDeltaCounter
(i.e. 1 =/< DeltaCounter =/< MaxDeltaCounter); and

• the value of the NoNewOrRepeatedDataCounter exceeds MaxNoNewOrRe-
peatedData. (i.e. State NoNewOrRepeatedDataCounter > Config MaxNoNewOr-
RepeatedData)

c(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00299] d The E2E_P02Check() function shall

35 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

• decrement SyncCounter by 1; and

• set Status to E2E_P02STATUS_SYNC if the following conditions are true:

• the calculated DeltaCounter is within the parameters of 1 and MaxDeltaCounter
(i.e. 1 =/< DeltaCounter =/< MaxDeltaCounter); and

• the value of the NoNewOrRepeatedDataCounter is less than or equal to
MaxNoNewOrRepeatedData (i.e. State NoNewOrRepeatedDataCounter =/<
Config MaxNoNewOrRepeatedData); and

• the SyncCounter exceeds 0.

c(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00148] d The E2E_P02Check() function shall set Status to
E2E_P02STATUS_OKSOMELOST if the following conditions are true:

• the calculated DeltaCounter is greater-than 1 but less-than or equal to MaxDelta-
Counter (i.e. 1 < DeltaCounter =/< MaxDeltaCounter); and

• the NoNewOrRepeatedDataCounter is less than or equal to MaxNoNewOr-
RepeatedData (i.e. State NoNewOrRepeatedDataCounter =/< Config
MaxNoNewOrRepeatedData); and

• the SyncCounter equals 0.

c(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00149] d The E2E_P02Check() function shall set the value Lost-
Data to (DeltaCounter - 1) if the calculated DeltaCounter is greater-than 1 but less-than
or equal to MaxDeltaCounter. c(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00150] d The E2E_P02Check() function shall r-initialize
MaxDeltaCounter with MaxDeltaCounterInit if it returns one of the following Status:

• E2E_P02STATUS_OK; or

• E2E_P02STATUS_OKSOMELOST; or

• E2E_P02STATUS_INITIAL; or

• E2E_P02STATUS_SYNC; or

• E2E_P02STATUS_WRONGSEQUENCE on condition that SyncCounter exceeds
0 (i.e. SyncCounter > 0).

c(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00151] d The E2E_P02Check() function shall set LastValid-
Counter to Counter of Data if it returns one of the following Status:

• E2E_P02STATUS_OK; or

• E2E_P02STATUS_OKSOMELOST; or

36 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

• E2E_P02STATUS_INITIAL; or

• E2E_P02STATUS_SYNC; or

• E2E_P02STATUS_WRONGSEQUENCE on condition that SyncCounter exceeds
0 (i.e. SyncCounter > 0).

c(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00300] d The E2E_P02Check() function shall reset the
NoNewOrRepeatedDataCounter to 0 if it returns one of the following status:

• E2E_P02STATUS_OK; or

• E2E_P02STATUS_OKSOMELOST; or

• E2E_P02STATUS_SYNC; or

• E2E_P02STATUS_WRONGSEQUENCE

c(RS_E2EProtocol_08528)

[PRS_E2EProtocol_00301] d The E2E_P02Check() function shall in-
crement NoNewOrRepeatedDataCounter by 1 if it returns the Status
E2E_P02STATUS_NONEWDATA or E2E_P02STATUS_REPEATED up to the maxi-
mum value of Counter (i.e. 15 or 0xF). c(RS_E2EProtocol_08528)

5.5 Specification of E2E Profile 4

[PRS_E2EProtocol_00372] d Profile 4 shall provide the following control fields, trans-
mitted at runtime together with the protected data:

Control field Description
Length 16 bits, to support dynamic-size data.
Counter 16-bits.
CRC 32 bits, polynomial in normal form 0x1F4ACFB13, provid-

ed by CRC library.
Note: This CRC polynomial is different from the CRC-
polynomials used by FlexRay, CAN and LIN and TCPIP.

Data ID 32-bits, unique system-wide.

c(RS_E2EProtocol_08529, RS_E2EProtocol_08530, RS_E2EProtocol_08533)

The E2E mechanisms can detect the following faults or effects of faults:

Fault Main safety mechanisms
Repetition of information Counter
Loss of information Counter

37 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Delay of information Counter
Insertion of information Data ID
Masquerading Data ID, CRC
Incorrect addressing Data ID
Incorrect sequence of information Counter
Corruption of information CRC
Asymmetric information sent from a sender to
multiple receivers

CRC (to detect corruption at any of receivers)

Information from a sender received by only a
subset of the receivers

Counter (loss on specific receivers)

Blocking access to a communication channel Counter (loss or timeout)

Table 5.1: Detectable communication faults using Profile 4

For details of CRC computation, the usage of start values and XOR values see CRC
Supervision [7]

5.5.1 Data Layout

5.5.1.1 User data layout

In the E2E Profile 4, the user data layout (of the data to be protected) is not constrained
by E2E Profile 4 - there is only a requirement that the length of data to be protected is
multiple of 1 byte.

5.5.1.2 Header layout

The header of the E2E Profile 4 has one fixed layout, as follows:

Figure 5.14: Profile 4 Header

The bit numbering shown above represents the order in which bits are transmitted. The
E2E header fields (e.g. E2E Counter) are encoded as:

1. Big Endian (most significant byte fist) - imposed by profile

2. LSB Fist (least significant bit within byte first) - imposed by TCPIP bus

For example, the 16 bits of the E2E counter are transmitted in the following order
(higher number meaning higher significance): 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7.

38 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

The header can be placed at a specific location in the protected data, by configuring
the offset of the entire E2E header.

5.5.2 Counter

In E2E Profile 4, the counter is initialized, incremented, reset and checked by E2E
profile. The counter is not manipulated or used by the caller of the E2E Supervision.

[PRS_E2EProtocol_00478] dIn E2E Profile 4, on the sender side, for the first trans-
mission request of a data element the counter shall be initialized with 0 and shall be
incremented by 1 for every subsequent send request. When the counter reaches the
maximum value (0xFF’FF), then it shall restart with 0 for the next send request. c
(RS_E2EProtocol_08539)

Note: This specification was previously falsely identified as PRS_E2EProtocol_00324.

Note that the counter value 0xFF’FF is not reseved as a special invalid value, but it is
used as a normal counter value.

In E2E Profile 4, on the receiver side, by evaluating the counter of received data against
the counter of previously received data, the following is detected:

1. Repetition:

a. no new data has arrived since last invocation of E2E Supervision check func-
tion, b. the data is repeated

2. OK: a. counter is incremented by one (i.e. no data lost), b. counter is incremented
more than by one, but still within allowed limits (i.e. some data lost),

3. Wrong sequence: a. counter is incremented more than allowed (i.e. too many
data lost).

Case 1 corresponds to the failed alive counter check, and case 3 correspond to failed
sequence counter check.

The above requirements are specified in more details by the UML diagrams in the
following document sections.

/subsectionData ID

The unique Data IDs are to verify the identity of each transmitted safety-related data
element.

[PRS_E2EProtocol_00326] d In the E2E Profile 4, the Data ID shall be explicitly trans-
mitted, i.e. it shall be the part of the transmitted E2E header.col_08539 counter shall
be initialized with 0xFF’FF. c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_UC_00327] d In the E2E profile 4, the Data IDs shall be global-
ly unique within the network of communicating system (made of several ECUs each
sending different data). c(RS_E2EProtocol_08539)

39 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

In case of usage of E2E Supervision for protecting data elements (i.e invocation from
RTE), due to multiplicity of communication (1:1 or 1:N), a consumer of a data element
expects only a specific data element, which is checked by E2E Supervision using Data
ID.

In case of usage of E2E Supervision for protecting I-PDUs (i.e. invocation from COM),
the receiver COM espects at a reception only a specific I-PDU, which is checked by
E2E Supervision using Data ID.

5.5.3 Length

The Length field is introduced to support variable-size length - the Data [] array storing
the serialized data can potentially have a different length in each cycle.

5.5.4 CRC

E2E Profile 4 uses a 32-bit CRC, to ensure a high detection rate and high Hamming
Distance.

[PRS_E2EProtocol_00329] dE2E Profile 4 shall use the Crc_CalculateCRC32P4
() function of the SWS CRC Supervision for calculating the CRC. c
(RS_E2EProtocol_08539, RS_E2EProtocol_08531)

Note: The CRC used by E2E Profile 4 is different from the CRCs used by FlexRay,
CAN and TCP/IP. It is also provided by different software modules (FlexRay, CAN and
TCP/IP stack CRCs/checksums are provided by hardware support in Communication
Controllers or by communication stack software, but not by CRC Supervision).

[PRS_E2EProtocol_00330] d In E2E Profile 4, the CRC shall be calculated over
the entire E2E header (excluding the CRC bytes) and over the user data. c
(RS_E2EProtocol_08536)

5.5.5 Timeout detection

The previously mentioned mechanisms (CRC, Counter, Data ID, Length) enable to
check the validity of received data element, when the receiver is executed indepen-
dently from the data transmission, i.e. when receiver is not blocked waiting for Data
Elements or respectively I-PDUs, but instead if the receiver reads the currently avail-
able data (i.e. checks if new data is available). Then, by means of the counter, the
receiver can detect loss of communication and timeouts.

40 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

5.5.6 E2E Profile 4 variants

The E2E Profile 4 variants are specified in TPS System Specification.

5.5.7 E2E_P04Protect

The function E2E_P04Protect() performs the steps as specified by the following eight
diagrams in this section.

[PRS_E2EProtocol_00362] d The function E2E_P04Protect() shall have the following
overall behavior:

E2E_P04Protect(Config, State, Data, Length)

Write DataID

Write Counter

Compute CRC

Increment Counter

return E2E_E_OK

Write CRC

Verify inputs of the protect
function

return E2E_E_INPUTERR_WRONG

Write Length

Compute offset

return
E2E_E_INPUTERR_NULL

[wrong input]

[input ok]

Figure 5.15

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00363] d The step ”Verify inputs of the protect function” in
E2E_P04Protect() shall have the following behavior:

41 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

E2E_P04Protect()

(Config != NULL) && (State != NULL) && (Data != NULL)

input ok

wrong input

(Length >= Config->MinDataLength/8) && (Length <= Config->MaxDataLength/8)

null input

[FALSE]
[TRUE]

[FALSE]
[TRUE]

Figure 5.16

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00376] dThe step ”Compute offset” in E2E_P04Protect() and
E2E_P04Check() shall have the following behavior:

Offset = Config->Offset / 8

E2E_P04Protect()

compute local variable uint16
Offset, which is in [byte]

E2E_P04Check()

Figure 5.17

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00364] d The step ”Write Length” in E2E_P04Protect() shall have
the following behavior:

E2E_P04Protect()

Copy 2-byte Length on bytes Data[Offset...Offset+1] in Big Endian order

Figure 5.18

42 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00365] d The step ”Write Counter” in E2E_P04Protect() shal-
l have the following behavior:

Copy 2-byte State->Counter on bytes Data[Offset+2...Offset+3] in Big Endian
order

E2E_P04Protect()

Figure 5.19

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00366] d The step ”Write DataID”in E2E_P04Protect() shall have
the following behavior:

E2E_P04Protect()

Copy 4-byte Config->DataID to bytes Data[Offset+4...Offset+7] in
Big Endian order

Figure 5.20

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00367] d The step ”ComputeCRC” in E2E_P04Protect() and in
E2E_P04Check() shall have the following behavior:

43 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Offset + 12 < Length

ComputedCRC = Crc_CalculateCRC32P4(Crc_DataPtr:
&Data[offset+12], Crc_Length: Length-Offset-12,

Crc_StartValue32: ComputedCRC, Crc_IsFirstCall: FALSE)

uint32 ComputedCRC = Crc_CalculateCRC32P4(Crc_DataPtr:
&Data[0], Crc_Length: Offset+8, Crc_StartValue32:

0xFF'FF'FF'FF, Crc_IsFirstCall: TRUE)

compute CRC over bytes that are before CRC.
computation length: offset+8, where:
• offset: number of bytes before the E2E header
• 8: number of header bytes before E2E CRC

At this step, there is a ready ComputedCRC value, over the
entire E2E-Prodected Data (includung E2E Header
(length, ID, CRC etc) and the user data).

E2E_P04Protect()

E2E_P04Check()

Compute CRC over bytes that are after CRC (if any).

[true]
[false]

Figure 5.21

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00368] d The step ”Write CRC”in E2E_P04Protect() shall have
the following behavior:

Copy 4-byte local variable CRC on bytes
Data[Offset+8...Offset+11] using big Endian order

E2E_P04Protect()

Figure 5.22

c(RS_E2EProtocol_08539)

[E2E_P04Protect_Increment_Counter] d The step ”Increment Counter” in
E2E_P04Protect() shall have the following behavior:

44 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Figure 5.23

c(RS_E2EProtocol_08539)

5.5.8 E2E_P04Check

The function E2E_P04Check performs the actions as as specified by the following
seven diagrams in this section and according to diagram PRS_E2EProtocol_00367.

[PRS_E2EProtocol_00355] dThe function E2E_P04Check() shall have the following
overall behavior:

E2E_P04Check(Config, State, Data, Length)

Read DataID

Read Length

Read Counter

return E2E_E_OK

Read CRC

Verify inputs of the check
function

Do checks

Compute CRC

return E2E_E_INPUTERR_WRONG

NewDataAvailable == TRUE

Compute offset

return E2E_E_INPUTERR_NULL

[wrong input][null input] [input ok]

[TRUE]

[FALSE]

Figure 5.24

45 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00356] d The step ”Verify inputs of the check function” in
E2E_P04Check() shall have the following behavior:

input ok wrong input

E2E_P04Check()

(Data != NULL && Length != 0) || (Data == NULL && Length == 0)

local variable, no need
to store it in the State
structure.

(Length >= Config->MinDataLength/8) && (Length <= Config->MaxDataLength/8)

NewDataAvailable
= FALSE

NewDataAvailable
= TRUE

Data != NULL

Check: Either both
Data and Length mean
that a message is
available, or both
mean the opposite.

(Config != NULL) && (State != NULL)

null input

This path may happen at
runtime if queued
communication is used and
no data is available (in this
case both Data is NULL and
Length is 0).

[FALSE]
[TRUE]

[FALSE]
[TRUE]

[FALSE]

[TRUE]

[TRUE][FALSE]

Figure 5.25

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00357] d The step ”Read Length” in E2E_P04Check() shall have
the following behavior:

Copy bytes Data[Offset...Offset+1] in Big Endian order to uint16 local variable ReceivedLength

Options is always at the
same location.

