AUTOSAR

Document Title | E2E Protocol Specification
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 849
Document Status Final
Part of AUTOSAR Standard Foundation
Part of Standard Release 1.5.1
Document Change History
Date Release | Changed by Description
AUTOSAR e clarification on choosing suitable
2019-03-29 | 1.5.1 Release maximum data lengths for E2E
Management profiles.
e Migrated all functional specifications
from Classic Platform’s SWS
E2ELibrary into Foundation’s E2E
Protocol Specification
e Moved all figures and tables out of
AUTOSAR specifications and added references
2018-10-31 | 1.5.0 Release to them
Management e Fixed duplicate/missing figures in
profiles 2 (Calculate DeltaCounter), 5
(Read CRC), 6 (Read Counter) and
11 (Read DatalDNibble).
e Added protocol examples for each
profile
AUTOSAR
2018-03-29 | 1.4.0 Release e No content Changes
Management
AUTOSAR
2017-12-08 | 1.3.0 Release e No content Changes
Management
AUTOSAR
Management

AUTOSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTO SAR

Table of Contents

—

Introduction and functional overview

2 Acronyms and Abbreviations

3 Related documentation

3.1
3.2

Input documents & related standards andnorms
Related specification,

4 Constraints and assumptions

41
4.2
4.3

Limitations
Applicability to cardomains L
Background information concerning functional safety

4.3.1
4.3.2

4.3.3

Functional safety and communication

Sources of faults in E2E communication
4.3.2.1 Softwarefaults
4.3.2.2 Random hardware faults
4.3.2.3 External influences, environmental stress

Communicationfaults
4.3.3.1 Repetition of information
4.3.3.2 Loss of information
4.3.3.3 Delay of information
4.3.3.4 Insertion of information.
4.3.3.5 Masquerading
4.3.3.6 Incorrectaddressing
4.3.3.7 Incorrect sequence of information.
4.3.3.8 Corruption of information
4.3.3.9 Asymmetric information sent from a sender to multi-

plereceivers
4.3.3.10 Information from a sender received by only a subset

ofthereceivers
4.3.3.11 Blocking access to a communication channel

5 Requirements Tracing

6 Functional specification

6.1
6.2

6.3

Overview of communication protection
Overview of E2E Profiles,

6.2.1

Error detectiono

Specification of E2E Profile 1 (Only forCP)

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5

Data Layout
Counter e e
DatalD e
CRCcalculation
Timeoutdetection,

© o © o

10
10
10
10
11
11
11
12
12
12
12
12
12
12
12
13
13

13

13
13

14

AUTO SAR

6.4

6.5

6.6

6.7

6.3.6 E2E Profiletvariants 26
6.3.7 E2E PO1Protect 26
6.3.8 Calculate CRC 28
6.3.9 E2E PO1Check, 29
6.3.10 E2E Profile 1 Protocol Examples 31
6.3.10.1 DatalDMode set to E2E_PO1_DATAID_ALT 31
6.3.10.2 DatalDMode set to E2E_PO1DATAID_LOW 32
6.3.10.3 DatalDMode set to E2E_PO1DATAID_NIBBLE 32
Specification of E2E Profile 2 (only forCP) 33
6.4.1 E2E PO2Protect 35
6.4.2 E2E_P02Check 37
6.4.3 E2E Profile 2 Protocol Examples 43
Specification of E2E Profile 4 44
6.5.1 DataLayout 45
6.5.1.1 Userdatalayout 45
6.5.1.2 Headerlayout 45
6.5.2 Counter e 46
6.5.3 DatalD 46
6.5.4 Length 47
6.5.5 CRC . . . 47
6.5.6 Timeoutdetection 47
6.5.7 E2E Profile4 variants, 47
6.5.8 E2E PO4Protect 48
6.5.9 E2E _P04Check, 52
6.5.10 E2E Profile 4 Protocol Examples 56
Specification of E2E Profile 5 oL 57
6.6.1 Datalayout 58
6.6.1.1 Userdatalayout 58
6.6.1.2 Headerlayout 58
6.6.2 Counter e 58
6.6.3 DatalD 59
6.6.4 Length 59
6.6.5 CRC . . . e 59
6.6.6 Timeout detection 60
6.6.7 E2E PO5Protect 60
6.6.8 E2E_PO5Check 64
6.6.9 E2E Profile 5 Protocol Examples 66
Specification of E2E Profile 6 67
6.7.1 Data Layout 68
6.7.1.1 Userdatalayout 68
6.7.1.2 Headerlayout 68
6.7.2 Counter e 69
6.7.3 DatalD 69
6.7.4 Length 70
6.7.5 CRC . . . e 70

6.7.6 Timeout detection, 70

AUTO SAR

6.7.7 E2E PO6Protect 71
6.7.8 E2E_P06Check 74
6.7.9 E2E Profile 6 Protocol Examples 78
6.8 Specification of E2E Profile 7 79
6.8.1 DatalLayout 80
6.8.1.1 Userdatalayout 80
6.8.1.2 Headerlayout 80
6.8.2 Counter e 81
6.8.3 DatalD 81
6.8.4 Length 82
6.8.5 CRC . . . e 82
6.8.6 Timeout detection 82
6.8.7 E2E Profile 7variants oL 83
6.8.8 E2E PO7Protect 83
6.8.9 E2E_PO7Check 87
6.8.10 E2E Profile 7 Protocol Examples 90
6.9 Specification of E2E Profile 11 91
6.9.1 Data Layout 92
6.9.1.1 Userdatalayout 92
6.9.1.2 Headerlayout 93
6.9.2 Counter 94
6.9.3 DatalD 95
6.9.4 Length 95
6.9.5 CRC . . . e 95
6.9.6 Timeoutdetection, 96
6.9.7 E2E P11Protect 96
6.9.8 E2E_P11Check 100
6.9.9 E2E Profile 11 Protocol Examples 103
6.9.9.1 DatalDMode set to E2E_P11DATAID_NIBBLE 104
6.9.9.2 DatalDMode set to E2E_P11DATAID_NIBBLE, Off-
setsetto64 105
6.10 Specification of E2E Profile22. 105
6.10.1 Data Layout 106
6.10.1.1 Userdatalayout 106
6.10.1.2 Headerlayout 106
6.10.2 Counter 107
6.10.3 DatalD 107
6.10.4 Length 108
6.10.5 CRC . . . e 108
6.10.6 Timeout detection 108
6.10.7 E2E P22Protect 109
6.10.8 E2E_P22Check 111
6.10.9 E2E Profile 22 Protocol Examples 114
6.10.9.1 Offsetsetto64, 115
6.11 Specification of E2E state machine 116

6.11.1 Overview of the state machine 116

AUTO SAR

6.11.2 State machine specification 117

6.12 Basic Conceptsof CRCCodes 121
6.12.1 Mathematical Description 121

6.12.2 Euclidian Algorithm for Binary Polynomials and Bit-Sequences 124

6.12.3 CRC calculation, Variations and Parameter 125

6.13 CRC Standard Parameters. 125
6.13.1 8-bit CRC calculation 127

6.13.1.1 8-bit SAE J1850 CRC Calculation. 127

6.13.1.2 8-bit 0x2F polynomial CRC Calculation 127

6.13.2 16-bit CRC calculation. 128

6.13.2.1 16-bit CCITT-FALSECRC16. 128

6.13.3 32-bit CRC calculation. 129

6.13.3.1 32-bit Ethernet CRC Calculation 129

6.13.3.2 32-bit 0XxF4ACFB13 polynomial CRC calculation . . 130

6.13.4 64-bit CRC calculation. 131

6.13.4.1 64-bit ECMA polynomial CRC calculation 131

7 E2E API specification 133
7.1 APl of middleware to applications 133
7.2 APIOfE2E e 133

8 Configuration Parameters 135
9 Protocol usage and guidelines 137
91 E2Eand SOME/IP e 137
9.2 Periodicuseof E2Echeck 137
9.3 Errorhandling 138

9.4 Maximal lengths of Data, communicationbuses 138

AUTOSAR

1 Introduction and functional overview

The concept of E2E communication protection assumes that safety-related data ex-
change shal Ibe protected at runtime against the effects of faults on the communica-
tion link (see Figure 1.1). Faults detected between a sender and a receiver using E2E
communication protection include systematic software faults, such as fauls that are
introduced on the lower communication layers of sender or receiver, and random hard-
ware faults introduced by the MCU hardware, communication peripherals, transceivers,
communication lines or other communication infrastructure.

Examples for such faults are random HW faults (e.g. corrupt registers of a CAN
transceiver), interference (e.g. due to EMC), and systematic faults of the lower com-
munication layers (e.g. RTE, I0C, COM and network stacks).

ECU 1 ECU 2
Sender Receiver

upper upper
Communication Communication
Layers Layers
E2E E2E
Communication Communication
Protection Protection
Lower Lower
Communication Communication
Layers Layers

MCU Hardware MCU Hardware

Communication
Infrastructure

Figure 1.1: Overview of E2E communication protection between a sender and a receiver

By using E2E communication protection mechanisms, faults in lower software and
hardware layers can be detected and handled at runtime. The E2E Supervision pro-
vides mechanisms for E2E communication protection, adequate for safety-related com-
munication having requirements up to ASIL D.

The algorithms of protection mechanisms are implemented in the E2E Supervision.
The callers of the E2E Supervision are responsible for the correct usage of the E2E
Supervision, in particular for providing correct parameters the E2E Supervision rou-
tines.

AUTOSAR

The E2E communication protection allows the following:
1. It protects the safety-related data to be sent by adding control data,
2. It verifies the safety-related data received using this control data, and
3. It provides the check result to the receiver, which then has to handle it sufficiently.

To provide the appropriate solution addressing flexibility and standardization,
AUTOSAR specifies a set of flexible E2E profiles that implement an appropriate combi-
nation of E2E communication protection mechanisms. Each specified E2E profile has
a fixed set of mechanisms, as well as configuration options to configure the protocol
header layout and status evaluation on the receiver side.

The E2E Supervision can be invoked from communication middleware e.g. from
Adaptive Platform’s ARA, Classic Platform’s RTE. It can be also invoked in a non-
standardized way from other software, e.g. non-volatile memory managers, local IPCs,
or intra-ECU bus stacks.

Appropriate usage of the E2E Supervision to fulfill the specific safety requirements for
communication depends on several aspects. The specified profiles are capable, to
a high probability, of detecting a large variety of communication faults. However, the
use of a specific E2E profile requires the user to demonstrate that the selected pro-
file provides sufficient error detection capabilities for the considered use case (taking
into account various contributing factors, such as hardware failure rates, bit error rates,
number of nodes in the network, repetition rate of messages, the usage of a gateway,
potential software faults on the communication channel), as well as appropriate reac-
tion on detected faults (e.g. by revoking repeated messages, determining timed-out
communication or reacting on corrupt messages by initiating a safety reaction).

This specification specifies also the functionality, APl and the configuration of the CRC
routines.

The following routines for CRC calculation are specified:
e CRC8: SAEJ1850

CRC8H2F: CRC8 0x2F polynomial

CRC16

CRC32

CRC32P4: CRC32 0x1F4ACFB13 polynomial

e CRC64: CRC-64-ECMA

For all routines (CRC8, CRC8H2F, CRC16, CRC32, CRC32P4 and CRC64), the fol-
lowing calculation methods are possible:

e Table based calculation: Fast execution, but larger code size (ROM table)

e Runtime calculation: Slower execution, but small code size (no ROM table)

AUTOSAR

e Hardware supported CRC calculation (device specific): Fast execution, less CPU
time

All routines are re-entrant and can be used by multiple applications at the same time.
Hardware supported CRC calculation may be supported by some devices in the future.

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Communica-
tion Management that are not included in the [1, AUTOSAR glossary].

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_TR_Glossary

3.2 Related specification

1. SAE-J1850 8-bit CRC
2. CCITT-FALSE 16-bit CRC. Refer to:

ITU-T Recommendation X.25 (1096) (Previously ,CCITT Recommendation”)
SERIES X: DATA NETWORKS AND OPEN SYSTEM COMMUNICATION

Public data networks - Interfaces

Interface between Data Terminal Equipment (DTE) and Data Circuit-terminating
Equipment (DCE) for terminals operating in the packet mode and connected to
public data networks by dedicated circuit

Section 2.2.7.4 ,Frame Check Sequence (FCS) field” and Appendix | ,Examples
of data link layer transmitted bit patterns by the DCE and the DTE”
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.
25-199610-1I!!PDF-E&type=items

3. IEEE 802.3 Ethernet 32-bit CRC
4. "32-Bit Cyclic Redundancy Codes for Internet Applications” [Koopman 2002]

5. Collection and evaluation of CRC polynomials by Philip Koopman, Carnegie Mel-
lon University https://users.ece.cmu.edu/~koopman/crc/

http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.25-199610-I!!PDF-E&type=items
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.25-199610-I!!PDF-E&type=items
https://users.ece.cmu.edu/~koopman/crc/

AUTOSAR

4 Constraints and assumptions

4.1 Limitations

E2E communication protection is limited to periodic or semi-periodic data communi-
cation paradigm, where the receiver (subscriber) has an expectancy on the regular
reception of data and in case of communication loss/timeout or error, it performs an
error handling.

Data communication is called sender/receiver in Classic Platform, and it is called event
communication in Adaptive Platform. Note that the word event is a bit confusing as a
periodic communication is required.

This means, a protection of client-server (methods) as well as non-periodic data com-
munication (e.g. transmission only on occurence of a specific event) are not supported
by E2E communication protection.

4.2 Applicability to car domains

The E2E supervision is applicable for the realization of safety-related automotive sys-
tems implemented by various SW-Cs distributed across different ECUs in a vehicle,
interacting via communication links. The Supervision may also be used for intra-ECU
communication (e.g. between memory partitions, processes, OSes/VMs in the same
micorcontroller, between CPU cores or microcontrollers).

4.3 Background information concerning functional safety

This chapter provides some safety background information considered during the de-
sign of the E2E supervision, including the fault model for communication and definition
of sources of faults.

4.3.1 Functional safety and communication

With respect to the exchange of information in safety-related systems, the mechanisms
for the in-time detection of causes for faults, or effects of faults as listed below, can be
used to design suitable safety concepts, e.g. to achieve freedom from interference
between system elements sharing a common communication infrastructure (see ISO
26262-6:2011, annex D.2.4):

e repetition of information;
e loss of information;

e delay of information;

AUTOSAR

e insertion of information;

e masquerade or incorrect addressing of information;

e incorrect sequence of information;

e corruption of information;

e asymmetric information sent from a sender to multiple receivers;

¢ information from a sender received by only a subset of the receivers;

e blocking access to a communication channel.

4.3.2 Sources of faults in E2E communication

E2E communication protection aims to detect and mitigate the causes for or effects of
communication faults arising from:

1. (systematic) software faults,
2. (random) hardware faults,
3. transient faults due to external influences.

These three sources are described in the sections below.

4.3.2.1 Software faults

Software like, communication stack modules and RTE, may contain faults, which are
of a systematic nature.

Systematic faults may occur in any stage of the system’s life cycle including specifica-
tion, design, manufacturing, operation, and maintenance, and they will always appear
when the circumstances (e.g. trigger conditions for the root-cause) are the same. The
consequences of software faults can be failures of the communication, like interruption
of sending of data, overrun of the receiver (e.g. buffer overflow), or underrun of the
sender (e.g. buffer empty). To prevent (or to handle) resulting failures the appropriate
technical measures to detect and handle such faults (e.g. program flow monitoring or
E2E supervision) have to be considered.

4.3.2.2 Random hardware faults

A random hardware fault is typically the result of electrical overload, degradation, aging
or exposure to external influences (e.g. environmental stress) of hardware parts. A ran-
dom hardware fault cannot be avoided completely, but its probability can be evaluated
and appropriate technical measures can be implemented (e.g. diagnostics).

AUTOSAR

4.3.2.3 External influences, environmental stress

This includes influences like EMI, ESD, humidity, corrosion, temperature or mechanical
stress (e.g. vibration).

4.3.3 Communication faults

Relevant faults related to the exchange of information are listed in this section.

4.3.3.1 Repetition of information

A type of communication fault, were information is received more than once.

4.3.3.2 Loss of information

A type of communication fault, were information or parts of information are removed
from a stream of transmitted information.

4.3.3.3 Delay of information

A type of communication fault, were information is received later than expected.

4.3.3.4 Insertion of information

A type of communication fault, were additional information is inserted into a stream of
transmitted information.

4.3.3.5 Masquerading

A type of communication fault, were non-authentic information is accepted as authentic
information by a receiver.

4.3.3.6 Incorrect addressing

A type of communication fault, were information is accepted from an incorrect sender
or by an incorrect receiver.

AUTOSAR

4.3.3.7 Incorrect sequence of information

A type of communication fault, which modifies the sequence of the information in a
stream of transmitted information.

4.3.3.8 Corruption of information

A type of communication fault, which changes information.

4.3.3.9 Asymmetric information sent from a sender to multiple receivers

A type of communication fault, were receivers do receive different information from the
same sender.

4.3.3.10 Information from a sender received by only a subset of the receivers

A type of communication fault, were some receivers do not receive the information.

4.3.3.11 Blocking access to a communication channel

A type of communication fault, were the access to a communication channel is blocked.

AUTO SAR

5 Requirements Tracing

Requirement

Description

Satisfied by

[RS_E2E_08528]

E2E protocol shall provide
different E2E profiles

[PRS_E2E_00012]
[PRS_E2E_00075]
[PRS_E2E_00076]
[PRS_E2E_00085]
[PRS_E2E_00117]
[PRS_E2E_00118]
[PRS_E2E_00119]
[PRS_E2E_00120]
[PRS_E2E_00121]
[PRS_E2E_00122]
[PRS_E2E_00123]
[PRS_E2E_00124]
[PRS_E2E_00125]
[PRS_E2E_00126]
[PRS_E2E_00127]
[PRS_E2E_00128]
[PRS_E2E_00129]
[PRS_E2E_00130]
[PRS_E2E_00132]
[PRS_E2E_00133]
[PRS_E2E_00134]
[PRS_E2E_00135]
[PRS_E2E_00136]
[PRS_E2E_00137]

[PRS_E2E_00138]
[PRS_E2E_00139]
[PRS_E2E_00140]
[PRS_E2E_00141]
[PRS_E2E_00142]
[PRS_E2E_00143]
[PRS_E2E_00145]
[PRS_E2E_00146]
[PRS_E2E_00147]
[PRS_E2E_00148]
[PRS_E2E_00149]
[PRS_E2E_00150]
[PRS_E2E_00151]
[PRS_E2E_00163]
[PRS_E2E_00169]
[PRS_E2E_00190]
[PRS_E2E_00195]
[PRS_E2E_00196]
[PRS_E2E_00217]
[PRS_E2E_00221]
[PRS_E2E_00227]
[PRS_E2E_00228]
[PRS_E2E_00298]
[PRS_E2E_00299]

AUTO SAR

Requirement

Description

Satisfied by

[PRS_E2E_00300]
[PRS_E2E_00301]
[PRS_E2E_00306]
[PRS_E2E_00307]
[PRS_E2E_00329]
[PRS_E2E_00400]
[PRS_E2E_00420]
[PRS_E2E_00484]
[PRS_E2E_00508]
[PRS_E2E_00526]
[PRS_E2E_00540]
[PRS_E2E_00541]
[PRS_E2E_UC_00051]
[PRS_E2E_UC_00061]
[PRS_E2E_UC_00237]
[PRS_E2E_UC_00316]
[PRS_E2E_UC_00351]
[PRS_E2E_UC_00466]
[PRS_E2E_USE_00235]
[PRS_E2E_USE_00325]

[RS_E2E_08529]

Each E2E profile shall use an
appropriate subset of specific
protection mechanisms

[PRS_E2E_00070]
[PRS_E2E_00083]
[PRS_E2E_00218]
[PRS_E2E_00219]
[PRS_E2E_00372]
[PRS_E2E_00394]
[PRS_E2E_00479]
[PRS_E2E_00480]
[PRS_E2E_00503]
[PRS_E2E_00522]

[RS_E2E_08530]

Each E2E profile shall have a
unique Profile ID, define
precisely a set of mechanisms
and its behavior in a
semi-formal way

[PRS_E2E_00196]
[PRS_E2E_00218]
[PRS_E2E_00219]
[PRS_E2E_00372]
[PRS_E2E_00394]
[PRS_E2E_00479]
[PRS_E2E_00480]
[PRS_E2E_00503]
[PRS_E2E_00522]

[RS_E2E_08533]

CRC used in a E2E profile shall
be different than the CRC used
by the underlying physical
communication protocol

[PRS_E2E_00070]
[PRS_E2E_00083]
[PRS_E2E_00218]
[PRS_E2E_00219]
[PRS_E2E_00372]
[PRS_E2E_00394]
[PRS_E2E_00479]
[PRS_E2E_00480]
[PRS_E2E_00503]
[PRS_E2E_00522]

AUTO SAR

Requirement

Description

Satisfied by

[RS_E2E_08534]

E2E Protocol shall provide E2E
Check status to the application

[PRS_E2E_00318]
[PRS_E2E_00319]
[PRS_E2E_00320]
[PRS_E2E_00322]
[PRS_E2E_00323]
[PRS_E2E_00324]
[PRS_E2E_USE_00321]

[RS_E2E_08536]

No description

[PRS_E2E_00082]
[PRS_E2E_00126]
[PRS_E2E_00134]
[PRS_E2E_00330]
[PRS_E2E_00401]
[PRS_E2E_00421]
[PRS_E2E_00485]
[PRS_E2E_00527]

[RS_E2E_08539]

An E2E protection mechanism
for inter-ECU communication of
short to large data shall be
provided

[PRS_E2E_00326]
[PRS_E2E_00329]
[PRS_E2E_00345]
[PRS_E2E_00354]
[PRS_E2E_00355]
[PRS_E2E_00356]
[PRS_E2E_00357]
[PRS_E2E_00358]
[PRS_E2E_00359]
[PRS_E2E_00360]
[PRS_E2E_00361]
[PRS_E2E_00362]
[PRS_E2E_00363]
[PRS_E2E_00364]
[PRS_E2E_00365]
[PRS_E2E_00366]
[PRS_E2E_00367]
[PRS_E2E_00368]
[PRS_E2E_00369]
[PRS_E2E_00375]
[PRS_E2E_00376]
[PRS_E2E_00397]
[PRS_E2E_00399]
[PRS_E2E_00400]

AUTO SAR

Requirement

Description

Satisfied by

[PRS_E2E_00401]
[PRS_E2E_00403]
[PRS_E2E_00404]
[PRS_E2E_00405]
[PRS_E2E_00406]
[PRS_E2E_00407]
[PRS_E2E_00409]
[PRS_E2E_00411]
[PRS_E2E_00412]
[PRS_E2E_00413]
[PRS_E2E_00414]
[PRS_E2E_00416]
[PRS_E2E_00417]
[PRS_E2E_00419]
[PRS_E2E_00420]
[PRS_E2E_00421]
[PRS_E2E_00423]
[PRS_E2E_00424]
[PRS_E2E_00425]
[PRS_E2E_00426]
[PRS_E2E_00427]
[PRS_E2E_00428]
[PRS_E2E_00429]
[PRS_E2E_00430]

[PRS_E2E_00431]
[PRS_E2E_00432]
[PRS_E2E_00433]
[PRS_E2E_00434]
[PRS_E2E_00436]
[PRS_E2E_00466]
[PRS_E2E_00467]
[PRS_E2E_00469]
[PRS_E2E_00470]
[PRS_E2E_00478]
[PRS_E2E_00481]
[PRS_E2E_00482]
[PRS_E2E_00483]
[PRS_E2E_00484]
[PRS_E2E_00486]
[PRS_E2E_00487]
[PRS_E2E_00489]
[PRS_E2E_00490]
[PRS_E2E_00491]
[PRS_E2E_00492]
[PRS_E2E_00493]
[PRS_E2E_00494]
[PRS_E2E_00495]
[PRS_E2E_00496]

AUTO SAR

Requirement

Description

Satisfied by

[PRS_E2E_00497]
[PRS_E2E_00498]
[PRS_E2E_00499]
[PRS_E2E_00500]
[PRS_E2E_00501]
[PRS_E2E_00504]
[PRS_E2E_00505]
[PRS_E2E_00506]
[PRS_E2E_00508]
[PRS_E2E_00509]
[PRS_E2E_00510]
[PRS_E2E_00511]
[PRS_E2E_00512]
[PRS_E2E_00513]
[PRS_E2E_00514]
[PRS_E2E_00515]
[PRS_E2E_00516]
[PRS_E2E_00517]
[PRS_E2E_00518]
[PRS_E2E_00519]
[PRS_E2E_00521]
[PRS_E2E_00523]
[PRS_E2E_00524]
[PRS_E2E_00525]

[PRS_E2E_00526]
[PRS_E2E_00527]
[PRS_E2E_00528]
[PRS_E2E_00529]
[PRS_E2E_00530]
[PRS_E2E_00531]
[PRS_E2E_00532]
[PRS_E2E_00533]
[PRS_E2E_00534]
[PRS_E2E_00535]
[PRS_E2E_00536]
[PRS_E2E_00537]
[PRS_E2E_00539]
[PRS_E2E_00582]
[PRS_E2E_0507]
[PRS_E2E_UC_00236]
[PRS_E2E_UC_00327]
[PRS_E2E_UC_00463]
[PRS_E2E_UC_00464]

[RS_E2E_08540]

E2E protocol shall support
protected periodic/mixed
periodic communication

[PRS E2E_USE_00236]
[PRS_E2E_USE_00237]

AUTOSAR

6 Functional specification

This chapter contains the specification of the internal functional behavior of the E2E
supervision. For general introduction of the E2E supervision, see first chapter 1.

6.1 Overview of communication protection

An important aspect of a communication protection mechanism is its standardization
and its flexibility for different purposes. This is resolved by having a set of E2E Profiles,
that define a combination of protection mechanismsm, a message format, and a set of
configuration parameters.

Moreover, some E2E Profiles have standard E2E variants. An E2E variant is simply
a set of configuration options to be used with a given E2E Profile. For example, in
E2E Profile 1, the positions of CRC and counter are configurable. The E2E variant 1A
requires that CRC starts at bit 0 and counter starts at bit 8.

E2E communication protection works as follows:
e Sender: addition of control fields like CRC or counter to the transmitted data;

e Receiver: evaluation of the control fields from the received data, calculation of
control fields (e.g. CRC calculation on the received data), comparison of calcu-
lated control fields with an expected/received content.

Appdataelement

| Appdataelement l E2EHeader |

|CF1 | cF2 | |CF[x] |
b A

Dataelement forRTE

Figure 6.1: Safety protocol concept (with exemplary location of the E2E header)

Each E2E Profile has a specific set of control fields with a specific functional behavior
and with specific properties for the detection of communication faults.

6.2 Overview of E2E Profiles

The E2E Profiles provide a consistent set of data protection mechanisms, designed to
protecting against the faults considered in the fault model.

Each E2E Profile provides an alternative way to protect the communication, by means
of different algorithms. However, E2E Profile have similar interfaces and behavior.

AUTOSAR

[PRS_E2E_00221] [Each E2E Profile shall use a subset of the following data protec-
tion mechanisms:

1. A CRC, provided by CRC Supervision;

2. A Sequence Counter incremented at every transmission request, the value is
checked at receiver side for correct incrementation;

3. An Alive Counter incremented at every transmission request, the value checked
at the receiver side if it changes at all, but correct incrementation is not checked;

4. A specific ID for every port data element sent over a port or a specific ID for every
I-PDU group (global to system, where the system may contain potentially several
ECUs);

5. Timeout detection:
(a) Receiver communication timeout.
(b) Sender acknowledgement timeout.

Depending on the used communication and network stack, appropriate subsets of
these mechanisms are defined as E2E communication profiles.

|(RS_E2E 08528)

Some of the above mechanisms are implemented in RTE, COM, and/or communication
stacks. However, to reduce or avoid an allocation of safety requirements to these
modules, they are not considered: E2E Supervision provides all mechanisms internally
(only with usage of CRC Supervision).