E2E_P04Check()

Figure 5.26

46 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00358] d The step ”Read Counter” in E2E_P04Check() shall have
the following behavior:

Copy bytes Data[Offset+2...Offset+3] in Big Endian order on uint16 local
variable ReceivedCounter

E2E_P04Check()

Figure 5.27

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00359] d The step ”Read DataID ” in E2E_P04Check() shall have
the following behavior:

Copy bytes Data[Offset+4...Offset+7] in Big Endian order on
uint32 local variable ReceivedDataID

E2E_P04Check()

Figure 5.28

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00360] d The step ”Read CRC” in E2E_P04Check() shall have
the following behavior:

47 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Copy bytes Data[Offset+8...Offset+11] using big Endian order on
4-byte local variable ReceivedCRC

E2E_P04Check()

Figure 5.29

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00361] d The step ”Do Checks” in E2E_P04Check() shall have
the following behavior:

Figure 5.30

c(RS_E2EProtocol_08539)

48 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

5.6 Specification of E2E Profile 5

[PRS_E2EProtocol_00394] d Profile 5 shall provide the following control fields, trans-
mitted at runtime together with the protected data:

Control field Description
Counter 8 bits. (explicitly sent)
CRC 16 bits, polynomial in normal form 0x1021 (Autosar notation),

provided by CRC library. (explicitly sent)
Data ID 16 bits, unique system-wide. (implicitly sent)

c(RS_E2EProtocol_08529, RS_E2EProtocol_08530, RS_E2EProtocol_08533)

The E2E mechanisms can detect the following faults or effects of faults:

Fault Main safety mechanisms
Repetition of information Counter
Loss of information Counter
Delay of information Counter
Masquerading Data ID, CRC
Incorrect addressing Data ID
Incorrect sequence of information Counter
Corruption of information CRC
Asymmetric information sent from a sender to
multiple receivers

CRC (to detect corruption at any of receivers)

Information from a sender received by only a
subset of the receivers

Counter (loss on specific receivers)

Blocking access to a communication channel Counter (loss or timeout)

Table 5.2: Detectable communication faults using Profile 5

For details of CRC computation, the usage of start values and XOR values see CRC
Supervision [7].

5.6.1 Data Layout

5.6.1.1 User data layout

In the E2E Profile 5, the user data layout (of the data to be protected) is not constrained
by E2E Profile 5 - there is only a requirement, that the length of data to be protected is
multiple of 1 byte.

49 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

5.6.1.2 Header layout

The header of the E2E Profile 5 has one fixed layout, as follows:

Figure 5.31

The bit numbering shown above represents the order in which bits are transmitted. The
E2E header fields (e.g. CRC) are encoded like in CAN and FlexRay, i.e.:

1. Little Endian (least significant byte fist) applicable for both implicit and explicit
header fields - imposed by profile

2. MSB Fist (most significant bit within byte first) - imposed by FlexrayCAN bus.

5.6.2 Counter

In E2E Profile 5, the counter is initialized, incremented, reset and checked by E2E
profile. The counter is not manipulated or used by the caller of the E2E Supervision.

[PRS_E2EProtocol_00397] d In E2E Profile 5, on the sender side, for the first trans-
mission request of a data element the counter shall be initialized with 0 and shal-
l be incremented by 1 for every subsequent send request. When the counter reaches
the maximum value (0xFF), then it shall restart with 0 for the next send request. c
(RS_E2EProtocol_08539)

Note that the counter value 0xFF is not reserved as a special invalid value, but it is
used as a normal counter value.

In E2E Profile 5, on the receiver side, by evaluating the counter of received data against
the counter of previously received data, the following is detected:

1. Repetition:

a. no new data has arrived since last invocation of E2E Supervision check func-
tion,

b. the data is repeated

2. OK:

a. counter is incremented by one (i.e. no data lost),

b. counter is incremented more than by one, but still within allowed limits (i.e.
some data lost),

3. Error: a. counter is incremented more than allowed (i.e. too many data lost).

Case 1 corresponds to the failed alive counter check, and case 3 correspond to failed
sequence counter check.

50 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

The above requirements are specified in more details by the UML diagrams in the
following document sections.

5.6.3 Data ID

The unique Data IDs are to verify the identity of each transmitted safety-related data
element.

[PRS_E2EProtocol_00399] d In the E2E Profile 5, the Data ID shall be implicitly
transmitted, by adding the Data ID after the user data in the CRC calculation. c
(RS_E2EProtocol_08539)

The Data ID is not a part of the transmitted E2E header (similar to Profile 2 and 6).

[PRS_E2EProtocol_UC_00463] d In the E2E profile 5, the Data IDs shall be global-
ly unique within the network of communicating system (made of several ECUs each
sending different data). c(RS_E2EProtocol_08539)

In case of usage of E2E Supervision for protecting data elements (i.e invocation from
RTE), due to multiplicity of communication (1:1 or 1:N), a consumer of a data element
expects only a specific data element, which is checked by E2E Supervision using Data
ID.

In case of usage of E2E Supervision for protecting I-PDUs (i.e. invocation from COM),
the receiver COM expects at a reception only a specific I-PDU, which is checked by
E2E Supervision using Data ID.

5.6.4 Length

In Profile 5 there is no explicit transmission of the length.

5.6.5 CRC

E2E Profile 5 uses a 16-bit CRC, to ensure a sufficient detection rate and sufficient
Hamming Distance.

[PRS_E2EProtocol_00400] d E2E Profile 5 shall use the Crc_CalculateCRC16() func-
tion of the SWS CRC Supervision for calculating the CRC (Polynomial: 0x1021;
Autosar notation). c(RS_E2EProtocol_08539, RS_E2EProtocol_08531)

[PRS_E2EProtocol_00401] d In E2E Profile 5, the CRC shall be calculated over the
entire E2E header (excluding the CRC bytes), including the user data extended at the
end with the Data ID. c(RS_E2EProtocol_08539, RS_E2EProtocol_08536)

51 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

5.6.6 Timeout detection

The previously mentioned mechanisms (for Profile 5: CRC, Counter, Data ID) enable
to check the validity of received data element, when the receiver is executed indepen-
dently from the data transmission, i.e. when receiver is not blocked waiting for Data
Elements or respectively I-PDUs, but instead if the receiver reads the currently avail-
able data (i.e. checks if new data is available). Then, by means of the counter, the
receiver can detect loss of communication and timeouts.

The attribute State->NewDataAvailable == FALSE means that the transmission medi-
um (e.g RTE) reports that no new data element is available at the transmission medium.
The attribute State->Status = E2E_P05STATUS_REPEATED means that the transmis-
sion medium (e.g. RTE) provided new valid data element, but this data element has
the same counter as the previous valid data element. Both conditions represent an
unavailability of valid data that was updated since the previous cycle.

5.6.7 E2E_P05Protect

The function E2E_P05Protect() performs the steps as specified by the following six
diagrams in this section.

[PRS_E2EProtocol_00403] d The function E2E_P05Protect() shall have the following
overall behavior:

E2E_P05Protect(Config, State, Data, Length)

Write Counter

Compute CRC

Increment Counter

return E2E_E_OK

Write CRC

Verify inputs of the protect
function

return E2E_E_INPUTERR_WRONG
return
E2E_E_INPUTERR_NULL

Compute offset

[input ok]

[wrong input]

Figure 5.32

c(RS_E2EProtocol_08539)

52 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

[PRS_E2EProtocol_00404] dThe step ”Verify inputs of the protect function” in
E2E_P05Protect() shall have the following behavior:

(Config != NULL) && (State != NULL) && (Data != NULL)

input ok wrong input

E2E_P05Protect()

Length == Config->DataLength/8

no input

[FALSE]
[TRUE]

[TRUE] [FALSE]

Figure 5.33

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00469] d The step ”Compute offset” in E2E_P05Protect() and
E2E_P05Check() shall have the following behavior:

E2E_P05Protect()

compute local variable uint16
Offset, which is in [byte]

Offset = Config->Offset / 8

E2E_P05Check()

Figure 5.34

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00405] d The step ”Write Counter” in E2E_P05Protect() shal-
l have the following behavior:

Copy 1-byte State->Counter on byte Data[Offset+2] in Little Endian order

E2E_P05Protect()

Figure 5.35

c(RS_E2EProtocol_08539)

53 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

[PRS_E2EProtocol_00406] d The step ”Compute CRC” in E2E_P05Protect() and in
E2E_P05Check shall have the following behavior:

E2E_P05Check()

E2E_P05Protect()

uint16 ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr:
&Data[Offset+2], Crc_Length: Length-Offset-2,

Crc_StartValue16: 0xFFFF, Crc_IsFirstCall: TRUE)

ComputedCRC= Crc_CalculateCRC16(Config->DataID & 0xFF,
Crc_Length: 1, Crc_StartValue16: ComputedCRC,

Crc_IsFirstCall: FALSE)

ComputedCRC= Crc_CalculateCRC16(Config->DataID>>8 &
0xFF, Crc_Length: 1, Crc_StartValue16: computedCRC,

Crc_IsFirstCall: FALSE)

Config->Offset > 0

uint16 ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr:
&Data[0], Crc_Length: Offset, Crc_StartValue16: 0xFFFF,

Crc_IsFirstCall: TRUE)

ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr:
&Data[Offset+2], Crc_Length: Length-Offset-2,

Crc_StartValue16: ComputedCRC, Crc_IsFirstCall: FALSE)

[FALSE][TRUE]

Figure 5.36

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00407] d The step ”Write CRC” in E2E_P05Protect() shall have
the following behavior:

Copy 2-byte local variable CRC on bytes Data[Offset+0...Offset+1] using Little
Endian order

E2E_P05Protect()

Figure 5.37

c(RS_E2EProtocol_08539)

54 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

[PRS_E2EProtocol_00409] d The step ”Increment Counter”
in E2E_P05Protect() shall have the following behavior:

State->Counter++
The type is uint8. After
0xFF, the next value is
0.

E2E_P05Protect()

Figure 5.38

c(RS_E2EProtocol_08539)

5.6.8 E2E_P05Check

The function E2E_P05Check performs the actions as specified by the following six
diagrams in this section.

[PRS_E2EProtocol_00411] d The function E2E_P05Check() shall have the following
overall behavior:

E2E_P05Check(Config, State, Data, Length)

Read Counter

return E2E_E_OK

Read CRC

Verify inputs of the check
function

Do checks

Compute CRC

NewDataAvailable
== TRUE

return
E2E_E_INPUTERR_NULL

Compute offset

return
E2E_E_INPUTERR_WRONG

[null input] [input ok] [wrong input]

[TRUE]

[FALSE]

Figure 5.39

c(RS_E2EProtocol_08539)

55 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

[PRS_E2EProtocol_00412] d The step ”Verify inputs of the check function” in
E2E_P05Check() shall have the following behavior:

E2E_P05Check()

(Config != NULL) && (State != NULL)

input ok

This path may happen at
runtime if queued
communication is used and
no data is available.

NewDataAvailable
= TRUE

NewDataAvailable
= FALSE

local variable, no need
to store i t in the State
structure.

Data != NULL

null input

(Data != NULL && Length != 0) || (Data == NULL && Length == 0)

wrong input

Length == Config->DataLength/8

[TRUE]

[FALSE]

[FALSE]
[TRUE]

[FALSE]

[TRUE]

[FALSE]
[TRUE]

Figure 5.40

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00413] d The step ”Read Counter” in E2E_P05Check() shall have
the following behavior:

Copy byte Data[Offset+2] in Little Endian order on uint8 local variable
ReceivedCounter

E2E_P05Check()

Figure 5.41

c(RS_E2EProtocol_08539)

56 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

[PRS_E2EProtocol_00414] d The step ”Read CRC” in E2E_P05Check() shall have
the following behavior:

Copy bytes Data[Offset+0...Offset+1] using Little Endian order
on 2-byte local variable ReceivedCRC

E2E_P05Check()

Figure 5.42

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00416] d The step ”Do Checks’ in E2E_P05Check() shall have
the following behavior:

Figure 5.43

c(RS_E2EProtocol_08539)

57 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

5.7 Specification of E2E Profile 6

[PRS_E2EProtocol_00479] d Profile 6 shall provide the following control fields, trans-
mitted at runtime together with the protected data:

Control field Description
Length 16 bits, to support dynamic-size data. (explicitly sent)
Counter 8-bits. (explicitly sent)
CRC 16-bits, polynomial in normal form 0x1021 (Autosar nota-

tion), provided by CRC library. (explicitly sent)
Data ID 16-bits, unique system-wide. (implicitly sent)

c(RS_E2EProtocol_08529, RS_E2EProtocol_08530, RS_E2EProtocol_08533)

The E2E mechanisms can detect the following faults or effects of faults:

Fault Main safety mechanisms
Repetition of information Counter
Loss of information Counter
Delay of information Counter
Insertion of information Data ID
Masquerading Data ID, CRC
Incorrect addressing Data ID
Incorrect sequence of information Counter
Corruption of information CRC
Asymmetric information sent from a sender to
multiple receivers

CRC (to detect corruption at any of receivers)

Information from a sender received by only a
subset of the receivers

Counter (loss on specific receivers)

Blocking access to a communication channel Counter (loss or timeout)

Table 5.3: Detectable communication faults using Profile 6

For details of CRC computation, the usage of start values and XOR values see CRC
Supervision [7].

5.7.1 Data Layout

5.7.1.1 User data layout

In the E2E Profile 6, the user data layout (of the data to be protected) is not constrained
by E2E Profile 6 - there is only a requirement that the length of data to be protected is
multiple of 1 byte.

58 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

5.7.1.2 Header layout

The header of the E2E Profile 6 has one fixed layout, as follows:

Figure 5.44

The bit numbering shown above represents the order in which bits are transmitted. The
E2E header fields (e.g. E2E Counter) are encoded as:

1. Big Endian (most significant byte fist), applicable for both implicit and explicit
header fields - imposed by profile

2. LSB Fist (least significant bit within byte first) - imposed by TCP/IP bus

5.7.2 Counter

In E2E Profile 6, the counter is initialized, incremented, reset and checked by E2E
profile. The counter is not manipulated or used by the caller of the E2E Supervision.

[PRS_E2EProtocol_00417] d In E2E Profile 6, on the sender side, for the first trans-
mission request of a data element the counter shall be initialized with 0 and shal-
l be incremented by 1 for every subsequent send request. When the counter reaches
the maximum value (0xFF), then it shall restart with 0 for the next send request. c
(RS_E2EProtocol_08539)

Note that the counter value 0xFF is not reserved as a special invalid value, but it is
used as a normal counter value.

In E2E Profile 6, on the receiver side, by evaluating the counter of received data against
the counter of previously received data, the following is detected:

1. Repetition:

a. no new data has arrived since last invocation of E2E Supervision check func-
tion,

b. the data is repeated

2. OK:

a. counter is incremented by one (i.e. no data lost),

b. counter is incremented more than by one, but still within allowed limits (i.e.
some data lost),

3. Error: a. counter is incremented more than allowed (i.e. too many data lost).

59 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Case 1 corresponds to the failed alive counter check, and case 3 correspond to failed
sequence counter check.

The above requirements are specified in more details by the UML diagrams in the
following document sections.

5.7.3 Data ID

The unique Data IDs are to verify the identity of each transmitted safety-related data
element.

[PRS_E2EProtocol_00419] dIn the E2E Profile 5, the Data ID shall be implicitly
transmitted, by adding the Data ID after the user data in the CRC calculation. c
(RS_E2EProtocol_08539)

The Data ID is not a part of the transmitted E2E header (similar to Profile 2 and 5).

[PRS_E2EProtocol_UC_00464] d In the E2E profile 6, the Data IDs shall be global-
ly unique within the network of communicating system (made of several ECUs each
sending different data). c(RS_E2EProtocol_08539)

In case of usage of E2E Supervision for protecting data elements (i.e invocation from
RTE), due to multiplicity of communication (1:1 or 1:N), a consumer of a data element
expects only a specific data element, which is checked by E2E Supervision using Data
ID.

In case of usage of E2E Supervision for protecting I-PDUs (i.e. invocation from COM),
the receiver COM expects at a reception only a specific I-PDU, which is checked by
E2E Supervision using Data ID.

5.7.4 Length

In Profile 6 the length field is introduced to support variable-size length - the Data []
array storing the serialized data can potentially have a different length in each cycle. In
Profile 6 there is a explicit transmission of the length.

5.7.5 CRC

E2E Profile 6 uses a 16-bit CRC, to ensure a sufficient detection rate and sufficient
Hamming Distance.

[PRS_E2EProtocol_00420] d E2E Profile 6 shall use the Crc_CalculateCRC16() func-
tion of the SWS CRC Supervision for calculating the CRC (Polynomial: 0x1021;
Autosar notation). c(RS_E2EProtocol_08539, RS_E2EProtocol_08531)

60 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

[PRS_E2EProtocol_00421] d In E2E Profile 6, the CRC shall be calculated over the
entire E2E header (excluding the CRC bytes), including the user data extended with
the Data ID. c(RS_E2EProtocol_08539, RS_E2EProtocol_08536)

5.7.6 Timeout detection

The previously mentioned mechanisms (for Profile 6: CRC, Counter, Data ID, Length)
enable to check the validity of received data element, when the receiver is executed
independently from the data transmission, i.e. when receiver is not blocked waiting for
Data Elements or respectively I-PDUs, but instead if the receiver reads the currently
available data (i.e. checks if new data is available). Then, by means of the counter, the
receiver can detect loss of communication and timeouts.

The attribute State->NewDataAvailable == FALSE means that the transmission medi-
um (e.g RTE) reports that no new data element is available at the transmission medium.
The attribute State->Status = E2E_P06STATUS_REPEATED means that the transmis-
sion medium (e.g. RTE) provided new valid data element, but this data element has
the same counter as the previous valid data element. Both conditions represent an
unavailability of valid data that was updated since the previous cycle.

5.7.7 E2E_P06Protect

The function E2E_P06Protect() performs the steps as specified by the following seven
diagrams in this section.

[PRS_E2EProtocol_00423] d The function E2E_P06Protect() shall have the following
overall behavior:

61 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

E2E_P06Protect(Config, State,
Data, Length)

Write Counter

Compute CRC

Increment Counter

return E2E_E_OK

Write CRC

Verify inputs of the protect
function

return E2E_E_INPUTERR_WRONG

Write Length

return
E2E_E_INPUTERR_NULL

Compute offset

[wrong input]

[input ok]

Figure 5.45

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00424] d The step ”Verify inputs of the protect function” in
E2E_P06Protect() shall have the following behavior:

(Config != NULL) && (State != NULL) && (Data != NULL)

input ok wrong input

(Length >= Config->MinDataLength/8) &&
(Length <= Config->MaxDataLength/8)

E2E_P06Protect()

no input

[TRUE]
[FALSE]

[TRUE]
[FALSE]

Figure 5.46

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00470] d The step ”Compute offset” in E2E_P06Protect() and
E2E_P06Check() shall have the following behavior:

62 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

E2E_P06Protect()

compute local variable uint16
Offset, which is in [byte]

Offset = Config->Offset / 8

E2E_P06Check()

Figure 5.47

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00425] d The step ”Write Length” in E2E_P06Protect() shall have
the following behavior:

Copy 2-byte local variable CRC on bytes Data[Offset+0...Offset+1] using Little
Endian order

E2E_P05Protect()

Figure 5.48

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00426] d The step ”Write Counter” in E2E_P06Protect() shal-
l have the following behavior:

Copy 1-byte State->Counter on byte Data[Offset+2] in Little Endian order

E2E_P05Protect()

Figure 5.49

c(RS_E2EProtocol_08539)

63 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

[PRS_E2EProtocol_00427] d The step ”Compute CRC” in E2E_P06Protect() and
E2E_P06Check() shall have the following behavior:

E2E_P06Protect()

E2E_P06Check()

ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr:
&Data[Offset+2], Crc_Length: Length-Offset-2,

Crc_StartValue16: ComputedCRC, Crc_IsFirstCall: FALSE)

ComputedCRC= Crc_CalculateCRC16(Config->DataID>>8 &
0xFF, Crc_Length: 1, Crc_StartValue16: computedCRC,

Crc_IsFirstCall: FALSE)

ComputedCRC= Crc_CalculateCRC16(Config->DataID & 0xFF,
Crc_Length: 1, Crc_StartValue16: ComputedCRC,

Crc_IsFirstCall: FALSE)

Config->Offset > 0

uint16 ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr:
&Data[0], Crc_Length: Offset, Crc_StartValue16: 0xFFFF,

Crc_IsFirstCall: TRUE)

uint16 ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr:
&Data[Offset+2], Crc_Length: Length-Offset-2,

Crc_StartValue16: 0xFFFF, Crc_IsFirstCall: TRUE)

[TRUE]

Figure 5.50

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00428] d The step ”Write CRC” in E2E_P06Protect() shall have
the following behavior:

Copy 2-byte local variable CRC on bytes
Data[Offset+0...Offset+1] using big Endian order

E2E_P06Protect()

Figure 5.51

c(RS_E2EProtocol_08539)

64 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

[PRS_E2EProtocol_00429] d The step ”Increment Counter” in E2E_P06Protect() shall
have the following behavior:

State->Counter++
The type is uint32.
After 0xFF'FF'FF'FF,
the next value is 0.

E2E_P07Check()

Figure 5.52

c(RS_E2EProtocol_08539)

5.7.8 E2E_P06Check

The function E2E_P06Check performs the actions as specified by the following seven
diagrams in this section.

[PRS_E2EProtocol_00430] dThe function E2E_P06Check() shall have the following
overall behavior:

65 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

input ok wrong input

E2E_P07Check()

(Data != NULL && Length != 0) || (Data == NULL && Length == 0)

local variable, no need
to store it in the State
structure.

(Length >= Config->MinDataLength/8) && (Length <= Config->MaxDataLength/8)

NewDataAvailable
= FALSE

NewDataAvailable
= TRUE

Data != NULL

Check: Either both
Data and Length mean
that a message is
available, or both
mean the opposite.

(Config != NULL) && (State != NULL)

null input

This path may happen at
runtime if queued
communication is used and
no data is available (in this
case both Data is NULL and
Length is 0).

[TRUE]
[FALSE]

[FALSE]
[TRUE]

[FALSE]

[TRUE]

[TRUE][FALSE]

Figure 5.53

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00432] d The step ”Read Length” in E2E_P06Check() shall have
the following behavior:

Copy bytes Data[Offset+2...Offset+3] in Big Endian order to uint16 local variable ReceivedLength

E2E_P06Check()

Figure 5.54

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00434] d The step ”Read CRC” in E2E_P06Check() shall have
the following behavior:

66 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Copy bytes Data[Offset+0...Offset+1] using big Endian order on
2-byte local variable ReceivedCRC

E2E_P06Check()

Figure 5.55

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00436] d The step ”Do Checks” in E2E_P06Check() shall have
the following behavior:

Figure 5.56

c(RS_E2EProtocol_08539)

67 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

5.8 Specification of E2E Profile 7

[PRS_E2EProtocol_00480] d Profile 7 shall provide the following control fields, trans-
mitted at runtime together with the protected data:

Control field Description
Length 32 bits, to support dynamic-size data.
Counter 32 bits.
CRC 64 bits, polynomial in normal form 0x42F0E1EBA9EA3693, pro-

vided by CRC library.
Note: This CRC polynomial is also known as “CRC-64 (ECMA)”.

Data ID 32 bits, unique system-wide.

c(RS_E2EProtocol_08529, RS_E2EProtocol_08530, RS_E2EProtocol_08533)

The E2E mechanisms can detect the following faults or effects of faults:

Fault Main safety mechanisms
Repetition of information Counter
Loss of information Counter
Delay of information Counter
Insertion of information Data ID, CRC
Masquerading Data ID, CRC
Incorrect addressing Data ID
Incorrect sequence of information Counter
Corruption of information CRC
Asymmetric information sent from a sender to
multiple receivers

CRC (to detect corruption at any of receivers)

Information from a sender received by only a
subset of the receivers

Counter (loss on specific receivers)

Blocking access to a communication channel Counter (loss or timeout)

For details of CRC computation, the usage of start values and XOR values see CRC
Supervision [7]

5.8.1 Data Layout

5.8.1.1 User data layout

In the E2E Profile 7, the user data layout (of the data to be protected) is not constrained
by E2E Profile 7 - there is only a requirement that the length of data to be protected is
multiple of 1 byte.

68 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

5.8.1.2 Header layout

The header of the E2E Profile 7 has one fixed layout, as follows:

Figure 5.57: Profile 7 Header

The bit numbering shown above represents the order in which bits are transmitted. The
E2E header fields (e.g. E2E Counter) are encoded as:

1. Big Endian (most significant byte fist) - imposed by profile

2. LSB Fist (least significant bit within byte first) - imposed by TCPIP bus

For example, the 32 bits of the E2E counter are transmitted in the following order
(higher number meaning higher significance): 24 25 26 27 28 29 30 31 16 17 18 19 20
21 22 23 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7.

The header can be placed at a specific location in the protected data, by configuring
the offset of the entire E2E header.

5.8.2 Counter

In E2E Profile 7, the counter is initialized, incremented, reset and checked by E2E
profile. The counter is not manipulated or used by the caller of the E2E Supervision.

[PRS_E2EProtocol_00481] dIn E2E Profile 7, on the sender side, for the first trans-
mission request of a data element the counter shall be initialized with 0 and shall be
incremented by 1 for every subsequent send request. When the counter reaches the
maximum value (0xFF’FF’FF’FF), then it shall restart with 0 for the next send request.
c(RS_E2EProtocol_08539)

Note that the counter value 0xFF’FF’FF’FF is not reseved as a special invalid value,
but it is used as a normal counter value.

In E2E Profile 7, on the receiver side, by evaluating the counter of received data against
the counter of previously received data, the following is detected:

1. Repetition:

a. no new data has arrived since last invocation of E2E Supervision check func-
tion, b. the data is repeated

2. OK: a. counter is incremented by one (i.e. no data lost), b. counter is incremented
more than by one, but still within allowed limits (i.e. some data lost),

69 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

3. Wrong sequence: a. counter is incremented more than allowed (i.e. too many
data lost).

Case 1 corresponds to the failed alive counter check, and case 3 correspond to failed
sequence counter check.

The above requirements are specified in more details by the UML diagrams in the
following document sections.

5.8.3 Data ID

The unique Data IDs are to verify the identity of each transmitted safety-related data
element.

[PRS_E2EProtocol_00482] d In the E2E Profile 7, the Data ID shall be explicitly trans-
mitted, i.e. it shall be the part of the transmitted E2E header c(RS_E2EProtocol_08539)

There are currently no limitations on the values of Data ID - any values within the
addres space of 32 bits are allowed.

[PRS_E2EProtocol_00483] d In the E2E profile 7, the Data IDs shall be globally u-
nique within the network of communicating system (made of several ECUs each send-
ing different data). c(RS_E2EProtocol_08539)

In case of usage of E2E Supervision for protecting data elements (i.e invocation from
RTE), due to multiplicity of communication (1:1 or 1:N), a consumer of a data element
expects only a specific data element, which is checked by E2E Supervision using Data
ID.

In case of usage of E2E Supervision for protecting I-PDUs (i.e. invocation from COM),
the receiver COM espects at a reception only a specific I-PDU, which is checked by
E2E Supervision using Data ID.

5.8.4 Length

The Length field is introduced to support variable-size length - the Data [] array storing
the serialized data can potentially have a different length in each cycle.

5.8.5 CRC

E2E Profile 7 uses a 64-bit CRC, to ensure a high detection rate and high Hamming
Distance.

[PRS_E2EProtocol_00484] dE2E Profile 7 shall use the Crc_CalculateCRC64
4 () function of the SWS CRC Supervision for calculating the CRC. c
(RS_E2EProtocol_08539, RS_E2EProtocol_08531)

70 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

[PRS_E2EProtocol_00485] d In E2E Profile 7, the CRC shall be calculated over
the entire E2E header (excluding the CRC bytes) and over the user data. c
(RS_E2EProtocol_08536)

5.8.6 Timeout detection

The previously mentioned mechanisms (CRC, Counter, Data ID, Length) enable to
check the validity of received data element, when the receiver is executed indepen-
dently from the data transmission, i.e. when receiver is not blocked waiting for Data
Elements or respectively I-PDUs, but instead if the receiver reads the currently avail-
able data (i.e. checks if new data is available). Then, by means of the counter, the
receiver can detect loss of communication and timeouts.

5.8.7 E2E Profile 7 variants

The E2E Profile 7 variants are specified in TPS System Specification.