The E2E Profiles can be used for both inter and intra ECU communication. The E2E
Profiles were specified for specific communication infrastructure, such as CAN, CAN
FD, FlexRay, LIN, Ethernet.

Depending on the system, the user selects which E2E Profile is to be used, from the
E2E Profiles provided by E2E Supervision.

[PRS_E2E_00217] | The implementation of the E2E Supervision shall provide at least
one of the E2E Profiles.

|(RS_E2E _08528)

6.2.1 Error detection

[PRS_E2E_00012] [The internal Supervision mechanisms error detection and report-
ing shall be implemented according to the pre-defined E2E Profiles specified in the
following sections. |(RS_EZ2E_08528)

AUTOSAR

6.3 Specification of E2E Profile 1 (Only for CP)

[PRS_E2E_00218] | Profile 1 shall provide the following mechanisms: Counter, Time-
out monitoring, Data ID, CRC (see Table 6.2). |(RS_E2E 08529, RS _EZ2E 08530,
RS _E2E 08533)

Mechanism Description

Counter 4bit (explicitly sent) representing numbers from 0 to 14 in-
cremented on every send request. Both Alive Counter and
Sequence Counter mechanisms are provided by E2E Pro-
file 1, evaluating the same 4 bits.

Timeout monitoring Timeout is determined by E2E Supervision by means
of evaluation of the Counter, by a nonblocking read
at the receiver. Timeout is reported by E2E Super-
vision to the caller by means of the status flags in
E2E_PO01CheckStatusType.

Data ID 16 bit, unique number, included in the CRC calculation.
For dataldMode equal to 0, 1 or 2, the Data ID is not trans-
mitted, but included in the CRC computation (implicit trans-
mission). For dataldMode equal to 3:

¢ the high nibble of high byte of DatalD is not used (it
is 0x0), as the DatalD is limited to 12 bits,

e the low nibble of high byte of DatalD is transmit-
ted explicitly and covered by CRC calculation when
computing the CRC over Data.

e the low byte is not transmitted, but it is included in
the CRC computation as start value (implicit trans-
mission, like for datalDMode equal to 0, 1 or 2) .

CRC CRC-8-SAE J1850 - 0x1D (x8 + x4 + x3 + x2 + 1), but with
different start and XOR values (both start value and XOR
value are 0x00).

This CRC is provided by CRC Supervision. Starting with
AUTOSAR R4.0, the SAE8 CRC function of the CRC Su-
pervision uses OxFF as start value and XOR value. To
compensate a different behavior of the CRC Supervision,
the E2E Supervision applies additional XOR 0xFF oper-
ations starting with R4.0, to come up with 0x00 as start
value and XOR value.

Note: This CRC polynomial is different from the CRC-
polynomials used by FlexRay, CAN and LIN.

Table 6.1: E2E Profile 1 mechanisms

The E2E mechanisms can detect the following faults or effects of faults:

E2E Mechanism Detected communication faults
Counter Repetition, Loss, insertion, incorrect sequence, blocking

AUTOSAR

Transmission on a regular ba- | Loss, delay, blocking
sis and timeout monitoring using
E2E-Supervision '

Data ID + CRC Masquerade and incorrect addressing, insertion
CRC Corruption, Asymmetric information 2

Table 6.2: Detectable communication faults using Profile 1

[PRS_E2E_00070] [

E2E Profile 1 shall use the polynomial of CRC-8-SAE J1850, i.e. the polynomial 0x1D
(x8 + x4 + x3 + x2 + 1), but with start value and XOR value equal to 0x00.

|(RS_EZ2E_08529, RS_E2E_08533)

For details of CRC calculation, the usage of start values and XOR values see CRC
Supervision in section 6.13.

6.3.1 Data Layout

In the E2E Profile 1, the layout is in general free to be defined by the user, as long as
the basic limitations of signal alignment are followed:

¢ signals that have length < 8 bits should be allocated to one byte of an I-PDU, i.e.
they should not span over two bytes.

e signals that have length >= 8 bits should start or finish at the byte limit of an
I-PDU.

However, the E2E Profile 1 variants constrain the layout, see subsection 6.3.6.

6.3.2 Counter

In E2E Profile 1, the counter is initialized, incremented, reset and checked by E2E
profile.

[PRS_E2E_00075] [In E2E Profile 1, on the sender side, for the first transmission
request of a data element the counter shall be initialized with 0 and shall be incre-
mented by 1 for every subsequent send request (from sender SW-C). When the counter
reaches the value 14 (OxE), then it shall restart with 0 for the next send request (i.e.
value OxF shall be skipped). All these actions shall be executed by E2E Supervision.

|(RS_E2E 08528)

'Implementation by sender and receiver, which are using E2E-Supervision
2for a set of data protected by same CRC

AUTOSAR

[PRS_E2E_00076] [In E2E Profile 1, on the receiver side, by evaluating the counter
of received data against the counter of previously received data, the following shall be
detected by the E2E Supervision: (1) no new data has arrived since last invocation of
E2E Supervision check function, (2) no new data has arrived since receiver start, (3)
the data is repeated (4) counter is incremented by one (i.e. no data lost), (5) counter
is incremented more than by one, but still within allowed limits (i.e. some data lost), (6)
counter is incremented more than allowed (i.e. too many data lost).

|(RS_E2E 08528)

Case 3 corresponds to the failed alive counter check, and case 6 correspond to failed
sequence counter check.

The above requirements are specified in more details by the UML diagrams in the
following document sections.

6.3.3 DatalD

The unique Data IDs are to verify the identity of each transmitted safety-related data
element.

[PRS_E2E_00163] [There shall be following four inclusion modes for the two-byte
Data ID into the calculation of the one-byte CRC:

1. E2E_PO1_DATAID_BOTH: both two bytes (double ID configuration) are in-
cluded in the CRC, first low byte and then high byte (see variant 1A -
PRS_E2EProtocol_00227) or

2. E2E_PO1_DATAID_ALT: depending on parity of the counter (alternating ID
configuration) the high and the low byte is included (see variant 1B -
PRS_E2EProtocol_00228). For even counter values the low byte is included and
for odd counter values the high byte is included.

3. E2E_PO01_DATAID_LOW: only the low byte is included and high byte is never
used. This equals to the situation if the Data IDs (in a given application) are only
8 bits.

4. E2E_PO1_DATAID_NIBBLE:

¢ the high nibble of high byte of DatalD is not used (it is 0x0), as the DatalD is
limited to 12 bits,

¢ the low nibble of high byte of DatalD is transmitted explicitly and covered by
CRC calculation when computing the CRC over Data.

e the low byte is not transmitted, but it is included in the CRC computation as
start value (implicit transmission, like for the inclusion modes BOTH, _ALT
and _LOW)

|(RS_E2E_08528)

AUTOSAR

[PRS_E2E_00085] |[In E2E Profile 1, with E2E_PO1DatalDMode equal to
E2E_P01_DATAID BOTH or E2E_P01_DATAID_ALT the length of the Data ID shall
be 16 bits (i.e. 2 byte). | (RS_E2E_08528)

[PRS_E2E_00169] |[In E2E Profile 1, with E2E_P0O1DatalDMode equal to
E2E_PO1_DATAID_LOW, the high byte of Data ID shall be set to 0x00. |
(RS_E2E 08528)

The above requirement means that when high byte of Data ID is unused, it is set to
0x00.

[PRS_E2E_00306] [In E2E Profile 1, with E2E_P01DatalDMode equal to
E2E_P01_DATAID_NIBBLE, the high nibble of the high byte shall be 0x0. |
(RS_EZ2E_08528)

The above requirement means that the address space with
E2E_PO01_DATAID_NIBBLE is limited to 12 bits.

In case of usage of E2E Supervision for protecting data elements, due to multiplicity
of communication (1:1 or 1:N), a receiver of a data element receives it only from one
sender. In case of usage of E2E Supervision for protecting I-PDUs, because each
[-PDU has a unique Data ID, the receiver COM of an I-PDU receives it from only from
one sender COM. As a result (regardless if the protection is at data element level or
at I-PDUs), the receiver expects data with only one Data ID. The receiver uses the
expected Data ID to calculate the CRC. If CRC matches, it means that the Data ID
used by the sender and expected Data ID used by the receiver are the same.

6.3.4 CRC calculation

E2E Profile 1 uses CRC-8-SAE J1850, but using different start and XOR values. This
checksum is already provided by AUTOSAR CRC Supervision, which typically is quite
efficient and may use hardware support.

[PRS_E2E_00083] |E2E Profile 1 shall use CRC-8-SAE J1850 for CRC calculation. It
shall use 0x00 as the start value and XOR value. | (RS_E2E 08529, RS _E2E_08533)

[PRS_E2E_00190] [E2E Profile 1 shall use the Crc_CalculateCRC8 () function of the
SWS CRC Supervision for calculating CRC checksums. |(RS_E2E_08528)

Note: The CRC used by E2E Profile 1 is different than the CRCs used by FlexRay
and CAN and is provided by different software modules (FlexRay and CAN CRCs are
provided by hardware support in Communication Controllers, not by CRC Supervision).

The CRC calculation is illustrated by the following two examples.

For standard variant 1A:

AUTOSAR

Datald | |CRC ‘rwﬁf

B J "

CRC =CRC3S over(1) Data |d, (2)all serialized signal {including em pty areas , excluding CRC byteitseff)

‘Sig1 |GxFF I |Sig1 |

Figure 6.2: E2E Profile 1 variant 1A CRC calculation example

For standard variant 1C:

|anby‘te DfDataID| |CRC |

B T |

CREC = CRCS over (1) Data Id, (2) all serialized signal (induding em pty areas, exduding CRC byte itzelf)

ZDIIIPr”Sig1 |||:|)(FF | |S|g1 |

Legend:
*1 Lovww nibble of high byte of Data 1D

Figure 6.3: E2E Profile 1 variant 1C CRC calculation example

The Data ID can be encoded in CRC in different ways, see [PRS_E2E_00163].
[PRS_E2E_00082] [In E2E Profile 1, the CRC is calculated over:

1. First over the one or two bytes of the Data ID (depending on Data ID configura-
tion), and

2. then over all transmitted bytes of a safety-related complex data element/signal
group (except the CRC byte).

|(RS_E2E 08536)

6.3.5 Timeout detection

The previously mentioned mechanisms (CRC, counter, Data ID) enable to check the
validity of received data element, when the receiver is executed independently from
the data transmission, i.e. when receiver is not blocked waiting for Data Elements or
respectively signal groups, but instead if the receiver reads the currently available data
(i.e. checks if new data is available). Then, by means of the counter, the receiver can
detect loss of communication and timeouts.

The attribute State->Status = E2E_PO1STATUS REPEATED means that there is a
repetition (caused either by communication loss, delay or duplication of the previous
message). The receiver uses State->Status for detecting communication timeouts.

AUTOSAR

6.3.6 EZ2E Profile 1 variants

The E2E Profile 1 has variants. The variants are specific configurations of E2E Profile.
[PRS_E2E_00227] | The E2E Profile variant 1A is defined as follows:
1. CRC is the 0th byte in the signal group (i.e. starts with bit offset 0)
2. Alive counter is located in lowest 4 bits of 1st byte (i.e. starts with bit offset 8)
3. E2E_P0O1DatalDMode = E2E_P01_DATAID_BOTH
4. SignallPdu.unusedBitPattern = OxFF.
|(RS_E2E_08528)
[PRS_E2E_00228] | The E2E Profile variant 1B is defined as follows:
1. CRC is the 0Oth byte in the signal group (i.e. starts with bit offset 0)
2. Alive counter is located in lowest 4 bits of 1st byte (i.e. starts with bit offset 8)
3. E2E_PO0O1DatalDMode = E2E_P01_DATAID_ALT
4. SignallPdu.unusedBitPattern = OxFF.
|(RS_E2E _08528)

Below is an example compliant to 1A/1B:

|:§: ”agu |=.||-,-e”ag1 | }agz | Iﬁ: ||1111 Ia.u-,-e ”5191[3] |

Figure 6.4: E2E Profile 1 example layout (two signal groups protected by E2E in one
I-PDU)
[PRS_E2E_00307] | The E2E Profile variant 1C is defined as follows:

1. CRC is the 0th byte in the signal group (i.e. starts with bit offset 0)

2. Alive counter is located in lowest 4 bits of 1st byte (i.e. starts with bit offset 8)

3. The Data ID nibble is located in the highest 4 bits of 1st byte (i.e. starts with bit
offset 12)

4. E2E_P0O1DatalDMode = E2E_P01_DATAID_NIBBLE
5. SignallPdu.unusedBitPattern = OxFF.
|(RS_E2E _08528)

6.3.7 E2E_PO1Protect

[PRS_E2E_00195] | The function E2E_PO01Protect() shall:

AUTOSAR

1. write the Counter in Data,

write DatalD nibble in Data (E2E_P01_DATAID_NIBBLE) in Data
compute the CRC over DatalD and Data

write CRC in Data

o &~ W

increment the Counter (which will be used in the next invocation of
E2E_PO01Protect()),as specified by Figure 6.5 and Figure 6.6

|(RS_E2E 08528)

E2E_PO1Protect(Config, State,

Data)
Config->CounterOffset % 8 == 0
|
[TRUE] [FALSE]
(Data+(Config->CounterOffset/8)) = ((Data *(Data+(Config->CounterOffset/8)) = (*(Data
+(Config->CounterOffset/8)) & OxFO) | (State- +(Config->CounterOffset/8)) & OxOF) | ((State-
>Counter & 0x0F) >Counter<<4) & 0xF0)
. S
. -
,
. -
, -t
Write the counter in the Data, at the configured o =
CounterOffset. The counter goes either into low Config->DatalbMods == E2E_P01_DATAID_NIBBLE
nibble (left branch) or high nibble (right branch) of
Data. Note that the nibble next to Counter may be
used by application. [TRUE] [FALSE]
Config->DatalDNibbleOffset % 8 == 0
[]
[TRUE] [FALSE]
(Data+(Config->DatalDNibbleOffset/8)) = (*(Data+(Config->DatalDNibbleOffset/8)) = (*
(Data+(Config->DatalDNibbleOffset/8)) & (Data+(Config->DatalDNibbleOffset/8)) &
0xFO) | ((Config->DatalD>>8) & 0xOF) 0x0F) | ((Config->DatalD>>4) & 0xFO0)

. PPt

, -

, =
.
,
Wirite the low nibble of high byte of Data ID - only for -
E2E_PO1_DATAID_NIBBLE configuration. -7

(CRC = Calculate CRC over Data)
CRC is written to the Data at configured Ij

-| location.

(*(Data+(Config->CRCOffset/8)) = CRC j

Increment the counter
modulo 15 (i.e. next
value after 14 is 0).

State->Counter ++) % 15

retun

Figure 6.5: E2E_PO01Protect()

AUTOSAR

6.3.8 Calculate CRC

The diagram of the function E2E_PO1Protect() (see above chapter) and
E2E_PO01Check() (see below chapter) have a sub-diagram specifying the calculation
of CRC:

Campute CRC aver DatlD. depending on DatmlDlode stting.
The first invocation of Crc_Cakult=C RCS(is done with st walie

OFF
Caleulate CRC over

The Cak ubt=CRCE] is ¥ORing the start valus by the caller Datald and Data

feqqual OxFF with 0xFF. iesulting with actuml i emal sac valis

2tjual w 0x00.

awiteh Config->DatalDMada
[case E2E_PO1_DATAID_ALT]
[case EZE_FD1_DATAID_BOTH] [case EZE_PO1_DATAID_LOW] ‘w_‘ "~__ [case EZE_F01_DATAID_HIBELE]
S/ 4 - N State-»Counter % 2 ==0

CRC = Cro_CaloulateCRCE (Config-
>DatalD, 1, 0xFF, FALSE)

CRC = Cre_Calsulate CRCE (0. 1, CRE.
FALSE)

CRC = Cre_CalculateCRCS (Config-
>DatalD, 1, 0xFF, FALSE)

« \
! Y
68 = Er el EEEREE (E@onky CRC = Cre_CaloulateCRCE (Config-
»Datally, 1, 0xFF, FALSE) X »DatalD, 1, DxFF. FALSE)
. Shemating inclusion |
CRC = Cre_CaleulateCRCE (Config- N clepanding on Countzr
+DatalD==E, 1, CRE, FALSE) CRC over 2 bytes CRE awer ko byt only Aty
|

H
|
:
h
1
Allimeocations of CRC libmry. apart Gonfig »CROOfset »= 2
from the fiistone, getas smrtalue ‘
the CRC compunzd in the pravious T . 2 ..

st2p. The CRC valuz doss nat nesd [TRUE]
12 be ¥ORed 0xFF bacause
1. The "prvious” CRC functan XORs

CRC = Cre_CalsulateCRCS (Config-
- »DatalD>>8, 1, 0xFF, FALSE)

Campute CRC aver the ara bafore
the CRC [if CRC is not the first byts)

the computad CRC with 0xFF just {]

betore eturning 0 [T]T T CRC = Cre_CaleulateCRCE (Lata, (Config-»CRCOffset /23, CRC, FALSE)
2 The "next” CRC function ¥ORs the

eceived smavalue with O<FF atthe

bginning

25 3 result the XORing daone by

“net’ stp negates ma rovmc

dane by "pre. OFF
wFF = CRC. s.d Conllg =CRCOffset/ 8 < (Config-=DataLength /1 2)- 1

behavior isa rmasnoXORing | M % -l p

r N T Compute the area atter CRC. if CRC

fehich is =l t2 AORing wih 000 | - (FaLgE) TRUR Tt == mtthe e by Strt i the

vt aftr CRC, finish with the kst
yte of Data.

________ CRE = Cre_CaleulateCROE (% Data[Config-» CREO#Hseb + 1], (Config-Datalength /6 -
Canfig- cnconseua 1), GRE, FALSE)

Ta negate the hst ¥R OxFF
opemtion done an computl
CRC by the kst Cakub=CREE),
thare is a XORing dane
axtzmaly by E2E Libary.

,,,,,,,,,,, [CRC = CRC ~0OxFF]

Figure 6.6: Subdiagram ,Calculate CRC over Data ID and Data”, used by
E2E_PO01Protect() and E2E_P01Check()

It is important to note that the function Crc_CalculateCRC8 of CRC Supervision / CRC
routines have changed is functionality since R4.0, i.e. it is different in R3.2 and >=R4.0:

1. There is an additional parameter Crc_IsFirstCall

2. The function has different start value and different XOR values (changed from
0x00 to OxFF).

This results with a different value of computed CRC of a given buffer.

To have the same results of the functions E2E_PO01Protect() and E2E_P02Check() in
>=R4.0 and R3.2, while using differently functioning CRC Supervision, E2E «,compen-
sates” different behavior of the CRC Supervision. This results with different invocation
of the CRC Supervision by E2E Supervision Figure 6.6 in >=R4.0 and R3.2. This
means Figure 6.6 is different in >=R4.0 and R3.2.

AUTOSAR

6.3.9 E2E_P01Check

[PRS_E2E_00196] [The function E2E_P01Check shall
1. Check the CRC

2. Check the Data ID nibble, i.e. compare the expected value with the received
value (for E2E_PO1_DATAID_NIBBLE configuration only)

3. Check the Counter,
4. determine the check Status,as specified by Figure 6.7 and Figure 6.6.
|(RS_E2E_08528, RS_E2E_08530)

AUTOSAR

E2E_PO1CheddConfia, State, Data)

Aty function inocation, the maximum sl
Ipeisen przuious and curientCaunte! is =)]

el
incremanted

State->MewDatavailable

T amy NEW dst is vaib bl 9 be chackedd
29, fram COM, RTE bus

N
Faad the Counter fiom Dot at the configura [rRuE
stz

Config >CounterDiiset % 8

r 1
[TRUE] [FALSE]

RecevedGounter = C(Datat(Canfis-
> Counte Difsats)) > 4) & x0F

ReceivedCounter = "(Datar(Confiy-

> Counte Dffseb8)) &.-0F

<15, traLsEl >@®

retum E2E_E_INPUTERR_WRONG.
[TRuE]

ReceivedCRC = (0 ata+(Canfig »CREDSeVE)

Config:>D stalDMods == E2E_P01_DATAID_NIBBLE

Pt ko bt of high by
D (TRuE) FaLsE]

am I for

Config-D atalDNibbleDffset % 5 == 0

1
[FALSE]

Re osive dDatalDNibbls = C(Data* (o

ReceivadDatalDNibble = *(D ta#(Config
»Data BNibble Dffset) & HOF

>Data DNibbleDffsetB)) »> 4) &« XOF

Galoulate GG over Batald and Data
Cakubt= CRC in the sme iay as the So
Sl i

CaloulstedCRe

[RuEl

(Config->Datalb>E)

(Canfig->DatalbMods == EZE_PD1_DATAID_NIBBLE) & (Receive dDatalDNibb

[TRUE] [FaLse] Chask fany camect
a0 s sbanty ba Compus the dete, mhing

immaccount the ausrio;

State: AWatFarFitData

[TRUE] [FALSE]
\ReceiverGounter »= State-» LastvalidCGounter
wim i
State- W aitf orFirstata= FALSE ' Al
(o =154

This is he fist message ich

corect CRC, ViaitForFistan he presious and the cunientcls iave
s theretons 2t faee. ot CRC. veify the counter
Counter i natchacked as

cannat bs dona yec. K

[T T
[eltaCounter 11 < DeltaCounter

[DeltaCounter > State
State-MaD eltal ounte] MsDetaCounted

State-*MaDeltaC ounts
Gonfig Contig- ‘State-HaNewDiRepeatedbataCounte1
>MaD eMat aunterlnit]
State->LastValidCounter ‘tete-LastvalidGountsr
RecsvedCounter ResemedCounter

State->LostData State:s LostDats =
(BeltaGounter - 1)

State>MaDalaCaunter =
Gonfig
>MaDaltacountsrinit

State-> LastvalidCounter
= RecervedCountsr

State->SyncCounter =
Contig
>SynoC ountarlnit

State->NoNenDifep satedd staCounter <= State:NoNewOrRqpe stedbataCounter <=

State-> NaMewDif epe te dDataC suntar < 14

StatersNoNewDiffep eatedDataCounter < 14,

[FaLsE] [FALSE]

[FALSE]

[FaLsE] [FaLsE]
[TRuE)

[TRUE] [TRuE] [mrug]

) (T [mee)

ctate>sylcourtar>0 Sttt » 0

States MabetaCounter =

(N

State->NoNenOiRep eatedd staaunters+

L
ReoeivedCaunter

[rruE]
()

[FALSE]
= i) (. o e o e msreseaueoy

Figure 6.7: E2E_P01Check()

The diagram of the function E2E_P01Check() has a sub-diagram specifying the calcu-
lation of CRC, which is shown by Figure 6.6.

AUTOSAR

6.3.10 EZ2E Profile 1 Protocol Examples

The default configuration assumed for the following examples, if not otherwise stated

to be different:

E2E_PO01ConfigType field Value

CounterOffset 8

CRCOffset 0

DatalD 0x01234
DatalDNibbleOffset 12

DatalDMode E2E_PO1DATAID_BOTH
Datalength 64

MaxDeltaCounterlnit 1
MaxNoNewOrRepeatedData 15

SyncCounterlnit 0

Table 6.3: E2E Profile 1 protocol example configuration

E2E_PO1ProtectStateType field

Value

Counter

0

Table 6.4: E2E Profile 1 example state initialization

Result data of E2E_PO01Protect() with data equals all zeros (0x00), counter = 0:

Byte

0

1

2

3

4

5

6

7

Oxcc

0x00

0x00

0x00

0x00

0x00

0x00

0x00

Table 6.5: E2E Profile 1 protect result DatalDMode = E2E_P01DATAID_BOTH, counter 0

Result data of E2E_PO1Protect() with data equals all zeros (0x00), counter

1:

Byte

0

1

2

3

4

5

6

7

0x91

0x01

0x00

0x00

0x00

0x00

0x00

0x00

Table 6.6: E2E Profile 1 protect result DatalDMode = E2E_P01DATAID_BOTH, counter 1

6.3.10.1

DatalDMode set to E2E_P01_DATAID _ALT

Result data of E2E_PO01Protect() with data equals all zeros (0x00), counter = 0:

AUTOSAR

Byte

0

1

2

3

4

5

6

7

0x5f

0x00

0x00

0x00

0x00

0x00

0x00

0x00

Table 6.7: E2E Profile 1 protect result DatalDMode = E2E_PO01DATAID_ALT, counter 0

Result data of E2E_PO1Protect() with data equals all zeros (0x00), counter

1:

Byte

0

1

2

3

4

5

6

7

0x93

0x01

0x00

0x00

0x00

0x00

0x00

0x00

Table 6.8: E2E Profile 1 protect result DatalDMode = E2E_PO01DATAID_ALT, counter 1

6.3.10.2 DatalDMode set to E2E_P01DATAID_LOW

Result data of E2E_PO01Protect() with data equals all zeros (0x00), counter = 0:

Byte

0

1

2

3

4

5

6

7

0x5f

0x00

0x00

0x00

0x00

0x00

0x00

0x00

Table 6.9: E2E Profile 1 protect result DatalDMode = E2E_P01DATAID_LOW, counter 0

Result data of E2E PO1Protect() with data equals all zeros (0x00), counter

1:

Byte

0

1

2

3

4

5

6

7

0x02

0x01

0x00

0x00

0x00

0x00

0x00

0x00

Table 6.10: E2E Profile 1 protect result DataIDMode = E2E_P01DATAID_LOW, counter 1

6.3.10.3 DatalDMode set to E2E_PO01DATAID_NIBBLE

Result data of E2E_PO01Protect() with data equals all zeros (0x00), counter = 0:

AUTOSAR

Byte
0 1 2 3 4 5 6 7
0x2a 0x10 0x00 0x00 0x00 0x00 0x00 0x00

Table 6.11: E2E Profile 1 protect result DatalDMode = E2E_P01DATAID_NIBBLE, counter
0

Result data of E2E_PO1Protect() with data equals all zeros (0x00), counter =
1:

Byte
0 1 2 3 4 5 6 7
0x77 0x11 0x00 0x00 0x00 0x00 0x00 0x00

Table 6.12: E2E Profile 1 protect result DatalDMode = E2E_P01DATAID_NIBBLE, counter
1

6.4 Specification of E2E Profile 2 (only for CP)

[PRS_E2E_00219] [Profile 2 shall provide the following mechanisms: Sequence Num-
ber (Counter), Message Key used for CRC calculation (Data ID), Data ID + CRC, Safety
Code (CRC) (see Table 6.14). | (RS_E2E_08529, RS_E2E_08530, RS_E2E_08533)

Mechanism Description

Sequence Number (Counter) 4bit (explicitly sent) representing numbers from 0 to 15 in-
cremented by 1 on every send request (Bit 0:3 of Data

1

) at sender side. The counter is incremented on every call
of the E2E_PO2Protect() function, i.e. on every transmis-
sion request of the SW-C

Message Key used for CRC cal- | 8 bit (not explicitly sent) The specific Data ID used to cal-
culation (Data ID) culate the CRC depends on the value of the Counter and is
an element of an pre-defined set of Data IDs (value of the
counter as index to select the particular Data ID used for
the protection). For every Data element, the List of Data
IDs depending on each value of the counter is unique.

Data ID + CRC Masquerade and incorrect addressing, insertion

Safety Code(CRC) 8 bit explicitly sent (Data[0]) Polynomial: 0x2F (x8 + x5 +
x3 + x2 + x + 1) Start value: 0xFF Final XOR-value: OxFF
Note: This CRC polynomial is different from the CRC-
polynomials used by FlexRay and CAN.

Table 6.13: E2E Profile 2 mechanisms

AUTOSAR

The mechanisms provided by Profile 2 enable the detection of the relevant failure
modes except message delay (for details see the table in Table 6.14):

Since this profile is implemented in a Supervision, the Supervision’s E2E_P02Check()
function itself cannot ensure to be called in a periodic manner. Thus, a required pro-
tection mechanism against undetected message delay (e.g. Timeout) must be imple-
mented in the caller.