5.8.8 E2E_P07Protect

The function E2E_P07Protect() performs the steps as specified by the following eight
diagrams in this section.

[PRS_E2EProtocol_00486] d The function E2E_P07Protect() shall have the following
overall behavior:

71 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

E2E_P07Protect(Config, State, Data, Length)

Write DataID

Write Counter

Compute CRC

Increment Counter

return E2E_E_OK

Write CRC

Verify inputs of the protect
function

return E2E_E_INPUTERR_WRONG

Write Length

Compute offset

return
E2E_E_INPUTERR_NULL

[input ok]

[wrong input]

Figure 5.58

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00487] d The step ”Verify inputs of the protect function” in
E2E_P07Protect() shall have the following behavior:

E2E_P07Protect()

(Config != NULL) && (State != NULL) && (Data != NULL)

input ok

wrong input

(Length >= Config->MinDataLength/8) && (Length <= Config->MaxDataLength/8)

null input

[TRUE]
[FALSE]

[FALSE]
[TRUE]

Figure 5.59

72 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00488] dThe step ”Compute offset” in E2E_P07Protect() and
E2E_P07Check() shall have the following behavior:

Offset = Config->Offset / 8

E2E_P07Protect()

compute local variable uint32
Offset, which is in [byte]

E2E_P07Check()

Figure 5.60

c()

[PRS_E2EProtocol_00489] d The step ”Write Length” in E2E_P07Protect() shall have
the following behavior:

E2E_P07Protect()

Copy 4-byte Length on bytes Data[Offset+8...Offset+11] in Big Endian order

Figure 5.61

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00490] d The step ”Write Counter” in E2E_P07Protect() shal-
l have the following behavior:

Copy 4-byte State->Counter on bytes Data[Offset+12...Offset+15] in Big
Endian order

E2E_P07Protect()

Figure 5.62

c(RS_E2EProtocol_08539)

73 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

[PRS_E2EProtocol_00491] d The step ”Write DataID”in E2E_P07Protect() shall have
the following behavior:

E2E_P07Protect()

Copy 4-byte Config->DataID to bytes Data[Offset+16...Offset+19]
in Big Endian order

Figure 5.63

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00492] d The step ”ComputeCRC” in E2E_P07Protect() and in
E2E_P07Check() shall have the following behavior:

ComputedCRC = Crc_CalculateCRC64(Crc_DataPtr:
&Data[offset+8], Crc_Length: Length-Offset-8,

Crc_StartValue64: ComputedCRC, Crc_IsFirstCall: FALSE)

uint64 ComputedCRC = Crc_CalculateCRC64(Crc_DataPtr:
&Data[0], Crc_Length: Offset, Crc_StartValue64:
0xFF'FF'FF'FF'FF'FF'FF'FF, Crc_IsFirstCall: TRUE)

compute CRC over bytes that are before CRC.
computation length: offset, where offset is
number of bytes before the E2E header

At this step, there is a ready ComputedCRC value, over the
entire E2E-Prodected Data (including E2E Header (length,
ID, CRC etc) and the user data).

E2E_P07Protect()

E2E_P07Check()

Compute CRC over bytes that are after
CRC.

Offset > 0

uint64 ComputedCRC =
0xFF'FF'FF'FF'FF'FF'FF'FF

WriteVariable

[true]

[false]

Figure 5.64

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00493] d The step ”Write CRC”in E2E_P07Protect() shall have
the following behavior:

74 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Copy 8-byte local variable CRC on bytes Data[Offset...Offset+7]
using big Endian order

E2E_P07Protect()

Figure 5.65

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00494] d The step ”Increment Counter” in E2E_P07Protect() shall
have the following behavior:

pdf to fix

Figure 5.66

c(RS_E2EProtocol_08539)

5.8.9 E2E_P07Check

The function E2E_P07Check performs the actions as as specified by the following
seven diagrams in this section and according to diagram PRS_E2EProtocol_00492.

[PRS_E2EProtocol_00495] dThe function E2E_P07Check() shall have the following
overall behavior:

75 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Figure 5.67

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00496] d The step ”Verify inputs of the check function” in
E2E_P07Check() shall have the following behavior:

76 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

input ok wrong input

E2E_P07Check()

(Data != NULL && Length != 0) || (Data == NULL && Length == 0)

local variable, no need
to store it in the State
structure.

(Length >= Config->MinDataLength/8) && (Length <= Config->MaxDataLength/8)

NewDataAvailable
= FALSE

NewDataAvailable
= TRUE

Data != NULL

Check: Either both
Data and Length mean
that a message is
available, or both
mean the opposite.

(Config != NULL) && (State != NULL)

null input

This path may happen at
runtime if queued
communication is used and
no data is available (in this
case both Data is NULL and
Length is 0).

[TRUE]
[FALSE]

[FALSE]
[TRUE]

[FALSE]

[TRUE]

[TRUE][FALSE]

Figure 5.68

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00497] d The step ”Read Length” in E2E_P07Check() shall have
the following behavior:

Copy bytes Data[Offset+8...Offset+11] in Big Endian order to uint32 local variable ReceivedLength

E2E_P07Check()

Figure 5.69

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00498] d The step ”Read Counter” in E2E_P07Check() shall have
the following behavior:

77 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Copy bytes Data[Offset+12...Offset+15] in Big Endian order on uint32 local
variable ReceivedCounter

E2E_P07Check()

Figure 5.70

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00499] d The step ”Read DataID ” in E2E_P07Check() shall have
the following behavior:

Copy bytes Data[Offset+16...Offset+19] in Big Endian order on
uint32 local variable ReceivedDataID

E2E_P07Check()

Figure 5.71

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00500] d The step ”Read CRC” in E2E_P07Check() shall have
the following behavior:

Copy bytes Data[Offset...Offset+7] using big Endian order on
8-byte local variable ReceivedCRC

E2E_P07Check()

Figure 5.72

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00501] d The step ”Do Checks” in E2E_P07Check() shall have
the following behavior:

78 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Figure 5.73

c(RS_E2EProtocol_08539)

5.9 Specification of E2E Profile 11

Profile 11 is bus-compatible to profile 1, but provides "new" profile behavior similar to
profiles 4 to 7 on receiver side. Moreover, some legacy DataIDModes that are by now
obsolete are omitted.

[PRS_E2EProtocol_00503] d Profile 11 shall provide the following control fields, trans-
mitted at runtime together with the protected data:

Control field Description
Counter 4 bits. (explicitly sent)
CRC 8 bits, CRC-8-SAE J1850, provided by CRC library. (explicitly

sent)
Data ID 16 bits or 12 bit, unique system-wide. (either implicitly sent (16

bits) or partly explicitly sent (12 bits; 4 bits explicitly and 8 bits
implicitly sent))

79 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

c(RS_E2EProtocol_08529, RS_E2EProtocol_08530, RS_E2EProtocol_08533)

The E2E mechanisms can detect the following faults or effects of faults:

Fault Main safety mechanisms
Repetition of information Counter
Loss of information Counter
Delay of information Counter
Insertion of information Data ID
Masquerading Data ID, CRC
Incorrect addressing Data ID
Incorrect sequence of information Counter
Corruption of information CRC
Asymmetric information sent from a sender to
multiple receivers

CRC (to detect corruption at any of receivers)

Information from a sender received by only a
subset of receivers and the receivers

Counter (loss on specific receivers)

Blocking access to a communication channel Counter (loss or timeout)

For details of CRC computation, the usage of start values and XOR values see CRC
Supervision [7].

5.9.1 Data Layout

5.9.1.1 User data layout

In the E2E Profile 11, the user data layout (of the data to be protected) is not con-
strained by E2E Profile 11 - there is only a requirement, that the length of data to be
protected is multiple of 1 byte.

5.9.1.2 Header layout

Profile 11 is backward compatible to the bus-layout of profile 1. This means that while
all the header fields are configurable, the profile variants of profile 1 are also applicable.
Namely, profile 1 variant 1A and variant 1C.

Figure 5.74

The figure above shows Profile 11 variant 11C where the configuration is given as: The
E2E header fields (e.g. CRC) are encoded like in CAN and FlexRay, i.e.:

80 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

1. CRCOffset = 0

2. CounterOffset = 8 by FlexrayCAN bus.

3. DataIDNibbleOffset = 12

For Profile 11 Variant 11A, DataIDNibble is not used. Instead, user data can be placed
there.

[PRS_E2EProtocol_00540] d The E2E Profile variant 11A is defined as follows:

1. CRC is the 0th byte in the signal group (i.e. starts with bit offset 0)

2. Alive counter is located in lowest 4 bits of 1st byte (i.e. starts with bit offset 8)

3. E2E_P11DataIDMode = E2E_P11_DATAID_BOTH

4. SignalIPdu.unusedBitPattern = 0xFF.

c(RS_E2EProtocol_08528)

Below is an example compliant to 11A:

Figure 5.75

[PRS_E2EProtocol_00541] dThe E2E Profile variant 11C is defined as follows:

1. CRC is the 0th byte in the signal group (i.e. starts with bit offset 0)

2. Alive counter is located in lowest 4 bits of 1st byte (i.e. starts with bit offset 8)

3. The Data ID nibble is located in the highest 4 bits of 1st byte (i.e. starts with bit
offset 12)

4. E2E_P11DataIDMode = E2E_P11_DATAID_NIBBLE

5. SignalIPdu.unusedBitPattern = 0xFF

c(SRS_E2E_08528))

E2E Profile variant 11C relates to Configuration of E2E Profile 11 configuration setting
11C in system template (system template is more specific).

The transmission order shown above represents the order in which bits are transmitted.
For comparability to the figures of profile 1, also the bit order is given. The E2E header
fields (e.g. CRC) are encoded like in CAN and FlexRay, i.e.:

1. Little Endian (least significant byte fist) applicable for both implicit and explicit
header fields - imposed by profile

2. MSB Fist (most significant bit within byte first) - imposed by Flexray/CAN bus.

81 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

5.9.2 Counter

In E2E Profile 11, the counter is initialized, incremented, reset and checked by E2E
profile. The counter is not manipulated or used by the caller of the E2E Supervision.

[PRS_E2EProtocol_00504] d In E2E Profile 11, on the sender side, for the first trans-
mission request of a data element the counter shall be initialized with 0 and shal-
l be incremented by 1 for every subsequent send request. When the counter reaches
the maximum value (0x0E), then it shall restart with 0 for the next send request. c
(RS_E2EProtocol_08539)

Note that the counter value 0x0F is reserved as a special invalid value, and must never
be used by the E2E profile 11.

In E2E Profile 11, on the receiver side, by evaluating the counter of received data
against the counter of previously received data, the following is detected:

1. Repetition:

a. no new data has arrived since last invocation of E2E Supervision check func-
tion,

b. the data is repeated

2. OK:

a. counter is incremented by one (i.e. no data lost),

b. counter is incremented more than by one, but still within allowed limits (i.e.
some data lost),

3. Error: a. counter is incremented more than allowed (i.e. too many data lost).

Case 1 corresponds to the failed alive counter check, and case 3 correspond to failed
sequence counter check.

The above requirements are specified in more details by the UML diagrams in the
following document sections.

5.9.3 Data ID

The unique Data IDs are to verify the identity of each transmitted safety-related data
element.

There are two supported modes how the Data ID is used:

1. E2E_P11_DATAID_BOTH: both bytes of the 16 bit Data ID are used in the CRC
calculation: first the low byte and then the high byte.

2. E2E_P11_DATAID_NIBBLE:

82 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

the high nibble of high byte of DataID is not used (it is 0x0), as the DataID is
limited to 12 bits,

the low nibble of high byte of DataID is transmitted explicitly and covered by CRC
calculation when computing the CRC over Data.

the low byte is not transmitted, but it is included in the CRC computation as start
value.

[PRS_E2EProtocol_0507] d In the E2E profile 11, the Data IDs shall be globally u-
nique within the network of communicating system (made of several ECUs each send-
ing different data). c(RS_E2EProtocol_08539)

In case of usage of E2E Supervision for protecting data elements (i.e invocation from
RTE), due to multiplicity of communication (1:1 or 1:N), a consumer of a data element
expects only a specific data element, which is checked by E2E Supervision using Data
ID.

In case of usage of E2E Supervision for protecting I-PDUs (i.e. invocation from COM),
the receiver COM expects at a reception only a specific I-PDU, which is checked by
E2E Supervision using Data ID.

5.9.4 Length

In Profile 11 there is no explicit transmission of the length.

5.9.5 CRC

E2E Profile 11 uses a 8-bit CRC, to ensure a sufficient detection rate and sufficient
Hamming Distance.

[PRS_E2EProtocol_00508] d E2E Profile 11 shall use the Crc_CalculateCRC8 func-
tion of the SWS CRC Supervision for calculating the CRC (CRC-8-SAE J1850). c
(RS_E2EProtocol_08539, RS_E2EProtocol_08531)

[PRS_E2EProtocol_00505] d In the E2E Profile 11 with DataIDMode set to
E2E_P11_DATAID_BOTH, the Data ID shall be implicitly transmitted, by adding first
the Data ID low byte, then the Data ID high byte before the user data in the CRC
calculation c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00506] dIn E2E Profile 11 with DataIDMode set to
E2E_P01_DATAID_NIBBLE, the lower nibble of the high byte of the DataID shall
be placed in the transmitted data at bit position DataIDNibbleOffset, and the CRC
calculation shall be done by first calculating over the low byte of the Data ID, then a
0-byte, and then the user data. c(RS_E2EProtocol_08539)

Note: the byte containing the CRC is always omitted from the CRC calculation.

83 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

5.9.6 Timeout detection

The previously mentioned mechanisms (for Profile 11: CRC, Counter, Data ID) enable
to check the validity of received data element, when the receiver is executed indepen-
dently from the data transmission, i.e. when receiver is not blocked waiting for Data
Elements or respectively I-PDUs, but instead if the receiver reads the currently avail-
able data (i.e. checks if new data is available). Then, by means of the counter, the
receiver can detect loss of communication and timeouts.

The attribute State->NewDataAvailable == E2E_P11STATUS_NONEWDATA mean-
s that the transmission medium (e.g RTE) reports that no new data ele-
ment is available at the transmission medium. The attribute State->Status =
E2E_P11STATUS_REPEATED means that the transmission medium (e.g. RTE) pro-
vided new valid data element, but this data element has the same counter as the pre-
vious valid data element. Both conditions represent an unavailability of valid data that
was updated since the previous cycle.

5.9.7 E2E_P11Protect

The function E2E_P11Protect() performs the steps as specified by the following six
diagrams in this section.

[PRS_E2EProtocol_00509] d The function E2E_P11Protect() shall have the following
overall behavior:

E2E_P11Protect(Config, State, Data, Length)

Write Counter

Compute CRC

Increment Counter

return E2E_E_OK

Write CRC

Verify inputs of the protect
function

return E2E_E_INPUTERR_WRONGreturn E2E_E_INPUTERR_NULL

Write DataIDNibble

[input ok]

[wrong input]

Figure 5.76

c(RS_E2EProtocol_08539)

84 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

[PRS_E2EProtocol_00510] dThe step ”Verify inputs of the protect function” in
E2E_P11Protect() shall have the following behavior:

(Config != NULL) && (State != NULL) && (Data != NULL)

input ok wrong input

E2E_P11Protect()

Length == Config->DataLength/8

no input

[TRUE]
[FALSE]

[FALSE][TRUE]

Figure 5.77

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00511] d The step „Write DataIDNibble” in E2E_P11Protect()
shall have the following behavior:

E2E_P11Protect()

Copy lower 4 bits of second byte of State->DataID to data
array at position Config->DataIDNibblerOffset, using

li ttle-endian byte-order.

Byte position in data array can be obtained by:
Data[Config->DataIDNibbleOffset >> 3]
Nibble position within byte can be obtained by:
((Config->DataID & 0x0F00) >> 8) << (Config->CounterOffset &
0x7)

Config->DataIDMode == E2E_P11_DATAID_NIBBLE

[FALSE]

[TRUE]

Figure 5.78

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00512] d The step ”Write Counter” in E2E_P11Protect() shal-
l have the following behavior:

Copy lower 4 bits of State->Counter to data array at position
Config->CounterOffset, using li ttle-endian byte-order.

E2E_P11Protect()

Byte position in data array can be obtained by:
Data[Config->CounterOffset >> 3]
Nibble position within byte can be obtained by:
(State->Counter & 0xF) << (Config->CounterOffset & 0x7)

Figure 5.79

c(RS_E2EProtocol_08539)

85 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

[PRS_E2EProtocol_00513] d The step ”Compute CRC” in E2E_P11Protect() and in
E2E_P11Check shall have the following behavior:

E2E_P11Check()

E2E_P11Protect()

ComputedCRC= Crc_CalculateCRC8(Crc_DataPtr:&Data[1],
Crc_Length: Length-1, Crc_StartValue8: ComputedCRC,

Crc_IsFirstCall: FALSE)

uint8 ComputedCRC= Crc_CalculateCRC8(Config->DataID,
Crc_Length: 1, Crc_StartValue8: 0xff, Crc_IsFirstCall: FALSE)

ComputedCRC= Crc_CalculateCRC8(0, Crc_Length: 1,
Crc_StartValue8: computedCRC, Crc_IsFirstCall: FALSE)

Offset > 0

ComputedCRC= Crc_CalculateCRC8(Crc_DataPtr:&Data[0],
Crc_Length: Offset, Crc_StartValue8: ComputedCRC,

Crc_IsFirstCall: FALSE)

ComputedCRC= Crc_CalculateCRC8(Crc_DataPtr:
&Data[Offset+1], Crc_Length: Length-Offset-1, Crc_StartValue8:

ComputedCRC, Crc_IsFirstCall: FALSE)

switch Config->DataIDMode

ComputedCRC= Crc_CalculateCRC8(Config->DataID>>8 & 0xFF, Crc_Length:
1, Crc_StartValue8: computedCRC, Crc_IsFirstCall: FALSE)

uint8 ComputedCRC= Crc_CalculateCRC8(Config->DataID, Crc_Length: 1,
Crc_StartValue8: 0xFF, Crc_IsFirstCall: FALSE)

Offset = Config->CRCOffset / 8

Length > Offset + 1

[FALSE]

[case E2E_P11_DATAID_BOTH]

[TRUE]

[FALSE][TRUE]

[case E2E_P11_DATAID_NIBBLE]

Figure 5.80

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00514] d The step ”Write CRC” in E2E_P11Protect() shall have
the following behavior:

Copy 1-byte local variable ComputedCRC on bytes Data[Config->CRCOffset/8]

E2E_P11Protect()

Figure 5.81

c(RS_E2EProtocol_08539)

86 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

[PRS_E2EProtocol_00515] d The step ”Increment Counter” in E2E_P11Protect() shall
have the following behavior:

State->Counter++ The type is uint8, but only 15
values are used. After 0xE, the
next value is 0.

E2E_P11Protect()

Figure 5.82

c(RS_E2EProtocol_08539)

5.9.8 E2E_P11Check

The function E2E_P11Check performs the actions as specified by the following six
diagrams in this section.

[PRS_E2EProtocol_00516] d The function E2E_P11Check() shall have the following
overall behavior:

87 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Figure 5.83

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00517] d The step ”Verify inputs of the check function” in
E2E_P11Check() shall have the following behavior:

88 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

E2E_P11Check()

(Config != NULL) && (State != NULL)

input ok

This path may happen at
runtime if queued
communication is used and
no data is available.

NewDataAvailable
= TRUE

NewDataAvailable
= FALSE

local variable, no need
to store i t in the State
structure.

Data != NULL

null input

(Data != NULL && Length != 0) || (Data == NULL && Length == 0)

wrong input

Length == Config->DataLength/8

[TRUE]

[FALSE]

[TRUE]
[FALSE]

[TRUE]

[FALSE]

[FALSE]
[TRUE]

Figure 5.84

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00582] d The step ”Read Counter” in E2E_P11Check() shall have
the following behavior:

fix me figure c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00518] d The step "Read Counter" in E2E_P11Check() shall have
the following behavior:

Copy nibble from bit-position Config->CounterOffset in Data in Little Endian
order to uint8 local variable ReceivedCounter

E2E_P11Check()

Byte position in data array can be obtained by:
Byte = Data[Config->CounterOffset >> 3]
Nibble within byte can be obtained by:
Counter = (Byte << (Config->CounterOffset & 0x7)) & 0xF

Figure 5.85

89 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00519] d The step ”Read CRC” in E2E_P11Check() shall have
the following behavior:

Copy byte Data[Config->CRCOffset/8] to local variable
ReceivedCRC

E2E_P11Check()

Figure 5.86

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00521] d The step ”Do Checks’ in E2E_P11Check() shall have
the following behavior:

Figure 5.87

c(RS_E2EProtocol_08539)

90 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

5.10 Specification of E2E Profile 22

[PRS_E2EProtocol_00522] d Profile 22 shall provide the following control fields, trans-
mitted at runtime together with the protected data:

Control field Description
Counter 4 bits. (explicitly sent)
CRC 8 bits, polynomial in normal form 0x2F (Autosar notation), provid-

ed by CRC library. (explicitly sent)
Data ID List 16 8 bits values, linked to Counter value. Effectively 16 different

values, one for each counter value. The Data ID List must be
unique system-wide.

c(RS_E2EProtocol_08529, RS_E2EProtocol_08530, RS_E2EProtocol_08533)

The E2E mechanisms can detect the following faults or effects of faults:

E2E Mechanism Detected communication faults
Counter Repetition, loss, insertion, incorrect sequence, blocking
Transmission on a regular
bases and timeout moni-
toring using E2E-Library 5

Loss, delay, blocking

Data ID + CRC Masquerade and icorrect addressing, insertion
CRC Corruption, asymmetric information 6

For details of CRC computation, the usage of start values and XOR values see CRC
Supervision [7].

5.10.1 Data Layout

5.10.1.1 User data layout

In the E2E Profile 22, the user data layout (of the data to be protected) is not con-
strained by E2E Profile 22. The total length of transmitted data must be a multiple
of 8 bit (full bytes). Also, as the header only used 12 bit, there are 4 bit unused and
available for user data in the byte where the 4 bit of the counter are placed.

5Implementation by sender and receiver
6for a set of data protected by same CRC

91 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

5.10.1.2 Header layout

Profile 22 is backward compatible to the bus-layout of profile 2. In addition, the configu-
ration field offset can be used to offset the header fields, then breaking with backward-
compatibility to profile 2 bus-layout.

Figure 5.88: E2E Profile22 header with offset 0.

The figure above shows Profile 22 with offset configured with 0. Offset is always given
in bit and a multiple of 8 (full bytes).

The transmission order shown above represents the order in which bits are transmitted.
For comparability to the figures of profile 2, also the bit order is given. The E2E header
fields (e.g. CRC) are encoded like in CAN and FlexRay, i.e.:

1. Little Endian (least significant byte fist) applicable for both implicit and explicit
header fields - imposed by profile

2. MSB Fist (most significant bit within byte first) - imposed by Flexray/CAN bus.

5.10.2 Counter

In E2E Profile 22, the counter is initialized, incremented, reset and checked by E2E
profile check and protect functions. The counter is not manipulated or used by the
caller of the E2E Supervision. .

[PRS_E2EProtocol_00523] d In E2E Profile 22, on the sender side, for the first trans-
mission request of a data element the counter shall be initialized with 0 and shal-
l be incremented by 1 for every subsequent send request. When the counter reaches
the maximum value (0x0F), then it shall restart with 0 for the next send request. c
(RS_E2EProtocol_08539)

Note that the counter value 0x0F is not reserved as a special invalid value.

In E2E Profile 22, on the receiver side, by evaluating the counter of received data
against the counter of previously received data, the following is detected:

1. Repetition:

a. no new data has arrived since last invocation of E2E Supervision check func-
tion,

b. the data is repeated

2. OK:

92 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

a. counter is incremented by one (i.e. no data lost),

b. counter is incremented more than by one, but still within allowed limits (i.e.
some data lost),

3. Error: a. counter is incremented more than allowed (i.e. too many data lost).

Case 1 corresponds to the failed alive counter check, and case 3 correspond to failed
sequence counter check.

The above requirements are specified in more details by the UML diagrams in the
following document sections.

5.10.3 Data ID

The unique Data ID List is used to verify the identity of each transmitted safety-related
data element.

[PRS_E2EProtocol_00524] d In the E2E Profile 22, the Data ID shall be implicit-
ly transmitted, by adding the Data ID after the user data in the CRC calculation. c
(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00525] d In the E2E profiles 2 and 22, the Data ID Lists shall be
globally unique within the network of communicating system (made of several ECUs
each sending different data.) c(RS_E2EProtocol_08539)

In case of usage of E2E Supervision for protecting data elements (i.e invocation from
RTE), due to multiplicity of communication (1:1 or 1:N), a consumer of a data element
expects only a specific data element, which is checked by E2E Supervision using Data
ID.

In case of usage of E2E Supervision for protecting I-PDUs (i.e. invocation from COM),
the receiver COM expects at a reception only a specific I-PDU, which is checked by
E2E Supervision using Data ID.

5.10.4 Length

In Profile 22 there is no explicit transmission of the length.

5.10.5 CRC

E2E Profile 22 uses an 8-bit CRC, to ensure a sufficient detection rate and sufficient
Hamming Distance. The CRC polynomial is the same as used in profile 2.

[PRS_E2EProtocol_00526] d E2E Profile 22 shall use the Crc_CalculateCRC8H2F()
function of the SWS CRC Supervision for calculating the CRC (Polynomial 0x2F, see
also SWS_E2E_00117) c(RS_E2EProtocol_08539, RS_E2EProtocol_08531)

93 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

[PRS_E2EProtocol_00527] d In E2E Profile 22, the CRC shall be calculated over the
entire E2E header (excluding the CRC bytes), including the user data extended at the
end with the coresponding Data ID from the Data ID List. c(RS_E2EProtocol_08539,
RS_E2EProtocol_08536)

5.10.6 Timeout detection

The previously mentioned mechanisms (for Profile 22: CRC, Counter, Data ID) enable
to check the validity of received data element, when the receiver is executed indepen-
dently from the data transmission, i.e. when receiver is not blocked waiting for Data
Elements or respectively I-PDUs, but instead if the receiver reads the currently avail-
able data (i.e. checks if new data is available). Then, by means of the counter, the
receiver can detect loss of communication and timeouts.

The attribute State->Status = E2E_P22STATUS_NONEWDATA means that the trans-
mission medium (e.g RTE) reported that no new data element is available at the trans-
mission medium. The attribute State->Status = E2E_P22STATUS_REPEATED means
that the transmission medium (e.g. RTE) provided new valid data element, but this da-
ta element has the same counter as the previous valid data element. Both conditions
represent an unavailability of valid data that was updated since the previous cycle.

5.10.7 E2E_P22Protect

The function E2E_P22Protect() performs the steps as specified by the following dia-
grams in this section.

[PRS_E2EProtocol_00528] d The function E2E_P22Protect() shall have the following
overall behavior:

94 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

E2E_P22Protect(Config, State, Data, Length)

Write Counter

Compute CRC

Increment Counter

return E2E_E_OK

Write CRC

Verify inputs of the protect
function

return E2E_E_INPUTERR_WRONGreturn E2E_E_INPUTERR_NULL

[wrong input]

Figure 5.89

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00529] dThe step ”Verify inputs of the protect function” in
E2E_P22Protect() shall have the following behavior:

(Config != NULL) && (State != NULL) && (Data != NULL)

input ok wrong input

E2E_P22Protect()

Length == Config->DataLength/8

no input

[FALSE]
[TRUE]

[FALSE][TRUE]

Figure 5.90

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00530] dThe step ”Write Counter” in E2E_P22Protect() shall have
the following behavior:

95 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Copy lower 4 bits of State->Counter to data array at bit position
Config->Offset+8

E2E_P22Protect()

Byte position in data array can be obtained by:
DataPtr[(Config->Offset >> 3) + 1]

Counter = State->Counter
Store value of State->Counter in local
variable to be also used in CRC
calculation

Figure 5.91

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00531] d The step ”Compute CRC” in E2E_P22Protect() and in
E2E_P22Check shall have the following behavior:

E2E_P22Check()

E2E_P22Protect()

uint8 ComputedCRC= Crc_CalculateCRC8H2F(Crc_DataPtr:
&Data[1], Crc_Length: Length-1, Crc_StartValue8: 0xFF,

Crc_IsFirstCall: TRUE)

ComputedCRC=
Crc_CalculateCRC8H2F(Config->DataIDList[Counter], Crc_Length:

1, Crc_StartValue8: ComputedCRC, Crc_IsFirstCall: FALSE)

Config->CRCOffset > 0

uint8 ComputedCRC= Crc_CalculateCRC8H2F(Crc_DataPtr:
&Data[0], Crc_Length: Offset, Crc_StartValue8: 0xFF,

Crc_IsFirstCall: TRUE

ComputedCRC= Crc_CalculateCRC8H2F(Crc_DataPtr:
&Data[Offset+1], Crc_Length: Length-Offset-1, Crc_StartValue8:

ComputedCRC, Crc_IsFirstCall: FALSE)

Offset = Config->Offset / 8

Length > Offset + 1

[FALSE][TRUE]

[TRUE]

[FALSE]

Figure 5.92

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00532] d The step ”Write CRC” in E2E_P22Protect() shall have
the following behavior:

96 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Copy 1-byte local variable ComputedCRC on bytes Data[Config->Offset/8]

E2E_P22Protect()

Figure 5.93

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00533] d The step ”Increment Counter” in E2E_P22Protect() shall
have the following behavior:

State->Counter++ The type is uint8, but only 16
values are used. After 0xF, the
next value is 0.