The E2E mechanisms can detect the following faults or effects of faults:

E2E Mechanism Detected communication faults
Counter Repetition, Loss, insertion, incorrect sequence, blocking

Transmission on a regular bases | Loss, delay, blocking
and timeout monitoring using
E2E-Library 3

Data ID + CRC Masquerade and incorrect addressing, insertion

CRC Corruption, Asymmetric information #

Table 6.14: Detectable communication faults using Profile 2

[PRS_E2E_00117] [E2E Profile 2 shall use the Crc_CalculateCRC8H2F() function of
the SWS CRC Supervision for calculating CRC checksums. |(RS_E2E_08528)

[PRS_E2E_00118] [E2E Profile 2 shall use OxFF as the start value CRC_StartValue8
for CRC calculation. |(RS_E2E _08528)

[PRS_E2E_00119] [In E2E Profile 2, the specific Data ID used to calculate a specific
CRC shall be of length 8 bit. | (RS_E2E_08528)

[PRS_E2E_00120] [In E2E Profile 2, the specific Data ID used for CRC calculation
shall be selected from a pre-defined DatalDList[16] using the value of the Counter as
an index. |(RS_EZ2E_08528)

Each data, which is protected by a CRC owns a dedicated DatalDList which is de-
posited on the sender site and all the receiver sites.

The pre-defined DatalDList[16] is generated offline. In general, there are several fac-
tors influencing the contents of DatalDList, e.g:

1. length of the protected data

2. number of protected data elements

3. number of cycles within a masquerading fault has to be detected
4. number of senders and receivers

5. characteristics of the CRC polynomial.

3Implementation by sender and receiver
“for a set of data protected by same CRC

AUTOSAR

Due to the limited length of the 8bit polynomial, a masquerading fault cannot be de-
tected in a specific cycle when evaluating a received CRC value. Due to the adequate
Data IDs in the DatalDList, a masquerading fault can be detected in one of the succes-
sive communication cycles.

Due to the underlying rules for the DatalDList, the system design of the application has
to take into account that a masquerading fault is detected not until evaluating a certain
number of communication cycles.

[PRS_E2E_00121] [In E2E Profile 2, the layout of the data buffer (Data) shall be
as depicted in Figure 6.8, with a maximum length of 256 bytes (i.e. N=255) |
(RS_E2E 08528)

Data[0] Data[1] Data[2] Data[N-1] Data[N]
; CRC gp gl ™™g - B B - BE - B
Figure 6.8: E2E Profile 2 data buffer layout

[PRS_E2E_00122] [In E2E Profile 2, the CRC shall be Data[0]. | (RS _E2E_08528)

[PRS_E2E_00123] | In E2E Profile 2, the Counter shall be the low nibble (Bit 0...Bit 3)
of Data[1]. |(RS_EZ2E_08528)

[PRS_E2E_00124] | In E2E Profile 2, the E2E_P02Protect() function shall not mod-
ify any bit of Data except the bits representing the CRC and the Counter. |
(RS _E2E 08528)

[PRS_E2E_00125] [In E2E Profile 2, the E2E_P02Check() function shall not modify
any bit in Data. |(RS_EZ2E_08528)

6.4.1 E2E_PO02Protect

The E2E_PO02Protect() function of E2E Profile 2 is called by a SW-C in order to pro-
tect its application data against the failure modes as shown in table in Table 6.14.
E2E_PO2Protect() therefore calculates the Counter and the CRC and puts it into
the data buffer (Data). A flow chart with the visual description of the function
E2E_PO02Protect() is depicted in Figure 6.9 and Figure 6.10.

[PRS_E2E_00126] [In E2E Profile 2, the E2E_P02Protect() function shall per-
form the activities as specified in Figure 6.9 and Figure 6.10. |(RS_E2E_08528,
RS _E2E 08536)

AUTOSAR

E2E_PO02Protect(Config, State, Data)

Increment State->Counter
oo

!

C(Data+1) = (*(Data+1) & OXFO) | (State—>Coumer), ------------- Counter is written to Bits
& zOF) 0..3 of Data[1]

DatalD = Config->DatalDList[State-
>Counter]

For the first call of
CRC = Crc_CalculateCRC8H2F() computed over Data[1], Data[2], ... Data[Config- |} - - - - | Cre_CalculateCRC8H2F(),
>Datalength/8-1], DatalD Cre_IsFirstCall is set to
TRUE.

[Data[0] = CRC j """""" CRC is written to Data[0] Ij

®

return

Figure 6.9: E2E_P02Protect()

Increment State-
>Count

State->Counter <
1572

[TRUE]

[FALSE]

(State->Counter ++) (State-> Counter = 0)

Figure 6.10: Increment Counter

[PRS_E2E_00127] [In E2E Profile 2, the E2E_PO02Protect() function shall incre-
ment the Counter of the state (E2E_PO02ProtectStateType) by 1 on every transmis-
sion request from the sending SW-C, i.e. on every call of E2E_P02Protect(). |
(RS_E2E 08528)

[PRS_E2E_00128] | In E2E Profile 2, the range of the value of the Counter shall be
[0...15]. |(RS_E2E_08528)

[PRS_E2E_00129] | When the Counter has reached its upper bound of 15 (0xF), it
shall restart at 0 for the next call of the E2E_P02Protect() from the sending SW-C. |
(RS_E2E 08528)

AUTOSAR

[PRS_E2E_00130] [In E2E Profile 2, the E2E_PO02Protect() function shall update the
Counter (i.e. low nibble (Bit 0...Bit 3) of Data byte 1) in the data buffer (Data) after
incrementing the Counter. |(RS_E2E_08528)

The specific Data ID used for this send request is then determined from a DatalDList[]
depending on the value of the Counter (Counter is used as an index to select the Data
ID from DatalDList[]). The DatalDList[] is defined in E2E_P02ConfigType.

[PRS_E2E_00132] | In E2E Profile 2, after determining the specific Data ID,
the E2E_PO02Protect() function shall calculate the CRC over Data[1], Data[2], ...
Data[Config->DatalLength/8-1] of the data buffer (Data) extended with the Data ID. |
(RS_E2E 08528)

[PRS_E2E_00133] | In E2E Profile 2, the E2E_PO2Protect() function shall up-
date the CRC (i.e. Data[0]) in the data buffer (Data) after computing the CRC. |
(RS_E2E 08528)

The specific Data ID itself is not transmitted on the bus. It is just a virtual message key
used for the CRC calculation.

6.4.2 E2E_PO02Check

The E2E_P02Check() function is used as an error detection mechanism by a caller in
order to check if the received data is correct with respect to the failure modes men-
tioned in the profile summary.

A flow chart with the visual description of the function E2E_P02Check() is depicted in
Figure 6.11, Figure 6.12 and Figure 6.13.

[PRS_E2E_00134] | In E2E Profile 2, the E2E_P02Check() function shall perform the
activities as specified in Figure 6.11, Figure 6.12 and Figure 6.13. |(RS_EZ2E_08528,
RS _E2E 08536)

AUTOSAR

E2E_FO2CheckContig, State,
Data)

[FALSE]

157

[TRUE]

LiaxDeaCaunte: spscifi the maximum alined
batiesn v, ot
consscutely iecstva Ikl messges.

[FALSE]

the counte is on kner
nibbe of by 1

DatalD = Config->DatalbList
[ReceivedCounter]

Chedsum OK

[FALSE]

[TRUE]

State-WaitForFirstbata

[TRUE] [FALSE]
State -WaitForfistPata Caloulate DettaCount
=FaLse
bektaCounter ?
=01 1 1 < DettaCounter <= > StatecsMaxDeitaCountei
State.MaDeHaCounte]
State>MaxDaRaCounter = State-MaxDeltaCounter =
Config->h axDeHaC ounterinit Config->MaxDeltaCaunterinit
State-> LastvaliaCounter astalidCounter
= RecsivedCaunter <ceivedCountar Config-
State->NoNewOrRkp eatedDataCounter State->NaHenDRepatedD ataCounter <=
ate: HoNewD R epaate dbatat ounter < State->NoNenDiRepfatedD ata Counter < 15 ate-> SynfCounter »
State-HNollew Repastedbatabourter < 15 i Config->M axNoKsh k ape atedData Config-> MaxNoNsaCRep e atedData StatesynpCounter » &

[FALSE] [FaLsE] [FaLse] [FALSE]
[TRUE [TRUE] (TRUE] [TRUE]

Stata>MaxDeltaCounter

Con
MaxDeltatounternit

State-> NoNawOIRs

i

N

() () () | o

sureroygauntr>0 State->RaseivadCounter

[TRUE] [TRUE]

[FaLsE] [FaLsE]
State: State
>GyneCounter >GyneCounter
State>Status = Stata.>eatus= State > Status= Stata.> Status= e N FoGH State->Status= Stata>Satus=
E3E_POISTATUS_NONEWDATA| |EZE PO2STATUS WRONGGRE | | E2E_PozSTATUS_INITIAL| |EZE_POSTATUS_REPEATED| S STE i B e E2E PosoTaTUS SYNG | | EZE-POISTATUS OKSOMELDST EZE_POZSTATUS_WRONGSEQUENCE

refurn

Figure 6.11: E2E_P02Check

Checksum OK

CalcualtedCRC = Crc_Calculate CRC8H2F() computed
over Data[1], Data[2], ... Data[Config->DataLength/8-1],
DatalD

CalculatedCRC

[TRUE] \/M[FALSE]

Data

return TRUE return FALSE

Figure 6.12: Checksum OK

AUTOSAR

Calculate
DeltaCounter

!

DeltaCounter =
ReceivedCounter - State-

>LastValidCounter

(sint8) DeltaCounter <
0 ?

[TRUE]

[FALSE]

[DellaCounter = DeltaCounter + 16]

®

return

Figure 6.13: Calculate Delta Counter

First, the E2E_P02Check() function increments the value MaxDeltaCounter. MaxDelta-
Counter specifies the maximum allowed difference between two Counter values of two
consecutively received valid messages. Note: MaxDeltaCounter is used in order to per-
form a plausibility check for the failure mode re-sequencing. If the flag NewDataAvail-
able is set, the E2E_P02Check() function continues with the evaluation of the CRC.
Otherwise, it returns with Status set to E2E_ PO2STATUS NONEWDATA. To evaluate
the correctness of the CRC, the following actions are performed:

e The specific Data ID is determined using the value of the Counter as provided in
Data.

e Then the CRC is calculated over Data payload extended with the Data ID as
last Byte: CalculatedCRC = Crc_CalculateCRC8H2F() calculated over Data[1],
Data[2], ... Data[Config->DatalLength/8-1], Data ID

e Finally, the check for correctness of the received Data is performed by comparing
CalculatedCRC with the value of CRC stored in Data.

In case CRC in Data and CalculatedCRC do not match, the E2E_P02Check() func-
tion returns with Status E2E_PO2STATUS WRONGCRC, otherwise it continues with
further evaluation steps.

The flag WaitForFirstData specifies if the SW-C expects the first message after startup
or after a timeout error. This flag should be set by the SW-C if the SW-C expects the
first message e.g. after startup or after reinitialization due to error handling. This flag
is allowed to be reset by the E2E_P02Check() function only. The reception of the first
message is a special event because no plausibility checks against previously received
messages is performed.

If the flag WaitForFirstData is set by the SW-C, E2E_P02Check() does not evaluate
the Counter of Data and returns with Status E2E__PO2STATUS_INITIAL. However, if
the flag WaitForFirstData is reset (the SW-C does not expect the first message) the
E2E_P02Check() function evaluates the value of the Counter in Data.

AUTOSAR

For messages with a received Counter value within a valid range, the
E2E_P02Check() function returns either with E2E_PO2STATUS_OK or
E2E_P02STATUS OKSOMELOST. In LostData, the number of missing messages
since the most recently received valid message is provided to the SW-C.

For messages with a received Counter value outside of a valid range, E2E_P02Check()
returns with one of the following states: E2E_P02STATUS_WRONGSEQUENCE or
E2E P02STATUS REPEATED.

[PRS_E2E_00135] [In E2E Profile 2, the local variable DeltaCounter shall be calcu-
lated by subtracting LastValidCounter from Counter in Data, considering an overflow
due to the range of values [0...15]. |(RS_E2E _08528)

Details on the calculation of DeltaCounter are depicted in Figure 7-12.

[PRS_E2E_00136] [In E2E Profile 2, MaxDeltaCounter shall specify the maximum
allowed difference between two Counter values of two consecutively received valid
messages. | (RS_E2E_08528)

[PRS_E2E_00137] | In E2E Profile 2, MaxDeltaCounter shall be incremented by 1
every time the E2E_P02Check() function is called, up to the maximum value of 15
(OxF). |(RS_E2E_08528)

[PRS_E2E_00138] [In E2E Profile 2, the E2E_P02Check() function shall set Sta-
tus to E2E_P02STATUS_NONEWDATA if the attribute NewDataAvailable is FALSE. |
(RS_E2E_08528)

[PRS_E2E_00139] | In E2E Profile 2, the E2E_P02Check() function shall determine
the specific Data ID from DatalDList using the Counter of the received Data as index.
|(RS_E2E_08528)

[PRS_E2E_00140] [In E2E Profile 2, the E2E_P02Check() function shall calculate
CalculatedCRC over Data[1], Data[2], ... Data[Config->DatalLength/8-1] of the data
buffer (Data) extended with the determined Data ID. |(RS_EZ2E_08528)

[PRS_E2E_00141] | In E2E Profile 2, the E2E_P02Check() function shall set Status
to E2E_PO2STATUS WRONGCRC if the calculated CalculatedCRC value differs from
the value of the CRC in Data.

|(RS_E2E 08528)

[PRS_E2E_00142] | In E2E Profile 2, the E2E_P02Check() function shall set Status
to E2E_PO02STATUS_INITIAL if the flag WaitForFirstData is TRUE. |(RS_E2E_08528)

[PRS_E2E_00143] | In E2E Profile 2, the E2E_P02Check() function shall clear
the flag WaitForFirstData if it returns with Status E2E_PO2STATUS_INITIAL. |
(RS_E2E 08528)

For the first message after start up no plausibility check of the Counter is possible.
Thus, at least a minimum number of messages need to be received in order to per-
form a check of the Counter values and in order to guarantee that at least one correct
message was received.

AUTOSAR

[PRS_E2E_00145] | The E2E_P02Check() function shall
e set Status to E2E_P02STATUS WRONGSEQUENCE; and
e re-initialize SyncCounter with SyncCounterlnit

if the calculated value of DeltaCounter exceeds the value of MaxDeltaCounter. |
(RS_E2E_08528)

[PRS_E2E_00146] | The E2E_P02Check() function shall set Status to
E2E_PO2STATUS_REPEATED if the calculated DeltaCounter equals 0. |
(RS_E2E 08528)

[PRS_E2E_00147] | The E2E_P02Check() function shall set Status to
E2E_PO02STATUS_OK if the following conditions are true:

e the calculated DeltaCounter equals 1; and

e the value of the NoNewOrRepeatedDataCounter is less than or equal to
MaxNoNewOrRepeatedData (i.e. State —> NoNewOrRepeatedDataCounter <=
Config — MaxNoNewOrRepeatedData); and

e the SyncCounter equals 0.
|(RS_E2E_08528)
[PRS_E2E_00298] [The E2E_P02Check() function shall
e re-initialize SyncCounter with SyncCounterlnit; and
e set Status to E2E_P02STATUS_SYNG; if the following conditions are true:

e the calculated DeltaCounter is within the parameters of 1 and MaxDeltaCounter
(i.e. 1 =/< DeltaCounter =/< MaxDeltaCounter); and

e the value of the NoNewOrRepeatedDataCounter exceeds MaxNoNewOrRe-
peatedData. (i.e. State NoNewOrRepeatedDataCounter > Config MaxNoNewOr-
RepeatedData)

|(RS_E2E_08528)
[PRS_E2E_00299] [The E2E_P02Check() function shall
e decrement SyncCounter by 1; and
e set Status to E2E_P02STATUS_SYNC if the following conditions are true:

e the calculated DeltaCounter is within the parameters of 1 and MaxDeltaCounter
(i.e. 1 =/< DeltaCounter =/< MaxDeltaCounter); and

e the value of the NoNewOrRepeatedDataCounter is less than or equal to
MaxNoNewOrRepeatedData (i.e. State NoNewOrRepeatedDataCounter =/<
Config MaxNoNewOrRepeatedData); and

e the SyncCounter exceeds 0.

AUTOSAR

|(RS_E2E_08528)

[PRS_E2E 00148] | The EZ2E_P02Check() function shall set Status to
E2E P02STATUS OKSOMELOST if the following conditions are true:

¢ the calculated DeltaCounter is greater-than 1 but less-than or equal to MaxDelta-
Counter (i.e. 1 < DeltaCounter =/< MaxDeltaCounter); and

e the NoNewOrRepeatedDataCounter is less than or equal to MaxNoNewOr-
RepeatedData (i.e. State NoNewOrRepeatedDataCounter =/< Config
MaxNoNewOrRepeatedData); and

e the SyncCounter equals 0.
| (RS_E2E_08528)

[PRS_E2E_00149] | The E2E_P02Check() function shall set the value LostData to
(DeltaCounter - 1) if the calculated DeltaCounter is greater-than 1 but less-than or
equal to MaxDeltaCounter. |(RS_E2E_08528)

[PRS_E2E_00150] [The E2E_P02Check() function shall r-initialize MaxDeltaCounter
with MaxDeltaCounterlnit if it returns one of the following Status:

e E2E_P02STATUS_OK; or

e E2E_P02STATUS_OKSOMELOST; or
e E2E_PO2STATUS_INITIAL; or

e E2E_PO2STATUS_SYNC; or

e E2E PO2STATUS_WRONGSEQUENCE on condition that SyncCounter exceeds
0 (i.e. SyncCounter > 0).

|(RS_E2E 08528)

[PRS_E2E_00151] | The E2E_P02Check() function shall set LastValidCounter to
Counter of Data if it returns one of the following Status:

o E2E_P02STATUS_OK; or
E2E_PO02STATUS_OKSOMELQOST; or
E2E_PO2STATUS_INITIAL; or
E2E_PO02STATUS_SYNC; or

E2E_P02STATUS_WRONGSEQUENCE on condition that SyncCounter exceeds
0 (i.e. SyncCounter > 0).

|(RS_E2E_08528)

[PRS_E2E_00300] | The E2E_P02Check() function shall reset the NoNewOrRe-
peatedDataCounter to 0 if it returns one of the following status:

e E2E_P02STATUS_OK; or

AUTOSAR

o E2E_P02STATUS_OKSOMELOST; or

e E2E_P02STATUS_SYNC: or

o E2E_P02STATUS_WRONGSEQUENCE
|(RS_E2E 08528)

[PRS_E2E_00301] [The E2E_P02Check() function shall increment NoNewOrRe-
peatedDataCounter by 1 if it returns the Status E2E_P02STATUS_NONEWDATA or
E2E_PO02STATUS_REPEATED up to the maximum value of Counter (i.e. 15 or 0xF). |
(RS_E2E 08528)

6.4.3 EZ2E Profile 2 Protocol Examples

E2E_P02ConfigType field Value
DatalLength 64
DatalDList 0x01, 0x02, 0x03, 0x04,

0x05, 0x06, 0x07, 0x08,
0x09, 0Ox0a, 0x0b, 0xOc,
0x0d, 0x0e, 0x0f, 0x10

MaxDeltaCounterlnit 1
MaxNoNewOrRepeatedData 15
SyncCounterlnit 0
Offset 0

Table 6.15: E2E Profile 2 protocol example configuration

E2E_PO02ProtectStateType field Value
Counter 0

Table 6.16: E2E Profile 2 example state initialization

Result data of E2E_P02Protect() with data equals all zeros (0x00), counter starting with
1 (note: first used counter is 1, although counter field is initialized with 0, as counter is
incremented before usage):

Counter DatalD Byte
0 1 2 3 4 5 6 7
1 0x02 0x1b 0x01 0x00 0x00 0x00 0x00 0x00 0x00
2 0x03 0x98 0x02 0x00 0x00 0x00 0x00 0x00 0x00
3 0x04 0x31 0x03 0x00 0x00 0x00 0x00 0x00 0x00
4 0x05 0x0d 0x04 0x00 0x00 0x00 0x00 0x00 0x00

AUTOSAR

A
Counter DatalD Byte
0 1 2 3 4 5 6 7
5 0x06 0x18 0x05 0x00 0x00 0x00 0x00 0x00 0x00
6 0x07 0x9b 0x06 0x00 0x00 0x00 0x00 0x00 0x00
7 0x08 0x65 0x07 0x00 0x00 0x00 0x00 0x00 0x00
8 0x09 0x08 0x08 0x00 0x00 0x00 0x00 0x00 0x00
9 0x0a 0x1d 0x09 0x00 0x00 0x00 0x00 0x00 0x00
10 0x0b 0x9e 0x0a 0x00 0x00 0x00 0x00 0x00 0x00
11 0x0c 0x37 0x0b 0x00 0x00 0x00 0x00 0x00 0x00
12 0x0d 0x0b 0x0c 0x00 0x00 0x00 0x00 0x00 0x00
13 0x0e Oxle 0x0d 0x00 0x00 0x00 0x00 0x00 0x00
14 0x0f 0x9d 0x0e 0x00 0x00 0x00 0x00 0x00 0x00
15 0x10 Oxcd 0x0f 0x00 0x00 0x00 0x00 0x00 0x00
0 0x01 0x0e 0x00 0x00 0x00 0x00 0x00 0x00 0x00
CRC 4 bit Data
Data + 4
bit
Counter

Table 6.17: E2E Profile 2 example protect result

6.5 Specification of E2E Profile 4

[PRS_E2E_00372] | Profile 4 shall provide the following control fields, transmitted at
runtime together with the protected data: Length, Counter, CRC, Data ID (see Ta-
ble 6.18). |(RS_E2E_08529, RS_E2E_08530, RS _E2E_08533)

Control field Description

Length 16 bits, to support dynamic-size data.

Counter 16-bits.

CRC 32 bits, polynomial in normal form 0x1F4ACFB13, pro-

vided by CRC library.
Note: This CRC polynomial is different from the CRC-
polynomials used by FlexRay, CAN and LIN and TCPIP.

Data ID 32-bits, unique system-wide.

Table 6.18: E2E Profile 4 mechanisms

The E2E mechanisms can detect the following faults or effects of faults:

Fault Main safety mechanisms
Repetition of information Counter
Loss of information Counter
Delay of information Counter
Insertion of information Data ID

AUTOSAR

Masquerading Data ID, CRC
Incorrect addressing Data ID
Incorrect sequence of information Counter
Corruption of information CRC

Asymmetric information sent from a senderto | CRC (to detect corruption at any of receivers)
multiple receivers

Information from a sender received by only a | Counter (loss on specific receivers)
subset of the receivers

Blocking access to a communication channel | Counter (loss or timeout)

Table 6.19: Detectable communication faults using Profile 4

For details of CRC computation, the usage of start values and XOR values see CRC
Supervision [7]

6.5.1 Data Layout

6.5.1.1 User data layout

In the E2E Profile 4, the user data layout (of the data to be protected) is not constrained

by E2E Profile 4 - there is only a requirement that the length of data to be protected is
multiple of 1 byte.

6.5.1.2 Header layout

The header of the E2E Profile 4 has one fixed layout, as follows:

[] 1 I z] 3 |
Transmisslonorder | 0| 2| 23 [4[5 [5] 7] & = | 10]1n]12]13]2a]15]15] 27 (1= [[20 (212223 | 24 25 |28 |27 [23]25]30] =32
o
4
B

Figure 6.14: E2E Profile 4 Header

The bit numbering shown above represents the order in which bits are transmitted. The
E2E header fields (e.g. E2E Counter) are encoded as:

1. Big Endian (most significant byte fist) - imposed by profile
2. LSB Fist (least significant bit within byte first) - imposed by TCPIP bus

For example, the 16 bits of the E2E counter are transmitted in the following order
(higher number meaning higher significance): 7891011 121314150123456 7.

The header can be placed at a specific location in the protected data, by configuring
the offset of the entire E2E header.

AUTOSAR

6.5.2 Counter

In E2E Profile 4, the counter is initialized, incremented, reset and checked by E2E
profile. The counter is not manipulated or used by the caller of the E2E Supervision.

[PRS_E2E_00478] [In E2E Profile 4, on the sender side, for the first transmission
request of a data element the counter shall be initialized with 0 and shall be incre-
mented by 1 for every subsequent send request. When the counter reaches the
maximum value (OxFF’FF), then it shall restart with O for the next send request. |
(RS_E2E 08539)

Note: This specification was previously falsely identified as PRS_E2EProtocol_00324.

Note that the counter value OXFF’FF is not reseved as a special invalid value, but it is
used as a normal counter value.

In E2E Profile 4, on the receiver side, by evaluating the counter of received data against
the counter of previously received data, the following is detected:

1. Repetition:

a. no new data has arrived since last invocation of E2E Supervision check func-
tion, b. the data is repeated

2. OK: a. counter is incremented by one (i.e. no data lost), b. counter is incremented
more than by one, but still within allowed limits (i.e. some data lost),

3. Wrong sequence: a. counter is incremented more than allowed (i.e. too many
data lost).

Case 1 corresponds to the failed alive counter check, and case 3 correspond to failed
sequence counter check.

The above requirements are specified in more details by the UML diagrams in the
following document sections.

6.5.3 DatalD

The unique Data IDs are to verify the identity of each transmitted safety-related data
element.

[PRS_E2E_00326] | In the E2E Profile 4, the Data ID shall be explicitly transmitted,
i.e. it shall be the part of the transmitted E2E header. |(RS_E2E_08539)

[PRS_E2E_UC_00327] | In the E2E profile 4, the Data IDs shall be globally unique
within the network of communicating system (made of several ECUs each sending
different data). |(RS_E2E_08539)

In case of usage of E2E Supervision for protecting data elements (i.e invocation from
RTE), due to multiplicity of communication (1:1 or 1:N), a consumer of a data element

AUTOSAR

expects only a specific data element, which is checked by E2E Supervision using Data
ID.

In case of usage of E2E Supervision for protecting I-PDUs (i.e. invocation from COM),
the receiver COM expects at a reception only a specific I-PDU, which is checked by
E2E Supervision using Data ID.

6.5.4 Length

The Length field is introduced to support variable-size length - the Data [] array storing
the serialized data can potentially have a different length in each cycle. The Length
includes user data + E2E Header (CRC + Counter + Length + DatalD).

6.5.5 CRC

E2E Profile 4 uses a 32-bit CRC, to ensure a high detection rate and high Hamming
Distance.

[PRS_E2E_00329] [E2E Profile 4 shall use the Crc_CalculateCRC32P4 () func-
tion of the SWS CRC Supervision for calculating the CRC. |(RS_E2E_08528,
RS _E2E 08539)

Note: The CRC used by E2E Profile 4 is different from the CRCs used by FlexRay,
CAN and TCP/IP. It is also provided by different software modules (FlexRay, CAN and
TCP/IP stack CRCs/checksums are provided by hardware support in Communication
Controllers or by communication stack software, but not by CRC Supervision).

[PRS_E2E_00330] | In E2E Profile 4, the CRC shall be calculated over the entire E2E
header (excluding the CRC bytes) and over the user data. |(RS_E2E_08536)

6.5.6 Timeout detection

The previously mentioned mechanisms (CRC, Counter, Data ID, Length) enable to
check the validity of received data element, when the receiver is executed indepen-
dently from the data transmission, i.e. when receiver is not blocked waiting for Data
Elements or respectively I-PDUs, but instead if the receiver reads the currently avail-
able data (i.e. checks if new data is available). Then, by means of the counter, the
receiver can detect loss of communication and timeouts.

6.5.7 EZ2E Profile 4 variants

The E2E Profile 4 variants are specified in TPS System Specification.

AUTOSAR

6.5.8 E2E_PO04Protect

The function E2E_P04Protect() performs the steps as specified by the following eight

diagrams in this section.

[PRS_E2E_00362] [The function E2E_P04Protect() shall have the overall behavior

as shown in Figure 6.15. | (RS_E2E_08539)

E2E_PO04Protect(Config, State, Data, Length)

Verify inputs of the protg_tC)
function

[input oK

Compute offset oo [wrong input]

Write Length ~C

return E2E_E_OK

@
return
E2E_E_INPUTERR_NULL

Figure 6.15: E2E Profile 4 Protect

@ retum E2E_E_INPUTERR_WRONG

[PRS_E2E_00363] | The step “Verify inputs of the protect function”
E2E_PO04Protect() shall behave as shown in Figure 6.16. |(RS_E2E_08539)

in

AUTOSAR

E2E_PO04Protect() .
(eos o)

(Config != NULL) && (State != NULL) && (Data != NULL)

[FALSE]

[TRUE]

(Length >= Config->MinDatalLength/8) && (Length <= Config->MaxDataLength/8)
[FALSE]
[TRUE]
wrong input
@ @) input ok

null input

Figure 6.16: E2E Profile 4 Protect step ”Verify inputs of the protect function”

[PRS_E2E_00376] [The step “Compute offset” in E2E_P04Protect() and
E2E_P04Check() shall behave as shown in Figure 6.17. |(RS_E2E 08539)

E2E_PO04Protect()

E2E_P04Check()

(Offset = Config->Offset / 8]
N

:

Figure 6.17: E2E Profile 4 Protect step "Compute offset”

!!

compute local variable uint16
Offset, which is in [byte]

[PRS_E2E 00364] | The step "Write Length” in E2E_PO4Protect()

shall behave as shown in Figure 6.18. |(RS_E2E_08539)
’
[Copy 2-byte Length on bytes Data[Offset...Offset+1] in Big Endian order]
®

Figure 6.18: E2E Profile 4 Protect step ”Write Length”

AUTOSAR

[PRS_E2E 00365] | The step “"Write Counter” in E2E_PO04Protect()
shall behave as shown in Figure 6.19. |(RS_E2E_08539)

E2E_PO04Protect()
=2 o

(Copy 2-byte State->Counter on bytes Data[Offset+2...Offset+3] in Big Endian]
order

O,
Figure 6.19: E2E Profile 4 Protect step ”Write Counter”

[PRS_E2E 00366] | The step “Write DatalD” in E2E_PO04Protect()
shall behave as shown in Figure 6.20. |(RS_E2E_08539)

E2E_PO04Protect()
O

Copy 4-byte Config->DatalD to bytes Data[Offset+4...Offset+7] in
Big Endian order

Figure 6.20: E2E Profile 4 Protect step ”Write DatalD”

AUTO SAR

[PRS_E2E_00367] | The step "Compute CRC” in E2E_PO04Protect() and in
E2E_P04Check() shall behave as shown in Figure 6.21. |(RS_E2E 08539)

E2E_PO04Protect()
(o)

E2E_P04Check()
(o)

compute CRC over bytes that are before CRC.
computation length: offset+8, where:
offset number of bytes before the E2E header
8 number of header bytes before E2E CRC

&Data[0], Crc_Length: Offset+8, Crc_StartValue32:
OxXFF'FF'EF'FF, Crc_IsFirstCall: TRUE)

(uint32 ComputedCRC = Crc_Cal cuIateCRC32P4(Crc7DalaPtr:]

Offset + 12 < Length

[false] ftrue]

[offset+12], Crc_Length: Length-Offset-12, Crc_StartValue32:

ComputedCRC = Crc_Calculate CRC32P4(Crc_DataPtr: &Data Compute CRC over bytes that are after CRC (if any).
ComputedCRC, Crc_IsFirstCall: FALSE)

entire E2E-Prodected Data (includung E2E Header (length, I

............ At this step, there is a ready ComputedCRC value, over the
D,
CRC etc) and the user data).

Figure 6.21: E2E Profile 4 Protect and Check step "Compute CRC”

[PRS_E2E_00368] [The step "Write CRC”in E2E_P04Protect()
shall behave as shown in Figure 6.22. |(RS_E2E _08539)

E2E_PO04Protect() .
oo

Copy 4-byte local variable CRC on bytes Data[Offset+8...Offset
+11] using big Endian order

O,
Figure 6.22: E2E Profile 4 Protect step "Write CRC”

AUTOSAR

[PRS_E2E 00369] | The step ’Increment Counter” in E2E_PO04Protect()
shall behave as shown in Figure 6.23. |(RS_E2E_08539)

E2E_PO04Protect()
(o)

__________ The type is uintl6. After
OxFF'FF, the next value

[State->Counter++
is 0.

O)

Figure 6.23: E2E Profile 4 Protect step ”Increment Counter”

6.5.9 E2E_P04Check

The function E2E_P04Check performs the actions as as specified by the following
seven diagrams in this section and according to diagram PRS_E2EProtocol_00367.

[PRS_E2E_00355] [The function E2E_P04Check() shall have the
overall behavior as shown in Figure 6.24. |(RS_E2E _08539)

E2E_P04Check(Config, State, Data, Length)

Verify inputs of the cheggo
function

[null input] [wro

g input]

[FALSE] Compute offset oo
Read Length ~C

return E2E_E_OK @ retur E2E_E_INPUTERR_WRONG

®

retumn E2E_E_INPUTERR_NULL

Figure 6.24: E2E Profile Check

AUTO SAR

[PRS_E2E_00356] | The step “Verify inputs of the check function” in
E2E_P04Check() shall behave as shown in Figure 6.25. |(RS_E2E 08539)

E2E_P04Check()
[e3e)

local variable, no need
to store it in the State
structure.

NewDataAvailable |-----
= FALSE

(Config 1= NULL) && (State != NULL)

[FALSE] [TRUE]
s AT B (Data != NULL && Length !=0) || (Data == NULL && Length == 0)
eck: Either both Data
and Length mean that
a message is available,
or both mean the
ite. TRUE
opposite. [1 [FALSE]
Data != NULL
[FALSE]
[TRUE]
Thist_pathfm y hadPF’e" at (Length >= Config->MinDatalLength/8) && (Length <= Config->MaxDatalength/8)
runtime if qyeue
communicafion is used and
no data is available (in this
case both Dgta is NULL and
Length is 0).
[TRUE]
[FALSE]
NewDataAvailable
=TRUE
% O,
nullnput input ok wrong input

Figure 6.25: E2E Profile Check step ’Verify inputs of the check function”

[PRS_E2E_00357] | The step "Read Length” in E2E_P04Check()
shall behave as shown in Figure 6.26. |(RS_E2E _08539)

E2E_P04Check)
[e%e)

[Copy bytes Data[Offset...Offset+1] in Big Endian order to uint16 local variable ReceivedLength]

% Options is always at the
same location.

Figure 6.26: E2E Profile Check step "Read Length”

AUTOSAR

[PRS_E2E 00358] | The step “"Read Counter” in E2E_P04Check()
shall behave as shown in Figure 6.27. |(RS_E2E_08539)

E2E_P04Check() .
oo

Copy bytes Data[Offset+2...Offset+3] in Big Endian order on uint16 local
variable ReceivedCounter

@

Figure 6.27: E2E Profile Check step "Read Counter”

[PRS_E2E 00359] | The step "Read DatalD” in E2E_P04Check()
shall behave as shown in Figure 6.28. |(RS_E2E_08539)

E2E_P04Check()
=2 o

Copy bytes Data[Offset+4...Offset+7] in Big Endian order on
uint32 local variable ReceivedDatalD

@
Figure 6.28: E2E Profile Check step ”"Read DatalD”

AUTOSAR

[PRS_E2E 00360] | The step "Read CRC” in E2E_P04Check()
shall behave as shown in Figure 6.29. |(RS_E2E_08539)

E2E_P04Check()
(o)

Copy bytes Data[Offset+8...Offset+11] using big Endian order
on 4-byte local variable ReceivedCRC

Figure 6.29: E2E Profile Check step "Read CRC”

[PRS_E2E 00361] | The step "Do Checks” in E2E_P04Check()
shall behave as shown in Figure 6.30. |(RS_E2E_08539)

EZE_PO4Check)
oo

NewDatafwailable == TRUE

[TRUE]
[FALSE]

ReceivedCRC == ComputedCRE

r]
[FALSE]

ReceivedDatalD == Config->D atalh

[TRUE]

[FALSE] é ReceivedLength == Length
[TRUE]
W
Compute Iocal variable DeltaCounter: ReceivedCounter - State->Counter
[FALSE] (taking into wrap around DxFFFF)

ter <= Config->MaxDelaCaunt
ter >=0)

[FALSE]
DeltaCounter > 0

z
><r< ><
z
m
5D
i

[FALSE] [TRUE]

DeltaCounter == 1

[FALSE] [TRUE]

i

State->Gtatus =
EZE_PO4STATUS_OK

State->Status = State-» Status = State->Status = State->Status =
EZE_PO4STATUS_NONEWDATA E2E_POASTATUS_ERROR E2E_PO4STATUS_WRONGSEQUENCE| | E2E_poasTATUS_REPEATED

E2E_PO4STATUS_OKSOMELOST

Figure 6.30: E2E Profile 4 Check step Do Checks”

AUTOSAR

6.5.10 E2E Profile 4 Protocol Examples

The default configuration assumed for the following examples, if not otherwise stated

to be different:

E2E_P04ConfigType field Value
DatalD 0x0a0b0c0d
Offset 0x0000
MinDatalLength 96
MaxDatalLength 32768

MaxDeltaCounter

1

Table 6.20: E2E Profile 4 protocol example configuration

E2E_PO04ProtectStateType field

Value

Counter

0

Result data of E2E_P04Protect() with short data length (length 16 bytes, means 4

Table 6.21: E2E Profile 4 example state initialization

actual data bytes), offset = 0, counter = 0:

Byte 0 1 2 3 4 5 6 7
Data 0x00 0x10 0x00 0x00 0x00 0x00 0x00 0x00
Field Length Counter DatalD

Byte 8 9 10 11 12 13 14 15
Data 0x34 Oxea 0x4b Oxff 0x00 0x00 0x00 0x00
Field CRC Data

Result data of E2E_P04Protect() with minimum data length (4 data bytes), offset = 64

Table 6.22: E2E Profile 4 example short

(as with SOME/IP header use case), datalength = 24, counter = 0:

Byte 0 1 2 3 4 5 6 7
Data 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Field Data (upper header)

Byte 8 9 10 11 12 13 14 15
Data 0x00 0x18 0x00 0x00 0x00 0x00 0x00 0x00
Field Length Counter DatalD

Byte 16 17 18 19 20 21 22 23
Data 0xe2 0x4d 0x10 Oxfa 0x00 0x00 0x00 0x00

AUTOSAR

A
Field | CRC | Data
Table 6.23: E2E Profile 4 example short with SOME/IP use case

6.6 Specification of E2E Profile 5

[PRS_E2E_00394] | Profile 5 shall provide the following control fields, transmitted at
runtime together with the protected data: Counter, CRC, Data ID (see Table 6.24). |
(RS_E2E_08529, RS _E2E 08530, RS_E2E 08533)

Control field Description

Counter 8 bits. (explicitly sent)

CRC 16 bits, polynomial in normal form 0x1021 (Autosar notation),
provided by CRC library. (explicitly sent)

Data ID 16 bits, unique system-wide. (implicitly sent)E2E

Table 6.24: E2E Profile 5 mechanisms

The E2E mechanisms can detect the following faults or effects of faults:

Fault Main safety mechanisms
Repetition of information Counter

Loss of information Counter

Delay of information Counter

Masquerading Data ID, CRC

Incorrect addressing Data ID

Incorrect sequence of information Counter

Corruption of information CRC

Asymmetric information sent from a sender to | CRC (to detect corruption at any of receivers)
multiple receivers

Information from a sender received by only a | Counter (loss on specific receivers)
subset of the receivers

Blocking access to a communication channel | Counter (loss or timeout)

Table 6.25: Detectable communication faults using Profile 5

For details of CRC computation, the usage of start values and XOR values see CRC
Supervision [7].

AUTOSAR

6.6.1 Data Layout
6.6.1.1 User data layout
In the E2E Profile 5, the user data layout (of the data to be protected) is not constrained

by E2E Profile 5 - there is only a requirement, that the length of data to be protected is
multiple of 1 byte.

6.6.1.2 Header layout

The header of the E2E Profile 5 has one fixed layout, as follows:

| 0 [1 [2 |
Transmlszlon order [1] 1 2 3 4 5 () 7 8 9 |10 111213 |14 | 15|16 (17|18 |19|20 |21 | 22|23
(]

Figure 6.31: E2E Profile 5 header

The bit numbering shown above represents the order in which bits are transmitted. The
E2E header fields (e.g. CRC) are encoded like in CAN and FlexRay, i.e.:

1. Little Endian (least significant byte fist) applicable for both implicit and explicit
header fields - imposed by profile

2. MSB Fist (most significant bit within byte first) - imposed by FlexrayCAN bus.

6.6.2 Counter
In E2E Profile 5, the counter is initialized, incremented, reset and checked by E2E
profile. The counter is not manipulated or used by the caller of the E2E Supervision.

[PRS_E2E_00397] | In E2E Profile 5, on the sender side, for the first transmission re-
quest of a data element the counter shall be initialized with 0 and shall be incremented
by 1 for every subsequent send request. When the counter reaches the maximum
value (OxFF), then it shall restart with 0 for the next send request. |(RS_E2E_08539)

Note that the counter value OxFF is not reserved as a special invalid value, but it is
used as a normal counter value.

In E2E Profile 5, on the receiver side, by evaluating the counter of received data against
the counter of previously received data, the following is detected:

1. Repetition:

a. no new data has arrived since last invocation of E2E Supervision check func-
tion,

b. the data is repeated
2. OK:

AUTOSAR

a. counter is incremented by one (i.e. no data lost),

b. counter is incremented more than by one, but still within allowed limits (i.e.
some data lost),

3. Error: a. counter is incremented more than allowed (i.e. too many data lost).

Case 1 corresponds to the failed alive counter check, and case 3 correspond to failed
sequence counter check.

The above requirements are specified in more details by the UML diagrams in the
following document sections.

6.6.3 DatalD

The unique Data IDs are to verify the identity of each transmitted safety-related data
element.

[PRS_E2E_00399] | In the E2E Profile 5, the Data ID shall be implicitly transmitted,
by adding the Data ID after the user data in the CRC calculation. |(RS_E2E_08539)

The Data ID is not a part of the transmitted E2E header (similar to Profile 2 and 6).

[PRS_E2E_UC_00463] [In the E2E profile 5, the Data IDs shall be globally unique
within the network of communicating system (made of several ECUs each sending
different data). |(RS_E2E_08539)

In case of usage of E2E Supervision for protecting data elements (i.e invocation from
RTE), due to multiplicity of communication (1:1 or 1:N), a consumer of a data element
expects only a specific data element, which is checked by E2E Supervision using Data
ID.

In case of usage of E2E Supervision for protecting I-PDUs (i.e. invocation from COM),
the receiver COM expects at a reception only a specific I-PDU, which is checked by
E2E Supervision using Data ID.

6.6.4 Length

In Profile 5 there is no explicit transmission of the length.

6.6.5 CRC

E2E Profile 5 uses a 16-bit CRC, to ensure a sufficient detection rate and sufficient
Hamming Distance.

AUTOSAR

[PRS_E2E_00400] | E2E Profile 5 shall use the Crc_CalculateCRC16() function of the
SWS CRC Supervision for calculating the CRC (Polynomial: 0x1021; Autosar nota-
tion). |(RS_E2E_08528, RS_E2E_08539)

[PRS_E2E_00401] | In E2E Profile 5, the CRC shall be calculated over the entire E2E
header (excluding the CRC bytes), including the user data extended at the end with
the Data ID. |(RS_E2E_08539, RS_E2E_08536)

6.6.6 Timeout detection

The previously mentioned mechanisms (for Profile 5: CRC, Counter, Data ID) enable
to check the validity of received data element, when the receiver is executed indepen-
dently from the data transmission, i.e. when receiver is not blocked waiting for Data
Elements or respectively |-PDUs, but instead if the receiver reads the currently avail-
able data (i.e. checks if new data is available). Then, by means of the counter, the
receiver can detect loss of communication and timeouts.

The attribute State->NewDataAvailable == FALSE means that the transmission
medium (e.g RTE) reports that no new data element is available at the transmission
medium. The attribute State->Status = E2E_ POSSTATUS_REPEATED means that the
transmission medium (e.g. RTE) provided new valid data element, but this data ele-
ment has the same counter as the previous valid data element. Both conditions repre-
sent an unavailability of valid data that was updated since the previous cycle.

6.6.7 E2E_PO5Protect

The function E2E_PO0O5Protect() performs the steps as specified by the following six
diagrams in this section.

AUTOSAR

[PRS_E2E 00403] | The function E2E_PO5Protect() shall have the
overall behavior as shown in Figure 6.32. |(RS_E2E_08539)

E2E_PO5Protect(Config, State, Data, Length)

Verify inputs of the pro%
function

C te offset
ompute offse

Write Counter ~c

Compute CRC [wrong input]

‘ Write CRC ~c

Increment Counter

5

oo

@
return
E2E_E_INPUTERR_NULL

Figure 6.32: E2E Profile 5 Protect

return E2E_E_OK @ retum E2E_E_INPUTERR_WRONG

[PRS_E2E_00404] [The step “Verify inputs of the protect function” in
E2E_POS5Protect() shall behave as shown in Figure 6.33. |(RS_E2E 08539)

E2E_PO05Protect()

J

(Config = NULL) && (State != NULL) && (Data != NULL)

[FALSE]
[TRUE]

Length == Config->DataLength/8

[TRUE] [FALSE]

input ok wrong input
no input

Figure 6.33: E2E Profile 5 Protect step "Verify inputs of the protect function”

AUTOSAR

[PRS_E2E_00469] | The step “Compute offset” in E2E_PO5Protect() and
E2E_PO05Check() shall behave as shown in Figure 6.34. |(RS_E2E 08539)

E2E_PO5Protect()
O

E2E_P05Check()
oo

(Offset = Config->Offset / 8]

®
compute local variable uint16
Offset, which is in [byte]

Figure 6.34: E2E Profile 5 Protect step "Compute offset”

[PRS_E2E 00405] | The step “"Write Counter” in E2E_PO5Protect()
shall behave as shown in Figure 6.35. |(RS_E2E_08539)

E2E_PO5Protect() .
oo

[Copy 1-byte State->Counter on byte Data[Offset+2] in Little Endian order]

@
Figure 6.35: E2E Profile 5 Protect step "Write Counter”

AUTO SAR

[PRS_E2E_00406] | The step "Compute CRC” in E2E_PO05Protect() and in
E2E_PO05Check shall behave as shown in Figure 6.36. |(RS_E2E_08539)

E2E_PO5Protect()
(o)
E2E_P05Check()
O
Config->Offset > 0

[TRUE] [FALSE]
uintl6 ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr: uintl6 ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr:
&Data[0], Crc_Length: Offset, Crc_StartValue16: OXFFFF, &Data[Offset+2], Crc_Length: Length-Offset-2,
Crc_lIsFirstCall: TRUE) Crc_StartValuel6: OxFFFF, Crc_IsFirstCall: TRUE)

[Offset+2], Crc_Length: Length-Offset-2, Crc_StartValuel6:

ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr:&Data
ComputedCRC, Crc_IsFirstCall: FALSE)

Crc_Length: 1, Crc_StartValuel6: ComputedCRC,

ComputedCRC= Crc_CalculateCRC16(Config->DatalD & OxFF,
Crc_lsFirstCall: FALSE)

OxFF, Crc_Length: 1, Crc_StartValue16: computedCRC,

ComputedCRC= Crc_CalculateCRC16(Config->DatalD>>8 &
Crc_lsFirstCall: FALSE)

O,
Figure 6.36: E2E Profile 5 Protect and Check step "Compute CRC”

[PRS_E2E_00407] | The step "Write CRC” in E2E_PO05Protect()
shall behave as shown in Figure 6.37. |(RS_E2E _08539)

E2E_PO5Protect()
O

Copy 2-byte local variable CRC on bytes Data[Offset+0...Offset+1] using Little
Endian order

O,
Figure 6.37: E2E Profile 5 Protect step "Write CRC”

AUTOSAR

[PRS_E2E 00409] | The step ’Increment Counter” in E2E_PO5Protect()
shall behave as shown in Figure 6.38. |(RS_E2E_08539)

E2E_PO05Protect()
(o)

} ________ The type is uint8. After

OxFF, the next value is

(State->Counter++
0.

®

Figure 6.38: E2E Profile 5 Protect step ”Increment Counter”

6.6.8 E2E_P05Check

The function E2E_PO05Check performs the actions as specified by the following six
diagrams in this section.

[PRS_E2E_00411] | The function E2E_PO05Check() shall have the
overall behavior as shown in Figure 6.39. |(RS_E2E _08539)

E2E_P05Check(Config, State, Data, Length)

Verify inputs of the ch%
function

[null input] [input ok [wrong input]

NewDataAvailable
== TRUE

[TRUE]

(Compute offset O—O)

Read Counter

[ece)

[FALSE]

Read CRC ~c

‘ Compute CRC :'

Do checks oo
O, O,
return retum E2E_E_OK return

E2E_E_INPUTERR_NULL E2E_E_INPUTERR_WRONG

Figure 6.39: E2E Profile 5 Check

AUTO SAR

[PRS_E2E_00412] | The step “Verify inputs of the check function” in
E2E_PO05Check() shall behave as shown in Figure 6.40. |(RS_E2E 08539)

E2E_P05Check() .
(o)
NewDataAvailable | ___ | local variable, no need
= FALSE to store it in the State

structure.

(Config != NULL) && (State != NULL)

[TRUE]

(Data !'= NULL && Length !=0) || (Data == NULL && Length == 0)

[FALSE] [TRUE]
[FALSE]
Data != NULL
[FALSE]

[TRUE]
Lhrl‘sﬁpmaetf;frgjzuf;adppen & Length == Config->DataLength/8
communication is used and
no data is available.

(TRUE] [FALSE]

NewDataAvailable
=TRUE

® ——= ®

null input

input ok wrong input

Figure 6.40

[PRS_E2E_00413] | The step "Read Counter’ in E2E_P05Check()
shall behave as shown in Figure 6.41. |(RS_E2E _08539)

E2E_P05Check()
o

Copy byte Data[Offset+2] in Little Endian order on uint8 local variable
ReceivedCounter

®
Figure 6.41: E2E Profile 5 Check step "Read Counter”

AUTOSAR

[PRS_E2E 00414] | The step "Read CRC” in E2E_P05Check()
shall behave as shown in Figure 6.42. |(RS_E2E_08539)

E2E_P05Check() .
oo

Copy bytes Data[Offset+0...Offset+1] using Little Endian order
on 2-byte local variable ReceivedCRC

O,
Figure 6.42: E2E Profile 5 Check step "Read CRC”

[PRS_E2E 00416] [The step Do Checks’ in E2E_P05Check()
shall behave as shown in Figure 6.43. |(RS_E2E _08539)

E2E_POSChedd)
oo

HewDatasvailable == TRUE

ReceivedCRE == ComputedCRE

Compute locsl variable DeltaCounter: ReceivedCounter- State->Counter
(taking into wrap araund 0xFFY

(DektaCounter <= Config-»MaxDeltaCounter
(DeltaCounter >=0

~O<

[FALSE]

[TRUE]
[FALSE]

DeMaCounter> 0

— O

[FALSE] [TRUE]

[FALSE]
DeltaCounter== 1

I

[FALSE] [TRUE]
L'

State-»Status = State-»Status = State->Status = State->Status =
EZE_POSSTATUS_NONEWDATA| £oE possTATUS ERROR | [E2E_POSSTATUS_WRONGSEQUENCE| | eze possTaTus REFEATED) |E2E_POSSTATUS_OKSOMELOST

State-»Status=
EZE_POSSTATUS_DK

Figure 6.43: E2E Profile 5 Check step Do Checks”

6.6.9 EZ2E Profile 5 Protocol Examples

The default configuration assumed for the following examples, if not otherwise stated
to be different:

AUTOSAR

E2E_P05ConfigType field Value
DatalD 0x1234
Offset 0x0000
DatalLength 24
MaxDeltaCounter 1

Table 6.26: E2E Profile 5 protocol example configuration

E2E_PO5ProtectStateType field Value
Counter 0

Table 6.27: E2E Profile 5 example state initialization

Result data of E2E_P05Protect() with short data length (length 8 bytes, with 5 actual
data bytes), offset = 0, counter = 0:

Byte 0 1 2 3 4 5 6 7
Data 0x01c Oxca 0x00 0x00 0x00 0x00 0x00 0x00
Field CRC Counter Data

Table 6.28: E2E Profile 5 example short

Result data of E2E_PO05Protect() with short data length (length 16 bytes, with 5 actual
data bytes), offset = 64 (as with SOME/IP header use case), counter = 0:

Byte 0 1 2 3 4 5 6 7
Data 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Field Data (upper header)

Byte 8 9 10 11 12 13 14 15
Data 0x28 0x91 0x00 0x00 0x00 0x00 0x00 0x00
Field CRC Counter Data

Table 6.29: E2E Profile 5 example short with SOME/IP use case

6.7 Specification of E2E Profile 6

[PRS_E2E_00479] | Profile 6 shall provide the following control fields, transmitted at
runtime together with the protected data: Length, Counter, CRC, Data ID (see Ta-
ble 6.30). |(RS_E2E_08529, RS_E2E_08530, RS _EZ2E_08533)

Control field Description
Length 16 bits, to support dynamic-size data. (explicitly sent)
Counter 8-bits. (explicitly sent)

AUTOSAR

CRC 16-bits, polynomial in normal form 0x1021 (Autosar nota-
tion), provided by CRC library. (explicitly sent)
Data ID 16-bits, unique system-wide. (implicitly sent)

Table 6.30: E2E Profile 6 mechanisms

The E2E mechanisms can detect the following faults or effects of faults:

Fault Main safety mechanisms
Repetition of information Counter

Loss of information Counter

Delay of information Counter

Insertion of information Data ID

Masquerading Data ID, CRC

Incorrect addressing Data ID

Incorrect sequence of information Counter

Corruption of information CRC

Asymmetric information sent from a sender to | CRC (to detect corruption at any of receivers)
multiple receivers

Information from a sender received by only a | Counter (loss on specific receivers)
subset of the receivers

Blocking access to a communication channel | Counter (loss or timeout)

Table 6.31: Detectable communication faults using Profile 6

For details of CRC computation, the usage of start values and XOR values see CRC
Supervision [7].

6.7.1 Data Layout
6.7.1.1 User data layout
In the E2E Profile 6, the user data layout (of the data to be protected) is not constrained

by E2E Profile 6 - there is only a requirement that the length of data to be protected is
multiple of 1 byte.

6.7.1.2 Header layout

The header of the E2E Profile 6 has one fixed layout, as follows:

o [1 | H [El |
Tramsmiszhonorder | 0| 1| 2|3 |a|s |6 | 7| =]|9|w|umfiz|azfaslas|is|av|is|1a|20|21)|22| 3| |2s 2|27 |2z]|2a30]|m
o
2

Figure 6.44: E2E Profile 6 header

AUTOSAR

The bit numbering shown above represents the order in which bits are transmitted. The
E2E header fields (e.g. E2E Counter) are encoded as:

1. Big Endian (most significant byte fist), applicable for both implicit and explicit
header fields - imposed by profile

2. LSB Fist (least significant bit within byte first) - imposed by TCP/IP bus

6.7.2 Counter
In E2E Profile 6, the counter is initialized, incremented, reset and checked by E2E
profile. The counter is not manipulated or used by the caller of the E2E Supervision.

[PRS_E2E_00417] | In E2E Profile 6, on the sender side, for the first transmission re-
quest of a data element the counter shall be initialized with 0 and shall be incremented
by 1 for every subsequent send request. When the counter reaches the maximum
value (OxFF), then it shall restart with 0 for the next send request. |(RS_E2E_08539)

Note that the counter value OxFF is not reserved as a special invalid value, but it is
used as a normal counter value.

In E2E Profile 6, on the receiver side, by evaluating the counter of received data against
the counter of previously received data, the following is detected:

1. Repetition:

a. no new data has arrived since last invocation of E2E Supervision check func-
tion,

b. the data is repeated
2. OK:
a. counter is incremented by one (i.e. no data lost),

b. counter is incremented more than by one, but still within allowed limits (i.e.
some data lost),

3. Error: a. counter is incremented more than allowed (i.e. too many data lost).

Case 1 corresponds to the failed alive counter check, and case 3 correspond to failed
sequence counter check.