E2E_P22Protect()

Figure 5.94

c(RS_E2EProtocol_08539)

5.10.8 E2E_P22Check

The function E2E_P22Check performs the actions as specified by the following six
diagrams in this section.

[PRS_E2EProtocol_00534] d The function E2E_P22Check() shall have the following
overall behavior:

97 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Figure 5.95

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00535] d The step ”Verify inputs of the check function” in
E2E_P22Check() shall have the following behavior:

98 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

E2E_P22Check()

(Config != NULL) && (State != NULL)

input ok

This path may happen at
runtime if queued
communication is used and
no data is available.

NewDataAvailable
= TRUE

NewDataAvailable
= FALSE

local variable, no need
to store i t in the State
structure.

Data != NULL

null input

(Data != NULL && Length != 0) || (Data == NULL && Length == 0)

wrong input

Length == Config->DataLength/8

[TRUE]

[FALSE]

[FALSE]
[TRUE]

[TRUE]

[FALSE]

[FALSE]
[TRUE]

Figure 5.96

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00536] d The step ”Read Counter” in E2E_P22Check() shall have
the following behavior:

Copy 4 bit counter value from bit-position Config->Offset+8 in Data in Little
Endian order to uint8 local variable Counter

E2E_P22Check()

Counter in data array can be obtained by:
Counter = Data[(Config->Offset >> 3)+1] & 0x0F

Figure 5.97

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00537] d The step ”Read CRC” in E2E_P22Check() shall have
the following behavior:

99 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Copy byte Data[Config->Offset/8] to local variable
ReceivedCRC

E2E_P22Check()

Figure 5.98

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00539] d The step ”Do Checks’ in E2E_P22Check() shall have
the following behavior:

Figure 5.99

c(RS_E2EProtocol_08539)

5.11 Specification of E2E state machine

The E2E Profile check()-functions verifies data in one cycle. This function only deter-
mines if data in that cycle are correct or not. In contrary, the state machine builds up a
state out of several results of check() function within a reception window, which is then
provided to the consumer (RTE/SWC/COM).

100 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

The state machine is applicable for all E2E profiles. Profiles P01 and P02 can be
configured to work together with the state machine. However, the behavior of P01/P02
alone, regardless how it is configured, is different to the behavior of P01/P02 + state
machine.

5.11.1 Overview of the state machine

The diagram below summarizes the state machine.

E2E_SM_DEINIT

E2E_SM_INIT - COMMUNICATION
INITIALIZATION - do NOT use data

E2E_SM_VALID - communication within limits - ok
to USE data

E2E_SM_INVALID - communication not within
limits - do NOT use data

E2E_SM_NODATA - wait for 1st reception - do NOT
use data

init

[too many ERRORs]

[NOT (too many ERROR or too few OK)]

[too many ERRORs or too few OKs] [NOT (too many ERROR or too few OK)]

1st Data with no ERROR

Figure 5.100

5.11.2 State machine specification

[PRS_E2EProtocol_00354] d The E2E state machine shall be implemented by the
functions E2E_SMCheck() and E2E_SMCheckInit() c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00345] d The E2E State machine shall have the following behav-
ior with respect to the function E2E_SMCheck():

101 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Figure 5.101

This shall be understood as follows:

1. The current state (e.g. E2E_SM_VALID) is stored in State->SMState

2. At every invocation of E2E_SMCheck, the ProfileStatus is processed (as shown
by logical step E2E_SMAddStatus()

102 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

3. After that, there is an examination of two counters: State->ErrorCount and State-
>OKCount. Depending on their values, there is a transition to a new state, stored
in State->SMState.

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00466] d The step E2E_SMAddStatus(ProfileStatus, State) in
E2E_SMCheck() shall have the following behavior:

E2E_SMAddStatus(ProfileStatus, State)

State->ProfileStatusWindow[State->WindowTopIndex] = Profi leStatus

State->OKCount = number of elements in State->Profi leStatusWindow[] with values E2E_P_OK

State->ErrorCount = number of elements in State->ProfileStatusWindow[] with values E2E_P_ERROR

If (State->WindowTopIndex == Config->WindowSize -1) then State->WindowTopIndex=0, else
State->WindowTopIndex++

Figure 5.102

c(RS_E2EProtocol_08539)

E2E_SMAddStatus is just a logical step in the algorithm, it may (but it does not have to
be) implemented a a separate function. It is not a module API function.

[PRS_E2EProtocol_00375] d The E2E State machine shall have the following behav-
ior with respect to the function E2E_SMCheckInit():

103 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Figure 5.103

c(RS_E2EProtocol_08539)

[PRS_E2EProtocol_00467] d The step E2E_SMClearStatus(ProfileStatus,
State) in E2E_SMCheck() shall have the following behavior:

104 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

E2E_SMClearStatus(ProfileStatus, State)

State->ProfileStatusWindow[] = E2E_P_NOTAVAILABLE

State->OKCount = 0

State->ErrorCount = 0

State->WindowTopIndex = 0

Clear each element of
the
ProfileStatusWindow[]
array.

Figure 5.104

c(SRS_BSW_00003)

5.12 Basic Concepts of CRC Codes

5.12.1 Mathematical Description

Let D be a bitwise representation of data with a total number of n bit, i.e.

D = (dn−1, dn−2, dn−3, ..., d1, d0),

with d0, d1, ... = 0b, 1b. The corresponding Redundant Code C is represented by n + k
bit as

C = (D,R) = (dn−1, dn−2, dn−3, ..., d2, d1, d0, rk−1, ..., r2, r1, r0)

with r0, r1, ... = 0b,1b and R = (rk−1, ..., r2, r1, r0) The code is simply a concatenation of
the data and the redundant part. (For our application, we will chose k = 16, 32 and n
as a multiple of 16 resp. 32).

CRC-Algorithms are related to polynomials with coefficients in the finite field of two
element, using arithmetic operations ⊕ and * according to the following tables.

The ⊕ operation is identified as the binary operation exclusive-or, that is usually avail-
able in the ALU of any CPU.

105 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

+ 0b 1b * 0b 1b
0b 0b 1b 0b 0b 0b
1b 1b 0b 1b 0b 1b

For simplicity, we will write ab instead of a ∗ b

We introduce some examples for polynomials with coefficients in the field of two el-
ements and give the simplified notation of it.

(ex.1)p1(X) = 1bX3 + 0bX2 + 1bX1 + 0bX0 = X3 +X

(ex.2)p2(X) = 1bX2 + 1bX1 + 1bX0 = X2 +X1 + 1b

Any code word, represented by n+k bit can be mapped to a polynomial of order n+k−1
with coefficients in the field of two elements. We use the intuitive mapping of the bits
i.e.

C(X) = dn −1 X
(k + n− 1) + dn −2 X

(k + n− 2) + ...

+d2X
(k + 2) + d1X

(k + 1) + d0X
k + rk −1 X

(k − 1) + r−k2X
(k − 2) + ...r1X + r0

C(X) = Xk(dn −1 X
(n− 1) + d(n− 2)X(n− 2) + ...

+d2X
2 + d1X

1 + d0) + r(k − 1)X(k − 1) + r(k − 2)Xk−2 + ...r1X + r0

C(X) = XkD(X)⊕R(X)

This mapping is one-to-one.

A certain space CRCG of Cyclic Redundant Code Polynomials is defined to be a mul-
tiple of a given Generator Polynomial G(X) = Xk + gk− 1X(k− 1)+ g(k− 2)X(k− 2)+
... + g2X

2 + g1X + g0. By definition, for any code polynomial C(X) in CRCG there is a
polyno-mial M(X) with

C(X) = G(X)M(X)

.

For a fixed irreducible (i.e. prime-) polynomial G(X), the mapping M(X) –> C(X) is one-
to-one. Now, how are data of a given codeword verified? This is basically a division of
polynomials, using the Euclidian Algorithm. In practice, we are not interested in M(X),

106 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

but in the remainder of the division, C(X) mod G(X). For a correct code word C, this
remainder has to be zero, C(X) mod G(X) = 0. If this is not the case - there is an
error in the codeword. Given G(X) has some additional algebraic prop-erties, one can
determine the error-location and correct the codeword.

Calculating the code word from the data can also be done with the Euclidian Algo-rithm.
For a given data polynomial D(x) = d(n−1)X(n−1)+d(n−2)X(n−2)+ ...+d1X

1+d0
and the corresponding code polynomial C(X) we have

C(X) = XkD(X)⊕R(X) = M(X)G(X)

Performing the operation „ mod G(X)” on both sides, one obtains

0 = C(X)modG(X) = [XkD(X)]modG(X)⊕R(X)modG(X)

(*)

We denote that the order of the Polynomial R(X) is less than the order of G(X), so the
modulo division gives zero with remainder R(X):

R(X)modG(X) = R(X)

.

For polynomial R(X) with coefficients in the finite field with two elements we have the
remarkable property R(X) + R(X) = 0. If we add R(X) on both sides of equation (*) we
obtain

R(X) = XkD(X)modG(X)

.

The important implication is that the redundant part of the requested code can be
determined by using the Euclidian Algorithm for polynomials. At present, any CRC
calculation method is a more or less sophisticated variation of this basic algorithm.

Up to this point, the propositions on CRC Codes are summarized as follows:

1. The construction principle of CRC Codes is based on polynomials with coef-
ficients in the finite field of two elements. The ⊕ operation of this field is iden-tical
to the binary operation „ xor ”(exclusive or)

2. There is a natural mapping of bit-sequences into this space of polynomials.

3. Both calculation and verification of the CRC code polynomial is based on di-vision
modulo a given generator polynomial.

4. This generator polynomial has to have certain algebraic properties in order to
achieve error-detection and eventually error-correction.

107 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

5.12.2 Euclidian Algorithm for Binary Polynomials and Bit-Sequences

Given a Polynomial Pn(X) = pnX
n + p(n − 1)X(n − 1) + ... + p2X

2 + p1X + p0 with
coefficients in the finite field of two elements. Let Q(X) = Xk + q(k − 1)X(k − 1) +
q(k − 2)X(k − 2) + ...+ q2X

2 + q1X + q0 be another polynomial of exact order k>0. Let
Rn(X) be the remainder of the polynomial division of maximum order k− 1 and Mn(X)
corresponding so that

Rn(X)⊕Mn(X)Q(X) = Pn(X)

.

Euclidian Algorithm - Recursive

(Termination of recursion) If n < k, then choose Rn(X) = Pn(X)andMn = 0.

(Recursion n+1 –> n) Let Pn + 1(X) be of maximum order n+ 1.

If n+1 >= kcalculate Pn(X) = P(n+1)(X)−p(n+1)Q(X)X(n−k+1). This polynomial
is of maximum order n. Then

P(n+ 1)(X)modQ(X) = Pn(X)modQ(X)

.

Proof of recursion

Choose R(n + 1)(X) = P(n + 1)(X) mod Q(X)andM(n + 1)(X) so that R(n + 1)(X)⊕
M(n+ 1)(X)Q(X) = P(n+ 1)(X).

Then R(n+1)(X)−Rn(X) = P(n+1)(X)−M(n+1)(X)Q(X)−Pn(X)⊕Mn(X)Q(X).

With P(n+ 1)(X)− Pn(X) = p(n+ 1)Q(X)X(n− k + 1) we obtain

R(n+ 1)(X)−Rn(X) = p(n+ 1)Q(X)X(n− k + 1) +Mn(X)Q(X)−M(n+ 1)(X)Q(X)

R(n+ 1)(X)−Rn(X) = Q(X)[p(n+ 1)X(n− k + 1) +Mn(X)−M(n+ 1)(X)]

On the left side, there is a polynomial of maximum order k-1. On the right side Q(X) is
of exact order k. This implies that both sides are trivial and equal to zero. One obtains

R(n+ 1)(X) = Rn(X) (1) M(n+ 1)(X) = Mn(X) + p(n+ 1)X(n− k + 1) (2)

Example

P (X) = P4(X) = X4 + X2 + X + 1b; Q(X) = X2 + X + 1b; n = 4;k = 2 P3(X) =
X4 + X2 + X + 1b − 1b(X2 + X + 1b)X2 = X3 + X + 1b. P2(X) = X3 + X + 1b −
1bX(X2 + X + 1b) = X2 + 1b. P1(X) = X2 + 1 − 1b(X2 + X + 1) = X R(X) = P (X)
mod Q(X) = R1(X) = P1(X) = X.

108 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

5.12.3 CRC calculation, Variations and Parameter

Based on the Euclidian Algorithm, some variations have been developed in order to
improve the calculation performance. All these variations do not improve the capabil-
ity to detect or correct errors the so-called Hamming Distance of the resulting code is
determined only by the generator polynomial. Variations simply optimize for different
implementing ALUs.

CRC-Calculation methods are characterized as follows:

1. Rule for Mapping of Data to a bit sequence (d(n− 1), d(n− 2), d(n− 3), ..., d1, d0)
and the corresponding data polynomial D(X) (standard or reflected data).

2. Generator polynomial G(X)

3. Start value and corresponding Polynomial S(X)

4. Appendix A(X), also called XOR-value for modifying the final result.

5. Rule for mapping the resulting CRC-remainder R(X) to codeword. (Standard or
reflected data)

The calculation itself is organized in the following steps

• Map Data to D(X)

• Perform Euclidian Algorithm on XkD(X)+X(n−k−1)S(X)+A(X)and determine
R(X) = [XkD(X) +X(n− k − 1)S(X) + A(X)] mod G(X)

• Map D(X), R(X) to codeword

5.13 CRC Standard Parameters

This section gives a rough overview on the standard parameters that are commonly
used for 8-bit, 16-bit and 32-bit CRC calculation.