The above requirements are specified in more details by the UML diagrams in the
following document sections.

6.7.3 DatalD

The unique Data IDs are to verify the identity of each transmitted safety-related data
element.

AUTOSAR

[PRS_E2E_00419] [In the E2E Profile 6, the Data ID shall be implicitly transmitted, by
adding the Data ID after the user data in the CRC calculation. |(RS_E2E_08539)

The Data ID is not a part of the transmitted E2E header (similar to Profile 2 and 5).

[PRS_E2E_UC_00464] | In the E2E profile 6, the Data IDs shall be globally unique
within the network of communicating system (made of several ECUs each sending
different data). |(RS_E2E_08539)

In case of usage of E2E Supervision for protecting data elements (i.e invocation from
RTE), due to multiplicity of communication (1:1 or 1:N), a consumer of a data element
expects only a specific data element, which is checked by E2E Supervision using Data
ID.

In case of usage of E2E Supervision for protecting I-PDUs (i.e. invocation from COM),
the receiver COM expects at a reception only a specific I-PDU, which is checked by
E2E Supervision using Data ID.

6.7.4 Length

In Profile 6 the length field is introduced to support variable-size length - the Data []
array storing the serialized data can potentially have a different length in each cycle. In
Profile 6 there is a explicit transmission of the length. The Length includes user data +
E2E Header (CRC + Counter + Length).

6.7.5 CRC

E2E Profile 6 uses a 16-bit CRC, to ensure a sufficient detection rate and sufficient
Hamming Distance.

[PRS_E2E_00420] | E2E Profile 6 shall use the Crc_CalculateCRC16() function of the
SWS CRC Supervision for calculating the CRC (Polynomial: 0x1021; Autosar nota-
tion). |(RS_E2E_08528, RS_E2E_08539)

[PRS_E2E_00421] | In E2E Profile 6, the CRC shall be calculated over the entire E2E
header (excluding the CRC bytes), including the user data extended with the Data ID.
|(RS_E2E 08539, RS_E2E 08536)

6.7.6 Timeout detection

The previously mentioned mechanisms (for Profile 6: CRC, Counter, Data ID, Length)
enable to check the validity of received data element, when the receiver is executed
independently from the data transmission, i.e. when receiver is not blocked waiting for
Data Elements or respectively I-PDUs, but instead if the receiver reads the currently

AUTOSAR

available data (i.e. checks if new data is available). Then, by means of the counter, the
receiver can detect loss of communication and timeouts.

The attribute State->NewDataAvailable == FALSE means that the transmission
medium (e.g RTE) reports that no new data element is available at the transmission
medium. The attribute State->Status = E2E_ PO6STATUS REPEATED means that the
transmission medium (e.g. RTE) provided new valid data element, but this data ele-
ment has the same counter as the previous valid data element. Both conditions repre-
sent an unavailability of valid data that was updated since the previous cycle.

6.7.7 E2E_PO6Protect

The function E2E_P06Protect() performs the steps as specified by the following seven
diagrams in this section.

[PRS_E2E 00423] | The function E2E_PO6Protect() shall have the
overall behavior as shown in Figure 6.45. |(RS_E2E_08539)

E2E_PO06Protect(Config, State,
Data, Length)

Verify inputs of the protég_o
function
[mput oK

Ci te offset
C ompute offse)
Write Length ~c

Write Counter oo
Compute CRC -

Write CRC oo
Increment Counter

return E2E_E_OK

[wrong input]

('S
return

E2E_E_INPUTERR_NULL @ retum E2E_E_INPUTERR_WRONG

Figure 6.45. E2E Profile 6 Protect

AUTOSAR

[PRS_E2E_00424] | The step “Verify inputs of the protect function” in
E2E_PO6Protect() shall behave as shown in Figure 6.46. |(RS_E2E 08539)

E2E_PO06Protect()
O

(Config 1= NULL) && (State != NULL) && (Data != NULL)

[FALSE] [TRUE]

(Length >= Config->MinDataLength/8) &&
(Length <= Config->MaxDatalLength/8)

[TRUE]
[FALSE]

@ input ok wrong input
no input

Figure 6.46: E2E Profile 6 Protect step "Verify inputs of the protect function”

[PRS_E2E_00470] | The step "Compute offset” in E2E_PO6Protect() and
E2E_P06Check() shall behave as shown in Figure 6.47. |(RS_EZ2E _08539)

E2E_PO06Protect()
O
E2E_P06Check()
(eose)
(Offset = Config->Offset / 8]

O,
compute local variable uintl6
Offset, which is in [byte]

Figure 6.47: E2E Profile 6 Protect step "Compute offset”

[PRS_E2E 00425] | The step "Write Length” in E2E_PO6Protect()
shall behave as shown in Figure 6.48. |(RS_E2E _08539)

E2E_PO06Protect()
o

[Copy 2-byte Length on bytes Data[Offset+2...Offset+3] in Big Endian order J

@
Figure 6.48: E2E Profile 6 Protect step ”Write Length”

AUTO SAR

[PRS_E2E_00426] | The step "Write Counter” in E2E_PO06Protect()
shall behave as shown in Figure 6.49. |(RS_E2E_08539)

E2E_PO06Protect()
oS o

[Copy 1-byte State->Counter on byte Data[Offset+4] in Big Endian order J

O,
Figure 6.49: E2E Profile 6 Protect step ”"Write Counter”

[PRS_E2E_00427] | The step "Compute CRC” in E2E_PO06Protect() and
E2E_P06Check() shall behave as shown in Figure 6.50. |(RS_EZ2E 08539)

E2E_P06Check()
[e%)

E2E_PO6Protect()
(o)

Config->Offset > 0

[TRUE]
uintl6 ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr: uintl6 ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr:
&Datal[0], Crc_Length: Offset, Crc_StartValue16: OxFFFF, &Data[Offset+2], Crc_Length: Length-Offset-2,
Crc_IsFirstCall: TRUE) Crc_StartValuel6: OXFFFF, Crc_lIsFirstCall: TRUE)

[Offset+2], Crc_Length: Length-Offset-2, Crc_StartValuel6:

ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr:&Data
ComputedCRC, Crc_lsFirstCall: FALSE)

OxFF, Crc_Length: 1, Crc_StartValue16: computedCRC,

ComputedCRC= Crc_CalculateCRC16(Config->DatalD>>8 &
Crc_IsFirstCall: FALSE)

Crc_Length: 1, Crc_StartValue16: ComputedCRC,

ComputedCRC= Crc_CalculateCRC16(Config->DatalD & OxFF,
Crc_lIsFirstCall: FALSE)

@
Figure 6.50: E2E Profile 6 Protect and Check step "Compute CRC”

AUTOSAR

[PRS_E2E 00428] | The step "Write CRC” in E2E_PO6Protect()
shall behave as shown in Figure 6.51. |(RS_E2E_08539)

E2E_PO6Protect()
(o)

Copy 2-byte local variable CRC on bytes Data[Offset+0...Offset
+1] using big Endian order

O,
Figure 6.51: E2E Profile 6 Protect step "Write CRC”

[PRS_E2E_00429] | The step ’Increment Counter” in E2E_PO6Protect()
shall behave as shown in Figure 6.52. |(RS_E2E _08539)

E2E_PO6Protect() ‘
(eose)
The type is uint8. After

(State->Counter++ } """" OxFF, the next value is
0.

®

Figure 6.52: E2E Profile 6 Protect step "Increment Counter”

6.7.8 E2E_P06Check

The function E2E_P06Check performs the actions as specified by the following seven
diagrams in this section.

AUTOSAR

[PRS_E2E_00430] | The function E2E_P06Check() shall have the
overall behavior as shown in Figure 6.53. |(RS_E2E_08539)

E2E_P06Check(Config, State, Data,
Length)

Verify inputs of the ch%
function

[input ok

NewDataAvailable
== TRUE

[TRUE]

Compute offset oo
Read Length oo

retum E2E_E_OK a!) retum E2E_E_INPUTERR_WRONG

Figure 6.53: E2E Profile 6 Check

wrong input]
[FALSE] [wrong input]

@ return

E2E_E_INPUTERR_NULL

AUTO SAR

[PRS_E2E_00431] | The step "Verify |Inputs” in E2E_P06Check()
shall behave as shown in Figure 6.54. |(RS_E2E_08539)
[

E2E_P06Check() NewDataAvailable | ______ local variable, no need
oo = FALSE to store it in the State

structure.

(Config != NULL) && (State != NULL)

[FALSE]
[TRUE]

Check: Either both Data
and Length mean that a
message is available, or
both mean the opposite.

((Data != NULL) && (Length != 0)) || (Data == NULL) && (Length == 0))

[TRUE] [FALSE]

Data != NULL

[FALSE]

[TRUE]

(Length >= Config->MinDataLength/8) &&
(Length <= Config->MaxDataLength/8)

This path may happen at
runtime if queued
communication is used and
no data is available (in this
case both Data is NULL ans
Length is Q). [TRUE]

NewDataAvailable
=TRUE

[FALSE

®

no input

input ok wrong input

Figure 6.54: E2E Profile 6 Check step “Verify Inputs”

[PRS_E2E_00432] | The step "Read Length” in E2E_P06Check()
shall behave as shown in Figure 6.55. |(RS_E2E_08539)

E2E_P06Check))
oo

[Copy bytes Data[Offset+2...Offset+3] in Big Endian order to uint16 local variable ReceivedLength]

O,
Figure 6.55: E2E Profile 6 Check step "Read Length”

AUTOSAR

[PRS_E2E 00433] | The step “"Read Counter” in E2E_P06Check()
shall behave as shown in Figure 6.56. |(RS_E2E_08539)

E2E_P06Check()
=e o

Copy byte Data[Offset+4] in Big Endian order on uint8 local variable
ReceivedCounter

O,
Figure 6.56: E2E Profile 6 Check step "Read Counter”

[PRS_E2E 00434] | The step "Read CRC” in E2E_P06Check()
shall behave as shown in Figure 6.57. |(RS_E2E_08539)

E2E_P06Check() .
oo

Copy bytes Data[Offset+0...Offset+1] using big Endian order on
2-byte local variable ReceivedCRC

O,
Figure 6.57: E2E Profile 6 Check step "Read CRC”

AUTOSAR

[PRS_E2E 00436] [The step "Do Checks” in E2E_P06Check()
shall behave as shown in Figure 6.58. (RS_E2E 08539)

E2E_POBChedd)
[=4=)

—

NewDatatvailable == TRUE

[FALSE]

eceivedCRE == CompultedCRE

[FALSE]

ReceivedLength == Length

[FALSE] [TRUE]

Compute local variable DeltaCounter: ReceivedCounter - State-=Counter (taking
into wrap arsund 0xFF)

(DeHaCounter <= Config-MaxDeltaCounte)) &4

[FALSE] (DelaCounter ==0)

[TRUE]

DelaCounter = 0

[FALSE]

[TRUE]

[FALSE] DeltaCounter== 1
l [TRUE]

Sate->Status = State-»Status = State-»Status = State-> Status = State->Status =
E2E_POGSTATUS_NONEWDATA| E2e poasTaTUS ERROR) [F2E_POBSTATUS WRONGSEQUENCE| | E2e possTATUS. REFEATED) |E2E_POSSTATUS_OKSOMELOST

e

State-»Etatus=
EZE_FOGSTATUS_OK

Figure 6.58: E2E Profile 6 Check step Do Checks”

6.7.9 EZ2E Profile 6 Protocol Examples

The default configuration assumed for the following examples, if not otherwise stated
to be different:

E2E_P06ConfigType field Value

DatalD 0x1234

Offset 0x0000
MinDatalLength 40

MaxDatalLength 32768
MaxDeltaCounter 1

Table 6.32: E2E Profile 6 protocol example configuration

E2E_PO06ProtectStateType field Value

AUTOSAR

Counter 0

Table 6.33: E2E Profile 6 example state initialization

Result data of E2E_P06Protect() with short data length (length 8 bytes, with 3 actual
data bytes), offset = 0, counter = 0:

Byte 0 1 2 3 4 5 6 7
Data Oxb1 0x55 0x00 0x08 0x00 0x00 0x00 0x00
Field CRC Length Counter Data

Table 6.34: E2E Profile 6 example short

Result data of E2E_PO06Protect() with short data length (length 16 bytes, with 3 actual
data bytes), offset = 64 (as with SOME/IP header use case), counter = 0:

Byte 0 1 2 3 4 5 6 7
Data 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Field Data (upper header)

Byte 8 9 10 11 12 13 14 15
Data Ox4e Oxb7 0x00 0x10 0x00 0x00 0x00 0x00
Field CRC Length Counter Data

Table 6.35: E2E Profile 6 example short with SOME/IP use case

6.8 Specification of E2E Profile 7

[PRS_E2E_00480] | Profile 7 shall provide the following control fields, transmitted at
runtime together with the protected data: Length, Counter, CRC, Data ID (see Ta-
ble 6.36). |(RS_E2E 08529, RS_E2E 08530, RS _E2E_08533)

Control field Description

Length 32 bits, to support dynamic-size data.

Counter 32 bits.

CRC 64 bits, polynomial in normal form 0x42FOE1EBASEA3693, pro-

vided by CRC library.
Note: This CRC polynomial is also known as “CRC-64 (ECMA)".

Data ID 32 bits, unique system-wide.

Table 6.36: E2E Profile 7 mechanisms

The E2E mechanisms can detect the following faults or effects of faults:

‘ Fault ‘ Main safety mechanisms

AUTOSAR

Repetition of information Counter

Loss of information Counter
Delay of information Counter
Insertion of information Data ID, CRC
Masquerading Data ID, CRC
Incorrect addressing Data ID
Incorrect sequence of information Counter
Corruption of information CRC

Asymmetric information sent from a senderto | CRC (to detect corruption at any of receivers)
multiple receivers

Information from a sender received by only a | Counter (loss on specific receivers)
subset of the receivers

Blocking access to a communication channel | Counter (loss or timeout)

Table 6.37: Detectable communication faults using Profile 7

For details of CRC computation, the usage of start values and XOR values see CRC
Supervision [7]

6.8.1 Data Layout

6.8.1.1 User data layout

In the E2E Profile 7, the user data layout (of the data to be protected) is not constrained

by E2E Profile 7 - there is only a requirement that the length of data to be protected is
multiple of 1 byte.

6.8.1.2 Header layout

The header of the E2E Profile 7 has one fixed layout, as follows:

Figure 6.59: Profile 7 Header

The bit numbering shown above represents the order in which bits are transmitted. The
E2E header fields (e.g. E2E Counter) are encoded as:

1. Big Endian (most significant byte fist) - imposed by profile
2. LSB Fist (least significant bit within byte first) - imposed by TCPIP bus

AUTOSAR

For example, the 32 bits of the E2E counter are transmitted in the following order
(higher number meaning higher significance): 24 25 26 27 28 29 3031 16 17 18 19 20
21222378910111213141501234567.

The header can be placed at a specific location in the protected data, by configuring
the offset of the entire E2E header.

6.8.2 Counter

In E2E Profile 7, the counter is initialized, incremented, reset and checked by E2E
profile. The counter is not manipulated or used by the caller of the E2E Supervision.

[PRS_E2E_00481] [In E2E Profile 7, on the sender side, for the first transmission
request of a data element the counter shall be initialized with 0 and shall be incre-
mented by 1 for every subsequent send request. When the counter reaches the max-
imum value (OxFF’FF’FF’FF), then it shall restart with O for the next send request. |
(RS_E2E 08539)

Note that the counter value OxFF'FF'FF’FF is not reseved as a special invalid value,
but it is used as a normal counter value.

In E2E Profile 7, on the receiver side, by evaluating the counter of received data against
the counter of previously received data, the following is detected:

1. Repetition:

a. no new data has arrived since last invocation of E2E Supervision check func-
tion, b. the data is repeated

2. OK:a. counter is incremented by one (i.e. no data lost), b. counter is incremented
more than by one, but still within allowed limits (i.e. some data lost),

3. Wrong sequence: a. counter is incremented more than allowed (i.e. too many
data lost).

Case 1 corresponds to the failed alive counter check, and case 3 correspond to failed
sequence counter check.

The above requirements are specified in more details by the UML diagrams in the
following document sections.

6.8.3 DatalD
The unique Data IDs are to verify the identity of each transmitted safety-related data
element.

[PRS_E2E_00482] | In the E2E Profile 7, the Data ID shall be explicitly transmitted,
i.e. it shall be the part of the transmitted E2E header |(RS_E2E_08539)

AUTOSAR

There are currently no limitations on the values of Data ID - any values within the
addres space of 32 bits are allowed.

[PRS_E2E_00483] | In the E2E profile 7, the Data IDs shall be globally unique within
the network of communicating system (made of several ECUs each sending different
data). | (RS_E2E_08539)

In case of usage of E2E Supervision for protecting data elements (i.e invocation from
RTE), due to multiplicity of communication (1:1 or 1:N), a consumer of a data element
expects only a specific data element, which is checked by E2E Supervision using Data
ID.

In case of usage of E2E Supervision for protecting I-PDUs (i.e. invocation from COM),
the receiver COM expects at a reception only a specific I-PDU, which is checked by
E2E Supervision using Data ID.

6.8.4 Length

The Length field is introduced to support variable-size length - the Data [] array storing
the serialized data can potentially have a different length in each cycle. The Length
includes user data + E2E Header (CRC + Counter + Length + DatalD).

6.8.5 CRC

E2E Profile 7 uses a 64-bit CRC, to ensure a high detection rate and high Hamming
Distance.

[PRS_E2E_00484] [E2E Profile 7 shall use the Crc_CalculateCRC64 4 () func-
tion of the SWS CRC Supervision for calculating the CRC. |(RS_E2E_08528,
RS _E2E 08539)

[PRS_E2E_00485] [In E2E Profile 7, the CRC shall be calculated over the entire E2E
header (excluding the CRC bytes) and over the user data. |(RS_E2E_08536)

6.8.6 Timeout detection

The previously mentioned mechanisms (CRC, Counter, Data ID, Length) enable to
check the validity of received data element, when the receiver is executed indepen-
dently from the data transmission, i.e. when receiver is not blocked waiting for Data
Elements or respectively I-PDUs, but instead if the receiver reads the currently avail-
able data (i.e. checks if new data is available). Then, by means of the counter, the
receiver can detect loss of communication and timeouts.

AUTOSAR

6.8.7 EZ2E Profile 7 variants

The E2E Profile 7 variants are specified in TPS System Specification.

6.8.8 E2E_PO07Protect
The function E2E_PO07Protect() performs the steps as specified by the following eight
diagrams in this section.

[PRS_E2E 00486] | The function E2E_PO7Protect() shall have the
overall behavior as shown in Figure 6.60. |(RS_E2E_08539)

E2E_PO07Protect(Config, State, Data, Length)

Verify inputs of the prot&g_tC>
function

[input oK

Compute offset oo [wrong input]

Write Length oo

return E2E_E_OK

®
return

E2E_E_INPUTERR_NULL

@ retum E2E_E_INPUTERR_WRONG

Figure 6.60: E2E Profile 7 Protect

AUTOSAR

[PRS_E2E_00487] | The step Verify inputs of the protect function” in
E2E_PO7Protect() shall behave as shown in Figure 6.61. |(RS_E2E 08539)

E2E_PO07Protect() .
(o)

(Config != NULL) && (State != NULL) && (Data = NULL)

[FALSE]
[TRUE]

(Length >= Config->MinDatalLength/8) && (Length <= Config->MaxDatalLength/8)

[FALSE]
[TRUE]

wrong input
@ @) input ok

null input

Figure 6.61: E2E Profile 7 Protect step "Verify inputs of the protect function”

[PRS_E2E_00488] |[The step "Compute offset” in E2E_PO7Protect()
and E2E_PO07Check() shall behave as shown in Figure 6.62. 1()

E2E_PO07Protect()
O

E2E_P07Check()
oo
(Offset = Config->Offset / 8]
s N
N

:

Figure 6.62: E2E Profile 7 Protect step "Compute offset”

compute local variable uint32
Offset, which is in [byte]

[PRS_E2E 00489] | The step “"Write Length” in E2E_PO7Protect()

shall behave as shown in Figure 6.63. |(RS_E2E _08539)
?
[Copy 4-byte Length on bytes Data[Offset+8...Offset+11] in Big Endian order]
O

Figure 6.63: E2E Profile 7 Protect step ”Write Length”

AUTOSAR

[PRS_E2E 00490] | The step “"Write Counter” in E2E_PO7Protect()
shall behave as shown in Figure 6.64. |(RS_E2E_08539)

E2E_PO07Protect()
=2 o

Copy 4-byte State->Counter on bytes Data[Offset+12...Offset+15] in Big
Endian order

O,
Figure 6.64: E2E Profile 7 Protect step ”Write Counter”

[PRS_E2E 00491] [The step "Write DatalD”in E2E_PO07Protect()
shall behave as shown in Figure 6.65. |(RS_E2E_08539)

E2E_PO07Protect()
O

Copy 4-byte Config->DatalD to bytes Data[Offset+16...Offset+19]
in Big Endian order

Figure 6.65: E2E Profile 7 Protect step "Write Data ID”

AUTO SAR

[PRS_E2E_00492] | The step "Compute CRC” in E2E_PO07Protect() and in
E2E_PO07Check() shall behave as shown in Figure 6.66. |(RS_E2E 08539)

E2E_PO07Protect()

WriteVariable
uint64 ComputedCRC =

b

E2E_P07Check) OXFF'FFFFFFFFFFFFFF

b

Offset >0
[false]

[true]

&Data[0], Crc_Length: Offset, Crc_StartValue64:

X computation length: offset, where offset is number
OXFF'FF'FFFFFFFFFFFF, Crc_IsFirstCall: TRUE)

uint64 ComputedCRC = Crc_Calculate CRC64(Crc_DataPtr:
of bytes before the E2E header

______ compute CRC over bytes that are before CRC. j

ComputedCRC = Crc_CalculateCRC64(Crc_DataPtr: &Data
[offset+8], Crc_Length: Length-Offset-8, Crc_StartValue64:
ComputedCRC, Crc_IsFirstCall: FALSE)

------ Compute CRC over bytes that are after CRC.Ij

entire E2E-Prodected Data (including E2E Header (length, ID,

................ At this step, there is a ready ComputedCRC value, over the
CRC etc) and the user data).

Figure 6.66: E2E Profile 7 Protect and Check step "ComputeCRC”

[PRS_E2E_00493] [The step "Write CRC’in E2E_PO07Protect()
shall behave as shown in Figure 6.67. |(RS_E2E _08539)

E2E_PO07Protect() .
oo

Copy 8-byte local variable CRC on bytes Data[Offset...Offset+7]
using big Endian order

O,
Figure 6.67: E2E Profile 7 Protect step ”"Write CRC”

AUTOSAR

[PRS_E2E 00494] | The step ’Increment Counter” in E2E_PO7Protect()
shall behave as shown in Figure 6.68. |(RS_E2E_08539)

E2E_PO07Protect()
(o)

__________ The type is uint32. After
OxFF'FF'FF'FF, the next

[State->Counter++
value is 0.

O)

Figure 6.68: E2E Profile 7 Protect step ”Increment Counter”

6.8.9 E2E_P07Check

The function E2E_P07Check performs the actions as as specified by the following
seven diagrams in this section and according to diagram PRS_E2EProtocol_00492.

[PRS_E2E_00495] [The function E2E_P07Check() shall have the
overall behavior as shown in Figure 6.69. |(RS_E2E _08539)

E2E_P07Check(Config, State, Data, Length)

Verify inputs of the cheggo
function

[null input] [wro

g input]

[FALSE] Compute offset oo
Read Length ~C

return E2E_E_OK @ retur E2E_E_INPUTERR_WRONG

®

retumn E2E_E_INPUTERR_NULL

Figure 6.69: E2E Profile 7 Check

AUTO SAR

[PRS_E2E_00496] | The step “Verify inputs of the check function” in
E2E_PO07Check() shall behave as shown in Figure 6.70. |(RS_E2E 08539)

E2E_P07Check)
[e3e)

local variable, no need
to store it in the State
structure.

NewDataAvailable |-----
= FALSE

(Config 1= NULL) && (State != NULL)

[FALSE] [TRUE]
s AT B (Data != NULL && Length !=0) || (Data == NULL && Length == 0)
eck: Either both Data
and Length mean that
a message is available,
or both mean the
ite. TRUE
opposite. [1 [FALSE]
Data != NULL
[FALSE]
[TRUE]
Thist_pathfm y hadPF’e" at (Length >= Config->MinDatalLength/8) && (Length <= Config->MaxDatalength/8)
runtime if qyeue
communicafion is used and
no data is available (in this
case both Dgta is NULL and
Length is 0).
[TRUE]
[FALSE]
NewDataAvailable
=TRUE
% O,
nullnput input ok wrong input

Figure 6.70: E2E Profile 7 Check step "Verify inputs of the check function”

[PRS_E2E_00497] | The step "Read Length” in E2E_P07Check()
shall behave as shown in Figure 6.71. |(RS_E2E _08539)

E2E_P07Check(
. ®

[Copy bytes Data[Offset+8...Offset+11] in Big Endian order to uint32 local variable ReceivedLength]

@
Figure 6.71: E2E Profile 7 Check step "Read Length”

AUTOSAR

[PRS_E2E 00498] | The step “"Read Counter” in E2E_P07Check()
shall behave as shown in Figure 6.72. |(RS_E2E_08539)

E2E_P07Check() .
(e o)

{Copy bytes Data[Offset+12...Offset+15] in Big Endian order on uint32 Iocal]

variable ReceivedCounter

®

Figure 6.72: E2E Profile 7 Check step "Read Counter”

[PRS_E2E 00499] | The step "Read DatalD” in E2E_P07Check()
shall behave as shown in Figure 6.73. |(RS_E2E_08539)

E2E_P07Check()
=2 o

Copy bytes Data[Offset+16...Offset+19] in Big Endian order on
uint32 local variable ReceivedDatalD

®
Figure 6.73: E2E Profile 7 Check step "Read DatalD”

[PRS_E2E_00500] | The step "Read CRC” in E2E_P07Check()
shall behave as shown in Figure 6.74. |(RS_E2E_08539)

E2E_P07Check()
oo

Copy bytes Data[Offset...Offset+7] using big Endian order on 8-
byte local variable ReceivedCRC

Figure 6.74: E2E Profile 7 Check step "Read CRC”

AUTOSAR

[PRS_E2E 00501] [
shall behave as

EZE_PO7Check)
[=v<)

”DO
Figure

The step
shown in

Checks” in
6.75.

E2E_PO07Check()
|(RS_E2E_08539)

NewDatafwailable == TRUE

[FALSE]

[TRUE]

ReceivedCRC == ComputedCRE

[FALSE]

r]

ReceivedDatalD == Config->D atalh

[FALSE]

[TRUE]

ReceivedLength == Length

[FALSE]

[TRUE]

<2<

Compute Iocal variable DeltaCounter: ReceivedCounter - State->Counter
(taking into wrap around OxFFFFFFFF)

[FALSE]

DeltaCounter > 0

[FALSE]

3
i
z
m
=4
i

[TRUE]

DeltaCounter == 1

i

[FALSE] [TRUE]

State->Status =
E2E_PO7STATUS_HONEWDATA|

State-=Status = State->Status = State-»Status =
E2E_PO7STATUS_ERROR E2E_PO7STATUS_WRONGSEQUENCE| | E2E_PO7$TATUS_REPEATED

State->Gtatus =

E2E_POTSTATUS_OKSOMELOST| g2k porsTaTUs OK

Figure 6.75: E2E Profile 7 Check step Do Checks”

6.8.10 EZ2E Profile 7 Protocol Examples

The default configuration assumed for the following examples, if not otherwise stated

to be different:

E2E_PO07ConfigType field

Value

DatalD

0x0a0b0c0Od

Offset

0x0000

MinDatalLength

160

MaxDatalLength

32768

MaxDeltaCounter

1

Table 6.38: E2E Profile 7 protocol example configuration

E2E_PO07ProtectStateType field

Value

AUTOSAR

Counter

0

Result data of E2E_PO07Protect() with short data length (length 24 bytes, means 4

Table 6.39: E2E Profile 7 example state initialization

actual data bytes), offset = 0, counter = 0:

Byte 0 1 2 3 4 5 6 7
Data 0ox1f 0xb2 0xe7 0x37 Oxfc Oxed Oxbc 0xd9
Field CRC

Byte 8 9 10 11 12 13 14 15
Data 0x00 0x00 0x00 0x18 0x00 0x00 0x00 0x00
Field Length Counter

Byte 16 17 18 19 20 21 22 23
Data 0x0a 0x0b 0x0c 0x0d 0x00 0x00 0x00 0x00
Field DatalD Data

Result data of E2E_PO7Protect() with short data length (length 32, means 4 actual

Table 6.40: E2E Profile 7 example short

data bytes), offset = 64 (as with SOME/IP header use case), counter = 0:

Byte 0 1 2 3 4 5 6 7
Data 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Field Data (upper header)

Byte 8 9 10 11 12 13 14 15
Data 0x17 0xf7 0xc8 0x17 0x32 0x38 0x65 0xa8
Field CRC

Byte 16 17 18 19 20 21 22 23
Data 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00
Field Length Counter

Byte 24 25 26 27 28 29 30 31
Data 0x0a 0x0b 0x0c 0x0d 0x00 0x00 0x00 0x00
Field DatalD Data

6.9 Specification of E2E Profile 11

Profile 11 is bus-compatible to profile 1, but provides "new" profile behavior similar to
profiles 4 to 7 on receiver side. Moreover, some legacy DatalDModes that are by now

obsolete are omitted.

Table 6.41: E2E Profile 7 example short with SOME/IP use case

AUTOSAR

[PRS_E2E_00503] | Profile 11 shall provide the following control fields, transmitted at
runtime together with the protected data: Counter, CRC, Data ID (see Table 6.42). |
(RS_E2E_08529, RS _E2E 08530, RS_E2E 08533)

Control field Description

Counter 4 bits. (explicitly sent)

CRC 8 bits, CRC-8-SAE J1850, provided by CRC library. (explicitly
sent)

Data ID 16 bits or 12 bit, unique system-wide. (either implicitly sent (16
bits) or partly explicitly sent (12 bits; 4 bits explicitly and 8 bits
implicitly sent))

Table 6.42: E2E Profile 11 mechanisms

The E2E mechanisms can detect the following faults or effects of faults:

Fault Main safety mechanisms
Repetition of information Counter

Loss of information Counter

Delay of information Counter

Insertion of information Data ID

Masquerading Data ID, CRC

Incorrect addressing Data ID

Incorrect sequence of information Counter

Corruption of information CRC

Asymmetric information sent from a senderto | CRC (to detect corruption at any of receivers)
multiple receivers

Information from a sender received by only a | Counter (loss on specific receivers)
subset of receivers and the receivers

Blocking access to a communication channel | Counter (loss or timeout)

Table 6.43: Detectable communication faults using Profile 11

For details of CRC computation, the usage of start values and XOR values see CRC
Supervision [7].

6.9.1 Data Layout
6.9.1.1 User data layout
In the E2E Profile 11, the user data layout (of the data to be protected) is not con-

strained by E2E Profile 11 - there is only a requirement, that the length of data to be
protected is multiple of 1 byte.

AUTOSAR

6.9.1.2 Header layout

Profile 11 is backward compatible to the bus-layout of profile 1. This means that while
all the header fields are configurable, the profile variants of profile 1 are also applicable.
Namely, profile 1 variant 1A and variant 1C.

Byte Order 0 1
TransmissionOrder | 0 | 1 | 2 (3 | 4| 5|6 | 7| 8 | 9 |10 11(12]13| 14| 15
Bit Order 7|6 |54 |3|2|1|0|15|14 |12 |12 (11(10| 9 | 8

Figure 6.76: E2E Profile 11 header

The figure above shows Profile 11 variant 11C where the configuration is given as: The
E2E header fields (e.g. CRC) are encoded like in CAN and FlexRay, i.e.:

1. CRCOffset =0
2. CounterOffset = 8 by FlexrayCAN bus.
3. DatalDNibbleOffset = 12

For Profile 11 Variant 11A, DatalDNibble is not used. Instead, user data can be placed
there.

[PRS_E2E_00540] | The E2E Profile variant 11A is defined as follows:
1. CRC is the 0th byte in the signal group (i.e. starts with bit offset 0)
2. Alive counter is located in lowest 4 bits of 1st byte (i.e. starts with bit offset 8)
3. E2E_P11DatalDMode = E2E_P11_DATAID_BOTH
4. SignallPdu.unusedBitPattern = OxFF.
|(RS_E2E_08528)

Below is an example compliant to 11A:

Byte Order 0 1
TransmissionOrder | 0 | 1| 2 (3 (4 (5| 6| 7| 8|9 (10| 11|12 |13 14| 15

Bit Order 7/6|5| 4|32 |1|0|15|14|12(12(11|10| 9 8
0 [eEcre | [counter |

Figure 6.77: E2E Profile 11 Variant A

[PRS_E2E_00541] [The E2E Profile variant 11C is defined as follows:
1. CRC is the 0th byte in the signal group (i.e. starts with bit offset 0)
2. Alive counter is located in lowest 4 bits of 1st byte (i.e. starts with bit offset 8)

3. The Data ID nibble is located in the highest 4 bits of 1st byte (i.e. starts with bit
offset 12)

AUTOSAR

4. E2E_P11DatalDMode = E2E_P11_DATAID_NIBBLE
5. SignallPdu.unusedBitPattern = OxFF
|(RS_E2E _08528)

E2E Profile variant 11C relates to Configuration of E2E Profile 11 configuration setting
11C in system template (system template is more specific).

The transmission order shown above represents the order in which bits are transmitted.
For comparability to the figures of profile 1, also the bit order is given. The E2E header
fields (e.g. CRC) are encoded like in CAN and FlexRay, i.e.:

1. Little Endian (least significant byte fist) applicable for both implicit and explicit
header fields - imposed by profile

2. MSB Fist (most significant bit within byte first) - imposed by Flexray/CAN bus.

6.9.2 Counter
In E2E Profile 11, the counter is initialized, incremented, reset and checked by E2E
profile. The counter is not manipulated or used by the caller of the E2E Supervision.

[PRS_E2E_00504] [In E2E Profile 11, on the sender side, for the first transmission re-
quest of a data element the counter shall be initialized with 0 and shall be incremented
by 1 for every subsequent send request. When the counter reaches the maximum
value (OxOE), then it shall restart with O for the next send request. |(RS_E2E_08539)

Note that the counter value OxOF is reserved as a special invalid value, and must never
be used by the E2E profile 11.

In E2E Profile 11, on the receiver side, by evaluating the counter of received data
against the counter of previously received data, the following is detected:

1. Repetition:

a. no new data has arrived since last invocation of E2E Supervision check func-
tion,

b. the data is repeated
2. OK:
a. counter is incremented by one (i.e. no data lost),

b. counter is incremented more than by one, but still within allowed limits (i.e.
some data lost),

3. Error: a. counter is incremented more than allowed (i.e. too many data lost).

Case 1 corresponds to the failed alive counter check, and case 3 correspond to failed
sequence counter check.

AUTOSAR

The above requirements are specified in more details by the UML diagrams in the
following document sections.

6.9.3 DatalD

The unique Data IDs are to verify the identity of each transmitted safety-related data
element.

There are two supported modes how the Data ID is used:

1. E2E_P11_DATAID_BOTH: both bytes of the 16 bit Data ID are used in the CRC
calculation: first the low byte and then the high byte.

2. E2E_P11_DATAID_NIBBLE:

the high nibble of high byte of DatalD is not used (it is 0x0), as the DatalD is
limited to 12 bits,

the low nibble of high byte of DatalD is transmitted explicitly and covered by CRC
calculation when computing the CRC over Data.

the low byte is not transmitted, but it is included in the CRC computation as start
value.

[PRS_E2E_0507] | In the E2E profile 11, the Data IDs shall be globally unique within
the network of communicating system (made of several ECUs each sending different
data). | (RS_E2E_08539)

In case of usage of E2E Supervision for protecting data elements (i.e invocation from
RTE), due to multiplicity of communication (1:1 or 1:N), a consumer of a data element
expects only a specific data element, which is checked by E2E Supervision using Data
ID.

In case of usage of E2E Supervision for protecting I-PDUs (i.e. invocation from COM),
the receiver COM expects at a reception only a specific I-PDU, which is checked by
E2E Supervision using Data ID.

6.9.4 Length

In Profile 11 there is no explicit transmission of the length.

6.9.5 CRC

E2E Profile 11 uses a 8-bit CRC, to ensure a sufficient detection rate and sufficient
Hamming Distance.

AUTOSAR

[PRS_E2E_00508] | E2E Profile 11 shall use the Crc_CalculateCRC8 function
of the SWS CRC Supervision for calculating the CRC (CRC-8-SAE J1850). |
(RS_E2E_08528, RS _E2E 08539)

[PRS_E2E_00505] | In the E2E Profile 11 with DatalDMode set to
E2E_P11_DATAID_BOTH, the Data ID shall be implicitly transmitted, by adding
first the Data ID low byte, then the Data ID high byte before the user data in the CRC
calculation |(RS_E2E_08539)

[PRS_E2E_00506] [In E2E Profle 11 with DatalDMode set to
E2E_P01_DATAID_NIBBLE, the lower nibble of the high byte of the DatalD shall
be placed in the transmitted data at bit position DatalDNibbleOffset, and the CRC
calculation shall be done by first calculating over the low byte of the Data ID, then a
0-byte, and then the user data. |(RS_E2E_08539)

Note: the byte containing the CRC is always omitted from the CRC calculation.

6.9.6 Timeout detection

The previously mentioned mechanisms (for Profile 11: CRC, Counter, Data ID) enable
to check the validity of received data element, when the receiver is executed indepen-
dently from the data transmission, i.e. when receiver is not blocked waiting for Data
Elements or respectively |-PDUs, but instead if the receiver reads the currently avail-
able data (i.e. checks if new data is available). Then, by means of the counter, the
receiver can detect loss of communication and timeouts.

The attribute State->NewDataAvailable == E2E__ P11STATUS NONEWDATA means
that the transmission medium (e.g RTE) reports that no new data element
is available at the transmission medium. The attribute State->Status =
E2E_P11STATUS_REPEATED means that the transmission medium (e.g. RTE) pro-
vided new valid data element, but this data element has the same counter as the pre-
vious valid data element. Both conditions represent an unavailability of valid data that
was updated since the previous cycle.

6.9.7 E2E_P11Protect

The function E2E_P11Protect() performs the steps as specified by the following six
diagrams in this section.

AUTOSAR

[PRS_E2E 00509] | The function E2E_P11Protect() shall have the
overall behavior as shown in Figure 6.78. |(RS_E2E_08539)

E2E_P11Protect(Config, State, Data, Length)

Verify inputs of the protect
function oo

[input oK

Write DatalDNibble

Write Counter ~c

Compute CRC [wrong input]

C
‘ Write CRC ~c ’

Increment Counter,
O

® ®

return E2E_E_INPUTERR_NULL retum E2E_E_OK retumn E2E_E_INPUTERR_WRONG

Figure 6.78: E2E Profile 11 Protect

[PRS_E2E_00510] [The step “Verify inputs of the protect function” in
E2E_P11Protect() shall behave as shown in Figure 6.79. |(RS_E2E 08539)

E2E_P11Protect()

i

(Config = NULL) && (State != NULL) && (Data != NULL)

[FALSE]
[TRUE]

Length == Config->DatalLength/8

[TRUE] [FALSE]

input ok wrong input

no input

Figure 6.79: E2E Profile 11 Protect step "Verify inputs of the protect function”

AUTOSAR

[PRS_E2E 00511] | The step ,Write DatalDNibble” in E2E_P11Protect()
shall behave as shown in Figure 6.80. |(RS_E2E_08539)

E2E_P11Protect()
(o)

Config->DatalDMode == E2E_P11_DATAID_NIBBLE

[FALSE]
[TRUE]

array at position Config->DatalDNibblerOffset, using little- Nibble position within byte can be obtained by:

((Config->DataID & 0x0F00) >> 8) << (Config-> CounterOffset & 0x7)

Byte position in data array can be obtained by:
endian byte-order.

[Copy lower 4 bits of second byte of State->DatalD to data | Data[Config->DataIDNibbleOffset >> 3]

Figure 6.80: E2E Profile 11 Protect step ”"Write DatalDNibble”

[PRS_E2E 00512] | The step “"Write Counter” in E2E_P11Protect()
shall behave as shown in Figure 6.81. |(RS_E2E_08539)

E2E_P11Protect() .
O
Byte position in data array can be obtained by:

Copy lower 4 bits of State->Counter to data array at position Config- |- - - - - Data[Config->CounterOffset > > 3]
>CounterOffset, using little-endian byte-order. Nibble position within byte can be obtained by:
(State->Counter & 0xF) << (Config-> CounterOffset & 0x7)

O,
Figure 6.81: E2E Profile 11 Protect step ”Write Counter”

AUTO SAR

[PRS_E2E_00513] | The step "Compute CRC” in E2E_P11Protect() and in
E2E_P11Check shall behave as shown in Figure 6.82. |(RS_E2E_08539)

E2E_P11Protect()
E2E_P11Check) l
(Offset = Config->CRCOffset / 8)

switch Config->DatalDMode

\l/[case E2E_P11_DATAID_BOTH] [case E2E_P11_DATAID_NIBBLE]
uint8 ComputedCRC= Crc_CalculateCRC8(Config->DatalD, Crc_Length: 1, uint8 ComputedCRC= Crc_CalculateCRC8(Config->DatalD,
Crc_StartValue8: OxFF, Crc_IsFirstCall: FALSE) Crc_Length: 1, Crc_StartValue8: Oxff, Crc_IsFirstCall: FALSE)

b

ComputedCRC= Crc_CalculateCRC8(Config->DatalD>>8 & OxFF, Crc_Length: ComputedCRC= Crc_CalculateCRC8(0, Crc_Length: 1,
1, Crc_StartValue8: computedCRC, Crc_IsFirstCall: FALSE) Crc_StartValue8: computedCRC, Crc_lIsFirstCall: FALSE)
\L Offset >0

[TRUE] [FALSE]
ComputedCRC= Crc_CalculateCRC8(Crc_DataPtr:&Data[0], ComputedCRC= Crc_CalculateCRC8(Crc_DataPtr:&Data[1],
Crc_Length: Offset, Crc_StartValue8: ComputedCRC, Crc_Length: Length-1, Crc_StartValue8: ComputedCRC,
Crc_lsFirstCall: FALSE) Crc_lsFirstCall: FALSE)

Length > Offset + 1

[FALSE]

[TRUE]

+1], Crc_Length: Length-Offset-1, Crc_StartValue8:

ComputedCRC= Crc_Calculate CRC8(Crc_DataPtr:&Data[Offset
ComputedCRC, Crc_IsFirstCall: FALSE)

Figure 6.82: E2E Profile 11 Protect and Check step "Compute CRC’

[PRS_E2E_00514] | The step "Writer CRC” in E2E_P11Protect()
shall behave as shown in Figure 6.83. |(RS_E2E_08539)

E2E_P11Protect()
O

[Copy 1-byte local variable ComputedCRC on bytes Dala[Config->CRCOffsetl8]J

O,
Figure 6.83: E2E Profile 11 Protect step "Write CRC”

AUTOSAR

[PRS_E2E 00515] | The step ’Increment Counter” in E2E_P11Protect()
shall behave as shown in Figure 6.84. |(RS_E2E_08539)

E2E_P11Protect()
(o)

State->Counter++ ... ____| The type is uint8, but only 15
values are used. After OxE, the

next value is 0.

®

Figure 6.84: E2E Profile 11 Protect step "Increment Counter”

6.9.8 E2E_P11Check

The function E2E_P11Check performs the actions as specified by the following six
diagrams in this section.

[PRS_E2E_00516] | The function E2E_P11Check() shall have the
overall behavior as shown in Figure 6.85. |(RS_E2E _08539)

E2E_P11Check(Config, State, Data, Length)

Verify inputs of the check
function oo

[input ok

[null input] [wrong input]

NewDataAvailable
== TRUE

(Read DatalDNibble O-C;

Read Counter S5O

[FALSE]

Read CRC oo

‘ Compute CRC :'

® é ®

return E2E_E_INPUTERR_NULL return E2E_E_OK retumn E2E_E_INPUTERR_WRONG

Figure 6.85: E2E Profile 11 Check

AUTO SAR

[PRS_E2E_00517] | The step “Verify inputs of the check function” in
E2E_P11Check() shall behave as shown in Figure 6.86. |(RS_EZ2E 08539)

E2E_P11Check) .
(o)
NewDataAvailable | ___ | local variable, no need
= FALSE to store it in the State

structure.

(Config != NULL) && (State != NULL)

_</

[TRUE]

(Data !'= NULL && Length !=0) || (Data == NULL && Length == 0)

=

[FALSE] [TRUE]

[FALSE]
Data != NULL

ie

[FALSE]
[TRUE]

This path may happen at
runtime if queued
communication is used and
no data is available.

Length == Config->DataLength/8

o<

[FALSE]
[TRUE]

NewDataAvailable
=TRUE

® ——= ®

null input input ok wrong input

Figure 6.86: E2E Profile 11 Check step “Verify inputs of the check function”

[PRS_E2E_00582] | The step “Read DatalDNibble” in E2E_P11Check()
shall behave as shown in Figure 6.87. |(RS_E2E _08539)

E2E_P11Check()
[e%e)

Config->DatalDMode == E2E_P11_DATAID_NIBBLE

[TRUE]
. . - X . . - Byte position in data array can be obtained by:
Copy DataIDNll.JbIe from hlt-postlon Conf|.g»>N|belefset !n Data in Little - - - -| Byte = DatalConfig->NibbleOffset > > 3]
[FALSE] Endian order to uint8 local variable ReceivedNibble Nibble within byte can be obtained by:
Counter = (Byte << (Config->NibbleOffset & 0x7)) & OxF

Figure 6.87: E2E Profile 11 Check step "Read DatalDNibble”

AUTOSAR

[PRS_E2E 00518] | The step "Read Counter" in E2E_P11Check()
shall behave as shown in Figure 6.88. |(RS_E2E_08539)

E2E_P11Check()
= ®

. . - . . P . Byte position in data array can be obtained by:
[Copy nibble from bit-position Config->CounterOffset in Data in Little Endlan} _____ Byte = Data[Config->CounterOffset >> 3]

order to uint8 local variable ReceivedCounter Nibble within byte can be obtained by:
Counter = (Byte << (Config->CounterOffset & 0x7)) & OxF

®
Figure 6.88: E2E Profile 11 Check step ”"Read Counter”

[PRS_E2E 00519] | The step "Read CRC” in E2E_P11Check()
shall behave as shown in Figure 6.89. |(RS_E2E _08539)

E2E_P11Check() .
oo

Copy byte Data[Config->CRCOffset/8] to local variable
ReceivedCRC

®
Figure 6.89: E2E Profile 11 Check step "Read CRC”

AUTOSAR

[PRS_E2E 00521] | The step "Do
shall behave as shown in Figure

E2E_P11Cheds)
oo

Checks’ in
6.90. |(RS_E2E_08539)

E2E_P11Check()

g NewDatasvailable == TRUE

[TRUE]

ReceivedCRC == ComputedCRE

[TRUE]

Config->DatalbMade == EZE_F11_DATAID_NIBBLE &&
(ReceivedNibble == (Config->D atalD>>8) & DxFF)

[FALSE]

CO=i-O=

[TRUE]

Compute local variable DeltaCounter: Received Counter - State->Counter
(taking into wrap around 0xE)

[FALSE]

(DeltaCounter <= Config-»MaxDeltaCounter) &&
I =0)

-

[TRUE]

[FALSE]

[FALSE]

—O=

[TRUE]

3o

[FALSE] [TRUE]
')

State->Status =
E2E_P11STATUS_NONEWDATA, State>Status = State-»Status = State-=Status = State »Status =
EZE_P113TATUS_ERROR | [EZE_PMSTATUS_WRONGSEQUENCE| | g2e p115TATUS_REPEATED) |E2E_P11STATUS_OKSOMELDST

State->Status=
EZE_P1M1STATUS_OK

Figure 6.90: E2E Profile 11 Check step "Do Checks”

6.9.9 E2E Profile 11 Protocol Examples

The default configuration assumed for the following examples, if not otherwise stated

to be different:

E2E_P11ConfigType field

Value

CounterOffset

8

CRCOffset

0

DatalD

0x01234

DatalDNibbleOffset

12

DatalDMode

E2E_PO1DATAID_BOTH

DatalLength

64

MaxDeltaCounterlnit

1

MaxNoNewOrRepeatedData

15

SyncCounterlnit

0

Table 6.44: E2E Profile 11 protocol example configuration

AUTOSAR

E2E_P11ProtectStateType field Value
Counter 0

Table 6.45: E2E Profile 11 example state initialization

Byte
0 1 2 3 4 5 6 7
Oxcc 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Table 6.46: E2E Profile 11 protect result DatalDMode = E2E_P11DATAID_BOTH, counter
0

Result data of E2E_P11Protect() with data equals all zeros (0x00), counter =
1:

Byte
0 1 2 3 4 5 6 7
0x91 0x01 0x00 0x00 0x00 0x00 0x00 0x00

Table 6.47: E2E Profile 11 protect result DatalDMode = E2E_P11DATAID_BOTH, counter
1

6.9.9.1 DatalDMode set to E2E_P11DATAID_NIBBLE

Result data of E2E_P11Protect() with data equals all zeros (0x00), counter = 0:

Byte
0 1 2 3 4 5 6 7
0x2a 0x10 0x00 0x00 0x00 0x00 0x00 0x00

Table 6.48: E2E Profile 11 protect result DatalDMode = E2E_P11DATAID_NIBBLE, counter
0

Result data of E2E_P11Protect() with data equals all zeros (0x00), counter =
1:

Byte
0 1 2 3 4 5 6 7
0x77 0x11 0x00 0x00 0x00 0x00 0x00 0x00

Table 6.49: E2E Profile 11 protect result DatalDMode = E2E_P11DATAID_NIBBLE, counter
1

AUTOSAR

6.9.9.2 DatalDMode set to E2E_P11DATAID_ NIBBLE, Offset set to 64

This is a typical use-case for using P11 with SOME/IP serializer, which puts an
8 byte header in front of the serialized user data. “Offset 64” means CRCOffset
set to 64, CounterOffset set to 72, DatalDNibbleOffset set to 76. Result data of
E2E_P11Protect() with data equals all zeros (0x00), counter = 0:

Byte 0 1 2 3 4 5 6 7
Data 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Field Data (upper header)
Byte 8 9 10 1 12 13 14 15
Data 0x7d 0x10 0x00 0x00 0x00 0x00 0x00 0x00
Field CRC DatalD- Data
Nibble
|Counter

Table 6.50: E2E Profile 11 example protect result with short data and SOME/IP

6.10 Specification of E2E Profile 22

[PRS_E2E_00522] | Profile 22 shall provide the following control fields, transmitted at
runtime together with the protected data: Counter, CRC, Data ID (see Table 6.51). |
(RS_E2E_08529, RS _E2E 08530, RS_E2E _08533)

Control field Description

Counter 4 bits. (explicitly sent)

CRC 8 bits, polynomial in normal form Ox2F (Autosar notation), pro-
vided by CRC library. (explicitly sent)

Data ID List 16 8 bits values, linked to Counter value. Effectively 16 different
values, one for each counter value. The Data ID List must be
unique system-wide.

Table 6.51: E2E Profile 22 mechanisms

The E2E mechanisms can detect the following faults or effects of faults:

E2E Mechanism Detected communication faults
Counter Repetition, loss, insertion, incorrect sequence, blocking

Transmission on a regular | Loss, delay, blocking
bases and timeout moni-
toring using E2E-Library °
Data ID + CRC Masquerade and icorrect addressing, insertion
CRC Corruption, asymmetric information &

SImplementation by sender and receiver
Sfor a set of data protected by same CRC

AUTOSAR

Table 6.52: Detectable communication faults using Profile 22

For details of CRC computation, the usage of start values and XOR values see CRC
Supervision [7].

6.10.1 Data Layout

6.10.1.1 User data layout

In the E2E Profile 22, the user data layout (of the data to be protected) is not con-
strained by E2E Profile 22. The total length of transmitted data must be a multiple

of 8 bit (full bytes). Also, as the header only used 12 bit, there are 4 bit unused and
available for user data in the byte where the 4 bit of the counter are placed.

6.10.1.2 Header layout

Profile 22 is backward compatible to the bus-layout of profile 2. In addition, the configu-
ration field offset can be used to offset the header fields, then breaking with backward-
compatibility to profile 2 bus-layout.

Byte Order 0 1
TransmissionOrder | 0 | 1| 2 (3 (4(5| 6| 7| 8|9 (10| 11|12 |13 14| 15

Bit Order 7/6|5| 4|32 |1|0|15|14|12(12(11|10| 9 8
0 [eee | [counter |

Figure 6.91: E2E Profile22 header with offset 0.

The figure above shows Profile 22 with offset configured with 0. Offset is always given
in bit and a multiple of 8 (full bytes).

The transmission order shown above represents the order in which bits are transmitted.
For comparability to the figures of profile 2, also the bit order is given. The E2E header
fields (e.g. CRC) are encoded like in CAN and FlexRay, i.e.:

1. Little Endian (least significant byte fist) applicable for both implicit and explicit
header fields - imposed by profile

2. MSB Fist (most significant bit within byte first) - imposed by Flexray/CAN bus.

AUTOSAR

6.10.2 Counter

In E2E Profile 22, the counter is initialized, incremented, reset and checked by E2E
profile check and protect functions. The counter is not manipulated or used by the
caller of the E2E Supervision. .

[PRS_E2E_00523] | In E2E Profile 22, on the sender side, for the first transmission re-
quest of a data element the counter shall be initialized with 0 and shall be incremented
by 1 for every subsequent send request. When the counter reaches the maximum
value (0xOF), then it shall restart with O for the next send request. |(RS_E2E_08539)

Note that the counter value OxOF is not reserved as a special invalid value.

In E2E Profile 22, on the receiver side, by evaluating the counter of received data
against the counter of previously received data, the following is detected:

1. Repetition:

a. no new data has arrived since last invocation of E2E Supervision check func-
tion,

b. the data is repeated
2. OK:
a. counter is incremented by one (i.e. no data lost),

b. counter is incremented more than by one, but still within allowed limits (i.e.
some data lost),

3. Error: a. counter is incremented more than allowed (i.e. too many data lost).

Case 1 corresponds to the failed alive counter check, and case 3 correspond to failed
sequence counter check.

The above requirements are specified in more details by the UML diagrams in the
following document sections.

6.10.3 DataID

The unique Data ID List is used to verify the identity of each transmitted safety-related
data element.

[PRS_E2E_00524] | In the E2E Profile 22, the Data ID shall be implicitly transmitted,
by adding the Data ID after the user data in the CRC calculation. |(RS_E2E 08539)

[PRS_E2E_00525] | In the E2E profiles 2 and 22, the Data ID Lists shall be glob-
ally unique within the network of communicating system (made of several ECUs each
sending different data.) |(RS_E2E_08539)

In case of usage of E2E Supervision for protecting data elements (i.e invocation from
RTE), due to multiplicity of communication (1:1 or 1:N), a consumer of a data element

AUTOSAR

expects only a specific data element, which is checked by E2E Supervision using Data
ID.

In case of usage of E2E Supervision for protecting I-PDUs (i.e. invocation from COM),
the receiver COM expects at a reception only a specific I-PDU, which is checked by
E2E Supervision using Data ID.

6.10.4 Length

In Profile 22 there is no explicit transmission of the length.

6.10.5 CRC

E2E Profile 22 uses an 8-bit CRC, to ensure a sufficient detection rate and sufficient
Hamming Distance. The CRC polynomial is the same as used in profile 2.