• CRC result width: Defines the result data width of the CRC calculation.

• Polynomial: Defines the generator polynomial which is used for the CRC algo-
rithm.

• Initial value: Defines the start condition for the CRC algorithm.

• Input data reflected: Defines whether the bits of each input byte are reflected
before being processed (see definition be-low).

• Result data reflected: Similar to „Input data reflected ” this parameter de-fines
whether the bits of the CRC result are reflect-ed (see definition below). The
result is reflected over 8-bit for a CRC8, over 16-bit for a CRC16 and over 32-bit
for a CRC32.

109 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

• XOR value: This Value is XORed to the final register value before the value is
returned as the official check-sum.

• Check: This field is a check value that can be used as a weak validator of imple-
mentations of the algorithm. The field contains the checksum obtained when the
ASCII values ’1’ ’2’ ’3’ ’4’ ’5’ ’6’ ’7’ ’8’ ’9’ corresponding to values 31h 32h 33h 34h
35h 36h 37h 38h 39h is fed through the specified algorithm.

• Magic check: The CRC checking process calculates the CRC over the entire data
block, including the CRC re-sult. An error-free data block will always result in the
unique constant polynomial (magic check) -representing the CRC-result XORed
with ’XOR value’-regardless of the data block content

Example of magic check: calculation of SAE-J1850 CRC8 (see detailed parameters in
PRS_E2EProtocol_CRC_00030) over data bytes 00h 00h 00h 00h:

• CRC generation: CRC over 00h 00h 00h 00h, start value FFh:

– CRC-result = 59h

• CRC check: CRC over 00h 00h 00h 00h 59h, start value FFh:

– CRC-result = 3Bh

– Magic check = CRC-result XORed with ’XOR value’: C4h = 3Bh xor FFh

Data reflection: It is a reflection on a bit basis where data bits are written in the reverse
order. The formula is:

reflectn(X)
n−1∑
i=0

xi2
n−i−1

where x is the data and n the number of data bits. E.g. The reflection8 of 2D16(n =8)

E.g. The reflection8of 2D16 (n =8) 001011012is B416(101101002)

The reflection16 of 1234567816 (n =16) (000100100011010001010110011110002) is
1E6A2C4816 (00111100110101000101100010010002).

The reflection32 of 123456789ABCDEF0 (n=32) (00010010001101000101011001111000
100110101011110011011110111100002) is 0F7B3D591E6A2C4816
(000011110111101100111101010110010001111001101010001011000100100022).

The reflection8 of 123456789ABCDEF0 (n =8) (0001001000110100010101100111
1000100110101011110011011110111100002) is 84C2A6E195D3B7F016
(10000100110000101010011011100001100101011101001110110111111100002).

110 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

5.13.1 8-bit CRC calculation

5.13.1.1 8-bit SAE J1850 CRC Calculation

[PRS_E2EProtocol_CRC_00030] d The Crc_CalculateCRC8() function of the CRC
module shall implement the CRC8 routine based on the SAE-J1850 CRC8 Stand-ard:

CRC result width: 8 bits
Polynomial: 1Dh
Initial value: FFh
Input data reflected: No
Result data reflected: No
XOR value: FFh
Check: 4Bh
Magic check: C4h

c()

[PRS_E2EProtocol_CRC_00052] d The Crc_CalculateCRC8() function of the CRC
module shall provide the following CRC results:

Data bytes (hexadecimal) CRC
00 00 00 00 59
F2 01 83 37
0F AA 00 55 79
00 FF 55 11 B8
33 22 55 AA BB CC DD EE FF CB
92 6B 55 8C
FF FF FF FF 74

c()

5.13.1.2 8-bit 0x2F polynomial CRC Calculation

[PRS_E2EProtocol_CRC_00042] d The Crc_CalculateCRC8H2F() function of the
CRC module shall implement the CRC8 routine based on the generator polynomial
0x2F:

CRC result width: 8 bits
Polynomial: 2Fh
Initial value: FFh
Input data reflected: No
Result data reflected: No

111 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

XOR value: FFh
Check: DFh
Magic check: 42h

c()

[PRS_E2EProtocol_CRC_00053] d The Crc_CalculateCRC8H2F() function of the
CRC module shall provide the following CRC results:

Data bytes (hexadecimal) CRC
00 00 00 00 12
F2 01 83 C2
0F AA 00 55 C6
00 FF 55 11 77
33 22 55 AA BB CC DD EE FF 11
92 6B 55 33
FF FF FF FF 6C

c()

5.13.2 16-bit CRC calculation

5.13.2.1 16-bit CCITT-FALSE CRC16

[PRS_E2EProtocol_CRC_00002] d The CRC module shall implement the CRC16 rou-
tine based on the CCITT-FALSE CRC16 Standard: Note concerning the standard doc-
ument [8]: The computed FCS is equal to CRC16 XOR FFFFh when the frame is
built (first complement of the CCITT-FALSE CRC16). For the verification, the CRC16
(CCITT-FALSE) is computed on the same data + FCS, and the resulting value is always
1D0Fh. Note that, if during the verification, the check would have been done on data +
CRC16 (i.e. FCS XOR FFFFh) the resulting value would have been 0000h that is the

CRC result width: 16 bit-
s

Polynomial: 1021h
Initial value: FFFFh
Input data reflected: No
Result data reflected: No
XOR value: 0000h
Check: 29B1h
Magic check: 0000h

112 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

c(SRS_LIBS_08525)

[PRS_E2EProtocol_CRC_00054] d The Crc_CalculateCRC16() function of the CRC
module shall provide the following CRC results:

Data bytes (hexadecimal) CRC
00 00 00 00 84C0
F2 01 83 D374
0F AA 00 55 2023
00 FF 55 11 B8F9
33 22 55 AA BB CC DD EE FF F53F
92 6B 55 0745
FF FF FF FF 1D0F

c()

5.13.3 32-bit CRC calculation

5.13.3.1 32-bit Ethernet CRC Calculation

[PRS_E2EProtocol_CRC_00003] d The CRC module shall implement the CRC32 rou-
tine based on the IEEE-802.3 CRC32 Ethernet Standard:

CRC result width: 32 bits
Polynomial: 04C11DB7h
Initial value: FFFFFFFFh
Input data reflected: Yes
Result data reflected: Yes
XOR value: FFFFFFFFh
Check: CBF43926h
Magic check*: DEBB20E3h

*Important note: To match the magic check value, the CRC must be appended in little
endian format, i.e. low significant byte first. This is due to the reflections of the input
and the result c(SRS_LIBS_08525)

[PRS_E2EProtocol_CRC_00055] d The Crc_CalculateCRC32() function of the CRC
module shall provide the following CRC results:

Data bytes (hexadecimal) CRC
00 00 00 00 2144DF1C
F2 01 83 24AB9D77
0F AA 00 55 B6C9B287
00 FF 55 11 32A06212

113 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

33 22 55 AA BB CC DD EE FF B0AE863D
92 6B 55 9CDEA29B
FF FF FF FF FFFFFFFF

c()

5.13.3.2 32-bit 0xF4ACFB13 polynomial CRC calculation

This 32-bit CRC function is described in [14]. It has an advantage with re-
spect to the Ethernet CRC - it has a Hamming Distance of 6 up to 4kB.
[PRS_E2EProtocol_CRC_00056] d The CRC module shall implement the CRC32 rou-
tine using the 0x1’F4’AC’FB’13 (0xF4’AC’FB’13) polynomial:

CRC result width: 32 bits
Polynomial: F4’AC’FB’13h
IInitial value: FFFFFFFFh
Input data reflected: Yes
Result data reflected: Yes
XOR value: FFFFFFFFh
Check: 16’97’D0’6Ah
Magic check*: 90’4C’DD’BFh
Hamming distance: 6, up to 4096 bytes

(including CRC)

*Important note: To match the magic check value, the CRC must be appended in little
endian format, i.e. low significant byte first. This is due to the reflections of the input
and the result.

c()

There are three notations for encoding the polynomial, so to clarify, all three notations
are shown:

1 Polynomial as binary 0001’0100’0010’1111’
0000’1110’0001’1110’
1011’1010’1001’1110’
1010’0011’0110’1001’
0011

2 Normal representation with high
bit

01’42’F0’E1’EB’A9 EA’36’93h

3 Normal representation 42’F0’E1’EB’A9’EA’36’93h
4 Reversed reciprocal representa-

tion (=Koopman representation)
A1’78’70’F5’D4’F5’1B’49h

114 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

Notes:

1. Normal representation with high bit = hex representation of polynomial as bi-nary

2. Normal representation with high bit = Koopman representation * 2 + 1

[PRS_E2EProtocol_CRC_00057] d The Crc_CalculateCRC32P4() function of the CR-
C module shall provide the following CRC results:

Data bytes (hexadecimal) CRC
00 00 00 00 6FB32240h
F2 01 83 4F721A25h
0F AA 00 55 20662DF8h
00 FF 55 11 9BD7996Eh
33 22 55 AA BB CC DD EE FF A65A343Dh
92 6B 55 EE688A78h
FF FF FF FF FFFFFFFFh

c(SRS_LIBS_08525)

5.13.4 64-bit CRC calculation

5.13.4.1 64-bit ECMA polynomial CRC calculation

This 62-bit CRC function is described in [15]. It has a good hamming distance of 4, for
long data (see below).

[PRS_E2EProtocol_CRC_00062] d The CRC module shall implement the CRC64 rou-
tine using the polynomial: 0x1’42’F0’E1’EB’A9’EA’36’93 (0x42’F0’E1’EB’A9’EA’36’93)

CRC result width: 64 bits
Polynomial: 42’F0’E1’EB’A9’EA’36’93h
Initial value: FFFFFFFFFFFFFFFFh
Input data reflected: Yes
Result data reflected: Yes
XOR value: FFFFFFFFFFFFFFFFh
Check: 99’5D’C9’BB’DF’19’39’FAh
Magic check*: 49’95’8C’9A’BD’7D’35’3Fh
Hamming distance: 4, up to almost 8 GB

*Important note: To match the magic check value, the CRC must be appended in little
endian format, i.e. low significant byte first. This is due to the reflections of the input
and the result. c(SRS_LIBS_08525)

There are three notations for encoding the polynomial, so to clarify, all three nota-tions
are shown:

115 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

1 Polynomial as binary 0001’0100’0010’1111’
0000’1110’0001’1110’
1011’1010’1001’1110’
1010’0011’0110’1001’
0011

2 Normal representation with high
bit

01’42’F0’E1’EB’A9’EA’36’93h

3 Normal representation 42’F0’E1’EB’A9’EA’36’93h
4 Reversed reciprocal representa-

tion (=Koopman representation)
A1’78’70’F5’D4’F5’1B’49h

Notes:

1. Normal representation with high bit = hex representation of polynomial as bi-nary

2. Normal representation with high bit = Koopman representation * 2 + 1

[PRS_E2EProtocol_CRC_00063] d The Crc_CalculateCRC64() function of the CRC
module shall provide the following CRC results:

Data bytes (hexadecimal) CRC
00 00 00 00 F4A586351E1B9F4Bh
F2 01 83 319C27668164F1C6h
0F AA 00 55 54C5D0F7667C1575h
00 FF 55 11 A63822BE7E0704E6h
33 22 55 AA BB CC DD EE FF 701ECEB219A8E5D5h
92 6B 55 5FAA96A9B59F3E4Eh
FF FF FF FF FFFFFFFF00000000h

c(SRS_LIBS_08525)

6 E2E API specification

This chapter defines an abstract API of E2E supervision. E2E is supposed to be in-
voked by middleware, but the results of checks are visible to the application, so this
chapter is split into two parts.

6.1 API of middleware to applications

The API to the applications is imposed by the middleware (e.g. RTE or ARA). E2E
provides an additional output object providing E2E check results.

[PRS_E2EProtocol_USE_00321] d The middleware shall provide, for each exchanged
dataRecord, a set of functions:

116 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

• middleware_send(in dataRecord)

• middleware_receive(out dataRecord, out e2eResult)

c(RS_E2E_08534)

[PRS_E2EProtocol_00322] d The e2eResult shall contain pieces of information:

• e2eStatus: Profile-independent status of the reception on one single Data in one
cycle. Possible values are: OK, REPEATED, WRONGSEQUENCE, NOTAVAIL-
ABLE, NONEWDATA.

• e2eState: Status of the communication channel exchanging the data. Possible
values are: VALID, DEINIT, NODATA, INIT, INVALID.

c(RS_E2E_08534)

6.2 API of E2E

The E2E interface is independent from any middleware. It is supposed to be used
for vsomeip, but it could work for any other middleware or software services, e.g. a
database requesting to protect its data.

The interface between the middleware and E2E operates on the serialized data, where:
E2E adds E2E header (sender side) and E2E check E2E header (receiver side).

[PRS_E2EProtocol_00323] d E2E protocol shall provide the following interface:

• E2E_check(in dataID, inout serializedData)

• E2E_protect(in dataID, inout serializedData): e2eResult

where:

• dataID is a unique identifier of the exchanged data/information. In case of multiple
instantiation, each single instance gets typically a separate dataID, even if the
same type of information is transmitted

• serializedData - vector/array of serialized data, where E2E header is located, next
to serialized data

• e2eResult - result of E2E checks, see previous section for the definition.

c(RS_E2E_08534)

The middleware is responsible to provide an adaptation to E2E functional interface.

[PRS_E2EProtocol_00318] d The middleware shall determine the DataID of the cur-
rently exchanged information. c(RS_E2E_08534)

For example, in case of vsomeip, it needs to determine DataID based on servicei-
d/eventid/instanceid tuple.

117 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

[PRS_E2EProtocol_00319] d The middleware invoke E2E functions providing them
the DataID together with the data. c(RS_E2E_08534)

[PRS_E2EProtocol_00320] d On the receiver side, the middleware shall provide the
e2eResult determined by E2E to the receiver. c(RS_E2E_08534)

7 Configuration Parameters

E2E supervision has the following configuration options for each protected data. Note
that it is platform-specific how middleware associates a middleware communication
channel (e.g. I-PDU or event) with E2E communication protection.

For each DataID, which uniquely represents data exchanged, there is a set of configu-
ration options.