[PRS_E2E_00526] | E2E Profile 22 shall use the Crc_CalculateCRC8H2F() function
of the SWS CRC Supervision for calculating the CRC (Polynomial 0x2F, see also
SWS_E2E_00117) |(RS_E2E 08528, RS _E2E _08539)

[PRS_E2E_00527] [In E2E Profile 22, the CRC shall be calculated over the entire E2E
header (excluding the CRC bytes), including the user data extended at the end with the
coresponding Data ID from the Data ID List. |(RS_E2E_08539, RS_E2E_08536)

6.10.6 Timeout detection

The previously mentioned mechanisms (for Profile 22: CRC, Counter, Data ID) enable
to check the validity of received data element, when the receiver is executed indepen-
dently from the data transmission, i.e. when receiver is not blocked waiting for Data
Elements or respectively I-PDUs, but instead if the receiver reads the currently avail-
able data (i.e. checks if new data is available). Then, by means of the counter, the
receiver can detect loss of communication and timeouts.

The attribute State->Status = E2E__ P22STATUS NONEWDATA means that the trans-
mission medium (e.g RTE) reported that no new data element is available at the trans-
mission medium. The attribute State->Status = E2E_ P22STATUS REPEATED means
that the transmission medium (e.g. RTE) provided new valid data element, but this
data element has the same counter as the previous valid data element. Both con-
ditions represent an unavailability of valid data that was updated since the previous
cycle.

AUTOSAR

6.10.7 E2E_P22Protect

The function E2E_P22Protect() performs the steps as specified by the following dia-
grams in this section.

[PRS_E2E 00528] | The function E2E_P22Protect() shall have the
overall behavior as shown in Figure 6.92. |(RS_E2E _08539)

E2E_P22Protect(Config, State, Data, Length)

Verify inputs of the protect
function

Write Counter

Compute CRC

R

[wrong input]

Write CRC

WL

8

Increment Counter

(e o)

® ®

return E2E_E_INPUTERR_NULL retum E2E_E_OK retum E2E_E_INPUTERR_WRONG

Figure 6.92: E2E Profile 22 Protect

[PRS_E2E_00529] [The step “Verify inputs of the protect function” in
E2E_P22Protect() shall behave as shown in Figure 6.93. |(RS_E2E 08539)

E2E_P22Protect()

J

(Config = NULL) && (State != NULL) && (Data != NULL)

[FALSE]
[TRUE]

Length == Config->DataLength/8

[TRUE] [FALSE]

input ok wrong input
no input

Figure 6.93: E2E Profile 22 Protect step "Verify inputs of the protect function”

AUTOSAR

[PRS_E2E 00530] [The step "Write Counter” in E2E_P22Protect()
shall behave as shown in Figure 6.94. |(RS_E2E_08539)

E2E P22Pr0tect() w
Store value of State->Counter in local
= >Counter [------c==---=------- |
(Counter = State->Counter } variable to be also used in CRC Ij
Iculation

v

[Copy lower 4 bits of State->Counter to data array at bit position Config->0ffse}
+8

6

Figure 6.94: E2E Profile 22 Protect step ”Write Counter”

DataPtr{(Config->Offset >> 3) + 1]

----- Byte position in data array can be obtained by: Ij

[PRS_E2E_00531] | The step "Compute CRC” in E2E_P22Protect() and in
E2E_P22Check shall behave as shown in Figure 6.95. |(RS_E2E _08539)

E2E_P22Protect()
E2E_P22Check() ,
(Offset = Config->Offset / 8)

!

Config->CRCOffset > 0

[TRUE] [FALSE]
uint8 ComputedCRC= Crc_Calculate CRC8H2F(Crc_DataPtr: uint8 ComputedCRC= Crc_Calculate CRC8H2F(Crc_DataPtr:
&Datal[0], Crc_Length: Offset, Crc_StartValue8: OxFF, &Datal[1], Crc_Length: Length-1, Crc_StartValue8: OxFF,
Crc_lsFirstCall: TRUE Crc_lsFirstCall: TRUE)

Length > Offset + 1

[FALSE]

[TRUE]

[Offset+1], Crc_Length: Length-Offset-1, Crc_StartValue8:

ComputedCRC= Crc_CalculateCRC8H2F(Crc_DataPtr:&Data
ComputedCRC, Crc_IsFirstCall: FALSE)

[Counter], Crc_Length: 1, Crc_StartValue8: ComputedCRC,

ComputedCRC= Crc_CalculateCRC8H2F(Config->DatalDList
Crc_|sFirstCall: FALSE)

@
Figure 6.95: E2E Profile 22 Protect and Check step "Compute CRC”

AUTOSAR

[PRS_E2E 00532] [The step "Write CRC” in E2E_P22Protect()
shall behave as shown in Figure 6.96. |(RS_E2E_08539)

E2E_P22Protect()
O

[Copy 1-byte local variable ComputedCRC on bytes Data[Config->Offset/8] J

®
Figure 6.96: E2E Profile 22 Protect step "Write CRC”

[PRS_E2E 00533] | The step ’Increment Counter” in E2E_P22Protect()
shall behave as shown in Figure 6.97. |(RS_E2E_08539)

E2E_P22Protect()
(o)

State->Counter++ ... ____| The type is uint8, but only 16
values are used. After OxF, the

next value is 0.

®
Figure 6.97: E2E Profile 22 Protect step "Increment Counter”

6.10.8 E2E_P22Check

The function E2E_P22Check performs the actions as specified by the following six
diagrams in this section.

AUTO SAR

[PRS_E2E_00534] | The function E2E_P22Check() shall have the
overall behavior as shown in Figure 6.98. |(RS_E2E_08539)

E2E_P22Check(Config, State, Data, Length)

Verify inputs of the check
function oo

[null input] [wrong input]

[input oK

NewDataAvailable
== TRUE

Read Counter ~c

Read CRC

[ece)

‘ Compute CRC O-O'

Do checks

[FALSE]

[ece)

® ®

return E2E_E_INPUTERR_NULL retum E2E_E_OK return E2E_E_INPUTERR_WRONG

Figure 6.98: E2E Profile 22 Check

AUTO SAR

[PRS_E2E_00535] | The step “Verify inputs of the check function” in
E2E_P22Check() shall behave as shown in Figure 6.99. |(RS_E2E 08539)

E2E_P22Check() .
(o)
NewDataAvailable | ___ | local variable, no need
= FALSE to store it in the State

structure.

(Config != NULL) && (State != NULL)

_</

[TRUE]

(Data !'= NULL && Length !=0) || (Data == NULL && Length == 0)

=

[FALSE] [TRUE]

[FALSE]
Data != NULL

ie

[FALSE]
[TRUE]

This path may happen at
runtime if queued
communication is used and
no data is available.

Length == Config->DataLength/8

o<

[FALSE]
[TRUE]

NewDataAvailable
=TRUE

® ——= ®

null input

input ok wrong input

Figure 6.99: E2E Profile 22 Check step “Verify inputs of the check function”

[PRS_E2E_00536] | The step “"Read Counter” in E2E_P22Check()
shall behave as shown in Figure 6.100. |(RS_E2E _08539)

E2E_P22Check()
o

Copy 4 bit counter value from bit-position Config->Offset+8 in Data in Little
Endian order to uint8 local variable Counter

----- Counter in data amay can be obtained by:
Counter = Data[(Config->Offset >> 3)+1] & 0xOF

O,
Figure 6.100: E2E Profile 22 Check step ”"Read Counter”

AUTOSAR

[PRS_E2E 00537] | The step "Read CRC” in E2E_P22Check()
shall behave as shown in Figure 6.101. |(RS_E2E_08539)

E2E_P22Check() '
oo

[Copy byte Data[Config->Offset/8] to local variable]

ReceivedCRC

®
Figure 6.101: E2E Profile 22 Check step "Read CRC”

[PRS_E2E 00539] [The step Do Checks’ in E2E_P22Check()
shall behave as shown in Figure 6.102. |(RS_E2E_08539)

E2E_P2ZChedk)
oo

HewDatatvailable == TRUE

Receive dCRC == ComputedCRC

Compute local wariable DeaCounter, Counter - State->Counter (taking into
wrap around 0F)

(DeltaCounter <= Config-»MaxDeltaCounter) &&
(DeltaCounter »=0

O

[FALSE]

[TRUE]
[FALSE]

DelaCounter = 0

—O<

[FALSE] [TRUE]

[FALSE]
DeltaCounter == 1

I

[FALSE] TRUE]
W

State->Status = State-»Status = State->Status = State->Status =
EZE_F225TATUS_NONEWDATA| £2g p22sTATUS ERROR | [F2E_P22STATUS_WRONSSEQUENCE| | E2g pozsTaTUS REPEATED) |E2E_P22STATUS_OKSOMELOST

State->Status =
EZE_PZ2STATUS_OK

[State-Counter = Counter]

Figure 6.102: E2E Profile 22 Check step Do Checks”

6.10.9 EZ2E Profile 22 Protocol Examples

E2E_P22ConfigType field Value
DatalLength 64

DatalDList 0x01, 0x02, 0x03, 0x04,
0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0xOc,
0x0d, 0x0e, 0xO0f, 0x10

AUTOSAR

MaxDeltaCounterlnit 1
MaxNoNewOrRepeatedData 15
SyncCounterlnit 0
Offset 0

Table 6.53: E2E Profile 22 protocol example configuration

E2E_P22ProtectStateType field Value
Counter 0

Table 6.54: E2E Profile 22 example state initialization

Result data of E2E_P22Protect() with data equals all zeros (0x00), counter starting with
1 (note: first used counter is 1, although counter field is initialized with 0, as counter is
incremented before usage):

Counter Byte
0 1 2 3 4 5 6 7
1 0x1b 0x01 0x00 0x00 0x00 0x00 0x00 0x00
2 0x98 0x02 0x00 0x00 0x00 0x00 0x00 0x00
3 0x31 0x03 0x00 0x00 0x00 0x00 0x00 0x00
4 0x0d 0x04 0x00 0x00 0x00 0x00 0x00 0x00
5 0x18 0x05 0x00 0x00 0x00 0x00 0x00 0x00
6 0x9b 0x06 0x00 0x00 0x00 0x00 0x00 0x00
7 0x65 0x07 0x00 0x00 0x00 0x00 0x00 0x00
8 0x08 0x08 0x00 0x00 0x00 0x00 0x00 0x00
9 0ox1d 0x09 0x00 0x00 0x00 0x00 0x00 0x00
10 0x9e 0x0a 0x00 0x00 0x00 0x00 0x00 0x00
11 0x37 0x0b 0x00 0x00 0x00 0x00 0x00 0x00
12 0x0b 0x0c 0x00 0x00 0x00 0x00 0x00 0x00
13 Oxle 0xo0d 0x00 0x00 0x00 0x00 0x00 0x00
14 0x9d 0x0e 0x00 0x00 0x00 0x00 0x00 0x00
15 Oxcd 0x0f 0x00 0x00 0x00 0x00 0x00 0x00
0 0x0e 0x00 0x00 0x00 0x00 0x00 0x00 0x00
CRC 4 bit Data Data
+ 4 bit
Counter

Table 6.55: E2E Profile 22 example protect result

6.10.9.1 Offset set to 64

This is a typical use-case for using P22 with SOME/IP serializer, which puts an 8 byte
header in front of the serialized user data. Result data of E2E_P22Protect() with data
equals all zeros (0x00), counter = 1:

AUTOSAR

Byte 0 1 2 3 4 5 6 7
Data 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Field Data (upper header)
Byte 8 9 10 11 12 13 14 15
Data 0x14 0x01 0x00 0x00 0x00 0x00 0x00 0x00
Field CRC DatalD Data

|Counter

Table 6.56: E2E Profile 2 example protect result with short data and SOME/IP

6.11

The E2E Profile check()-functions verifies data in one cycle. This function only deter-
mines if data in that cycle are correct or not. In contrary, the state machine builds up a
state out of several results of check() function within a reception window, which is then

provided to the consumer (RTE/SWC/COM).

The state machine is applicable for all E2E profiles. Profiles PO1 and P02 can be
configured to work together with the state machine. However, the behavior of P01/P02
alone, regardless how it is configured, is different to the behavior of PO1/P02 + state
machine.

6.11.1

Overview of the state machine

Specification of E2E state machine

The diagram below summarizes the state machine.

AUTOSAR

0

E2E_SM_DEINIT

init

<@

E2E_SM_NODATA - wait for 1t reception - do
NOT use data

1st Data with no ERROR

E2E7$M;|N|T - COMMUNICATION \ (éE_SM_VALID - communication within limits - ok

INITIALIZATION - do NOT use data to USE data
[NOT (too many ERROR or too few OK)|

) t

[too many ERRORS] [too many ERRORs or too few OKs] [NOT (too many ERROR or too few OK

/EZEisMJNVALID - communication not within

t limits - do NOT use data

Figure 6.103: E2E state machine overview

6.11.2 State machine specification

[PRS_E2E_00354] | The E2E state machine shall be implemented by the functions
E2E_SMCheck() and E2E_SMCheckInit() | (RS_E2E_08539)

[PRS_E2E_00345] | The E2E State machine shall have the behavior with respect to
the function E2E_SMCheck() as shown in Figure 6.104.

This shall be understood as follows:
1. The current state (e.g. E2E_SM_VALID) is stored in State->SMState

2. At every invocation of E2E_SMCheck, the ProfileStatus is processed (as shown
by logical step E2E_SMAddStatus()

3. After that, there is an examination of two counters: State->ErrorCount and State-
>0OKCount. Depending on their values, there is a transition to a new state, stored
in State->SMState.

|(RS_E2E 08539)

AUTO SAR

EZE_SM_DEINIT

Trnsiton through

E2E_SMCheckInit) freturmn EZE_E_WROMNGSTATE

[EZE_SMCheddProfileStatus, Config, State)]

EZE_ShCheddP rofileStatus, Config,
State)

[ELSE]

Bl

I
[FrofileStatus = EZE_F_ERROR &&
ProfileStatus '= EZE_F_NONEWDATA]
|

EZE_SM_INIT

i

EZE_SMChediProfileStatus, Config, State)
FEZE_SMAddStatusProfileStatus, State)

/7 EZE_SM_WALID

L

[ELSE]

[(State-=ErmorCount <= Config-»MaxErrorStatelnit) &2
(State-> OkCount »= Config->hinOkStatelnit]

[State->ErrarCount » Config->MaxErrorStatelnit]

EZE_SMCheckProfile Statuzs, Config, State)
JEZE_5ShAddStatusProfile Status, State)

[(State->ErrarCount <= Config-=MaxEnorStateValid) &5
(State-+OkCount == Config->MinDkStatewalid)]

[ELSE]

¢ EZE_SM_INVALID

EZE_SMChedProfileStatus, Config, State)
FEZE_SMAddStatus{ProfileStatus, State)

[(5tate-=ErmorCount <= Config-=MaxErrorStatelnvalid) S

[ELSE] (State-=0kCount == Config-=MinOkStatelnvalidi]

Figure 6.104: E2E state machine check

AUTOSAR

[PRS_E2E_00466] | The step E2E_SMAddStatus(ProfileStatus, State) in
E2E_SMCheck() shall behave as shown in Figure 6.105. |(RS_E2E 08539)

. E2E_SMAddStatus(ProfileStatus, State)

(State->ProfileStatuswindow[State->WindowTopIndex] = ProfileStatus]

[State->OKCount = number of elementsin State->ProfileStatuswindow[] with values E2E_P_OK J

[State->ErrorCount = number of elements in State->ProfileStatuswindow(] with values E2E_P_ERROR J

If (State->WindowT opIndex == Config->WindowSize -1) then State->WindowTopIndex=0, else State-
>WindowT opIndex++

O]
Figure 6.105: E2E state machine step E2E_SMAddStatus

E2E_SMAddStatus is just a logical step in the algorithm, it may (but it does not have to
be) implemented a a separate function. It is not a module API function.

AUTO SAR

[PRS_E2E_00375] | The E2E State machine shall have the behavior with respect
to the function E2E_SMChecklnit() as shown in Figure 6.106. |(RS_E2E_08539)

EZE_SM_DEINIT

[EZE_SMChedkinitiState, Canfig)]

EZE_SM_NODATA
/EZE_SMCe arProfileStatus(Profile Status, State)

E2E_SM_INIT E2E_SM_VALID
[E2ZE_SMCheckinit{State, Canfig)] [E2E_SMChedkinitState, Config)]
]

: EZE_Shi_INWVALID]
[EZE_SMCheckinit{State, Config)]
r

Figure 6.106: E2E state machine step E2E_SMChecklnit

[PRS_E2E_00467] | The step E2E_SMClearStatus(ProfileStatus, State) in
E2E_SMCheck() shall behave as shown in Figure 6.107. |(RS_E2E 08539)

AUTOSAR

‘ E2E_SMClearStatus(ProfileStatus, State)

Clear each element of [State->ProfileStatuswWindow]] = E2E_P_NOTAVAILABLE J
the o

ProfileStatusWindow(]
amay.

[State->OKCount = 0 J

(State->ErrorCount = 0 J

[State->WindowToplIndex = 0]

®

Figure 6.107: E2E state machine step E2E_SMCheck

6.12 Basic Concepts of CRC Codes

6.12.1 Mathematical Description

Let D be a bitwise representation of data with a total number of n bit, i.e.
D = (dnfly dnf2> dn737 SRS) d17 d0>7

with dy, d;, ... = 0b, 1b. The corresponding Redundant Code C' is represented by n + k
bit as

C = (Da R) = (dn—ladn—Qadn—37 "'7d27d17d077nk’—1a "'7T2ar17T0)

with rg, 71, ... = 0b,1band R = (r_1, ..., 72, 71,79) The code is simply a concatenation of
the data and the redundant part. (For our application, we will chose £ = 16,32 and n
as a multiple of 16 resp. 32).

CRC-Algorithms are related to polynomials with coefficients in the finite field of two
element, using arithmetic operations & and * according to Table 6.57.

The @ operation is identified as the binary operation exclusive-or, that is usually avail-
able in the ALU of any CPU.

AUTOSAR

® Ob 1b * Ob 1b
Ob 0b 1b Ob Ob Ob
1b 1b 0b 1b 0b 1b

Table 6.57: Definition of arithmetic operations

For simplicity, we will write ab instead of a x b

We introduce some examples for polynomials with coefficients in the field of two el-
ements and give the simplified notation of it.

(ex.1)p1(X) = 16X> + 0bX? + 16X + 00X° = X° + X

(ex.2)pa(X) = 10X + 10X + 16X° = X* + X' + 1b

Any code word, represented by n—+£ bit can be mapped to a polynomial of order n+k—1
with coefficients in the field of two elements. We use the intuitive mapping of the bits
le.

CX)=dp 1 X%Ek+n—-1)+d, — XUk +n—2)+ ...

+do Xk +2) + di Xk + 1) +do X+ = Xk — 1) +r ko Xk —2) + . X 41

C(X) = X (dy — X'n— 1) +dn—2)X0n —2) + ...

+do X2+ di X+ do) +rk — DXk — 1) + 1k — 2) Xk 2+ .r X + 19

C(X)=X"D(X)® R(X)

This mapping is one-to-one.

A certain space CRCG of Cyclic Redundant Code Polynomials is defined to be a mul-
tiple of a given Generator Polynomial G(X) = X* + gy —1Xk — 1) + gk —2) Xk —2) +
. + 2X? + g1 X + go. By definition, for any code polynomial C(X) in CRCG there is a
polyno-mial M(X) with

For a fixed irreducible (i.e. prime-) polynomial G(X), the mapping M(X) —> C(X) is one-
to-one. Now, how are data of a given codeword verified? This is basically a division of

AUTOSAR

polynomials, using the Euclidian Algorithm. In practice, we are not interested in M(X),
but in the remainder of the division, C(X) mod G(X). For a correct code word C, this
remainder has to be zero, C(X) mod G(X) = 0. If this is not the case - there is an
error in the codeword. Given G(X) has some additional algebraic prop-erties, one can
determine the error-location and correct the codeword.

Calculating the code word from the data can also be done with the Euclidian Algo-rithm.
For a given data polynomial D(z) = din—1)Xn—1)+dmn—2)Xn—2)+ ...+ d; X' +do
and the corresponding code polynomial C(X) we have

C(X) = XkD(X) ® R(X) = M(X)G(X)
Performing the operation ,, mod G(X)” on both sides, one obtains

0 = C(X)modG(X) = [X*D(X)]modG(X) & R(X)modG(X)
()
We denote that the order of the Polynomial R(X) is less than the order of G(X), so the
modulo division gives zero with remainder R(X):

R(X)modG(X) = R(X)

For polynomial R(X) with coefficients in the finite field with two elements we have the
remarkable property R(X) + R(X) = 0. If we add R(X) on both sides of equation (*) we
obtain

R(X) = XkD(X)modG(X)

The important implication is that the redundant part of the requested code can be
determined by using the Euclidian Algorithm for polynomials. At present, any CRC
calculation method is a more or less sophisticated variation of this basic algorithm.

Up to this point, the propositions on CRC Codes are summarized as follows:

1. The construction principle of CRC Codes is based on polynomials with coef-
ficients in the finite field of two elements. The ¢ operation of this field is iden-tical
to the binary operation ,, xor ”(exclusive or)

2. There is a natural mapping of bit-sequences into this space of polynomials.

3. Both calculation and verification of the CRC code polynomial is based on di-vision
modulo a given generator polynomial.

4. This generator polynomial has to have certain algebraic properties in order to
achieve error-detection and eventually error-correction.

AUTOSAR

6.12.2 Euclidian Algorithm for Binary Polynomials and Bit-Sequences

Given a Polynomial P,(X) = p, X" +pmn — 1)Xn — 1) + ... + p2X? + p1 X + po With
coefficients in the finite field of two elements. Let Q(X) = X* + gk —)Xk — 1) +
gk —2) X%k —2) + ... + @2 X%+ 1. X + qo be another polynomial of exact order k>0. Let
R,.(X) be the remainder of the polynomial division of maximum order k£ — 1 and M,,(X)
corresponding so that

Rn(X) @& Mn(X)Q(X) = Pn(X)

Euclidian Algorithm - Recursive
(Termination of recursion) If n < k, then choose R, (X) = P,(X)andM,, = 0.
(Recursion n+1 —> n) Let P, + 1(X) be of maximum order n + 1.

If n+1 >= kcalculate P,(X) = Pn+1)(X)—pn+1)Q(X)X n—k-+1). This polynomial
is of maximum order n. Then

P+ 1)(X)modQ(X) = P,(X)modQ(X)

Proof of recursion

Choose Rin + 1)(X) = P+ 1)(X) mod Q(X)andMmn + 1)(X) so that Rn + 1)(X) @
Mmn+1)(X)Q(X) = Pn + 1)(X).

Then Rin+1)(X) — R,(X) = P +1)(X) — M +1)(X)Q(X) — Po(X) @ M, (X)Q(X).
With P+ 1)(X) — P.(X) = p(n + 1)Q(X)Xn — k + 1) we obtain

Rn+1)(X) = Ry(X) =pmn+ DQ(X)Xn — k+ 1) + M, (X)Q(X) — Mn + 1)(X)Q(X)
Rn+1)(X) — R.(X) =Q(X)[pn +1)Xn —k+1) + M,(X) — Mn + 1)(X)]

On the left side, there is a polynomial of maximum order k-1. On the right side Q(X) is
of exact order k. This implies that both sides are trivial and equal to zero. One obtains

Rn+1)(X)=R,(X) (1) Mn+1)(X) = M(X)+pn+1)Xn—k+1)(2)
Example

PX)=Py(X) = X'+ X2+ X +1b; Q(X) = X2+ X + 1b; n = 4k = 2 Py(X) =
X4 X2+ X +1b—16(X2+ X +10)X2 = X3+ X +1b. Py(X) = X? + X + 1b —
X (X2 + X +1b) = X2+ 1b. P(X) = X241 —16(X2+ X + 1) = X R(X) = P(X)
mod Q(X) = R1(X) = P1(X) = X.

AUTOSAR

6.12.3 CRC calculation, Variations and Parameter

Based on the Euclidian Algorithm, some variations have been developed in order to
improve the calculation performance. All these variations do not improve the capabil-
ity to detect or correct errors the so-called Hamming Distance of the resulting code is
determined only by the generator polynomial. Variations simply optimize for different
implementing ALUs.

CRC-Calculation methods are characterized as follows:

1. Rule for Mapping of Data to a bit sequence (din — 1), dn — 2),dmn — 3), ..., d1, do)
and the corresponding data polynomial D(X) (standard or reflected data).

Generator polynomial G(X)
Start value and corresponding Polynomial S(X)

Appendix A(X), also called XOR-value for modifying the final result.

o &~ N

Rule for mapping the resulting CRC-remainder R(X) to codeword. (Standard or
reflected data)

The calculation itself is organized in the following steps
e Map Data to D(X)

e Perform Euclidian Algorithm on X*D(X)+Xn—k—1)S(X)+A(X)and determine
R(X)=[X*D(X)+ X —k—1)S(X) + A(X)] mod G(X)

e Map D(X), R(X) to codeword

6.13 CRC Standard Parameters

This section gives a rough overview on the standard parameters that are commonly
used for 8-bit, 16-bit and 32-bit CRC calculation.

e CRC result width: Defines the result data width of the CRC calculation.

e Polynomial: Defines the generator polynomial which is used for the CRC algo-
rithm.

e Initial value: Defines the start condition for the CRC algorithm.

e Input data reflected: Defines whether the bits of each input byte are reflected
before being processed (see definition be-low).

e Result data reflected: Similar to ,Input data reflected ” this parameter de-fines
whether the bits of the CRC result are reflect-ed (see definition below). The
result is reflected over 8-bit for a CRC8, over 16-bit for a CRC16 and over 32-bit
for a CRC32.

AUTOSAR

e XOR value: This Value is XORed to the final register value before the value is
returned as the official check-sum.

e Check: This field is a check value that can be used as a weak validator of imple-
mentations of the algorithm. The field contains the checksum obtained when the
ASCl| values’1’’2’’3'’4’’5’’6’ 7’ 8’ ’9’ corresponding to values 31h 32h 33h 34h
35h 36h 37h 38h 39h is fed through the specified algorithm.

e Magic check: The CRC checking process calculates the CRC over the entire data
block, including the CRC re-sult. An error-free data block will always result in the
unique constant polynomial (magic check) -representing the CRC-result XORed
with "XOR value’-regardless of the data block content

Example of magic check: calculation of SAE-J1850 CRC8 (see detailed parameters in
PRS_E2EProtocol CRC_00030) over data bytes 00h 00h 00h 00h:

e CRC generation: CRC over 00h 00h 00h 00h, start value FFh:
— CRC-result = 59h
e CRC check: CRC over 00h 00h 00h 00h 59h, start value FFh:
— CRC-result = 3Bh
— Magic check = CRC-result XORed with "XOR value’: C4h = 3Bh xor FFh

Data reflection: It is a reflection on a bit basis where data bits are written in the reverse
order. The formula is:

n—1
reflect,(X) Y z;2" "1
i=0

where z is the data and n the number of data bits. E.g. The reflectiong of 2D4(n =8)
E.g. The reflectionsof 2Dy (n =8) 0010110158 B416(101101005)

The reflection;g of 1234567815 (n =16) (000100100011010001010110011110004) is
1E6A2C48:4 (00111100110101000101100010010004).

The reflectionsy of 123456789ABC DEF0 (n=32) (00010010001101000101011001111000
100110101011110011011110111100005) is 0F7B3D591E6A2C4816
(000011110111101100111101010110010001111001101010001011000100100023).

The reflections of 123456789 ABCDEF0 (n =8) (0001001000110100010101100111
1000100110101011110011011110111100002) is 84C2A6E195D3B7F 016
(10000100110000101010011011100001100101011101001110110111111100005).