[PRS_E2EProtocol_00324] d The following options shall be available for a E2E-
protected data:

Parameters Profile Description

dataID 1, 4, 5,
6, 7, 11

This represents a unique numerical identifier. Note: ID is used for protection a-
gainst masquerading. The details concerning the maximum number of values (this
information is specific for each E2E profile) applicable for this attribute are con-
trolled by a semantic constraint that depends on the category of the EndToEnd-
Protection.

dataId is used as a unique identifier of a configuration object. One dataId can
appear only once in the configuration.

profileName all This represents the identification of the concrete E2E profile. Possible profiles: 1
(only CP), 2 (only CP), 4, 5, 6, 7, 11, 22.

dataLength 1, 2, 5,
11, 22

For fixed size data: length of data in bits.

minDataLength 4, 6, 7 For variable size data: minimum length of data in bits.

maxDataLength 4, 6, 7 For variable size data: maximum length of data in bits.

dataIdList 2, 22 List of 16 dataID values, where a a different value is transmitted depending on
counter value.

dataIdMode 1, 11 This attribute describes the inclusion mode that is used to include the two-byte
Data ID in E2E communication protection.

offset 2, 4, 5,
6, 7, 22

Offset of the E2E header in the Data[] array in bits.

counterOffset 1, 11 Offset of the counter in the Data[] array in bits.

crcOffset 1, 11 Offset of the CRC in the Data[] array in bits.

dataIdNibbleOffset 1, 11 Offset of the dataID nibble in the Data[] array in bits.

maxDeltaCounter 4, 5, 6,
7, 11, 12

Maximum allowed difference between the counter value of the current message
and the previous valid message.

Parameters of legacy profiles

maxDeltaCounterInit 1, 2 Initial maximum allowed gap between two counter values of two consecutively
received valid Data. The maxDeltaCounter is increased on each reception try but
only reset when receiving a valid message. This is to compensate for and tolerate
lost messages.

maxNoNewOrRepeatedData 1, 2 The maximum amount of missing or repeated Data which the receiver does not
expect to exceed under normal communication conditions.

syncCounterInit 1, 2 The number of messages required for validating the consistency of the counter
after exceeding the maxNoNewOrRepeatedData threshold.

118 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

profileBehavior 1, 2 Mapping of specific profile status values to unified profileStatus. False: legacy
behavior, as before AUTOSAR Classic Platform Release 4.2,True: mapping ac-
cording to new profiles (profile 4 and newer) interpretation of status, introduced in
AUTOSAR Classic Platform Release 4.2.

Parameters of E2E State Machine

windowSize Size of the monitoring window (ProfileStatus circular buffer) for the state machine.

maxErrorStateInit Maximum number of checks in which ProfileStatus equal to E2E_P_ERROR was determined,
within the last WindowSize checks, for the state E2E_SM_INIT.

maxErrorStateInvalid Maximum number of checks in which ProfileStatus equal to E2E_P_ERROR was determined,
within the last WindowSize checks, for the state E2E_SM_INVALID.

maxErrorStateValid Maximum number of checks in which ProfileStatus equal to E2E_P_ERROR was determined,
within the last WindowSize checks, for the state E2E_SM_VALID.

minOkStateInit Minimum number of checks in which ProfileStatus equal to E2E_P_OK was determined,
within the last WindowSize checks, for the state E2E_SM_INIT.

minOkStateInvalid Minimum number of checks in which ProfileStatus equal to E2E_P_OK was determined,
within the last WindowSize checks, for the state E2E_SM_INVALID.

minOkStateValid Minimum number of checks in which ProfileStatus equal to E2E_P_OK was determined,
within the last WindowSize checks, for the state E2E_SM_VALID.

c(RS_E2E_08534)

8 Protocol usage and guidelines

This chapter contains requirements on usage of E2E Supervision when designing and
implementing safety-related systems, which are depending on E2E communication
protection and which are not directly related to some specific functionality. Note that
chapter 5 also provides several requirements on usage.

8.1 Periodic use of E2E check

[PRS_E2EProtocol_USE_00325] d The E2E check function shall be invoked at least
once within FTTI (FTTI is for the safety goals from which the requirements for this E2E
checks are derived). c(RS_E2E_08528)

8.2 Error handling

The E2E Supervision itself does not handle detected communication errors. It only
detects such errors for single received data elements and returns this information to
the callers (e.g. SW-Cs), which have to react appropriately. A general standardization
of the error handing of an application is usually not possible.

[PRS_E2EProtocol_USE_00235] d The user (caller) of E2E Supervision, in particular
the receiver, shall provide the error handling mechanisms for the faults detected by the
E2E Supervision. c(RS_E2E_08528)

119 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

8.3 Maximal lengths of Data, communication buses

The length of the message and the achieved hamming distance for a given CRC are
related. To ensure the required diagnostic coverage the maximum length of data ele-
ments protected by a CRC needs to be selected appropriately. The E2E profiles are
intended to protect inter-ECU communication with lengths as listed in the table below

E2E Profile Max applicable length including control fields for inter-ECU
communication

E2E Profile 1 and 11 32B
E2E Profile 2 and 22 32B
E2E Profile 4 4 kB
E2E Profile 5 4 kB
E2E Profile 6 4 kB
E2E Profile 7 4 MB

In E2E Profiles 1 and 2, the Hamming Distance is 2, up to the given lengths. Due to 8
bit CRC, the burst error detection is up to 8 bits.

[PRS_E2EProtocol_UC_00051] d In case of inter-ECU communication over FlexRay,
the length of the complete Data (including application data, CRC and counter) protect-
ed by E2E Profile 1 or E2E Profile 2 should not exceed 32 bytes. c(RS_E2E_08528)

This requirement only contains a reasonable maximum length evaluated during the de-
sign of the E2E profiles. The responsibility to ensure the adequacy of the implemented
E2E communication protection using E2E Supervision for a particular system remains
by the user.

[PRS_E2EProtocol_UC_00061] d In case of CAN or LIN the length of the complete
data element (including application data, CRC and counter) protected by E2E Profile 1
should not exceed 8 bytes. c(RS_E2E_08528)

[PRS_E2EProtocol_UC_00351] d The length of the complete Data (including applica-
tion data and E2E header) protected by E2E Profile 4, 5 or 6 shall not exceed 4kB. c
(RS_E2E_08528)

[PRS_E2EProtocol_UC_00316] d The length of the complete Data (including appli-
cation data and E2E header) protected by E2E Profile 7 shall not exceed 4MB. c
(RS_E2E_08528)

[PRS_E2EProtocol_UC_00236] d When using E2E Supervision, the designer of the
functional or technical safety concept of a particular system using E2E Supervision
shall evaluate the maximum permitted length of the protected Data in that system, to
ensure an appropriate error detection capability. c(RS_E2E_08539)

Thus, the specific maximum lengths for a particular system may be shorter (or maybe
in some rare cases even longer) than the recommended maximum applicable lengths
defined for the E2E Profiles.

120 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

E2E Protocol Specification
AUTOSAR FO Release 1.2.0

If the protected data length exceeds the network bus frame limit (or payload limit), the
data can be segmented on the sender side after the E2E communication protection,
and be assembled on the receiver side before the E2E evaluation. The possible faults
happening during segmentation/desegmentation can be considered as "corruption of
information".

[PRS_E2EProtocol_UC_00170] d When designing the functional or technical safety
concept of a particular system any user of E2E shall ensure that the transmission of one
undetected erroneous data element in a sequence of data elements between sender
and receiver, protected with profile 1, 11, 2, 22, will not directly lead to the violation of
a safety goal of this system. c()

In other words, SW-C shall be able to tolerate the reception of one erroneous data
element, which error was not detected by the E2E Supervision. What is not required is
that an SW-C tolerates two consecutive undetected erroneous data elements, because
it is enough unlikely that two consecutive Data are wrong AND that for both Data the
error remains undetected by the E2E Supervision.

When using LIN as the underlying communication network the residual error rate on
protocol level is several orders of magnitude higher (compared to FlexRay and CAN)
for the same bit error rate on the bus. The LIN checksum compared to the protocol
CRC of FlexRay (CRC-24) and CAN (CRC-15) has different properties (e.g. hamming
distance) resulting in a higher number of undetected errors coming from the bus (e.g.
due to EMV). In order to achieve a maximum allowed residual error rate on application
level, different error detection capabilities of the application CRC may be necessary,
depending on the strength of the protection on the bus protocol level.

[PRS_E2EProtocol_UC_00237] d Any user of E2E Supervision shall ensure, that with-
in one implementation of a communication network every safety-related Data, protect-
ed by E2E Supervision, has a unique Data ID (E2E Profiles 1, 4, 5, 6, 7, 11) or a unique
DataIDList[] (E2E Profiles 2, 22). c(RS_E2E_08528)

E2E Profile 1 with E2E_P01DataIDMode = E2E_P01_DATAID_BOTH and E2E Profile
11 with E2E_P11DataIDMode = E2E_P11_DATAID_BOTH uses an implicit 2-byte Da-
ta ID, over which CRC8 is calculated. As a CRC over two different 2-byte numbers
may result with the same CRC, some precautions must be taken by the user. See
PRS_E2EProtocol_USE_00072 and PRS_E2EProtocol_USE_00073.

121 of 121
— AUTOSAR CONFIDENTIAL —

Document ID 849: AUTOSAR_PRS_E2EProtocol

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains
	4.3 Background information concerning functional safety
	4.3.1 Functional safety and communication
	4.3.2 Sources of faults in E2E communication
	4.3.2.1 Software faults
	4.3.2.2 Random hardware faults
	4.3.2.3 External influences, environmental stress

	4.3.3 Communication faults
	4.3.3.1 Repetition of information
	4.3.3.2 Loss of information
	4.3.3.3 Delay of information
	4.3.3.4 Insertion of information
	4.3.3.5 Masquerading
	4.3.3.6 Incorrect addressing
	4.3.3.7 Incorrect sequence of information
	4.3.3.8 Corruption of information
	4.3.3.9 Asymmetric information sent from a sender to multiple receivers
	4.3.3.10 Information from a sender received by only a subset of the receivers
	4.3.3.11 Blocking access to a communication channel

	5 Functional specification
	5.1 Overview of communication protection
	5.2 Overview of E2E Profiles
	5.2.1 Error detection

	5.3 Specification of E2E Profile 1 (Only for CP)
	5.3.1 Data Layout
	5.3.2 Counter
	5.3.3 Data ID
	5.3.4 CRC calculation
	5.3.5 Timeout detection
	5.3.6 E2E Profile 1 variants
	5.3.7 E2E_P01Protect
	5.3.8 Calculate CRC
	5.3.9 E2E_P01Check
	5.3.10 E2E Profile 1 Protocol Examples
	5.3.10.1 DataIDMode set to E2E_P01DATAID_ALT
	5.3.10.2 DataIDMode set to E2E_P01DATAID_LOW
	5.3.10.3 DataIDMode set to E2E_P01DATAID_NIBBLE

	5.4 Specification of E2E Profile 2 (only for CP)
	5.4.1 E2E_P02Protect
	5.4.2 E2E_P02Check

	5.5 Specification of E2E Profile 4
	5.5.1 Data Layout
	5.5.1.1 User data layout
	5.5.1.2 Header layout

	5.5.2 Counter
	5.5.3 Length
	5.5.4 CRC
	5.5.5 Timeout detection
	5.5.6 E2E Profile 4 variants
	5.5.7 E2E_P04Protect
	5.5.8 E2E_P04Check

	5.6 Specification of E2E Profile 5
	5.6.1 Data Layout
	5.6.1.1 User data layout
	5.6.1.2 Header layout

	5.6.2 Counter
	5.6.3 Data ID
	5.6.4 Length
	5.6.5 CRC
	5.6.6 Timeout detection
	5.6.7 E2E_P05Protect
	5.6.8 E2E_P05Check

	5.7 Specification of E2E Profile 6
	5.7.1 Data Layout
	5.7.1.1 User data layout
	5.7.1.2 Header layout

	5.7.2 Counter
	5.7.3 Data ID
	5.7.4 Length
	5.7.5 CRC
	5.7.6 Timeout detection
	5.7.7 E2E_P06Protect
	5.7.8 E2E_P06Check

	5.8 Specification of E2E Profile 7
	5.8.1 Data Layout
	5.8.1.1 User data layout
	5.8.1.2 Header layout

	5.8.2 Counter
	5.8.3 Data ID
	5.8.4 Length
	5.8.5 CRC
	5.8.6 Timeout detection
	5.8.7 E2E Profile 7 variants
	5.8.8 E2E_P07Protect
	5.8.9 E2E_P07Check

	5.9 Specification of E2E Profile 11
	5.9.1 Data Layout
	5.9.1.1 User data layout
	5.9.1.2 Header layout

	5.9.2 Counter
	5.9.3 Data ID
	5.9.4 Length
	5.9.5 CRC
	5.9.6 Timeout detection
	5.9.7 E2E_P11Protect
	5.9.8 E2E_P11Check

	5.10 Specification of E2E Profile 22
	5.10.1 Data Layout
	5.10.1.1 User data layout
	5.10.1.2 Header layout

	5.10.2 Counter
	5.10.3 Data ID
	5.10.4 Length
	5.10.5 CRC
	5.10.6 Timeout detection
	5.10.7 E2E_P22Protect
	5.10.8 E2E_P22Check

	5.11 Specification of E2E state machine
	5.11.1 Overview of the state machine
	5.11.2 State machine specification

	5.12 Basic Concepts of CRC Codes
	5.12.1 Mathematical Description
	5.12.2 Euclidian Algorithm for Binary Polynomials and Bit-Sequences
	5.12.3 CRC calculation, Variations and Parameter

	5.13 CRC Standard Parameters
	5.13.1 8-bit CRC calculation
	5.13.1.1 8-bit SAE J1850 CRC Calculation
	5.13.1.2 8-bit 0x2F polynomial CRC Calculation

	5.13.2 16-bit CRC calculation
	5.13.2.1 16-bit CCITT-FALSE CRC16

	5.13.3 32-bit CRC calculation
	5.13.3.1 32-bit Ethernet CRC Calculation
	5.13.3.2 32-bit 0xF4ACFB13 polynomial CRC calculation

	5.13.4 64-bit CRC calculation
	5.13.4.1 64-bit ECMA polynomial CRC calculation

	6 E2E API specification
	6.1 API of middleware to applications
	6.2 API of E2E

	7 Configuration Parameters
	8 Protocol usage and guidelines
	8.1 Periodic use of E2E check
	8.2 Error handling
	8.3 Maximal lengths of Data, communication buses