AUTOSAR

6.13.1 8-bit CRC calculation
6.13.1.1 8-bit SAE J1850 CRC Calculation
[PRS_E2E_CRC_00030] | The Crc_CalculateCRC8() function of the CRC module

shall implement the CRC8 routine based on the SAE-J1850 CRC8 Standard (see
Table 6.58). |()

CRC result width: 8 bits
Polynomial: 1Dh
Initial value: FFh
Input data reflected: No
Result data reflected: No
XOR value: FFh
Check: 4Bh
Magic check: C4h

Table 6.58: CRC Polynomial parameters for Crc_CalculateCRC8

[PRS_E2E_CRC_00052] | The Crc_CalculateCRC8() function of the CRC module
shall provide results as listed in Table 6.59. |()

Data bytes (hexadecimal) CRC
00 00 00 00 59
F2 01 83 37
OF AA 00 55 79
00 FF 55 11 B8
33 22 55 AA BB CC DD EE FF CB
92 6B 55 8C
FF FF FF FF 74

Table 6.59: CRC results for Crc_CalculateCRC8

6.13.1.2 8-bit 0x2F polynomial CRC Calculation

[PRS_E2E_CRC_00042] | The Crc_CalculateCRC8H2F() function of the CRC mod-
ule shall implement the CRC8 routine based on the generator polynomial Ox2F (see
Table 6.60). |()

CRC result width: 8 bits
Polynomial: 2Fh
Initial value: FFh
Input data reflected: No
Result data reflected: No

AUTOSAR

XOR value: FFh
Check: DFh
Magic check: 42h

Table 6.60: CRC Polynomial parameters for Crc_CalculateCRC8H2F

[PRS_E2E_CRC_00053] [The Crc_CalculateCRC8H2F() function of the CRC module
shall provide results as listed in Table 6.61. |()

Data bytes (hexadecimal) CRC

00 00 00 00 12
F2 01 83 C2
OF AA 00 55 Cé6
00 FF 55 11 77
33 22 55 AA BB CC DD EE FF 11

92 6B 55 33
FF FF FF FF 6C

Table 6.61: CRC results for Crc_CalculateCRC8H2F

6.13.2 16-bit CRC calculation
6.13.2.1 16-bit CCITT-FALSE CRC16

[PRS_E2E_CRC_00002] | The CRC module shall implement the CRC16 routine
based on the CCITT-FALSE CRC16 Standard (see Table 6.62). |()

Note concerning the standard document: The computed FCS is equal to CRC16 XOR
FFFFh when the frame is built (first complement of the CCITT-FALSE CRC16). For the
verification, the CRC16 (CCITT-FALSE) is computed on the same data + FCS, and the
resulting value is always 1DOFh. Note that, if during the verification, the check would
have been done on data + CRC16 (i.e. FCS XOR FFFFh) the resulting value would
have been 0000h that is the CCITT-FALSE magic check.

CRC result width: 16
bits
Polynomial: 1021h
Initial value: FFFFh
Input data reflected: No
Result data reflected: No
XOR value: 0000h
Check: 29B1h
Magic check: 0000h

Table 6.62: CRC Polynomial parameters for Crc_CalculateCRC16

AUTOSAR

[PRS_E2E_CRC_00054] | The Crc_CalculateCRC16() function of the CRC module
shall provide results as listed in Table 6.63. |()

Data bytes (hexadecimal) CRC
00 00 00 00 84C0
F2 01 83 D374
OF AA 00 55 2023
00 FF 55 11 B8F9
33 22 55 AA BB CC DD EE FF F53F
92 6B 55 0745
FF FF FF FF 1DOF

Table 6.63: CRC results for Crc_CalculateCRC16

6.13.3 32-bit CRC calculation
6.13.3.1 32-bit Ethernet CRC Calculation

[PRS_E2E_CRC_00003] | The CRC module shall implement the CRC32 routine
based on the IEEE-802.3 CRC32 Ethernet Standard (see Table 6.64). |()

CRC result width: 32 bits
Polynomial: 04C11DB7h
Initial value: FFFFFFFFh
Input data reflected: Yes

Result data reflected: Yes

XOR value: FFFFFFFFh
Check: CBF43926h
Magic check™: DEBB20E3h

Table 6.64: CRC Polynomial parameters for Crc_CalculateCRC32

*Important note: To match the magic check value, the CRC must be appended in little
endian format, i.e. low significant byte first. This is due to the reflections of the input
and the result

[PRS_E2E_CRC_00055] [The Crc_CalculateCRC32() function of the CRC module
shall provide results as listed in Table 6.65. |()

Data bytes (hexadecimal) CRC
00 00 00 00 2144DF1C
F2 01 83 24ABOD77
OF AA 00 55 B6C9B287
00 FF 55 11 32A06212

AUTOSAR

33 22 55 AA BB CC DD EE FF BOAE863D
92 6B 55 9CDEA29B
FF FF FF FF FFFFFFFF
Table 6.65: CRC results for Crc_CalculateCRC32
6.13.3.2 32-bit 0xF4ACFB13 polynomial CRC calculation

This 32-bit CRC function is described in [14]. It has an advantage with respect to the
Ethernet CRC - it has a Hamming Distance of 6 up to 4kB. [PRS_E2E_CRC_00056]
[The CRC module shall implement the CRC32 routine using the Ox1’F4’AC’FB’13
(0xF4’AC’FB’13) polynomial (see Table 6.66). |()

CRC result width: 32 bits

Polynomial: F4’AC'FB’13h

lInitial value: FFFFFFFFh

Input data reflected: Yes

Result data reflected: Yes

XOR value: FFFFFFFFh

Check: 16'97’D0’6AN

Magic check*: 90’4C’DD’BFh

Hamming distance: 6, up to 4096 bytes
(including CRC)

Table 6.66: CRC Polynomial parameters for Crc_CalculateCRC32P4

*Important note: To match the magic check value, the CRC must be appended in little
endian format, i.e. low significant byte first. This is due to the reflections of the input

and the result.

There are three notations for encoding the polynomial, so to clarify, all three notations

are shown:

1 Polynomial as binary 0001°0100°0010'11171°
0000°'1110°0001’1110°
1011°1010°1001°1110°
1010°0011°0110’10071’

0011

2 Normal representation with high | 01°42’FO'’E1’EB’A9 EA’36°93h

bit

3 Normal representation 42’FO’E1T’'EB’A9’EA’36'93h

4 Reversed reciprocal representa- | A1'78'70°'F5'D4’F5'1B’49h

tion (=Koopman representation)

AUTOSAR

Notes:
1. Normal representation with high bit = hex representation of polynomial as bi-nary
2. Normal representation with high bit = Koopman representation * 2 + 1

[PRS_E2E_CRC_00057] | The Crc_CalculateCRC32P4() function of the CRC module
shall provide results as listed in Table 6.67. |()

Data bytes (hexadecimal) CRC
00 00 00 00 6FB32240h
F2 01 83 4F721A25h
OF AA 00 55 20662DF8h
00 FF 55 11 9BD7996Eh
33 22 55 AA BB CC DD EE FF AB5A343Dh
92 6B 55 EE688A78h
FF FF FF FF FFFFFFFFh

Table 6.67: CRC results for Crc_CalculateCRC32P4

6.13.4 64-bit CRC calculation
6.13.4.1 64-bit ECMA polynomial CRC calculation
This 62-bit CRC function is described in [15]. It has a good hamming distance of 4, for

long data (see below).

[PRS_E2E_CRC_00062] | The CRC module shall implement the CRC64 routine us-
ing the polynomial: 0x1’42’FO’E1’EB’A9’EA’36'93 (0x42'FO'E1’'EB’A9’EA’36°93) (see
Table 6.68). |()

CRC result width: 64 bits

Polynomial: 42’FO'ET’EB’A9’EA’36'93h
Initial value: FFFFFFFFFFFFFFFFh
Input data reflected: Yes

Result data reflected: Yes

XOR value: FFFFFFFFFFFFFFFFh
Check: 99’5D’C9'BB’'DF’'19'39°'FAh
Magic check™: 49'95'8C’'9A'BD’7D’35'3Fh
Hamming distance: 4, up to almost 8 GB

Table 6.68: CRC Polynomial parameters for Crc_CalculateCRC64

*Important note: To match the magic check value, the CRC must be appended in little
endian format, i.e. low significant byte first. This is due to the reflections of the input
and the result.

AUTOSAR

There are three notations for encoding the polynomial, so to clarify, all three notations

are shown:
]
2
3
4

Notes:

1. Normal representation with high bit = hex representation of polynomial as bi-nary

Polynomial as binary

0001°0100°0010’1111’
0000°1110°0001°1110’
1011°1010°1001'1110’
1010°0011°0110’1001°

0011

Normal representation with high
bit

01’42’FO’E1T'EB’A9’EA’36°93h

Normal representation

42’FO’E1T’'EB’A9’EA’36'93h

Reversed reciprocal representa-
tion (=Koopman representation)

A1’78'70°'F5’'D4’'F5'1B’49h

Table 6.69: CRC polynomial notations

2. Normal representation with high bit = Koopman representation * 2 + 1

[PRS_E2E_CRC_00063] | The Crc_CalculateCRC64() function of the CRC module
shall provide results as listed in Table 6.70. |()

Data bytes (hexadecimal) CRC
00 00 00 00 F4A586351E1B9F4Bh
F2 01 83 319C27668164F1C6h
OF AA 00 55 54C5D0F7667C1575h
00 FF 55 11 A63822BE7EQ0704E6h
33 22 55 AA BB CC DD EE FF 701ECEB219A8ES5D5h
92 6B 55 5FAA96A9B59F3E4Eh
FF FF FF FF FFFFFFFFO0000000h

Table 6.70: CRC results for Crc_CalculateCRC64

AUTOSAR

7 E2E API specification

This chapter defines an abstract AP| of E2E supervision. E2E is supposed to be in-
voked by middleware, but the results of checks are visible to the application, so this
chapter is split into two parts.

7.1 API of middleware to applications

The API to the applications is imposed by the middleware (e.g. RTE or ARA). E2E
provides an additional output object providing E2E check results.

[PRS_E2E_USE_00321] [The middleware shall provide, for each exchanged
dataRecord, a set of functions:

e middleware_send(in dataRecord)

e middleware_receive(out dataRecord, out e2eResult)
|(RS_E2E_08534)
[PRS_E2E_00322] | The e2eResult shall contain pieces of information:

e e2eStatus: Profile-independent status of the reception on one single Data in one
cycle. Possible values are: OK, REPEATED, WRONGSEQUENCE, NOTAVAIL-
ABLE, NONEWDATA.

e e2eState: Status of the communication channel exchanging the data. Possible
values are: VALID, DEINIT, NODATA, INIT, INVALID.

|(RS_E2E 08534)

7.2 API of E2E

The E2E interface is independent from any middleware. It is designed with SOME/IP in
mind, but it could work for any other middleware or software services, e.g. a database
requesting to protect its data.

The interface between the middleware and E2E operates on the serialized data, where:
E2E adds E2E header (sender side) and E2E check E2E header (receiver side).

[PRS_E2E_00323] | E2E protocol shall provide the following interface:
e E2E_check(in datalD, inout serializedData)
e E2E protect(in datalD, inout serializedData): e2eResult

where:

AUTOSAR

e datalD is a unique identifier of the exchanged data/information. In case of multiple
instantiation, each single instance gets typically a separate datalD, even if the
same type of information is transmitted

¢ serializedData - vector/array of serialized data, where E2E header is located, next
to serialized data

e e2eResult - result of E2E checks, see previous section for the definition.
|(RS_E2E _08534)
The middleware is responsible to provide an adaptation to E2E functional interface.

[PRS_E2E_00318] | The middleware shall determine the DatalD of the currently ex-
changed information. |(RS_E2E_08534)

For example, in case of vsomeip, it needs to determine DatalD based on servicei-
d/eventid/instanceid tuple.

[PRS_E2E_00319] | The middleware invoke E2E functions providing them the DatalD
together with the data. | (RS_E2E_08534)

[PRS_E2E_00320] [On the receiver side, the middleware shall provide the e2eResult
determined by E2E to the receiver. |(RS_E2E_08534)

AUTOSAR

8 Configuration Parameters

E2E supervision has the following configuration options for each protected data. Note
that it is platform-specific how middleware associates a middleware communication
channel (e.g. I-PDU or event) with E2E communication protection.

For each DatalD, which uniquely represents data exchanged, there is a set of configu-

ration options.

[PRS_E2E_00324] | The options for a E2E-protected data shall be available as defined
in Table 8.1 | (RS_E2E_08534)

Parameters Profile Description
datalD 1,4,5, This represents a unique numerical identifier. Note: ID is used for protection
6,7, 11 against masquerading. The details concerning the maximum number of values
(this information is specific for each E2E profile) applicable for this attribute are
controlled by a semantic constraint that depends on the category of the EndToEnd-
Protection.
datald is used as a unique identifier of a configuration object. One datald can
appear only once in the configuration.
profileName all This represents the identification of the concrete E2E profile. Possible profiles: 1
(only CP), 2 (only CP), 4,5, 6,7, 11, 22.
datalength 1,2,5, For fixed size data: length of data in bits.
11,22
minDatalLength 4,6,7 For variable size data: minimum length of data in bits.
maxDatalength 4,6,7 For variable size data: maximum length of data in bits.
dataldList 2,22 List of 16 datalD values, where a a different value is transmitted depending on
counter value.
dataldMode 1, 11 This attribute describes the inclusion mode that is used to include the two-byte
Data ID in E2E communication protection.
offset 2,4,5, Offset of the E2E header in the Data[] array in bits.
6,7,22
counterOffset 1, 11 Offset of the counter in the Data[] array in bits.
crcOffset 1, 11 Offset of the CRC in the Data[] array in bits.
dataldNibbleOffset 1, 11 Offset of the datalD nibble in the Data[] array in bits.
maxDeltaCounter 4,5, 6, Maximum allowed difference between the counter value of the current message
7,11,12 | and the previous valid message.
Parameters of legacy profiles
maxDeltaCounterlnit 1,2 Initial maximum allowed gap between two counter values of two consecutively
received valid Data. The maxDeltaCounter is increased on each reception try but
only reset when receiving a valid message. This is to compensate for and tolerate
lost messages.
maxNoNewOrRepeated- 1,2 The maximum amount of missing or repeated Data which the receiver does not
Data expect to exceed under normal communication conditions.
syncCounterlnit 1,2 The number of messages required for validating the consistency of the counter
after exceeding the maxNoNewOrRepeatedData threshold.
profileBehavior 1,2 Mapping of specific profile status values to unified profileStatus. False: legacy

behavior, as before AUTOSAR Classic Platform Release 4.2, True: mapping ac-
cording to new profiles (profile 4 and newer) interpretation of status, introduced in
AUTOSAR Classic Platform Release 4.2.

Parameters of E2E State Machine

V

AUTOSAR

A

windowSize Size of the monitoring window (ProfileStatus circular buffer) for the state machine.

maxErrorStatelnit Maximum number of checks in which ProfileStatus equal to E2E_P_ERROR was determined,
within the last WindowSize checks, for the state E2E_SM_INIT.

maxErrorStatelnvalid Maximum number of checks in which ProfileStatus equal to E2E_P_ERROR was determined,
within the last WindowSize checks, for the state E2E_SM_INVALID.

maxErrorStateValid Maximum number of checks in which ProfileStatus equal to E2E_P_ERROR was determined,
within the last WindowSize checks, for the state E2E_SM_VALID.

minOkStatelnit Minimum number of checks in which ProfileStatus equal to E2E_P_OK was determined,
within the last WindowSize checks, for the state E2E_SM_INIT.

minOkStatelnvalid Minimum number of checks in which ProfileStatus equal to E2E_P_OK was determined,
within the last WindowSize checks, for the state E2E_SM_INVALID.

minOkStateValid Minimum number of checks in which ProfileStatus equal to E2E_P_OK was determined,
within the last WindowSize checks, for the state E2E_SM_VALID.

Table 8.1: E2E configuration parameters

AUTOSAR

9 Protocol usage and guidelines

This chapter contains requirements on usage of E2E Supervision when designing and
implementing safety-related systems, which are depending on E2E communication
protection and which are not directly related to some specific functionality. Note that
chapter 6 also provides several requirements on usage.

9.1 E2E and SOME/IP

For the combination of E2E communication protection with SOME/IP, there needs to
be a common definition of the on-wire protocol. Depending on architecture properties,
the implementing components need to be configured and used accordingly.

In general, all available E2E profiles can be used in combination with SOME/IP. How-
ever, they may have limitations, as for the maximum usable length of data, or being
limited to fixed length messages.

The size of the E2E Header is dependent on the selected E2E profile.

[PRS_E2E_USE_00236] | The E2E CRC shall be calculated over the following parts
of the serialized SOME/IP message.

1. Request ID (Client ID / Session ID) [32 bit]
2. Protocol Version [8 bit]
3. Interface Version [8 bit]
4. Message Type [8 bit]
5. Return Code [8 bit]

6. Payload [variable size]
|(RS_E2E_08540)

[PRS_E2E_USE_00237] [The E2E header shall be placed after the Return Code
depending on the chosen Offset value. The default Offset is 64 bit, which puts the E2E
header exactly after the Return Code. | (RS_E2E_08540)

9.2 Periodic use of E2E check

[PRS_E2E_USE_00325] | The E2E check function shall be invoked at least once
within FTTI (FTTI is for the safety goals from which the requirements for this E2E
checks are derived). |(RS_E2E_08528)

AUTOSAR

9.3 Error handling

The E2E Supervision itself does not handle detected communication errors. It only
detects such errors for single received data elements and returns this information to
the callers (e.g. SW-Cs), which have to react appropriately. A general standardization
of the error handing of an application is usually not possible.

[PRS_E2E_USE_00235] | The user (caller) of E2E Supervision, in particular the re-
ceiver, shall provide the error handling mechanisms for the faults detected by the E2E
Supervision. |(RS_E2E 08528)

9.4 Maximal lengths of Data, communication buses

The length of the message and the achieved hamming distance for a given CRC are
related. To ensure the required diagnostic coverage the maximum length of data ele-
ments protected by a CRC needs to be selected appropriately. The E2E profiles are
intended to protect inter-ECU communication with lengths as listed in Table 9.1

All length values stated in this section are based on assumptions on suitable hamming
distances for specific scenarios, without explicitly listing those assumptions. As such,
actual suitable values may differ based on the use case scenarios.

E2E Profile Suggested maximum applicable length including control
fields for inter-ECU communication

E2E Profile 1 and 11 32B

E2E Profile 2 and 22 32B

E2E Profile 4 4 kB

E2E Profile 5 4 kB

E2E Profile 6 4 kB

E2E Profile 7 4 MB

Table 9.1: E2E maximum data length

In E2E Profiles 1 and 2, the Hamming Distance is 2, up to the given lengths. Due to 8
bit CRC, the burst error detection is up to 8 bits.

[PRS_E2E_UC_00051] | In case of inter-ECU communication over FlexRay, the length
of the complete Data (including application data, CRC and counter) protected by E2E
Profile 1 or E2E Profile 2 should not exceed 32 bytes. |(RS_E2E_08528)

This requirement only contains a reasonable maximum length evaluated during the de-
sign of the E2E profiles. The responsibility to ensure the adequacy of the implemented
E2E communication protection using E2E Supervision for a particular system remains
by the user.

[PRS_E2E_UC_00466] | In case of inter-ECU communication over FlexRay, CAN,
CAN FD, Ethernet suggested max. data length can be adopted (extended or reduced)

AUTOSAR

if it can by justified by an analysis of a particular use case or network architecture. |
(RS_E2E_08528)

[PRS_E2E_UC_00061] [In case of CAN or LIN the length of the complete data ele-
ment (including application data, CRC and counter) protected by E2E Profile 1 should
not exceed 8 bytes. | (RS_E2E_08528)

[PRS_E2E_UC_00351] | The length of the complete Data (including application
data and E2E header) protected by E2E Profile 4, 5 or 6 shall not exceed 4kB. |
(RS_E2E 08528)

[PRS_E2E_UC_00316] | The length of the complete Data (including application data
and E2E header) protected by E2E Profile 7 shall not exceed 4MB. |(RS_E2E_08528)

[PRS_E2E_UC_00236] | When using E2E Supervision, the designer of the functional
or technical safety concept of a particular system using E2E Supervision shall evalu-
ate the maximum permitted length of the protected Data in that system, to ensure an
appropriate error detection capability. | (RS_E2E_08539)

Thus, the specific maximum lengths for a particular system may be shorter (or maybe
in some rare cases even longer) than the recommended maximum applicable lengths
defined for the E2E Profiles.

If the protected data length exceeds the network bus frame limit (or payload limit), the
data can be segmented on the sender side after the E2E communication protection,
and be assembled on the receiver side before the E2E evaluation. The possible faults
happening during segmentation/desegmentation can be considered as "corruption of
information"”.

[PRS_E2E_UC_00170] [When designing the functional or technical safety concept of
a particular system any user of E2E shall ensure that the transmission of one unde-
tected erroneous data element in a sequence of data elements between sender and
receiver, protected with profile 1, 11, 2, 22, will not directly lead to the violation of a
safety goal of this system. |()

In other words, SW-C shall be able to tolerate the reception of one erroneous data
element, which error was not detected by the E2E Supervision. What is not required is
that an SW-C tolerates two consecutive undetected erroneous data elements, because
it is enough unlikely that two consecutive Data are wrong AND that for both Data the
error remains undetected by the E2E Supervision.

When using LIN as the underlying communication network the residual error rate on
protocol level is several orders of magnitude higher (compared to FlexRay and CAN)
for the same bit error rate on the bus. The LIN checksum compared to the protocol
CRC of FlexRay (CRC-24) and CAN (CRC-15) has different properties (e.g. hamming
distance) resulting in a higher number of undetected errors coming from the bus (e.g.
due to EMV). In order to achieve a maximum allowed residual error rate on application
level, different error detection capabilities of the application CRC may be necessary,
depending on the strength of the protection on the bus protocol level.

AUTOSAR

[PRS_E2E_UC_00237] [Any user of E2E Supervision shall ensure, that within one
implementation of a communication network every safety-related Data, protected by
E2E Supervision, has a unique Data ID (E2E Profiles 1, 4, 5, 6, 7, 11) or a unique
DatalDList[] (E2E Profiles 2, 22). | (RS_E2E_08528)

E2E Profile 1 with E2E_P01DatalDMode = E2E_P01_DATAID_BOTH and E2E Pro-
file 11 with E2E_P11DatalDMode = E2E_P11_DATAID_BOTH uses an implicit 2-byte
Data ID, over which CRCS8 is calculated. As a CRC over two different 2-byte numbers
may result with the same CRC, some precautions must be taken by the user. See
PRS_E2EProtocol_USE_00072 and PRS_E2EProtocol_USE_00073.

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains
	4.3 Background information concerning functional safety
	4.3.1 Functional safety and communication
	4.3.2 Sources of faults in E2E communication
	4.3.2.1 Software faults
	4.3.2.2 Random hardware faults
	4.3.2.3 External influences, environmental stress

	4.3.3 Communication faults
	4.3.3.1 Repetition of information
	4.3.3.2 Loss of information
	4.3.3.3 Delay of information
	4.3.3.4 Insertion of information
	4.3.3.5 Masquerading
	4.3.3.6 Incorrect addressing
	4.3.3.7 Incorrect sequence of information
	4.3.3.8 Corruption of information
	4.3.3.9 Asymmetric information sent from a sender to multiple receivers
	4.3.3.10 Information from a sender received by only a subset of the receivers
	4.3.3.11 Blocking access to a communication channel

	5 Requirements Tracing
	6 Functional specification
	6.1 Overview of communication protection
	6.2 Overview of E2E Profiles
	6.2.1 Error detection

	6.3 Specification of E2E Profile 1 (Only for CP)
	6.3.1 Data Layout
	6.3.2 Counter
	6.3.3 Data ID
	6.3.4 CRC calculation
	6.3.5 Timeout detection
	6.3.6 E2E Profile 1 variants
	6.3.7 E2E_P01Protect
	6.3.8 Calculate CRC
	6.3.9 E2E_P01Check
	6.3.10 E2E Profile 1 Protocol Examples
	6.3.10.1 DataIDMode set to E2E_P01_DATAID_ALT
	6.3.10.2 DataIDMode set to E2E_P01DATAID_LOW
	6.3.10.3 DataIDMode set to E2E_P01DATAID_NIBBLE

	6.4 Specification of E2E Profile 2 (only for CP)
	6.4.1 E2E_P02Protect
	6.4.2 E2E_P02Check
	6.4.3 E2E Profile 2 Protocol Examples

	6.5 Specification of E2E Profile 4
	6.5.1 Data Layout
	6.5.1.1 User data layout
	6.5.1.2 Header layout

	6.5.2 Counter
	6.5.3 Data ID
	6.5.4 Length
	6.5.5 CRC
	6.5.6 Timeout detection
	6.5.7 E2E Profile 4 variants
	6.5.8 E2E_P04Protect
	6.5.9 E2E_P04Check
	6.5.10 E2E Profile 4 Protocol Examples

	6.6 Specification of E2E Profile 5
	6.6.1 Data Layout
	6.6.1.1 User data layout
	6.6.1.2 Header layout

	6.6.2 Counter
	6.6.3 Data ID
	6.6.4 Length
	6.6.5 CRC
	6.6.6 Timeout detection
	6.6.7 E2E_P05Protect
	6.6.8 E2E_P05Check
	6.6.9 E2E Profile 5 Protocol Examples

	6.7 Specification of E2E Profile 6
	6.7.1 Data Layout
	6.7.1.1 User data layout
	6.7.1.2 Header layout

	6.7.2 Counter
	6.7.3 Data ID
	6.7.4 Length
	6.7.5 CRC
	6.7.6 Timeout detection
	6.7.7 E2E_P06Protect
	6.7.8 E2E_P06Check
	6.7.9 E2E Profile 6 Protocol Examples

	6.8 Specification of E2E Profile 7
	6.8.1 Data Layout
	6.8.1.1 User data layout
	6.8.1.2 Header layout

	6.8.2 Counter
	6.8.3 Data ID
	6.8.4 Length
	6.8.5 CRC
	6.8.6 Timeout detection
	6.8.7 E2E Profile 7 variants
	6.8.8 E2E_P07Protect
	6.8.9 E2E_P07Check
	6.8.10 E2E Profile 7 Protocol Examples

	6.9 Specification of E2E Profile 11
	6.9.1 Data Layout
	6.9.1.1 User data layout
	6.9.1.2 Header layout

	6.9.2 Counter
	6.9.3 Data ID
	6.9.4 Length
	6.9.5 CRC
	6.9.6 Timeout detection
	6.9.7 E2E_P11Protect
	6.9.8 E2E_P11Check
	6.9.9 E2E Profile 11 Protocol Examples
	6.9.9.1 DataIDMode set to E2E_P11DATAID_NIBBLE
	6.9.9.2 DataIDMode set to E2E_P11DATAID_NIBBLE, Offset set to 64

	6.10 Specification of E2E Profile 22
	6.10.1 Data Layout
	6.10.1.1 User data layout
	6.10.1.2 Header layout

	6.10.2 Counter
	6.10.3 Data ID
	6.10.4 Length
	6.10.5 CRC
	6.10.6 Timeout detection
	6.10.7 E2E_P22Protect
	6.10.8 E2E_P22Check
	6.10.9 E2E Profile 22 Protocol Examples
	6.10.9.1 Offset set to 64

	6.11 Specification of E2E state machine
	6.11.1 Overview of the state machine
	6.11.2 State machine specification

	6.12 Basic Concepts of CRC Codes
	6.12.1 Mathematical Description
	6.12.2 Euclidian Algorithm for Binary Polynomials and Bit-Sequences
	6.12.3 CRC calculation, Variations and Parameter

	6.13 CRC Standard Parameters
	6.13.1 8-bit CRC calculation
	6.13.1.1 8-bit SAE J1850 CRC Calculation
	6.13.1.2 8-bit 0x2F polynomial CRC Calculation

	6.13.2 16-bit CRC calculation
	6.13.2.1 16-bit CCITT-FALSE CRC16

	6.13.3 32-bit CRC calculation
	6.13.3.1 32-bit Ethernet CRC Calculation
	6.13.3.2 32-bit 0xF4ACFB13 polynomial CRC calculation

	6.13.4 64-bit CRC calculation
	6.13.4.1 64-bit ECMA polynomial CRC calculation

	7 E2E API specification
	7.1 API of middleware to applications
	7.2 API of E2E

	8 Configuration Parameters
	9 Protocol usage and guidelines
	9.1 E2E and SOME/IP
	9.2 Periodic use of E2E check
	9.3 Error handling
	9.4 Maximal lengths of Data, communication buses

